
Abstract

The demand for centralised risk metric services is increasing as the regula-
tions and legislations in the financial market becomes stricter. In cooperation
with TriOptima a framework for such service is presented. The framework is
constructed such that parallel computation using graphical processing units
(GPUs) is possible, with the goal to obtain maximal computational speed.

The focus of this thesis is to introduce the pricing framework as well as
the procedure of extending the asset class coverage. Four models for pric-
ing crude oil derivatives are tested, each with different characteristics. We
have successfully presented a workflow for developing pricing models in the
computational framework introduced, with historical data and asset price dy-
namics in focus. The possible weaknesses are highlighted and improvements
are proposed.
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Chapter 1

Introduction

The financial derivatives market can be divided into two main groups based
on how the contracts are traded. The exchange traded derivatives are highly
standardised. A central clearing house acts as the counterparty between the
buyer and seller, and takes the credit risk of both parties. Calculating risk
metrics for exchange traded derivatives is because of this a manageable task,
even for large portfolios. On the over the counter (OTC) market derivatives
are traded between two parties directly without going through an exchange.
The contracts are negotiated to fit both parties and are thus not standardised.
The use of central clearing houses to manage counterparty risk is present but
not a necessity. Calculating risk metrics for large portfolios of OTC deriva-
tives is in some sense more important since the counterparty risk generally
is larger. The lack of standardisation makes this a huge task for small banks
and institutions. It is not uncommon these calculations take hours and are
done overnight.

There is a demand on the market for centralised risk metric services.
When developing centralised computational services performance is crucial.
One such service is triCalculate which is developed by TriOptima1, a provider
of risk management services and post trade infrastructure for the OTC deriva-
tives market. The foundation of their service is described in Albanese et al.
[2011]. By using discrete Markov-chain models and performing highly parallel
calculations with the help of graphical processing units (GPUs) a significant
speedup versus traditional methods is achieved.

The main objective of this thesis is to derive a workflow for, and expand
the asset class coverage of such a centralised service to include commodity
contracts. Since different commodities have different price dynamics they
will each need different models. A reasonable limitation is therefore to study

1http://www.trioptima.com
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a single commodity, and further, only a few specific contracts. Crude oil
futures are the most traded commodity derivatives on the markets today
and is therefore a good choice. Options written on these futures will also
be considered. Note that the contracts covered are exchange traded and not
OTC traded, even though we are interested in OTC derivatives. The reason
behind this choice is the difficulty to obtain good market data for the OTC
trades.

The goal is to replicate quoted market prices for these contracts by mod-
eling the crude oil spot price in the computational framework used by tri-
Calculate and calibrate the models to a calibration portfolio. The spot price
is what drives the price for all derivatives, exchange traded as well as OTC,
so using exchange data should be a non-issue.

The thesis begins with a brief introduction of the commodities market and
some common commodity derivatives. Then some models we will consider
are presented followed by a walkthrough of the pricing method. The results
are then presented showing the performance of the different models. Finally
we conclude the results and suggest further improvements.
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Chapter 2

Commodity Markets

2.1 Markets

Crude oil is not a homogeneous product because it varies in e.g. density
and sulfur content. The two major grades are West Texas Intermediate
(WTI) from the US and Brent crude oil sourced in the North Sea. The
largest market places for trading crude oil derivatives are the New York
Mercantile Exchange (NYMEX) and the Intercontinental Exchange (ICE).
The basic factors which affects the price of a commodity are supply and
demand. Storability is also an important factor. A stock for example, can
be stored indefinitely while electricity cannot be stored at all. Crude oil is
considered a storable commodity.

2.2 Spot price dynamics

2.2.1 Mean reversion

In other commodity markets such as electricity or most grains mean reversion
is a fact [Escribano et al., 2011]. The last decade the oil price has been rising
without falling back to, what appears to be, a normal level. It has been
debated if mean reversion really is a property in crude oil prices, see e.g.
Geman [2007]. In the scope of this thesis no models with mean reverting
dynamics will be considered but an example of such model can be found in
Gibson and Schwartz [1990].

3
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Figure 2.1: Autocorrelation of Brent Index returns from 2010-01-01 to 2013-
12-31.
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Figure 2.2: Autocorrelation of squared daily returns of the Brent Index from
2010-01-01 to 2013-12-31.

2.2.2 Lack of seasonality

The electricity price definitely has seasonal behaviour. Not only when it
comes to the yearly cycles but also week cycles where the demand is higher
on working days and lowe in the weekends. Even intraday cycles are present,
the demand is higher in the day and lower in the night. These effects are
augmented by the lack of storability. In the crude oil market seasonality is
not an issue. Oil has obviously already been stored for millions of years, and
even when exposed to air it can still be stored for months. This smooths out
any seasonal supply problems that might exist. Further argument for the
lack of seasonality in crude oil prices can be seen in Figure 2.1. We see that
the autocorrelation of daily prices are negligible.

4
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Figure 2.3: Daily returns of the Brent Index from 2010-01-01 to 2013-12-31.

2.2.3 Volatility clustering

In Figure 2.2 the autocorrelation of the second moment of the returns is
shown. The figure indicates that the volatility on a specific date is depen-
dent on previous volatilities. The dependence is not very strong but still
significant. This effect is called volatility clustering. The result is that there
are periods with low volatility and there are stressed periods of high volatil-
ity. Just by looking at the returns themselves this property can be hard to
observe. Volatility clustering is usually modeled using stochastic volatility,
which we will take a look at in Section 4.3.

2.2.4 Excess kurtosis

While returns often are assumed to be normally distributed, it is rarely the
case. By observing market data we often find that the return distribution is
more fat-tailed. In Figure 2.4 a normal probability plot of the Brent Index
returns is shown. We observe that the tails are heavier than for a Gaussian
distribution. The way excess kurtosis will be handled in this thesis is by
adding jumps to the models. Another common method is to use the student
t-distribution in the diffusion term of the models.

2.3 Commodity contracts

2.3.1 Spot Price

The spot market for commodities consist of commercial contracts where the
transaction is to be performed immediately or with a minimal lag. This

5
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Figure 2.4: Normal probability plot of Brent Index returns from 2010-01-01
to 2013-12-31.

market is not always liquid and usually not transparent but still makes up a
large portion of the commodities market.

2.3.2 Forwards

A forward contract is a bilateral agreement between two parties A and B
signed at time t0. Party A is obligated to pay the predetermined price at
time t0 whilst party B is obligated to deliver the underlying asset at a fixed
future time T . These contracts are usually traded over the counter (OTC)
and thus fully exposed to credit risk. The forward contract can either be
connected to delivery of a physical product or be a purely financial contract.

2.3.3 Futures

A futures contract is similar to the forward contract but is highly standard-
ised in terms of maturity, volume, quality and quantity. Futures contracts
are traded at exchanges, such as NYMEX and ICE and are cleared at their
respective clearing houses. The clearing house act as counterparty to both
the seller and the buyer and require them to make an initial margin deposit.
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The contracts are marked-to-market at a daily basis, which means the par-
ties have to adjust their deposits according to their profit or loss at the end
of each day, therby reducing credit risk. Futures contracts are naturally the
most liquid contracts in the commodity markets.

2.3.4 Options

A call option gives the holder the right, but not the obligation, to buy the
underlying asset at a specific maturity date to a predetermined strike price.
The put option gives the holder the right to sell the underlying asset. The
two most common types of options are European style options which only
can be exercised at a specified maturity date, and the American style option
which can be exercised at any time before or at the maturity date. It can
be shown that the price of an American call option is equal to the price
of the corresponding European call option [Björk, 2009]. Options are both
exchange traded and traded OTC.

2.3.5 Swaps

Commodity swap contracts are agreements where two parties exchange fixed
price and floating spot price with each other over a specified period. The
majority of swap contracts in the commodities market are based on oil prices.
Swap contracts are both exchange and OTC traded.

2.4 Relation between forward, future and spot
price

Under the assumption that the market is arbitrage free, the relationship
between spot and forward prices is

fT (t) = S(t)e(r−δ)(T−t), (2.1)

where r is the rate and δ is the convenience yield. In the case of non-constant
but deterministic rate and yield the above expression generalises to

fT (t) = S(t)e
∫ T
t (ru−δu)du. (2.2)

When the rate and convenience yield are deterministic the forward price
fT (t) will coincide with the future price F T (t) [Geman, 2005, Chapter 2].
We will use this relation and price all future contracts as forwards. Futures
can otherwise be tricky to work with since the margining affects the price
slightly.

7



2010 2011 2012 2013 2014

60

80

100

120

Date

U
SD

pe
r

ba
rr

el

Figure 2.5: ICE Brent Index from 2010-01-01 to 2013-12-31.

2.5 Data source

In this thesis one month of data from November 2013 will be used. This
section presents the sources.

2.5.1 ICE Brent index

The ICE Brent Index is a weighted average of settlement prices for Brent
futures. This index will be used as a proxy for the spot price. As said in
Section 2.3.1 the spot price is not always a very transparent market and good
data can be hard to obtain. The Brent index and the method to calculate it
is publicly available. Another reason for modeling the index instead of the
spot price is that the futures we will use are settled on the index price. In
Figure 2.5 the ICE Brent index is shown.

2.5.2 ICE Brent futures

Daily settlement prices of ICE Brent futures with up to six years to maturity
will be used. Contracts with some maturities are not very liquid. We will
therefore only consider futures with a daily volume of at least 1000 trades.
This will almost certainly include all contracts with maturity in up to one
year, and also the 18 month, 24 month and 36 month contracts. An example
of a forward curve is shown in Figure 2.6.

2.5.3 ICE Brent american style options

ICE Brent American style options have the ICE Brent future price as under-
lying asset. Only call options will be considered, and they will be priced as

8
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Figure 2.6: The ICE Brent forward curve 2013-11-12 is in contango.
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Figure 2.7: Discount curve for 2013-11-12.

if they were of European exercise. As in the case with futures only the most
liquid contracts will be considered. This means that only the one month
contracts will be considered and only some strike levels close to the money.

2.5.4 Discount curve

We will discount all prices using discount curves collected from the market.
An example of one such curve is shown in Figure 2.7. When pricing options
we will need the forward rate discount factor used to discount from time T2

back to T1. This can be obtained by simply dividing the discount factor for
T1 with the one for T2 using the discount curve for the day we want to price
the option at.

9
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Chapter 3

Markov chain pricing framework

The pricing method described in this chapter is somewhat simplified version
of the one used by TriOptima in their risk metrics service. It is closely
related to the standard partial differential equation (PDE) methods using
finite differences, but not exactly equivalent.

3.1 Expected payoff
The risk neutral valuation formula states that any simple claim can be priced
at the current time t as the discounted expected payoff Φ at maturity T ,

Π(t) = P (t, T ) · EQ [Φ(T )|Ft] (3.1)

where P (t, T ) is the the price of the zero coupon bond with expiration date
T at time t. Essentially the core of derivative pricing methods is to calculate
or approximate the expected value in one way or another. In this thesis we
will use an approximative method, assuming the underlying asset price St
only can assume a finite number of values Ω = {z1, . . . , zn}. The transition
probability matrix P is constructed so that the element at row i and column
j is

pi,j = Pr(ST = zj|St = zi). (3.2)

As usual with transition probability matrices
n∑
k=1

pi,k = 1 for all i = 1, . . . , n. (3.3)

If the probability mass function fSt(x) = Pr(St = x) has the corresponding
column vector f̄St , then

f̄ST
= P f̄St . (3.4)

11



The expected payoff is then easily calculated as

EQ [Φ(T )|Ft] =
n∑
i=1

fST
i Φ(fST

i ). (3.5)

In the following section we will focus on how to obtain the transition probabil-
ity matrix P given any model described by a stochastic differential equation
(SDE).

3.2 Kolmogorov forward equation
Given a general d-dimensional diffusion process with m independent Brown-
ian motion terms

dXt = a(Xt, t)dt+ b(X, t)dWt (3.6)

where a(Xt, t) is a d × 1 column vector and b(Xt, t) is a d × m matrix,
the Kolmogorov forward equation states that the probability density of the
solution to the above SDE satisfies

∂f(x, t)

∂t
=−

d∑
i=1

∂

∂x(i)
[ai(x, t)f(x, t)]

+
1

2

d∑
i=1

d∑
j=1

∂2

∂x(i)∂x(j)
[Bi,j(x, t)f(x, t)]

(3.7)

f(x, 0) =δX0(x) (3.8)

where

B(x, t) =b(x, t)b(x, t)ᵀ. (3.9)

This PDE is solved with finite difference methods using forward difference
in time and central difference in the price dimensions. The discretisations
are given by

∂f(x, t)

∂t
≈ f(xi, t+ ∆t)− f(xi, t)

∆t
(3.10)

in time, and

∂f(x, t)

∂x
≈ f(xi+1, t)− f(xi−1, t)

2∆x
(3.11)

∂2f(x, t)

∂x2
≈ f(xi+1, t)− 2f(xi, t) + f(xi−1, t)

∆x2
(3.12)

12
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Figure 3.1: Mapping the state matrix to a vector.

in space. To achieve satisfactory computational performance we limit the
number of dimensions in the diffusion process by only considering one-factor
and two-factor models. This will also help simplify the solution of the Kol-
mogorov forward equation significantly. In the case of a two-factor process
we will also need the cross derivative

∂2f(x(1), x(2), t)

∂x(1)∂x(2)
≈ 1

4∆x(1)∆x(2)

[
f(x

(1)
i−1, x

(2)
i−1, t)− f(x

(1)
i+1, x

(2)
i−1, t)

−f(x
(1)
i−1, x

(2)
i+1, t) + f(x

(1)
i+1, x

(2)
i+1, t)

]
.

(3.13)

By inserting the discretised derivatives into 3.7 we get

f(xi, t+ ∆t) = f(xi, t)

− ∆t

2∆x

[
a(xi+1, t)f(xi+1, t)− a(xi−1, t)f(xi−1, t)

]
+

∆t

∆x2

[
B(xi+1, t)f(xi+1, t)− 2B(xi, t)f(xi, t)

+B(xi+1, t)f(xi−1, t)

]
.

(3.14)

The two dimensional case is similar to the above.

3.3 State mapping
When we only have one dimensional models the state corresponding to a
row in the transition probability matrix is natural. The ith row represents
the ith state in Ω. When there are two dimensions we have to choose two
state spaces Ω1 and Ω2, one for each dimension. Each row in the matrix now
represents a pair of states. We will map them as Figure 3.1 illustrates.

3.4 Markov chain analogy
In the continous case the initial condition is a Dirac delta function. When
we discretise by limiting the possible prices to the state space Ω we have to

13



modify the initial condition as well. The initial state X0 is observed in the
market and is therefore fixed. Instead we utilise the freedom of choosing the
state space to fit the calculations. By selecting Ω such that X0 = zk ∈ Ω the
discrete version of the initial condition in (3.8) becomes

p(zj, 0) =

{
1 if j = k

0 otherwise
. (3.15)

When we insert this into (3.14) and the corresponding two dimensional case
we will get the neccessary values pi,j to populate the transition probability
matrix P . The one dimensional case gives us

pi,i+1 =
∆t

2∆x2

[
∆x · a(xi, t) +B(xi, t)

]
,

pi,i = 1− ∆t

∆x2
B(xi, t),

pi,i−1 =
∆t

2∆x2

[
−∆x · a(xi, t) +B(xi, t)

]
.

(3.16)

The two dimensional caclulations are somewhat tedious and are therefore
omitted. The interesting result of using the boundary condition in (3.15) is
that the transition probability matrix becomes tridiagonal in the one dimen-
sional case, and block-tridiagonal in the two dimensional case.

3.4.1 Boundary conditions

All rows in the transition probability matrix now has a unit sum, except for
at the boundary states. It is natural to assume that

Pr(ST = zj|St = zi) = 0 if zj /∈ Ω. (3.17)

The state space Ω is chosen such that the boundary states are far enough
from the current asset price that the probability of reaching the boundaries
during the contract period is small. One type of boundary condition that
is very simple to implement is to use absorbing boundary condition. The
transition probability matrix is easily modified to achieve this and is now
ready to use.

3.4.2 Jumps

Jump diffusion models does not add much complexity to the creation of
the probability matrix. The jump probabilities are simply added to the
corresponding element of the matrix. The diagonal is then adjusted so that
each row still has a unit sum.

14



3.5 Time step selection
We cannot generally create the transition probability matrix corresponding
to prices at the current time t and at some future time T . The problem is that
we have to ensure the calculations are numerically stable. The final transition
probability matrix is created as the product of matrixes corresponding to
shorter time steps ∆t,

P =
k−1∏
i=0

P∆t (3.18)

for some integer k. We note that the expressions in (3.16) implies that the
matrix P∆t can be expressed as

P∆t = G+ ∆t · I (3.19)

where I is the identity matrix and G is a matrix that does not depend on ∆t.
The time step ∆t can then be selected small enough, such that it satisfies
the Courant condition

∆t <
1

max(| diag(G)|) . (3.20)

Finally, the time time step is selected such that ∆t · 2n = T − t for some
integer n. This makes it possible to use consecutive squaring to achieve
maximal computational performance without compromising on stability. In
the case where it normally would take k full matrix multiplications to get to
the final P we only have to perform n = log2 k full matrix multiplications if
we utilise consecutive squaring. The price we have to pay is that our models
will have to be time homogeneous. In section 4.4 however, we will present
a workaround for this limitation. For more information on this subject see
Albanese et al. [2011, Section 5].
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Chapter 4

Spot price models

In this section, the models we will test are presented. Four models will be
considered, each one with different characteristics.

4.1 Geometric brownian motion
Geometric Brownian motion described by the SDE

dSt = µStdt+ σStdW (4.1)

is the fundamental model in asset pricing. It is used in the famous Black-
Scholes model introduced in Black and Scholes [1973]. This is the most
simple model we will test and is used as a building block in the other models.
The model only has one-factor and one Brownian motion term. Only two
parameters will need to be calibrated, so the risk for over fitting is small.
It should be easy to calibrate this model to market data but the dynamics
might not be captured fully with a simple model like this.

4.2 Merton
The Merton model proposed in Merton [1976] is an extension of geometric
Brownian motion. The model is described by

dSt = µStdt+ σStdWt + StdZt (4.2)

where the additional term dZt is a compound Poisson process. The jumps oc-
cur with intensity λ and has log-normally distributed amplitude k according
to

ln(1 + k) ∼ N (ln(1 + χ)− 1

2
α2, α2). (4.3)

17



Note that the support of the jump amplitude is [−1,∞). The reason for
adding jumps to the model is to capture the fat tails of the return distribution.
Three parameters are used to describe the jumps, resulting in a total of five
parameters we need to calibrate to market data. The calibration should still
be fairly easy but the risk for over fitting is greater. There is also a greater
risk for ending up in local minimas during calibration.

4.3 Heston

Another way to extend the geometric Brownian motion is to add stochastic
volatility. The Heston model described by

dSt = µStdt+
√
VtStdW S

t

dVt = κ(θ − Vt)dt+ γ
√
VtdW V

t

dW S
t dW

V
t = ρdt

(4.4)

was first proposed in Heston [1993]. A second factor modeling the volatility
of the price process as a Cox–Ingersoll–Ross (CIR) model is added. By doing
this the volatility clustering effect could be captured. The cost of adding a
second factor to the model is large though. Just by adding eight possible
volatility levels we have to reduce the number of possible price states with a
factor eight, see Figure 3.1 for an illustration. Additionally, the initial volatil-
ity V0 is an unobserved state and will have to be calibrated together with
the rest of the model parameters. This results in a total of six parameters,
making the PDE more complicated and the calibration problem harder.

4.4 Fitted term structure

The last model differs from the previous ones in the sense that it allows for
capturing the shape of the forward curve term structure. The idea is that
we no longer will look at the distribution of underlying prices but instead a
transformation of the underlying prices [Albanese et al., 2011, Section 6],

S̄t = λ(t)St. (4.5)

The transformation captures all time variation so that an arbitrary time
homogeneous model can be used to model the transformed prices

dS̄t = a(S̄t)dt+ b(S̄t)dWt. (4.6)

18



The model we will try is the simplest possible. Assume that the spot price
St is modelled using geometric Brownian motion with time dependent drift

dSt = (rt − δt)Stdt+ σStdWt. (4.7)

The transformation λ(t) = exp(−
∫ t

0
ru − δudu) captures the forward curve

precisely. Itō’s lemma then gives us

dS̄t =
(
−St(rt − δt)e−

∫ t
0 ru−δudu + St(rt − δt)e−

∫ t
0 ru−δudu

)
dt

+ σSte
−

∫ t
0 ru−δududWt = σS̄tdWt.

(4.8)

This model has no drift and there is only one single parameter to calibrate.
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Chapter 5

Method

The method we use to evaluate and compare models is divided in two parts.
The first part is the calibration of model parameters using the market data
from the sources presented in Section 2.5. The next step is to perform an out
of sample goodness of fit test to assess which model we consider the best.

5.1 Parallel computing

The last decade the semiconductor industry have focused heavily on increas-
ing computational power by making it possible to perfor multiple operations
simultaneously. Parallel computing has gained immense popularity in a vast
range of industries, especially in finance. While normal computational pro-
cessing units (CPUs) can perform 2, 4, 8 or even 16 tasks in parallel modern
graphical processing units (GPUs) can perform thousands. Some operations
are particularly suitable for paralell computing, such as matrix multiplica-
tions, fourier transforms and Monte Carlo simulations. Programming frame-
works, such as CUDA from Nvidia or OpenCL, together with basic linear
algebra subprograms (BLAS) implementations makes it easy to utilise this
raw computational power. Recent versions of Matlab also has parallel com-
putation capabilities. GPU computing is not essential for the method itself,
however it has been very important in the sence that the method intentionally
is developed to suit such parallel operations. By implementing the pricing
framework in this thesis with GPU capabilities we would notice a significant
performance boost.
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5.2 Calibration
The calibration is done once for each day in the dataset. We will only use the
data corresponding to that particular day. The initial guess of parameters
is the same for each calibration and is choosen arbitrarily but reasonable.
One could of course use the previous days’ calibration as initial guess but to
minimise the risk of bad parameter fits to propagate, we choose not to. The
loss function is very simple,

L(t; θ) =
∑
k

(
fTk(t)− f̃Tk(t; θ)

)2

+
∑
l

(
cKl(t)− c̃Kl(t; θ)

)2
. (5.1)

It is simply the sum of squared errors between the observed future and option
prices and the modelled prices. Weights could be assigned to each term, but
then the problem of how such weights should be selected arises. The objective
function is minimised using the damped least-squares (DLS) method.

The price states are selected uniform ranging from the lower price of 50
USD to the upper price of 150 USD. The prices are then shifted such that
the state closest to the current spot price is moved to the exact current spot
price. The volatility states in the Heston model are selected uniform from
0.005 to 0.06. No shifting is done to the volatility states since we do not know
the exact initial volatility. All models have a total of 64 states. The Heston
model have 8 states for each factor, all other models only have one factor
and thus all states correspond to the spot price. If the implementation would
utilise GPUs the total number of states could be increased to at least 1024,
the limiting factor being the amount of memory available. Without GPUs the
limiting factor is not so much the memory available but the patience to wait
for the calibrations to finish. In Appendix A all the calibrated parameters
are shown but the results are summarised in Chapter 6.

5.3 Validation
The model validation is performed by evaluating the loss function (5.1) each
day, predicting the price of the contracts at the following day. The idea is
that the model with the lowest average error also is the model we prefer. As
we will see though, other factors will be taken into account. Along with the
calibrations all validation results is presented in detail in Appendix A and
summarised in Chapter 6
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Chapter 6

Results

In this chapter all the results from the model calibration and validations are
described and summarised. All results in entirety are located in Appendix
A and should be simple to understand. Each row in the tables represent one
day of data. The last four columns in each table are root mean squared error
values. We separate the errors in one column dedicated to the forward price
error and one column for option prices.

6.1 Models

We will start with an example of how the results are interpreted before we
dive into the results for each model. In Figure 6.1 the calibrated variables
when using the geometric Brownian motion model are shown. We see that the
value for µ is fairly constant while the value for σ fluctuates somewhat more.
If the shape of the forward curve don’t change much during the calibration
period and the calibration is good, the desired effect is an approximately
constant value of µ, which we have in this case. The value of σ should
also be constant but this is not what we observe. In this case the reason
can be seen in Figure 6.2 and Figure 6.3. The dynamics of the geometric
Brownian motion model cannot capture the exact shape of the forward curve.
Since the options we use have the shortest forward contract as underlying,
the mispricing observed propagates to the calibration of the option prices,
causing the inability to calibrate σ properly. This reason could by itself
motivate why we should transform prices before applying a model, like in
the fitted term structure model. The same type of analysis is performed for
all models and the observations are summarised in the rest of this section.

The results for the geometric Brownian motion model are shown in Ta-
ble A.1. We see that the parameters are stable and fairly constant. The out
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Figure 6.1: The calibrated parameter value for each day in the data set using
the geometric Brownian motion model.
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Figure 6.2: The calibrated forward curve with geometric Brownian motion
compared to the actual forward curve at 2013-11-06.
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Figure 6.3: The calibrated option prices with geometric Brownian motion
compared to the actual prices at 2013-11-06.
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of sample fit is not much worse than calibration fit. This model is used as a
baseline model which the other models are compared to.

In Table A.2 the results for the Merton model are shown. We note that
the parameters for this model is stable as well. The fit is just barely better
than the geometric Brownian motion but not good enough to motivate the
calibration overhead introduced by the increased model complexity.

The results for the Heston model are shown in table A.3. We notice
some possible issues with the calibration. Some of the parameters varies a
lot while some are constant. It seems that the initial volatility parameter
cannot be calibrated correctly with the methods used in this thesis. The
correlation parameter assumes unreasonable values. A perfect negative cor-
relation invalidates the arguments for choosing a two-factor model to begin
with. Possible reasons why the calibration is particularly hard for this model
are discussed in Chapter 7.

Last model to analyse is the fitted term structure model. The results are
presented in Table A.4 We note that the parameter calibration is stable but
is probably underestimated at the days where the options are close to expiry
and the option curve has a sharper bend. The most notable result is that
there are no errors in the forward curve calibration, which is a feature of this
specific model. The model is not only stable and simple to calibrate but also
has the best out of sample performance of the considered models.

6.2 Method
Besides comparing the models, we can conclude some valuable insights re-
garding the method itself and models in general. The first insight is that 64
states in total probably is lower than what should have been used to obtain
sufficient accuracy. This especially means that we cannot sacrifice the size of
state dimensions when using multi factor models. By increasing the distance
between grid points the objective function seems to increase in complexity
and the time it takes to perform a calibration increases. Since some model
calibrations shows signs of beeing local minimisations, it is also likely that
the DLS method for optimisation is not the best choice. During the work of
this thesis other methods were tried, such as simulated annealing and mul-
tistart methods. Despite the fact that these methods generall outperformed
the DLS method for the more complex models, the faster DLS method was
chosen. The decision later turned out to be suboptimal.
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Chapter 7

Discussion

None of the models we have tested stands out as particularly good. What we
can observe though, is that some models show desirable features while some
shows undesirable features. In this chapter we will try to identify why the
problems occur and how to deal with them.

7.1 Models

The geometric Brownian motion is a simple model with few parameters to
calibrate. The calibration itself is most probably as good as possible, we have
probably not ended up in any local minimas. The price we pay for a simple
model is that we don’t get a good fit to the market data.

The reason for adding jumps to the geometric Brownian motion is to in-
corporate the thicker tails of the price distribution observed in the market
data. The results for the Merton model does not show the significant perfor-
mance gain we had hoped for. There are a numerous possible reasons for this
but to identify which, we would have to spend some more time analysing the
results. One possible reason is that the price distribution doesn’t have the
significant wide tails. While the tails in Figure 2.4 appear to be wider than a
normal distribution it might not be enough. A further step would be to per-
form some statistical significance test to possibly reject the use of more heavy
tailed distributions or jump models. The calibration of the Merton model
did also take more than twice as long as the calibration of any of the other
models. The reason of this is that by adding jumps the jump probability
matrix representing the model no longer is tridiagonal or block-tridiagonal
but full instead, increasing the objective function complexity and possibly
adding multiple local minimas.

By adding a second factor to the geometric Brownian motion model de-
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scribing the volatility we get the Heston model. The idea behind adding
another factor is to model time dependent volatility. In Figure 2.2 the effect
of heteroscedasticity is observed, but we have not performed any significance
tests which would be the next step. We observe that of all models this has
the worst calibration. The reason for this is most certainly that by adding
en extra factor we limit the number of states in each factor drastically to
achieve the same computational performance as the one-factor models. This
will expand the distance between grid points and the pricing will get less
accurate. Another problem with the two factor model is that the second
factor is modelling a hidden state. We cannot observe the volatility of the
price process and we do not know the initial volatility. The initial volatility
does not seem to calibrate correctly with the methods we have used. To
investigate why this is, some more time will have to be spent on researching.
During the writing of this thesis two more two-factor models were tested.
The first of them beeing the Bates model which is a combination of Heston
and Merton. The second model we considered was a model introduced by
Gibson and Schwartz [1990] where the second factor models the convenience
yield. Both of these models were left out because of the problems with two
factor models we have observed in the Heston model.

Last we will take a look at the fitted term structure model. This is not
only the model with the best fit but also the simplest model to calibrate
since it only have one single parameter. The reason this model outperforms
the other is mainly because of it’s ability to capture the shape of the forward
curve, also leading to more accurate option prices. A problem that might
occur if another data set is used though is that by assuming the forward
curve is similar to the previous day’s, fast changes will not be possible to
model.

7.2 Method
Many of the reasons none of the models has great performance probably is
due to the small scale of the computations in this thesis, not the framework
itself. All calculations in this thesis was performed in a significantly smaller
scale than what TriOptima is using in production. To be able to really draw
any conclusion all computations would have to be redone in a larger scale.
By adding prices for a larger range of contracts each day, the calibrations
would be more accurate. Since local optimisation routines seem to fail some
global or at least semi global optimisations will have to be performed. The
goal of the thesis however, to develop a workflow for model creation in the
computational framework, can be considered fulfilled.
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Chapter 8

Conclusion

There are two main conclusions we can draw from the work performed in this
thesis. The first one is that model calibration is very hard and the second
one is that we should try to use as simple models as possible as long as
the performance is adequate. If one of the models in this thesis has to be
selected as the best it would have to be the fitted term structure model. An
improvment to this particular model could be not to use the empirical forward
curve. Instead, something like Nelson-Siegel functions could be used to create
a parametrisation. While the empirical curve gives a perfect calibration fit
the risk of over fitting is higher.

While none of the models are perfect in it’s current forms there are a lot of
possible improvements and possible further research projects. An interesting
project is to research how we can combine the technique of transforming the
prices before modelling with more complex models. Another project would
be to investigate if it is possible to choose the state space in a better way.
By modelling prices in a Markov chain we could have more freedom to create
models than by using plain SDEs, something we cold have taken advantage
of better. By using the theory stated in this thesis and using the workflow
presented further research is facilitated.
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