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Abstract 
The report investigates the use of measured transversal vibrations to estimate the axial load on 
beams/columns. 
 
A literary review of the basic theory is performed, which clearly shows the theoretical relation 
between natural frequency and axial loading of linear structural elements (strings & beams). 
Current journal articles show that research has been done on mathematical models as well as 
some experimental studies. Basic theory and current research show that the impact of support 
conditions is of great importance to the relation between frequency and load. Thus an approach 
which models the support conditions as unknowns (springs) is suggested and used in the 
remainder of the study. The method requires the measurement of both the natural frequency and 
the corresponding mode shape for calculation purposes.  
 
The calculations are performed using both an analytical and a discrete approach. Numerical 
testing shows that the method is highly sensitive for the measured shape of the vibration mode. 
Testing of the discrete algorithm has shown stability/convergence issues if the discretization level 
is too detailed. However the ability to use an excess of measurement points than necessary (over-
determined system) to describe the mode shape seems to overcome some stability issues. 
 
The experimental studies to date have mainly focused on tensile tests performed on slender 
structures. Laboratory testing on four compressive samples with varying slenderness is performed 
in order to investigate the applicability on real-life structures. 
 
Testing results show that the presented approach yields loading estimates highly sensitive to the 
mode shape. Estimation quality is significantly improved by the use of excess shape 
measurements. Also the load estimations seem to overestimate the magnitude of loading. The use 
of both Bernoulli-Euler and Timoshenko beams show that the former tends to yield even higher 
estimates of loading.  
 
The study shows that the suggested method is promising for axial load identification, yet further 
investigations are required. Specifically improvements to the measurement/calculation of the 
mode shape are necessary. 
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Notation 
Abbreviations 
B&K Brüel o Kjaer (Measurement equipment/software supplier) 
FE(M) Finite Element (Method) 
FFT Fast Fourier Transform 
FRF Frequency Response Function 
DOF Degree Of Freedom 
MDOF Multiple Degrees Of Freedom 
SDOF Single Degree Of Freedom 
sym. Indicates that a matrix is symmetric 
 
Operators (X used as a placeholder) 
�̇�,  �̈�,  𝑋 1st, 2nd and 3rd derivative with respect to time 
X BOLD denotes a matrix (or vector) 
𝑿𝒆  Element matrix 
 
Lower case roman letters 
b Width (of a beam) 
d Depth (of a beam) 
f Frequency [in Hz] 
i Integer (1,2,3…∞) indicating order of frequency 
k Spring stiffness 
t  Time variable 
u Displacement or shape measurement 
x Coordinate along axis of object (beam, string, etc.) 
y Coordinate orthogonal to axis 
 
Upper case roman letters 
A Cross sectional area 
D Mode shape amplitude 
E Young’s modulus (of elasticity) 
G Shear modulus 
I Moment of inertia 
K Stiffness matrix 
L Length 
LCR Buckling length 
M Moment 
M Mass matrix 
𝑁 (𝑁𝑐𝑟, 𝑁𝑅𝑑) Axial force (Euler buckling load, design load) 
S Static moment of area 
V Shear force 
 
Greek  
𝜔 (𝜔0) Frequency [in rad/s] (frequency of unloaded sample) 
𝜙  Mode shape 
𝜌  Mass density 
𝜅  Correction factor for shear stiffness 
𝜆 (𝜆𝑟𝑒𝑙) Slenderness ratio (relative slenderness ratio) 
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1 Introduction  
1.1 Background 

The ability to measure axial loads is of great importance in order to verify models and design 
assumptions. The use of strain gauges is a quite well established method to detect a change in 
loading, but this method requires a reference level to yield an absolute loading value. 
 
Measuring an absolute value of loading can be accomplished for instance by lifting the structure 
in question or by measuring the deflection induced by applying a transversal load (for example as 
shown by Tullini et al. [1]). Yet given the sizes of structures and loads common in civil 
engineering this can be a very arduous if not impossible task. 
 
Therefore it is of great interest to be able to determine axial loads by measuring the natural 
frequencies of a structure, since the effort involved is less laborious. 

1.2 Aim of thesis 

The objective of this report is to determine methods to estimate axial loads by experimental 
modal analysis. Since the presented methods should be applicable for real-life structures in civil 
engineering, special focus will be on structures in compression with varying slenderness. 

1.3 Method 

A literature study is carried out in order to discover the current methods and experimental results 
when determining the axial load by modal analysis. On the basis of previous research a 
calculation methodology is chosen and numerically tested. 
 
Due to a lack of experimental data regarding compressive loads and no investigations regarding 
non-slender structures, experiments investigating the applicability on elements with varying 
slenderness are carried out. 

1.4 Limitations 

The study will focus purely on transversal vibrations of beams within the boundaries of linear 
elasticity (i.e. plasticity and/or longitudinal and twisting vibrations are not considered). 
Furthermore the only considered material is steel due to its homogeneity and well defined 
mechanical properties. 
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1.5 Outline 

The thesis consists of the following chapters:  
 
1 – Introduction 

The background and aim of the study are introduced. 
 

2 – Vibration theory 
In order to understand the used concepts the basic theory of free vibration is reviewed 
shortly. The different components influencing the transversal vibration of an axially loaded 
beam are investigated by examining linear structural elements (strings & beams) with 
increasing complexity. 
 

3 – Transversal vibrations & axial load 
The application of transversal vibrations with regards to axial load is examined by reviewing 
previous research. The adopted approach is presented and numerically tested. 
 

4 – Experimental modal analysis 
A brief review of experimental modal analysis is given with specific focus on the 
methodology used in the laboratory testing. 
 

5 – Laboratory testing 
The testing procedure is described, which includes the practical laboratory work, the 
extraction of modal data and the different calculative procedures. Results and analysis of 
laboratory testing are presented separately for each calculative procedure. 
 

6 – Conclusion 
The conclusions drawn from previous chapters are summarized and points for 
improvements/further research are suggested. 
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2 Vibration theory 
The used approach to determine the axial load by means of vibrations makes use of two different 
relations: 

• The effect of stiffness on the natural frequency of a system 
• The effect of axial load on the transversal stiffness 

 
The former relation is illustrated by examining the free vibrations of both a single degree-of-
freedom (SDOF) and a multiple degree-of-freedom (MDOF) system. In order to understand the 
latter phenomena, the governing differential equations for beams (and a string) are shortly 
reviewed and the solution with regard to natural frequency for simply supported structures is 
presented. 
 
The scope of this review is limited to transversal vibrations and furthermore the effect of 
damping on the natural frequency is considered negligible (which is a common assumption[2]). 
The intent is to give a base for further discussion (in conclusions), so for more detailed 
derivations the reader is referred to Chopra [2] and/or Timoshenko et al. [3]. 

2.1 System with a single degree-of-freedom (SDOF) 

f f

u u

k

u

m m

k

 
Figure 2.1 Free vibration of a SDOF system including free body diagram 

 
The most basic system in structural dynamics is the free vibration of a small mass attached to a 
spring (see above). By Using Hooke’s law together with Newton’s law of motion, the equilibrium 
equation can be established: 
 

 𝑚 ∙ �̈� + 𝑘 ∙ 𝑢 = 0 (2.1) 

 
This differential equation has the general solution: 
 

 𝑢 = 𝜌 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 𝑠𝑖𝑛(𝜔𝑡) (2.2) 

 �̇� = 𝜔(−𝜌 𝑠𝑖𝑛(𝜔𝑡) + 𝐵 𝑐𝑜𝑠(𝜔𝑡)) (2.3) 

 �̈� = −𝜔2(𝜌 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 𝑠𝑖𝑛(𝜔𝑡)) = −𝜔2𝑢 (2.4) 

 
Insertion in the differential equation and solving for the natural frequency yields: 
 

 𝜔 = �𝑘
𝑚

 (2.5) 
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Thus if the mass is kept constant the conclusion can be made that 
 

 𝜔 ∝ 𝑘 (2.6) 

 
and that an increase in stiffness will lead to an increase in frequency and vice versa. The opposite 
applies if the mass is altered whilst keeping stiffness constant: 
 

 𝜔 ∝
1
𝑚

 (2.7) 

 
These general effects of mass and stiffness on the natural frequency also holds true for more 
complex approaches as will be seen later in this chapter. 

2.2 System with multiple degrees-of-freedom (MDOF) 

k

u1

mm m

k k

u2 u3  
Figure 2.2 Free vibration of a MDOF system 

 
 
The behavior of a MDOF system is exemplified by a system with three DOFs. Assuming all 
springs are equally stiff and all masses are equal, Hooke’s law and Newton’s law of motion can be 
used to determine the equilibrium equation for each node, which in matrix notation has the form: 
 

 �
2𝑘 −𝑘 0

2𝑘 −𝑘
𝑠𝑦𝑚. 𝑘

� �
𝑢1
𝑢2
𝑢3
� + �

𝑚 0 0
𝑚 0

𝑠𝑦𝑚. 𝑚
� �
�̈�1
�̈�2
�̈�3
� = �

0
0
0
� (2.8) 

 𝑴 ∙ �̈� + 𝑲 ∙ 𝒖 = 𝟎 (2.9) 

 
The solution of this system is similar to the SDOF system but includes a shape vector, which 
describes the mode shape of the particular vibration frequency: 
 

 𝒖 = (𝜌 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 𝑠𝑖𝑛(𝜔𝑡))𝝓𝒏 (2.10) 

 �̇� = 𝜔(−𝜌 𝑠𝑖𝑛(𝜔𝑡) + 𝐵 𝑐𝑜𝑠(𝜔𝑡))𝝓𝒏 (2.11) 

 �̈� = −𝜔2(𝜌 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 𝑠𝑖𝑛(𝜔𝑡))𝝓𝒏 = −𝜔2𝒖 (2.12) 

 
Insertion into the differential equation (2.9) yields the following Eigenvalue problem: 
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 (𝑲− 𝜔2𝑴)𝝓 = 𝟎 (2.13) 

 
Thus there exist as many natural frequencies as the number of DOF of the system. Furthermore 
for the non-trivial solution (i.e. non rigid body motion) the problem is reduced to: 
 

 |𝑲− 𝜔2𝑴| = 𝟎 (2.14) 

 
As previously mentioned when examining the SDOF system, the natural frequency is 
proportional to the stiffness and inverse proportional to the mass of the system. 

2.3 From string to beam 

In order to understand the different aspects which influence the transversal vibrations of a 
column, the differential equations of free vibration and the resulting natural frequencies for 
various axially loaded elements are presented. Generally a similar ansatz as (2.10) is used for all 
the elements discussed: 
 

 𝑦 = 𝜙(𝜌 𝑐𝑜𝑠(𝜔𝑡) + 𝐵 𝑠𝑖𝑛(𝜔𝑡)) (2.15) 

 

2.3.1 String 
 

NN

y

x
dx

dx  
Figure 2.3 Free vibration of a string (based on [3]) 
 
The transversal strength/stiffness of a string is entirely dependent on the axial force (due to the 
low bending stiffness of the string being negligible). The differential equation of motion can 
easily be deduced from the dynamic equilibrium in the transversal direction: 
 

 𝑁�
𝜕𝑦
𝜕𝑑

+
𝜕2𝑦
𝜕𝑑2

𝑑𝑑� − 𝑁
𝜕𝑦
𝜕𝑑

− 𝜌𝜌 𝑑𝑑
𝜕2𝑦
𝜕𝑡2

= 0 (2.16) 

𝜕𝑦
𝜕𝑑

 

𝜕𝑦
𝜕𝑑

+
𝜕2𝑦
𝜕𝑑2

𝑑𝑑 𝜌𝜌 𝑑𝑑
𝜕2𝑦
𝜕𝑡2
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 𝑁
𝜕2𝑦
𝜕𝑑2

= 𝜌𝜌
𝜕2𝑦
𝜕𝑡2

 (2.17) 

 
Thus for a simply supported string (fixed in both ends) the natural frequencies and 
corresponding mode shapes are 
 

 𝜔𝑖 =
𝑖𝜋
𝐿
�
𝑁
𝜌𝜌

 (2.18) 

 
𝜙𝑖 = 𝐷𝑖 𝑠𝑖𝑛 �

𝑖𝜋𝑑
𝐿 � 

(𝑖 = 1,23, … ,∞) 
(2.19) 

 
The mode shape and frequency for a given string depends therefore solely on the axial force. 
Furthermore the mode shape of the ith frequency will display a total of i crests/troughs. 

2.3.2 Bernoulli-Euler beam 
 

y

x

dx

dx  
Figure 2.4 Free vibration of a Bernoulli-Euler beam (based on [3]) 
 
For a Bernoulli-Euler beam the governing differential equation is determined using equilibrium 
equations and for a prismatic beam the differential equation has the form: 
 

 𝐸𝐼
𝜕4𝑦
𝜕𝑑4

= −𝜌𝜌
𝜕2𝑦
𝜕𝑡2

 (2.20) 

 
In case of a simply supported beam the mode shape is exactly the same as for the string (see 
equation (2.19)) and the natural frequency is: 
 

𝜌𝜌 𝑑𝑑
𝜕2𝑦
𝜕𝑡2

 

𝑀 𝑉 𝑀 +
𝜕𝑀
𝜕𝑑

𝑑𝑑 

𝑉 +
𝜕𝑉
𝜕𝑑

𝑑𝑑 
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 𝜔𝑖 = �
𝑖𝜋
𝐿 �

2
�
𝐸𝐼
𝜌𝜌

 (2.21) 

 
Note the resemblance to the simply supported string and that the effects of mass/stiffness on the 
natural frequency are the same as for the SDOF system. 

2.3.3 Axially loaded Bernoulli-Euler beam 

N

N N

y

x

dx

dx  
Figure 2.5 Free vibration of an axially loaded Bernoulli-Euler beam (based on [3]) 
 
By subjecting the beam to an axial load the governing differential equation is appended by one 
term, which considers the influence of an axial force: 
 

 𝐸𝐼
𝜕4𝑦
𝜕𝑑4

− 𝑁
𝜕2𝑦
𝜕𝑑2

= −𝜌𝜌
𝜕2𝑦
𝜕𝑡2

 (2.22) 

 
When simply supported the mode shape still corresponds with the string (see equation (2.19)) 
and the natural frequency is: 
 

 𝜔𝑖 = �
𝑖𝜋
𝐿 �

2
�𝐸𝐼
𝜌𝜌

+
𝑁
𝜌𝜌 �

𝐿
𝑖𝜋�

2

 (2.23) 

 
Note that for a negligible bending stiffness or axial force the expression reverts to the natural 
frequency of a string or beam respectively (see equation (2.18) & (2.21)). Also for higher 
frequencies (large i), the impact of the axial force diminishes. 

2.3.4 Timoshenko beam 
In elementary beam theory the depth of the beam is assumed to be small in comparison to the 
length; moreover the effects of rotational inertia and shear deformation of a cross sectional 
element are neglected. A more complete formulation of the differential equation can be proposed 
if these are taken into account. 
 

𝜌𝜌 𝑑𝑑
𝜕2𝑦
𝜕𝑡2

 

𝑀 𝑉 𝑀 +
𝜕𝑀
𝜕𝑑

𝑑𝑑 

𝑉 +
𝜕𝑉
𝜕𝑑

𝑑𝑑 
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During the vibration of a beam, a small element not only undergoes a translational but a 
rotational movement as well. The moment due to a rotating beam element is given by: 
 

 −𝜌𝐼
𝜕3𝑦
𝜕𝑑𝜕𝑡2

𝑑𝑑 (2.24) 

 
Thus the differential equation when taking into account rotational inertia for a prismatic beam is:  
 

 𝐸𝐼
𝜕4𝑦
𝜕𝑑4

= −𝜌𝜌
𝜕2𝑦
𝜕𝑡2

+ 𝜌𝐼
𝜕4𝑦

𝜕𝑑2𝜕𝑡2
 (2.25) 

 
The deformation of the beam is more precisely described if the cross section is allowed to rotate 
with respect to the neutral axis (due to shear deformation). The differential equation considering 
both these phenomena is: 
 

 𝐸𝐼
𝜕4𝑦
𝜕𝑑4

= −𝜌𝜌
𝜕2𝑦
𝜕𝑡2

+ 𝜌𝐼
𝜕4𝑦

𝜕𝑑2𝜕𝑡2
+
𝜌𝐼𝐸
𝜅𝐺

𝜕4𝑦
𝜕𝑑2𝜕𝑡2

−
𝜌2𝐼
𝜅𝐺

𝜕4𝑦
𝜕𝑡4

 (2.26) 

 
The mode shape of the beam is still described by equation (2.19) and the natural frequency is 
determined by the following equation: 
 

 𝜔𝑖
2 =

𝐸𝐼
𝜌𝜌 �

𝑖𝜋
𝐿 �

4

− �𝜔𝑖
𝑖𝜋
𝐿 �

2 𝐼
𝜌
− �𝜔𝑖

𝑖𝜋
𝐿 �

2 𝐸𝐼
𝜅𝐺𝜌

+ 𝜔𝑖
4 𝜌𝐼
𝜅𝐺𝜌

 (2.27) 

 
Note that for both the above equations the last three terms consider the rotational inertia, shear 
deformation and their combined impact respectively. By omitting the last term, which has a very 
small impact [3], the following expression for the natural frequency can be obtained [4]: 
 

 𝜔 =
�𝑖𝜋
𝐿
�
2
�𝐸𝐼
𝜌𝐴

�1 + 𝐼
𝐴
�𝑖𝜋
𝐿
�
2

+ 𝐸𝐼
𝜅𝐺𝐴

�𝑖𝜋
𝐿
�
2
 (2.28)  

 
It can clearly be seen that the influence of the discussed factors (2nd and 3rd term of the 
denominator) increases for the higher natural frequencies; however for the lower frequencies of 
more common beams the impact is negligible as has been exemplified by Timoshenko [3] and 
further studied by Abramovich and Elishakoff [5]. It should also be noted that these corrections 
lead to a lowering of the calculated frequency (see equation (2.21)). 

2.3.5 Axially loaded Timoshenko beam 
The most complete description of a beam element is thus the axially loaded Timoshenko beam 
and its free vibration is governed by the following differential equation [6]:  
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𝐸𝐼 �1 +
𝑁
𝜅𝜌𝐺�

𝜕4𝑦
𝜕𝑑4

− 𝑁
𝜕2𝑦
𝜕𝑑2

= −𝜌𝜌
𝜕2𝑦
𝜕𝑡2

+ 𝜌𝐼 �1 +
𝑁
𝜅𝜌𝐺

+
𝐸
𝜅𝐺�

𝜕4𝑦
𝜕𝑑2𝜕𝑡2

−
𝜌2𝐼
𝜅𝐺

𝜕4𝑦
𝜕𝑡4

 (2.29) 

 
A simple expression for the natural frequency is not possible, even for the simply supported case 
which has been used so far. 
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3 Transversal vibrations & axial load  
The expressions for the natural frequency in a string and an axially loaded Bernoulli-Euler beam 
(equation (2.18) & (2.23)) clearly show that a compressive axial force will lower the natural 
frequency of the structure. The same is true for the Timoshenko beam although this demands a 
numerical analysis as for instance Abramovich [7] has performed. Thus by measuring the natural 
frequency of a column it is theoretically possible to calculate the axial load. 
 
Note that there is a close relationship between the free vibration and the buckling of beams. As 
has been pointed out by Abramovich [7], an exclusion of the time derivatives from the 
differential equations will result in a buckling analysis. An approximate1 relation between natural 
frequency and the buckling load has been developed by Galef [9], which holds true for most 
single span support conditions of Bernoulli-Euler beams [8]: 
 

 �
𝜔
𝜔0
�
2

= 1 −
𝑁
𝑁𝑐𝑟

 (3.1) 

 
Table 3.1 Support conditions for which (3.1) holds true (in grey) 
 Free Pinned Sliding Clamped 
Free     
Pinned     
Sliding     
Clamped     

 

 
 
Figure 3.1 Relationship between compressive axial load and natural frequency for certain single-span beams 

 
                                                 
 
1 The expression is in fact exact for the support conditions in Table 3.1, which has been shown by Bokaian. [8] 
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This relationship does not hold for Timoshenko beams [7], where a small divergence is seen at 
half the critical buckling load (see Figure 3.2). Also note that the unloaded fundamental frequency 
for a Timoshenko beam is not the same as for a Bernoulli-Euler beam. 
 

 
 
Figure 3.2 Load vs frequency; Simply supported Bernoulli-Euler beam (solid) and 

Timoshenko beam (dotted); [7]  
 
Thus the calculation of compressive axial forces by means of transversal frequency is in essence a 
dynamic version of buckling analysis. In buckling slender beams conform to the standard Euler 
curve, whilst for bulkier cross sections plasticity influences the load bearing capacity (see Figure 
3.3) and purely elastic buckling is not limiting.  
 

 
Figure 3.3 Load bearing capacity vs slenderness; [10] (modified notation) 

Testing specimen variability vs Design curve & Euler buckling curve 
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An extensive amount of work has been done to confirm the link between axial load and bending 
frequency, however a large amount of this has been purely theoretical/numerical (e.g. Bokaian 
[8]). The conducted studies that have included experimental testing have dealt with slender 
structures and have mainly focused on tensile tests (e.g. Virgin and Plaut [11], Rebecchi et al. [12], 
etc.). Testing has mainly been performed on metal specimens, although one body of work has 
dealt with timber (Laux [13]).  
 
Although buckling theory diverges from load capacity for beams of decreasing slenderness, the 
same might not be true for the effect on natural frequency as long as testing is done within the 
elastic range. This is particularly of interest within civil engineering, since structures in this field 
are generally designed with intermediate slenderness and are supposed to experience loads within 
the elastic range under normal service life conditions. 
 
It should however be mentioned that the impact of axial force on transversal frequency will 
greatly diminish with decreasing slenderness. This can easily be observed by studying equation 
(2.23), where a very large bending stiffness of the Bernoulli-Euler beam, clearly leads to a 
diminished impact of axial load on natural frequency. 
 
This may also be realized by the fact that the buckling load greatly increases with increasing 
stiffness and thus a change in the load/buckling load ratio will demand greater change in loading. 
This in turn is proportional to the frequency as can be seen in the Galef equation (3.1). 
 
Aside from the stiffness due to the cross section of the beam or the beam theory used, the 
support stiffness also has a considerable impact on the unloaded natural frequency of the beam 
and thus the frequency shift under load, which has been shown by numerical investigations by 
Amba-Rao [14]: 
 

  
Figure 3.4 Load vs frequency, effects of support stiffness ; [14] (modified notation) 
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3.1 Modeling approach when measuring existing structures 

In order to determine the axial load using modal data, the used model must conform to the real 
structure. The following conditions should therefore be met in the modeling procedure: 

• Well described geometry of the tested sample (exact dimensions including possible 
imperfections as curvatures) 

• Known material stiffness of the tested structure (Young’s modulus) 
• The structure should be operating within its elastic range 
• Well modeled support conditions 

 
Support conditions in particular can be difficult to model accurately, since joints in buildings 
rarely constitute a clear case such as a true hinge or a true clamp. Therefore it is advantageous to 
model the supports with springs, which has the further advantage that parts of a structure can be 
analyzed independently (e.g. a column being part of a frame structure). 
 

 
Figure 3.5 Beam with spring supports 
 
Introducing spring supports involve 4 additional unknown quantities (besides the axial load), 
which theoretically can be solved in two ways: 
 

• Measuring several frequencies 
• Measuring frequency(ies) and identifying the corresponding mode shape(s) 

 
Experimental work by Livingston et al. suggests that employing higher natural frequencies results 
in less accuracy and greater variation even though more measurements than necessary are made 
[15]. Thus using only frequencies with a model such as suggested in Figure 3.5 would demand at 
least the five lowest transversal frequencies (assuming a lack of symmetry) and is therefore not 
advisable. An approach employed by Rebecchi et al. using only the fundamental frequency with 
the corresponding mode shape seems to give satisfactory results. [12]  
 
Both the above mentioned approaches make use of the Bernoulli-Euler beam although in the 
case of Rebecchi et al. the solution is obtained analytically (a continuous model), whilst 
Livingston uses a discretized approach (FEM). There have however been studies employing a 
Timoshenko model like Amabili et al. [16] or Laux [13]. 
 
It should be mentioned that the above approaches also yield estimates for the support conditions 
of the beam model (see Figure 3.5). In the case of work done by Tullini et al. [17] (preceding 
Rebechi et al.) the calculated values of the springs stiffness are not a satisfactory estimation of 
support condition as Laux [13] points out. However since the main aim of this investigation is to 
determine the axial loads, there is no reason to dismiss the methods, yet the results regarding 
support conditions should be regarded purely as a byproduct. 
 
In this report both the continuous and the FE method will be used and in the latter both a 
Bernoulli-Euler and a Timoshenko beam element will be employed.  
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3.1.1 Continuous solution 

u1 u2 u3 u4 u5

 
Figure 3.6 Beam with springs & measurement points 
 
According to Rebecchi et al. by measuring the frequency and the corresponding mode shape in 
five points with an even spacing, the axial load can be determined using the equation below. The 
measured input parameters (u1 – u5 & ω) and the resulting load (N) have been highlighted in bold. 
 

 
𝒖𝟐 + 𝒖𝟒
𝒖𝟑

=

𝒖𝟏+𝒖𝟓
𝟐𝒖𝟑

+ 1 + 2 𝑐𝑜𝑠 �𝑞1
4
� 𝑐𝑜𝑠ℎ �𝑞2

4
�

𝑐𝑜𝑠 �𝑞1
4
� + 𝑐𝑜𝑠ℎ �𝑞2

4
�

 (3.2) 

 

Where 

𝑞12 =
1
2
��𝑛2 + 4𝜆4 − 𝑛� , 𝑞22 =

1
2
��𝑛2 + 4𝜆4 − 𝑛� = 𝑞12 + 𝑛 

𝑛 =
𝑵𝐿2

𝐸𝐼
, 𝜆4 = 𝝎2 𝜌𝜌𝐿

4

𝐸𝐼
 

 

 
Note that the measurement points do not have to be evenly spaced for the method to be used, 
but in that case the application is not as straightforward and the solution requires solving the 
math numerically. For obvious reasons the measured mode shape should not have a nodal point 
at the middle measurement point (u3) if the equation above is to be used.  

3.1.2 Discretized solution (FEM) 
This solution employs the Eigenvalue problem of a MDOF system (see equation (2.13)). 
Assuming both the frequency and the mass matrix of the beam is known, the stiffness matrix 
may be divided into three parts. 
 

 (𝑲𝟎 + 𝑁 ∙ 𝑲𝑮 + 𝑲𝒌 − 𝜔2𝑴)𝝓 = 𝟎 (3.3) 

 

𝑲𝟎 Stiffness matrix accounting for the axially unloaded beam 

𝑲𝑮 Stiffness matrix accounting for the effect of axial load 

𝑲𝒌 Stiffness matrix introducing the support springs 

 

 
Thus the equation above consists of 5 unknown entities within the parenthesis (axial load and 
four spring stiffness values). The mode shape on the other hand consists of the measured mode 
shape points, whilst the remaining parts are unknown. 
 
This matrix equation yields a system of equations that can be solved by means of a non-linear 
least square method, as for instance MATLAB’s lsqnonlin function. However a straightforward 
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solving of the equation system will entail solving for all the variables (including the unknown 
elements of the shape vector). 
 
The use of finite elements yields an approximate solution that requires using a well discretized 
system for convergence. Thus numerous beam elements are needed for a satisfactory solution 
which in turn yields a large amount of variables in the above system. Theoretically this system of 
equations can of course be solved, but finding a numeric solution can be very demanding from a 
computational standpoint. 
 
Since the only variable of real interest in the equation system is the axial load, a reduction of the 
problem can be made by condensing the system to the measured DOFs only. In order to explain 
this approach equation (3.3) is reformulated: 
 

 𝑺𝝓 = 𝟎 (3.4) 

 
Where 

𝑺 = 𝑲𝟎 + 𝑁 ∙ 𝑲𝑮 + 𝑲𝒌 − 𝜔2𝑴 
 

 
The shape vector (𝝓) contains both the measured parts of the shape as well as unknowns. The 
system is now rearranged so that all the known elements of 𝝓 are collected at the top. In order 
for the equation system not to change, the corresponding columns of 𝑺 must be moved to the 
front of the matrix. The same shift is made to the rows of 𝑺, which has no effect on the system 
since all elements of 𝟎 are zero. This last operation is done in order to insure that a later matrix 
inversion is possible (see equation (3.8)). 
 
When all known elements of the shape are collected the equation system can be divided into 
parts separating the known and unknown elements of the shape (subscript a and b respectively): 
 

 �𝑺𝒂𝒂 𝑺𝒂𝒃
𝑺𝒃𝒂 𝑺𝒃𝒃

� �𝝓𝒂
𝝓𝒃
� = �𝟎𝒂𝟎𝒃

� (3.5) 

 
This equation system can be split into two separate matrix equations and rearranged to remove 
the unknown shape parameters (𝝓𝒃) from the system: 
 

 𝑺𝒂𝒂𝝓𝒂 + 𝑺𝒂𝒃𝝓𝒃 = 𝟎𝒂 (3.6) 

 𝑺𝒃𝒂𝝓𝒂 + 𝑺𝒃𝒃𝝓𝒃 = 𝟎𝒃 (3.7) 

(3.7) 𝝓𝒃 = 𝑺𝒃𝒃−𝟏(𝟎𝒃 − 𝑺𝒃𝒂𝝓𝒂) = −𝑺𝒃𝒃−𝟏𝑺𝒃𝒂𝝓𝒂 (3.8) 

(3.6)+(3.8) 𝑺𝒂𝒂𝝓𝒂 − 𝑺𝒃𝒃𝑺𝒃𝒃−𝟏𝑺𝒃𝒂𝝓𝒂 = 𝟎𝒃 (3.9) 

 �𝑺𝒂𝒂 − 𝑺𝒃𝒃𝑺𝒃𝒃−𝟏𝑺𝒃𝒂�𝝓𝒂 = 𝟎𝒃 (3.10) 

 
Thus a discretized system with e.g. 1000 DOFs can be passed to a non-linear solver (such as 
lsqnonlin) with only five unknowns.  
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Unlike the analytical approach, mode shapes with a central nodal point can be accepted. However 
zero values in the same DOF as the spring constants, lead to the spring constant to be eliminated 
from the equation system. The non-linear solver will thus not be able find a solution for this 
variable. A quick fix to this solution is assigning an arbitrary value to the particular spring 
constant.  

3.2 Element matrices 

Timoshenko beam element matrices developed by Kosmatka [18] are used. By setting the factor 
θ to zero and excluding the mass matrix due to rotational inertia MR, the elements revert to a 
normal Bernoulli-Euler beam. Note that the following matrices do not contain longitudinal 
degrees of freedom, which are normally considered to be uncoupled from the translational and 
rotational deformation.  
 
The stiffness matrix of a beam element is given by one 1st order component and one geometric 
component (due to axial load): 
 

𝑲𝒆 = 𝑲𝟎
𝒆 + 𝑲𝑮

𝒆  (3.11) 

𝑲𝟎
𝒆 =

𝐸𝐼
(1 + 𝜃)𝐿3 �

12 6𝐿 −12 6𝐿
(4 + 𝜃)𝐿2 −6𝐿 (2 − 𝜃)𝐿2

12 −6𝐿
𝑠𝑦𝑚. (4 + 𝜃)𝐿2

� (3.12) 

𝑲𝑮
𝒆 =

1
30𝐿(1 + 𝜃)2

⎣
⎢
⎢
⎡36 + 60𝜃 + 30𝜃2 3𝐿 −(36 + 60𝜃 + 30𝜃2) 3𝐿

(4 + 5𝜃 + 2,5𝜃2)𝐿2 −3𝐿 −(1 + 5𝜃 + 2,5𝜃2)
36 + 60𝜃 + 30𝜃2 −3𝐿

𝑠𝑦𝑚. (4 + 5𝜃 + 2,5𝜃2)𝐿2⎦
⎥
⎥
⎤
 (3.13) 

Where  𝜃 = 12
𝐿2

𝐸𝐼
𝜅𝐺𝐴

 (3.14) 

 
In an equal manner the mass matrix is given by the sum of the translational component and the 
rotational component: 
 

𝑴𝒆 = 𝑴𝑻
𝒆 + 𝑴𝑹

𝒆  (3.15) 

𝑴𝑻
𝒆 =

𝜌𝜌𝐿
210(1 + 𝜃)2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡(70𝜃2 + 147𝜃 + 78) (35𝜃2 + 77𝜃 + 44)

𝐿
4

 (35𝜃2 + 63𝜃 + 27) −(35𝜃2 + 63𝜃 + 26)
𝐿
4

(7𝜃2 + 14𝜃 + 8)
𝐿2

4
(35𝜃2 + 63𝜃 + 26)

𝐿
4

−(7𝜃2 + 14𝜃 + 6)
𝐿2

4

(70𝜃2 + 147𝜃 + 78) −(35𝜃2 + 77𝜃 + 44)
𝐿
4

𝑠𝑦𝑚. (7𝜃2 + 14𝜃 + 8)
𝐿2

4 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.16) 

𝑴𝑹
𝒆 =

𝜌𝐼
30(1 + 𝜃)2𝐿

⎣
⎢
⎢
⎡ 36 −(15𝜃 − 3)𝐿 −36 −(15𝜃 − 3)𝐿

(10𝜃2 + 5𝜃 + 4)𝐿2 (15𝜃 − 3)𝐿 (5𝜃2 − 5𝜃 − 1)𝐿2
36 (15𝜃 − 3)𝐿

𝑠𝑦𝑚. (10𝜃2 + 5𝜃 + 4)𝐿2⎦
⎥
⎥
⎤
 (3.17) 

Where  𝜃 = 12
𝐿2

𝐸𝐼
𝜅𝐺𝐴

 (3.18) 
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3.2.1 Spring stiffness matrix 
Although this is not an element matrix per se, the implementation of the spring supports can be 
done by adding the stiffness of the springs at the appropriate DOFs.  What is actually done is an 
assembly of the springs stiffness elements followed by a static condensation (see [19] for a 
thorough review). Thus the stiffness matrix introducing spring supports for a beam as in Figure 
3.5 can be written as (all non-filled positions being zero): 
 

 𝑲𝒌 =

⎣
⎢
⎢
⎢
⎡𝑘1 𝑘2

⋱
𝑘3

𝑘4⎦
⎥
⎥
⎥
⎤

 (3.19) 

 

3.3 Numerical testing & sensitivity analysis 

The presented calculation approaches are tested numerically. A beam with the same geometric 
and material properties as in the laboratory tests (B2040 see chapter 5.2) is chosen and modelled 
as simply supported. 
 

Table 3.2 Beam properties 
Length 1 𝐿 [𝑚] 
Depth 10 𝑑 [𝑚𝑚] 
Width 20 𝑏 [𝑚𝑚] 
Slenderness ratio 242,1 𝜆  
Relative slenderness ratio 3,2 𝜆𝑟𝑒𝑙  
Buckling load 7,1 𝑁𝑐𝑟 [𝑘𝑁] 
Design load 6,1 𝑁𝑅𝑑 [𝑘𝑁] 

Unloaded theoretical 
natural frequency 

1st 36,6 
𝜔0 [𝐻𝑧] 2nd 118,7 

3rd 247,7 
 
The analytical equations for natural frequency and mode shape (equation (2.23) and (2.19) 
respectively) are used to establish input values for calculations. The measurement points used for 
calculations are chosen according to the laboratory testing setup. 
 

N

y

x

180 180 180 180 18050 50

u1 u2 u3 u4 u5 u6

1000

 
Figure 3.7 Beam used for numeric testing [mm] 
 
Using the mode shapes/frequencies the loads are calculated using the various approaches and 
then checked against the loads used to calculate the input values (frequencies and mode shape). 
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3.3.1 Analytical approach 
Since the setup includes six measurement points, calculations can be performed using the five 
measurement points at either end. Due to the symmetry of the shape and point placement using 
both set of points is redundant and only the left five will be used.  
 
Compressive loads ranging from zero up to the Euler buckling load are used to calculate the first 
three natural frequencies at each loading level. These frequencies are then used to calculate the 
compressive force by means of the analytical approach (see chapter 3.1.1). 
 
In order to check the robustness of the method a sensitivity analysis is performed as well. 
Percentage errors (up to ± 10 %) are applied to the input parameters and the resulting error in 
load calculation is determined. The elastic modulus, material density, the frequency and the mode 
shape are investigated.  
 
Error analysis of the mode shape is not straightforward since a difference in total magnitude has 
no impact. Instead a relative error of the terms (𝑢1 + 𝑢5), (𝑢2 + 𝑢4) and 𝑢3 will change the 
results using equation (3.2). Remaining parameters such as length and cross sectional properties 
can generally be measured with quite high certainty even in situ and are therefore not part of the 
sensitivity analysis. 

3.3.1.1 Results 
The calculated loads using the first three natural frequencies are the exact same load that was 
used to calculate the input parameters. A detailed presentation of the results e.g. by means of a 
table is therefore meaningless and will be omitted. 
 
The presented results of the sensitivity analysis compare the impact on the first three frequencies 
at 60 % of the first Euler buckling load. Also the impact of varying loading level is presented for 
the first natural frequency. 
 
Note that the y-axis scaling used for Young’s modulus, density and frequency is ± 2 %, whilst a 
scaling of ± 10 % is used for the shape parameters. The error for each input/output parameter is 
calculated according to: 
 

 𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑎𝑢𝑙𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 − 𝑇𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒

𝑇𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
 (3.20) 

 
  



3|Transversal vibrations & axial load 
 

 
20 

 
Figure 3.8 Sensitivity of calculated load with respect to Young’s modulus at 60 % of theoretical buckling load 

 

 
Figure 3.9 Sensitivity of calculated load with respect to Young’s modulus for 1st natural frequency 
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Figure 3.10 Sensitivity of calculated load with respect to density at 60 % of theoretical buckling load 

 

 
Figure 3.11 Sensitivity of calculated load with respect to density for 1st natural frequency 
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Figure 3.12 Sensitivity of calculated load with respect to frequency at 60 % of theoretical buckling load 

 

 
Figure 3.13 Sensitivity of calculated load with respect to frequency for 1st natural frequency 
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Figure 3.14 Sensitivity of calculated load with respect to u3 at 60 % of theoretical buckling load 

 

 
Figure 3.15 Sensitivity of calculated load with respect to u3 for 1st natural frequency 
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Figure 3.16 Sensitivity of calculated load with respect to u2+u4 at 60 % of theoretical buckling load 

 

 
Figure 3.17 Sensitivity of calculated load with respect to u2+u4 for 1st natural frequency 
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Figure 3.18 Sensitivity of calculated load with respect to u1+u5 at 60 % of theoretical buckling load 

 

 
Figure 3.19 Sensitivity of calculated load with respect to u1+u5 for 1st natural frequency 
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3.3.1.2 Analysis of the results 
A general trend in all the figures is a smaller error for larger loads. Higher orders of natural 
frequencies yield larger errors with respect to Young’s modulus, density and frequency, whilst the 
opposite is true with respect to the shape. 
 
The largest error impact on load estimation is clearly due to the various shape parameters. Also 
the innermost shape parameters (u3 and u2+u4) produce the largest error within this group. The 
remaining parameters (E, ρ and ω) yield manageable errors (< 3 % at 10 % input error) with the 
frequency being the most sensitive. 
 
Thus when estimating axial loads on samples with well-defined material properties (such as steel) 
the largest source of error will probably be the modal properties (i.e. the frequency and vibration 
shape) of the structure.  
 
Note that only one type of beam (simply supported) with only the chosen shape point 
distribution has been analyzed. The drawn conclusions will therefore be applicable for the 
laboratory setup, which is similar. However applying the performed sensitivity analysis to a more 
general case might prove erroneous.  

3.3.2 Discretized approach 
The discretized approach is tested using the same six measurement points as shown in Figure 3.7. 
Calculations employ the left five as well as all six measurement points, the latter constituting an 
over-determined system. In order to exclude any differences due to the six point setup being 
symmetrical, a system using five symmetrical points is employed as well (see Figure 3.20) 
 

N

y

x

167

u1 u2 u3 u4 u5

1000

167 167 167 167 167

 
Figure 3.20 Alternative setup for discretized approach (5 point symmetric) [mm] 
 
Simulations are performed using up to four beam elements between measurement points in order 
to determine any convergence issues.2 As previously calculations are performed for the first three 
natural frequencies for compressive loads up to the Euler buckling load. 
 
Furthermore the effect of considering shear deformation and rotational inertia is investigated by 
performing calculations using both a Bernoulli-Euler and a Timoshenko beam. In both cases the 
input data is determined using the analytical equations for a Bernoulli-Euler beam (see equations 
(2.19) and (2.21)). 

3.3.2.1 Results 
As can be seen in the figures below the discrete algorithm can diverge if more than two beam 
elements are used between the measurement points. Also the 2nd natural frequency seems to be 

                                                 
 
2 I.e. up to 16 and 20 beam elements are used for the 5 point and 6 point systems respectively. 
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numerically difficult to determine when using only five measurement points, however the use of 
an over-determined system (six points) seems to overcome this (see Figure 3.24 – Figure 3.26). 
 
Some initial tests using a non-condensed system were performed as well to insure that the 
divergence issues were not due to the matrix inversion in condensation (see chapter 3.1.2). It was 
found that the issues remained even with the full system. Due to the time needed for 
computation being shorter using the condensed approach, it was employed throughout the 
remainder of the study. 
 
Note that as a bi-product of the calculation numerical values for the spring constants are 
determined. However these values do not represent a physical representation of the actual springs 
since in most cases some negative values are obtained even if the load estimation is exact.  
 

 
Figure 3.21 Level of discretization; 1st natural frequency, 5symmetric points 
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Figure 3.22 Level of discretization; 1st natural frequency, 5non-symmetric points 

 

 
Figure 3.23 Level of discretization; 1st natural frequency, 6 points (over-determined) 
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Figure 3.24 Level of discretization; 2nd natural frequency, 5symmetric points 

 

 
Figure 3.25 Level of discretization; 2nd natural frequency, 5non-symmetric points 
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Figure 3.26 Level of discretization; 2nd natural frequency, 6 points (over-determined) 

 

 
Figure 3.27 Level of discretization; 3rd natural frequency, 5symmetric points 
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Figure 3.28 Level of discretization; 3rd natural frequency, 5non-symmetric points 

 

 
Figure 3.29 Level of discretization; 3rd natural frequency, 6 points (over-determined) 
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The use of Timoshenko beam elements proves to have no impact on stability and convergence 
issues. Compared to standard beam theory (Bernoulli-Euler) a lower estimation of load 
magnitude is obtained. 
 
The difference between the two beam theories becomes more pronounced with an increasing 
order of frequency and appears to be unaffected by the choice of measurement points. The 
figures below show the results for the over-determined system (six points) using a total of ten 
elements: 
 
Note that the “true” load is the input according to Bernoulli-Euler theory and the difference seen 
using Timoshenko theory is not an error, but the difference due to beam formulation. 
 

 
Figure 3.30 Bernoulli-Euler vs Timoshenko beam; 1st natural frequency, 6 points (over-determined) 
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Figure 3.31 Bernoulli-Euler vs Timoshenko beam; 2nd natural frequency, 6 points (over-determined) 

 

 
Figure 3.32 Bernoulli-Euler vs Timoshenko beam; 3rd natural frequency, 6 points (over-determined) 
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3.3.2.2 Analysis of the results 
The divergence issues were unexpected prior to numerical testing and the underlying cause (high 
discretization of the beam) was tedious to determine. The reason for this effect is not known at 
the time of publication. 
 
The magnitude and direction of divergence varies from case to case. The divergence differs for 
each frequency and there is also a difference for the 3rd natural frequency when using the 
different measurement inputs (see Figure 3.27 - Figure 3.29). Thus the vibration shape seems to 
have a major influence on divergence.  
 
The influence of vibration shape on the algorithm is also apparent in the 2nd natural frequency, 
where no proper solution is obtained when employing the minimum 5 measurement points. 
However the use of an over-determined system (6 points) appears to overcome some shape 
specific stability issues of the algorithm as the correct solution is obtained for the 2nd frequency 
(see Figure 3.26). 
 
The use of Timoshenko elements yields a lower load magnitude in compression with a significant 
difference already in the 3rd natural frequency (approximately 10 % of the buckling load). Since 
the Timoshenko beam provides a more complete description of an actual structure3, the large 
difference implies a clear inadequacy of standard beam theory at higher frequencies. Given that 
only a simple rectangular cross section has been examined, the difference due to beam theories 
could be substantial in other cases. 

3.4 Concluding remarks 

For both the presented methods MATLAB was used to solve the equations and the code is 
presented in appendix A – Calculation code. The continuous method (in the presented form) is 
somewhat more straightforward to implement and yields the exact solution to the Bernoulli-Euler 
beam’s differential equation. The discretized approach only yields an approximate solution and 
since the use of too many elements results in a diverging solution the method in the presented 
form should be used with caution. However there are a few advantages using a discretized 
approach: 
 

• A non-prismatic beam can be used (i.e. varying cross sections) 
• Mode shape measurement points can easily be rearranged 
• A variety of numerical improvements could be made, such as: 

o Use of an over-determined system (more measurement points than necessary) 
o Use of several frequencies (solving several equation systems simultaneously) 
o Weighting parts of the equation (e.g. load and/or spring constants) 

 
Even though these methods are not used in this report (aside from the over-determined system), 
the possibility of further development is promising in order to refine the technique implemented 
in this study. 
 
Both the sensitivity analysis and the testing of the discretized algorithm show the large impact of 
the vibration shape on measurement results. Thus measuring several points of the vibration 
shape and using the discretized approach with an over-determined system might overcome 
measurement errors in this highly sensitive parameter. 

                                                 
 
3 Note that the “true” loading values are determined using the analytical solution according to Bernoulli-Euler beam 
theory. 
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The possibility of using both Bernoulli-Euler and Timoshenko beam theory is a significant 
advantage of the discretized approach. Since the more complete Timoshenko theory should 
deliver a more accurate estimation it is preferable. However since Bernoulli-Euler beams seem to 
yield an overestimation of loading magnitude, this could be employed to produce a margin of 
safety. Note that numerical testing has only been done for a small selection of rectangular beams 
in compression and that the overestimation of Bernoulli-Euler beam theory might not hold true 
for the general case. 
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4 Experimental modal analysis 
In the laboratory and field testing experimental modal analysis has been performed. A short 
review of the most important parts of this is given in this chapter, which is mainly based on  
Avitabile’s article [20]. For a more in depth description of modal analysis the Avitabile’s 
collection of articles [21] or the book from Maia and Silva [22] are recommended.  
 
The modal characteristics of a structure (i.e. its dynamic properties) can be described by the 
modes (the natural frequency and corresponding mode shape) of the structure.4 In order to 
detect these, two different approaches can be taken:  

• Exciting the structure in several different locations 
• Measuring the response in several different locations 

 

                           
Figure 4.1 Multiple impact vs multiple measurement; [20] 

 
Either way, care must be taken to pick enough (and the correct) measurement/excitation 
locations so that all the desired modes can be detected.  
 
Once a measurement is made the experimental data contains the applied force and the response 
(displacement, velocity or acceleration) of the structure over time. In order to determine the 
natural frequencies and mode shapes both these signals must be transformed from the time 
domain to the frequency domain, which is done using a Fast Fourier Transformation (FFT). 
Finally by normalizing the response of the structure with respect to the excitation yields the 
frequency response function (FRF). By analyzing the FRFs of a structure the mode(s) (frequency 
and shape) can be determined. 
 
However in real-life experiments the results are not as ideal as in theory. Therefore the 
transformation of a recorded time signal to a FRF is somewhat more laborious. First the 
analogous signal must be cleansed from high frequency noise by means of filters and then the 
signal is digitalized. The signal should be a periodic representation of the complete response for a 
successful FFT otherwise certain frequencies could be lost in the transformation (leakage). A 
weighting (window functions) of the signal is applied in order to avoid a distortion in the 
frequency domain. The steps of this process are shown in Figure 4.2. 
 

                                                 
 
4 For sake of simplicity damping is neglected. 



4|Experimental modal analysis 
 

 
38 

 
Figure 4.2 Signal processing; [20] 

 
In the performed experiments Brüel & Kjaer (B&K) equipment with the accompanying software 
was used both to measure and process the dynamic response of the structures. The measurement 
software (B&K Pulse Labshop) performs all of the steps depicted in Figure 4.2. 
 
The data was then extracted using the analysis software B&K Pulse Reflex, which also allowed 
visualization and animation of the mode shape. This is important in order to exclude undesired 
modes, which in this case could be biaxial bending or twisting modes. The surrounding structure 
such as the test rig could also be excited by the impact, which would need to be excluded from 
the analysis and can be detected visually.  
 
The software also has more advanced analytical capabilities, which estimate the modal parameters 
of the analyzed structure. These methods are in essence curve fitters that attempt to find all the 
modal parameters of a test specimen, so that a numerical simulation using the determined 
parameters will yield the same response as recorded during testing. 
 
While the complexity of the advanced curve fitters certainly is impressive, they have not been 
employed in this study. The main problem is that the algorithms are designed to determine model 
parameters that satisfy numerous qualities (including damping). The drawback being that the 
estimation of the undamped parameters might be compromised for damping. 
 
Use of the polynomial z algorithm included in the software was tested, which gave very 
scattered/distorted results. Therefore the choice was made to estimate the modes by picking the 
peaks of the FRF diagrams.  
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5 Laboratory testing 
5.1 Background 

The aim of the laboratory testing is twofold: 
• To experimentally check the suggested calculation model on compressive samples and to 

compare the different calculation approaches (i.e. the discretized approach for both beam 
theories and the analytical approach) 

• To check the applicability of this approach on samples with diminishing slenderness 

5.2 Test specimens 

 
Figure 5.1 Test specimens 

 
The laboratory testing is performed on four steel beams with rectangular cross sections with the 
width/depth ratio of 2. This should insure that especially bending frequencies in the measured 
(weaker) direction are triggered and a minimal impact of biaxial bending and torsion. The 
following properties are common for all test samples: 
 

Table 5.1 Material properties 
Young’s modulus 210 𝑬 [𝑮𝑷𝒂] 
Poisson’s ratio 0,3 𝝂  

Shear modulus 
𝐸

2(1 + 𝜈) = 80,8 𝑮 [𝑮𝑷𝒂]  

Characteristic yield strength 355  𝖋𝒚 [𝑴𝑷𝒂] 
 
Initially the testing equipment was thought to provide flat contact surfaces to the samples at both 
ends. Thus sample cross sections where chosen corresponding to the relative slenderness ratio 
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(𝜆𝑟𝑒𝑙) of 0,5, 1, 1,5 and 2 assuming a rigid supports at high loads. However the upper contact 
surface turns out to resemble a pinned connection. The sample properties assuming a 
fixed/pinned connection are presented in the table below:5 
 

Table 5.2 Specimen properties 
 B1020 B1530 B2040 B4590   
Length 1 𝑳 [𝒎] 
Depth 10 15 20 45 𝒅 [𝒎𝒎] 
Width 20 30 40 90 𝒃 [𝒎𝒎] 
Slenderness ratio 242,1 161,4 121,1 53,8 𝝀  
Relative slenderness ratio 3,2 2,1 1,6 0,7 𝝀𝒓𝒆𝒍  
Buckling load 7,1 35,8 113,1 2899,1 𝑵𝒄𝒓 [𝒌𝑵] 
Design load 6,1 28,5 82,0 1038,2 𝑵𝑹𝒅 [𝒌𝑵] 

Unloaded theoretical 
natural frequency 

1st 36,6 55,0 73,3 164,9 
𝝎𝟎 [𝑯𝒛] 2nd 118,7 178,1 237,5 534,4 

3rd 247,7 371,6 495,5 1114,8 
 

5.3 Testing procedure 

The testing procedure consists of three main components: 
• The stepwise compression of the sample up to the maximum design load according to 

Eurocode 
• The modal testing at each load step 
• The extraction of modal data 

5.3.1 Compression testing procedure 

 
Figure 5.2 Testing rig 

 
Figure 5.3 Test setup 

 

                                                 
 
5 The detailed calculations determining the various properties are found in appendix B – Calculation of beam 
properties.  
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The compression of samples is performed using a test rig with a hydraulic jack. The lower end of 
the samples is placed directly on the flat surface of the rig, which is assumed to resemble a fixed 
connection at higher loads (see Figure 5.4). The upper end of the samples is connected to a load 
measuring cell, which in turn is fixed to the hydraulic jack. The connecting surface of the load 
measuring cell is beveled and therefore the connection can be thought of as pinned (see Figure 
5.5).  
 

 
Figure 5.4 Lower connecting surface (fixed at high loads) 

 
Figure 5.5 Upper connecting surface (pinned at high loads) 

 
Loading is applied in steps by gradually increasing the load6 up until the approximate design load7 
with an upper limit of 100 kN8. However the exact final loading is determined in situ according 
to the reactions of the specimen. The actual load levels used in testing are shown in the table 
below9: 
 

Table 5.3 Load levels [kN] 
 B1020 B1530 B2040 B4590 

1st 1,1 5,1 10,0 10,0 
2nd 2,0 10,0 30,0 30,0 
3rd 3,4 15,0 50,0 50,0 
4th 3,8 20,0 54,7 70,0 
5th  25,0  90,0 
6th  30,1   

 
Due to dissipating pressure of the hydraulic jack, the loading level needs to be constantly 
adjusted. Thus the actual loading is maintained within a precision of 0,1 kN. 

5.3.2 Modal testing procedure 
The response of the beams is measured using a total of six accelerometers, whereof five of the 
sensors (B&K Type 4507 001) measure response in one direction only. One of the sensors (B&K 

                                                 
 
6 The testing equipment does not allow a controlled lowering of the load. 
7 According to Eurocode SS-EN 1993-1-1 
8 The upper limit of the load measuring cell 
9 Levels with visible deflections are highlighted in grey.  
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Type 4524b) measures a tri-axial response and this data is used to exclude bi-axial and twisting 
modes. The tri-axial sensor is also more sensitive than the others and thus the data from this 
sensor can be considered more reliable. 
 
The sensors are placed along the midline of the beam with a vertical spacing of 18 mm (see 
Figure 5.6). The placing of the tri-axial sensor is quite central in order to yield high displacements 
in both the uniaxial direction (desirable due to higher sensitivity) and three-dimensional 
movement (for exclusion purposes). 
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Figure 5.6 Beam dimensions, accelerometer positioning & impact points [mm] 

 
The response is induced using a modal testing hammer (Type 8206) with a plastic tip at three 
different sensor locations yet at the rear of the structure (see Figure 5.6). Excitation at each 
impact location is induced a total of five times to produce an average response.  
 
The sensor response is allowed to die down between impacts in order to ensure a clean relation 
between impact and response. Furthermore the signal of the modal testing hammer is monitored 
both manually and with a double hit detector (part of the measurement software) to insure that a 
clean impact is induced. 
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5.3.3 Modal data extraction 
The measurement software used (B&K Pulse Labshop) automatically determines the frequency 
response at every impact location by averaging the five measurements. The chosen sampling rate 
allows frequencies up to 1,6 kHz to be detected with differences as small as 0,25 Hz. 
 
The modal frequencies/shapes are determined by peak-picking of the FRF diagrams. This is 
done in the following steps: 
 

• A visual assessment of each natural frequency is made by inspecting the three driving 
point FRFs10 and the preliminary frequency and mode shape are obtained. At this point 
certain frequency peaks are excluded from further analysis: 

o The response of the tri-axial accelerometer is used in order to only include pure 
uniaxial bending modes. 

o Modes that seem to be highly impacted by outside interference are dismissed, e.g. 
rigid body modes and modes that clearly indicate the beam being part of a 
vibration of the larger structure (test rig) 

• The frequency and accompanying mode shape for each impact location is determined 
separately: 

o The exact frequency is chosen by considering mainly the driving point FRF and 
the FRF at the point of maximum displacement in the vibration shape.  

o The frequencies are only included if deviations from the preliminary frequency 
(previous step) are within reason. 

 
The frequency (in Hz) and the complex vibration shape (in m/s2) are then exported from the 
program for numerical treatment in MATLAB. 

5.4 Modal results 

The final loading levels in the three most slender test specimens (i.e. all aside from B4590) also 
entailed a visible deflection of the specimen (see Figure 5.7). Therefore the data from the highest 
loading level (and possibly the second highest as well) is outside the applicable range for the 
suggested methods, which assume a non-deformed geometry. This data will be included in the 
remainder of the report, yet it should be noted that results from these loading levels are 
questionable. 
 
As previously mentioned the testing has been performed assuming fixed-pinned support 
conditions, yet the deformation shape of the most slender beam (B1020) clearly resembled 
pinned-pinned conditions at the highest two loading levels. Thus the ultimate load was reached 
much sooner than expected, why only two loading levels with non-deformed geometry have been 
tested. 
 
It should also be mentioned that the testing rig was not perfectly suited for modal testing. The 
hydraulic jack was affixed to the rig with pins (see Figure 5.2). Thus in the unloaded state the jack 
was hanging from the pins, whilst at high loads the jack pressed the pins upwards. Thus small 
movements were possible in the rig setup, which could influence testing.  
 

                                                 
 
10 The FRF of a measurement with coinciding sensor and impact location 
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Furthermore the loading direction of the jack was not necessarily perfectly aligned with the test 
specimens. The vertical alignment of the jack, rig and the specimen, where never checked in 
specific detail. 
 

  
Figure 5.7 Deformation of the beams at highest loading level (left: B1020 right: B2040 with reference ruler) 

 
 
The first three bending frequencies can be identified for all but the stockiest beam (only 2 for 
B4590) by examining the driving point FRFs together with FRF based mode shape visualization. 
The clarity of the first bending mode in particular can vary greatly depending on which impact 
location is examined as can be seen in Figure 5.811. There is also a clear shift in frequency which 
for instance can be seen in Figure 5.912. 
 

                                                 
 
11 FRF diagrams for each loading level are found in appendix C – Test results. 
12 FRF diagrams showing the frequency shift (at 4Z) for each beam are found in appendix C – Test results. 
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Figure 5.8 Driving point FRF for B1530 at 10 kN 

 
Figure 5.9 Driving point FRF for B4590 at 4Z 

 
Natural frequencies are identified by picking the peaks of the FRF diagrams in conjunction with a 
visualization of the mode shape. The mode shapes are used in order to ensure that only true 
uniaxial bending modes are included. The selection can at times be difficult as the initial peaks for 
beam B2040 show. By examining the shape the third peak can be identified as the “true” bending 
mode.  
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Figure 5.10 Mode shape B2040 1st peak 

 
Figure 5.11 Mode shape B2040 2nd peak 

 

 
Figure 5.12 Mode shape B2040 3rd peak 

 
Figure 5.13 Mode shape B2040 4th peak 

 
The first three natural frequencies for the specimens thus have a form (once again only the first 
two apply for B4590) which resemble sine waves with a number of crests/troughs equal to the 
frequency order. The presented shapes are from specimen B1530 in particular, but the shapes of 
the remaining specimens are similar: 
 

 
Figure 5.14 1st mode shape 

 
Figure 5.15 2nd mode shape 
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Figure 5.16 3rd mode shape 

 
 
In order to examine the frequency shift with respect to loading, the normalized frequencies are 
plotted. Only the results for impact at location 4Z are shown, yet since the difference in 
frequency between the impact locations is rather small this data can be considered representative 
for the other impact locations as well. 
 
Frequency normalization is performed by division with the frequency at initial loading. Thus the 
figures show the frequency ratio with respect to the lowest loading. 
 

 
Figure 5.17 Frequency variation vs loading B1020 
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Figure 5.18 Frequency variation vs loading B1530 

 

 
Figure 5.19 Frequency variation vs loading B2040 
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Figure 5.20 Frequency variation vs loading B4590 

 
Beam B4590 clearly deviates from the remaining test samples as the frequency consistently 
increases with increasing load (see Figure 5.20). 
 
The trend in the two most slender specimens is an initial increase followed by a decrease in 
frequency (note that the final loading values are deformed geometry and are only included for 
completeness sake). 
 
The first two frequencies in B2040 display a mix of the other two behaviors by increasing at first 
and then remaining somewhat stable. The third frequency of B2040 does not follow any other 
behavior patterns in the lab data and no simple explanation for this exists. However this 
frequency is among the higher ones (> 400 Hz) and the FRF shape near this frequency is fairly 
noisy.13 

5.5 Analysis of modal results 

The assumption prior to testing was that boundary conditions would resemble fixed-pinned 
supports at high loads. Given the ultimate loads for B1530 and B2040 this assumption seems to 
hold true for all but the most slender beam. However this assumption is made for higher loads 
and rotational resistance at the fixed end is highly dependent on the axial load. 
 
An increase in compressive loading yields a lowering in frequency theoretically as can be seen in 
equations (2.23) and (3.1). However these relations assume unchanging support conditions and 
therefore the initial increase in frequency could be due to a stiffening of support conditions. E.g. 

                                                 
 
13  See driving point FRF for B2040 in appendix C – Test results 
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as the load increases the lower end of the beam is less prone to end rotation, due to it being 
pressed against the contact surface.  
 
The same explanation model could be applied to stockier beams as B4590, where the increase in 
axial loading is very small with respect to the buckling load. Yet the impact on support stiffening 
might be considerable. Therefore the increase in frequency could solely depend on support 
stiffening, whilst the frequency change due to the effect of axial load on lateral stiffness is 
negligible. 
 
Thus the change in frequency over the various loading levels is influenced both by a stiffening of 
the supports and a weakening of the transversal stiffness. Depending on the dimensions of the 
beam these factors are influenced differently by loading. 
 
This in turn makes it difficult to exactly discern the effect of loading on the frequency. Thus the 
exact determination of loading conditions is of the utmost importance if the axial load is to be 
determined. Thus the use of spring supports is recommendable, since loading effects might be 
considerable regarding support conditions. 

5.6 Calculation procedure 

The axial load is calculated using the analytical Bernoulli-Euler beam approach described in 
chapter 3.1.1. The necessary input consists of a measured frequency and the corresponding mode 
shape in the form of five evenly spaced measurements (in m/s2).14 
 
However the output data from the laboratory setup yields six measurement points per mode 
shape and thus the upper and lower set of points (see Figure 5.6) are used and possible result 
differences are investigated. Also up to three frequencies can been detected for each loading level 
of a beam and three different impact positions have been employed. Thus up to 2 ∙ 3 ∙ 3 = 18 
different load calculations are performed for each load step of each beam. 
 
Given the high sensitivity with respect to mode shape the discretized approach is employed using 
all six measurement points. Calculations are performed using both Bernoulli-Euler and 
Timoshenko beam theory. The former is used in order to compare results between the analytical 
and discretized approach. Then the more exact Timoshenko element is used to investigate the 
differences between the two theories. 
 
Due to the amount of data only a portion of the results are presented within the report.15 

5.7 Results – Analytical approach 

The estimated loads show poor coherence with the actual loading (measured with the loading 
cell) as can be seen in the following four figures, which show the results for the using the lower 
sensor group at impact position 4Z.  
 
In the following figures tensile forces are defined as positive and compressive forces as negative. 
Thus values above the control line imply an overestimation of the compressive force, whilst 
values below imply an underestimation of compressive force/estimation of tensile force.  
 

                                                 
 
14 The calculation code used is found in appendix A – Calculation code. 
15 Remaining figures can be found in appendix D – Calculation results. 
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Figure 5.21 B1020 Calculated load vs actual load (4Z lower sensors) 

 

 
Figure 5.22 B1530 Calculated load vs actual load (4Z lower sensors) 
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Figure 5.23 B2040 Calculated load vs actual load (4Z lower sensors) 

 

 
Figure 5.24 B4590 Calculated load vs actual load (4Z lower sensors) 

 

-250 -200 -150 -100 -50 0 50 100 150 200

-200

-150

-100

-50

0

50

100

150

Estimated load [kN]

Ac
tu

al
 (m

ea
su

re
d)

 lo
ad

 [k
N]

 

 

Control

1st natural Frequency

2nd natural Frequency

3rd natural Frequency

-300 -250 -200 -150 -100 -50 0 50 100 150

-200

-150

-100

-50

0

50

100

Estimated load [kN]

Ac
tu

al
 (m

ea
su

re
d)

 lo
ad

 [k
N]

 

 

Control

1st natural Frequency

2nd natural Frequency



  Laboratory testing|5 
 

 
  53 

Only for the most slender beam some of the calculated loads seem to be within an acceptable 
range to be considered estimates (even if they are poor). The calculated loads for stockier samples 
are far from the actual load, although in some cases (e.g. Figure 5.22) the change in loading seems 
to be well mirrored in the calculated loads.  
 
Due to the poor results regarding estimation, the focus of the examination will be to discern 
trends in the data. Therefore the remaining results will be plotted in the form of actual loading 
level vs estimation error (in %), where the error is calculated according to: 
 

 𝐸𝑟𝑟𝑜𝑟 =
𝑁𝑐𝑎𝑙𝑐 − 𝑁𝑡𝑟𝑢𝑒

𝑁𝑡𝑟𝑢𝑒
 (5.1) 

 
Thus using a negative sign convention for compressive axial forces the following will apply: 
 

Table 5.4 Load levels [kN] 

 Range Consequence 
Positive percentage 0 % ∞ Overestimation of compressive force 

Negative percentage 0 % −100 % Underestimation of compressive force 
−100 % −∞ Tensile force estimated 

 
Due to the large amount of data and figures the results are examined for each beam 
independently. To improve readability the shown figures are exclusively for impact location 4Z, 
whilst remaining plots are found in the appendix. 

5.7.1 B1020 
In this specimen the 2nd and 3rd natural frequency (especially the latter) yield decent 
approximations for the loading. The 1st frequency on the other hand yields poor estimations 
which even vary in sign (tensile/compressive) depending on sensor group. 
 
The estimation is improved at higher loading levels aside from the ultimate load (deformed 
geometry) and results using the upper sensor group are slightly better. 
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Figure 5.25 B1020 Error vs actual load (4Z lower sensors) 

 

 
Figure 5.26 B1020 Error vs actual load (4Z upper sensors) 
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5.7.2 B1530 
Compared to the previous sample the estimations are very poor, yielding tensile forces many 
times higher than the actual compressive force. In this specimen the lowest frequency yields the 
best results and the upper sensor group gives somewhat better results for the 1st natural 
frequency. 
 
The estimates mimic the change in force found in the loading levels (see Figure 5.22). Note that 
the convergence of the estimation is only apparent and due to the initially small denominator in 
equation (5.1). The convergence of the curves does not imply a dramatic improvement in 
estimation.  
 

 
Figure 5.27 B1530 Error vs actual load (4Z lower sensors) 
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Figure 5.28 B1530 Error vs actual load (4Z upper sensors) 
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Note that also for this specimen the apparent convergence in the following figures depends on 
the initially small denominator. The estimations for the specimen are poor and compared to 
sample B1530 the change in force does not mimic the loading level as clearly.  
 
In this specimen the estimation using the 2nd natural frequency yields the greatest error, while the 
remaining two frequencies yield similar errors although with different signs (tensile/compressive). 
Furthermore the upper sensor group yields slightly better results for the 1st and 2nd frequency 
(observe the difference in y-axis scaling in the two figures). 
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Figure 5.29 B2040 Error vs actual load (4Z lower sensors) 

 

 
Figure 5.30 B2040 Error vs actual load (4Z upper sensors) 
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5.7.4 B4590 
The results for this sample are very poor and there is no clear correlation to the actual loading. 
The apparent convergence in the following figures is clearly only apparent as the estimation using 
the 2nd natural frequency clearly worsens with increased loading (see Figure 5.24).  
 
The 2nd natural seems to yield slightly better values when using the lower sensor group. Given the 
large estimation error and the fact that the estimated load is either unchanged (1st frequency) or 
lightens (2nd frequency) with higher load (see Figure 5.24), a detailed comparison of the 
estimations is excessive. 
 

 
Figure 5.31 B4590 Error vs actual load (4Z lower sensors) 
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Figure 5.32 B4590 Error vs actual load (4Z upper sensors) 

 

5.8 Analysis – Analytical approach 

The somewhat decent results from B1020 and the mimicry with respect to load change in B1530 
clearly show that load estimation is better for slender specimens. The natural frequencies in 
bending are determined by two components, transversal stiffness and axial loading (equation). 
Thus the bending frequency of a very slender specimen is mainly influenced by the axial load. 
However the scale of deterioration in estimation quality as slenderness decreases is remarkable. 
 
There is no clear trend regarding which impact position yields the best result, why one position is 
focused upon (4Z). This is unexpected since the clarity of natural frequencies differs between the 
various driving point FRFs.16 
 
Also none of the natural frequencies (1st, 2nd or 3rd) appear to be significantly better or worse in 
terms of load estimation quality. Even more remarkable is the fact that no clear correlation exists 
with respect to the frequency clarity in the various FRF diagrams. For instance the difficulty of 
specifying the 1st mode of B2040 was discussed in chapter 5.4, yet the load estimation using the 
1st frequency is closest to the actual loading values. 
 
Finally the results using the upper sensor group are slightly better at times. The support condition 
at the upper end is more flexible and deflection at the upper end is a little larger. Thus the 
vibration shape could be easier to detect clearly at the upper end (due to larger magnitude), which 
in turn could explain the improvement in load estimation. 

                                                 
 
16 See the various driving point FRFs in appendix C – Test results. 
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5.9 Results – Discretized approach 

Results are presented by plotting estimated loads against measured loads for each beam at 
position 4Z.17 Unless specifically stated standard beam theory (Bernoulli-Euler) is used. 
 
The estimation results have been significantly improved when using an over-determined system 
for all beams aside from B4590. Furthermore the load estimation tends to be higher than the 
actual loading level.  

5.9.1 B1020 
The load estimation is very good for the 3rd frequency producing an estimation error of < 10 % 
for the 2nd and 3rd loading level. Aside from the 1st natural frequency the method produces a load 
estimation that is higher than the actual value. Use of Timoshenko elements improves accuracy 
of good estimations to an error of ± 3 %.  
 
Note that the geometry was visibly deformed in the final two loading levels. 
 

 
Figure 5.33 B1020 Calculated load vs actual load (4Z all sensors) 

 

                                                 
 
17 Remaining figures (other impact positions & error plots) can be found in appendix D – Calculation results. 
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Figure 5.34 B1020 Calculated load vs actual load (4Z all sensors); Timoshenko elements 
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Figure 5.35 B1530 Calculated load vs actual load (4Z all sensors) 

 

 
Figure 5.36 B1530 Calculated load vs actual load (4Z all sensors) ; Timoshenko elements 
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5.9.3 B2040 
The estimation quality is poorer and estimations are more scattered compared to the two 
previous specimens. The lowest natural frequency yields the worst estimation, whilst the 2nd and 
3rd natural frequency yield similar results. The least scatter is seen when using the 2nd frequency 
(approximately 50-100 % error). 
 

 
Figure 5.37 B2040 Calculated load vs actual load (4Z all sensors) 
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Figure 5.38 B2040 Calculated load vs actual load (4Z all sensors) ; Timoshenko elements 

 

5.9.4 B4590 
The estimation quality in this particular sample is still very poor even with the use of an over-
determined system. However the estimations obtained are consistently of higher magnitude than 
the measured loading level. 
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Figure 5.39 B4590 Calculated load vs actual load (4Z all sensors) 

 

 
Figure 5.40 B4590 Calculated load vs actual load (4Z all sensors) ; Timoshenko elements 
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5.10 Analysis – Discretized approach 

The results are significantly improved by using the discrete approach with an over-determined 
system compared to the analytical approach. The numerical testing only showed a small 
difference in load estimation between the analytical and discrete approach. Thus the 
improvement in estimation quality must be due to the improved shape approximation by using 
six measurement points. 
 
As previously there have been no clear trends regarding the impact position.18 
 
The estimation quality appears to be much better for slender specimens considering the poor 
results for the stockiest specimen (B4590). However that particular specimen is loaded with less 
than 10 % of the design load19, whilst remaining beams are loaded close to the failure load. Given 
that the first loading level tends to yield the worst estimations,20 the inferior estimation quality 
could be due to low loading. 
 
Interestingly the estimation quality has been best for the higher frequencies. In the sensitivity 
analysis21 the error magnitude with respect to shape parameters clearly decreased for higher 
frequencies. Therefore the shape parameters seem to be the most influencing factor with respect 
to estimation error. 
 
The use of both Bernoulli-Euler and Timoshenko beams shows that the former tends to 
overestimate the loading. However that the difference would be as pronounced was not 
anticipated. The results using the over-determined system show a general overestimation of 
loading, which is positive if a margin of safety is considered.22 The use of Bernoulli-Euler beams 
could be specifically used to increase this margin. 
 
 

                                                 
 
18 Remaining results can be found in appendix D – Calculation results 
19 Corresponds approximately to 3 % of the Euler buckling load 
20 See Figure 5.31 – Figure 5.36 
21 See chapter 3.3.1 
22 Assuming an overestimation increases the margin of safety. 
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6 Conclusion 
The study has shown that there is a clear theoretical link between the bending frequency and axial 
load. Particularly the Galef equation23 relating natural frequency and buckling load demonstrates 
this nicely. However the impact of boundary conditions is substantial which can clearly be seen in 
the numerical studies of beams with different support conditions (i.e. Amba-Rao [14]). 
 
The use of assumed support conditions would be very imprecise, which is clearly shown by the 
modal results of the experiments. The increase in frequency after the first loading level occurs in 
all specimens, which is attributed to the change in (stiffening of) the support conditions. Thus the 
modelling of support conditions as unknown springs circumvents the need of support 
assumptions quite elegantly. Particularly for real real-world use the exact support conditions can 
be very hard to determine (e.g. a bolted column footing). 
 
The analytical approach in the presented form is straightforward and fairly easy to implement. 
The major drawbacks are the limitation to a prismatic Bernoulli-Euler beam and the use of only 
five measurement points. The discrete approach on the other hand is more versatile, allowing the 
use of non-prismatic beams (by change of elements), the more complete Timoshenko beam 
theory and an excess of measurement points. However the issue of convergence remains a 
serious concern. 
 
Both the numerical and experimental work shows the high level of sensitivity regarding mode 
shape, which can be seen in: 

• The sensitivity analysis itself 
• The improvement in estimation, when using an over-determined discretized approach 

compared to the analytical approach 
• The fact that the best estimations in the over-determined approach are found in the 3rd 

frequency, which also yielded the smallest error in the sensitivity analysis with respect to 
shape. 

Thus the measurement of the mode shape seems to be the factor influencing estimation quality 
the most in the used calculation model. This suggests that an improvement in this area (e.g. by 
measuring even more shape points) could further enhance estimation quality. 
 
The extraction of natural frequencies and mode shapes has not been given an in-depth treatment 
in the report. As previously mentioned the use of more advanced modal analysis24 has not been 
employed, instead the FRFs from a single impact location have been used. An appropriate 
algorithm for the task (i.e. specialized for undamped frequency and shape) could improve the 
data extracted from testing. However this matter has not been investigated further due to time 
constraints. 
 
Experimental results indicate that the presented approach yields better results for slender 
specimens, particularly when examining the poor estimations of the stockiest beam. However one 
must consider that the relative loading level25 is very low for the specific beam and the sensitivity 
analysis as well as the Galef equation indicates higher estimation errors at low loading levels. 
Thus the load estimation might be considerably improved even for non-slender specimens if the 
loading is high enough compared to the buckling load. 

                                                 
 
23 See equation (3.1) 
24 As for instance included in the B&K software 
25 < 10 % of the design load and < 3 % of the Euler buckling load 
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The study indicates that higher frequencies or an increase in measurement points would improve 
results. Given the limited testing26 caution is advised regarding these indications. Furthermore 
there are certain improvements that could be made to the experimental procedure such as the use 
of more sensitive sensors (i.e. the tri-axial sensors) or a better suited testing rig (especially 
regarding the boundary conditions). 
 
Overall the suggested approach cannot be used practically in its current form; however the results 
indicate that the approach is promising given further development, especially considering a better 
estimation/measurement of the mode shape. On a positive note the estimations using the over-
determined discrete approach show a tendency to overestimate loading. Thus the method seems 
to yield estimates on the safe side regarding the remaining load bearing capacity. 

6.1 Further research 

The following points are suggestions regarding further research and improvement of the 
suggested approach. 

• Improved vibration shape estimation/measurement 
o Determining whether using even more measurement points would improve 

estimation quality further. It remains to be seen if the discrete approach 
converges/is stable if increasing the number of measurement points. An over-
determined shape could also be employed for the analytical approach. A possible 
approach could be to measure the vibration shape in several points and curve 
fitting it to a sine wave, thereafter extracting the desired five points from the 
fitted curve. 

o Determining an appropriate algorithm for extraction of undamped frequency and 
shape from several impact locations. Alternatively in the discrete approach the 
equation systems for several impacts (and/or frequencies) could be concatenated. 

• Further experimental work with a larger series and variation of test specimens (including 
the examination of higher frequencies) 

• Studies regarding other cross section types. In particular open cross sections (e.g. I-
beams) could be of interest due to their low torsional stiffness.  

 
 

                                                 
 
26 Only 4 beams with very similar support conditions, cross section types (rectangular) and lengths were used. Also 
calculations were limited to the 3 lowest natural frequencies. 
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Appendix 
A – Calculation code 

rebecchi 
function  f0 = rebecchi(N, omega, v, m, L, E, I) 
% f0 = rebecchi(N, omega, v, m, L, E, I) 
% In combination with fzero: 
% N = fzero(@(N) rebecchi(N, omega, v, m, L, E, I), initial guess) 
%-------------------------------------------------------------------------- 
% PURPOSE 
%   This function is used as an input to fzero (or similar) in order to 
%   calculate the axial force in a slender beam using one flexural mode 
%   shape according to Rebecchi et al 
%   (Journal of Sound and Vibration 332, 2013) 
% 
% INPUT:    N       Axial force [N], the function is solved for this 
%                   constant using a function handle (@) 
%           omega   Circular frequency (omega) [rad/s] 
%           v       Mode shape amplitudes (1-5) at equidistant points in 
%                   beam 
%           m       mass per unit length [kg/m] 
%           L       Length of beam [m] 
%           E       Young's modulus [Pa] 
%           I       2nd moment of area [m^4] 
% 
% OUTPUT:   f0      Transcendental equation (should be zero) 
%-------------------------------------------------------------------------- 
  
%-------------------------------------------------------------------------- 
% LAST MODIFIED:    S Fässler    2014-04-18 
%-------------------------------------------------------------------------- 
  
%% Extract mode shape 
v1 = v(1);  v2 = v(2);  v3 = v(3);  v4 = v(4);  v5 = v(5); 
  
%% Define parameters 
lambda4 = (omega^2*m*L^4) / (E*I); 
n = N*L^2 / (E*I); 
  
q1 = (( (n^2+4*lambda4)^(1/2) - n )/2)^(1/2); 
q2 = (q1^2 + n)^(1/2); 
  
%% Transcendental equation 
f0 = ... 
    ( (v1 + v5)/(2*v3) + 1 + 2*cos(q1/4)*cosh(q2/4) ) ... 
    / ( cos(q1/4)+cosh(q2/4) ) ... 
    - (v2+v4)/v3; 
%-------------------------------------end---------------------------------- 

reveig 
function f0 = reveig(x,K0,KG,M,omega,meas) 
% f0 = reveig(x,K0,KG,M,omega,meas) 
% In combination with lsqnonlin: 
% x = lsqnonlin(@(x) reveig(x,K0,KG,M,omega,meas), initial guess) 
%-------------------------------------------------------------------------- 
% PURPOSE 
%   This function is used as an input to lsqnonlin (or fsearchmin with 
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%   minor alterations) in order to calculate the unknown parameters in the 
%   solved eigen value problem: 
%                   (K - omega^2*M)*phi = 0 
% 
%   A condensation is performed to minimize computative effort. 
% 
% INPUT:    x       Unknowns, consisting of 
%                   [Normal force, spring constants] 
%           K0      Stiffness matrix (1st order) 
%           KG      Stiffness matrix (2nd order) 
%           M       Mass matrix 
%           omega   Measured angular eigenfrequencies [rad/s] 
%           meas    Measured mode shape deflections/accelerations 
%                      Measurement 1          Measurement 2 
%                   [deflection1    DOF       deflection1   DOF ... 
%                    deflection2    DOF       deflection2   DOF 
%                    ...                                            ] 
% 
%           E       Young's modulus [Pa] 
%           I       2nd moment of area [m^4] 
% 
% OUTPUT:   f0      Concatenated eigen value problem (should be zero) 
%-------------------------------------------------------------------------- 
  
%-------------------------------------------------------------------------- 
% LAST MODIFIED:    S Fässler    2014-05-08 
%-------------------------------------------------------------------------- 
  
%% Size calculations 
nbr_dof = size(K0,1); 
nbr_freq = length(omega);           % nr of frequencies measured 
nbr_meas =  size(meas,1);           % nr of measurement points 
  
%% Introducing spring constants 
KK = zeros(nbr_dof); 
KK_sys = []; 
for i = 1:nbr_freq 
    KK(1,1) = x(4*i-2);         KK(end-1,end-1) = x(4*i); 
    KK(2,2) = x(4*i-1);         KK(end,end) = x(4*i+1); 
    KK_sys = blkdiag(KK_sys,KK); 
end 
  
%% Constructing system matrices & concatenating if several frequencies are 
used 
K0_sys = kron(eye(nbr_freq) , K0); 
KG_sys = kron(eye(nbr_freq) , KG); 
w2M_sys = kron( diag(omega.^2) , M ); 
  
%% Determining rows for condensation & concatentating measurements 
top = ... 
    ones(nbr_meas,1) * colon(0,nbr_dof,nbr_dof*(nbr_freq-1)) ... 
    + meas(:,colon(2,2,2*nbr_freq)); 
bottom = colon(1,nbr_dof*nbr_freq); 
bottom(top) = []; 
phi = meas(:,colon(1,2,2*nbr_freq-1)); 
phi = phi(:); 
  
%% Shifting rows & columns for condensation 
% Rows 
K0_sys  = [K0_sys(top,:) ; K0_sys(bottom,:)]; 
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KG_sys  = [KG_sys(top,:) ; KG_sys(bottom,:)]; 
KK_sys  = [KK_sys(top,:) ; KK_sys(bottom,:)]; 
w2M_sys = [w2M_sys(top,:) ; w2M_sys(bottom,:)]; 
  
% Columns (for inverse of submatrix to be possible) 
K0_sys  = [K0_sys(:,top) , K0_sys(:,bottom)]; 
KG_sys  = [KG_sys(:,top) , KG_sys(:,bottom)]; 
KK_sys  = [KK_sys(:,top) , KK_sys(:,bottom)]; 
w2M_sys = [w2M_sys(:,top) , w2M_sys(:,bottom)]; 
  
%% Constructing & condensing system matrix 
SYS = K0_sys + KK_sys + x(1)*KG_sys - w2M_sys; 
a = 1:size(phi,1);         b = (size(phi,1)+1):nbr_dof; 
%SYS_star = SYS(a,a)-SYS(a,b)*inv(SYS(b,b))*SYS(b,a); 
SYS_star = SYS(a,a)-SYS(a,b)*(SYS(b,b)\SYS(b,a)); 
  
%% Solving eigen value problem 
f0 = SYS_star*phi; 
%-------------------------------------end---------------------------------- 

beam 
function [K0e,KGe,MTe,MRe] = beam(ex,ey,ep) 
% [K0e,KGe,MTe,MRe] = beam(ex,ey,ep) 
%-------------------------------------------------------------------------- 
% PURPOSE 
%   Compute all partial stiffness & mass matrices for a two dimensional 
%   4-node beam element. 
%   Timoshenko beam theory is used if a shear modulus and a shear 
%   correction factor are given. (Otherwise according to Bernoulli-Euler 
%   theory). Matrices according to Kosmatka (Journal of Computers & 
%   Structures; 1995) 
%  
% INPUT:    ex = [x1 x2]       
%           ey = [y1 y2]                Element node coordinates 
% 
%           ep = [E A I rho (G ks)]     Element properties, 
%                                        E: Young's modulus 
%                                        A: Cross section area 
%                                        I: Moment of inertia 
%                                        rho: material density 
%                                        G: Shear modulus 
%                                        ks: shear correction factor 
% 
%  
% OUTPUT:   K0e: 1st order stiffness matrix 
%           KGe: Stiffness component due to 2nd order effects 
%           MTe: Mass matrix with repect to translational movement 
%           MTe: Mass matrix with repect to rotational movement 
% 
%           All matrices are 4x4 
%-------------------------------------------------------------------------- 
  
%-------------------------------------------------------------------------- 
% LAST MODIFIED:    S Fässler    2014-02-27 
%-------------------------------------------------------------------------- 
  
%% Assigning input data 
b = [ex(2)-ex(1) ; ey(2)-ey(1)]; 
L = sqrt(b'*b);     n  = b/L; 
E = ep(1);          A = ep(2); 
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I = ep(3);          rho = ep(4); 
  
if length(ep) == 6 
    Gm = ep(5); 
    ks = ep(6); 
    phi = 12*E*I / (ks*Gm*A*L^2); 
else 
    phi = 0; 
end 
  
%% Computing stiffness matrices 
Kl0e = E*I / ( (1+phi)*L^3 ) *... 
       [12     6*L         -12     6*L; 
        6*L (4+phi)*L^2     -6*L    (2-phi)*L^2; 
        -12 -6*L            12      -6*L; 
        6*L (2-phi)*L^2     -6*L    (4+phi)*L^2]; 
   
KlGe = 1 / ( 30*L*(1+phi)^2 ) *... 
       [36+60*phi+30*phi^2      3*L                         ... 
       -(36+60*phi+30*phi^2)    3*L; 
        3*L                    (4+5*phi+2.5*phi^2)*L^2      ... 
        -3*L                    -(1+5*phi+2.5*phi^2)*L^2; 
        -(36+60*phi+30*phi^2)   -3*L                        ... 
        36+60*phi+30*phi^2      -3*L; 
        3*L                     -(1+5*phi+2.5*phi^2)*L^2    ... 
        -3*L                    (4+5*phi+2.5*phi^2)*L^2]; 
  
%% Computing mass matrices 
MlTe = rho*A*L / ( 210*(1+phi)^2 ) *... 
       [70*phi^2+147*phi+78           (35*phi^2+77*phi+44)*L/4      ... 
        35*phi^2+63*phi+27          -(35*phi^2+63*phi+26)*L/4; 
        (35*phi^2+77*phi+44)*L/4      (7*phi^2+14*phi+8)*L^2/4      ... 
        (35*phi^2+63*phi+26)*L/4    -(7*phi^2+14*phi+6)*L^2/4; 
        35*phi^2+63*phi+27            (35*phi^2+63*phi+26)*L/4      ... 
        70*phi^2+147*phi+78         -(35*phi^2+77*phi+44)*L/4; 
        -(35*phi^2+63*phi+26)*L/4     -(7*phi^2+14*phi+6)*L^2/4     ... 
        -(35*phi^2+77*phi+44)*L/4   (7*phi^2+14*phi+8)*L^2/4]; 
   
MlRe = rho*I / ( 30*L*(1+phi)^2 ) *... 
       [36                -(15*phi-3)*L             ... 
       -36           -(15*phi-3)*L; 
        -(15*phi-3)*L     (10*phi^2+5*phi+4)*L^2    ... 
        (15*phi-3)*L    (5*phi^2-5*phi-1)*L^2; 
        -36               (15*phi-3)*L              ... 
        36            (15*phi-3)*L; 
        -(15*phi-3)*L     (5*phi^2-5*phi-1)*L^2     ... 
        (15*phi-3)*L    (10*phi^2+5*phi+4)*L^2]; 
  
%% Transforming from local to global coordinates 
G = [n(1)   0   0   0; 
      0     1   0   0; 
      0     0  n(1) 0; 
      0     0   0   1]; 
   
K0e = G'*Kl0e*G;    KGe = G'*KlGe*G; 
MTe = G'*MlTe*G;    MRe = G'*MlRe*G; 
%-------------------------------------end---------------------------------- 
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 Numerical testing – Analytical approach 
% Numtest_Analytical.m 
%-------------------------------------------------------------------------- 
% PURPOSE 
%   This routine performs numerical simulations of axial load determination 
%   by means of modal data.  
%   The modal properties of a simply supported Bernoulli-Euler beam 
%   (analytical solution) is used to test the proposed models. 
%    
%   The analytical model (rebecchi.m) is checked for the first three 
%   bending frequencies and several loading levels. 
%    
%   Furthermore a sensitivity analysis is performed on material and modal 
%   parameters employing the analytical approach. 
%-------------------------------------------------------------------------- 
  
%-------------------------------------------------------------------------- 
% LAST MODIFIED:    S Fässler    2014-04-24 
%-------------------------------------------------------------------------- 
  
%% Cleaning workspace/command window 
clear,clc 
  
%% Geometric & Material data 
L = 1;      E = 210e9;      rho = 7850;         h = 20e-3; 
b = 2*h;    A = b*h;        I = b*h^3/12; 
ny = 0.3;   G = E/2/(1+ny); ks = 10*(1+ny)/(12+11*ny); 
ep = [E A I rho G ks]; 
% Choice of shape data (emulate lab testing) 
x = colon(50e-3,180e-3,1);  L_samp = x(end) - x(1:2); 
% Initial guess for loading 
N0 = -1e5; 
  
%% Analytical frequency and shape for a B-E beam (simply supported) 
n_step = 0.1;                                       % Load discretization 
freqnr = transpose(colon(1,3));                     % Frequencies examined 
N = -pi^2*E*I/L^2 * colon(0,n_step,1-n_step);       % Axial forces examined 
% Mode shapes (1 row per frequency) 
v = sin(freqnr*pi*x/L); 
% Frequency table (Rows: Frequencies    Columns: Force) 
omega = ( (freqnr*pi/L).^2*ones(1,size(N,2)) ) ... 
    .* sqrt( E*I/rho/A + (L./freqnr/pi).^2 * N/rho/A ); 
  
%% Solving analytical approach (Rebecchi) 
N_A = zeros( size(omega) ); 
for i = colon( 1 , size(omega,1) ) % Loop over frequencies 
    for j = colon( 1 , size(omega,2) ) % Loop over loads 
        N_A(i,j) = ... 
            fzero(@(N) ... 
            rebecchi(N, omega(i,j), v(i,:), rho*A, L_samp(2), E, I),... 
            N0); 
    end 
end 
  
%% Sensitivity testing (Manual positioning of err(k)) 
err = colon(9,0.1,11)/10; 
std = ones(size(err)); 
N_A = zeros( [size(omega) length(err) 6]); 
for err_type = 1:6 
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    switch err_type 
        case 1 % Checking Frequency 
            err_c = {err std std std std std}; 
        case 2 % Checking Young's modulus 
            err_c = {std err std std std std}; 
        case 3 % Checking Density 
            err_c = {std std err std std std}; 
        case 4 % Checking shape (v3) 
            err_c = {std std std err std std}; 
        case 5 % Checking shape (v2 & v4) 
            err_c = {std std std std err std}; 
        case 6 % Checking shape (v1 & v5) 
            err_c = {std std std std std err}; 
    end 
    for k = colon( 1 , length(err ) ) 
        for i = colon( 1 , size(omega,1) ) % Loop over frequencies 
            for j = colon( 1 , size(omega,2) ) % Loop over loads 
                N_A(i,j,k,err_type) = ... 
                    fzero(@(N) ... 
                    rebecchi(N, omega(i,j)*err_c{1}(k), ... 
                    v(i,:).*[err_c{6}(k), err_c{5}(k), err_c{4}(k), ... 
                    err_c{5}(k), err_c{6}(k), 1], ... 
                    rho*err_c{3}(k)*A, L_samp(2), E*err_c{2}(k), I), N0); 
            end 
        end 
    end 
end 
%-------------------------------------end---------------------------------- 

Numerical testing – Discrete approach 
% NumTest_Discrete.m 
%-------------------------------------------------------------------------- 
% PURPOSE 
%   This routine performs numerical simulations of axial load determination 
%   by means of modal data.  
%   The modal properties of a simply supported Bernoulli-Euler beam 
%   (analytical solution) is used to test the proposed models. 
%    
%   The discrete model (reveig.m) is checked for the first three 
%   bending frequencies and several loading levels. 
%    
%   Varying amount of elements and measurement points can be employed and 
%   both Bernoulli-Euler and a Timoshenko beam theory are investigated. 
%-------------------------------------------------------------------------- 
  
%-------------------------------------------------------------------------- 
% LAST MODIFIED:    S Fässler    2014-05-09 
%-------------------------------------------------------------------------- 
  
%% Cleaning workspace/command window 
clear,clc 
  
%% Geometric & Material data 
L = 1;      E = 210e9;      rho = 7850;         h = 20e-3; 
b = 2*h;    A = b*h;        I = b*h^3/12; 
ny = 0.3;   G = E/2/(1+ny); ks = 10*(1+ny)/(12+11*ny); 
ep = [E A I rho G ks]; 
  
%% Frequency and shape for a B-E beam (simply supported) 
n_step = 0.1;                                       % Load discretization 
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freqnr = transpose(colon(1,3));                     % Frequencies examined 
N = -pi^2*E*I/L^2 * colon(0,n_step,1-n_step);       % Axial forces examined 
  
%% Analytical 
x = colon(50e-3,180e-3,1); 
v_6 = sin(freqnr*pi*x/L);       % Mode shapes (1 row per frequency) 
x = colon(1/6,1/6,5/6); 
v_5 = sin(freqnr*pi*x/L); 
% Frequency table (Rows: Frequencies    Columns: Force) 
omega = ( (freqnr*pi/L).^2*ones(1,size(N,2)) ) ... 
    .* sqrt( E*I/rho/A + (L./freqnr/pi).^2 * N/rho/A ); 
  
clearvars -EXCEPT v_* ep N omega 
  
%% Create discretized system for BE beam 
el_xtra = 5;                    % Elements between each measurement point 
nbr_elem = [4 4 5]*el_xtra; 
L = [2/3 0.18*4 0.18*5]; 
ex = [zeros(3,1) L'./nbr_elem'];        ey = [0 0]; 
for i = 1:3 
    edof{i} = [colon(1,nbr_elem(i))' ... 
        colon(1,2,nbr_elem(i)*2)' * ones(1,4) + ... 
        ones(nbr_elem(i),1)*colon(0,3)]; 
    nbr_dof{i} = max(max(edof{i}(:,2:end))); 
    el_dofs{i} = [1 ; edof{i}( colon(el_xtra,el_xtra,edof{i}(end,1) ), 4)]; 
    K0{i} = zeros(nbr_dof{i});    KG{i} = zeros(nbr_dof{i}); 
    M{i} = zeros(nbr_dof{i}); 
    [K0e,KGe,MTe,~] = beam(ex(i,:),ey,ep(1:4)); 
    for j = 1:nbr_elem(i) 
        indx = edof{i}(j,2:end); 
        K0{i}(indx,indx) = K0{i}(indx,indx) + K0e; 
        KG{i}(indx,indx) = KG{i}(indx,indx) + KGe; 
        M{i}(indx,indx) = M{i}(indx,indx) + MTe; 
    end 
end 
  
%% solve reveig for BE-beam 
options = optimset(... 
    'MaxIter',2e3,'MaxFunEvals',2e3,'TolFun',1e-10,'TolX',1e-10); 
for i=1:size(omega,2)       % Loop over loads 
    N0 = N(i)*1.1; 
    for j=1:size(omega,1)   % Loop over frequencies 
        k=1;                % 5 point symmetric shape 
        N_BE{i,j,k} = lsqnonlin(@(x) reveig5(x,K0{k},KG{k},M{k},... 
            omega(j,i),[v_5(j,:)' el_dofs{k}]),... 
            [ N0 zeros(1,4)],[],[],options); 
        k=2;                % 5 point non-symmetric shape 
        N_BE{i,j,k} = lsqnonlin(@(x) reveig5(x,K0{k},KG{k},M{k},... 
            omega(j,i),[v_6(j,1:5)' el_dofs{k}]),... 
            [ N0 zeros(1,4)],[],[],options); 
        k=3;                % 6 point symmetric shape 
        N_BE{i,j,k} = lsqnonlin(@(x) reveig5(x,K0{k},KG{k},M{k},... 
            omega(j,i),[v_6(j,:)' el_dofs{k}]),... 
            [ N0 zeros(1,4)],[],[],options); 
    end 
end 
  
%% Create discretized system for Timoshenko beam 
for i = 1:3 
    K0{i} = zeros(nbr_dof{i});    KG{i} = zeros(nbr_dof{i}); 
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    M{i} = zeros(nbr_dof{i}); 
    [K0e,KGe,MTe,MRe] = beam(ex(i,:),ey,ep); 
    for j = 1:nbr_elem(i) 
        indx = edof{i}(j,2:end); 
        K0{i}(indx,indx) = K0{i}(indx,indx) + K0e; 
        KG{i}(indx,indx) = KG{i}(indx,indx) + KGe; 
        M{i}(indx,indx) = M{i}(indx,indx) + MTe + MRe;  
    end 
end 
  
%% solve reveig for Timoshenko beam 
for i=1:size(omega,2)       % Loop over loads 
    N0 = N(i)*1.1; 
    for j=1:size(omega,1)   % Loop over frequencies 
        k=1;                % 5 point symmetric shape 
        N_T{i,j,k} = lsqnonlin(@(x) reveig5(x,K0{k},KG{k},M{k},... 
            omega(j,i),[v_5(j,:)' el_dofs{k}]),... 
            [ N0 zeros(1,4)],[],[],options); 
        k=2;                % 5 point non-symmetric shape 
        N_T{i,j,k} = lsqnonlin(@(x) reveig5(x,K0{k},KG{k},M{k},... 
            omega(j,i),[v_6(j,1:5)' el_dofs{k}]),... 
            [ N0 zeros(1,4)],[],[],options); 
        k=3;                % 6 point symmetric shape 
        N_T{i,j,k} = lsqnonlin(@(x) reveig5(x,K0{k},KG{k},M{k},... 
            omega(j,i),[v_6(j,:)' el_dofs{k}]),... 
            [ N0 zeros(1,4)],[],[],options); 
    end 
end 
%-------------------------------------end---------------------------------- 

Laboratory testing – Analytical approach 
% LabTest Analytical 
%-------------------------------------------------------------------------- 
% PURPOSE 
%   This routine calculates the axial load given modal data from laboratory 
%   testing using an analytical approach. The subroutine rebecchi.m is 
%   required. 
% 
% INPUT:    PureFRFBeamData.mat     Matlab data file containing lab results 
% 
% OUTPUT:   Result                  Cell structure with calculated loads  
%-------------------------------------------------------------------------- 
  
%-------------------------------------------------------------------------- 
% LAST MODIFIED:    S Fässler    2014-04-30 
%-------------------------------------------------------------------------- 
  
%% Function controls & manual inputs 
clc, clear, load('PureFRFBeamData.mat') 
L = 0.9 - 0.18;         % Length of beamsection analysed 
  
%% Determining input sizes 
nbr_beams = size(Beam,2);                       % Nr of beams 
nbr_imp = size(Beam{1,1}.Freq,3);               % Nr of impact locations 
nbr_accp = length(Beam{1,1}.Shape{1,1,1})-4;    % Nr of sensor positions 
(from bottom up) 
  
nbr_loads = zeros(1,nbr_beams);         nbr_freq = nbr_loads; 
Result = cell(size(Beam)); 
for i = 1 : nbr_beams   % Determining calculations per beam 
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    nbr_loads(i) = size(Beam{1,i}.Freq,1); 
    nbr_freq(i) = size(Beam{1,i}.Freq,2); 
    Result{i} = zeros(nbr_loads(i), nbr_freq(i), nbr_imp, nbr_accp); 
end 
% Index: Result{Beamnr}(Loadlevel , Freqnr, Impactloc, Accposition) 
  
%% Calculation loop 
for i = 1 : nbr_beams                       % Loop beam types 
    for j = 1 : nbr_loads(i)                % Loop loading levels 
        GuessForce = -1.5*Beam{i}.Force(j); 
        for k = 1 : nbr_freq(i)             % Loop frequencies 
            for q = 1 : nbr_imp             % Loop impact locations 
                for r = 1 : nbr_accp        % Loop sensor groups 
                    if Beam{i}.Freq(j,k,q) == 0 
                        break 
                    end 
                    fprintf(... 
                        'Beam:%3d\t\tLoad 
level:%3d\t\tFreqeuncy:%3d\t\tImpact Loaction:%3d\t\tSensor 
Group:%3d\t\n',... 
                        i,j,k,q,r) 
                    Result{i}(j, k, q, r) = ... 
                        fzero(@(N) rebecchi(... 
                        N,... 
                        Beam{i}.Freq(j,k,q),... 
                        Beam{i}.Shape{j,k,q}( (1:5)-1+r ),... 
                        epBeam.m(i), L, epBeam.E, epBeam.I(1)),... 
                        GuessForce); 
                end 
            end 
        end 
    end 
end 
disp('FIN'), save('Lab_Ana') 
%-------------------------------------end---------------------------------- 

Laboratory testing – Discrete approach 
% LabTest Analytical 
%-------------------------------------------------------------------------- 
% PURPOSE 
%   This routine calculates the axial load given modal data from laboratory 
%   testing using a discrete approach. The subroutine reveig.m is required. 
% 
% INPUT:    PureFRFBeamData.mat     Matlab data file containing lab results 
% 
% OUTPUT:   ResultDs                Cell structure with calculated loads 
%-------------------------------------------------------------------------- 
  
%-------------------------------------------------------------------------- 
% LAST MODIFIED:    S Fässler    2014-04-30 
%-------------------------------------------------------------------------- 
  
%% Function controls & manual inputs 
clc, clear, load('PureFRFBeamData.mat') 
L = 0.9;                    % Length of beamsection analysed 
  
%% Determining input sizes 
nbr_beams = size(Beam,2);                       % Nr of beams 
nbr_imp = size(Beam{1,1}.Freq,3);               % Nr of impact locations 
  



A – Calculation code 
 

 
A – X 

nbr_loads = zeros(1,nbr_beams);         nbr_freq = nbr_loads; 
ResultD = cell(size(Beam)); 
for i = 1 : nbr_beams   % Determining calculations per beam 
    nbr_loads(i) = size(Beam{1,i}.Freq,1); 
    nbr_freq(i) = size(Beam{1,i}.Freq,2); 
    ResultD{i} = zeros(nbr_loads(i), nbr_freq(i), nbr_imp); 
end 
% Index: ResultD{Beamnr}(Loadlevel , Freqnr, Impactloc) 
  
%% Preparing calculation 
nbr_el_bt = 2;          %Nr of elements between beams 
nbr_el = 5*nbr_el_bt; 
ex = [0 L/nbr_el];      ey = [0 0]; 
edof = [colon(1,nbr_el)' ... 
    colon(1,2,nbr_el*2)'*ones(1,4) + ones(nbr_el,1)*colon(0,3)]; 
nbr_dof = max(max(edof(:,2:end))); 
el_dofs = [1 ; edof( colon(nbr_el_bt,nbr_el_bt,edof(end,1) ) , 4)]; 
  
options = ... 
    optimset('MaxIter',5e3,'MaxFunEvals',5e3,'TolFun',1e-12,'TolX',1e-12); 
%% Calculation loop 
for i = 1 : nbr_beams                       % Loop beam types 
    ep = ... 
        [epBeam.E epBeam.A(i) epBeam.I(i) epBeam.rho ... 
        epBeam.G epBeam.kappa]; 
    [K0e,KGe,MTe,MRe] = beam(ex,ey,ep); % Full ep for Timoshenko 1:4 for BE 
    K0 = zeros(nbr_dof);    KG = zeros(nbr_dof); 
    M = zeros(nbr_dof); 
    for r = 1:nbr_el 
        indx = edof(r,2:end); 
        K0(indx,indx) = K0(indx,indx) + K0e; 
        KG(indx,indx) = KG(indx,indx) + KGe; 
        M(indx,indx) = M(indx,indx) + MTe + MRe;    % Remove MRe for BE 
    end 
    for j = 1 : nbr_loads(i)                % Loop loading levels 
        GuessForce = -1.1*Beam{i}.Force(j); 
        for k = 1 : nbr_freq(i)             % Loop frequencies 
            for q = 1 : nbr_imp             % Loop impact locations 
                %for r = 1 : nbr_accp        % Loop sensor groups 
                if Beam{i}.Freq(j,k,q) == 0 
                    break 
                end 
                fprintf(... 
                    'Beam:%3d\t\tLoad level:%3d\t\tFrequency:%3d\t\tImpact 
Loaction:%3d\t\n',... 
                    i,j,k,q) 
                ResultD{i, j, k, q} = ... 
                    lsqnonlin(@(x) reveig5(... 
                    x,K0,KG,M,... 
                    Beam{i}.Freq(j,k,q),... 
                    [Beam{i}.Shape{j,k,q} , el_dofs]),... 
                    [GuessForce zeros(1,4)],[],[],options); 
                %end 
                ResultDs{i}(j,k,q) = ResultD{i, j, k, q}(1); 
            end 
        end 
    end 
end 
disp('FIN'), save('Lab_Disc') 
%-------------------------------------end---------------------------------- 
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