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Abstract

The formation of smooth quasi-periodic patterns in static discrete
reaction-diffusion systems of various kinds is here studied from a mathe-
matical point of view. The regularity of the patterns can be attributed
to the integrability of the system, so that, when searching for such pat-
terns in a system, it is important to investigate whether or not there exist
any conserved quantities. The work presented herein is an attempt to
generalize a known method, which finds a mathematical representation
of the reaction mechanisms allowing for a conserved quantity in the one-
dimensional one-species case. It is shown that although the method does
not generalize to higher spatial dimensionality, it is possible to generalize
to an arbitrary number of species in one dimension, where the reaction
mechanism is a generalization of that found in the known method. A
fixed-point relation for the system is found and analyzed for an arbitrary
number of species, whereas the stabilities and other characteristics of the
fixed-points are studied for the two-species case. Numerical simulations
show that quasi-periodic patterns indeed can exist along the spatial di-
mension of the two-species system, and have characteristics that agree
with the developed theory. The stabilities in time of these patterns are
unclear, since a static case of the reaction-diffusion dynamics is studied.
It should be noted that the static case investigated is not uniquely defined
by reaction-diffusion dynamics, so that the patterns, if stable, might be
found so under some dynamics other than reaction-diffusion.
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1 Introduction

The structure of a pine cone and the stripes of a zebra are but two forms of what
is commonly referred to as a pattern. The fact that patterns, to a high degree,
are omnipresent in nature, has inspired many scientists to investigate the phe-
nomenon of pattern generation. An example of such a scientist is Alan Turing
with his work regarding pattern formation in so-called reaction-diffusion sys-
tems [4]. A reaction-diffusion system is a system where, e.g., chemical reactants
are allowed to both diffuse and undergo chemical reactions with each other. The
whole system can thus be described by a set of coupled reaction formulas, and
Turing showed that the emergence of patterns depends on, among other things,
the ratio between the substances’ respective diffusion constants. Also, when the
study of non-linear dynamics was further developed, it was possible to under-
stand, for instance, the perplexing results of Belousov and Zhabotinsky, where
in a chemical reaction, the BZ-reaction (named after its discoverers), oscillating
patterns were observed to emerge.

Today, much research is done about plant phyllotaxis, i.e. the arrangements of
plant organs, because the apparent patterns there are intriguing. An example
of these intriguing patterns is that of the pine cone, where the Fibonacci series
can be found when the spiral structure is investigated more closely. Due to the
chemical nature of the growth process of a plant, reaction-diffusion systems are
studied in particular. It is thought that the hormone auxin is one of the key
components in such growth, so several models for the transport of this substance
have been presented, see for example [2]. These biological scenarios are all ruled
by the underlying mathematics, and the aim of this thesis is to investigate from
a mathematical point of view the formation of patterns, and their characteris-
tics, in discrete reaction-diffusion systems of different dimensionality and more
general character.

1.1 A mathematical description

As the name suggests, a reaction-diffusion system should be possible to de-
scribe by a modified diffusion equation, where the modification incorporates
the reaction mechanism. The diffusion equation for the variable1 u = u(x, t),
where x = (x1, . . . , xn) is position in n-dimensional space and t is time, can in
dimensionless variables be written

∂u

∂t
= ∇2u (1)

where ∇2 =
∑n
i=1

∂2

∂x2
i

is the Laplace operator. Now, adding the term F (u),

representing the sought reaction mechanism, yields the reaction-diffusion equa-
tion

∂u

∂t
= ∇2u+ F (u) (2)

For convenience, reaction-diffusion will in this report be abbreviated as RD.

1This variable might e.g. represent a concentration distribution.
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If the function u is interpreted as that which can give rise to patterns in the
system, e.g. as the concentration of auxin in a plant, the above equation can
be further simplified. Patterns should be constant in time, so, if such are to
form, then the partial time derivative of u in the RD-equation must vanish,
thus giving the static RD-equation

0 = ∇2u+ F (u) (3)

Discretizing space into an n-dimensional lattice, gives the discretized RD-equation

0 =
∑
j∈ξ(i)

uj − f (ui) (4)

where ui is the variable at lattice point i, ξ(i) is the set of all nearest neighbors of
point i, and f(ui) is the discretized version of F (u) together with the discretized
parts of ∇2u not depending on nearest neighbors. (For a derivation of this
equation, see app. A). As an example, for one dimension this equation becomes

0 = ui+1 + ui−1 − f (ui) ≡ u+ + u− − f(u) (5)

where a relative notation has been defined for convenience. u± are in this nota-
tion the nearest neighbors of u ≡ ui, where ± indicates whether the neighboring
point is in a positive or negative direction, i.e. i± 1.

In a conservative system, i.e. a system in which some quantity is conserved,
patterns are particularly smooth and quasi-periodic, and thus different from
patterns displaying e.g. chaotic behaviour [3]. The question is thus what f(u)
can look like for the system to obtain this property, and whether or not there
are more than only one such conserved quantity. For the one-dimensional case,
Söderberg [3] managed to find a family of functions f that allow for a conserved
quantity. His method is reviewed in sec. 2, and forms the starting point of this
project.

The goal is to see if it is possible to generalize the method to a higher number of
independent variables (i.e., spatial dimensions) or a higher number of dependent
variables (i.e. to make u a vector), and, if so, perform computer simulations to
verify it. Increasing the number of dependent variables can be seen as looking
at several chemical species reacting and diffusing in the system. One way to
try to generalize the method for such many-species systems, would be to study
whether or not conserved quantities can be found when f(u) is some generalized
vector field of the function found for the one-dimensional one-species case. The
RD-equation for such a one-dimensional many-species system can be written,
with a notation that is an obvious extension of that described earlier,

u+ + u− = f(u) (6)

Throughout the report, the word dimension will refer to lattice dimension and
the number of components and species will be used interchangeably for the
number of components of the vector u.
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1.2 Structure

The report is divided into several sections, each of which may contain subsec-
tions. Because of the theoretical nature of the project, there are two theory
sections: the first, called The theoretical background (sec. 2), presenting
the general theory and Söderberg’s method of solving the one-dimensional prob-
lem for one species, and the second, called The theoretical analysis (sec. 3),
presenting the theoretical results obtained. After this, there is a section called
Results and discussion (sec. 4), in which simulations are presented and ana-
lyzed. The last section, Summary (sec. 5), gives a brief summary of the work
and speculations about what can be done in the future.

2 The theoretical background

This section is divided into two subsections. The first of these presents the
general formulation of the problem for one species in a detailed manner, along
with a few side-comments about that for an arbitrary number of species, whereas
the second shows the known solution for the one-dimensional one-species case.

2.1 A general formulation of the problem

An RD-system for a single species at steady-state (∂tu = 0) can, as was shown
in the introduction, be described by one of the equations

0 = ∇2u+ F (u) (i)

0 =
∑
j∈ξ(i) uj − f(ui) (ii)

(7)

where (i) is for the continuous case and (ii) for the discrete case. These equations
are throughout this section referred to as the equations of motion (EoM), even
though the true equations of motion should be non-static, i.e. with ∂tu in the
left-hand side.

A side-note is now in place: A Newtonian system with d degrees of freedom, i.e.
a system on the form ẍ = G(x) (where x is a d-component position vector),
can be rewritten as a Hamiltonian system of 2d variables (because a momentum
vector p = mẋ has been defined). As should be noted, all of the d degrees of
freedom depend on only one variable: time. The Newtonian mechanics hence
define a flow in the 2d-dimensional so called phase space spanned by the vari-
ables {xi, pi}i∈{1,2, ... ,d}, see e.g. [1]. Now, there is an analogy between such
systems and some of the RD-systems studied: the independent variables in
the RD-system represent the dimensions of the lattice (analogous to time in
the Newtonian system), whereas the dependent variables represent the different
species (analogous to the position vector components in the Newtonian sys-
tem), and if the RD-system studied is one-dimensional with N species, then the
2N -dimensional phase space and the trajectories therein can be investigated2.

2This is helpful since phase space contains much information, one example being the pos-
sibility to see whether or not conservation is possible from just the behaviours of trajectories.
This will be discussed more thoroughly later in the report.
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Now, the continuous system shows some interesting features which can be helpful
when analyzing the discrete one. Therefore, the continuous case is reviewed first.

2.1.1 A continuous system

One way to obtain a smooth quasi-periodic pattern in a system3, is to have
some conserved quantity [3]. Conservation means that there must exist some
non-trivial current j satisfying

0 = ∇ · j =

n∑
i=1

∂iji (8)

where ∂i ≡ ∂
∂xi

and j = (j1, . . . jn). This can be seen as a Kirchhoff law, i.e.,
the sum of the flow in and out of each point must equal zero.

Now, if there exist several4, m ≤ n, say, conserved currents
{
j(l)
}m
l=1

, there must
be such a law for each l. For so-called Noether-currents, this conservation law
can be shown to be,

∇ · j(l) = ∂lu · (EoM) (9)

for dimensions {l} [3]. Conserved Noether-currents can be found in systems
with certain symmetries (as an example, a rotational symmetry corresponds to
conservation of angular momentum and a translational symmetry to conserva-
tion of momentum). It is interesting to see whether or not such conservation
laws are possible in an RD-system.

To investigate this, now assume that the function F from the EoM can be
written as the derivative with respect to u of a potential V (u) (with a minus
sign), so that the EoM becomes

0 = ∇2u− dV

du
(10)

Now consider translation symmetric and independent coordinate xi. This leads
to

0 = ∂iu ·
(
∇2u− dV

du

)
= ∂iu ·

 n∑
j=1

∂2u

∂x2
j

− dV

du

 (11)

However, this expression can be further simplified to

0 = ∂i

1

2
(∂iu)

2 − V (u)− 1

2

∑
j 6=i

(∂ju)
2

+
∑
j 6=i

∂j (∂iu · ∂ju) =

= ∇ ·

∂1u · ∂iu , . . . ,
1

2
(∂iu)

2 − V (u)− 1

2

∑
j 6=i

(∂ju)
2
, . . . , ∂nu · ∂iu

 ≡
≡ ∇ · J(i) (12)

3The system is assumed, as before, to be n-dimensional, with spatial dimensions
{xi}i∈{1,...,n}

4Actually, it can be shown that, for a continuous system with a Lagrangian without explicit
time-dependence, m must equal n. However, because of the analysis of the discrete system
following shortly, let m still not necessarily equal n.
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where in the last step the conserved Noether-current, J(i), has been defined5. If

the conserved quantity for one of the dimensions is defined as J(k) =
(
j

(k)
1 , . . . , j

(k)
n

)
,

then the above conservation gives the requirement

0 = ∇ · J(k) =

n∑
i=1

∂ij
(k)
i (13)

which is the sought Kirchhoff law. Therefore, under some assumptions it is
possible to find conserved quantities in continuous RD-systems.

2.1.2 A discrete system

Now that the continuous system has been analyzed, the discrete one is easily
investigated. If there are to be m conserved quantities when the n-dimensional
system is discretized, discretized versions of the Kirchhoff law above must be
obeyed. Thus, in the same notation as above, with the derivatives ∂ changed
to differences ∆, equations of the form

0 =

n∑
i=1

∆i j
(l)
i (k) (14)

must be satisfied at each lattice point k = (k1, k2, . . . , kn) for all m dimensions

{l}. Here, ∆i j
(l)
i (k) ≡ j

(l)
i (k + ei) − j

(l)
i (k) ≡ j

(l)
i (k1, . . . , ki + 1, . . . , kn) −

j
(l)
i (k1, k2, . . . , kn), or, in other words, it subtracts the value of j

(l)
i at point k

from its value at point k + ei, i.e. the same point one step ahead in direction i.

As an example, consider a one-dimensional system. Discretize space into a line

where the position on the line is denoted by k. Defining j
(l)
1 (k) ≡ j(k) as a flux

between points k−1 and k, and ∆1 j(k) ≡ j(k+1)− j(k) gives the requirement

0 = j(k + 1)− j(k) (15)

This really is a Kirchhoff law, since the flux between points k + 1 and k must
equal that between k and k − 1 (the negative sign comes from the direction of
the flux) so that no net ”charge” piles up at point k.

For the RD-system, look at the quantity u defined earlier. The EoM for the
discrete system of n dimensions is

0 =
∑
j∈ξ(i)

uj − f (ui) (16)

Now, in analogy with the continuous case, conserved quantities
{
J(l)
}

are
sought. The maximum number6 of independent conserved quantities in a sys-
tem is equal to the number of degrees of freedom [3], and if all of them exist,
the system is said to be integrable [1].

5In a more compact notation the Noether-current can be written as J
(i)
k = ∂iu ∂ju −

δik

(
1
2

∑
l (∂lu)2 + V (u)

)
, where δik is the Kronecker delta.

6Ignoring the trivial cases, that is.
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Conservation for the one-dimensional system of one species

Also for a discrete system, a phase space can be defined. As an example, the
EoM for a one-dimensional system of one species can be written, in a relative
notation,

0 = u+ + u− − f(u) (17)

which is a discrete Newtonian system. Defining u− ≡ t gives a mapping T2 :
R2 −→ R2, i.e. (u, t) 7→ (u+, t+), explicitly written as

T2 :

{
u+ = f(u)− t
t+ = u

(18)

and as can be seen, this is a discrete Hamiltonian system of two variables.
Therefore, phase space is two-dimensional and spanned by (u, t) = (u, u−), and
if there exists a conserved quantity, H(u, t), say, it must be conserved along
a trajectory in this space. That the quantity is conserved along a trajectory
requires that

H (u+, u) = H (u, u−) (19)

for all lattice points. The conserved quantity can be either symmetric or anti-
symmetric, but if only symmetric quantities are sought, H (u+, u) = H (u, u+)
must be satisfied for all lattice points.

A summary of the requirements on the sought conserved quantity in the one-
dimensional system therefore is:

1. Conservation means that an equation of the form 0 = ∆ 1j1(k), i.e. a
generalized discrete continuity equation, is fulfilled. This means that a
conserved quantity H satisfies 0 = ∆H ≡ H+−H, where the subscript +
is used in the same way as before.

2. The conserved quantities must be conserved along trajectories in the phase
space spanned by (u, u−) = (u, t).

3. The conserved quantities must be symmetric functions of their respective
arguments.

A side note on the higher-dimensional system of one species

In higher-dimensional systems the solutions are no longer one-dimensional tra-
jectories in phase space, since there is more than one independent variable.

Phase space characteristics for conservative systems of one dimension
and an arbitrary number of species

The phase space characteristics for discrete conservative systems is quite dif-
ferent from that of discrete dissipative systems, so a brief description of the
behavior that can be expected in the conservative case is in place. The reason
for this importance is, that in order to say whether or not there are conserved
quantities in the investigated RD-systems, the numerically created trajectories
must display certain characteristics7.

7The exact characteristics vary with phase space dimensionality, but these characteristics
are essential for all conservative systems.
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1. Types of fixed points under the mapping8: Phase space volume is constant,
i.e. there can be no pure attractors or repellers. Therefore, saddle-points
(often called hyperbolic fixed points) and centers (often called elliptic fixed
points) are the only options. That phase space volume is constant is
equivalent to the mapping’s Jacobian, J, satisfying9 det J = 1, which in
turn means that its eigenvalues, {λj}, satisfy

∏
j λj = 1 (see e.g. [1]).

2. Trajectories: The trajectories can be either periodic, quasi-periodic or
chaotic (see e.g. [1]).

3. Chaos: If there is chaotic behaviour in the system, the system is not
integrable (see e.g. [1]).

2.2 The known method for the one-dimensional system of
one species

Here, a brief overview of the existing method (see [3]) to find f(u) allowing for a
conserved quantity H(u, u−) is presented for the one-dimensional static discrete
RD-system of one species. Such a system is described by the EoM

u+ + u− = f(u) (20)

The conserved quantityH(u, u−) has to satisfyH(u+, u) = H(u, u−) = H(u−, u),
i.e., it has to be conserved and symmetric. Multiplying the EoM with the dis-
cretized derivative ∆u = (u+ − u−), in analogy with equation 9, gives

(u+ − u−)(u+ + u− − f(u)) = 0 (21)

Simplifying this expression and collecting terms of similar subscript on the same
side of the equality yields

u2
+ − u+f(u) = u2

− − u−f(u) (22)

It is possible to add an arbitrary function g(u) on both sides and multiply by
an arbitrary function h(u). Doing this gives

h(u)
(
u2

+ − u+f(u) + g(u)
)

= h(u)
(
u2
− − u−f(u) + g(u)

)
(23)

Now, assume that the arbitrary functions are such that the resultant expression,
because of the sought properties of H, becomes

H (u+, u) ≡ Au2
+u

2 −B
(
u2

+u+ u+u
2
)

+ C
(
u2

+ + u2
)

+Du+u− E (u+ + u) =

= Au2
−u

2 −B
(
u2
−u+ u−u

2
)

+ C
(
u2
− + u2

)
+Du−u− E (u− + u) ≡

≡ H (u, u−) (24)

where A, B, C, D and E are constants. Note that this equality is a conservation
law, symmetric in its arguments on the respective sides of the equality, hence
the definitions of H (u+, u) and H (u, u−). Redefining these as H+ ≡ H(u+, u)

8See eq. (44).
9This is easily checked for the mapping in eq. (18). Since phase space is two-dimensional,

the mapping is called area-preserving.
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and H ≡ H(u, u−), and then subtracting the right hand side from the left hand
side, gives a discretized derivative ∆H ≡ H+−H = 0 as was sought. It thus has
been shown that it in one dimension is possible to obtain a conserved quantity
along all trajectories in phase space. However, f(u) still remains to be found,
something which is easily done by rewriting the conservation law above. Putting
all terms of degree two in u± on the left hand side, and those of degree one on
the right hand side, gives(

u2
+ − u2

−
) (
Au2 −Bu+ C

)
=
(
u+ − u−)(Bu2 −Du+ E

)
(25)

Factorizing the difference of squares on the left, canceling mutual factors and
dividing by the second degree polynomial of the left hand side10 yields

u+ + u− =
Bu2 −Du+ E

Au2 −Bu+ C
≡ f(u) (26)

where the function f(u) has been defined in the last step. Note that one of the
constants, B, is present in both numerator and denominator. To conclude, a
conserved symmetric quantity was found for a family of functions {f}.

3 The theoretical analysis

In this section the novel theoretical work is presented. It is divided into two
parts, the first where the variable u is considered a scalar, and the second where
it is instead considered a vector.

3.1 The scalar field

Here, the variable u is assumed to be a scalar, i.e. the number of species
is equal to one. The section is divided into parts according to the different
dimensionalities of the systems analyzed.

3.1.1 Perturbing the one-dimensional system

As was shown earlier, a family of functions f(u) could be found along with cor-
responding conserved quantities for the one-dimensional system. Before going
on to higher dimensions it can be interesting to see what trajectories in phase
space look like for the one-dimensional case. Also, because of the relation be-
tween coefficients in the rational polynomial f , it is of particular interest to see
what happens to the dynamics if the relation is changed by some perturbation.
This can be done by letting a computer perform the iterated mapping

T2 :

{
u+ = f(u)− t
t+ = u

(27)

for both the unperturbed system and for the perturbed, and then plot the respec-
tive sets of trajectories in (u+, u), where in the mapping u− ≡ t. The perturbed

10This imposes the restriction that the constants A, B and C be chosen such that not all
three are zero at the same time.
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system then should show non-conservative behaviour, by e.g. displaying chaos.
The results of this are shown in app. C.

3.1.2 Two dimensions and higher

Now, consider the two-dimensional case. The EoM are thus, for the set of
nearest neighbours ξ(i),

0 =
∑
j∈ξ(i)

uj − f(ui) (28)

If the system is defined on a square lattice, i.e. each point has four nearest
neighbours, the sum consists of four terms for each point on the lattice. In
analogy with the x- and y-axes in the Cartesian plane, let the system be defined
in terms of two orthogonal coordinate axes, x1 analogous to x and x2 analogous
to y, so that u needs two labels to be defined. Let u −→ uij where i corresponds
to x1 and j to x2. The indices i, j ∈ Z, but for notational convenience, let i and
j be expressed in a relative notation by belonging to the set {−, 0,+}, i.e. for
each point the associated nearest neighbors are referred to in terms of positions
relative to the point itself (just like the index for the one-dimensional discrete
system). As a special case, let u00 ≡ u. This gives the EoM

0 = u+0 + u−0 + u0+ + u0− − f(u) (29)

Now, if the system is integrable there have to be two non-trivial constants of
the motion. These should be possible to derive from the Noether conservation
identities{

0 = ∇ · J(1) ≡ ∆1 j
(1)
1 + ∆2 j

(1)
2

?
= (u+0 − u−0) · (EoM)

0 = ∇ · J(2) ≡ ∆1 j
(2)
1 + ∆2 j

(2)
2

?
= (u0+ − u0−) · (EoM)

(30)

where the superscript m ∈ {1, 2} denotes which of the conserved quantities is

investigated, and J(m) = (j
(m)
1 , j

(m)
2 ). The question marks show that it is not

certain whether or not the equalities actually hold, rather that it is a guess
analogous to the continuous case (cf. equation 9). Because of the symmetry
of axis choice, it suffices to investigate one of the conserved quantities. For
conserved quantity 2 this becomes

0 = (u0+ − u0−) · (u+0 + u−0 + u0+ + u0− − f(u)) =

= u2
0+ − u2

0− + u0+u+0 + u0+u−0 − u0−u−0 − u0−u−0 +

−u0+f(u) + u0−f(u) (31)

Now assume that f(u) can be written as P (u)/Q(u), where P and Q are so far
arbitrary functions. The equation can now be multiplied by Q(u), yielding

0 = u2
0+Q(u)− u2

0−Q(u) + u0+u+0Q(u) + u0+u−0Q(u) +

−u0−u+0Q(u)− u0−u−0Q(u)− u0+P (u) + u0−P (u) (32)

This expression has to be possible to write as a sum of differences. Rearranging
the expression in terms of u0± gives

0 =
[
u2

0+Q(u) + u0+u+0Q(u) + u0+u−0Q(u)− u0+P (u)
]

+

+
[
−u2

0−Q(u)− u0−u+0Q(u)− u0−u−0Q(u) + u0−P (u)
]

(33)

11



What can now be noted is that if f(u) is linear11 in u, i.e. Q(u) can be cho-
sen as constant and P (u) ∼ u, then the expression can be written as a sum
of differences, by adding and subtracting convenient terms, i.e. a symmetric
conservation law exists, as sought. However, if f(u) is assumed to be written
as a polynomial fraction this is impossible. The problem arises with the terms
u0±u±0Q(u) (over all combinations of ±), to which no terms can be added and
subtracted to give the sought property of the equation. For a cubic lattice in
three dimensions the result must be the same.

This means that it is impossible to generalize the one-dimensional method for
non-linear f to higher spatial dimensionality.

3.2 The vector field

Because of the impossibility of generalizing the one-dimensional method for one
species to higher dimensions, now consider the case u −→ u, i.e. let u instead
be an N -component vector u, still, however, on a one-dimensional lattice. A
possible physical interpretation of the change from scalar to vector is to, instead
of just looking at one chemical substance diffusing and reacting in a system,
consider a system of N different chemical substances (the so-called species)
which can diffuse and react with each other. Of course, not all substances need
react with every other substance, but there must exist at least one such reaction
for each substance (otherwise it would just be the same situation as before: an
RD-system of several species independent of each other). The EoM can be
written in vector form as

u+ + u− = f(u) (34)

and in component form, for i, j ∈ {1, 2, . . . , N},

u+
i + u−i = fi ({uj}) (35)

The question is now if it is, in the spirit of the one-dimensional scalar case,
possible to find a conserved quantity if f is chosen as some vector field, that is
a generalized version of the family of functions f found in the known method,
for a scalar variable, presented earlier. In component form this vector field can
be written as

fi(u) =
B̃i,klukul −Di,kuk + ei
Aklukul −Bkuk + C

(36)

where the convention of summation over repeated indices is used. As the nota-
tion implies, a variable with no index is a scalar, with one index a vector, with
two unseparated indices a matrix and otherwise some tensor of another rank.
Note that the exact relation between B̃i,kl and Bk is not yet determined (cf.
the one-dimensional case, eq. (26), where the B’s were equal).

In analogy with the one-dimensional scalar case, a conserved quantity H that
satisfies{

0 ≡ ∆H ≡ H (u+,u)−H (u,u−) ≡ (u+ − u−) · (EoM)
H (u+,u) = H (u,u+)

(37)

11A trivial case, since this would represent pure diffusion.
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is now sought, where ”·” is now a generalized scalar product defined, for vectors
a,b ∈ RN and a positive-definite symmetric matrix G ∈ RN×N (the ”metric
tensor”), as a ·b ≡ aiGijbj . Performing the operation gives, in component form,

0 =
(
u+
j − u

−
j

)
Gij

(
u+
i + u−i − fi(u)

)
(38)

Using the expression for fi and collecting terms of similar superscript (±) on
either side of the equality then yields

GijAklu
+
j u

+
i ukul −GijBku

+
i u

+
j uk + CGiju

+
j u

+
i +

−GijB̃i,klukulu+
j +GijDi,ku

+
j uk − eiGiju

+
j = (+ −→ −) (39)

Note that this resembles a conservation law, the difference being that it in its
current form is not symmetric. For both the left-hand side and the right-hand
side to be symmetric in their respective arguments, the following conditions
must be satisfied:

1. GijAkl = GklAij

2. GijDi,k = GikDi,j = GkiDi,j (The last equality follows from the restric-
tion that G be symmetric)

3. Bk = Gklbl and B̃l,ij = blGij

4. An appropriate function of u is added on both sides.

The implications of these conditions are:

Condition 1 For a fixed pair ij, Gkl = Akl
Gij

Aij
∝ Akl, ∀k, l. Therefore, let

A = aG where a is some constant.

Condition 2 This is just symmetric matrix multiplication, i.e. GD is a sym-
metric matrix. Denoting this product as S gives GD = S. Assuming that G is
non-degenerate12, D can be written as D = G−1S. If S is now written as the
symmetric combination S = GS′G, where S′ is some other symmetric matrix,
D becomes D = S′G. Since both S and S′ are arbitrary names, S′ can be
redefined to give D = SG. In component form, Di,k = SilGkl.

Condition 3 This condition, along with the preceding two, gives fi(u) as

fi(u) =
biGklukul − SilGkluk + ei
aGklukul − blGkluk + C

(40)

As can be seen when compared to the original structure in eq. (36), the relation
between B̃i,kl and Bk is very similar to that in the scalar case (see eq. (26)).

Condition 4 The terms that need to be added for the expression to be com-
pletely symmetric are CGijujui −Gijeiuj .

Using the above conditions, the conservation law becomes

aGijGklu
+
j u

+
i ukul −GijGklblu

+
i u

+
j uk + CGij

(
u+
j u

+
i + ujui

)
+

−GijGklbiukulu+
j +GijSilGklu

+
j uk − eiGij

(
u+
j + uj

)
=

= (+ −→ −) (41)

12That a matrix is non-degenerate is equivalent to the existence of its inverse, which in turn is
equivalent to the matrix having full rank, which in turn is equivalent to having determinant not
equal to zero. In mathematics, for N ×N -matrix G and N ×N -unit matrix 1; G non-deg. ⇔
∃G−1 : G−1G = GG−1 = 1 ⇔ Rnk(G) = N ⇔ detG 6= 0
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Note that this expression now is symmetric under u± → u. Therefore, define the
quantity on the left hand side as H(u+,u) and that on the right as H(u,u−),
so that H(u+,u) = H(u,u−) = H(u−,u), as was sought. For arbitrary vectors
u, t ∈ RN , the conserved quantity H(u, t) can be written

H(u, t) = au>Gu t>Gt− u>Gu b>Gt− t>Gt b>Gu +

+C
(
u>Gu + t>Gt

)
+ u>GSGt− e>G (u + t) (42)

It has thus been shown that there exists, in the investigated kind of system, at
least one conserved quantity for each f(u) on the form of eq. (40). The EoM
for the system can in vector form be written as

u+ + u− = f(u) ≡ b u>Gu− SGu + e

au>Gu− b>Gu + C
(43)

where the connection between choices of vector names and the expression for
fi(u) in eq. (40) should be obvious.

The EoM can be rewritten as the 2N -dimensional mapping T : R2N −→ R2N ,
or (u, t) 7→ (u+, t+),

T :

{
u+ = f(u)− t
t+ = u

(44)

where t ≡ u−. Phase space is spanned by the variables {u, t}. Since one
conserved quantity has been found, all trajectories must lie on the (N − 1)-
dimensional hypersurface in phase space defined by the value of the conserved
quantity found13. The dynamics of this system are now to be investigated, as
well as the possibility of patterns and their connection to phase space charac-
teristics (e.g. fixed points and corresponding stabilities). This will be done by
looking at the N -dimensional case for a while longer, after which, for simplicity,
the (N = 2)-case is investigated more in-depth.

3.2.1 Diagonalization, rotation and translation

The very general structure of the vector field f(u) defined in eq. (43) can be
further simplified. The following operations can be done to simplify f(u):

1. Diagonalize G, by choosing a new basis in u-space, and rescale {ui} rel-
ative to one another so that G → 1, where 1 is the unit matrix of size
N ×N .

2. Rotate the new basis so that S becomes a diagonal matrix.

3. If a 6= 0, redefine variables so that a disappears from the expression. This
is equivalent to putting a = 1 in the already existing expression.

4. Translate u-space such that u → u + 1
2b. This gives the new EoM as

u+ + u−+ b− f
(
u + 1

2b
)

= 0. Simplifying this expression and redefining
the variables yet again gives back the original EoM except for no b’s in
f(u), i.e. the linear term, in u, in the denominator and the quadratic
term, in u, in the numerator have vanished.

13This is just like planetary orbits, confined to a plane, that move along curves of constant
energy (given that the motions of planets are not chaotic).
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Doing all of the above results in the much simpler expression

f(u) =
−Su + e

u>u + C
(45)

where S is diagonal, and hence the EoM

u+ + u− =
−Su + e

u>u + C
(46)

The conserved quantity then becomes

H(u,v) = u>u v>v + C
(
u>u + v>v

)
+ u>Sv − e> (u + v) (47)

3.2.2 Fixed points of the mapping

As was stated earlier, a good starting point to understand the perhaps possi-
ble patterns is to study the fixed points of the mapping and their respective
stabilities (under the mapping). The reason for this is that at a fixed point,
there can be no pattern: A fixed point of the system, (u∗, t∗), is such that T
maps the point to itself, i.e. T : (u∗, t∗) 7→ (u∗, t∗) (or, in other words, the
value is constant under the mapping). However, at small distances from elliptic
fixed points, (quasi)-periodic patterns should occur [3]. At the fixed point the
mapping requirement is thus, from eq. (44),

T :

{
u∗ = f (u∗)− t∗

t∗ = u∗
(48)

As can be seen, this condition can be rewritten as

2u∗ = f (u∗) =
−Su∗ + e

u∗ > u∗ + C
(49)

For notational convenience, let u∗ ≡ u and u>u ≡ R. This gives, in component
form, upon rearrangement of the fixed point condition

(2R+ Sii + 2C)ui = ei (50)

since S = diag (S11, . . . , SNN ). Now, there are two important cases14 (i) ei 6= 0
∀i, and (ii) ei = 0 ∀i.

Case (i)

Rearranging eq. (50) and using the definition of R yields
ui = ei

2(R+C)+Sii
≡ ei

2R−Qi
, ∀i ∈ {1, 2, . . . , N}

R =
∑N
i=1

e2i
(2(R+C)+Sii)

2 ≡
∑N
i=1

e2i
(2R−Qi)

2

(51)

where Qi ≡ −Sii − 2C. Note that the equation for R is actually of degree
2N + 1, so that there can exist at most 2N + 1 fixed points (which may be

14There is also the case where some components satisfy case (i) and the other case (ii).
However, these are neglected here.
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degenerate) for the system. Once {Rα}α∈{1,2, ... ,2N+1} and {ei, Qi}i∈{1,2, ... ,N}
are known, the corresponding fixed points with components {uαi } are easily
found. There are 2N2 + N such components. Finding {Rα} is equivalent to

finding the intersections between the functions y = R and y =
∑N
i=1

e2i
(2R−Qi)

2 ≡
h(R) in the (y,R)-plane, see fig. 1.

Figure 1: Intersections between y = R and y = h(R) (defined in the text) in
the (y,R)-plane for a system with N = 7. It should be noted that with N = 7,
the maximum number of fixed points should be 15, which may be degenerate
(degeneracy for fixed points graphically means that the line y = R is tangent to
y = h(R) at a point), and as the plot clearly shows, there are 9 distinct values
of R for each of which there exists at least one fixed point. Here, the values of
{ei, Qi} have been chosen to best show the general behaviour.

Case (ii)

Case (ii) instead gives the condition

(2R+ S + 2C) u = 0 (52)

or, in component form,

(2R+ Sii + 2C)ui = 0 ∀i (53)

From this condition the following can be said:

1. ui = 0 ∀i ∈ {1, 2, . . . , N} ≡ A always satisfies the relation, i.e. the origin
is always a fixed point. For this there need not be any relations between
Sii, C and R.

2. If there exist fixed points for which some of the j ∈ A : uj 6= 0, then Sjj
must satisfy Sjj = −2C − 2R, or, equivalently, Sjj = Skk ∀j, k : uj , uk 6=
0. This means that hyper-spheres of radii R = −C − 1

2Sjj with fixed
points exist. Note, however, that if only one j : uj 6= 0 exists (and all

of the Sii are different), then uj = ±
√
R = ±

√
−C − 1

2Sjj , which means
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that there are two fixed points on each axis of the coordinate system and
one in the origin, i.e. in total 2N + 1 fixed points15.

Throughout the rest of this section, the special case where N = 2, i.e. the
two-species case, is studied. In particular it is studied how to find the fixed
points for cases (i) and (ii), as well as the general characteristics of the sought
patterns. Also, the conserved quantity is investigated more in-depth.

3.2.3 A system of two-component vectors: Case (i)

Now, since N = 2 there must be five values of R, i.e. α ∈ {1, 2, 3, 4, 5}, and
ten components in total of the five two-component fixed points. There are
several ways to find the fixed points. First of all, note that there are five free
parameters so far: e1, e2, S11, S22 and C. The fixed points obviously depend
on the parameters chosen, and one way to find them is to choose {Rα} and
calculate the rest that is needed with the fixed point relations presented in the
previous section. The method adapted here is yet another, where two of the
fixed points are chosen. Why only two are chosen and not for instance three,
is because there only are five free parameters (unlike the six components of
three fixed points). Before these are chosen numerically, {ei, Qi}i∈{1,2} are to

be calculated. Let the chosen fixed points be
(
u1

1, u
1
2

)
and

(
u2

1, u
2
2

)
, where the

superscripts are equivalent to the index α.

Using the fixed point relation gives the set of equations, for α = 1, 2,

u1
1 = e1

2R1−Q1

u1
2 = e2

2R1−Q2

u2
1 = e1

2R2−Q1

u2
2 = e2

2R2−Q2

⇒



u1
1

(
2R1 −Q1

)
= e1

u1
2

(
2R1 −Q2

)
= e2

u2
1

(
2R2 −Q1

)
= e1

u2
2

(
2R2 −Q2

)
= e2

(54)

Rewriting this as a set of matrix equations yields

(
1 u1

1

1 u2
1

)(
e1

Q1

)
=

(
2u1

1R
1

2u2
1R

2

)
(

1 u1
2

1 u2
2

)(
e2

Q2

)
=

(
2u1

2R
1

2u2
2R

2

) (55)

As can be seen, if the inverses of the 2 × 2-matrices on the left exist, then
{ei, Qi}i∈{1,2} can be found in terms of the chosen fixed points and

{
Rj
}
j∈{1,2}.

Also, as should be noted,
{
Rj
}
j∈{1,2} are not known yet, but assume for a mo-

ment that they are. For the matrices mentioned to be invertible, the respective
determinants must not equal zero. Their determinants are on the form, for
i ∈ {1, 2}, ∣∣∣∣ 1 u1

i

1 u2
i

∣∣∣∣ = u2
i − u1

i (56)

15Note that bifurcations can be obtained by varying C: When C = − 1
2
Sjj , R = 0 so that

there is only one fixed point left in the system (that in the origin).
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For this to be non-zero u1
i 6= u2

i ∀i, i.e. the chosen fixed points are not allowed
to lie along horizontal or vertical lines in the plane to which they are confined.
Assuming this criterion is met, the set of matrix equations becomes

(
e1

Q1

)
= 1

u2
1−u1

1

(
u2

1 −u1
1

−1 1

)(
2u1

1R
1

2u2
1R

2

)
= 1

u2
1−u1

1

(
−2u2

1u
1
1

(
R2 −R1

)
−2u1

1R
1 + 2u2

1R
2

)
(

e2

Q2

)
= 1

u2
2−u1

2

(
u2

2 −u1
2

−1 1

)(
2u1

2R
1

2u2
2R

2

)
= 1

u2
2−u1

2

(
−2u2

2u
1
2

(
R2 −R1

)
−2u1

2R
1 + 2u2

2R
2

) (57)

Now R1 and R2 have to be found as well. The equation for {Rα} is as before

R =

2∑
i=1

e2
i

2R−Qi
(58)

Using the newly found expressions for {ei, Qi}i∈{1,2} gives these as{
R1 =

(
u1

1

)2
+
(
u1

2

)2
R2 =

(
u2

1

)2
+
(
u2

2

)2 (59)

These two are actually known quantities once the two fixed points are chosen.
Now the rest of the {Rα} are sought. Using the fixed point relation above gives

0 = R (2R−Q1)
2

(2R−Q2)
2 − e2

1 (2R−Q2)
2 − e2

2 (2R−Q1)
2 ≡ P5(R) (60)

where the polynomial P5(R) has been defined. As can be seen, degP5(R) = 5,
but since two roots are already known, R1 and R2, the polynomial can be
factorized into one of degree three, P3(R), and one of degree two, P2(R) (where
P2(R) has solutions R1 and R2). This can be written as

P5(R) = P3(R)P2(R) =
(
R−R1

) (
R−R2

)
P3(R) (61)

or

P5(R)

(R−R1) (R−R2)
= P3(R) (62)

For polynomials of degree three, according to the Abel-Ruffini theorem, there
exist general expressions for the roots. These are not presented here since they
are easily found elsewhere.

It might be good at this point to summarize what has thus far been done:

1. Two fixed points, u1 and u2, are chosen.

2. This leads to e1, e2, Q1, Q2, R1 and R2 being found.

3. Using R1 and R2, the rest of the Rα can be found, and hence the remaining
three fixed points.
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3.2.4 A system of two-component vectors: Case (ii)

As was noted earlier, the origin is always a fixed point in this case. Also, whole
hyper-spheres of fixed points can be obtained if the matrix elements Sii are
chosen such that S11 = S22. Of course, such systems can be interesting to
study, but here the studied case is instead when there exists only one i such
that ui 6= 0 and S11 6= S22. As was found earlier, this means that there are two
fixed points on each coordinate axis as well as the one in the origin. This can
be summarized as:

1. The origin (0, 0) is a fixed point.

2. There are four other fixed points in the system given by
(
±
√
−C − 1

2S11, 0
)

and
(

0,±
√
−C − 1

2S22

)
.

If the fixed points are complex with non-zero imaginary part, then they are
uninteresting since phase space is real.

Now either C, S11 and S22 can be chosen to give the four fixed points, or,
conversely, the fixed points as well as one of C, S11 and S22 can be chosen to
give the last two values.

3.2.5 A system of two-component vectors: Stabilities, winding num-
bers and patterns

The analysis presented in this section is applicable to both case (i) and case
(ii).

Stability of fixed points

To find the respective stabilities of the fixed points, the eigenvalues of the local16

Jacobian J of the mapping at the fixed point must be found (see e.g. the
discussion in [1]). The main idea is that the distance between a trajectory
and the fixed point in phase space, define it as ε, can be written, in obvious
notation, as ε+ = Jε under the mapping, where the Jacobian then can be
diagonalized to yield a relation between trajectory distance and eigenvalues.
Since this distance does not take into account higher-order terms in ε, this is
only true on a local (infinitesimal) scale, i.e. once ε is not small, non-linear
effects have to be considered. The Jacobian for the mapping T from eq. (44)
can be written

J =

(
[∇u ⊗ (f(u)− t)]

>
[∇t ⊗ (f(u)− t)]

>

[∇u ⊗ u]
>

[∇t ⊗ u]
>

)
(63)

where ⊗ is the usual outer product for vectors17, and ∇a, for vector a ∈ R2, is
∇a = (∂a1 , ∂a2). Calculating the easier derivatives gives the Jacobian as

J =

(
[∇u ⊗ f(u)]

> −12

12 02

)
(64)

16That is, at the fixed point.
17For two vectors a,b ∈ R2, the outer product becomes a 2 × 2-matrix. In mathematical

notation, a⊗ b ∈ R2×2
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where 12 and 02 is the unit matrix and null matrix of size 2 × 2, respectively.
The matrix [∇u ⊗ f(u)]

>
can be written as, for f(u) = (f1(u), f2(u)),

[∇u ⊗ f(u)]
>

=

(
∂u1

f1 ∂u2
f1

∂u1f2 ∂u2f2

)
≡
(
a b
c d

)
(65)

where a, b, c and d have been defined for simpler upcoming calculations. How-
ever, this matrix can be diagonalized such that [∇u ⊗ f(u)]

> → f̃(u) = diag(µ1, µ2)
for eigenvalues µ1 and µ2, by similarity-transforming J using the matrix

U =

(
T 02

02 T

)
(66)

and its inverse

U−1 =

(
T−1 02

02 T−1

)
(67)

with a suitable 2× 2-matrix T (for a derivation of the kind of matrix used, see
app. B), such that J→ J̃ = U−1JU. The transformation yields

J̃ =


µ1 0 −1 0
0 µ2 0 −1
1 0 0 0
0 1 0 0

 (68)

Note that the unit matrices in J did not change under the transformation, as
they, of course, cannot (because it is the same T along the diagonal in U). Also
note that the diagonalization mixes components u1 and u2 as well as t1 and t2,
respectively. Define the new components as (ũ1, ũ2, t̃1, t̃2), whose relation to the
old components is (u1 u2 t1 t2)> = U (ũ1 ũ2 t̃1 t̃2)>.

This transformed local Jacobian can be written as the sum of the direct products
(⊗) between some matrices18, i.e.

J̃ =

(
f̃(u) 02

02 02

)
+

(
02 −12

12 02

)
=

=

(
1 0
0 0

)
⊗ f̃(u) +

(
0 −1
1 0

)
⊗
(

1 0
0 1

)
(69)

Reversing the order of factors in the respective direct products yields the equiv-
alent J̃ in (ũ1, t̃1, ũ2, t̃2)-space19. Doing this gives

J̃ = f̃(u) ⊗
(

1 0
0 0

)
+

(
1 0
0 1

)
⊗
(

0 −1
1 0

)
=

=


µ1 −1 0 0
1 0 0 0
0 0 µ2 −1
0 0 1 0

 (70)

18This operator is here defined as, for 2× 2-matrices B and C, B ⊗ C ∈ R4×4. The matrix
on the left, here B, represents the over-all structure of the resulting 4 × 4-matrix, whereas
that on the right, here C, represents the fine-structure. The exact workings of the operation
should be obvious from the text.

19This is equivalent to reversing the orders of columns two and three as well as rows two
and three in J̃.
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where the lines are there to indicate that this is actually a block-diagonal matrix.
The eigenvalues {λm}m∈{1,2,3,4} to this matrix are therefore easily found: they
are just the eigenvalues to the two matrices along the diagonal. Calculating
these gives

λ ∈

{
µ1 +

√
µ2

1 − 4

2
,
µ1 −

√
µ2

1 − 4

2
,
µ2 −

√
µ2

2 − 4

2
,
µ2 +

√
µ2

2 − 4

2

}
≡

≡ {λ1, λ2, λ3, λ4} (71)

where λ1,2 correspond to the upper block, and λ3,4 to the lower. Now, µ1 and
µ2 are

{µ1, µ2} =

{
1

2

(
a+ d+

√
(a− d)2 + 4cb

)
,

1

2

(
a+ d−

√
(a− d)2 + 4cb

)}
(72)

The variables a, b, c and d are given by

[∇u ⊗ f(u)]
>

=

(
a b
c d

)
=

=
1(

(u1)
2

+ (u2)
2

+ C
)2

(
−2u1 (−s11u1 + e1)− s11

(
(u1)

2
+ (u2)

2
+ C

)
0

−2u1 (−s22u2 + e2) 0

)
+

+
1(

(u1)
2

+ (u2)
2

+ C
)2

(
0 −2u2 (−s11u1 + e1)

0 −2u2 (−s22u2 + e2)− s22

(
(u1)

2
+ (u2)

2
+ C

) )

It is easy to check that the product of all the eigenvalues equals one, but it
is also easy to see that λ1λ2 = λ3λ4 = 1, i.e., the corresponding eigenvectors
pairwise define orthogonal planes20 in phase space (which together span the
whole space) where area is preserved under the mapping. This could already
be noted in the block-diagonal matrix above, since each block on the diagonal
has unit determinant. As can be seen, there is a clear C-dependence21 (C from
eq. (46)) in {λm}, so that the respective stabilities also depend on C. It should
be noted that λ ∈ C, but fixed point stabilities are fundamentally different if
Im λ = 0. The differences can be summarized according to (where x is the
spatial dimension of the system):

1. If Imλ 6= 0 ∀λ, the fixed point is elliptic, and oscillating behaviour in x is
present. These fixed points are the interesting ones since it is around such
(at infinitesimal distances) that (quasi-)periodic patterns can arise [3].
From eq. (71) it can be seen that µ1 and µ2 must fulfill µ1, µ2 ∈ (−2, 2)
for a fixed point to be elliptic.

2. If ∃λ : Imλ = 0, the fixed point is partly hyperbolic, i.e., it has exponential
behaviour. As an effect, the corresponding pattern almost always will
have ever-(in/de)creasing amplitude [3]. Because of this, these are not
interesting in the current analysis. Eq. (71) states that µ1 ∨ µ2 /∈ (−2, 2)
for a fixed point to be hyperbolic.

20These planes are the
(
ũ1, t̃1

)
-plane and the

(
ũ2, t̃2

)
-plane, respectively.

21This dependence could also be on e.g. S11 or S22, since there is only one free parameter
left once the two fixed points have been chosen. Note that once the parameter is chosen, all
other parameters are known. Here, C is considered the free parameter. The relation between
Sii (i ∈ {1, 2}) and C is, as was mentioned earlier, Qi = −2C − Sii.
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It should be noted that the oscillations occur in lattice space: the analysis says
nothing about whether or not the patterns are stable in time under the RD-
dynamics (or, for that matter, under some other dynamics, since the static case
studied is not uniquely defined by the RD-dynamics).

Now that the stabilities have been analyzed, the possible patterns remain to be
studied.

The winding number and its connection to patterns

To start investigating the patterns, it should be noted that since, for the elliptic
fixed points, the eigenvalues µi ∈ (−2, 2) ∀i ∈ {1, 2}, each µi can be seen as
twice a cosine-function, or, put equivalently, µi

2 = cos (2πwi), for some number
wi. This number, wi, is usually referred to as the winding number, and has the
following properties [3]:

1. If wi is rational, i.e. wi = p/q for relatively prime integers p, q such that
0 ≤ p < q, then the trajectories at infinitesimal distances from the fixed
point in the corresponding phase space plane are periodic22 of period q.

2. If wi is irrational, then the trajectories at infinitesimal distances from the
fixed point in the corresponding phase space plane are quasi-periodic23.

The winding number can in terms of µi be rewritten as

wi =
1

2π
arccos

(µi
2

)
∈
[
0,

1

2

]
(73)

Since there is a dependence on C in µi, so there is in wi. Because of this, C can
be chosen in such a way that wi becomes rational or irrational. Sometimes it is
even possible to choose C such that both wi’s are of the same kind.

As was stated above, the winding numbers correspond to periodic or quasi-
periodic motion in the planes spanning the local phase space around a point, so
that the respective patterns there should have the corresponding characteristics.
It should be noted that the winding number is defined for a trajectory starting
at an infinitesimal distance from a point, so that it for any perturbation not in-
finitesimal is just an approximation. Hence, in the respective planes, the charac-
teristics of the patterns connected to the winding number should only be visible
for small enough initial perturbations. Also, at distances not small enough, the
planes are bent into more complicated surfaces in the four-dimensional space.

Now, the sought patterns in the quantities (u1, u2, t1, t2) must show charac-
teristics that are combinations of those for the patterns in (ũ1, t̃1) and (ũ2, t̃2)
respectively. E.g., a sought pattern might have an overall structure like a regular
sine-wave, but with tiny ripples along the wave itself (so that the sought pattern
is a combination of two different patterns: one for each plane). Therefore, the
sought patterns in (u1, u2, t1, t2) are quasi-periodic, i.e. they are combinations
of patterns that themselves have oscillating characteristics. However, non-linear
effects can affect this behaviour.

22The interpretation of this in two-dimensional phase space is easy: q is the number of
iterations needed in the mapping to return to the initial value, and p is the number of times
the ”centre” of the structure is rotated around.

23Comparing with the interpretation of the periodic case, quasi-periodicity means that a
series of iterations never quite returns to its initial value.
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To conclude:

1. If the mapping in eq. (44) is initialized with perturbations in only one
of the planes24, it should for small enough such perturbations be found
that the patterns show approximately the correct characteristics (i.e. the
characteristics connected to the winding number for the plane in which
initial perturbations were used).

2. If small enough initial perturbations are allowed in both local planes, then
the resulting pattern should have characteristics that are combinations of
the two local planes’ respective characteristics.

This is investigated in sec. 4.1.1.

3.2.6 A system of two-component vectors: The conserved quantity
and the local planes in phase space

The structure of the conserved quantity H(u,v) in eq. (47), which in turn is
connected to the function f(u) in eq. (45), is the same for both case (i) and
case (ii) (the only difference is the presence of e in H). Because of this, the
following analysis can be held at a general level. For simplicity, the conserved
quantity is here referred to as the energy in the system.

As was discussed in sec. 3.2.5, around each fixed point there exist two local
orthogonal planes, in which the dynamics is linearized, spanning phase space.
It should then be possible to write the energy in local coordinates as a sum of
contributions: one for each plane and also one for the higher-order non-linearity
(the last one should be small for small enough initial perturbations from the
fixed point). It can be interesting to see how the energy is distributed between
the two planes and the non-linear term as perturbations are varied in size.

To investigate this, translate u to a fixed point u∗ so that u −→ u∗ + d where
d is the deviation from the origin in the new space. Of course, this changes the
recursion u+ + u− = f(u) such that

d+ + d− = f (u∗ + d)− 2u∗ ≡ f̃(d) (74)

where f̃(d) has been defined for convenience. As can be seen, this is of the same
form as the recursion was before the translation. Simplifying f̃ (d) by using the
fixed point relation in eq. (50) and letting u∗ be written as u for convenience
gives

f̃ (d) =
−2u d>d + (−S− 4F) d

d>d + 2u>d + u>u + C
(75)

where the matrix

F ≡ uu> =

(
a2 ab
ab b2

)
(76)

24Choosing perturbations in (u1, u2, t1, t2)-space such that only one of the planes contains
perturbations is easy: the perturbations in (u1, u2, t1, t2)-space, δ ≡ (δu1, δu2, δt1, δt2), are
related to those in (ũ1, ũ2, t̃1, t̃2)-space, δ̃ ≡ (δũ1, δũ2, δt̃1, δt̃2), by δ = Uδ̃, where U is the
transformation matrix from eq. (66).
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has been defined for fixed point components a and b, where u = (a, b). Locally
f̃(d) becomes linear,

f̃ (d) ∼ (−S− 4F) d

u2 + C
(77)

The translation, of course, also affects the energy function. Define the local
energy as25 H̃(d,g), where g = v − v∗ for vector v and fixed point v∗ in the
original space. The exact expression for this translated energy is here left out.

As can be noted in the exact expression for f̃(d), the matrix M ≡ −S − 4F
is not necessarily diagonal, but can be made so by similarity-transforming it
with a suitable orthogonal matrix T (for an example of how to diagonalize a
2× 2-matrix see app. B). All vectors and other matrices in the space are thus
also transformed, so that  u −→ T>u

S −→ T>ST
d −→ z

(78)

The transformed version of f̃(d), f̂(z), say, becomes

f̂(z) =

−2 T−1u z>z +

(
σ1 0
0 σ2

)
z

z>z + 2u>T z + u>u + C
(79)

for eigenvalues σ1 and σ2 of M. Locally this function becomes linear,

f̂(z) ∼ 1

u2 + C

(
σ1 0
0 σ2

)
z (80)

Comparing eqs. (40) and (79), and then using eq. (42), gives the new local
energy Ĥ(z,w) (with the same properties as H̃(d,g)) as

Ĥ(z,w) = z2w2 + 2 z2u>T w + 2 w2u>T z +

+ z2
[
u2 + C

]
+ w2

[
u2 + C

]
− z>

(
σ1 0
0 σ2

)
w (81)

for vectors z = (z1, z2) and w = (w1, w2) representing the perturbations from
the origin in the respective directions in the new space. The two orthogonal local
planes are the (z1, w1)-plane and the (z2, w2)-plane, respectively. The three first
terms are the higher-order non-linear ones, and of the three remaining there is
only one that couples the different components: the last one. Because of the
structure of the matrix there, the term is such that z1 only couples to w1 and
conversely for z2 and w2, which in turn means that Ĥ(z,w) can be written
as the sum of three contributions: one quadratic term for the (z1, w1)-plane,
another quadratic for the (z2, w2)-plane, and one for the higher order non-linear

25This local energy, since the total energy in the system is conserved, is equal to H(u∗ +
d,v∗ + g)−H(u∗,v∗), for fixed points u∗ and v∗.
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terms. Define these as Ĥ1, Ĥ2 and Ĥ3, respectively:
Ĥ1 =

(
z2

1 + w2
1

) (
u2 + C

)
− σ1z1w1

Ĥ2 =
(
z2

2 + w2
2

) (
u2 + C

)
− σ2z2w2

Ĥ3 = z2w2 + 2 z2u>T w + 2 w2u>T z

(82)

Therefore, Ĥ(z,w) = Ĥ1+Ĥ2+Ĥ3. As can be seen, if
∣∣∣ σi

u2+C

∣∣∣ ≤ 2 for i ∈ {1, 2},
then Ĥi is positive-definite.

The distribution of energy along the lattice , i.e. the distribution of Ĥ1, Ĥ2 and
Ĥ3, for fixed points can now be investigated by plotting the three functions for
different initial perturbations in the mapping from eq. (44) (with the function
f(u) as in eq. (79)). The fixed points can be as in case (i) or as in case (ii).
The following behaviour is expected:

1. For elliptic fixed points the energy between the two planes is expected to
oscillate (the higher-order contribution should as well). Such behaviour is
analogous to that of non-linearly coupled pendulums.

2. For hyperbolic fixed points the local energy is expected to be very sensitive,
i.e. z and w are expected to ”blow up” even for small perturbations.

This is studied in sec. 4.1.2.

The transformed energy for the N-species case

Eq. (42) is easily generalized to the N -species case: F is directly generalized
so all that has to be done is to diagonalize M = −S − 4 F with orthogonal
N ×N -matrix T, so that M→ M̂ ≡ diag (σ1, . . . , σN ). The result is

Ĥ(z,w) = z2w2 + 2 z2u>T w + 2 w2u>T z +

+ z2
[
u2 + C

]
+ w2

[
u2 + C

]
− z>M̂ w (83)

As can be seen, this expression can be written as a sum of contributions just as
before: Ĥ(z,w) =

∑N+1
i=1 Ĥi, where ĤN+1 is the higher-order non-linear term

and Ĥi is a quadratic term for the plane (zi, wi) for all 1 ≤ i ≤ N . However,
this is not further investigated in this report.

4 Results and discussion

In this section examples connected to the theoretical results in sec. 3 are pre-
sented. At the end of the section general results are discussed.

4.1 Examples

The examples are presented in the different subsections. Each of these is referred
to from the corresponding place in sec. 3.
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4.1.1 Quasi-periodic patterns

In this example case (i) is studied (see sec. 3.2.3):

Choosing u1 ≡ (u1
1, u

1
2) = (1/2, 1/2) and u2 ≡ (u2

1, u
2
2) = (−1, 1) (which are

allowed since they do not lie on the same horizontal or vertical line) gives the
needed parameter values, see table 1. Knowing these values yields the three
remaining fixed points easily. For convenience, these are presented as in table 2
below (in the same notation as above).

Table 1: Parameter values
Parameter values

e1 −1
e2 −3
Q1 3
Q2 7
R1 1/2
R2 2
R3 5/2

R4 (5 + 2
√

3)/2

R5 (5− 2
√

3)/2

Table 2: Fixed points

Coordinates
u1 (1/2, 1/2)
u2 (−1, 1)
u3 (−1/2, 3/2)

u4
(
−1

2+2
√

3
, −3
−2+2

√
3

)
u5

(
−1

2−2
√

3
, −3
−2−2

√
3

)

The stabilities of these fixed points can be found by looking at the dependence
on C for µ1 and µ2. The typical behaviour of µ1 and µ2 for the fixed points is
shown in figs. 2 and 3. As can be seen in fig. 2, there exists no C such that u5

or u2 becomes elliptic: one of the eigenvalues µ is always outside the interval
[−2, 2]. Therefore, these two fixed points are uninteresting when it comes to
investigating the patterns. The other three fixed points can be elliptic, as is
seen in fig. 3, but it is not possible to have all three of them as such for a chosen
C (this is not shown in the fig. due to the inconvenience of having several
relatively similar functions in the same graph).

Now, choosing C =
(

5
2

√
3−
√

13
) (√

3 + 2
)

gives winding numbers and eigen-
values as in table 3. As can be seen, for this C the elliptic fixed points are u3

and u4. Also, the winding numbers are well-approximated by simple rational
numbers for u3 (which can be seen from a continued fraction expansion). For
fixed point u3 it can now be investigated whether or not quasi-periodic patterns
can be obtained. This is shown in figs.26 4–6. As can be seen, quasi-periodic
patterns with specific characteristics can be found just as the theory predicts.

26All of the figures were created by choosing perturbations δ1 and δ2 such that the mapping
in eq. (44) was initialized with perturbation δ1 for both components in the (u1, t1)-plane, and
perturbation δ2 for the components in the (u2, t2)-plane. The initial point (u1, u2, t1, t2) was
the fixed point (u3,u3).
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Figure 2: Stability dependence on C for u5: The eigenvalues µ1 and µ2 are here
plotted against the parameter C. As can be seen, there does not exist any C
value such that the fixed point is elliptic (i.e., where µ1, µ2 ∈ (−2, 2)). Fixed
point u2 has a similar behaviour.

Figure 3: Stability dependence on C for u3: The eigenvalues µ1 and µ2 are here
plotted against the parameter C. As can be seen, there exist several C values
for which the fixed point is elliptic (i.e., where µ1, µ2 ∈ (−2, 2)). Fixed points
u1 and u4 have a similar behaviour.
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Table 3: Winding numbers and eigenvalues

µ1 µ2 w1 w2

u1 3.634150166 2.238419296 Hyp. Hyp.
u2 2.312943860 0.4115875560 Hyp. 0.2170111944
u3 1.732050808 0.3464071005 0.08333333330 ≈ 1/12 0.2222940756 ≈ 2/9
u4 1.218191745 -0.6575954013 0.1457662296 0.3033217142
u5 3.353471734 1.757211562 Hyp. 0.07923712710

Figure 4: Here u1 and u2 are plotted against the number or iterations (i.e., lat-
tice position) for fixed point u3 where perturbations were used only in the local
plane where w1 = 1/12. As can be seen, the patterns appear roughly periodic
with period 12, which agrees with the predictions. The initial perturbations for
u1 and u2 were ∼ 5 · 10−2.

Figure 5: Here u1 and u2 are plotted against the number or iterations (i.e., lat-
tice position) for fixed point u3 where perturbations were used only in the local
plane where w2 = 2/9. As can be seen, the patterns appear roughly periodic
with period 9, which agrees with the predictions. The initial perturbations for
u1 and u2 were ∼ 5 · 10−2.
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Figure 6: Here u1 and u2 are plotted against the number or iterations (i.e.,
lattice position) for fixed point u3 where perturbations were used in both local
planes. As can be seen, each pattern appears to be a combination of independent
oscillations, which then classifies the patterns as quasi-periodic. The initial
perturbations for u1 and u2 were ∼ 5 · 10−2.
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4.1.2 Energy in the local planes and non-linear effects

Case (i)

Finding fixed points as in sec. 3.2.3 gives parameter values and fixed points as
in tables 4 and 5. Note that in table 5 the stabilities have also been included for
C = 2

(
5
√

3− 2
√

13
) (√

3 + 2
)
. The energy distribution for elliptic fixed point

Table 4: Parameter values
Parameter values

e1 −24
e2 −8
Q1 28
Q2 12
R1 2
R2 10

R3 10 + 4
√

3

R4 10− 4
√

3
R5 8

Table 5: Fixed points

Coordinates Stabilities
u1 (1, 1) Hyp.

u2 (3,−1) Ell.

u3
(
−3

−1+
√

3
, −1

1+
√

3

)
Ell.

u4
(

3
1+
√

3
, −1

1−
√

3

)
Hyp.

u5 (2,−2) Ell.

u2 is shown for different perturbations in figs. 7 and 8. Also, the local energy
distribution for hyperbolic fixed point u1 is shown in fig. 9.

For elliptic fixed point u2, σ1 = 2C +
√

208 and σ2 = 2C −
√

208, so that the
two local quadratic energies become (Ĥ3 is left out due to its complexity)

Ĥ1 = (10 + C)
(
z2

1 + w2
1 − 2C+

√
208

10+C z1w1

)
Ĥ2 = (10 + C)

(
z2

2 + w2
2 − 2C−

√
208

10+C z2w2

) (84)

where the exact expression for C has been left out for simplicity. Numerically∣∣∣ 2C±√208
10+C

∣∣∣ ≤ 2 so that Ĥ1 and Ĥ2 must be positive-definite functions.

For the hyperbolic fixed point u1, σ1 = 2C+16+
√

80 and σ2 = 2C+16−
√

80,
so that the two local quadratic energies here become (Ĥ3 is left out due to its
complexity) 

Ĥ1 = (2 + C)
(
z2

1 + w2
1 − 2C+16+

√
80

2+C z1w1

)
Ĥ2 = (2 + C)

(
z2

2 + w2
2 − 2C+16−

√
80

2+C z2w2

) (85)

where the exact expression for C has been left out for simplicity. Numerically∣∣∣ 2C+16±
√

80
2+C

∣∣∣ ≥ 2 so that Ĥ1 and Ĥ2 cannot be positive-definite functions.

Fig. 8 clearly shows that the two partial energies (of the local planes) behave
similar to the energies of two non-linearly coupled pendulums, i.e. as was ex-
pected. Also, the simulation in fig. 9 clearly shows the unstable nature of
hyperbolic fixed points. Once again the system was found to behave as ex-
pected. The respective characteristics of H1 and H2 agree with the theory in
all simulations.
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Figure 7: Here the local partial energies Ĥ1, Ĥ2, Ĥ3 and Ĥ = Ĥ1 + Ĥ2 + Ĥ3

are plotted against lattice position (number of iterations) for elliptic fixed point
u2 using initial perturbation 0.08 for both components in the (z1, w1)-plane and
initial perturbation 0.04 for both components in the (z2, w2)-plane. As can be
seen, the total energy H is conserved, and the different contributions oscillate.
As expected, Ĥ1 and Ĥ2 are positive-definite.

Figure 8: Here the local partial energies Ĥ1, Ĥ2, Ĥ3 and Ĥ = Ĥ1 + Ĥ2 + Ĥ3

are plotted against lattice position (number of iterations) for elliptic fixed point
u2 using initial perturbation 0.30 for both components in the (z1, w1)-plane
and initial perturbation 0.23 for both components in the (z2, w2)-plane. As
can be seen, the total energy Ĥ is conserved, and the different contributions
oscillate. Note that as the mean value of Ĥ1 goes up, that of Ĥ2 goes down
(and conversely), all the while Ĥ3 oscillates. When looking at just the two
planes’ energies, the situation is quite similar to that of coupled pendulums.
Also, as expected, Ĥ1 and Ĥ2 are positive-definite.
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Figure 9: Here the local partial energies Ĥ1, Ĥ2, Ĥ3 and Ĥ = Ĥ1 + Ĥ2 + Ĥ3

are plotted against lattice position (number of iterations) for hyperbolic fixed
point u1 using initial perturbation 0.30 for both components in the (z1, w1)-
plane and initial perturbation 0.23 for both components in the (z2, w2)-plane.
As can be seen, the total energy Ĥ is conserved (it is roughly −2), and the
different contributions oscillate. When comparing the magnitude of the energy
with that in fig. 8, it is seen that it here has ”blown up” (both systems have
the same, for the planes, respective initial perturbations). As expected, Ĥ1 and
Ĥ2 are not positive-definite functions.
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Case (ii)

Now, according to sec. 3.2.4 the fixed points can be chosen as (±2, 0) and
(0,±1). For C = 1 this gives parameter values and stabilities as in tables 6 and
7. The energy distribution for fixed point u2 is shown in fig. 10. As can be seen
when compared to figs. 7 and 8, the analysis works just as well for fixed points
determined from case (ii).

For elliptic fixed point u2, σ1 = −6 and σ2 = 4, so that the two local quadratic
energies become (Ĥ3 is left out due to its complexity) Ĥ1 = 5

(
z2

1 + w2
1 + 6

5z1w1

)
Ĥ2 = (10 + C)

(
z2

2 + w2
2 − 4

5z2w2

) (86)

As can be seen, these must be positive-definite functions. Fig. 10 shows that
the analysis works for fixed points of case (ii) as well.

Table 6: Parameter values
Parameter values

S11 -10
S22 -4

Table 7: Fixed points

Coordinates Stabilities
u1 (0, 0) Hyp.

u2 (2, 0) Ell.

u3 (−2, 0) Ell.

u4 (0, 1) Hyp.

u5 (0,−1) Hyp.

Figure 10: Here the local partial energies Ĥ1, Ĥ2, Ĥ3 and Ĥ = Ĥ1 + Ĥ2 + Ĥ3

are plotted against lattice position (number of iterations) for elliptic fixed point
u2 using initial perturbation 0.09 in the (z1, w1)-plane and initial perturbation
0.10 in the (z2, w2)-plane. As can be seen, the total energy Ĥ is conserved,
and the different contributions oscillate just as they do in figs. 7 and 8. Also,
Ĥ1 and Ĥ2 are positive-definite, as they should. This picture shows that the
analysis for case (ii) works as well.
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4.2 General results and discussion

The general results can be concluded and discussed as:

1. Generalizing the known class of conservative maps for the one-dimensional
system of one species to higher dimensionality of independent variables is
impossible.

That it is impossible to generalize the method is interesting in itself, but
since it is unclear whether or not there exists only one kind of f(u) that
gives a conserved quantity in the one-dimensional one-species case or not,
it is not possible to say whether or not further investigations of these
systems are unnecessary.

2. For all mappings as in eq. (44), there exists at least one conserved quantity
on the form of eq. (47) for each function on the form of eq. (45).

The existence of this conserved quantity restricts the trajectories in phase
space to lie on (2N − 1)-dimensional hypersurfaces. A system with d de-
grees of freedom is called integrable if there are d independent conserved
quantities, and unless all of these exist there is a possibility of chaos in
the system [1]. Therefore, it would have been interesting to try to find
a parametrization of the (2N − 1)-dimensional hypersurface defined by
the conserved quantity found, and investigate whether or not the trajec-
tories embedded there are chaotic or not. If they are, then the system is
not integrable and the found quasi-periodic patterns are not truly quasi-
periodic27.

3. For these mappings there are fixed points satisfying eq. (50) which in
the (N = 2)-case can be found as in sec. 3.2.3 or sec. 3.2.4, depending
on what system is studied. These fixed points can be either hyperbolic or
elliptic, something which can be decided using the tools developed in sec.
3.2.5.

These tools only apply to the (N = 2)-case, but it should be possible to
generalize these to a higher number of vector components.

4. Around the elliptic fixed points for the (N = 2)-case quasi-periodic pat-
terns along the lattice can be found near elliptic fixed points. These quasi-
periodic patterns are combinations of the oscillations in the two local
(around the fixed point) planes spanning the four-dimensional phase space
(Sec. 4.1.1).

The existence of quasi-periodic patterns for the (N = 2)-case is of course
intriguing, but as was mentioned in sec. 3.2.5 their stability in time is
unclear. The reason for this is that the actual RD-dynamics were not
studied, only the static case was. Also, since the static EoM investigated
could result from some dynamics different from the RD-dynamics, it might
be that the patterns are stable under such instead/as well. It would also
be interesting to see whether or not any real biological systems could be
described by the investigated kinds of systems.

27This since there does not exist a full set of action and angle variables (see e.g. [1]).
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5. The conserved quantity can be investigated in a coordinate system around
any point (where the only difference to the actual energy is an additive
constant), so that it obtains the form of eq. (83). For the (N = 2)-case,
the distribution of energy between the two planes around an elliptic fixed
point resembles that of two non-linearly coupled pendulums (Sec. 4.1.2).

This behaviour of the distribution of local energy should generalize, for the
N -species case (see eq. (83)), such that the energy distribution resembles
that of N non-linearly coupled pendulums. To investigate this, a method
of finding fixed points for an N -dimensional system would have to be
found.

5 Summary

The formation of quasi-periodic patterns in discrete reaction-diffusion-systems
of different dimensionality and number of species has been studied. Such pat-
terns are often found in systems where some quantity is conserved, so-called
conservative systems, and because of this, conservation laws were sought in the
investigated types of systems. Since the reactions taking place in biological
systems are very situation specific, a more general mathematical approach was
used. The foundation for the project was a method to find a conserved quantity
along with a function representing the reaction mechanism for a one-dimensional
one-species system.

It was found that the known method could not be straightforwardly generalized
to higher spatial dimensionality. However, it was shown that when instead in-
creasing the number of species for a one-dimensional system (where the function
representing the reaction mechanism is some generalized version of that found
in the known method), it is possible to find a conservation law similar to that
for one species. Whether or not more than one conserved quantities could exist
for the N -species case is unclear.

Once this conserved quantity was found, the connection between trajectories
in phase space and quasi-periodic patterns along the spatial dimension of the
system was studied. For the two-species case it was found that quasi-periodic
patterns along the spatial dimension are possible. The stability of such patterns
in time (under the actual RD-dynamics) is unclear, since the static ”equations
of motion” studied could result from dynamical equations other than those of
RD.

It was shown, for the two-species case, that around each fixed point of the
system there exist two local orthogonal planes spanning the local phase space.
In each of these the dynamics is linearized. If the conserved quantity is seen as
an energy, the distribution of energy between these two planes resembles that
of two non-linearly coupled pendulums.

Possible extensions of the work done would be to (i) find out if there exist
systems with more than one conserved quantity, (ii) study the time-stabilities
of the found patterns under various dynamics and (iii) find applications in
terms of real biological systems that can be described by the investigated kinds

35



of systems.

A Discretization of the continuous RD-equation

The continuous RD-equation for an n-dimensional system of one species in

steady-state (∂tu = 0) is given by, for u = u
(
{xi}i∈{1,2,...,n} , t

)
and ∂i = ∂xi

,

0 = ∇2u+ F (u) =

n∑
i=1

∂2
i u+ F (u) (87)

Now, for all i, j ∈ {1, 2, . . . , n}, the discretization of ∂2
i u looks exactly the same

as that for ∂2
j u, the only difference being the respective step lengths. It therefore

suffices to look at one such discretization in detail. The definition of the partial
derivative of u with respect to component i is

∂u

∂xi
= lim

∆xi→0

u
(
x1, . . . , xi + 1

2∆xi, . . . , xn, t
)
− u

(
x1, . . . , xi − 1

2∆xi, . . . , xn, t
)

∆xi
(88)

Using the definition again to obtain the second partial derivative gives

∂2u

∂x2
i

= lim
∆xi→0

[
u (x1, . . . , xi + ∆xi, . . . , xn, t)− 2u (x1, . . . , xi, . . . , xn, t)

(∆xi)
2 +

+
u (x1, . . . , xi −∆xi, . . . , xn, t)

(∆xi)
2

]
(89)

The system can now be discretized according to xi −→ xkii = ki∆xi, ∀i ∈ {1, . . . , n}

u −→ uk1,...,kn = u

({
x
kj
j

}
j∈{1,...,n}

, t

)
(90)

where the superscript of u shows that each ki is independent of the others.
Using this notation in the expression for the second partial derivative gives

∂2u

∂x2
i

−→ uk1,...,ki+1,...,kn + uk1,...,ki−1,...,kn − 2uk1,...,ki,...,kn

(∆xi)
2 (91)

As can be seen, the structure of the numerator is the sum of nearest neighbors
in the i-direction minus twice the value of u at the chosen point. Doing this for
all directions, assuming that all of the step lengths are the same (i.e. ∆xi =
∆xj ≡ a ∀i, j), letting lattice point be denoted by l and defining ul ≡ uk1,...,kn ,
yields the discretized RD-equation

0 −→ 1

a2

∑
j∈ξ(l)

uj −
2n

a2
ul + F̃ (92)

where F̃ is the discretized version of F (u) and ξ(l) is the set of nearest neighbors
of ul. Multiplying through by a2 and absorbing all terms independent of nearest
neighbors and F̃ into f(ul) gives

0 =
∑
j∈ξ(l)

uj − f(ul) (93)
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which is the discretized RD-equation presented in the introduction.

B Matrix diagonalization

A well-known relation from linear algebra is that an N×N -matrix A is diagonal-
izable if there exists some matrix T such that T−1AT = Λ = diag(µ1, µ2, . . . , µN )
for eigenvalues {µj}j∈{1,2, ... ,N} to matrix A with corresponding eigenvectors

{vj}j∈{1,2, ... N}. Rewriting the relation as AT = TΛ, it can be noted that if T

is defined as having the eigenvectors {vj} as columns, then the relation reduces
to the simple expression Avj = µjvj ∀j.

If T is chosen to have the normalized eigenvectors of A, {v̂j}, as its columns,
then T>T = 1, where 1 is the identity matrix of size N ×N . Also, since T−1 =
T>, the matrix T is called orthogonal. A scalar product in the original space,
a ·b (for vectors a,b ∈ RN ), must transform as a scalar, i.e. a ·b→ a′ ·b′ = a ·b
where the primed vectors are in the new space. The relation between the new
space and the old for a vector is a′ = T−1a = T>a, and conversely for b′. This
gives a′ · b′ = a>TT>b = a · b, where the last equality follows from the choice
of T as having the normalized eigenvectors as its columns28.

C Perturbing the one-dimensional system

The onset of chaos in the one-dimensional one-species system is here studied.
The function f(u) for this system is

f(u) =
Bu2 −Du+ E

Au2 −Bu+ C
(94)

for constants A, B, C, D and E. Note the special relation between the B’s.
The mapping in eq. (27) gives the fixed point relation, for fixed point (u, t),

2Au3 − 3Bu2 + (2C +D)u− E = 0 (95)

Choosing E = 0 gives

0 = u

(
3B +

√
9B2 − 8A(2C +D)

4A

)(
3B −

√
9B2 − 8A(2C +D)

4A

)
(96)

As can be seen, the origin is a fixed point no matter the values of the constants,
whereas the positions of the other two clearly depend on them. Just as for the
two-species system in sec. 3.2.5 the local Jacobian and hence the stabilities of
the fixed points can be investigated. The eigenvalues λ to this Jacobian are

λ =
1

2

 df

du
±

√(
df

du

)2

− 4

 (97)

28Of course, rows would work just as well.

37



and as should be noted, df
du ∈ {−2, 2} for the fixed point to be elliptic. The

derivative of f(u) is easily calculated to be

df

du
=

1

(Au2 −Bu+ C)
2

[
u2(DA−B2) + 2uBC −DC

]
(98)

For the origin this becomes

df

du

∣∣∣∣
u=0

= −D
C

(99)

For the origin to be a hyperbolic fixed point, D has to be chosen so that D ≥ 2C
or D ≤ −2C. For the set of parameter values

A = 1
B = 0.8
C = 1
D = −2.5
E = 0

(100)

the fixed points u become u ∈ {0, ≈ 1.381, ≈ −0.181} such that u = 0 is hy-
perbolic and the other two elliptic. Now, introducing a perturbation ε in f(u)
such that

f(u) =
Bu2 −Du+ E

Au2 − (B + ε)u+ C
(101)

should destroy the integrability of the system for ε 6= 0. When this perturbation
is added, chaos should start appearing around the hyperbolic fixed point. Also,
new cycle points should be created along the trajectories, and according to the
Poincaré-Birkhoff theorem, there must be an equal number of created hyperbolic
and elliptic cycle points for each such set of new cycle points. Around the new
elliptic cycle points, regular trajectories should appear, thus forming ”islands” in
phase space. That new points are created in this way means that the structure
in phase space could obtain a fractal structure (see e.g. [1]). All of this is
studied in figs. 11– 15. All figures were created by randomly choosing a couple
of hundred initial values on the diagonal between (−1.5,−1.5) and (1.5, 1.5) and
then iterating the mapping in eq. (27) roughly one thousand times.

The figures show the following:

When the integrability of the system is destroyed, chaos sets in. It begins to
appear around the hyperbolic fixed point, and for larger perturbations new cycle
points and also islands of regular motion are created. The creation of such cycle
points follows the Poincaré-Birkhoff theorem.
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Figure 11: In this figure the created trajectories in phase space (u, t) are plotted.
Here ε = 0 and the three fixed points, the hyperbolic one (in the origin) and
the elliptic two, can be seen. The trajectories are all periodic or quasi-periodic,
as they should.

Figure 12: In this figure the created trajectories in phase space (u, t) are plotted.
Here ε = 0 again, but this figure shows a zoomed-in view of the structure in
phase space. Here, the three fixed points can be seen.
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Figure 13: In this figure the created trajectories in phase space (u, t) are plot-
ted. Here ε = 10−5. As can be seen, chaos has started to appear around the
hyperbolic fixed point.

Figure 14: In this figure the created trajectories in phase space (u, t) are plotted.
Here ε = 5 · 10−4. As can be seen, chaos is obviously present in the system, as
well as the emergence of new cycle points (the elliptical structures around the
point (0.08, 0.08)). That such cycle points appear indicates the possibility of
the structure being fractal.
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Figure 15: In this figure the created trajectories in phase space (u, t) are plotted.
Here ε = 0.1. Many ”islands” of regular motion around new cycle points have
been created. According to the Poincaré-Birkhoff theorem, the emergence of
islands (elliptic cycle points) along a trajectory must be such that an equal
number of hyperbolic and elliptic cycle points are created. Counting the number
of, for one set of islands, created cycle points shows that this seems true.
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