
Master of Science Thesis

A new dipole-based jet clustering
algorithm

Home Inst. Advisor:

Ivica PULJAK

Dept. of Mathematics and Physics

FESB, University of Split

Split, Croatia

Visiting Inst. Advisor:

Leif Lönnblad

Dept. of Theoretical Physics

Lund University

Lund, Sweden

Author:

Toni Šćulac

Physics Department

Prirodoslovno Matematički Fakultet

University of Split , Croatia

A thesis written within the ERASMUS exchange programme and submitted in

fulfilment of the requirements for the Master’s Degree

June 2014

Abstract

A new dipole-based jet clustering algorithm

by Toni Šćulac

Jet production occurs very often in particle physics experiments, and a very good un-

derstanding of how partons evolve into jets has been achieved over the last 30 years

[1]. The main tool in jet analysis is jet clustering algorithms, and because the problem

of clustering particles back to initial partons can not be solved exactly, many different

algorithms have been developed [2, 3]. In this work, we propose a new dipole-based jet

clustering algorithm, called the dipole-kt algorithm with two main features; it uses a

Lorentz invariant distance measure, and it does 3→ 2 recombinations in an attempt to

”invert” a dipole-based parton shower. We validate its exclusive version by comparing it

to the kt-algorithm. We then proceed to analyze the dipole-kt results in W -production

events in proton proton collisions, where the W has a large transverse momentum and

decays into jets. A simple analysis of the W mass reconstruction strengthens our hope

that with future developments this area of work will become dipole-kt algorithm’s main

forte.

i

Acknowledgements

Here I would like to thank my visiting institution supervisor Leif Lönnblad who decided

to share his idea for a new algorithm with me. I would mostly like to thank him for being

a great supervisor who was always there for me, and who made this work very easy with

his sense of humour. I would like to thank my home institution supervisor Ivica Puljak

for giving me great advice during this period. Also, I would like to thank Torbjörn

Sjöstrand for his, much appreciated, help with PYTHIA and discussions he had with

Leif and me. Last but not least I would like to thank my family whose unconditional

love and support helped me got this far in my studies.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1

2 Theory 4

2.1 Quantum Chromodynamics (QCD) . 4

2.2 Jets . 5

2.2.1 Jet variables . 5

2.2.2 Matrix element calculations . 7

2.2.3 Event generators . 9

2.3 Jet clustering algorithms . 10

2.3.1 Cone algorithms . 11

2.3.2 Sequential recombination jet algorithms 12

2.3.3 Boosted jets . 14

3 Dipole-kt jet clustering algorithm 17

3.1 PYTHIA dipole showers . 17

3.2 Distance formulas . 21

3.3 Algorithm summary . 24

3.4 The speed issue . 26

3.5 Algorithm validation . 26

4 Prospect in boosted jets 36

4.1 Introduction . 36

4.2 Boosted W → qq̄ . 37

5 Conclusion 42

A Algorithm in detail 44

A.1 How to use it . 44

A.2 Algorithm implemetation . 45

iii

Contents iv

Bibliography 47

Chapter 1

Introduction

A jet is a cluster of hadrons produced by hadronization of a quark or a gluon in a particle

physics experiment (eg. proton-proton collisions). We use Quantum Chromo-Dynamics

(QCD) to describe jet dynamics, because they consist of hadrons that interact mainly

by the strong force. Jets have long been studied in particle physics experiments and a

very good understanding of their dynamics has been achieved [1]. However, with the

introduction of the Large Hadron Collider (LHC) at the European Organization for

Nuclear Research (CERN) which produces jets in much larger numbers than previously,

and over a huge kinematic range, a deeper understanding of jets became necessary.

Because of the large number of particles produced in every collision, computers are

needed to collect and analyze the data in particle physics experiments.

Jet production occurs in most high energy collisions of particles. Quarks and gluons

that are produced in collisions cannot live as a stand-alone particle, and thus undergo

a process of hadronization that turns them into hadrons. Hadrons are bound states of

quarks and gluons that can be detected in the particle physics experiments. Because

of this, jet finding algorithms are necessary for basically any kind of a particle collision

analysis. This has led to the development of a several jet finding algorithms in the last

30 years [2]. One can think of a jet algorithm as an attempt to rewind from the final

state particles in our data to the initial parton (quark or gluon) that produced that

particular jet, step by step. This task is very tricky when there are a large number of

final state particles, so it is impossible to have an algorithm that will give exact results.

That is why several jets clustering algorithms are used these days, and each one of them

has some advantages and disadvantages. In reviews [2, 3] of these algorithms one can

often find that choosing which algorithm to use depends on what one analyzes.

One active area of the research of the jet clustering algorithms is the so-called ”boosted

jets analysis”. This is the analysis of the jets created from a heavy particle with high

1

Chapter 1. Introduction 2

transverse momentum (momentum perpendicular to the beam axis). Since we have

reached so high energies in proton proton collisions at the LHC, it is possible to create

heavy particles, like the Z or W bosons, with transverse momenta of several hundred

GeV. This means when they decay further they can produce boosted jets that are almost

collinear and therefore hard to differentiate. That is why substructure of boosted jets is

a challenge for jet clustering algorithms. Current analysis are done by first finding one

fat jet, and then using the algorithm again on that fat jet (but with other parameters)

to try to distinguish its substructure (described in detail in refs. [1, 4]).

What jet clustering algorithms used these days have in common, is that they are not

Lorentz invariant under transverse boosts and that they do clusterings by clustering two

particles back to one (2 → 1). Our aim was to develop a jet clustering algorithm that

is different with the respect to that. Firstly, it would use Lorentz invariant variables

for calculations, and therefore should do well in a boosted jet case. Secondly, it would

cluster three particles to two (3 → 2), as an idea of inverting a dipole-based parton

shower evolution. Parton showers are Monte Carlo simulations of the evolution of quarks

and gluons produced in particle collisions by successive emissions of further quarks and

gluons. In recent times most of them have adopted a color dipole model that does

emissions of partons from a dipole rather than from a single particle (does 2 → 3

emissions rather than 1→ 2)[5]. The main idea of our algorithm is to try and ”invert”

these emissions.

In this thesis we present the reader with a theoretical background, development and

validation of our new algorithm, and finally with a preliminary analysis of the prospects

of the algorithm in a boosted jets analysis.

Chapter 1. Introduction 3

Figure 1.1: Illustration showing a connection between a theoretical view on the Higgs
production (shown with a schematic diagram on the left side) and what we actually

measure in our detectors (shown with an illustration on a right side).

Chapter 2

Theory

2.1 Quantum Chromodynamics (QCD)

The strong force was first introduced to explain the stability of the atomic nuclei. Now

we know that protons and neutrons, which make up the atomic nuclei, are not elementary

particles. They are made of three quarks each, and quarks interact by the exchange of

gluons, another elementary particle. In total we have found six different flavors (types)

of quarks arranged in three generations:

• up (u), down (d)

• charm (c), strange(s)

• top (t), bottom (b).

Everything we see is made only from the first generation quarks: up (u) and down (d).

Each quark has spin 1
2 . u, c and t quark have electric charge +2

3 , d, s and b quark

have -13 . A proton is made of two up and one down quark (uud), and neutron from one

up and two down quarks (udd). Just like electric charge defines how particles interact

via the electromagnetic force, quarks have color (QCD charge) that specifies how they

interact via the strong force. Each quark is either ”blue”, ”green” or ”red”. In addition,

each quark has a partner antiquark that has the same mass but opposite charge, and has

anti-color. In total there are 36 quarks, that interact by exchange of 8 different types of

gluons. Gluons are massless color-charged particles with spin 1.

Just like the electric charge, the color charge is conserved. In addition an interesting

phenomenon called color confinement occurs, stating that color-charged particles cannot

be isolated, and therefore cannot be directly observed. Because of the color confinement

4

Chapter 2. Theory 5

we can only detect quarks as bound inside mesons and baryons. Mesons are particles

composed of one quark and one antiquark that have opposite color (eg. ”blue” quark

and ”anti-blue” antiquark) and are therefore colorless. Baryons are composed of three

quarks, each with different color, and are also colorless. Baryons and mesons are together

called hadrons. Because of the color confinement, quarks and gluons fragment into

hadrons and form jets. This process is called hadronization and it occurs frequently

in particle collision experiments, such as the LHC. These hadrons that form jets are

measured in detectors and studied in order to determine the properties of the original

interactions between quarks or gluons.

2.2 Jets

Jets are used for a wide range of physics analyses. One way of classifying their use

is according to the different possible origins for the partons that give rise to the jets.

In hadron colliders processes, the energy and direction of the jet is closely related to

that of the parton in the proton that underwent a hard scattering. So jet spectra

contain information on the distribution of partons inside the proton [6–9]. Jets can also

originate from partons produced in decays of heavy particles, such as the Higgs or W,Z.

The analysis of these jets can then be a way of detecting that particle. The sum of the

momenta of the jets should have an invariant mass that is close to the mass of the heavy

particle [10]. Jets may also originate radiatively, for example from the emission of a

gluon off some other parton in the event. The rate of a production of such jets provides

an information on the value of the strong coupling (for example refs. [11, 12]).

Given the variety of these and other related possible uses of jets, it is not surprising that

there is no single optimal way of defining jets, and over the 30 years that have passed

since the first detailed proposal for measuring jets [13], many jet definitions have been

developed and used. In this section reader will be provided with some widely used jet

definitions necessary for further discussions.

2.2.1 Jet variables

In order to study jets one must define some variables used to describe them. In proton

proton collisions, a natural thing is to define jets transverse momentum (p⊥) and their

direction (η,φ).

Chapter 2. Theory 6

• Jet p⊥p⊥p⊥ is the transverse momentum of the jet defined as a sum of the transverse

momentum of all particles contained in a jet.

p⊥Jetp⊥Jetp⊥Jet =
∑
i∈Jet

p⊥ip⊥ip⊥i (2.1)

• Jet pseudorapidity is the coordinate describing the angle of a jet relative to the

beam axis. It is defined as:

ηJet = −ln
[
tan

(
θ

2

)]
(2.2)

where θ is the angle between the jet momentum and the beam axis. Note that, in

the approximation that the mass of the particle is nearly zero, the pseudorapidity

of the jet is numerically close to the experimantal particle physicist’s definition of

the rapidity y = 1
2 ln

E+pz
E−pz .

• Jet azimuth is the angle of the jet transverse momentum with the respect to the

x -axis:

φJet =

arctan
py
px

;x > 0

arctan
py
px

+ π ; y ≥ 0, x < 0

arctan
py
px
− π ; y < 0, x < 0

+π
2 ; y > 0, x = 0

−π
2 ; y < 0, x = 0

undefined ; y = 0, x = 0

(2.3)

• Jet mass squared is given with

m2 =

(∑
i∈Jet

pipipi

)2

(2.4)

where pi is the 4-momentum of a particle i contained in a jet.

• Jet radius. The dimensionless parameter that tells us about the size of the cone

in which all of the jet particles are contained. It is defined as the minimum value

of R for which the inequality:

(ηi − ηJet)2 + (φi − φJet)2 < R2 (2.5)

holds for each particle i. Here, ηi and φi are respectively the pseudorapidity and

azimuth of particle i.

Chapter 2. Theory 7

2.2.2 Matrix element calculations

In order to understand jets and their production one must first get familiar with basic

scattering calculations in particle physics. Particle physics experiments count the num-

ber of occurrences of specific events, which is directly related to the ”cross section” of

the relevant process to happen. We can calculate cross sections from our theories to

have a prediction for the experiment.

The differential cross section of a proton A and proton B to inelastically scatter and

produce final state particles c1. . . cn and proton remnants X, is given by

dσ(A+B → c1 + · · ·+ cn +X) =

∑
a,b∈{allowedpartons}

1∫
0

dxb

1∫
0

dxafa/A(xa, µF)fb/B(xb, µF)dσ̂(a+ b→ c1 + · · ·+ cn).

(2.6)

Here fa/A(xa, µF) and fb/B(xb, µF) are functions describing the distribution of partons

inside the proton, the parton distribution functions (PDFs). They cannot be calculated

from theory and are therefore measured in experiments. dσ̂(a + b → c1 + · · · + cn) is

the differential partonic cross section of partons a and b scattering and producing final

state particles c1. . . cn. It can be calculated from theory and it is given by

dσ̂(a+ b→ c1 + · · ·+ cn) =

1

4
√

(papb)2 −M2
aM

2
b

|M(a+ b→ c1 + · · ·+ cn)|2dφn(pa, pb; p1, . . . , pn). (2.7)

The first factor (1/[4
√

(papb)2 −M2
aM

2
b]) is called a flux factor, and is related to the

relative velocities and energies of the incoming partons. The factor |M|2 is called squared

invariant matrix element (ME). The flux factor and ME are finally integrated over

the phase space differential

dφn(pa, pb; p1, . . . , pn) = (2π)4δ(4)

(
pa + pb −

n∑
i=1

pi

)
d3p1

(2π)32Ep1

. . .
d3pn

(2π)32Epn
. (2.8)

The δ(4)-functions guarantee conservation of the 4-momentum, and the integration mea-

sures d3pi/(2π)32Epi are chosen to make the phase space integrations Lorentz invariant.

We proceed by describing how to determine the invariant ME for a specific case. The

basic building blocks of the invariant ME are vertex functions, propagators and wave

functions for external particles. Vertices describe interactions of particles with the force

Chapter 2. Theory 8

−ieQuγµδij

ūi(pb)ū− quark

uj(pa)u− quark

−ieγν

ū(p1) µ− − lepton

u(p2) µ+ − lepton

γ

M =−e2Quū(p1)γνu(p2) −gµν
(pa+pb)2+iε

ūi(pb)γµδijuj(pa)

Figure 2.1: Matrix element for a scattering ū(pb)u(pa) → µ+(p2)µ−(p1). The sub-
scripts i and j indicate the color of the quarks. The upper part shows Feynman diagram,
with vertices in black, photon propagator in red, and the external wave functions in
green and blue. The corresponding factors in the ME are indicated with the same
colors. The lower part shows the actual ME expression, which is read off the Feyn-
man diagram by moving from the right to the left side and multiplying all encountered

expressions.

field by exchange of virtual particles, while propagators describe the propagation of vir-

tual interacting fields. The perturbative approximation of these building blocks can be

derived from the Lagrange density. Once propagators and vertexes have been derived,

the calculation of matrix elements can be done using a pictorial representation called

Feynman diagrams. As an example the matrix element M(ūu → µ+µ−) is shown in

fig.2.1. Calculations with Feynman diagrams become inconvenient when many final state

particles are involved, since the number of possible graphs grows rapidly. It is possible

to derive an approximation of matrix elements with additional final state partons (in

particle physics, a parton is a collective name for quarks and gluons). With the intro-

duction of splitting functions it is possible to calculate approximations of the invariant

ME for an arbitrary number of quark or gluon emissions(in the QCD case).

Knowing those, one can then construct a computer program that provides an approxi-

mation of the cross section for any number of collinear partons. Event generators, which

are studied in 2.2.3, rely on such approximations.

Chapter 2. Theory 9

2.2.3 Event generators

We have found that the cross section for processes containing an additional splitting

approximately factorizes into a hard cross section and process-independent splitting

functions. Using these splitting functions and multiplying them with a probability that

no emission will occur above some chosen p⊥, one can then calculate the probability for

the hardest emission to occur (this is described in more detail in section 3.1 where we

introduce the PYTHIA parton shower). Further analysis show that such calculations

always have a least collinear particle given by the hardest emission off the hard core

process. Knowing a way to calculate the probability for the hardest emission provides

an insight on how to simulate such process. Since all further emissions cannot be harder,

we can for example order them by transverse momentum (p⊥). The hardest emission

will be followed by a second hardest emission, and so forth. Now one can derive an

algorithm to generate a final state with an arbitrary number of gluons emitted from an

initial quark:

Choose a starting scale p⊥max, typically given by the p⊥ of the initial quark

1. Choose p⊥ < p⊥0 (=p⊥max in the first step) and an energy fraction z accordingly.

2. Decide if the emission should be generated. If so, construct the emission momen-

tum.

3. Reset the starting scale p⊥0 → p⊥ and start from 1.

4. Repeat steps 1. - 3. if p⊥0 is above some cut-off p⊥. Otherwise stop.

This algorithm is the foundation of parton shower (PS) programs. Parton showers are a

core component of wider simulation frameworks called ”Monte Carlo event generators”.

Event generators aim at describing particle collisions in detail. The main process sim-

ulated in the collision is called a hard subprocess. The emission of a particle from the

incoming partons is called initial state radiation (ISR). Similarly, the emission of a par-

ticle from outgoing partons is called final state radiation (FSR). In a realistic collision

the probability to have only hard subprocess is very small, because a lot of other par-

tons interact. We call all of these background interactions multiple parton interactions

(MPI) and they are also simulated in the event generator. Event generation is done by

interfacing the parton showered hard process with methods that

• Add multiple interactions between the incoming beam particles.

• Decay unstable resonance particles produced in the hard interaction.

Chapter 2. Theory 10

• Hadronize color-charged partons into un-colored hadrons.

• Decay unstable hadrons.

The implementation of these tasks varies between the most popular projects HERWIG,

PYTHIA and SHERPA, and their current incarnations HERWIG++ [14], PYTHIA8

[15] and SHERPA[16]. A review of current event generators for the LHC physics can be

found in [17].

2.3 Jet clustering algorithms

If we know how to simulate emissions and production of new particles and jets, the

question arises if it is possible to rewind the action from the final state particles to the

initial state partons. More precisely, is it possible to write an algorithm that clusters

final state particles backwards to the initial state partons with the exact 4-momentum

they had just after the collision (or decay)? Of course, it is not possible to obtain the

exact 4-momentum because of the approximations one has to make, as it is often case in

physics. Nevertheless, several approximative algorithms have been developed over the

years.

A jet algorithm, together with its parameters and a recombination scheme forms a jet

definition. Some general properties of jet definitions have been set in 1990 [18] by a

group of influential theorists and experimental, and reads as follows:

Several important properties that should be met by a jet definition are:

1. Simple to implement in an experimental analysis.

2. Simple to implement in the theoretical calculation.

3. Defined at any order of perturbation theory.

4. Yields finite cross sections at any order of perturbation theory.

5. Yields a cross section that is relatively insensitive to hadronization.

There are currently many hadron-collider jet algorithms in use, some dating back to the

80’s. The purpose of this section is to give a short overview of some main algorithms

(for detailed review see ref. [3]).

Chapter 2. Theory 11

2.3.1 Cone algorithms

The first ever jet algorithm was developed by Sterman and Weinberg in the 1970’s [13].

It was intended for e+e− collisions and classified an event as having two jets if at least

a fraction 1− ε of the event’s energy was contained in two cones of opening half-angle δ

(and hence is known as cone algorithm). This idea of finding particles within some cone

was the basic idea for many algorithms to come. The only differences were how to find

the direction of the cone (seed particle) and what parameters should be used. Below,

some of these cone algorithms will be briefly described.

Iterative cones (IC) is an algorithm in which a seed particle i sets some initial direction.

One then sums the 4-momentum of all particles j such that

∆R2
ij = (ηi − ηj)2 + (φi − φj)2 < R2 (2.9)

where ηi and φi are the pseudorapidity and azimuth angle of particle i, respectively. The

direction of the resulting sum is then used as a new seed direction and is iterated until

the direction of the resulting cone is stable. There are two problems that arise in this

kind of algorithm. Firstly, what should be taken as the seed, and secondly what if two

cones overlap.

One solution for the overlap problem was to take as a first seed particle the one that

has the largest transverse momentum. Once a stable cone is found it is called a jet and

removed from the event. Then a new seed is the hardest particle among the remaining

ones. This procedure is repeated until there are no particles left. This avoids any issue

of overlapping. A possible name for such algorithm is ”Iterative cone with progressive

removal of particles”. Another approach to the issue of the same particle appearing in

many cones is to find all stable cones first and then decide what to do with particles

that are part of more than one cone. The split merge approach merges a pair of cones if

more than a fraction f of the softer cone’s transverse momentum is in particles shared

with the harder cone; otherwise the shared particles are assigned to the cone to which

they are closer.

With the development of these algorithms question of their infrared and collinear

safety (IRC) arise. IRC is the property that if one modifies an event by a collinear

splitting or the addition of a soft emission, the set of hard jets that are found in the

event should remain unchanged. IRC problem gave rise to the exact seedless cones

(SC) algorithm. This type of algorithm avoids the use of seeds and iterations, and

instead finds all stable cones. One takes all subsets of particles and establishes for

each one weather it corresponds to a stable cone. The SC algorithm can only cluster

few particles because the total time for clustering is O
(
2N
)

(it would take about 1017

Chapter 2. Theory 12

years to cluster 100 particles). This exponential time behavior made SC impractical

for use on events with realistic number of particles. However in 2007 a polynomial-time

geometrically based solution was found to the problem of identifying all stable cones [19].

The algorithm is known as seedless infrared safe cone algorithm(SISCone), and is

described more in the review in ref. [3].

2.3.2 Sequential recombination jet algorithms

Just like cone algorithms, sequential recombination jet algorithms were first considered

for e+e− experiments. But with small changes, some of the algorithms can be used in

hadron collider experiments. A detailed review of this is given in refs. [1, 2]. Many

of the ideas underlying today’s sequential recombination algorithms appeared first in

the LUCLUS algorithm of Sjöstrand [20]. Because of the computational constrains at

the time, the algorithm included a preclustering phase and a non-trivial procedure of

reassignment of particles between clusters at each recombination step, making it rather

complicated. Today’s algorithms are all rather simple, as can be seen below.

The Jade algorithm was the first simple sequential recombination algorithm, intro-

duced by the JADE collaboration in the middle of 1980’s [21, 22]. For each pair of

particles i, j, it calculates the distance dij as a ratio of the squared invariant mass of two

particles and the squared invariant mass of the final state. It then finds the minimum

dmin of all the dij , and if dmin is below some dcut it recombines i and j into a single

cluster. This procedure is repeated either until a wanted number of jets is obtained, or

all of the obtained jets are above some dcut. It is easy to see that the number of jets that

one obtains depends on the value of dcut. So here the number of jets is controlled by a

single parameter rather than the two parameters (energy and angle) of cone algorithms.

The Jade algorithm, and many others, were introduced for e+e− collisions, so a ques-

tion arises how can one modify such algorithms for the experiments with the incoming

hadrons? There are two problems that need to be considered. Firstly, the total energy

is no longer relevant (most of the energy goes to jets that are in the beam direction), so

instead of the dimensionless distance one might choose to use a dimensionfull distance.

Secondly, QCD branching probabilities are not just between pairs of outgoing particles,

but also between an outgoing particle and the incoming beam direction.

The algorithms given in the following were first developed for e+e− collisions, but were

later modified for hadron collisions.

The kt-algorithm is formulated as follows:

Chapter 2. Theory 13

1. For each pair of particles i, j work out the distance

dij = min(p2⊥i, p
2
⊥j)

∆R2
ij

R2
, ∆R2

ij = (ηi − ηj)2 + (φi − φj)2, (2.10)

also define a distance to the beam

diB = p2⊥i (2.11)

where ηi and φi are the pseudorapidity and azimuth angle of particle i respectively,

and R is usually called jet radius and determines its angular reach.

2. Find the minimum between all dij and diB.

3. If this is dij , recombine i and j into a single new particle and return to step 1.

4. Otherwise, if the minimum distance is a diB, declare i as jet and remove it from

the list of particles. Return to step 1.

5. Stop when no particles remain or dmin > dcut, or if we have reached wanted number

of clusters.

In the collinear limit, the distance measure (eq. 2.10) reduces to squared transverse

momentum, this is the origin of the name kt-algorithm. Since (ηi − ηj), the φi and

p⊥i are all Lorentz invariant under longitudinal boosts, the dij and diB are too. The

kt-algorithm has long been advocated by theorists because it is free of any IRC safety

issues. On the other hand it has been criticized by experimenters on the grounds that it

was computationally slow, and that it produces geometrically irregular jets. Speed issue

has been solved by the FastJet [24] implementation. It was done by reformulating the

search for the minimum distance as a geometrical problem. It achieved an O (NlnN)

timing, meaning clustering of 1000 particles now takes only a few milliseconds.

The Cambridge and Aachen algorithm (C/A) is similar to the kt-algorithm. The

difference is that it does not have a distance to the beam defined. It also uses longitu-

dinally Lorentz invariant variables and introduces an R parameter defined in eq. 2.5. It

proceeds by recombining the pair of particles with the smallest ∆Rij in each step, and

repeating the procedure until all objects are separated by a ∆Rij > R. Final objects are

then declared as jets. This clustering procedure is energy independent, meaning there

is no ordering in clustering between hard and soft particles.

The anti-kt algorithm is also similar to the kt-algorithm. One can deduce it from the

kt-algorithm by replacing p2⊥i and p2⊥j with p−2⊥i and p−2⊥j . The only difference is that,

because of different measure dij definition, it clusters hard particles first, rather than

soft ones. This ultimately means that the jets grow outwards around hard seeds. The

Chapter 2. Theory 14

result is an IRC safe algorithm that gives circular shaped jets, making it an attractive

replacement for cone-type algorithms.

So far we have not discussed how to combine the momenta when we do the clustering

(what is the recombination scheme). The most common recombination scheme used in

step 3. of the kt-algorithm is the so-called E-scheme.1 This scheme simply adds the

4-momentum of particles, giving massive jets as a result.

As we have seen in the section 2.2.3 parton shower emission simulations can be done

doing 1 → 2 branchings, and one can see the kt-algorithm as an attempt to ”invert”

those branchings. Doing 2→ 1 clusterings with an E-scheme results in massive jets, and

we know that the initial partons that produce jets are considered to be massless. On

the other hand, if we choose some other scheme we could get massless jets, but would

then violate the 4-momentum conservation.

The color dipole model was developed at Lund, as an idea that the emissions of ad-

ditional gluons (or quarks) can be simulated as 2 → 3 splittings (firstly implemented

in ARIADNE [23]). The idea is that the emitter and recoiler particle form a dipole

that then emits a new particle. This has shown good results in simulations, and simi-

lar color dipole models are now used in most event generators of the popular projects

(HERWIG++, PYTHIA8, SHERPA).

3 → 2 recombination. Most sequential recombination algorithms use the idea of

inverting successive 1 → 2 branchings. When simulating QCD branching it can be

also useful to consider dipole branchings, ie. 2 → 3 splittings, as in ARIADNE. One

can imagine that a 3 → 2 recombination scheme could result in massless jets without

violating the 4-momentum conservation.

2.3.3 Boosted jets

There are several reasons to be interested in boosted jets. Searching for High mass

resonances is the simplest example. For instance, a heavy resonance RC with mass

mR ≥ 1.5TeV which decays to a pair of gauge bosons would yield highly boosted

VV pairs (V=Z0,W+,W−) which would then produce boosted (and almost collinear)

jets. This is why new jet-reconstruction techniques are developed, and a great interest

is shown in understanding the jet substructure. To see how this jet reconstruction

techniques work we will analyze the case of a boosted Higgs decaying into bb̄ (ref. [4]).

1default recombination scheme in FASTJET, but it offers more recombination schemes that can be
used instead, such as: E-scheme, pt-scheme, p2

t -scheme, Et-scheme, . . .

Chapter 2. Theory 15

To be specific, we will consider pp → HZ0 followed by H → bb̄ and Z0 → l+l−. The

approach is to focus on events where the Higgs is produced with p⊥H > 200GeV , and

cluster these events with a large jet radius (R=1.2), such that all Higgs decay products

are swept up in a single fat jet. The Higgs mass then should be the invariant mass of

that fat jet. The signal we search for now is a leptonic Z0 + fat Higgs jet, and the

background to this signal is Z0 + one fat ”Higss-like” jet. It can be shown that there

are two ways of telling that there was a Higgs boson decay rather than a fat jet from

the QCD parton branching2. Two jets from the Higgs should be almost symmetric(have

approximately the same pt), and the mass of each jet should be much smaller than the

mass of the Higgs. The algorithm for finding boosted Higgs can now be constructed as

following:

• Cluster the event on a large angular scale, using C/A algorithm.

• Now, given a hard fat jet, successively unwind the jet by undoing the cluster

sequence one branching at the time. At each branching P → ij, check to see

weather the splitting looks sufficiently non-QCD-like, by asking that the branching

should be both hard,

max(mi,mj) < µmH (2.12)

for some parameter µ, and symmetric,

dij > dcut (2.13)

for some choice of dcut.

• If the splitting fails to be sufficiently hard and symmetric, discard the softer of i

and j, and continue to unwind

• Continue until either an interesting splitting has been found or there are no more

jets left

This procedure is often referred as the ”splitting” or ”mass-drop” procedure. It identifies

an interesting Higgs-like splitting H → bb̄. After the Higgs-like splitting has been

identified, if one wishes to investigate the fat jet substructure new jet analysis is needed,

this time on a smaller scale. One should have in mind that by obtaining one fat jet a lot of

background radiation is included. That is why procedures such as filtering, trimming,

pruning and grooming were introduced (ref. [3]). They all focus on ”cleaning up” fat

jets by subtracting the contributions of unassociated radiation.

2Note here that there are several ways to determine if jets are produced by the b quarks, with so-
called b-tagging methods. But keep in mind that b quarks can appear in jets from the QCD parton
branchings as well.

Chapter 2. Theory 16

From this example it is easy to see why boosted jet analysis area is so active these days.

This led us towards the attempt of constructing the jet finding algorithm that could

identify boosted jets without the need of finding a fat jet first.

Chapter 3

Dipole-kt jet clustering algorithm

With everything said in the previous sections, we were inspired to try and write a new

jet clustering algorithm. The key features that we look to include are the 3→ 2 dipole-

based recombination scheme and the Lorentz invariant distance measure. The main

idea of our algorithm was to ”invert” the dipole-based PYTHIA parton shower using its

invariant transverse momentum as the distance measure, hence the name Dipole-kt. In

this section we first present the reader with the PYTHIA dipole shower framework. We

then present our Lorentz invariant distance measure and give the summary of how the

algorithm works. In the end algorithm is tested in the comparison with the kt-algorithm.

3.1 PYTHIA dipole showers

Here, a short overview of the dipole-based PYTHIA parton shower (DPS) will be given.

For more details we refer to [25]. Two key features of the DPS, that we are interested

in, are 2→ 3 dipole splittings and transverse-momentum ordering.

The DPS is ordered in the transverse momentum (p⊥), meaning that the initial-state

radiation (ISR) and the final-state radiation (FSR) are both ordered in the p⊥. If we

were to look the probability for emission without any ordering it would diverge for the

small p⊥. In order to get rid of this divergence, one has to include the Sudakov form

factor which gives the probability that no emission above some p⊥ will happen. This

now gives the probability distribution for the ”next” emission:

dP

dp⊥
=

(∑ dPISR
dp⊥

+
∑ dPFSR

dp⊥

)
× exp

(
−
∫ p⊥max

p⊥

(∑ dPISR
dp′⊥

+
∑ dPFSR

dp′⊥

)
dp′⊥

)
(3.1)

17

Chapter 3. Dipole kt 18

qa qb

ga gb

g ga

qb

gb

qa

Figure 3.1: One possible Feynman graph and color flow for the qg → qg process (on
the left), and the resulting color dipoles between the scattered partons and the beam

remnants in the momentum representation(on the right)

Here the sum runs over all incoming (ISR) and outgoing (FSR) partons and over all

possible splittings described with the inclusive probability P. p⊥max is the p⊥ of the

previous step. Starting from a single hard interaction, eq. 3.1 can be used repeatedly to

construct a complete parton-level of an arbitrary complexity. This only gives information

on which radiation will occur and at what p⊥, but one still has to define how such

radiation will be described and how its kinematics will be done.

To show the motivation for the DPS let us consider a qg → qg process with one color-

anticolor being annihilated, as illustrated on Fig.3.1. One can easily see that there are

three color dipoles. By the nature of the endpoints, they can be classified as final-final

(FF), final-initial (FI) or initial-initial (II). Because of the color connection between the

partons, whenever a quark or a gluon emit a parton the momentum of all dipoles that

they belong to will be modified. That means, if for example a parton is emitted from

an initial quark, the final-state particles will be boosted. One can now ask oneself how

one can distribute the recoil of an emission between the two endpoints of a dipole.

There is no unique prescription on how to do this. One possible choice is to view the

emission as being associated with one of the two endpoint partons, the emitter, while the

other parton acts as a recoiler. If viewed in the rest frame of an FF dipole, the recoiler

does not change direction by the emission, but obtains a reduced absolute momentum

such that the overall four-momentum of the dipole is preserved during the emission.

The emitter and the emitted parton obtain opposite p⊥ kicks by the branching, but

the distribution in azimuthal angle is normally taken to be isotropic. All partons, both

before and after the emission, are put on the mass shell. With this strategy, the radiation

of a dipole is split into that of its two endpoints. This is done in a smooth manner, such

that the radiation close to the either endpoint is associated with that parton radiating,

whereas the large-angle radiation is split between the two in reasonable proportions.

The current DPS order emissions in terms of a p2⊥ evolution variable, with an addi-

tional energy-sharing variable z in the branching. For the QCD emissions the DGLAP

Chapter 3. Dipole kt 19

evolution equation lead to the probability for the splitting of a parton a→ bc

dPa =
dp2⊥
p2⊥

∑
b,c

αs(p
2
⊥)

2π
Pa→bc(z)dz, (3.2)

where Pa→bc are the DGLAP splitting kernels. The probability diverges for small values

of p⊥, meaning that infinite number of soft radiations is allowed. This inclusive quantity

can be turn to an exclusive one by multiplying it with the Sudakov form factor. It gives

the probability that there is no emission above the chosen p2⊥, and therefore secures

ordering in the transverse momentum. For the ISR the parton distribution functions,

reflecting the contents of the incoming hadron, must be taken into account as well.

p2⊥ is used both for the ISR and FSR in PYTHIA, but the p2⊥ definition is different in

each case. We continue by giving more details about the ISR and the FSR.

ISR. For the ISR, the radiating dipole is always chosen such that the recoiler is the

incoming parton from the other side of the subcollision. Thus all outgoing particles

from the hard subprocess share the recoil of a new emission and the momentum of the

whole system is boosted (the relative momentum of particles with the respect to each

other remains the same). The evolution variable is defined as:

p2⊥evol = −(1− z)Q2 (3.3)

with m2
b = −Q2 and m2

a = m2
c = 0

The z definition in eq. 3.3 is chosen to be

z =
m2
br

ŝ
, (3.4)

where r is the recoiler, and ŝ = m2
ar, giving the ratio of the total squared invariant mass

before and after the splitting. The actual p⊥ of b and c then becomes

p2⊥b,c = (1− z)Q2 − Q2

m2
ar

≈ p2⊥evol. (3.5)

For example, let us consider the ISR radiation of a quark from the incoming parton

from the left side (Pb) as illustrated on fig. 3.2. Here we have a Pa → pcPb splitting.

If we know the momentum of emitted particle (pc) and we know the momentum of the

incoming parton, we can calculate a new momentum of the incoming parton Pb. This

new momentum Pb now boosts all of the outgoing particles in the hard subprocess (even

leptons and bosons), but leaving their momentum with the respect to each other intact.

Chapter 3. Dipole kt 20

Pb PrŜ

Pa

Pb

pc

P⊥(Ŝ)

Pr

Ŝ ′

Figure 3.2: ISR shown before and after the splitting. First we see two incoming
partons with the momentum Pb and Pr and a hard system with the total invariant mass
Ŝ. After the ISR momentum of the incoming parton from the left side has changed to
Pa when a particle with momentum pc was emitted, resulting in hard system getting
a transverse boost P⊥(Ŝ). New invariant mass of the hard system is Ŝ′. In this case

z = Ŝ
Ŝ′ .

FSR. For the FSR, the recoil of emissions is assumed to be taken entirely by the other

end of the color dipole. Unlike the ISR case, in the FSR the only momenta of the

emitter, recoiler and emitted particle are changed. Let us now study the kinematics in

the FF case. The evolution variable is defined as:

p2⊥evol = z(1− z)Q2 (3.6)

with m2
a = Q2 and m2

b = m2
c = 0.

In the rest frame of a dipole ar (see fig. 3.3), the branching a→ bc at an evolution scale

p⊥evol implies that a parton a acquires a virtuality

Q2 =
p2⊥evol
z(1− z)

. (3.7)

Its energy is thereby increased from the original, and the recoiler energy is reduced

accordingly. Parton b then takes a fraction z of the increased emitter energy, and c

takes 1-z.

The kinematics of an FI branching has some differences relative to a FF one. In the

dipole rest frame a fraction Q2/m2
ar of the recoiler energy is given from the recoiler to

the emitter, as above. But the recoiler is not a final-state particle, so the increase of a

momentum is not compensated anywhere in the final state. Instead, the incoming parton

that the recoiler represents must have its momentum increased by the same amount as

Chapter 3. Dipole kt 21

r a

r

b

c

Figure 3.3: FSR shown before and after the splitting. First we see two particles a and
r. After FSR (a→ bc with r as a recoiler), momentum of the recoiler (r) has changed.

the emitter. The dipole mass mar and the squared subcollision mass ŝ are increased in

the process (instead of being unchanged as in the FF case). The ISR in FI dipoles is

done as if it was an II dipole. The issue remains on how to subdivide the FSR and ISR

in an FI dipole. One can naively think that boosting to the rest frame of the emitter

and recoiler and dividing the radiation accordingly would do the trick. If we imagine a

situation where a soft final-state parton forms a dipole with a highly energetic initial-

state parton, then this will result in partons sometimes being radiated far away (in the

η) from the final-state parton. In order to suppress this, one has to introduce some kind

of a suppression weight. As one can read in more detail in ref [25], the DPS in PYTHIA

introduces the weight

W =
p⊥p⊥b,c

p⊥p⊥b,c +Q2
, (3.8)

where p⊥ = p⊥evol and p⊥b,c = p⊥b + p⊥c.

3.2 Distance formulas

What we want to do now, is to ”invert” the DPS, from the smallest p⊥-emission to

the largest one. This is the way kt-algorithm does it as well, looking for two particles

with the smallest kt (p⊥) and clustering them to a single cluster (as if ”inverting” a

1→ 2 parton showers). Of course, this can never be exact because of many other effects

coming from the hadronization, multiparton interactions, etc. The dipole-kt algorithm

is based on inverting 2 → 3 emissions. So, for each particle we want to think of how it

could have been emitted. It could have been radiated from the final-state particles as

a FSR. In order to check it, we need to calculate the p⊥evol between all the triplets of

particles. It could have been radiated from the FI dipole as FSR. In order to check that

case, we need to calculate the p⊥evol between all the pairs of particles with the respect to

Chapter 3. Dipole kt 22

(r)p3

(b)p2

(c)p1

(r)p′3 (a)p12

Figure 3.4: FSR shown in reverse. First we see three particles b,c and r with respec-
tive momentum p2, p1 and p′3. After the FSR clustering(3 → 2), b and c have been

clustered to a, and the momentum of the recoiler(r) has changed.

the incoming partons and construct the condition from 3.8 in order to determine what

kind of radiation it was. It could have been radiated from the incoming parton as an

ISR. We need to calculate the p⊥evol between each particle and the incoming partons in

order to check this last possible case.

Let us start by looking at a FF-emission. A particle is emitted from the emitter with

some recoiler in their rest frame (see Figure 3.4). The variables in the splitting functions

are defined in the dipole rest frame, but we can rewrite them in terms of Lorentz invariant

quantities. Since we are in the rest frame pz3 = pz(1,2). With the assumption that all

particles are massless one gets, in the rest frame:

E3 = |pz3| =
√

(E1 + E2)2 − S12

E2
3 = (E1 + E2)

2 − S12

E2
3 = (

√
S − E3)

2 − S12

2
E3√
S

= 1− S12
S

(3.9)

z =
E1

E1 + E2
=

S − S23
2S − S23 − S13

(3.10)

Q2 = S12 (3.11)

where Sij is the invariant mass of particles i and j, and S is the total invariant mass of

the 3 particles.

Using the DPS formula for the FSR (eq. 3.6) and eq. 3.9 - 3.11, one can define a distance

measure for the a FF clustering in the dipole-kt algorithm as:

p2⊥evol =
(S − S13)(S − S23)
(2S − S13 − S23)2

S12. (3.12)

Chapter 3. Dipole kt 23

Pa

(c)p1

P⊥(Ŝ)

Pb

Ŝ

P ′a PbŜ ′

Figure 3.5: ISR shown in reverse. First we see a hard system with an invariant mass
Ŝ and a particle (c) with momentum p1 that we want to cluster. After the clustering is
done, the momentum of the incoming parton Pa has changed and a hard system with

a new total invariant mass Ŝ′ has been boosted by −P⊥(Ŝ). In this case z = Ŝ′

Ŝ
.

If we now look at the ISR emission, situation is very similar as the one above. We are

trying to do a reconstruction shown on fig. 3.5. Using the DPS formula for the ISR

(eq. 3.3) and eq. 3.9 - 3.11 one can define a distance measure for II clusterings in the

dipole-kt algorithm as:

p2⊥evol = −
(

1− S1Pa

Ŝ

)
SP ′a , (3.13)

where Pa stands for the momentum of one incoming parton, P ′a for that momentum

after emission, c for the emitted particle, and Ŝ for the invariant squared mass of all the

particles from the collision (even the ones that are not clustered to jets, such as leptons).

The final-initial (FI) distance is calculated using eq. 3.12 where the recoiler is represented

by the one of the incoming partons. If this was done with no condition, too much FSR

clusterings would occur and hence result in too hard jets. Because of the suppression

weight used in the DPS (eq. 3.8), one has to have some sort of a condition. We do the

FI clusterings only when

p⊥evolp⊥b,c > m2
bc (3.14)

is satisfied. By doing this, we have replaced the suppression weight function in the DPS

with a step function in order to get rid of an unwanted excess of the momentum.

One can now construct the dipole-kt algorithm using eq. 3.12 - 3.14 for the 3 → 2

dipole-based recombination scheme.

Chapter 3. Dipole kt 24

3.3 Algorithm summary

The idea of this section is to give the reader an overview of the algorithm, with a

more detailed description of how to use the code and its implementation given in the

Appendix A. General algorithm construction idea is fairly simple and similar to the one

of the kt-algorithm described in the section 2.3.2. We take all the particles in the event

and consider them as initial ”clusters”. The dipole-kt algorithm then is formulated as

follows:

1. For each cluster (c):

• For each incoming momentum work out the distance corresponding to the

ISR:

dc,Pa = −
(

1− ScPa
ŝ

)
SP ′a . (3.15)

• For every other cluster (e) work out the distance corresponding to the FSR

from the FI-dipole for each of the incoming partons (but only if eq. 3.14 is

satisfied):

de,c,Pa =
(S − ScPa)(S − SePa)

(2S − ScPa − SePa)2
Sce, (3.16)

(3.17)

– For every other cluster (r) work out the distance corresponding to the

FSR from the FF-dipole:

de,c,r =
(S − Scr)(S − Ser)
(2S − Scr − Ser)2

Sce. (3.18)

Where S is the invariant mass squared of all the clusters used in the distance

calculation, Sij is the invariant mass squared of the clusters i and j, and ŝ is the

invariant mass squared of all the final-state particles.

2. Find the minimum between all de,c,r, de,c,Pa and dc,Pa . If the minimum is above

some dcut, stop.

3. If the minimum distance is de,c,r recombine e,c,r → e′,r′.

If the minimum distance is de,c,Pa recombine e,c,Pa → e′,P ′a.

If the minimum distance is dc,Pa recombine c,Pa → P ′a, and boost all other clusters.

4. If the number of clusters left is larger than the number of wanted jets (nclusters >

nmin) return to step 1. Otherwise stop.

Chapter 3. Dipole kt 25

(e) (c)

(r)

(r)

(c)

(e)

(r′) (e′)

(e′)

(r′)

BOOST

CLUSTER

BOOST −BACK

Figure 3.6: Recombination scheme for dipole-kt algorithm. The scheme shows how
clusterings are done, starting with three clusters that are boosted to their rest frame,

recombined and boosted back to produce final result of the clustering step.

Note that the dipole-kt algorithm can be stopped in two ways. It can be stopped when all

the distances are above some cut-off giving the inclusive version of the algorithm, or when

wanted number of jets was reconstructed giving the exclusive version of the algorithm.

The recombination scheme used in step 3 (illustrated in fig.3.6) is the inversion of the

DPS and is done as follows. For the FSR, particles are boosted to their rest frame,

with r lying in the -z direction. Then total momentum of e,c and r is calculated and

with that the new particles e′ and r′ are constructed along the +z and -z direction

respectively. After this has been done, e′ and r′ are boosted back with an inverse

Lorentz transformation.

In the FI dipole FSR case, particles are boosted to the rest frame, with Pa lying in the

-z direction. Then total momentum of e,c and Pa is calculated and used to construct e′

and P ′a. Afterwards e′ and P ′a are boosted back with an inverse Lorentz transformation.

Finally, for the ISR momentum of c is simply subtracted from the incoming parton Pa

Chapter 3. Dipole kt 26

to create P ′a. Afterwards all of the remaining particles are boosted.

Note here, that this recombination scheme gives massless jets as a result (contrary to

the kt recombination scheme). Some other details need to be mentioned here, such as

the option of the dipole-kt algorithm to have all the particles of an event as input, rather

than just ones that are to be clustered. They are separated to ”tracks” and ”others”.

Because we need to know ŝ of the system, we need to include all particles, even the ones

we do not want to cluster to jets. We define these particles as ”others” and boost them

when the ISR recombination occurred, as described above. We know that detectors have

some limited acceptance in the angle, so it is highly unlikely to have the momenta of all

particles when analyzing the date from an experiment. Also, the presence of neutrinos

is taken into account. When we generate the data with the MC simulation we know the

momentum of every neutrino, but in a real life experiment that is not the case. The

unbalance in the p⊥ is calculated and assigned to a single neutrino with pz = 0 (since

we do not know the total energy missing pz cannot be calculated) which is then added

to the ”others”.

3.4 The speed issue

One of the main aspects of every jet clustering algorithm is the time needed to cluster N

particles. With the need to check all the triplets of particles in each step, the dipole-kt

algorithm has higher computational complexity than the kt-algorithm. One should note

that, since we are using Lorentz invariant variables we are speeding things up. If we

were not to use Lorentz invariant variables we would have to boost the particle to the

rest frames in order to calculate their distance measure, which would slow the algorithm

even more. Because we are dealing with the triplets, rather than pairs (kt-algorithm),

total run time goes as O(N3) (one could naively think that the run time goes as O(N4),

but with a trick that can be lowered, as described in Appendix.A). It takes ∼1 minute

to cluster a realistic LHC event with ∼1000 particles. It is not trivial to speed this up,

and one should maybe look for a geometrical solution to this problem (as was done in

the FASTJET implementation of the kt-algorithm [24]).

3.5 Algorithm validation

With the idea of inverting the DPS processes implemented in the dipole-kt algorithm, it

is left to see what such an algorithm can do when competing with the kt-algorithm. In

order to validate the algorithm we have used Monte Carlo (MC) simulations, because

Chapter 3. Dipole kt 27

they are easy to generate, manipulate and reproduce. We have have set up a PYTHIA8

code that generates some processes of interest (qq̄ → Wg, 2-jet production, and 3-

jet production). We would also want to check that the algorithm does sensible things

for the other generators, but this will not be done here. In PYTHIA it is possible

to stop each of these processes after an arbitrary number of steps1(in emissions), and

store the data (4-momentum) of the current particles and therefore study the algorithm

from the most simple clustering problem, such as clustering two particles back to one.

Also, it is possible to find out what the original state looked like before the parton

shower. With this option it is possible to know what the exact solution of a jet clustering

algorithm should be and how well we can approximate it. This is why we have decided

to study the exclusive version of the algorithms, in order to get the number of jets that

corresponds to the number of particles in the original state. We have decided to compare

our algorithm with the kt-algorithm from FASTJET. We would like to emphasize that

only the exclusive version of the kt-algorithm was used in order to compare with the

exclusive version of the dipole-kt algorithm. So, the results presented in this work do

not reflect the normal use of the kt-algorithm. This was done because we believe that

the exclusive variant of the dipole-kt algorithm should be its best feature.

In order to compare the two algorithms, one has to decide which variables to use. We

have decided to reconstruct the p⊥ and the rapidity (y) of jets and compare them with

the values obtained in the original hard interaction. For example, when we reconstruct

the two jets p⊥ the value we should get is the p⊥ of the two partons in the initial-state,

before any emission was done. We then express the results as p⊥/p⊥0, y−y0 (where 0

1One can easily do this with the help of User Hooks class in PYTHIA

 0
 / pp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

90

100

p

-algorithmtk

-algorithm
t

dipole-k

0
y-y

-3 -2 -1 0 1 2 30

20

40

60

80

100

120

140

y

-algorithmtk

-algorithm
t

dipole-k

y

Figure 3.7: Histograms comparing dipole-kt results (red line) with the kt results (blue
line) for p⊥ (on the left) and y (on the right) in qq̄ → Wg case. Clustering was done

on events with full parton shower, hadronization and multi-parton interactions.

Chapter 3. Dipole kt 28

p⊥ Dipole− kt kt

Mean RMS Mean RMS

1 Step 1,04 0,10 0,98 0,13

3 Steps 1,06 0,12 0,96 0,15

10 Steps 1,06 0,12 0,95 0,15

END 1,06 0,12 0,95 0,15

END+H 1,06 0,11 0,95 0,14

END+H+MPI 1,16 0,17 0,97 0,16

Table 3.1: Mean and RMS values of pt in qq̄ → Wg analysis. Red text indicates
results closer to the expected value. END represents end of parton shower, +H included

hadronization, and +MPI included multi-parton interactions.

y Dipole− kt kt

Mean RMS Mean RMS

1 Step 0,01 0,29 0,01 0,26

3 Steps 0,01 0,30 0,01 0,28

10 Steps 0,00 0,31 0,02 0,29

END 0,01 0,29 0,01 0,28

END+H 0,00 0,25 -0,01 0,27

END+H+MPI 0,01 0,31 -0,01 0,27

Table 3.2: Mean and RMS values of y in qq̄ → Wg analysis. Red text indicates
results closer to the expected value. END represents end of parton shower, +H included

hadronization, and +MPI included multi-parton interactions.

indicates the initial value) and plot the corresponding histograms. It is obvious that the

closer the mean value of the p⊥ histogram is to 1, and the y histogram to 0, the better

are the results. Additionally, one can also express the spread of the results using the

root mean square (RMS). Smaller RMS means less spread distribution and is something

we would want in our results.

We have done the analysis after 1, 3 and 10 steps of emissions (with the MPI and the

hadronization turned off). Furthermore we have analyzed the results after the full parton

shower with the hadronization turned off and on, and at the end we have analyzed a

realistic example with the full parton show, hadronization and MPI. In all of the cases

minimum possible p⊥ of particles from the hard subprocess is set to 100 GeV, and the

R value used by the kt-algorithm is set to 0,7.

We start with the results from the qq̄ → Wg analysis. Note here, that we do not

allow the decay of the W, and we add its momentum to the ”others” for the dipole-kt

clustering. We search for the one jet produced by a gluon. Results for the p⊥ and y

are given in tables 3.1 and 3.2. Furthermore, the histograms showing the results for the

final event with hadronization and MPI (realistic event) are shown in fig. 3.7.

Chapter 3. Dipole kt 29

 0
 / pp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

90

100

1st jet p

-algorithmtk

-algorithm
t

dipole-k

 0
 / pp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60

70

80

90

100

2nd jet p

-algorithmtk

-algorithm
t

dipole-k

0
y-y

-3 -2 -1 0 1 2 30

20

40

60

80

100

120

140

1st jet y

-algorithmtk

-algorithm
t

dipole-k

0
y-y

-3 -2 -1 0 1 2 30

20

40

60

80

100

120

140

2nd jet y

-algorithmtk

-algorithm
t

dipole-k

Figure 3.8: Histograms comparing dipole-kt results (red line) with kt results (blue
line) in clustering to two jets case. Clustering is done on event with full parton shower,

hadronization and multi-parton interactions.

In the most simple task of reconstructing one jet, the dipole-kt and the kt algorithm

share more or less similar results, they have same success when comparing the results

to the expected values. Clustering of realistic event (3.7) shows that the kt-algorithm

tends to cluster softer jets, and the dipole-kt algorithm harder jets, but both give decent

results. Also, both give almost the same results for the rapidity.

Let us now consider a bit more complicated process, where we have a production of

two jets. Because the transverse momenta of two jets is the same, we need to define

how to differ the two jets. In the p⊥ analysis we declare a jet with higher reconstructed

p⊥ as the 1st jet. In the rapidity analysis we declare a jet with smaller absolute value

of reconstructed rapidity as the 1st jet. Results from tables 3.3 and 3.4 show that the

Chapter 3. Dipole kt 30

p⊥ 1st JET 2nd JET

Dipole− kt kt Dipole− kt kt

Step Mean RMS Mean RMS Mean RMS Mean RMS

1 Step 1,03 0,12 1,10 0,16 1,03 0,12 0,91 0,13

3 Steps 1,05 0,14 1,09 0,18 1,04 0,14 0,87 0,15

10 Steps 1,05 0,14 1,09 0,18 1,05 0,14 0,85 0,16

END 1,05 0,14 1,08 0,18 1,05 0,14 0,85 0,16

END+H 1,05 0,15 1,07 0,19 1,05 0,15 0,85 0,16

END+H+MPI 1,11 0,15 1,11 0,19 1,11 0,15 0,87 0,17

Table 3.3: Mean and RMS values of pt in two jet production analysis. Red text
indicates results closer to the expected value. END represents end of parton shower,

+H included hadronization, and +MPI included multi-parton interactions.

y 1st JET 2nd JET

Dipole− kt kt Dipole− kt kt

Step Mean RMS Mean RMS Mean RMS Mean RMS

1 Step -0,02 0,46 0,02 0,35 0,21 0,89 0,36 0,80

3 Steps 0,01 0,47 0,01 0,45 -0,31 0,83 -0,35 0,81

10 Steps 0,04 0,47 0,01 0,47 -0,35 0,82 -0,34 0,79

END 0,06 0,43 0,01 0,48 -0,36 0,82 -0,35 0,81

END+H 0,06 0,45 0,01 0,49 -0,38 0,80 -0,37 0,81

END+H+MPI 0,01 0,41 -0,03 0,38 -0,03 0,40 0,01 0,44

Table 3.4: Mean and RMS values of y in two jet production analysis. Red text
indicates results closer to the expected value. END represents end of parton shower,

+H included hadronization, and +MPI included multi-parton interactions.

dipole-kt algorithm reconstructs the p⊥ rather better than the kt-algorithm. Clear dif-

ference is that the dipole-kt algorithm shows symmetric results for two jets (as expected,

because the dipole-kt algorithm preserves momenta in the recombination, so the two jets

will always have symmetrical transverse momenta), while the kt-algorithm tends to get

asymmetrical results. In the rapidity analysis the kt-algorithm has a few more values

closer to the expected ones, but the difference between the two algorithms is neglectable.

After full parton shower, hadronization and included MPI fig. 3.8 shows that the only

noticeable difference between the algorithms is that the kt-algorithm tends to get the

second jet a bit too soft.

Finally we will look at the production of three jets. The results of clusterings are shown

in tables 3.5 and 3.6, and the histogram of the realistic event clustering is shown in fig.3.9.

From the quick view on the tables one can see that again the dipole-kt algorithm has

results closer to the expected values. Finally from fig.3.9 one can say that the results are

very similar, with the dipole-kt algorithm giving somewhat better transverse momentum

reconstruction. What we still have not discussed, and is important aspect of a jet

Chapter 3. Dipole kt 31

clustering algorithm, is the influence of the hadronization and the MPI on the results. If

one thinks about the hadronization process in terms of the string fragmentation model

(as it is done in PYTHIA), with the strings formed between the color dipoles in their

rest frames and then fragmented similarly to the emission of particles from an color

dipole. Because of that, there should be no big difference in the results with or without

hadronization. As presented in our data, this is the case with the dipole-kt algorithm,

with neglectable differences in the results with the included or excluded hadronization

process. On the other hand, the MPI present a bigger challenge. What we hope, since

the probability for the MPI parton to have a high p⊥ is rather small, is to have most of

the MPI clustered as the ISR to the incoming parton. This way we would get rid of the

unwanted extra momentum, and hence be insensitive to the MPI. As one can see from

the results, the inclusion of the MPI does change the results, but not by much. This is

because, in some cases it can happen that the p⊥ of the MPI is close enough to a jet

from the hard subprocess, and therefore added to the momentum of the jets. What one

needs to know is that this problem varies with the p⊥ of the produced jets. For smaller

values of p⊥ the dipole-kt algorithm should tend to give too hard jets, while for larger

values of pt it should be more or less insensitive to the MPI.

Chapter 3. Dipole kt 32

 0
 / pp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

1st jet p

-algorithmtk

-algorithm
t

dipole-k

0
y-y

-3 -2 -1 0 1 2 3
0

20

40

60

80

100

120

140

1st jet y

-algorithmtk

-algorithm
t

dipole-k

 0
 / pp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

2nd jet p

-algorithmtk

-algorithm
t

dipole-k

0
y-y

-3 -2 -1 0 1 2 3
0

20

40

60

80

100

120

140

2nd jet y

-algorithmtk

-algorithm
t

dipole-k

 0
 / pp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

3rd jet p

-algorithmtk

-algorithm
t

dipole-k

0
y-y

-3 -2 -1 0 1 2 3
0

20

40

60

80

100

120

140

3rd jet y

-algorithmtk

-algorithm
t

dipole-k

Figure 3.9: Histograms comparing dipole-kt results (red line) with kt results (red line)
in clustering to three jets case. Clustering is done on event with full parton shower,

hadronization and multi-parton interactions.

Chapter 3. Dipole kt 33

p⊥ 1st JET 2nd JET

Dipole− kt kt Dipole− kt kt

Step Mean RMS Mean RMS Mean RMS Mean RMS

1 Step 1,03 0,12 0,99 0,13 1,05 0,15 0,99 0,14

3 Steps 1,04 0,14 0,97 0,15 1,07 0,17 0,95 0,16

10 Steps 1,05 0,14 0,95 0,16 1,07 0,18 0,93 0,16

END 1,05 0,14 0,94 0,15 1,07 0,18 0,93 0,16

END+H 1,04 0,14 0,94 0,15 1,07 0,18 0,92 0,16

END+H+MPI 1,09 0,16 0,96 0,16 1,12 0,19 0,94 0,17

3rd JET
1 Step 1,00 0,17 0,96 0,16
3 Steps 1,00 0,18 0,93 0,19
10 Steps 1,01 0,19 0,89 0,21

END 1,01 0,19 0,89 0,20
END+H 1,02 0,19 0,89 0,21

END+H+MPI 1,07 0,20 0,92 0,19

Table 3.5: Mean and RMS values of pt in three jet production analysis. Red text
indicates results closer to the expected value. END represents end of parton shower,

+H included hadronization, and +MPI included multi-parton interactions.

y 1st JET 2nd JET

Dipole− kt kt Dipole− kt kt

Step Mean RMS Mean RMS Mean RMS Mean RMS

1 Step -0,01 0,56 0,00 0,69 -0,00 0,84 -0,03 0,90

3 Steps 0,00 0,68 0,01 0,73 -0,01 0,94 -0,02 0,98

10 Steps 0,00 0,68 0,00 0,74 -0,04 0,92 -0,05 1,01

END -0,01 0,69 0,00 0,74 -0,03 0,92 -0,03 1,00

END+H 0,00 0,69 0,02 0,73 -0,04 0,92 -0,04 0,98

END+H+MPI 0,00 0,73 0,01 0,77 0,04 0,97 0,00 1,04

3rd JET
1 Step -0,03 0,81 0,00 0,85
3 Steps -0,04 0,92 0,00 0,96
10 Steps -0,03 0,92 -0,01 0,97

END -0,01 0,92 0,01 0,98
END+H -0,02 0,91 0,03 0,96

END+H+MPI -0,01 0,99 0,03 1,00

Table 3.6: Mean and RMS values of y in three jet production analysis. Red text
indicates results closer to the expected value. END represents end of parton shower,

+H included hadronization, and +MPI included multi-parton interactions.

Chapter 3. Dipole kt 34

In the kt-algorithm case, one can see the hadronization process as a ”splash-out” of

particles, and the MPI as a ”splash-in” of particles. The goal then is to try and find the

value of R that will include roughly the same amount of ”splash-in” and ”splash-out”

in order to cancel out their effects.

In order to investigate the dependence of the results on the p⊥ of the event as well as

on the chosen value for the R parameter, we will study the two jet production in more

detail. Also, we have taken only particles with rapidity |η| < 5 in order to investigate the

effects of the detector acceptance which can occur in an experimental enviroment. Even

though the dipole-kt algorithm does not have a free parameter, one can see condition

from eq.3.14 as ”dynamic R” value (since it controls the separation between the ISR

and FSR clusterings). We have done the analysis for different minimum p⊥ values, and

the results are given in table 3.7. One can clearly see, that for the dipole-kt algorithm

results are getting better as p⊥min grows. This is because of the previously discussed

MPI problem, that tends to disappear for high p⊥ values of jets. Also, because we do not

have the information about all particles from the collision, the results from the dipole-kt

algorithm are not symmetrical anymore. For the future development of the algorithm,

we plan to investigate in detail how does this cut in the pseudorapidity effect the results

of the clusterings. For the kt-algorithm, one can not establish such a connection between

the p⊥min value and the results. Also, it is hard to say for which value of the parameter

R it gives the best results. For a complete kt analysis of such events, one should play

around with different values of R in order to obtain an optimal result.

With all the data presented in this section, it is clear that the dipole-kt algorithm

does clusterings with similar precision as the kt-algorithm (even slightly better in some

cases). Even though two algorithms share the same main concept there are couple of big

difference between them. Dipole-kt algorithm uses dipole-based clustering procedure,

has Lorentz invariant distance measure and does not have a free radius parameter2. The

kt-algorithm uses the radius parameter in order to decide what should be clustered to

a jet and what to the incoming parton, and clustering results depend on what value of

R is choose. It is encouraging that we can reproduce the kt-algorithm results with the

dipole-kt algorithm, even with those differences.

2More precisely the dipole-kt algorithm does use some kind of R parameter as discussed before, but
it is not a free user-defined parameter.

Chapter 3. Dipole kt 35

p⊥ 1st JET

Dipole− kt kt(R = 0.4) kt(R = 0.7) kt(R = 1.0)

p⊥min(GeV) Mean RMS Mean RMS Mean RMS Mean RMS

20 1,38 0,29 1,01 0,28 1,22 0,28 1,34 0,29

50 1,20 0,22 1,02 0,23 1,13 0,22 1,22 0,23

100 1,11 0,15 1,02 0,19 1,11 0,19 1,15 0,19

200 1,08 0,14 1,03 0,18 1,08 0,17 1,12 0,16

2nd JET

20 1,29 0,33 0,68 0,22 0,89 0,24 1,06 0,27

50 1,14 0,23 0,74 0,19 0,87 0,19 0,96 0,19

100 1,11 0,15 0,77 0,18 0,87 0,17 0,84 0,17

200 1,07 0,14 0,80 0,17 0,88 0,15 0,94 0,14

Table 3.7: Mean and RMS values of the pt in the two jet production analysis. Red
text indicates results closest to the expected value. Only particles with rapidity |η| < 5

are included in the analysis.

Chapter 4

Prospect in boosted jets

4.1 Introduction

With the increase in energy LHC is exploring phenomena at energies well above the

electroweak scale. Because of this, techniques developed for lower energies where the

weak vector bosons could be considered slow-moving, have to be reconsidered. In partic-

ular, in the context of jet analysis, the large boost of electroweak bosons and top quarks

causes their hadronic decays to became collimated inside a single jet. A new research

field has emerged in recent years, investigating how best to identify the substructure

that appears in single fat jets, as reviewed in refs. [26][27].

Figure 4.1: An illustration of a boson decaying into two quarks with three different
values of transverse momentum (longer boson line indicates higher p⊥(boson)). One
can see that for high transverse boosts of the boson (on the right) it is no longer easy

to differ the two jets produced by the quarks.

36

Chapter 4. Prospect in boosted jets 37

Larger the boost of the boson we get more collinear jets as result (shown in fig.4.1). This

has been a problem for most of the known jet clustering algorithms. One can think that

just taking smaller R values for clustering sequence would solve this problem, but then

one looses a lot of particles. It is done the opposite way, larger R values are taken to

find collinear jets in a single fat jet which is then run trough clustering sequence again to

find substructure and get rid of the background (as already mentioned in section 2.3.3).

Knowing that the dipole-kt algorithm uses ”dynamic cone size” and Lorentz invariant

distance measure we think it could do well in boosted jets case.

In this section we present the reader with an analysis of such events. What one has to

have in mind is that this analysis does not represent a realistic case (which is far more

complicated) and is done only to verify our belief that the dipole-kt algorithm should be

more or less insensitive to the boost of decaying particles. Furthermore, we compare the

dipole-kt results with an exclusive variant of the kt-algorithm, and in todays experiments

only inclusive variants are used for such purposes. Bearing this in mind, one can proceed

to analyze the performance of the dipole-kt algorithm in such an environment.

4.2 Boosted W → qq̄

We have chosen to study a qq̄ → Wg process, where the W decays further to a quark-

antiquark pair. The final products of this process are three jets, and the higher we set

the p⊥ of the W, the more collinear the jets produced in its decay will be. Our goal was

to reconstruct the mass of the W boson. One first has to find two jets that come from

the decay of the W and then reconstruct its mass as invariant mass of those two jets.

Since we are using exclusive variant of the kt and dipole-kt algorithm one could think

Figure 4.2: Possible three reconstructed jets in qq̄ → Wg. High p⊥ of a gluon from
the ISR resulted in clustering of W decays into a single fat jet.

Chapter 4. Prospect in boosted jets 38

Figure 4.3: Possible four reconstructed jets in qq̄ →Wg. Absence of high p⊥ parton
from the ISR resulted in clustering a FSR inside a ”fat jet” as a stand-alone jet.

that searching for three final jets and then checking which combination of two jets is

the closest one to the W mass should be sufficient. However, let us consider a situation

illustrated on fig.4.2. Here, a gluon from the ISR happened to have high p⊥, so among

three found jets the W products are swept in a single fat jet. In this case it would be

better to reconstruct four final jets, as the last step of the clustering should give two

jets from a W fat jet.

On the other hand, if one always reconstructs four final jets, the situation illustrated in

fig. 4.3 could occur fairly often. If there are no high-p⊥ partons from the ISR, we could

get a part of the FSR from the W -jets a stand-alone jet. This again would give wrong

results when reconstructing the mass of the W.

In order to avoid these two problems we have decided to do as follows:

1. Find four jets.

2. Find the invariant mass M1 of two jets that is the one closest to the knownW

mass.

3. Do another step in clustering in order to obtain three jets.

4. Find the invariant mass M2 of two jets that is the one closest to the known W

mass.

5. Chose the minimum of M1 and M2 as the reconstructed W mass.

Chapter 4. Prospect in boosted jets 39

Mass(GeV)
40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

W mass at 200GeV

R=0.4
R=0.6
R=0.8

t
Dipole-k

Figure 4.4: Histogram with the reconstructed W mass for qq̄ →Wg events with the
dipole-kt and kt-algorithm (p⊥(W) ≥ 200GeV). The kt results are given for three

different values of R.

Chapter 4. Prospect in boosted jets 40

This procedure requires the knowledge of the W mass, and thus is not relevant in search

for particles with unknown mass.

Results of the analysis with the minimum p⊥ of the W set to 200 GeV in the generation

are shown in fig. 4.4. The dipole-kt algorithm reconstructed a nice peek, which when

fitted to the Breit-Wigner1 function gives MW = (80.93 ± 0.51)GeV (with known W

mass of 80.38 GeV inside the 2σ). In the kt-algorithm analysis, one can easily see that

the position of the peek is strongly correlated with the chosen value of R. A more detail

study of the problem is needed to determine the best value of R to use, and most likely

this value would be different for another process.

In order to check how sensitive clustering algorithms are to the change in boost of the

W we have chosen to repeat the analysis, now with the minimum p⊥ of the W set to

500 GeV. Results are given in fig. 4.5.

Again, one can see a clear peak in the dipole-kt case (and notice that the distribution

remained almost the same), which when fitted gives MW = (78.93 ± 0.45)GeV (with

known W mass inside the 4σ). Results have changed, but not by much taking into

consideration that now we are dealing with highly boosted W. The kt-algorithm shows

even higher correlation between chosen value for the R parameter and the results. As

one can see, choosing too large value for R results in a very broaden distribution (even

without a clear peak for the resonance).

One important part of a realistic analysis, that we have not taken into a consideration,

is the background. For example if we wish to study such an event, we would have a

group of events that produce three jets with some p⊥,min as a cut-off. In such a group,

many events would not be a W production but rather some other processes that end

up having three high p⊥ jets. In our case, the main background would be a production

of three jets from pure QCD events studied in section 3.5. It is rather complicated, and

time consuming, to simulate such realistic data. Preliminary investigations indicate that

the kt-algorithm has a stronger tendency to create a mass peak in background events

than the dipole-kt algorithm, but further studies are needed to clarify this issue.

1f(E) = k/(E2 −M2)2 +M2Γ2, where k is a constant, M the mass of the resonance and Γ the width of
the resonance.

Chapter 4. Prospect in boosted jets 41

Mass(GeV)
40 60 80 100 120 140 160 180
0

20

40

60

80

100

W mass at 500GeV

R=0.4
R=0.6
R=0.8

t
Dipole-k

Figure 4.5: Histogram with the reconstructed W mass for qq̄ →Wg events with the
dipole-kt and kt-algorithm (p⊥(W) ≥ 500GeV). The kt results are given for three

different values of R.

Chapter 5

Conclusion

Let us start with a quick review of the thesis work. The idea of the thesis was to develop

a new Lorentz invariant jet clustering algorithm that does 3→ 2 clusterings rather than

2 → 1 (that almost all other clustering algorithms do). This was done by ”inverting”

the PYTHIA dipole-based shower framework. We have analyzed how PYTHIA does

simulations of parton showers, and used it to build our recombination scheme and define

a distance measure. We implemented this in a code, and dipole-kt algorithm was born.

We have decided that, for the purpose of this thesis, we are only going to analyze the

exclusive version (finds requested number of jets) rather than inclusive version (finds

all jets above some cut-off p⊥). The kt-algorithm was our choice for comparison in the

validation process. Validation results showed that the dipole-kt does good clusterings in

three simple processes (even slightly better than the kt-algorithm in some cases). That

was a promising sign that we could do well also in a boosted jets analysis. Because of the

time limitations, we have only done a very simple analysis that showed good prospects.

Having a dynamic cone size (unlike a fixed cone size R, as in the kt-algorithm) is an

advantage of the dipole-kt algorithm in such analysis compared to the kt-algorithm where

results were highly dependent on the choice of the R.

One can clearly see that, although the dipole-kt algorithm gives good results and shows

prospect for boosted jets analysis, a lot of development work as well as analysis are left to

be done. Here we will mention only a couple, that we think are of the most importance,

and that we plan to investigate in the near future. First of all, the dipole-kt algorithm

has to be speeded up. It is now ∼ 100 times slower than the kt-algorithm. In order to

speed it up to, one should consider using Computational Geometry Algorithms Library

(CGAL) [28] which is used to speed up the kt-algorithm. Secondly, a detailed analysis

of boosted jet production together with realistic background simulation is needed. One

should generate as realistic as possible data, and then proceed to analyze it with the

42

Chapter 5. Conclusion 43

dipole-kt algorithm. Afterwards, these results should be compared with the state-of-the

art techniques used in boosted jets analysis, such as: mass tagger, trimming, pruning,

etc. We are planning to investigate booth features in order to hopefully prove that the

dipole-kt algorithm can be of help in future analysis of LHC data. Other interesting

point would be to analyze what results would other distance measures give (for example

the distance measure used in ARIADNE).

Two main ideas prolonged trough this thesis, so we wish to finish by stating them once

again. We think that usage of a Lorentz invariant distance measure is an obvious way

towards development of an algorithm that has no problems when dealing with highly

boosted jets. Also, since the color dipole model has shown improvements in the evolution

of parton shower algorithms, 3 → 2 recombination schemes may very well become an

important feature of new jet clustering algorithms.

Appendix A

Algorithm in detail

A.1 How to use it

Here, a more detailed overwiev of the dipole-kt algorithm is given. The code was writen

in C++. The code does not supply its own handeling of Lorentz vectors, but relies ona

a so-called traits-class system based on C++ templates for interfacing to any external

Lorentz vector code.

The default constructor is given as:

Clustering (nmin=2, cutkt=0)

where nmin is minimum number of jets to be constructed and cutkt is the cut-off in

transverse momentum (only clusters with invariant transvers momentum higher than

cutkt will be considered jets).

There are only two public functions that can be called by the user.

int cluster(tracks, others);

vector getJets();

For the cluster() function the needed input is a vector of 4-momentum of all particles

to be clustered, and optionally a vector of 4-momentum of other particles in the event.

When called, this function does jet clustering, and depending on the parameters nmin

and cutkt it returns the number of jets. getJets() returns 4-momentum of all final jets

when called, after the clustering.

To summarize the usage of this algorithm:

44

Appendix A. Algorithm in detail 45

• Define a variable of type Clustering. Set the value of nmin and cutkt.

• Call the function cluster() with all the particles one wishis to cluster as input (and

optionally the other particles from the event).

• Call the function getJets() to get all the jets with their 4-momentum.

A.2 Algorithm implemetation

Here a more detailed implementation of the algorithm will be given, describing all the

essential aspects of the code. When the user calls function cluster() it invokes following

actions:

• Initialization

– Frist we copy the 4-momentum of ”tracks” and ”others” so we can manipulate

them.

– The total invariant mass of the hard subprocess (ŝ) and momenta of the in-

coming partons (Pa and Pb) are calculaded from the 4-momentum of ”tracks”

and ”others” in the previous step. Unbalance in p⊥ is assigned to a neutrino

with pz = 0 which is now part of the ”others”.

– An (N+1)×(N+1) matrix S is initialized. The matrix is filled with squared

invariant masses of all pairs of particles, and of particles with respect to the

incoming partons.

– For each cluster, we calculate the minimum invariant kt with the respect to:

∗ all other pairs of clusters (corresponding to the FSR)

∗ all other clusters and both incoming partons (corresponding to the FI

dipole)

∗ the both incoming partons (corresponding to the ISR)

– For the FSR (which is the most time-consuming part) we can use S-matrix

elements to get the invariant kt (S = Sce + Scr + Ser from eg. 3.16).

– The first search for the minimum kt is done with an O(N3) complexity

– Note that we do not consider FSR from FI dipoles if a pair does not pass the

3.14 cut.

• Each step

– If the minimum kt found in a previous step indicates that:

Appendix A. Algorithm in detail 46

∗ there was a FSR: Boost to the rest frame where the recoiler momentum

is in the -z direction. Calculate the total momentum in the rest frame

and construct 2 new clusters whose momentum lies in the -z and +z

direction. Boost these particles back. Afterwards update the relevant

elements of S-matrix.

∗ there was a FSR from the FI dipole: Boost to the rest frame where

the incoming parton momentum is in the -z direction. Calculate the

total momentum in the rest frame and construct new clusters whose

momentum lies in the +z and the incoming parton momentum lies in the

+z direction. Afterwards update the relevant elements of S-matrix.

∗ there was a ISR: Simply subtract the momentum of the cluster from

the incoming parton momentum. Afterwards boost all of the remaining

clusters and particles (”others”). Update the relevant elements of S-

matrix.

– Note that updates of the S matrix in the step above differ:

∗ If there was a FSR, then only couple of matrix elements containing at

least one of those three clusters will be changed.

∗ If there was a FSR from a FI dipole, then all matrix elements containing

at leas one of the two clusters will be changed. Additionaly, since the

momentum of the beam has changed, each element containing the beam

momentum has to be updated.

∗ If there was an ISR, then all the elements containing the beam momentum

have to be updated. Note here, that although all the clusters have been

boosted, their invariant masses remain the same.

– Note that we save the information of the minimum kt for each cluster, so in

the next step we do not need to recalculate everything.

– After each clustering the update of the kt’s is on O(N2), because of the saved

information from the last clustering.

– Note that in a ”worst case scenatio” where all clusters have a minimum kt

with the respect to the clusters that were clustered or changed in the last step

(because then, for all clusters we have to compute a new kt), the complexity

is O(N3).

• End

– If the user defined cutkt and at some point all kt’s are larger than cutkt stop

the clustering process. Declare all of the remaining clusters as jets.

– If the user defined an nmin and at some point we have exactly nmin jets stop

the clustering process. Declare all of the remaining clusters as jets.

Bibliography

[1] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, JHEP 1309 (2013) 029,

arXiv:1307.0007 [hep-ph].

[2] S. Moretti, L. Lonnblad, and T. Sjostrand, JHEP 9808 (1998) 001,

arXiv:hep-ph/9804296 [hep-ph].

[3] G. P. Salam, Eur.Phys.J. C67 (2010) 637–686, arXiv:0906.1833 [hep-ph].

[4] J. Shelton, arXiv:1302.0260 [hep-ph].

[5] L. Lonnblad, Comput.Phys.Commun. 71 (1992) 15–31.

[6] CDF Collaboration Collaboration, A. Abulencia et al., Phys.Rev.Lett. 96

(2006) 122001, arXiv:hep-ex/0512062 [hep-ex].

[7] D0 Collaboration Collaboration, V. M. Abazov et al., Phys.Rev. D85 (2012)

052006, arXiv:1110.3771 [hep-ex].

[8] H1 Collaboration Collaboration, I. Abt et al., Phys.Lett. B314 (1993) 436–444.

[9] ZEUS Collaboration Collaboration, J. Breitweg et al., Eur.Phys.J. C4 (1998)

591–606, arXiv:hep-ex/9802012 [hep-ex].

[10] D0 Collaboration Collaboration, V. M. Abazov et al., Phys.Rev. D80 (2009)

092006, arXiv:0904.3195 [hep-ex].

[11] H1 Collaboration Collaboration, F. Aaron et al., Eur.Phys.J. C65 (2010)

363–383, arXiv:0904.3870 [hep-ex].

[12] ZEUS Collaboration Collaboration, S. Chekanov et al., Phys.Lett. B547 (2002)

164–180, arXiv:hep-ex/0208037 [hep-ex].

[13] G. F. Sterman and S. Weinberg, Phys.Rev.Lett. 39 (1977) 1436.

[14] M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al., Eur.Phys.J.

C58 (2008) 639–707, arXiv:0803.0883 [hep-ph].

47

http://dx.doi.org/10.1007/JHEP09(2013)029
http://arxiv.org/abs/1307.0007
http://dx.doi.org/10.1088/1126-6708/1998/08/001
http://arxiv.org/abs/hep-ph/9804296
http://dx.doi.org/10.1140/epjc/s10052-010-1314-6
http://arxiv.org/abs/0906.1833
http://arxiv.org/abs/1302.0260
http://dx.doi.org/10.1016/0010-4655(92)90068-A
http://dx.doi.org/10.1103/PhysRevLett.96.122001
http://dx.doi.org/10.1103/PhysRevLett.96.122001
http://arxiv.org/abs/hep-ex/0512062
http://dx.doi.org/10.1103/PhysRevD.85.052006
http://dx.doi.org/10.1103/PhysRevD.85.052006
http://arxiv.org/abs/1110.3771
http://dx.doi.org/10.1016/0370-2693(93)91263-M
http://dx.doi.org/10.1007/s100520050230
http://dx.doi.org/10.1007/s100520050230
http://arxiv.org/abs/hep-ex/9802012
http://dx.doi.org/10.1103/PhysRevD.80.092006
http://dx.doi.org/10.1103/PhysRevD.80.092006
http://arxiv.org/abs/0904.3195
http://dx.doi.org/10.1140/epjc/s10052-009-1208-7
http://dx.doi.org/10.1140/epjc/s10052-009-1208-7
http://arxiv.org/abs/0904.3870
http://dx.doi.org/10.1016/S0370-2693(02)02763-6
http://dx.doi.org/10.1016/S0370-2693(02)02763-6
http://arxiv.org/abs/hep-ex/0208037
http://dx.doi.org/10.1103/PhysRevLett.39.1436
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883

Bibliography 48

[15] T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput.Phys.Commun. 178 (2008)

852–867, arXiv:0710.3820 [hep-ph].

[16] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, et al., JHEP

0902 (2009) 007, arXiv:0811.4622 [hep-ph].

[17] A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Hoche, et al.,

Phys.Rept. 504 (2011) 145–233, arXiv:1101.2599 [hep-ph].

[18] J. E. Huth, N. Wainer, K. Meier, N. Hadley, F. Aversa, et al.

[19] G. P. Salam, arXiv:0705.2696 [hep-ph].

[20] T. Sjostrand, Comput.Phys.Commun. 28 (1983) 229.

[21] JADE Collaboration Collaboration, W. Bartel et al., Z.Phys. C33 (1986) 23.

[22] JADE Collaboration Collaboration, S. Bethke et al., Phys.Lett. B213 (1988)

235.

[23] L. Lonnblad, arXiv:hep-ph/9908368 [hep-ph].

[24] M. Cacciari, G. P. Salam, and G. Soyez, Eur.Phys.J. C72 (2012) 1896,

arXiv:1111.6097 [hep-ph].

[25] R. Corke and T. Sjostrand, JHEP 1103 (2011) 032, arXiv:1011.1759 [hep-ph].

[26] A. Abdesselam, E. B. Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, et

al., Eur.Phys.J. C71 (2011) 1661, arXiv:1012.5412 [hep-ph].

[27] A. Altheimer, A. Arce, L. Asquith, J. Backus Mayes, E. Bergeaas Kuutmann, et

al., arXiv:1311.2708 [hep-ex].

[28] “Cgal, Computational Geometry Algorithms Library.”. http://www.cgal.org.

http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
http://dx.doi.org/10.1016/j.physrep.2011.03.005
http://arxiv.org/abs/1101.2599
http://arxiv.org/abs/0705.2696
http://dx.doi.org/10.1016/0010-4655(83)90041-3
http://dx.doi.org/10.1007/BF01410449
http://dx.doi.org/10.1016/0370-2693(88)91032-5
http://dx.doi.org/10.1016/0370-2693(88)91032-5
http://arxiv.org/abs/hep-ph/9908368
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1007/JHEP03(2011)032
http://arxiv.org/abs/1011.1759
http://dx.doi.org/10.1140/epjc/s10052-011-1661-y
http://arxiv.org/abs/1012.5412
http://arxiv.org/abs/1311.2708

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Theory
	2.1 Quantum Chromodynamics (QCD)
	2.2 Jets
	2.2.1 Jet variables
	2.2.2 Matrix element calculations
	2.2.3 Event generators

	2.3 Jet clustering algorithms
	2.3.1 Cone algorithms
	2.3.2 Sequential recombination jet algorithms
	2.3.3 Boosted jets

	3 Dipole-kt jet clustering algorithm
	3.1 PYTHIA dipole showers
	3.2 Distance formulas
	3.3 Algorithm summary
	3.4 The speed issue
	3.5 Algorithm validation

	4 Prospect in boosted jets
	4.1 Introduction
	4.2 Boosted Wq

	5 Conclusion
	A Algorithm in detail
	A.1 How to use it
	A.2 Algorithm implemetation

	Bibliography

