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Abstract 
The purpose of this thesis is to explore the possibility of asymmetry in the dynamic 

conditional correlation of stock returns and gold returns. We hypothesize that this asymmetry 

might be different for large and small firms, as a result of size specific characteristics that may 

influence firm profitability and risk following negative market shocks.  We investigate this on 

three different sized U.S. stock indices during a twenty two year long period by using the 

dynamic conditional correlation model and the asymmetric generalized dynamic conditional 

correlation model.  Our results show that there is asymmetry in the dynamic conditional 

correlation of these stock indices and gold. Furthermore, we find that the asymmetric effect is 

not the same for large and small firms.       
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1 Introduction  
 

Gold has been the focus of a large amount of literature, both on stand alone bases and its 

relationship with other assets.  A noticeable property of gold is its ability to hedge against 

inflation and currency risks along with very low and even negative correlation with the stock 

market. This makes gold an attractive investment option for investors, especially during 

downturns in the stock market.  Adding the fact that the last few decades have seen a lot of 

turmoil in the financial markets, such as the Black Monday in 1987, the Asian financial crisis 

in 1997-1998, the dot.com bubble during the period of 1997 to 2001, the financial crisis of 

2008 and the U.S. debt crisis in 2011, it should not be surprising that a substantial part of 

research on gold is focused on these market downturns. Even though the first conditional 

correlation models saw light of day well over a decade ago, the correlation between equity 

returns and gold returns have not been investigated in full.  It is, therefore, our aim with this 

thesis to shed further light on this relationship.   

When constructing portfolios, many investors want to minimize their exposure to risk for any 

given level of expected return. This is generally referred to as mean variance optimizing.  In 

an attempt to do so, it has been shown that during periods of market shocks, investors tend to 

diversify their assets and move from stocks to bonds, called flight to quality, in order to avoid 

heavy losses (e.g. Gulko (2002), Hartmann et al. (2004)). In addition to a traditional portfolio 

asset, there are many studies that have focused more on other alternative assets such as 

commodities (e.g. Edwards & Caglayan (2001), Georgiev (2001), Erb & Campbell (2006), 

Chong & Miffre (2010), Tang & Xiong (2010)).  Unlike other commodities, gold has 

durableness, global acceptance and easy authentication (Worthington & Pahlavani, 2007).  

Investors might make direct investment through purchasing gold bars or gold coins. Since 

holding gold bars and gold coins could have inconvenience and problem of storage, investors 

can indirectly invest through exchange-traded funds, which are investment funds invested in 

gold and gold stocks.    

In a 2010 paper titled “Is gold a safe haven? International evidence” Baur and McDermott 

discuss the role of gold in the global financial system and its usage as an alternative quality 

asset to bonds or for diversification. They find evidence that gold is negatively correlated to 

stocks during periods of market turmoil and in some countries this negative correlation holds 

on average during all periods.  Baur and McDermott define gold as a hedge if it is negatively 

correlated or uncorrelated on average with another asset/portfolio and as a safe haven if it has 
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this property in certain periods only e.g. during the market downturn.  Other studies, such as 

those of Chua, Sick & Woodword (1990) and Dempster & Artigas (2010), have also found 

gold to have low or negative correlation with stock markets, thus making it a good asset for 

diversification or hedging.  A further property of gold is its ability to hedge both against 

inflation risk (e.g. Ghosh, Levin, Macmillan, & Wright (2004), Worthington & Pahlavani 

(2007)) and currency risk (e.g. Capie, Mills, & Wood (2005), Joy (2011)).  It implies that gold 

returns have zero or negative correlation with the CPI index, which is a representative of 

inflation, and currency. 

For any investor, private or institutional, risk seeking or risk averse, an assets return and 

variance are of great importance when deciding whether to invest in a given asset. When 

constructing a portfolio that consists of two or more different assets, another crucial factor 

needs to be considered; correlation between assets returns.  Correlation is a measure of linear 

dependence between two variables that has been standardized to always fall between minus 

one and one (Verbeek, 2012).  Since correlation coefficient closer to zero translates to a 

weaker linear dependence, assets with lower correlation coefficient are better for 

diversification.  For a complete definition of diversification see chapter 2.1. 

If the correlation coefficient is negative, the assets can be used to hedge away risk. This 

means that the returns of the assets are expect to move in opposite directions to a certain 

extent and thus countering each other’s volatilities. How certain this is to happen depends on 

the strength of the negative linear relationship.  Thus, assets displaying perfect negative 

correlation could be used to completely eliminate risk from a portfolio.  From this it can be 

seen that the correlation of assets returns plays a vital role in optimal portfolio construction. 

For the longest time correlation estimates were assumed to be constant over time or a rolling 

window estimation was used. Even as late as 1990 when Bollerslev introduced his model 

which allowed time varying variance and covariance, the correlation estimates were still 

assumed constant over time. However, in more recent years models, such as the dynamic 

conditional correlation model (DCC), allowing for time-varying correlation between assets 

have been put forth.  Knowing how the correlations change over time has allowed for more 

optimal investment strategies as the investor will be better informed about the true 

relationship of his assets and therefore has more control over the amount of risk that his 

portfolio contains.  Although models allowing for time-varying correlation estimates give 

investors better control over their investments, a further extension of these models has been 
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made.  Models with an asymmetric component in the time-varying correlation, such as the 

asymmetric generalized dynamic conditional correlation model (AG-DCC), have been 

introduced.  These models are constructed such that negative and positive market shocks of 

the same size can have different effects on the correlation estimates, in which case there is 

said to be an asymmetric effect in the correlation estimates.     

Should any asymmetry be in how the time-varying correlations develop, which is not 

accounted for in the model being used, it will lead to incorrect conclusions being drawn about 

the investor´s portfolio and possible investment opportunities. This will in turn lead to 

suboptimal investment strategies, regardless of the investors risk preferences.  To elaborate on 

why this is of importance consider an investors who invests both in stocks and gold and 

makes his investment decisions based on models incorporating time-varying correlation. In 

some periods he has to adjust the proportion of each asset in order to meet his return 

requirement and acceptable risk level.  However, if there is any asymmetry in the correlation 

between equity and gold which he is unaware of, the adjusted weights in his portfolio might 

deviate from the optimal weights.  In doing so he could be over- or underexposing himself to 

risk without knowing it.    

The aim of this thesis is to test whether there is an asymmetry in the conditional correlation 

between the returns of stock indices and gold.  This will be done by investigating three 

different sized equity indices within the U.S, one for the large cap firms and two focusing 

particularly on small cap and mid cap firms.  The research question we set out with is whether 

indices composed of different sized firms within the U.S. display the same symmetry or 

asymmetry in the correlation of their returns with those of gold. 

We will focus on the possibility of asymmetry in the time-varying correlation between equity 

and gold with respect to positive and negative market shocks in equity and gold markets and 

how this affects portfolio construction.  Previous studies, see Baur (2012), have found that 

there is asymmetry in the volatility of gold returns. This, however, does not indicate that there 

is necessarily asymmetry in the dynamic conditional correlation of gold and stocks as will be 

shown in chapter 2.4.  We speculate that the asymmetry might not be the same for different 

sized indices due to general advantageous characteristics of large firms, such as having 

diverse capabilities, abilities to reap benefits from economies of scale and scope as well as 

standardization of procedures (Majumdar, 1997). Moreover, the price of small firms tends to 

be more sensitive to changes in the economy and the firms are less likely to survive in the bad 
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economic conditions (Chan & Chen, 1991).   This implies that large firms could have more 

effective operations, which leads to stronger capabilities to sustain profits during economic 

downturns.  Therefore, we expect that negative market shocks will not affect the volatility of 

different sized stock indices in the same manner, which could lead to different asymmetry 

estimates in the conditional correlation.  In order to investigate this, we will use three U.S. 

equity indices of different sizes.  Our research is based on the DCC model proposed by Engle 

in 2002 and the AG-DCC model proposed by Cappiello, Engle & Sheppard in 2006. 

This thesis contributes to the literature by investigating whether there is asymmetry in the 

dynamic conditional correlations of stock and gold returns, which to our knowledge has not 

been done before.  We explore this correlation over a period of twenty two years from the 

early nineteen-nineties to the present day using daily observations.  Our results confirm that 

there is asymmetry in the dynamic conditional correlation of gold returns and the returns of 

different sized stocks, but there are some differences between the large and small firm stocks. 

The empirical results show that the dynamic conditional correlation of large-cap stock returns 

and gold returns only displays an asymmetric change following a negative shock in the 

returns of the large-cap stocks. However, the dynamic conditional correlation of mid/small-

cap stock returns and gold returns has an asymmetric change when there is a negative shock 

in either mid/small-cap stock or gold returns. We further show that there is no asymmetric 

volatility in gold returns following a negative shock in gold returns, which is inconsistent with 

the result of Baur (2012).  

However, there are some noteworthy factors that might bias our results or reduce their 

applicability.  The first point is that the results from the Ljung-Box test are inconsistent with 

some of the significant parameters in the DCC and AG-DCC models.  Other points are related 

to the DCC and AG-DCC models.  These models can be thought of as multivariate GARCH 

models.  They are, however, always specified as GARCH (1,1) models without testing 

whether different specifications could give better fit with the data.  Furthermore, there exists a 

published paper called “Ten things you should know about the DCC” by Caporin and 

McAleer (2013), which lists further disadvantages of the DCC model, mainly concerning 

possible problems with statistical properties of the DCC model.  

The remainder of this thesis is divided into four parts. The first section introduces relevant 

theoretical background such as modern portfolio theory. The third chapter lists out the 
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methodology implemented along with all associated tests. The fourth chapter contains the 

empirical results and the fifth chapter concludes the thesis.  
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2. Theoretical Background 
 

In this chapter, the theories that are relevant with our study are described. First of all, the 

modern portfolio theory is explained in order to present the importance of correlation to 

portfolio management. Next, the relationship between correlation and diversification benefit 

is provided. Then, we give the explanation of flight to quality. Last of all, the theories 

regarding to asymmetry in the conditional volatility and correlation are presented. 

 

2.1 Modern Portfolio Theory  

Modern portfolio theory (MPT) by Markowitz in 1952 is one of the cornerstones of modern 

investment practice.  The MPT suggests that investors attempt to maximize the expected 

return of a portfolio for a given portfolio risk level or minimize the risk for a given level of 

expected return. Therefore, investors carefully select which assets their portfolio should 

contain. Furthermore, the theory proposes the concept of diversification in investing. By 

choosing portfolio components, the investors’ portfolio can have lower overall risk than any 

individual asset while maintaining the same amount of expected return. This is because the 

price or the return of different assets might move in different or opposite ways.  For example, 

a portfolio consisting of both equity and gold could have a lower total risk than a portfolio 

constructed purely from either asset, as long as the two assets are not perfectly positively 

correlated.   

The theory has been further developed under the name of post modern portfolio theory 

(PMPT) by Rom and Ferguson in 1993, in which some technical conditions such as an 

assumption of normal distribution of returns, stable asset correlation or iso-variance are 

relaxed in order to be applicable with market reality. Furthermore, changes to the underlying 

assumptions about investors have been changed to better reflect behavioral financial theories. 

Investors are no longer assumed to be rational and choosing portfolios with very stable 

returns, but investors rather have a minimum expected return, a benchmark, which they wish 

to obtain.  They are concerned if the returns fall below this benchmark and consider anything 

below the benchmark as a loss to be avoided, but any potential upside a bonus.  However, the 

original MPT is still of much importance in the portfolio theory.  
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According to the Capital Asset Pricing Model, there are two kinds of risk measures related to 

portfolio management; the portfolio’s total risk and its systematic risk.  The systematic risk is 

measured by the portfolio’s beta while its total risk is a function of the correlation coefficients 

and variances of the assets in the portfolio.  Since the non-systematic portion of a portfolios 

total risk can be diversified away, it is clear that the correlation between each asset in the 

portfolio is a significant factor in reducing the total risk.  If a new asset, which has a 

sufficiently low correlation with the preexisting assets, is added to an existing portfolio, it is 

possible to lower the total risk of the portfolio without reducing the expected return.  This is 

called “free lunch” by Markowitz. (Chua, Sick, & Woodward, 1990). It should be noted that 

unless the new asset has the same expected return as the portfolios preexisting assets then the 

free lunch cannot hold for a portfolio that aims to maximize expected return.   

 

2.2 The gains from diversification  
The expected return of a portfolio is the weighted average of the expected returns of assets in 

the portfolio, the variance of the portfolio is, however, generally smaller that the weighted 

average of the variance of each asset as a result of the assets being less than perfectly 

positively correlated.  This is the gain from diversification.  

Assuming two assets in the portfolio, the portfolio’s variance is defined as 

𝜎𝑝2 =  𝑤12𝜎12 + (1 − 𝑤1)2𝜎22 + 2𝑤1(1 − 𝑤1)𝜎1𝜎2𝜌1,2 

Where 𝑤𝑖 is the weight of an asset i in the portfolio, 𝜎1𝑎𝑛𝑑 𝜎2 are standard deviation of asset 

1 and asset 2 respectively, 𝜌1,2 is the correlation of asset 1 and asset 2. If the two asset returns 

are perfectly positively correlated, they are identical so there is no gain from diversification. 

The portfolio’s standard deviation is then just the weighted average of the standard deviations 

of the two assets. However, this is not usually the case. If the two asset returns are imperfectly 

correlated, the portfolio’s standard deviation is smaller than if they are perfectly positively 

correlated. Generally, the lower the correlation estimates are, the lower portfolio’s variance is. 
(Danthine & Donaldson, 2005) 

 



10 
 

2.3 Flight to quality 
Following the occurrence of an unexpected event which leads investors to perceive an 

increase in risk in the financial system, they tend to move their asset holdings from the 

affected markets to more secure and liquid assets.  This is called flight to quality.  During 

those episodes, which often start with relatively small events, the financial markets can 

become unstable while the rests of the economy remains relatively unaffected. This happens 

as investors flock away from the affected markets, causing bottlenecks in the movement of 

capital from those markets.  An U.S. example of such an event is from the fall of 1998 which 

began with the Russian default.  The Russian default only eliminated a small fraction of the 

U.S. wealth, but it created circumstances which severely strained the financial sector.  From 

there investors perceived an increased risk in the financial sector as losses crew in banks and 

hedge funds when prices of illiquid assets fell.  As investors started to withdraw risk-capital 

from the affected markets, bottlenecks emerged in the movement of capital as parts of the 

financial sector were compromised while other parts of the economy were barely affected 

(Caballero & Krishnamurthy, 2005).       

 

2.4 Asymmetry in conditional volatility and correlation 
Stock volatilities and volatilities of other assets have been a subject of interest to many 

financial researchers for a long time.  One of the things that has intrigued researchers is 

whether these volatilities change in the same way with negative and positive market shocks.  

Black (1976) noted that although he did not know how stock volatilities develop, it seems that 

when stocks go up, volatilities go down; and when stocks go down, volatilities go up.  He 

suggested an explanation for this, known as the leverage effect.  It states that when the value 

of a firm decreases, its leverage ratio increases.  When the leverage ratio increases, the 

variance of the stocks is bound to increase, since the firms overall variance is expected to 

remain constant. This even happens for firms without leverage as when income falls, the firms 

costs will not decrease proportionally due to fixed costs. Thus, there is an increase in 

“operational leverage”.  A further explanation by Black is that when a firms risk increases, 

due to changes in its environments, its expected return must increase for investors to want to 

hold the stocks.  Thus, the stock prices will fall which will cause the firms current expected 

return to be higher in relation to the stock price.   
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Another theory, of a so called volatility feedback, has been put forth that explains the 

existence of asymmetry in volatilities. The theory, proposed by French, Schwert and 

Stambaugh in 1986, proposes that the expected market risk premium varies over time and is 

positively related to predictable volatility of stock returns.  The unexpected stock returns are, 

however, negatively related to the unexpected change in the volatility of stock returns.  They 

explain the effect of this relationship with the following “If expected risk premiums are 

positively related to predictable volatility, then a positive unexpected change in volatility (and 

an upward revision in predicted volatility) increases future expected risk premiums and 

lowers current stock prices”. 

Having asymmetry in the conditional volatilities of an asset is, however, not a sufficient 

condition, although it is a necessary condition, for the conditional correlation of that asset and 

another asset to have asymmetry.  Therefore, the reasons for asymmetry in volatilities 

presented above may or may not apply for conditional asymmetries.  To understand why this 

is let us consider an asset who’s volatilities follow an asymmetric GARCH process.  This can 

be shown as follows: 

𝑦𝑡 =  𝑢𝑡  

𝑢𝑡 =  𝐷𝑡𝜀𝑡 

𝜀𝑡  ~ (0,𝜎𝑡2) 

Here 𝑦𝑡  is a vector of asset returns, 𝑢𝑡 is a vector of residuals, 𝜀𝑡 is a vector of standardized 

residuals and 𝐷𝑡2 is some asymmetric GARCH process.  Note that 𝐷𝑡 is the squared root of 

𝐷𝑡2.  Then, the conditional correlation of 𝑦𝑡 is (Engle, 2002):  

𝜌12,𝑡 =
𝐸𝑡−1(𝑦1,𝑡𝑦2,𝑡)

�𝐸𝑡−1(𝑦1,𝑡
2 )𝐸𝑡−1(𝑦2,𝑡

2 )
 

𝜌12,𝑡 =  
𝐸𝑡−1((𝐷1,𝑡𝜀1,𝑡)(𝐷2,𝑡𝜀2𝑡))

�𝐸𝑡−1(𝐷1,𝑡
2 𝜎1,𝑡

2 )𝐸𝑡−1(𝐷2,𝑡
2 𝜎2,𝑡

2 )
 

𝜌12,𝑡 =  
𝐷1,𝑡𝐷2,𝑡𝐸𝑡−1(𝜀1,𝑡𝜀2𝑡)

𝐷1,𝑡𝐷2,𝑡�𝐸𝑡−1(𝜎1,𝑡
2 )𝐸𝑡−1(𝜎2,𝑡

2 )
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𝜌12,𝑡 =  
𝐸𝑡−1(𝜀1,𝑡𝜀2𝑡)

�𝐸𝑡−1(𝜎1,𝑡
2 )𝐸𝑡−1(𝜎2,𝑡

2 )
 

It can thus be seen that only an asymmetry in the volatility process of the standardized 

residuals can affect the conditional correlation of the asset returns, not asymmetry in the 

GARCH process.  Knowing this, we can see that if there is a known asymmetry in the 

conditional correlation of some assets, then there is also asymmetry in the conditional 

variances. The opposite is, however, not always true. That is, knowing there is asymmetry in 

the conditional variances is not sufficient to say there is asymmetry in the conditional 

correlations. 

There have been far fewer theories that explain the asymmetry in conditional correlations 

apart from those who address asset volatility. Cappiello, Engle and Sheppard (2006) propose 

an explanation for asymmetry in conditional correlations following a negative shock in the 

standardized residuals of both returns.  If risk premiums are time varying, they suggest the 

following:  

“…a negative system shock will induce downward pressure on returns in any pair of stocks 

and will increase the variances of these securities in a CAPM-type world.  If betas do not 

change, then covariances will increase.  If idiosyncratic variances do not proportionally 

change, correlations will increase as well.  Correlation may therefore be higher after a 

negative innovation than after a positive innovation of the same magnitude”.  
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3. Methodology 
 

This chapter provides a thorough explanation of the research approach, the research 

hypothesis, model selection and the applied methodology employed in this paper. Also a 

description of how the data collection was performed along with any problems that have to be 

resolved.  

 

3.1 Research Approach 
As has been previously stated we will investigate whether asymmetry is to be found in the 

dynamic conditional correlation of the returns of equity indices and gold using the AG-DCC 

model proposed in 2006 by Cappiello, Engle and Sheppard.  While previous researchers, such 

as Toyoshima, Tamakoshi and Hamori in 2012, have only used the AG-DCC model when 

investigating asymmetry in assets conditional correlation and drawn conclusions from that, 

we will also use Engle’s DCC model from 2002.  This will allows us to draw more robust 

conclusions about any asymmetry that may be detected by the AG-DCC model and evaluate if 

accounting for asymmetry truly improves the conditional correlation estimation. All 

calculations and estimation were performed in Eviews 8.0. The Eviews code is provided in 

appendix E. 

As was stated in chapter one, the aim of this thesis is to investigate whether different sized 

U.S. indices share the same symmetry or asymmetry in the dynamic conditional correlation of 

their returns and gold returns.  More formally we test the following three indices for 

asymmetry in their dynamic conditional correlation estimates: S&P500, MSCI US Mid cap 

450, MSCI US Small cap 1750.  Here S&P 500 is used to represent the large U.S. firms while 

the MSCI US Mid cap 450 and MSCI US Small cap 1750 focus on mid and small cap firms, 

respectively.  For simplicity in the rest of this thesis we will shorten the name of the MSCI 

US Mid cap 450 and MSCI US Small cap 1750 as mid-cap and small-cap, respectively.  For 

gold we use the London Gold Bullion daily prices in U.S. dollars.  The three research 

hypotheses are as follows: 

 

 



14 
 

1. H0: The dynamic conditional correlation of S&P500 daily returns and London Gold 

Bullion daily returns contains no asymmetry.  

H1: The dynamic conditional correlation of S&P500 daily returns and London     

Gold Bullion daily returns contains asymmetry.    

2. H0: The dynamic conditional correlation of MSCI US Mid cap 450 daily returns and 

London Gold Bullion daily returns contains no asymmetry.  

H1: The dynamic conditional correlation of MSCI US Mid cap 450 daily returns and 

London Gold Bullion daily returns contains asymmetry.    

3. H0: The dynamic conditional correlation of MSCI US Small cap 1750 daily returns 

and London Gold Bullion daily returns contains no asymmetry.  

H1: The dynamic conditional correlation of MSCI US Small cap 1750 daily returns 

and London Gold Bullion daily returns contains asymmetry.      

 

3.2 Data Collection 
The data employed for this thesis consists of three equity indices; S&P500, MSCI US Small 

cap 1750 and MSCI US Mid cap 450, as well as London Gold Bullion daily price (U.S dollar 

per Troy ounce), all of which was collected from the Thompson Reuters Datastream database.  

The data spans the period from the first of June 1992 to the first of April 2014, which includes 

5705 observations. The reason why this period was chosen is that data for the MSCI indices 

was only available from the beginning of June 1992. Although more data was available for 

the S&P500 index, we decided to use only the same period as for the MSCI indices to have a 

better comparison.   

All the data used was obtained as daily index values (daily price for gold bullion) and was 

then transformed to daily returns using the following formula: 

𝑅𝑒𝑡𝑢𝑟𝑛 =  𝑙𝑛 �
𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒𝑡 
𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 𝑡−1

� 

A comprehensive summary of descriptive statistics for the series is provided in appendix A.  
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3.3 Models for conditional correlation 
As this thesis focuses on dynamic conditional correlation estimates, it is important that they 

are accurate and unbiased.  In order to achieve this we must carefully select which model we 

use to estimate the dynamic conditional correlations.  It is good to remind the reader that the 

correlation estimate are a product of variance and covariance estimates. Since the prominent 

characteristic of financial time series is that the volatility changes over time, autoregressive 

conditional heteroscedastic (ARCH) model by Engle in 1982 is commonly used to describe 

and forecast the volatilities. The ARCH model assumes that the forecasted variance is 

predicted by past forecast errors. However, Bollerslev (1987) introduced a generalization of 

the ARCH model, so-called GARCH, which can capture the new information from the 

previous squared residual, the variance of the previous period, and a long-run average 

variance. The GARCH model is easy to estimate and has proven successful in predicting 

conditional variances (Engle, 2002). However, both the ARCH and GARCH models are not 

sufficient for our study because of lack of focus on co-movements of financial returns, which 

is the other crucial component for estimating the dynamic conditional correlation.  Due to 

these limitations, multivariate GARCH models (MGARCH), such as the VECH model of 

Bollerslev, Engle, & Wooldridge (1988), the constant conditional correlation model of 

Bollerslev (1990), and the BEKK model of Engle & Kroner (1995), have been developed to 

incorporate conditional covariance.  Even though the MGARCH model can investigate these 

conditional variance and covariance, more complexity of the model comes with costs that 

researchers should be aware of and take into consideration. The numbers of parameter rapidly 

increase with the number of assets as well as the model has to be imposed for positive 

definiteness of a matrix (see Silvennoinen & Terasvirta (2009) for reviewing different 

MGARCH models). 

Allowing time-varying variance and covariance might imply that the correlation estimates 

should also change over time.  However, there was not any paper that explicitly states about 

the correlation, except Bollerslev (1990) that assumes the correlation to remain constant. The 

assumption of constant correlation puts some constraints on our study and seems to be 

unrealistic with the true characteristics of financial times series of returns. Therefore, we 

consider a more flexible model of Engle (2002), which is called dynamic conditional 

correlation (DCC) model. In addition to having dynamic conditional correlation, the model 

can overcome the problem of increasing parameters in MGARCH models; therefore large 

correlation matrices can be estimated. However, the simpler model comes with a cost as well 
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because the parameters in the original DCC model by Engle (2002) are in a scalar form, 

implying that the model assumes no asset-specific dynamics. Recent papers have extended the 

DCC model to be more generalized than the scalar form, such as Generalized Dynamic 

Conditional Correlation (GDCC) model by Hafner & Francese (2003) and Flexible Dynamic 

Conditional Correlation (FDCC) model by Billio, Caporin & Gobbo (2006).  

As our thesis’s objective is to investigate asymmetry in the dynamic conditional correlation of 

equity returns and gold returns, the DCC, GDCC and FDCC models are still insufficient. 

Thus, we searched for a better model that can capture the impact of negative shock in the 

market and explicitly indicate the asymmetry.  The asymmetric generalized dynamic 

conditional correlation (AG-DCC) model by Cappiello, Engle & Sheppard (2006) is extended 

from the DCC model by Engle (2002).  The model allows for conditional asymmetries both in 

volatility and correlation.  Furthermore, the AG-DCC model allows for series-specific news 

impact and smoothing parameters, which is not the case for the DCC model.  Additionally, 

the model has been used in recent studies. For instance, Yang, Zhou and Leung (2012) 

applied it to investigate the correlation of stock returns, corporate bonds, and the real estate 

assets such as REITS and CMBS. Toyoshima, Tamakoshi and Hamori (2012) use the model 

to study the conditional correlation between treasury and swap markets for different 

maturities. After we have reviewed all of the models that are previously mentioned, we 

believe that the AG-DCC model is the most suitable one for our study. However, we also use 

the DCC model in order to check for the robustness of the results from the AG-DCC model. 

 

3.4 Model 
This section presents our model by dividing it into three sub sections. The first part talks 

about how we specify the mean equation, which also includes the Jarque-Bera normality test. 

Then, the second part provides how we select the volatility models including the Ljung-box 

test. The last part shows the correlation models, which are the DCC and AG-DCC models. 

 

3.4.1 Mean equation 

In order to use the DCC and AG-DCC models we first have to specify the mean equation and 

conditional variance equation for each asset. This comes from the fact that the DCC and AG-

DCC models use the standardized residuals of each asset as an input when calculating the 



17 
 

conditional correlation. Let us begin by stating the mean equation of all the assets in general 

form: 

𝑦𝑡 = 𝜇 + 𝑢𝑡 

Assuming we have p number of assets then 𝑦𝑡 is a p x 1 vector of asset returns at time t, 𝜇 is a 

p x 1 vector of constants and 𝑢𝑡 is a p x 1 vector of error terms at time t.  The error term vector 

itself is then made up of two parts: 

𝑢𝑡 = 𝐷𝑡𝜀𝑡 

𝑢𝑡~ 𝑁𝑝[0,𝐻𝑡] 

𝜀𝑡~ 𝑖. 𝑖. 𝑑.𝑁𝑝[0, 𝐼𝑝] 

Where 𝜀𝑡 is a p x 1 vector of the standardized residuals at time t and 𝐷𝑡 is a p x p matrix 

containing conditional asset volatilities, �ℎ𝑖,𝑡, on the diagonal and zeroes on the off diagonal. 

Furthermore, we have that 𝐻𝑡 is a p x p conditional variance covariance matrix of 𝑦𝑡:

  

𝑉𝑎𝑟(𝑦𝑡|𝜑𝑡−1) =  𝑉𝑎𝑟𝑡−1(𝑦𝑡)  

=  𝑉𝑎𝑟𝑡−1(𝑢𝑡)  =  𝐷𝑡𝐸𝑡−1(𝜀𝑡′𝜀𝑡)𝐷𝑡 

= 𝐻𝑡 

Here 𝜑𝑡−1is the information set at the previous period and 𝐸𝑡−1(𝜀𝑡′𝜀𝑡) is a p x p matrix 

containing the time varying correlations of 𝑦𝑡. It will be denoted by 𝑅𝑡 from here on.  

Rewriting the equation for the error term in terms of the standardized residual we have the 

following: 

𝜀𝑡 =  𝐷𝑡−1𝑢𝑡 

It can then be seen that it is sufficient to know the return, the mean equation and the volatility 

process of each asset in order to extract the standardized residuals.  How the standardized 

residuals are then used is explained in detail in the chapter of 3.4.3.1 and 3.4.3.2.  (Liu (2014), 

Engle (2002))  

As previously stated, the aim of this thesis is to investigate the dynamic conditional 

correlation of the return of equity indices and gold.  In order to do so, we do not include any 
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additional outside factors in the mean equation of these assets.  This comes from the fact that 

the conditional correlation obtained from the DCC and AG-DCC models is in fact the 

conditional correlation of the standardized residuals. If no additional factors are included in 

the mean equation, the conditional correlation of the asset returns will be the same as those of 

the standardized residuals. However, if additional factors are included, this will no longer be 

the case and the conditional correlation parameters from the DCC can no longer be interpreted 

as the conditional correlation of the asset returns.  The mean equation we start with for all 

assets is therefore: 

𝑦𝑡 = 𝜇 + 𝑢𝑡 

This equation is, however, modified to some extent for all the assets.  The reason for doing so 

comes from the fact that many of the returns have autocorrelation in the standardized 

residuals. This is described in detail in chapter 3.4.2 along with the mean equation for each 

asset.  

When it comes to the estimation process, we use the three stage estimation employed by the 

AG-DCC model.  It allows for any type of univariate GARCH process to be used when 

modeling the volatility of the asset as long as it has covariance stationarity. Furthermore, it 

allows for the returns of the indices to be assumed stationary even though they may not be. If 

the returns are not truly normally distributed, a quasi maximum likelihood function should be 

used when estimating the parameters in the DCC and AG-DCC models, rather than the 

normal log likelihood function (Engle, 2002). With this in mind we conducted a Jarque-Bera 

normality test on the returns. The results of the tests, which can be seen in appendix A, were 

that the null hypothesis of normality was rejected for all the returns at the five percent level. 

Thus, we conclude that the returns are not normally distributed and we use quasi maximum 

likelihood estimation.   

 

3.4.2 Volatility models 

In order to estimate the conditional correlations in the DCC and AG-DCC models the 

volatility process of each asset must be known. The AG-DCC model uses a three step 

estimation approach, described in chapter 3.4.3.3, and as a result of that the correlation 

estimates will only be consistent if the univariate volatility models are correctly specified 

(Cappiello, Engle & Sheppard (2006)).  It follows that knowledge of the correct conditional 
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variance model, 𝐷𝑡2, implies that the correct volatility model is also known.  We, therefore, 

conduct a rigorous search for the correct variance model and the correct model specification 

for each asset.  The models we tested are the following: 

(1) Autoregressive Conditional Heteroskedastic model (ARCH)  

(2) Generalized Autoregressive Conditional Heteroskedastic model (GARCH) 

(3) Threshold Generalized Autoregressive Conditional Heteroskedastic model (TGARCH)  

(4) Exponential Generalized Autoregressive Conditional Heteroskedastic model (EGARCH) 

(5) Asymmetric Power Autoregressive Conditional Heteroskedastic model (APARCH) 

When determining what model and what specification fit each asset best, we first make sure 

all the coefficients are significant at the 5% level. Next, we perform a Ljung-Box test on both 

the standardized residuals and the standardized residuals squared.  This is necessary to see if 

the mean equation and volatility models we have chosen are adequate, where the test on the 

standardized residuals is used to see if the mean equation is adequate and the test on the 

standardized residuals squared is used to see if the volatility model is adequate. The Ljung-

box test examines if there is autocorrelation in the standardized residuals (squared), which is 

not accounted for in the model being used. The formula it uses is the following: 

𝑄𝑘 = 𝑇(𝑇 + 2)�
1

𝑇 − 𝑘

𝐾

𝑘=1

𝑟𝑘2 

Here K is the number of lags included, T is the number of observations, 𝑟𝑘 are the estimated 

autocorrelation coefficients of the standardized residuals (squared)  and 𝑄𝑘 is the test statistic.  

𝑄𝑘 is approximately Chi-squared distributed with K-p-q degrees of freedom.  The null 

hypothesis is that there is no autocorrelation detected (Verbeek, 2012).  A problem with the 

implementation of the Ljung-Box test is that if few lags are chosen, we might miss 

autocorrelation in higher lags. At the same time if many lags are chosen, the test may have 

low power since significant autocorrelation at one lag might be diluted by insignificant 

autocorrelation of the other lags (Brooks, 2008).  In an attempt to bypass this problem, we 

decide to do the tests for multiple sets of lags, ranging from one to twenty five lags.  The 

mean equation and volatility model chosen for each asset can be seen in the table one while 

the Q statistics and the corresponding probability values for those models are given in the 

appendix D.   
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In order to account for autocorrelation in the standardized residuals, we added a lag of the 

dependent variable to the mean equation.  Adding an outside factor to the mean equation 

would limit us from generalizing the correlation between the standardized residuals of the 

asset returns to the asset returns themselves. This is, however, not so when the factor is a lag 

of the dependent variable itself, that is when the factor added is the return of the asset in a 

previous period.  This comes from the fact that last periods return is known in this period and 

is therefore not an unknown stochastic process.  

While all autocorrelation is accounted for in standardized residuals of all the series, there is 

autocorrelation in the standardized residuals squared of the gold returns that could not be 

taken care of.  After rigorous testing of different models, it appears that using an 

EGARCH(9,0,0) model can account for all autocorrelation from the first nine lags, but not for 

ten lags or more.  The implication of this is that we expect to see significant parameters in the 

DCC and AG-DCC models that affect the variance of the standardized residual of the gold 

returns. This is because the DCC and AG-DCC models include a lag of the variance from the 

previous period in the calculation of this period’s variance. For further detail see chapter 

3.4.3. However, since the volatility models of the stock indices do not reject the null 

hypothesis of no autocorrelation on the standardized residuals squared, we expect that the 

parameters, which govern the volatility of the standardized residuals of the stocks in the DCC 

and AG-DCC models, to be insignificant.     

Last of all, we use the Schwarz Bayesian information criterion (BIC) to select the best model. 

Another information criterion available is the Akaike information criterion (AIC).  However, 

when the sample size goes towards infinity, the BIC will almost always select the true model 

while AIC tends to favor overparameterized models (Verbeek, 2012).  Our sample size 

consisted of over six thousand observations so we choose to use BIC.  The model chosen for 

each asset and its specification can be seen in table one while a detailed description of each 

volatility model is given in appendix B.    
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Table 1: Selected model and mean equation 

  Index Selected Model Mean Equation 

1 Gold Bullion LBM U$/Troy Ounce EGARCH(9,0,0) 
  

𝑦𝑡 = 𝜇 + 𝑦𝑡−12 + 𝑢𝑡 
 

2 S&P500 EGARCH(2,1,2) 
  
𝑦𝑡 = 𝜇 + 𝑦𝑡−12 + 𝑦𝑡−13 + 𝑢𝑡 

 

3 MSCI U.S. mid cap 450 TARCH (2,1,1) 
𝑦𝑡 = 𝜇 + 𝑦𝑡−1 + 𝑢𝑡 

4 MSCI U.S. small cap 1750 EGARCH(2,2,2) 
  

𝑦𝑡 = 𝜇 + 𝑦𝑡−1 + 𝑢𝑡 
 

 

As it is shown in table one, the GARCH models that are selected for the returns of all stock 

indices include asymmetric terms. Therefore, they show all have asymmetric effects in their 

volatilities.  However, the GARCH model specification selected for the gold returns does not 

include an asymmetric term, indicating that the volatilities of the gold returns are symmetric. 

Our result is contradicted with the result of Baur (2012), which presents that the coefficient of 

asymmetric effects in the volatility process of gold returns is negative and highly significant. 

The reason for the different findings could be attributed to the fact that we use a different 

period from Baur. However, as this is not the main subject of the thesis, we will not speculate 

on this further.  Detailed information on each series mean and variance equation along with p-

values of  the coefficients as well as information criterions are provided in appendix C. 

 

3.4.3 Correlation models 

This section presents the detailed descriptions of the DCC and AG-DCC models. Moreover, 

the three stage estimation procedure is provided.  Finally, some necessary modification of the 

DCC and AG-DCC models is presented. 

 

3.4.3.1 Dynamic Conditional Correlation (DCC) by Engle 2002 

The DCC model was developed from the constant conditional correlation model (CCC) of 

Bollerslev (1990), in which the time-varying variance covariance matrix of returns, 𝐻𝑡, is 

composed of an unconditional correlation matrix (R) and a conditional variance matrix (𝐷𝑡2): 
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𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡 

However, in 2002 Engle proposed the dynamic conditional correlation model, which allows R 

to change over time and the conditional covariance matrix of returns, 𝐻𝑡, is constructed as:  

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 

Here 𝐷𝑡 is diagonal matrix of volatilities, �ℎ𝑖,𝑡, and 𝑅𝑡 is time-varying correlation matrix.  . 

Each 𝐷𝑡2 can be defined by any type of a univariate GARCH process, as discussed in chapter 

3.4.1.  𝑅𝑡 is generated from  the conditional variances and covariance of the standardized 

residuals ,𝜀𝑡. The paper of Engle (2002) shows that the conditional correlation between two 

asset returns, 𝑦1,𝑡𝑦2,𝑡, is based on information from the previous period and lies between -1 

and 1. It is defined as:   

𝜌12,𝑡 =
𝐸𝑡−1(𝑦1,𝑡𝑦2,𝑡)

�𝐸𝑡−1(𝑦1,𝑡
2 )𝐸𝑡−1(𝑦2,𝑡

2 )
 

If we assume that the mean equation from chapter 3.4.1 has a zero mean as well as the 

standardized residuals are normally distributed with a mean of zero and a variance of one, the 

return can be written as the multiplication of the conditional standard deviation and the 

standardized residual: 

    𝑦𝑖,𝑡 = �ℎ𝑖,𝑡 𝜀𝑖,𝑡 where i=1,2,…,n 

Thus,  

𝜌12,𝑡 =
𝐸𝑡−1(𝜀1,𝑡𝜀2,𝑡)

�𝐸𝑡−1(𝜀1,𝑡
2 )𝐸𝑡−1(𝜀2,𝑡

2 )
= 𝐸𝑡−1(𝜀1,𝑡𝜀2,𝑡) 

Therefore, the correlation of two asset returns is the covariance of their standardized residuals. 

Engle (2002) proposed that 𝑅𝑡 should be obtained by using the series of standardized 

residuals as: 

𝑅𝑡 = 𝑄𝑡
∗−0,5𝑄𝑡𝑄𝑡

∗−0,5 

Where 𝑄𝑡 is the conditional covariance matrix of standardized residuals, which follows a 

bivariate GARCH process, 𝑄𝑡∗ is a diagonal matrix with the square root of the 𝑖th diagonal 
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element of 𝑄𝑡. Therefore 𝑄𝑡∗ contains only the standard deviation of the 𝑖th standardized 

residual. The standard DCC model of Engle (2002) is shown as   

𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑄� + 𝑎𝜀𝑡−1𝜀′𝑡−1 + 𝑏𝑄𝑡−1 

Where 𝑄�  is unconditional covariance matrix of standardized residual, a and b are scalars such 

that a+b < 1. By using the scalars, it implies the assumption of common dynamics among the 

assets used in the DCC model (Billio, Caporin, & Gobbo, 2006).  However, the DCC model 

can be written in matrix form (Ding & Engle, 2001), which is more generalized as  

𝑄𝑡 = (𝐼𝐼′ − 𝐴 − 𝐵) ∘ 𝑄� + 𝐴 ∘ 𝜀𝑡−1𝜀′𝑡−1 + 𝐵 ∘ 𝑄𝑡−1 

Where I is a vector of ones and " ∘ " is the Hadamard product of two identically sized 

matrices. If A, B, and (𝐼𝐼′ − 𝐴 − 𝐵) are positive semi definite, 𝑄𝑡 will also be semi definite. If 

any one of A, B, and (𝐼𝐼′ − 𝐴 − 𝐵) is positive definite, 𝑄𝑡 will also be. 

In the estimation, it is essential that 𝑄𝑡 is positive definite in order to guarantee that 𝑅𝑡 is a 

correlation matrix that has ones on the diagonal and all other elements are in the interval [-

1,1]. For the two assets, 𝑅𝑡 is shown as: 

𝑅𝑡 =

⎣
⎢
⎢
⎢
⎡ 1

𝑞12,𝑡

�𝑞11,𝑡�𝑞22,𝑡
𝑞12,𝑡

�𝑞11,𝑡�𝑞22,𝑡
1

⎦
⎥
⎥
⎥
⎤
 

The conditional correlation between equity returns and gold returns is the thus equal to 
𝑞12,𝑡

�𝑞11,𝑡�𝑞22,𝑡
. 

 

3.4.3.2 Asymmetric Generalized Dynamic Conditional Correlation (AG-DCC) by 

Cappiello, Engle and Sheppard (2006) 

In their 2006 paper Cappiello, Engle and Sheppard claimed that the standard DCC model 

“does not allow for asset-specific news and smoothing parameters or asymmetries”. They 

modified the model to factor in asymmetric correlation, in a so called asymmetric generalized 

DCC (AG-DCC) as: 

𝑄𝑡 = (𝑄� − 𝐴′𝑄�𝐴 − 𝐵′𝑄�𝐵 − 𝐺′𝑁�𝐺) + 𝐴′𝜀𝑡−1𝜀′𝑡−1𝐴 + 𝐺′𝑛𝑡−1𝑛′𝑡−1𝐺 + 𝐵′𝑄𝑡−1𝐵 
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Where 𝑄𝑡 is the conditional covariance matrix of standardized residuals, 𝑄� is the 

unconditional covariance matrix of standardized residuals and A, B, and G are p× p parameter 

matrices, 𝑁� is defined as 𝑁� = 𝐸[𝑛𝑡𝑛′𝑡] and 𝑛𝑡 = 𝐼[𝜖𝑡 < 0] ∘ 𝜖𝑡. Here 𝐼[. ] is a p×1 indicator 

function that will equal to 1 if the 𝜖𝑡 < 0 or 0 otherwise, while  " ∘ " is the Hadamard product. 

The additional 𝑛𝑡 term indicates asymmetries when there is negative shock. 

For 𝑄𝑡 to be positive definite, the intercept (𝑄� − 𝐴′𝑄�𝐴 − 𝐵′𝑄�𝐵 − 𝐺′𝑁�𝐺) needs to be positive 

semi-definite and 𝑄0 is positive definite.  If the A, B, and G matrices are replaced by scalars, 

the model is a so-called asymmetric DCC (A-DCC) and is written as:  

𝑄𝑡 = (𝑄� − 𝑎2𝑄� − 𝑏2𝑄� − 𝑔2𝑁�) + 𝑎2𝜀𝑡−1𝜀′𝑡−1 + 𝑔2𝑛𝑡−1𝑛′𝑡−1 + 𝑏2𝑄𝑡−1 

For 𝑄𝑡 to be positive definite, the intercept (𝑄� − 𝑎2𝑄� − 𝑏2𝑄� − 𝑔2𝑁�) needs to be positive 

semi-definite, which is the same as for AG-DCC.  A necessary and sufficient condition for 

this to hold is that 𝑎2 + 𝑏2 + 𝛿𝑔2 < 1, where 𝛿 is maximum eigenvalue �𝑄�−1/2𝑁�𝑄�−1/2�
5
.  

Drawbacks of the AG-DCC model are large amount of parameters and complexity. Assuming 

p is the number of assets, 𝑝2 parameters are required for each correlation term. Even though 

diagonal matrices are used, the numbers of parameters still linearly increase with the number 

of assets. Therefore, the scalar version is preferred when there are many assets. Moreover, 

using scalar has inflexible assumption of having common dynamic among the assets.   

For the AG-DCC model, we adjust the general model to be a bivariate model as we have only 

two assets in our study and we want to capture asset specific dynamics.  Since we have few 

assets, the problem of too many parameters in the estimation is not an issue for us.  The model 

is shown as: 

𝑄𝑡 = (𝑄� − 𝐴′𝑄�𝐴 − 𝐵′𝑄�𝐵 − 𝐺′𝑁�𝐺) + 𝐴′𝜀𝑡−1𝜀′𝑡−1𝐴 + 𝐺′𝑛𝑡−1𝑛′𝑡−1𝐺 + 𝐵′𝑄𝑡−1𝐵 

Where A, B, and G matrices are of the dimension 2× 2. Then, the 𝑄𝑡 matrix is constructed as 

follows: 

�
𝑞11,𝑡 𝑞12,𝑡
𝑞12,𝑡 𝑞22,𝑡

� =��
𝑞11 𝑞12
𝑞12 𝑞22� − �

𝑎11 𝑎12
𝑎12 𝑎22�

′
�
𝑞11 𝑞12
𝑞12 𝑞22� �

𝑎11 𝑎12
𝑎12 𝑎22� −

�𝑏11 𝑏12
𝑏12 𝑏22

�
′
�
𝑞11 𝑞12
𝑞12 𝑞22� �

𝑏11 𝑏12
𝑏12 𝑏22

� − �
𝑔11 𝑔12
𝑔12 𝑔22�

′
�
𝑛11 𝑛12
𝑛12 𝑛22� �

𝑔11 𝑔12
𝑔12 𝑔22�� + 

�
𝑎11 𝑎12
𝑎12 𝑎22�

′
�
𝜀1,𝑡−1
𝜀2,𝑡−1

� �
𝜀1,𝑡−1
𝜀2,𝑡−1

�
′
�
𝑎11 𝑎12
𝑎12 𝑎22� + �

𝑔11 𝑔12
𝑔12 𝑔22�

′
�
𝑛1,𝑡−1
𝑛2,𝑡−1

� �
𝑛1,𝑡−1
𝑛2,𝑡−1

�
′
�
𝑔11 𝑔12
𝑔12 𝑔22� + 
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�𝑏11 𝑏12
𝑏12 𝑏22

�
′
�
𝑞11,𝑡−1 𝑞12,𝑡−1
𝑞12,𝑡−1 𝑞22,𝑡−1

� �𝑏11 𝑏12
𝑏12 𝑏22

�  

For modeling the DCC model, we use the same approach as for the AG-DCC model except 

that we set the matrix G equal to zero. Therefore, the 𝑄𝑡 matrix of the DCC model is 

constructed as follows: 

𝑄𝑡 = (𝑄� − 𝐴′𝑄�𝐴 − 𝐵′𝑄�𝐵) + 𝐴′𝜀𝑡−1𝜀′𝑡−1𝐴 + 𝐵′𝑄𝑡−1𝐵 

Then, the 𝑄𝑡 matrix is written as follows: 

�
𝑞11,𝑡 𝑞12,𝑡
𝑞12,𝑡 𝑞22,𝑡

� =��
𝑞11 𝑞12
𝑞12 𝑞22� − �

𝑎11 𝑎12
𝑎12 𝑎22�

′
�
𝑞11 𝑞12
𝑞12 𝑞22� �

𝑎11 𝑎12
𝑎12 𝑎22� −

�𝑏11 𝑏12
𝑏12 𝑏22

�
′
�
𝑞11 𝑞12
𝑞12 𝑞22� �

𝑏11 𝑏12
𝑏12 𝑏22

�� + �
𝑎11 𝑎12
𝑎12 𝑎22�

′
�
𝜀1,𝑡−1
𝜀2,𝑡−1

� �
𝜀1,𝑡−1
𝜀2,𝑡−1

�
′
�
𝑎11 𝑎12
𝑎12 𝑎22� + 

�𝑏11 𝑏12
𝑏12 𝑏22

�
′
�
𝑞11,𝑡−1 𝑞12,𝑡−1
𝑞12,𝑡−1 𝑞22,𝑡−1

� �𝑏11 𝑏12
𝑏12 𝑏22

�  

 

3.4.3.3 Estimation 

After the model is well specified, the parameters are estimated by maximizing the quasi log 

likelihood function, since the returns were not normally distributed as was discussed in 

chapter 3.4.1. Based on Engle (2002), the quasi log likelihood function is defined as 

𝐿 =  −
1
2
�(𝑛 log(2𝜋) + 2 𝑙𝑜𝑔|𝐷𝑡|
𝑇

𝑡=1

+ 𝑢′𝑡𝐷𝑡−1𝐷𝑡−1𝑢𝑡 − 𝜀′𝑡𝜀𝑡 + 𝑙𝑜𝑔|𝑅𝑡| + 𝜀′𝑡𝑅𝑡−1𝜀𝑡) 

The log likelihood can separated to the sum of a volatility part and a correlation part: 

  L(𝜃,∅) = 𝐿𝑉(𝜃)+ 𝐿𝐶(𝜃,∅) 

Where 𝜃 is a set of parameters in 𝐷𝑡 and ∅ is the parameters in 𝑅𝑡  in equation 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡. 

Therefore, the volatility part is  

𝐿𝑉(𝜃) =  −
1
2
�(𝑛 log(2𝜋) + 2𝑙𝑜𝑔|𝐷𝑡|
𝑇

𝑡=1

+ 𝑢′𝑡𝐷𝑡−2𝑢𝑡) 

And the correlation part is  
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𝐿𝐶(𝜃,∅) =  −
1
2
�(𝑙𝑜𝑔|𝑅𝑡|
𝑇

𝑡=1

+ 𝜀′𝑡𝑅𝑡−1𝜀𝑡 − 𝜀′𝑡𝜀𝑡) 

Based on Cappiello, Engle and Sheppard (2006), there are three stages in the estimation 

process. They describe these steps in the following way: 

“In the first stage, univariate volatility models are fit for each of the assets, and estimates of 

hit are obtained. In the second stage, asset returns, transformed by their estimated standard 

deviations, are used to estimate the intercept parameters of the conditional correlation. 

Finally, the third stage conditions on the correlation intercept parameters to estimate the 

coefficients governing the dynamics of correlation.” 

 

 

3.4.3.4 Problems and remedies of the DCC model 

The DCC model presented by Engle in 2002, and by extension the AG-DCC model of 

Cappiello, Engle and Sheppard in 2006, has inherent structural problems.  Two main 

problems are of concern, which need to be addressed in order to use the model.  The first one 

is the assumption that the standardized residuals, 𝜀𝑡, are normally distributed with a mean zero 

and variance of one.  Since the covariance matrix 𝑄𝑡 is the covariance matrix of the 

standardized residuals, it cannot be that they have both a variance of 𝑄𝑡 as well as a variance 

of one simultaneously.  Due to a suggestion from Caporin and McAleer (2013), we assume 

that the standardized residuals are normally distributed with a mean of zero and variance of 

𝑄𝑡; 𝜀𝑡~𝑁(0,𝑄𝑡).   

The second problem is that the DCC model assumes that 𝐸𝑡−1[𝜀𝑡′𝜀𝑡] =  𝑅𝑡, where 𝑅𝑡 is the 

correlation matrix of the standardized residuals (which is also the correlation matrix of the 

asset returns, as was shown previously in chapter 2.4), when in fact 𝐸𝑡−1[𝜀𝑡′𝜀𝑡] =  𝑄𝑡. 

Although it can be shown that 𝑅𝑡 =  𝑄𝑡 only if 𝜀𝑡~𝑁(0,1), we know, as previously 

mentioned, that this is not true.  Therefore, we modify the covariance matrix of 𝑦𝑡, 𝐻𝑡, by 

calculating it as 𝐻𝑡 =  𝐷𝑡𝑄𝑡𝐷𝑡, instead of 𝐻𝑡 =  𝐷𝑡𝑅𝑡𝐷𝑡.   

Using these two remedies it still holds that the correlation matrix of the standardized residuals 

is identical to the correlation matrix of 𝑦𝑡, as well as all other assumptions of the model hold 

and calculations can be done as normal.  The only exception to this is that the covariance 

matrix of the standardized residuals, 𝑄𝑡, will not be equal to the correlation matrix of the 



27 
 

standardized residuals, 𝑅𝑡.  This however does not pose a problem since we can still calculate 

the correlation of the standardized residuals using the normal correlation formula. 
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4 Empirical Results 
 

This chapter provides the empirical results along with discussion and interpretation.  We will 

begin by presenting the results from the DCC and AG-DCC models along with an in depth 

comparison and discussion.  Next, we take a close look at the asymmetric parameters in the 

AG-DCC model and consider how negative and positive shocks in the gold and stock markets 

affect the dynamic conditional correlation estimates.  Finally, some qualitative economic 

reasons, which might lend support to our findings, are presented.    

  

4.1 Comparing the AG-DCC and DCC 
In order to determine whether the AG-DCC model outperforms the DCC model, we rely on 

the Schwarz Bayesian information criterion and the maximized log likelihood value. 

Furthermore, we calculated the Akaike information criterion for robustness in the results.  We 

find that all three information criterions suggest that the AG-DCC model outperforms the 

DCC model for all three of our dynamic conditional correlation estimates.  The results are 

shown in detail in table two.       

To further compare the models we look at the parameter estimates of the Q matrix of both 

models for all three equity indices, presented in table three and four.  Overall the DCC model 

has fewer insignificant parameters at the five percent level for the S&P500 and small-cap 

indices. The opposite is true for the mid-cap index.  However, the AG-DCC model includes 

three more parameters than the DCC model, which account for the asymmetry.  Looking only 

at the parameters that the models have in common, we see that the S&P500 index has one 

insignificant parameter under both models while for the other two indices the results are the 

same as before.   

Since not all of the parameters that govern autocorrelation in the variance of the standardized 

residuals of the stock indices, b11 and b22, are insignificant, the results contradict with what 

we expected to find from the Ljung-Box test on the standardized residuals squared.  There are 

two possible reasons why this could happen.  The first one is that the Ljung Box test is not 

sufficiently powerful to detect the autocorrelation while the DCC/AG-DCC model can detect 

the autocorrelation.  We then end up not rejecting the null hypothesis of the Ljung-box test of 

no autocorrelation when we should reject it.  A second reason has to do with that the p-values, 

which Eviews calculates for the Ljung-Box test of the standardized residuals, may not be 
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correct.  This is a technical problem which we could not bypass. It should, however, be noted 

that even if the p-values are incorrect, we still choose the  best mean equation and volatility 

model based on the information criterions mentioned previously. 

Since the information criterions used will prefer models with better explanatory power and at 

the same time penalize for including variables that do not add to the explanatory power of the 

model, the results from table one are even more decisively in favor of AG-DCC for the 

S&P500 and MSCI US Small cap 1750 indices.        

 

Table 2: Log-likelihood value and information criterions                                                 
This table presents the log-likelihood value and information criterions (AIC and BIC) of each stock 
return series under both the DCC and AG-DCC models. These criterions are then used to select which 
models fits the data better and should be used to estimate the dynamic conditional covariances.  For 
the Log-Likelihood value a higher score indicates a better fit while for the AIC and BIC  a lower score 
indicates a better fit    

Model 

Log-
Likelihood 

value AIC BIC 
DCC       

S&P500 -7.421 0.005 0.012 

MSCI US Mid cap 450 62.558 -0.020 -0.013 
MSCI US Small cap 
1750 64.585 -0.021 -0.014 

AG-DCC       
S&P500 6.282 0.001 0.011 

MSCI US Mid cap 450 86.753 -0.027 -0.017 
MSCI US Small cap 
1750 80.015 -0.025 -0.014 
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Table 3: Parameter estimates of the DCC model                    
This table presents the coefficient of the parameters in the conditional covariance matrix of the 
standardized residuals, based on the DCC model. Furthermore, the table shows which coefficients are 
significant at the 5% confidence level. The “a” coefficients govern how much the standardized 
residuals of the previous period affect the variance/covariance of the standardized residuals this 
period. The “b” coefficients govern how much the variance/covariance of the standardized residuals 
from the previous period affect the variance/covariance of the standardized residuals this period. 
Parameters marked “11” govern the variance of the standardized residuals of the gold returns, while 
parameters marked “22” govern the variance of the standardized residuals of the stock returns. For 
further detail see chapter 3.4.3.2.    

DCC 

Index against 
gold returns S&P500 

MSCI US Mid 
cap 450 

MSCI US 
Small cap 1750 

a11 0.238 -0.084 0.137 

a12 0.011* 0.213 0.075 

a22 0.125 -0.016* 0.118 

b11 -0.479 0.958 -0.450 

b12 -0.820 0.081* 0.201 

b22 0.521 -0.313* 0.961 

 * Insignificance at the 5% level 
  

Table 4: Parameter estimates of the AG-DCC model                     
This table presents the coefficient of the parameters in the conditional covariance matrix of the 
standardized residuals, based on the AG-DCC model. Furthermore, the table shows which coefficients 
are significant at the 5% confidence level. The “a” coefficients govern how much the standardized 
residuals of the previous period affect the variance/covariance of the standardized residuals this 
period. The “b” coefficients govern how much the variance/covariance of the standardized residuals 
from the previous period affect the variance/covariance of the standardized residuals this period. The 
“g” coefficients govern how large of an asymmetric effect from a negative shock in the standardized 
residual of  the stock and/or gold return from last period have on the variance/covariance of the 
standardized residuals this period.  Parameters marked “11” govern the variance of the standardized 
residuals of the gold returns, while parameters marked “22” govern the variance of the standardized 
residuals of the stock returns. For further detail see chapter 3.4.3.2.    

AG-DCC 

Index against 
gold returns S&P500 

MSCI US Mid 
cap 450 

MSCI US 
Small cap 1750 

a11 0.068 0.151 0.176 

a12 0.151 0.031* 0.023* 

a22 0.023* 0.118 0.132 

b11 0.576 -0.635 -0.550 

b12 0.791 0.741 0.804 

b22 -0.580 0.634 0.552 

g11 -0.053* -0.014* 0.011* 

g12 -0.020* 0.191 0.167 

g22 -0.250 -0.070 -0.083 

 * Insignificance at the 5% level 
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4.1.1 Correlation estimation of the DCC and AG-DCC models. 

To get a full representation of how the dynamic conditional correlation estimates differ 

between the AG-DCC model and the DCC model, one needs to consider a relatively long 

period of observations.  The reason is that the covariance matrix of todays’ standardized 

residuals, 𝑄𝑡, which is used to calculate the dynamic conditional correlation, depends on the 

shocks in yesterdays’ standardized residuals as well as the covariance matrix of yesterdays 

standardized residuals, 𝑄𝑡−1. It can then be seen that the 𝑄𝑡−1 matrix also depended on the 

𝑄𝑡−2 matrix, and so on.  Thus, the difference in the dynamic conditional correlation estimates 

between the AG-DCC and the DCC can accumulate over time.  

Graphs one to six present how the dynamic conditional correlations develop under both 

models for each return series, while graphs seven to nine show the difference in the dynamic 

conditional correlation estimates of the AG-DCC and DCC models.  When calculating the 

difference, the DCC model was used as a baseline. Thus, the graph shows how much the 

correlation from the AG-DCC model deviates from the correlation in the DCC model. It 

should be noted that the y axis on graphs seven to nine has different scale. This is because 

there are some large outliers in the graphs, which are different among the three graphs. 

Therefore, when we use the same scale for every graph, they end up being harder to read.    

The results in table five show that the conditional correlation of the stock and gold returns is 

on average very low and slightly different among the indices. For the S&P500 and small-cap, 

the mean correlation estimates are negative, implying that gold has a hedging property against 

the stock index on average.  However, the correlation of mid-cap and gold returns is positive 

on average, indicating that gold can only help to diversify the risk of the investment portfolio 

rather than hedge the risk.  

Moreover, the different average correlation estimates from the two models shows that taking 

the asymmetry into consideration has some impact to the estimation. Even though the sign of 

the correlation is in the same direction for each index, the correlation value is still somewhat 

different. This becomes more apparent when we look at the average difference of the dynamic 

conditional correlation estimate in absolute values. It can be seen that although the mean 

correlation estimates of the AG-DCC and the DCC are relatively similar, then the AG-DCC 

model estimates the correlation to be between 0.065 and 0.077 higher in absolute value on 

average. This indicates that the DCC model underestimates the strength of the correlation 

whether it is positive or negative.   
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    Graph 1: DCC of S&P500 and gold returns    Graph 2: AG-DCC of S&P500 & gold returns 

    Graph 3: DCC of Mid-cap & gold returns Graph 4: AG-DCC of Mid-cap & gold return 

   Graph 5: DCC of Small-cap & gold returns    Graph 6: AG-DCC of Small-cap & gold returns 
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  Graph 7: Differences (DCC&AGDCC)-S&P500 

       

  Graph 8: Differences (DCC&AGDCC)-Midcap  

       

  Graph 9: Differences (DCC&AGDCC)-Smallcap  
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In terms of volatility, the correlation estimate from the AG-DCC model is more volatile than 

the estimate from the DCC model. It indicates that the correlation of the stock returns and 

gold return changes more dramatically than that is expected from the DCC model. For 

example, by using the DCC model the negative correlation of S&P500 and gold return during 

the financial crisis in 2008 is underestimated when it is compared to the estimate from the 

AG-DCC model. However, when the stock market recovers in 2012, the correlation turns to 

be positive. The DCC model still suggests too low correlation than that of the AG-DCC 

model. This means that when portfolio weights need to be adjusted due to the change in the 

dynamic conditional correlation between assets in the portfolio, the adjustment in the weight 

might be too low if investors use the DCC model.   

We realize that it is subjective to conclude how large of a difference in the correlation 

estimates there should be to cause a significant loss or unnecessary risk taking to an investor 

due to sub-optimal portfolio structure. We can however conclude from our results with 

certainty that investors will be faced with sub-optimal portfolio weights if they allocate their 

assets without considering this asymmetry.  

 

Table 5: Mean and standard deviation of conditional correlation estimates                        
This table presents the mean and the standard deviation of the dynamic conditional correlation of gold 
returns and different indices returns, which is generated from the DCC and AG-DCC model. The 
bottom row of this table presents the mean of differences in the dynamic conditional correlation of the 
DCC model and AG-DCC model. It should be noted that the differences were calculated in absolute 
values and then averaged.  

  S&P500 
MSCI US 

Mid cap 450 

MSCI US 
Small cap 

1750 
DCC       
Mean -0.007 0.006 -0.002 
Standard deviation 0.090 0.061 0.069 
AG-DCC       
Mean -0.013 0.005 -0.002 
Standard deviation 0.133 0.104 0.109 
Differences (AG-DCC and DCC) 

   Mean 0.065 0.077  0.077 
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4.2 Effect of market shocks on correlation asymmetry 
As was shown previously, the asymmetry in the dynamic conditional correlations of the AG-

DCC model is incorporated in the covariance matrix of the standardized residuals, 𝑄𝑡, which 

is then used to calculate the dynamic conditional correlations.  Therefore, the asymmetry can 

be captured in the variances and the covariance of the standardized residuals.  Thus, the 

asymmetric terms may affect the dynamic conditional correlation estimate in different 

manners, depending on whether there is a negative shock in only one of the standardized 

residuals or both.  Furthermore, a negative shock in only one asset’s standardized residuals 

may have different effect from a negative shock in only the other asset’s standardized 

residuals.   It can be seen from table four that not all of the asymmetric parameters were 

statistically significant for any given assets at the five percent level.  In fact, the parameter 

g11 was never statistically significant, while g22 was always statistically significant.  The 

parameter g12 was statistically significant for the 𝑄𝑡 matrix dynamics of the small-cap and 

gold as well as for mid-cap and gold.   Knowing this allowed us to see how different shocks 

alter the asymmetry in the dynamic conditional correlations in different ways.   

The effects that different negative shocks in the standardized residuals have on the variances 

and covariance of the standardized residuals can be seen in table six and seven. It should be 

noted that “no effect”, “increase”, “decrease”, which are stated in table six and seven, are 

additional  asymmetric effects that occur when either or both of the standardized residuals of 

gold and stock returns have a negative shock, compared to when both the standardized 

residuals have positive shocks. The scenarios that we consider are: 

Scenario 1: A negative shock in the standardized residual of the gold returns, implies that 

there is a positive shock in the standardized residual of stock return that occurs at the same 

time. The result will then compare with the situation of a joint positive shock in the 

standardized residuals of gold returns and stock returns. 

Scenario 2: A negative shock in the standardized residual of the stock returns, implies that 

there is a positive shock in the standardized residual of the gold returns that occurs at the same 

time. The result will then compare with the situation of a joint positive shock in the 

standardized residuals of gold returns and stock returns.. 

Scenario 3: The result under a joint negative shock in the standardized residuals of gold 

returns and stock returns. The result will then compare with the situation of a joint positive 

shock in the standardized residuals of gold returns and stock returns. 
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Table 6: The asymmetric effects of a negative shock in standardized residuals on the 
variances and covariance of standardized residuals of S&P500 and gold returns          

 

 

Table 7: The asymmetric effects of a negative shock in standardized residuals on the 
variances and covariance of standardized residuals of mid-cap/small-cap index and gold 
returns 

 

 

 

S&P500 index 

  Negative shock in the 
standardized residuals 

of gold return – (1) 

Negative shock in the 
standardized residuals 
of stock return – (2) 

Negative shock in both 
the standardized 

residuals of gold return 
and stock return – (3) 

variance of the standardized 
residuals of gold returns 
(q11) no effect no effect no effect 
variance of the standardized 
residuals of stock returns 
(q22) no effect increase Increase 

covariance of the 
standardized residuals of 
gold returns and stock 
returns (q12) no effect no effect no effect 

Mid-cap and Small-cap 
index 

Negative shock in the 
standardized residuals 

of gold return – (1) 

Negative shock in the 
standardized residuals 
of stock return – (2) 

Negative shock in both 
the standardized 

residuals of gold return 
and stock return – (3) 

variance of the standardized 
residuals of gold returns 
(q11) no effect increase increase 

variance of the standardized 
residuals of stock returns 
(q22) increase increase no effect/increase 

covariance of the 
standardized residuals of 
gold returns and stock 
returns (q12) no effect decrease inconclusive 
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4.2.1 Asymmetric correlation: S&P500 & Gold 

The discussion in this chapter is based on the results in table four and six. For the dynamic 

conditional correlation of the S&P500 and gold indices, only a negative shock in the 

standardized residuals of the S&P500 index return will cause asymmetry.  This is a result of 

only one of the asymmetric parameters, g22, being statistically significant.  A negative shock 

in the standardized residual of the S&P500 index return will increase the variance of the 

S&P500 index return in the next period.  Therefore, the dynamic conditional correlation will 

be lower than otherwise.  These findings of no asymmetric effect in the variance of the 

standardized residuals of the gold returns following a negative shock in the standardized 

residuals of the gold returns coincide well with the EGARCH(9,0,0) model used to capture 

the other part of the volatility of the gold returns, since no asymmetric terms were included in 

the EGARCH specification.  Likewise, the findings of an asymmetric effect in the volatility of 

the standardized residuals of the S&P500 index returns following a negative shock in the 

standardized residuals of the S&P500 index returns is consistent with the EGARCH(2,1,2) 

specification.  The findings of no asymmetry in the volatility of gold returns are, however, 

inconsistent with the findings of Baur from 2012.  

 

4.2.2 Asymmetric correlation: Small Cap/Mid Cap & Gold 

The discussion in this chapter is based on the results in table four and seven. Since the same 

asymmetric parameter terms, g12 and g22, are statistically significant in the 𝑄𝑡 matrix 

dynamics when using the small-cap and the mid-cap indices, they will be discussed together.   

If there is only a negative shock in the standardized residual of gold, the variance of the small 

cap index will increase, which result in a lower correlation in absolute value.  The variance of 

the small cap index will likewise increase if there is only a negative shock in the standardized 

residuals of the small cap index.  However, if there is a negative shock in both the 

standardized residual of gold and the small cap index, the shocks will work against each other 

and cause an overall lower increase in the variance of the small cap index, and a lower 

reduction in the correlation.  The variance of the gold is, however, unaffected by a negative 

shock in the standardized residuals of the gold index while a shock in the standardized 

residuals of the small cap index will increase the variance of the gold, which lowers the 

correlation in absolute value.  As with the S&P500 index, these findings coincide well with 

the GARCH models chosen for the stock indices returns and the gold returns.  
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For the covariance of the standardized residuals of the small cap index and gold, a negative 

shock in the standardized residuals of gold will have no affect on its own. A negative shock in 

the standardized residuals of the small cap will on the other hand always reduce the 

covariance of the standardized residuals of small cap and gold, and thus lower the correlation.  

However, if there is a negative shock in both standardized residuals, the shock in the 

standardized residual of gold will increase the covariance while the shock in the standardized 

residual of the small cap index will decrease the covariance. It will then depend on the size of 

each shock whether the covariance increases, decreases or stays constant and thus the overall 

affect on the correlation is uncertain. 

 

 

4.3 Asymmetric correlation relating to mean-variance framework 
 
When comparing the AG-DCC and the DCC models one might consider constructing a mean-

variance optimizing portfolios from the stock and gold indices to see whether the AG-DCC 

can give better performance than the DCC model.  One can see that this will be problematic 

as the premise of the thesis is that the DCC model does not capture asymmetric effects in the 

dynamics of the dynamic conditional correlation.  This appears to be true from our findings.  

Since both portfolios would be constructed from the same assets, we know that by definition 

there can be only one optimal portfolio for any given risk level and only one portfolio that 

maximizes the Sharpe ratio.  Since we believe that the AG-DCC model captures the dynamics 

of the 𝑄𝑡 correctly, but not the DCC model, we know that the AG-DCC model will be the one 

that can find this optimal portfolio.  The DCC model will under or overestimate components 

of the 𝑄𝑡 matrix and although it will give us some estimate of optimal portfolio weights, we 

will know these are not the true optimal weights.   

 

To illustrate this further, consider the case where we want to find the portfolio that can give us 

the lowest risk with expected return equal to 𝜇.  The DCC model will find a portfolio to do 

this and the AG-DCC model will find another.  A possible outcome would be that both 

models, according to their estimations, find a portfolio with the same risk and expected return 

equal to 𝜇.  Since the DCC model has the wrong asset variances and covariance, it cannot 

truly minimize the portfolio’s risk, expect by chance.  Therefore, the DCC portfolio is not the 

optimal portfolio and in reality it will have a higher risk than the DCC estimation suggests. 

Similarly the DCC model might tell us that it can give us a portfolio with an equal or higher 
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Sharpe ratio than the AG-DCC model can.  This will once again not be true as the DCC model 

does not accurately calculate the portfolio risk, thus it should only be able to match the 

maximum Sharpe ratio suggested by the AG-DCC model by chance and otherwise suggest a 

sub-optimal maximized Sharpe ratio.   

 

How much the DCC model will deviate from the true optimal portfolio will depend on current 

and previous market shocks and therefore there is little gain in modeling any period as an 

example.  It is sufficient to realize that according to our findings, the AG-DCC model will 

outperform the DCC model, except in a few random instances where the result will be the 

same for a short time.      

 

4.4 Economic reasoning 
Here we will present some economic reasoning in support of our findings on asymmetry in 

the variances and covariance of the standardized residuals from the  𝑄𝑡 matrix, whose 

elements are used to estimate the dynamic conditional correlation.  In order to save notation 

and to make the discussion easier to follow, the standardized residual of gold returns will be 

referred to as 𝜀𝐺𝑜𝑙𝑑 , the standardized residual of the S&P500 returns will be denoted as 

𝜀𝑆&𝑃500 and the standardized residual of the Mid-cap/Small-cap returns will be defined as 

𝜀𝑀𝐶/𝑆𝐶.  The discussion will center around the three scenarios, labelled as (1), (2) and (3) in 

tables six and seven;  A negative shock in 𝜀𝐺𝑜𝑙𝑑 and a positive shock in 𝜀𝑆&𝑃500 or 𝜀𝑀𝐶/𝑆𝐶 , a 

negative shock in 𝜀𝑆&𝑃500 or 𝜀𝑀𝐶/𝑆𝐶 and a positive shock in 𝜀𝐺𝑜𝑙𝑑  and finally a joint negative 

shock in both 𝜀𝐺𝑜𝑙𝑑  and 𝜀𝑆&𝑃500/𝜀𝑀𝐶/𝑆𝐶.  It should be noted that we will simultaneously 

discuss the asymmetry in the 𝑄𝑡 matrix when using on one hand the S&P500 and gold indices 

and on the other hand the mid-cap/small-cap and gold indices.  Finally, the reader should be 

aware that this is not a conclusive list of possible reasons for our findings.      

 

4.4.1 Scenario one 
A negative shock in 𝜀𝐺𝑜𝑙𝑑 and a positive shock in 𝜀𝑆&𝑃500 /𝜀𝑀𝐶/𝑆𝐶 shows that a negative shock 

in 𝜀𝐺𝑜𝑙𝑑  does not cause any asymmetric effect in the variance of 𝜀𝐺𝑜𝑙𝑑.  We believe that it is a 

natural result since gold does not have any leverage or operations, which incur fixed costs.  

Therefore, gold is not subject to Black’s (1976) leverage effect, which states that a firm whose 

value declines will have a larger increase in its stocks variance compared to when stock prices 
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increase.  This comes from the fact that fixed costs, from debt and operations, do not decrease 

proportionally with the loss of income.   

However, it can be seen that following a negative shock in 𝜀𝐺𝑜𝑙𝑑  there is no asymmetric 

effect in the variance of 𝜀𝑆&𝑃500 while there is an asymmetric effect in 𝜀𝑀𝐶/𝑆𝐶 , which causes 

an increase in next periods variance.  This must be a result of some size related firm 

characteristics. For instance, gold price decreases when interest rates are expected to increase 

(Fortune, 1987) and interest rates tend to be raised in an effort by the central bank to reduce 

spending in the economy during boom periods.  Since smaller firms tend to have higher 

leverage than large firms as well as less efficient operations (Chan and Chen, 1991), it is 

reasonable to assume that when interest rates increase, smaller firms will suffer worse.  Based 

on the post modern portfolio theory, investors might be concerned that the returns of smaller 

firms will fall below the investors’ benchmark for minimum expected return. They, however, 

do not expect returns to fall below this benchmark for larger firms. According to the post 

modern portfolio theory, investors value potential upside as a bonus, but not to the same 

extent as they fear a loss.   This causes investors to sell their small and mid cap stocks on a 

larger scale following an increase in interest rates than they will buy them at following a 

decrease in interest rates.  This in turn causes an asymmetric increase in the variance of 

𝜀𝑀𝐶/𝑆𝐶 following an increase in interest rates.   Prices will then be expected to fall as investors 

leave the market, but not enough to offset the increase in prices due to the advantageous 

business environment of the boom period. This comes from the fact that we are considering 

scenario one where the 𝜀𝑀𝐶/𝑆𝐶 is positive.  

The covariance will not be expected to display any asymmetry since this asymmetric increase 

in the variance of 𝜀𝑀𝐶/𝑆𝐶  is idiosyncratic. It means that the non-systematic risk is not shared 

between the gold and mid-cap/small-cap stocks. Then, the asymmetric variance 𝜀𝑀𝐶/𝑆𝐶 does 

not affect the covariance of 𝜀𝐺𝑜𝑙𝑑  and 𝜀𝑀𝐶/𝑆𝐶.   

 

4.4.2 Scenario two 
A negative shock in  𝜀𝑆&𝑃500 /𝜀𝑀𝐶/𝑆𝐶 and a positive shock in 𝜀𝐺𝑜𝑙𝑑 presents an asymmetric 

increase in the variance of both 𝜀𝑆&𝑃500 and 𝜀𝑀𝐶/𝑆𝐶.  This asymmetric increase in variance can 

be explained by Black’s leverage effect, which is discussed in scenario one.  However, for the 

variance of 𝜀𝐺𝑜𝑙𝑑  there is only an asymmetric increase when there is a negative shock in 
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𝜀𝑀𝐶/𝑆𝐶, not when there is a negative shock in 𝜀𝑆&𝑃500.  This might be explained by the post 

modern portfolio theory.  When there is a negative shock in 𝜀𝑀𝐶/𝑆𝐶 , some investors might 

perceive that the expected return of small and mid cap firms has a higher probability of falling 

below the investors’ benchmark return than for large firms.  This is due to the lower 

capabilities of smaller firms to survive during bad economic conditions as a result of higher 

leverage and less efficient operations (Chan and Chen, 1991).  Therefore, these investors may 

not consider small and mid cap stocks as a viable investment asset and instead move to other 

safer asset such as gold, which is called flight to quality.  Thus, there is an asymmetric 

increase in the variance of 𝜀𝐺𝑜𝑙𝑑 when there is a negative shock in 𝜀𝑀𝐶/𝑆𝐶, but not when there 

is a negative shock in 𝜀𝑆&𝑃500.   

Last of all an asymmetric decrease in the covariance of 𝜀𝐺𝑜𝑙𝑑 and 𝜀𝑀𝐶/𝑆𝐶 is found following a 

negative shock in 𝜀𝑀𝐶/𝑆𝐶 whereas the covariance of 𝜀𝐺𝑜𝑙𝑑 and 𝜀𝑆&𝑃500 displays no asymmetric 

effect following a negative shock in 𝜀𝑆&𝑃500.  Due to asymmetric effects in variances of 𝜀𝐺𝑜𝑙𝑑 

and 𝜀𝑀𝐶/𝑆𝐶, there is an increased demand for gold at the same time as there is a lower demand 

for mid and small cap stocks, so it should not be surprising that their prices will move in 

opposite directions. This leads to an asymmetric decline in the covariance of 𝜀𝐺𝑜𝑙𝑑  and 

𝜀𝑀𝐶/𝑆𝐶.  However, the covariance of 𝜀𝐺𝑜𝑙𝑑 and 𝜀𝑆&𝑃500 does not display any such asymmetry.  

This is because the asymmetric increase in the variance of 𝜀𝑆&𝑃500 is idiosyncratic and will 

not affect the covariance (as previously mentioned in scenario one). 

 

4.4.3 Scenario three 
A joint negative shock in both 𝜀𝐺𝑜𝑙𝑑  and 𝜀𝑆&𝑃500/𝜀𝑀𝐶/𝑆𝐶 shows an asymmetric increase in the 

variance of 𝜀𝑆&𝑃500 while the variance of 𝜀𝑀𝐶/𝑆𝐶 can either increase asymmetrically or have 

no asymmetric effect.  The asymmetric increase in the variance of 𝜀𝑆&𝑃500 is applicable to 

Black’s leverage effect in the same way as previously stated in scenario two.   For 𝜀𝑀𝐶/𝑆𝐶 

there are two factors that asymmetrically increase its variance.  The first can be attributed to 

Black’s leverage effect as it results from the negative shock in 𝜀𝑀𝐶/𝑆𝐶 while the second one 

comes as a result of the negative shock in 𝜀𝐺𝑜𝑙𝑑.  These two effects then work to cancel each 

other out.  Looking back to scenario one where there is a negative shock in 𝜀𝐺𝑜𝑙𝑑, we suggest 

that the asymmetric increase in the variance of 𝜀𝑀𝐶/𝑆𝐶 is caused by an increase in interest 

rates which could also be the case here.  An increase in interest rates could even be the sole 
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cause of the negative shock in both 𝜀𝐺𝑜𝑙𝑑  and 𝜀𝑀𝐶/𝑆𝐶 if the increase in interest rates is large 

enough.  However, it seems quite counter intuitive that the effect of the increased interest 

rates and the leverage effect will reduce each others effect instead of adding to each other.  

Therefore, we speculate that when a joint negative shock in  𝜀𝐺𝑜𝑙𝑑  and 𝜀𝑀𝐶/𝑆𝐶 takes place, 

there is some omitted factor that brings positive news for mid and small cap firms bot not for 

large cap firms. This causes the variance of 𝜀𝑀𝐶/𝑆𝐶 to range from having an increasing 

asymmetric effect to having no asymmetric effect, depending on the size of this omitted 

factor, while there is always an increasing asymmetric effect in the variance of 𝜀𝑆&𝑃500.   

Scenario three further shows an asymmetric increase in the variance of 𝜀𝐺𝑜𝑙𝑑 when there is a 

negative shock in 𝜀𝑀𝐶/𝑆𝐶, but not when there is a negative shock in 𝜀𝑆&𝑃500.  It is interesting 

to point out that this is exactly the same result as in scenario two, even though there is now a 

negative shock in 𝜀𝐺𝑜𝑙𝑑 rather than a positive one. We start by noting that under most 

circumstances there will be some asymmetric increase in the variance of 𝜀𝑀𝐶/𝑆𝐶. Then, it is 

reasonable to assume that the attractiveness of mid and small cap stocks will be the same as it 

was reasoned to be according to the post modern portfolio theory in scenario two.  Thus, we 

speculate that the asymmetric increase in the variance of 𝜀𝐺𝑜𝑙𝑑 following a negative shock in 

𝜀𝑀𝐶/𝑆𝐶 comes from investors who are interested in the asset specific properties of gold, such 

as its inflation and currency hedging capabilities, rather than the change in value of gold 

during the previous period. 

The covariance of 𝜀𝐺𝑜𝑙𝑑 and 𝜀𝑆&𝑃500 displays no asymmetric effect as the asymmetric increase 

in the variance of  𝜀𝑆&𝑃500 is idiosyncratic and does thus not affect the covariance.  The 

covariance of 𝜀𝐺𝑜𝑙𝑑 and 𝜀𝑀𝐶/𝑆𝐶 , however, has an asymmetric effect whose direction is 

unclear.  This comes from the fact that there may or may not be any asymmetric increase in 

the variance of  𝜀𝑀𝐶/𝑆𝐶. Even if there is an asymmetric increase in the variance of 𝜀𝑀𝐶/𝑆𝐶, it is 

not certain what factor is causing the asymmetric increase. Therefore, it is difficult to 

determine the direction of asymmetric effect in the covariance of 𝜀𝐺𝑜𝑙𝑑 and 𝜀𝑀𝐶/𝑆𝐶.   
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5. Conclusion 
The findings show that there is an asymmetry in the dynamic conditional correlation of 

different sized indices and gold returns, allowing us to reject the null hypothesis of no 

asymmetry in the dynamic conditional correlations. Additionally, we find that the dynamic 

conditional correlation of large-cap stock returns and gold returns only displays an 

asymmetric change following a negative shock in the returns of the large-cap stocks. The 

dynamic conditional correlation of mid/small-cap stock returns and gold returns, however, has 

an asymmetric change when there is a negative shock in either mid/small-cap stock or gold 

returns.  

Another interesting finding is that the variance of gold returns does not appear to have 

asymmetry following a negative shock in gold returns, which is inconsistent with Baur’s 2012 

findings of asymmetric volatility in gold returns. 

Since our results indicate an asymmetry in the dynamic conditional correlation of stock 

returns and gold returns, we highly recommend that investors should consider the asymmetric 

effect in their investment strategy, in order to avoid sub-optimal portfolio investment. 

An interesting subject for future research is to investigate further what economic factors cause 

the asymmetry in the dynamic conditional correlation estimates. Moreover, future studies 

could research whether this asymmetry is the same for the stock indices of other countries.  

Similar studies using other commodities could also be of interest. 

 

 

 

 

 

 

 



44 
 

6. References 
Baur, D. G., & McDermott, T. K. (2010). Is gold a safe haven? International evidence. 
 Journal of Banking & Finance, 34(8), 1886-1898. 
 
Baur, D. G. (2012). Asymmetric volatility in the gold market. The Journal of Alternative 
 Investments, 14(4), 26-38. 
 
Billio, M., Caporin, M., & Gobbo, M. (2006). Flexible dynamic conditional correlation 
 multivariate garch models for asset allocation. Applied Financial Economics 
 Letters, 2(02), 123-130. 
 
Black, F. (1976). Studies of Stock Prices Volatility Changes. Proceeding from the American 
 Statistical Association, Business and Economics Statistics, 177-181. 
 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of 
 econometrics, 31(3), 307-327. 
 
Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices 
 and rates of return. The review of economics and statistics, 69(3), 542-547. 
 
Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a 
 multivariate generalized ARCH model. The Review of Economics and Statistics, 
 72(3), 498-505. 
 
Bollerslev, T., Engle, R. F., & Wooldridge, J. M. (1988). A capital asset pricing model with 
 time-varying covariances. The Journal of Political Economy, 96(1), 116-131. 
 
Brooks, C. (2008). Introductory econometrics for finance. Cambridge university press. 
 
Caballero, R., & Krishnamurthy, A. (2005). Financial system risk and flight to quality, 
 Working Paper No. w11834. National Bureau of Economic Research. 
 
Capie, F., Mills, T. C., & Wood, G. (2005). Gold as a hedge against the dollar. Journal of 
 International Financial Markets, Institutions and Money, 15(4), 343-352. 
 
Caporin, M., & McAleer, M. (2013). Ten things you should know about the dynamic 
 conditional correlation representation. Econometrics, 1(1), 115-126. 
 
Cappiello, L., Engle, R. F., & Sheppard, K. (2006). Asymmetric dynamics in the correlations 
 of global equity and bond returns. Journal of Financial econometrics, 4(4), 537-
 572. 
 



45 
 

Chan, K. C., & Chen, N. F. (1991). Structural and return characteristics of small and large 
 firms. The Journal of Finance, 46(4), 1467-1484. 
 
Chong, J., & Miffre, J. (2010). Conditional correlation and volatility in commodity futures 
 and traditional asset markets. The Journal of Alternative Investments, 12(13), 
 061-075. 
 
Chong, J., Miffre, J., & Stevenson, S. (2009). Conditional correlations and real estate 
 investment trusts. Journal of Real Estate Portfolio Management, 15(2), 173-184. 
 
Chua, J. H., Sick, G., & Woodward, R. S. (1990). Diversifying with gold stocks. Financial 
 Analysts Journal, 46, 76-79. 
 
Danthine, J. P., & Donaldson, J. B. (2005). Intermediate financial theory. academic press. 
 
Dempster, N., & Artigas, J. C. (2010). Gold: inflation hedge and long-term strategic asset. 
 The Journal of Wealth Management, 13(2), 69-75. 
 
Ding, D., & Engle, R. F. (2001). Large scale conditional covariance matrix modeling, 
 estimation and testing. Academia Economic Papers, 29, 157-184 
 
Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market 
 returns and a new model. Journal of empirical finance, 1(1), 83-106. 
 
Dynamic conditional correlation multivariate GARCH (2011). Retrieved April 15,2014, 
http://forums.eviews.com/viewtopic.php?f=4&t=574&start=15 
 
Edwards, F. R., & Caglayan, M. O. (2001). Hedge fund performance and manager skill. 
 Journal of Futures Markets, 21(11), 1003-1028. 
 
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized 
 autoregressive conditional heteroskedasticity models. Journal of Business & 
 Economic Statistics, 20(3), 339-350. 
 
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the 
 variance of United Kingdom inflation. Econometrica: Journal of the 
 Econometric Society, 50(4), 987-1007. 
 
Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. 
 Econometric theory, 11(01), 122-150. 
 
Erb, C. B., & Harvey, C. R. (2006). The strategic and tactical value of commodity futures. 
 Financial Analysts Journal, 62(2), 69-97. 
 



46 
 

Fortune, J.N., (1987). The inflation rate of the price of gold, expected prices and interest rates. 
 Journal of macroeconomics, 9(1), 71-82. 
 
French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and 
 volatility. Journal of financial Economics, 19(1), 3-29. 
 
Georgiev, G. (2001). Benefits of commodity investment. The Journal of Alternative 
 Investments, 4(1), 40-48. 
 
Ghosh, D., Levin, E. J., Macmillan, P., & Wright, R. E. (2004). Gold as an inflation hedge?. 
 Studies in Economics and Finance, 22(1), 1-25. 
 
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected 
 value and the volatility of the nominal excess return on stocks. The journal of 
 finance, 48(5), 1779-1801. 
 
Gulko, L. (2002). Decoupling. The Journal of Portfolio Management, 28(3), 59-66. 
 
Hafner, C.M., & Franses, Ph.H.B.F.. (2003). A generalized dynamic conditional correlation 
 model for many asset returns (No. EI 2003-18). Retrieved from 
 http://hdl.handle.net/1765/1718 
 
Hartmann, P., Straetmans, S., & De Vries, C. G. (2004). Asset market linkages in crisis 
 periods. Review of Economics and Statistics, 86(1), 313-326. 
 
Joy, M. (2011). Gold and the US dollar: Hedge or haven?. Finance Research Letters, 8(3), 
 120-131. 
 
Liu, L. (2014). NEKP82: Multivariate Models for Volatility of Financial Time Series [Class 
 handout]. School of Economics and Management, Lund University, Lund, 
 Sweden.  

 
Majumdar, S. K. (1997). The impact of size and age on firm-level performance: some 
 evidence from India. Review of industrial organization, 12(2), 231-241. 
 
Markowitz, H. (1952). Portfolio selection*. The journal of finance, 7(1), 77-91. 
 
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. 
 Econometrica: Journal of the Econometric Society, 59(2), 347-370. 
 
Rom, B. M., & Ferguson, K. W. (1993). Post-modern portfolio theory comes of age. The 
 journal of investing, 2(4), 27-33. 
 

http://hdl.handle.net/1765/1718


47 
 

Silvennoinen, A., & Teräsvirta, T. (2009). Multivariate GARCH models. In Handbook of 
 Financial Time Series (pp. 201-229). Springer Berlin Heidelberg. 
 
Tang, K., & Xiong, W. (2010). Index investment and financialization of commodities. 
 Working Paper, University of Princeton 
 
Toyoshima, Y., Tamakoshi, G., & Hamori, S. (2012). Asymmetric dynamics in correlations of 
 treasury and swap markets: Evidence from the US market. Journal of 
 International Financial Markets, Institutions and Money, 22(2), 381-394. 
 
Verbeek, M. (2012). A guide to modern econometrics. John Wiley & Sons 
 
Worthington, A. C., & Pahlavani, M. (2007). Gold investment as an inflationary hedge: 
 cointegration evidence with allowance for endogenous structural breaks. Applied 
 Financial Economics Letters, 3(4), 259-262. 
 
Yang, J., Zhou, Y., & Leung, W. K. (2012). Asymmetric correlation and volatility dynamics 
 among stock, bond, and securitized real estate markets. The Journal of Real 
 Estate Finance and Economics, 45(2), 491-521. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

7. Appendices 
A.  Descriptive statistics for the series and Jarque-Bera normality test on the returns 

 

 
 
All series show the daily positive returns on average, but the smaller firm size index 

presents higher returns. It also comes with the higher volatility. Moreover, the zero value 

of a probability in the Jargue-Bera test indicates that all of the series’ distribution is non-

normal.  

 

 
B. Description of each volatility model 
 
Here a detailed description of each volatility model used in the thesis is given.  It should be 

noted that the notation of the models may have been altered slightly from the papers in which 

they were published. This is done for ease of comparison between volatility models and to 

keep consistency with other parts of the thesis, which makes it easier for the reader to connect 

different parts and models within the thesis together. 

Autoregressive conditional heteroscedasticity (ARCH) 

The ARCH model was introduced by Engle in 1982. It allows for the estimation of 

nonconstant conditional one period variance based on the past, while having a constant 

unconditional variance.  The conditional variance equation for an ARCH(p) process is as 

follows: 

𝜎𝑡2 =   𝜔 +  �𝛼𝑖𝑢𝑡−𝑖2

𝑝

𝑖=1

 

 

 

Mean
Standard 
deviation Skewness Kurtosis Jarque-Bera Probability

S&P500 0.000266 0.011563 -0.249162 12.16679 20005.59 0.000000
MSCI US Mid 

cap 450 0.000358 0.012552 -0.467925 11.66376 18050.76 0.000000
MSCI US Small 

cap 1750 0.000371 0.013001 -0.427548 10.07982 12088.68 0.000000
Gold Bullion 

LBM U$/Troy 
Ounce 0.000234 0.010145 -0.327591 10.69690 14164.54 0.000000
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Generalized ARCH (GARCH) 

The GARCH model is an extension of the ARCH model. It was developed by Bollerslev in 

1986.  It allows past conditional variances to affect the current conditional variance by 

including them in the variance equation. The GARCH(p,q) process is defined as: 

𝜎𝑡2 =   𝜔 +  �𝛼𝑖𝑢𝑡−𝑖2

𝑝

𝑖=1

+ �𝛽𝑗𝜎𝑡−𝑗2

𝑝

𝑗=1

 

 

Threshold GARCH (TGARCH) 

This model was proposed by Glosten, Jagannathan and Runkle in 1993. By using a dummy 

variable, 𝐼𝑡−𝑘,  that takes the value of one when the residual of the 𝑦 series is larger than zero 

and value of zero otherwise, the model allows negative and positive shocks in the residual to 

affect the variance differently.  The TGARCH (p,q,r) process is defined as follows: 

𝜎𝑡2 =   𝜔 + �𝛼𝑖𝑢𝑡−𝑖2

𝑝

𝑖=1

+ �𝛽𝑗𝜎𝑡−𝑗2

𝑝

𝑗=1

+ �𝛾𝑘𝐼𝑡−𝑘𝑢𝑡−𝑘2

𝑝

𝑗=𝑘

 

Exponential GARCH (EGARCH) 

In 1991 Nelson introduced the EGARCH model.  It is expressed at the log of the variance, 𝜎𝑡2, 

rather than directly in terms of the variance as is done for most GARCH processes.  The 

model differs a bit from the traditional GARCH process, most noticeably by having two terms 

that use a past value of a residual, 𝑢𝑡.  One of these terms is a absolute value, which assures 

that there is asymmetry in the log of the conditional variance as long as the parameter 𝛾 is not 

equal to zero.  The EGARCH(p,q,r) is expressed as follows: 

𝐿𝑜𝑔 (𝜎𝑡2) =   𝜔 + �𝛼𝑖
|𝑢𝑡−𝑖|
𝜎𝑡−𝑖

𝑝

𝑖=1

+ �𝛽𝑗 log(𝜎𝑡−𝑗2 )
𝑝

𝑗=1

+ �𝛾𝑘
𝑢𝑡−𝑘
𝜎𝑡−𝑘

𝑝

𝑗=𝑘

 

Asymmetric power GARCH (APARCH) 

The APARCH model was proposed by Ding, Granger and Engle in 1993. It allows for the 

estimation of the power parameter 𝛿  rather than imposing it. Furthermore it allows for 
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asymmetry in the estimates through the estimation of the parameter 𝛾𝑖. The APARCH model 

is presented as: 

𝜎𝑡𝛿 =   𝜔 + �𝛼𝑖(|𝑢𝑡−𝑖| − 𝛾𝑖𝑢𝑡−𝑖) 
𝑝

𝑖=1

+ �𝛽𝑗𝜎𝑡−𝑗𝛿

𝑝

𝑗=1

 

Here |𝛾𝑖| ≤ 1 and there cannot be more asymmetric terms then there are ARCH(p) terms. 

 

C. Detailed information on each series mean and variance equation  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Dependent Variable: SP500RETURN
Variable Coefficient Prob.  
C 0.000181 0.0868
SP500RETURN(-12) 0.028509 0.0271
SP500RETURN(-13) 0.046454 0.0005
Variance Equation Coefficient Prob.  
ω -0.263020 0.0000
α1 -0.094574 0.0099
α2 0.214735 0.0000
β1 -0.234653 0.0000
γ1 0.117842 0.0000
γ2 0.981632 0.0000
R-squared 0.000246     Mean dependent var 0.000272
Adjusted R-squared -0.000106     S.D. dependent var 0.011572
S.E. of regression 0.011572     Akaike info criterion -6.580423
Sum squared resid 0.760807     Schwarz criterion -6.569901
Log likelihood 18710.56     Hannan-Quinn criter. -6.576759
Durbin-Watson stat 2.135539

Dependent Variable: MIDCAPRETURN
Variable Coefficient Prob.  
C 0.000288 0.0107
MIDCAPRETURN(-1) 0.074118 0.0000
Variance Equation Coefficient Prob.  
ω 1.89E-06 0.0000
α1 -0.065762 0.0004
α2 0.074276 0.0002
β1 0.899490 0.0000
γ1 0.149301 0.0000
R-squared -0.005490     Mean dependent var 0.000357
Adjusted R-squared -0.005667     S.D. dependent var 0.012553
S.E. of regression 0.012588     Akaike info criterion -6.442728
Sum squared resid 0.903555     Schwarz criterion -6.434569
Log likelihood 18381.66     Hannan-Quinn criter. -6.439888
Durbin-Watson stat 2.142646
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Dependent Variable: SMALLCAPRETURN
Variable Coefficient Prob.  
C 0.000408 0.0003
SMALLCAPRETURN(-1) 0.087560 0.0000
Variance Equation Coefficient Prob.  
ω -0.011099 0.0000
α1 0.110014 0.0000
α2 -0.101931 0.0000
β1 -0.175943 0.0000
β2 0.173817 0.0000
γ1 1.894254 0.0000
γ2 -0.894788 0.0000
R-squared -0.009806     Mean dependent var 0.000370
Adjusted R-squared -0.009983     S.D. dependent var 0.013002
S.E. of regression 0.013067     Akaike info criterion -6.378819
Sum squared resid 0.973571     Schwarz criterion -6.368328
Log likelihood 18201.39     Hannan-Quinn criter. -6.375166
Durbin-Watson stat 2.196641

Dependent Variable: GOLDRETURN
Variable Coefficient Prob.  
C 5.37E-05 0.6254
GOLDRETURN(-12) -0.058778 0.0001
Variance Equation Coefficient Prob.  
ω -10.89809 0.0000
α1 0.256159 0.0000
α2 0.258917 0.0000
α3 0.270155 0.0000
α4 0.295778 0.0000
α5 0.269943 0.0000
α6 0.222673 0.0000
α7 0.213191 0.0000
α8 0.199020 0.0000
α9 0.174998 0.0005
R-squared 0.000454     Mean dependent var 0.000232
Adjusted R-squared 0.000278     S.D. dependent var 0.010154
S.E. of regression 0.010153     Akaike info criterion -6.553823
Sum squared resid 0.585818     Schwarz criterion -6.539795
Log likelihood 18641.24     Hannan-Quinn criter. -6.548938
Durbin-Watson stat 2.001451
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D. the Q statistics and the corresponding probability values for those models  
 

 

 
E. Eviews code for the  DCC and AG-DCC model 

 
The code that we used is based on a code for an A-DCC model, which was retrieved from 
a thread called “Dynamic conditional correlation multivariate GARCH” and was posted in 
2011.  We then modified that code from a scalar model to a bivariate model. 
 

'DCC Model by Cappiello et al (2006) Bivariate (A AG-DCC model without the G terms). 
 
'Load workfile and measure length of series 
series obscount = 1 
scalar obslength = @sum(obscount) 
 
'Specify the return series 
series y1 = goldreturn  
series y2 = smallcapreturn 
 
'Specify the number of iterations in the MLE (Engle & Sheppard (2001) used just one iteration) 
!itermle = 1000 
 

Ljung-Box test for autocorrelation in standardized residuals
Series Nr of Lags Q Statistic* P-value Q Statistic** P-value
Gold return 1 0.6202 0.431 1.8625 0.172

5 3.9939 0.550 2.8248 0.727
10 13.841 0.180 40.079 0.000
15 18.221 0.251 112.92 0.000
20 28.127 0.106 141.12 0.000
25 36.164 0.069 237.74 0.000

S&P500 return 1 1.8478 0.174 0.0377 0.846
5 9.8394 0.080 2.8205 0.728
10 17.956 0.056 6.3390 0.786
15 19.971 0.173 9.5977 0.844
20 26.492 0.150 10.382 0.961
25 29.309 0.251 11.272 0.992

Mid Cap return 1 0.0001 0.992 0.3642 0.546
5 4.6583 0.459 2.7930 0.732
10 9.4369 0.491 5.2749 0.872
15 19.519 0.191 8.3950 0.907
20 24.017 0.242 10.614 0.956
25 26.369 0.388 13.087 0.975

Small Cap return 1 0.0860 0.769 0.1108 0.739
5 1.4443 0.919 3.8794 0.567
10 5.4303 0.861 6.0030 0.815
15 18.718 0.227 7.7858 0.932
20 22.103 0.335 10.859 0.950
25 26.924 0.360 12.239 0.985

*Standardized Residual
**Standardized Residual Squared
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'Specify the initial values of the parameters 
coef(1) a11 
coef(1) a12 
coef(1) a22 
coef(1) b11 
coef(1) b12 
coef(1) b22 
 
'Values may vary depending on which will result in the highest Likelihood value 
a11(1) = 0.35 
a12(1) = 0.35 
a22(1) = 0.35 
b11(1) = 0.1 
b12(1) = 0.1 
b22(1) = 0.1 
 
'Setting the sample 
sample s0    @first+13 @last 
sample s1    @first+14 @last 
sample sf    @first+15 @last 
sample sf_alt   @first+15 @last 
 
'Initialization at sample s0 
smpl s0 
 
'Each return series is modeled with their respective GARCH specifications: 
'Use Bollerslev-Wooldridge QML 
'Standard errors 
 
equation eq1.arch(9,0,asy=0, egarch,m=1000,c=1e-5,h) y1 c y1(-12) 'res_s11_1000 @ res_s11_1000 
equation eq2.arch(2,2,asy=2, egarch,m=1000,c=1e-5,h) y2 c y2(-1) 'res_s22_1000 @ res_s22_1000 
 
'Make residual series   -- This is Ut 
eq1.makeresids e1 
eq2.makeresids e2 
 
'Make a garch series from the univariate estimates 
eq1.makegarch h11 
eq2.makegarch h22 
 
'Normalizing the residuals from e to e* (named as "e1n" and "e2n")   -- Here we change from Ut to epsilon t.  
series e1n = e1/h11^0.5 
series e2n = e2/h22^0.5 
 
'Make residual series for asymmetries in DCC model 
series n1n = @recode(e1n<0,e1n*e1n,0) 
series n2n = @recode(e2n<0,e2n*e2n,0) 
 
'The Q_bar=E[en*en'] components and its sample equivalent  
series qbar11 = @mean(e1n*e1n) 
series qbar12 = @mean(e1n*e2n) 
series qbar21 = @mean(e2n*e1n) 
series qbar22 = @mean(e2n*e2n) 
 
'The N_bar 
series nbar11 = @mean(n1n*n1n) 
series nbar12 = @mean(n1n*n2n) 
series nbar21 = @mean(n2n*n1n) 
series nbar22 = @mean(n2n*n2n) 
 
'Initialize the elements of Qt for variance targeting 
series q11 = @var(e1) 
series q12 = @cov(e1,e2) 
series q21 = @cov(e2,e1) 
series q22 = @var(e2) 
 
'*********************************************************************************************** 
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'Declare a Loglikelihood object 
logl dcc 
dcc.append @logl logl 
 
'The elements of matrix Qt 
dcc.append  q11 = qbar11- ((a11(1)*qbar11 + a12(1)*qbar12)*a11(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a12(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b11(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b12(1)) + (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a11(1)+e2n(-1)*a12(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b11(1) + (b11(1)*q12(-1) 
+b12(1)*q22(-1))*b12(1)) 
dcc.append  q12 = qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1))+ (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) 
+b12(1)*q22(-1))*b22(1)) 
dcc.append  q21 = qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1)) + (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) 
+b12(1)*q22(-1))*b22(1)) 
dcc.append  q22 = qbar22- ((a12(1)*qbar11 + a22(1)*qbar12)*a12(1) + (a12(1)*qbar12 +a22(1)*qbar22)*a22(1)) - 
((b12(1)*qbar11 + b22(1)*qbar12)*b12(1) + (b12(1)*qbar12 +b22(1)*qbar22)*b22(1)) + (a12(1)*e1n(-1) + 
a22(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b12(1)*q11 + b22(1)*q12(-1))*b12(1) + (b12(1)*q12(-1) 
+b22(1)*q22(-1))*b22(1)) 
 
'As input to detQQQ 
dcc.append  q12n = (qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 
+a12(1)*qbar22)*a22(1)) - ((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1))+ 
(a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + 
(b11(1)*q12(-1) +b12(1)*q22(-1))*b22(1)))/((abs(q11)^0.5)*(abs(q22)^0.5)) 
dcc.append  q21n = (qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 
+a12(1)*qbar22)*a22(1)) - ((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1))+ 
(a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + 
(b11(1)*q12(-1) +b12(1)*q22(-1))*b22(1))) /((abs(q22)^0.5)*(abs(q11)^0.5)) 
 
'Setting up the Loglikelihood function, assuming that resid ~ N(0,H)  
 
'The Loglikelihood function is L' = -0.5*{summation from t=1 to T of ([log of determinant of 
inverse(diag[Qt])*Qt*inverse(diag[Qt])] + [en'*inverse(diag[Qt])*Qt*inverse(diag[Qt])*en]) 
 
'Taking the adjoint{inverse(diag[Qt])*Qt*inverse(diag[Qt])} 
dcc.append  detQQQ = 1 - q12n*q21n 
 
'Tomando el adjoint{inverse(diag[Qt])*Qt*inverse(diag[Qt])} 
dcc.append  cofact11 =   1*1 
dcc.append  cofact12 =(-1)*q21n 
dcc.append  cofact21 =(-1)*q12n 
dcc.append  cofact22 =   1*1 
 
'Taking the inverse{inverse(diag[Qt])*Qt*inverse(diag[Qt])} 
dcc.append  invQQQ11 = cofact11/detQQQ 
dcc.append  invQQQ12 = cofact12/detQQQ 
dcc.append  invQQQ21 = cofact21/detQQQ 
dcc.append  invQQQ22 = cofact22/detQQQ 
 
'Taking the en'*inverse{inverse(diag[Qt])*Qt*inverse(diag[Qt])}*en 
dcc.append  enQQQen11 = e1n*invQQQ11*e1n 
dcc.append  enQQQen12 = e1n*invQQQ12*e2n 
dcc.append  enQQQen21 = e2n*invQQQ21*e1n 
dcc.append  enQQQen22 = e2n*invQQQ22*e2n 
 
'Append the loglikelihood function 
'Instead of log(detQQQ) use log(abs(detQQQ)) 
dcc.append logl = -0.5*(log(abs(detQQQ)) + (enQQQen11+enQQQen21+ enQQQen12+enQQQen22)  -(e1n^2 + 
e2n^2 + 2*e1n*e2n)) 
 
'Specifies the sample data where the estimation will be made 
smpl sf 
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'Estimates the parameters now using BHHH algorithm 
dcc.ml(b, showopts, m=!itermle, c=1e-5)  
 
'A detQQQnpd = 0 indicates detQQQ is positive definite 
series count = (detQQQ<=0) 
scalar detQQQnpd = @sum(count) 
 
'Display the estimated parameters 
show dcc.output 
 
'Forecast the q's by initializing them 
series  q11f = 0 
series  q12f = 0 
series  q21f = 0 
series  q22f = 0 
 
'Specify the sample period to be forecasted 
smpl sf 
series  q11f = qbar11- ((a11(1)*qbar11 + a12(1)*qbar12)*a11(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a12(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b11(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b12(1)) + (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a11(1)+e2n(-1)*a12(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b11(1) + (b11(1)*q12(-1) 
+b12(1)*q22(-1))*b12(1)) 
series  q12f = qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1))+ (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) 
+b12(1)*q22(-1))*b22(1)) 
series  q21f = qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1))+ (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) 
+b12(1)*q22(-1))*b22(1)) 
series  q22f = qbar22- ((a12(1)*qbar11 + a22(1)*qbar12)*a12(1) + (a12(1)*qbar12 +a22(1)*qbar22)*a22(1)) - 
((b12(1)*qbar11 + b22(1)*qbar12)*b12(1) + (b12(1)*qbar12 +b22(1)*qbar22)*b22(1)) + (a12(1)*e1n(-1) + 
a22(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + ((b12(1)*q11 + b22(1)*q12(-1))*b12(1) + (b12(1)*q12(-1) 
+b22(1)*q22(-1))*b22(1)) 
 
'To plot the time-varying conditional correlation 
smpl sf_alt 
series rt = q12f/(@sqr(q11f)*@sqr(q22f)) 
graph rtgraph.line rt 
rtgraph.axis(1) range(-0.7,0.7) 
show rtgraph 
 
delete e1n e2n 
delete q12n q21n 
delete n1n n2n 
delete qbar* 
delete xbar* 
delete cofact* 
delete enqqqen* 
delete invqqq* 
delete enqqqen* 
delete eigenvect* 
delete invqqq* 
 
show detqqqnpd 
 
series eigmins 
scalar eigmin 
 
 
 
'AG-DCC Model by Cappiello et al (2006) Bivariate 
 
'Load workfile and measure length of series 
series obscount = 1 
scalar obslength = @sum(obscount) 
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'Specify the return series 
series y1 = goldreturn 
series y2 = smallcapreturn 
 
'Specify the number of iterations in the MLE (Engle & Sheppard (2001) used just one iteration) 
!itermle = 1000 
 
'Specify the initial values of the parameters 
coef(1) a11 
coef(1) a12 
coef(1) a22 
coef(1) b11 
coef(1) b12 
coef(1) b22 
coef(1) g11 
coef(1) g12 
coef(1) g22 
 
'Values may vary depending on which will result in the highest Likelihood value 
a11(1) = 0.35 
a12(1) = 0.35 
a22(1) = 0.35 
b11(1) = 0.1 
b12(1) = 0.1 
b22(1) = 0.1 
g11(1) = 0.1 
g12(1) = 0.1 
g22(1) = 0.1 
 
 
'Setting the sample 
sample s0    @first+13 @last 
sample s1    @first+14 @last 
sample sf    @first+15 @last 
sample sf_alt   @first+15 @last 
 
'Initialization at sample s0 
smpl s0 
 
'Each return series is modeled with their respective GARCH specifications: 
'Use Bollerslev-Wooldridge QML 
'Standard errors 
 
equation eq1.arch(9,0,asy=0, egarch,m=1000,c=1e-5,h) y1 c y1(-12) 'res_s11_1000 @ res_s11_1000 
equation eq2.arch(2,2,asy=2, egarch,m=1000,c=1e-5,h) y2 c y2(-1) 'res_s22_1000 @ res_s22_1000 
 
'Make residual series   -- This is Ut 
eq1.makeresids e1 
eq2.makeresids e2 
 
'Make a garch series from the univariate estimates 
eq1.makegarch h11 
eq2.makegarch h22 
 
'Normalizing the residuals from e to e* (named as "e1n" and "e2n")   -- Here we change from Ut to epsilon t.  
series e1n = e1/h11^0.5 
series e2n = e2/h22^0.5 
 
'Make residual series for asymmetries in DCC model 
series n1n = @recode(e1n<0,e1n,0) 
series n2n = @recode(e2n<0,e2n,0) 
 
'The Q_bar=E[en*en'] components and its sample equivalent  
series qbar11 = @mean(e1n*e1n) 
series qbar12 = @mean(e1n*e2n) 
series qbar21 = @mean(e2n*e1n) 
series qbar22 = @mean(e2n*e2n) 
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'The N_bar 
series nbar11 = @mean(n1n*n1n) 
series nbar12 = @mean(n1n*n2n) 
series nbar21 = @mean(n2n*n1n) 
series nbar22 = @mean(n2n*n2n) 
 
'Initialize the elements of Qt for variance targeting 
series q11 = @var(e1) 
series q12 = @cov(e1,e2) 
series q21 = @cov(e2,e1) 
series q22 = @var(e2) 
 
'*********************************************************************************************** 
 
'Declare a Loglikelihood object 
logl dcc 
dcc.append @logl logl 
 
'The elements of matrix Qt 
dcc.append  q11 = qbar11- ((a11(1)*qbar11 + a12(1)*qbar12)*a11(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a12(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b11(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b12(1)) - ((g11(1)*nbar11 + 
g12(1)*nbar12)*g11(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g12(1)) + (a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-
1)*a11(1)+e2n(-1)*a12(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g11(1)+n2n(-1)*g12(1)) + ((b11(1)*q11(-
1) + b12(1)*q12(-1))*b11(1) + (b11(1)*q12(-1) +b12(1)*q22(-1))*b12(1)) 
dcc.append  q12 = qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1)) - ((g11(1)*nbar11 + 
g12(1)*nbar12)*g12(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g22(1)) + (a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-
1)*a12(1)+e2n(-1)*a22(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-1)*g22(1)) + ((b11(1)*q11(-
1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) +b12(1)*q22(-1))*b22(1)) 
dcc.append  q21 = qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1)) - ((g11(1)*nbar11 + 
g12(1)*nbar12)*g12(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g22(1)) + (a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-
1)*a12(1)+e2n(-1)*a22(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-1)*g22(1)) + ((b11(1)*q11(-
1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) +b12(1)*q22(-1))*b22(1)) 
dcc.append  q22 = qbar22- ((a12(1)*qbar11 + a22(1)*qbar12)*a12(1) + (a12(1)*qbar12 +a22(1)*qbar22)*a22(1)) - 
((b12(1)*qbar11 + b22(1)*qbar12)*b12(1) + (b12(1)*qbar12 +b22(1)*qbar22)*b22(1)) - ((g12(1)*nbar11 + 
g22(1)*nbar12)*g12(1) + (g12(1)*nbar12 +g22(1)*nbar22)*g22(1)) + (a12(1)*e1n(-1) + a22(1)*e2n(-1))*(e1n(-
1)*a12(1)+e2n(-1)*a22(1)) + (g12(1)*n1n(-1) + g22(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-1)*g22(1)) + ((b12(1)*q11 + 
b22(1)*q12(-1))*b12(1) + (b12(1)*q12(-1) +b22(1)*q22(-1))*b22(1)) 
 
'As input to detQQQ 
dcc.append  q12n = (qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 
+a12(1)*qbar22)*a22(1)) - ((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1)) - 
((g11(1)*nbar11 + g12(1)*nbar12)*g12(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g22(1)) + (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-
1)*g22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) +b12(1)*q22(-
1))*b22(1)))/((abs(q11)^0.5)*(abs(q22)^0.5)) 
dcc.append  q21n = (qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 
+a12(1)*qbar22)*a22(1)) - ((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1)) - 
((g11(1)*nbar11 + g12(1)*nbar12)*g12(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g22(1)) + (a11(1)*e1n(-1) + 
a12(1)*e2n(-1))*(e1n(-1)*a12(1)+e2n(-1)*a22(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-
1)*g22(1)) + ((b11(1)*q11(-1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) +b12(1)*q22(-
1))*b22(1)))/((abs(q22)^0.5)*(abs(q11)^0.5)) 
 
'Setting up the Loglikelihood function, assuming that resid ~ N(0,H)  
 
'The Loglikelihood function is L' = -0.5*{summation from t=1 to T of ([log of determinant of 
inverse(diag[Qt])*Qt*inverse(diag[Qt])] + [en'*inverse(diag[Qt])*Qt*inverse(diag[Qt])*en]) 
 
'Taking the adjoint{inverse(diag[Qt])*Qt*inverse(diag[Qt])} 
dcc.append  detQQQ = 1 - q12n*q21n 
 
'Tomando el adjoint{inverse(diag[Qt])*Qt*inverse(diag[Qt])} 
dcc.append  cofact11 =   1*1 
dcc.append  cofact12 =(-1)*q21n 
dcc.append  cofact21 =(-1)*q12n 
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dcc.append  cofact22 =   1*1 
 
'Taking the inverse{inverse(diag[Qt])*Qt*inverse(diag[Qt])} 
dcc.append  invQQQ11 = cofact11/detQQQ 
dcc.append  invQQQ12 = cofact12/detQQQ 
dcc.append  invQQQ21 = cofact21/detQQQ 
dcc.append  invQQQ22 = cofact22/detQQQ 
 
'Taking the en'*inverse{inverse(diag[Qt])*Qt*inverse(diag[Qt])}*en 
dcc.append  enQQQen11 = e1n*invQQQ11*e1n 
dcc.append  enQQQen12 = e1n*invQQQ12*e2n 
dcc.append  enQQQen21 = e2n*invQQQ21*e1n 
dcc.append  enQQQen22 = e2n*invQQQ22*e2n 
 
'Append the loglikelihood function 
'Instead of log(detQQQ) use log(abs(detQQQ)) 
dcc.append logl = -0.5*(log(abs(detQQQ)) + (enQQQen11+enQQQen21+ enQQQen12+enQQQen22)  -(e1n^2 + 
e2n^2 + 2*e1n*e2n)) 
 
'Specifies the sample data where the estimation will be made 
smpl sf 
 
'Estimates the parameters now using BHHH algorithm 
dcc.ml(b, showopts, m=!itermle, c=1e-5)  
 
'A detQQQnpd = 0 indicates detQQQ is positive definite 
series count = (detQQQ<=0) 
scalar detQQQnpd = @sum(count) 
 
'Display the estimated parameters 
show dcc.output 
 
'Forecast the q's by initializing them 
series  q11f = 0 
series  q12f = 0 
series  q21f = 0 
series  q22f = 0 
 
'Specify the sample period to be forecasted 
smpl sf 
series  q11f = qbar11- ((a11(1)*qbar11 + a12(1)*qbar12)*a11(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a12(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b11(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b12(1)) - ((g11(1)*nbar11 + 
g12(1)*nbar12)*g11(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g12(1)) + (a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-
1)*a11(1)+e2n(-1)*a12(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g11(1)+n2n(-1)*g12(1)) + ((b11(1)*q11(-
1) + b12(1)*q12(-1))*b11(1) + (b11(1)*q12(-1) +b12(1)*q22(-1))*b12(1)) 
series  q12f = qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1)) - ((g11(1)*nbar11 + 
g12(1)*nbar12)*g12(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g22(1)) + (a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-
1)*a12(1)+e2n(-1)*a22(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-1)*g22(1)) + ((b11(1)*q11(-
1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) +b12(1)*q22(-1))*b22(1)) 
series  q21f =qbar12- ((a11(1)*qbar11 + a12(1)*qbar12)*a12(1) + (a11(1)*qbar12 +a12(1)*qbar22)*a22(1)) - 
((b11(1)*qbar11 + b12(1)*qbar12)*b12(1) + (b11(1)*qbar12 +b12(1)*qbar22)*b22(1)) - ((g11(1)*nbar11 + 
g12(1)*nbar12)*g12(1) + (g11(1)*nbar12 +g12(1)*nbar22)*g22(1)) + (a11(1)*e1n(-1) + a12(1)*e2n(-1))*(e1n(-
1)*a12(1)+e2n(-1)*a22(1)) + (g11(1)*n1n(-1) + g12(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-1)*g22(1)) + ((b11(1)*q11(-
1) + b12(1)*q12(-1))*b12(1) + (b11(1)*q12(-1) +b12(1)*q22(-1))*b22(1)) 
series  q22f = qbar22- ((a12(1)*qbar11 + a22(1)*qbar12)*a12(1) + (a12(1)*qbar12 +a22(1)*qbar22)*a22(1)) - 
((b12(1)*qbar11 + b22(1)*qbar12)*b12(1) + (b12(1)*qbar12 +b22(1)*qbar22)*b22(1)) - ((g12(1)*nbar11 + 
g22(1)*nbar12)*g12(1) + (g12(1)*nbar12 +g22(1)*nbar22)*g22(1)) + (a12(1)*e1n(-1) + a22(1)*e2n(-1))*(e1n(-
1)*a12(1)+e2n(-1)*a22(1)) + (g12(1)*n1n(-1) + g22(1)*n2n(-1))*(n1n(-1)*g12(1)+n2n(-1)*g22(1)) + ((b12(1)*q11 + 
b22(1)*q12(-1))*b12(1) + (b12(1)*q12(-1) +b22(1)*q22(-1))*b22(1)) 
 
'To plot the time-varying conditional correlation 
smpl sf_alt 
series rt = q12f/(@sqr(q11f)*@sqr(q22f)) 
graph rtgraph.line rt 
rtgraph.axis(1) range(-0.7,0.7) 
show rtgraph 
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delete e1n e2n 
delete q12n q21n 
delete n1n n2n 
delete qbar* 
delete xbar* 
delete cofact* 
delete enqqqen* 
delete invqqq* 
delete enqqqen* 
delete eigenvect* 
delete invqqq* 
 
show detqqqnpd 
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