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Abstract

American and Bermudan options have a wide range of applications in financial markets, e.g. in
commodities markets among others. The pricing literature of such contingent claims is broad
and many different algorithms and frameworks have been developed. The purpose of this thesis
is to investigate how the Least-Squares Method (LSM), [11], can be extended to incorporate
stochastic convenience yield and stochastic volatility in the pricing algorithm by using a com-
modity underlying. Moreover, the thesis aims to investigate the impact of stochastic convenience
yield and stochastic volatility on the early exercise premium (EEP) of the American option writ-
ten on a commodity. The results show that only the convenience yield increases the price of the
American option. While, volatility does not add any edge to the algorithm when it is used as
regressor. The insertion of the convenience yield increases the EEP especially for deep in the
money options and long time span contracts. Lastly, the power polynomial specification shows
better performances than the Laguerre one.

Key words: American option, Least-Squares Method, commodity, stochastic convenience yield,
stochastic volatility, early exercise premium.
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Chapter 1

Introduction

1.1 Preface

Since Black and Scholes (BS) valuation framework was developed in 1973, a multitude of
literature has been written about contingent claims at large. Any kind of contract has been
modeled mathematically in order to compute its intrinsic value. Almost surely, options are
among the most studied and used contingent claims in the financial world. An extensive effort
has been given in the valuation of European and American options under different model
specifications. Accordingly, this thesis aims to investigate the pricing of an American option
under a stochastic convenience yield and stochastic volatility (SCYH) model of an underlying
asset, i.e. a commodity price. Furthermore, the thesis investigates the impact of the SCYH
model on the EEP of the American option, in order to underline economics insights behind the
pure mathematics.

As it is well known, an American option does not have a closed form solution as the case of an
European option in the BS market. Even in the simplest frameworks, American options require
numerical approximations of the unknown contingent claim price. These approximations are
usually computationally intensive and challenging. Some of the most used methodologies can
be recalled in the following lines.

To start with, the most traditional one is the finite difference method which solves the partial
difference equation (PDE) of the contingent claims at hand numerically, see [9]. Then, there
are simulation based methods for computing American options, such as: random tree methods,
state space partitioning, stochastic mesh methods, regression based methods and so on, see [7].
Among the regression based methods, the LSM, see [11], is almost surely the most popular
one for its simplicity and robustness. However, the LSM has been already improved by more
advanced methodologies such as: parametric and nonparametric different types of regression,
see [10], stochastic grid method, see [4], and stochastic grid bundling method, see [5], where
the latter two base their improvement on the use of the law of iterated expectations. Moreover,
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analytical approximations have been suggested, see [3].

Even if the LSM has already been extended in different ways, this thesis uses the plain vanilla
LSM, [11], to price American options. Then, the stochastic convenience yield and stochastic
volatility state variables are inserted in the pricing algorithm to improve the performance of the
LSM. This is done only from a numerical perspective rather than theoretically as well. After
that, when an acceptable algorithm setup is reached, an analysis on the EEP is performed.

The thesis is organized as follows: there is a quick review of the general pricing methodology
of contingent claims and explanation of the LSM algorithm. Then the commodity model is
specified, i.e. SCYH model, and the simulation methodology is explained. After that, a basis
function analysis is carried out to find potential improvements to the LSM. Lastly, an EEP
analysis is carried out focusing on the best algorithm specifications of the basis function analysis
previously performed.

1.2 Pricing Contingent Claims

The aim of this section is to recall the main points of derivative pricing and to underline the
intuition of them. The entire pricing literature is based on arbitrage theory which is for a large
portion developed in continuous time. Therefore, the starting point is to well define what an
arbitrage opportunity is.

Assume that it is possible to construct a portfolio h with value Vh (t) at time t. An arbitrage
opportunity or strategy implies the following conditions:

Vh (t0) = 0 (1.1)

P (Vh (t1) > 0) > 0 (1.2)

P (Vh (t1) ≥ 0) = 1 (1.3)

Where t0 < t1.

Conditions 1.1-1.3 summarize the entire concept behind the contingent claim literature. In other
words, they mean that given a strategy h such that the initial investment is zero at time t0,
it is possible to make profit with a probability grater then zero and there is no possibility of
making a loss at time t1. Basically, this is the well-known free lunch that should not exit at
wall-street. Given such conditions, the task is to price contingent claims in such a way that
there is no possibility of arbitrage, i.e. there is no free lunch. Basically, we want to create a
framework that is arbitrage free.
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Black and Scholes Market

Given the aforementioned arbitrage conditions, the presentation of BSs’ grate idea is fairly
straight forward. Assume the BSs’ market:

dB (t) = rB (t) dt (1.4)

dS (t) = S (t)µSdt+ S (t)σSdW (t)P (1.5)

Where B (t) is the riskless bank account and S (t) is the underlying asset price modeled as a
Geometric Brownian Motion (GBM) w.r.t. Pmeasure. Further, assume the existence of a traded
T-contingent claim Π (t), with payoff function Φ (S (T )), that has to be priced in absence of
arbitrage. Through Ito’s lemma the dynamic of Π (t) is derived as a function of S (t).

dΠ (t) = Π (t)µΠdt+ Π (t)σΠdW (t)P (1.6)

At this point a self-financing portfolio, V , made up of the S (t) and Π (t) can be constructed
with relative weights ωS and ωΠ, respectively. The dynamic of this portfolio is given as:

dV (t) = V (t) (ωSµs + ωΠµΠ) dt+ V (t) (ωSσS + ωΠσΠ) dW (t)P (1.7)

At this point the Nobel Prize idea becomes, les’t define ω∗S and ω∗Π as the weights that make
the self-financing portfolio locally risk free. In other words, this implies dV (t) = V (t)ψdt with
ψ = ω∗Sµs + ω∗ΠµΠ. After that, If for instance ψ > r, then a h strategy made up of shorting
the bank account at a rate r and going long in the portfolio V at a rate ψ would lead to an
arbitrage opportunity. To avoid this type of scenarios the drift of the portfolio V must be equal
to the risk free rate to guarantee absence of arbitrage.

ω∗Sµs + ω∗ΠµΠ = r (1.8)

Form equation 1.8 the well-known PDE can be derived and the contingent claim price can be
computed by the Feynman − Kač representation formula, which exploit the fact that Ito’s
integral is a random variable with expected value equal to zero.

Risk neutral valuation formula

The replicating portfolio technic developed by BS is elegant though difficult to use in d-
dimensional problems, d > 1, or in incomplete markets, e.g. the Heston model, see [8]. A
more general setting for pricing contingent claims is the risk neutral valuation formula defined
as:
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Π (t) = EQ
[
B (t)

B (T )
Φ (S (T )) |Ft

]
(1.9)

Where, Π (t) is a T-contingent claim, EQ [·|Ft] is a conditional expectation w.r.t. the equivalent
probability measure Q ∼ P given the information set Ft at time t, and the other objects are
defined as before. Recall that the Q measure is unique in complete markets, e.g. BS market,
whereas it is not unique in incomplete markets, e.g. Heston market. However, if there exist at
least one equivalent probability measureQ such that the discounted traded asset is a martingale,
then there is absence of arbitrage.

The risk neutral formula can be even extended to a more general setting such as:

Π (t) = EN
[
N (t)

N (T )
Φ (S (T )) |Ft

]
(1.10)

Where N is martingale measure such that N ∼ P and N is the corresponding numeraire.
Usually the numeraire is chosen wisely in order to reduce a d-dimensional problem to a smaller
dimensional integral, e.g. in the case of a derivative depending on multiple assets.

So far only T-contingent claims have been considered, which means that they can be only
exercised at expiration day. In the case of an American style option the problem at hand becomes
way more complex. The issue now is to find an optimal stopping time, τ ∗ with t ≤ τ ∗ ≤ T ,
such that the value of the option is the supremum among the possible values. Glasserman and
Björk have an extensive discussion about such issues and the thesis sends the reader to see the
following references for a deep treatment of the topic, [7] and [1].1

However, a general risk neutral valuation formula for an American type option can be defined
as:

Π (t)A = sup
τ∈Y

EQ
[
e−

∫ τ
t r(z)dzΦ (S (τ)) |Ft

]
(1.11)

Where Y is the set of possible exercise possibilities in the time interval [t, T ]. Note that the risk
free rate can be even stochastic in the above formula. Basically, the problem is to determine
when it is optimal to exercise the option or not, i.e. find τ ∗. The LSM algorithm solves such a
task by using ordinary least squares (OLS) to compute the decision rule in order to choose if
to keep the option alive or to exercise it. The LSM is explained in the following chapter.

From now on, we define Π (t)E as the T-contingent claim evaluated with equation 1.9, e.g. the
European option. While, the Π (t)A as the American style option evaluated with equation 1.11,
e.g. a typical American option with endless exercise possibilities in the time span [t, T ].

1Note that the entire Pricing Contingent Claims section is heavily based on these two references, which are
milestones of the literature.

8



Chapter 2

Least Squares Method

The previous section pointed out the main features of derivative pricing at large. Anyhow,
as mentioned earlier, one of the main focus of the thesis is about pricing American options
through the LSM of Longstaff and Schwartz, [11]. Thus, the aim of this chapter is to present
their algorithm form a practical and intuitive perspective and to compare the obtained results
with those in the original paper, [11].

The main issue in computing the price of an American option is to define if it is optimal to
exercise or if it is more convenient to hold the contingent claim longer, maybe until the final
day T . Basically, the problem is to define among the in the money (ITM) payoffs which of them
are worth exercise and which are not. In other words, we need to know if the future payoffs are
expected to be higher or lower than exercising the option immediately. In order to accomplish
the aforementioned task, the LSM uses a dynamic programming approach which solves the
problem by backward induction.

2.1 LSM Algorithm

Assume a general stochastic process of an underlying asset S defined as:

dS (t) = µ (t, S (t)) dt+ σ (t, S (t)) dW (t)Q (2.1)

Generate with Monte Carlo simulation n paths and m steps ahead in time. Furthermore, assume
for simplicity that the number of steps is the same as the number of exercise possibilities implied
by the American style contract, i.e. a Bermudan option, which has payoff function Φ (S). Note
that equation 2.1 can be simulated by a closed form solution of the SDE as well as by a
discretization scheme depending on the model at hand. Nonetheless, in the latter case the
number of steps ahead in time must be large even if the number of exercise possibilities is
relatively low. This is due to the fact that we want to minimize the discretization error of the
numerical approximation of the SDE.
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After that, we can start the backward induction procedure.

Define a variable Ψ as the discounted payoffs from time T to T − 1.

Define I (u) as the set of paths ITM at time u.

for j = 1 to m− 1

X = f(φ(S(T − j))) ∈ I (T − j)

Y = Ψ ∈ I (T − j)

β̂ = (X ′X)−1X ′Y

E [Y |X] = Xβ̂

if Φ (S(T − j))k ≥ E [Y |X]k ⇒ Ψk = Φ (S(T − j))k, with k ∈ I (T − j)

Ψ = Ψ discounted from T − j to T − j − 1;

Π (t)A = 1
n

∑n
i=1 Ψi

The matrix X is defined as a function, f (·), of a set of regressors φ (·). For instance, f (·) can
be a constant, c, and a set of polynomials (basis functions), e.g. weighted Laguerre polynomial,
lq (S), power polynomial, pq (S), or others, see [11].

lq (S) = e−
S
2
eS

q!

dq

dSq
(
Sqe−S

)
(2.2)

pq (S) = Sq+1 (2.3)

The number of basis functions in the regression ranges from 0 to Q <∞. Actually, the choice
of the polynomial and the number of polynomials is fundamental. As Longstaff and Schwartz
proved in their paper, [11], the number of polynomials should be increased as long as the
value of the American option increases. This is due to the fact that the LSM approaches the
unknown value of the contingent claim form below. Basically, the specification of the conditional
expectation of the payoffs, given the underlying asset price, is defined as follows, for the weighted
Laguerre polynomial:

LQ (S) ≡ E [Y |X]LQ(S) = c+
Q∑
q=0

lq (S) β̂q (2.4)

While with the power polynomial:

PQ (S) ≡ E [Y |X]PQ(S) = c+
Q∑
q=0

pq (S) β̂q (2.5)
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From now on the notation LQ (S) or PQ (S) means that a constant and the first Q + 1 basis
functions of the Laguerre or power polynomials are used to compute E [Y |X], respectively. Note
that βs are estimated with the closed form solution of OLS. However, the βs could be estimated
with others estimation methods such as generalized method of moments (GMM).

In Appendix A.1, under LSM comparison, there is a comparison between the results of the LSM
algorithm reported by Longstaff and Schwartz, in [11], and the one obtained by the author of
the thesis. As it can be seen in the Appendix, the codded thesis algorithm performs really well,
compared to the original one. Basically, the obtained results of the contingent claim prices are
the same. One the other hand, a small bug in the original paper was detected in the use of
antithetic variates.

To conclude, note that all the calculations in the entire thesis were done in MATLAB. All the
codes were made by the author of the thesis and no predefined functions in MATLAB were
used. Of course, all the thesis codes can be provided upon request.
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Chapter 3

Commodity model

3.1 SCYH model

There are several commodity models that have been suggested to capture the features of the
commodity markets. For instance, the Schwartz-Smith model, see [13], is one of the most famous,
which has two latent processes driving the asset, one for the short run deviation and the other
for the long run equilibrium. Other examples are the Gibson-Schwartz and the E. Schwartz
models, which have stochastic convenience yield but constant volatility of the commodity, see
[6] and [12]. A more recent commodity model application was made by James S. Doran et al.,
see [2], who assume a Heston stochastic volatility process for commodities, but not stochastic
convenience yield. Nonetheless, as it is well known in the literature, commodities markets
present contango as well as backwardation and their volatility is not constant over time. As
a result, the thesis considers a stochastic convenience yield and stochastic volatility model
(SCYH) defined as follows:

SCYH model

dS (t) = S (t) (r − δ (t)) dt+ S (t)
√
V (t)dW (t)QS (3.1)

dδ (t) = kδ (θδ − δ (t)) dt+ σδdW (t)Qδ (3.2)

dV (t) = kV (θV − V (t)) dt+ σV
√
V (t)dW (t)QV (3.3)

Where S (t) is the commodity price, r is the constant risk free rate, δ (t) is the stochastic
convenience yield and V (t) is the stochastic variance process. The convenience yield is modeled
with a typical Ornstein Uhlenbeck process, with speed of mean reversion kδ, long term mean θδ
and diffusion σδ. Basically, the stochastic convenience yield, equation 3.2, is modelled as by E.
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Schwartz, in [12]. The volatility is modeled as the Heston model, [8], or equivalently as James
S. Doran et al., [2], with speed of adjustment kV , long term mean θV and volatility of volatility
σV .

The three Brownian Motions (BMs) are w.r.t. the Q measure for pricing purpose. They have
correlation matrix defined as:

COOR
[
dW̃
]

=


1 ρSδ ρSV

ρSδ 1 ρδV

ρSV ρδV 1

 (3.4)

Where dW̃ =
[
dW (t)QS , dW (t)Qδ , dW (t)QV

]′
. Therefore, the covariance is defined as:

COV
[
dW̃
]

= dt · COOR
[
dW̃
]

(3.5)

The SCYH model allows for contango as well as backwardation. Where, in this thesis, the
former is defined as: the current spot price is below its future expected value, w.r.t. the Q
measure. While the latter is defined as: the current spot price is above its future expected
value, w.r.t. the Q measure. These features are commonly seen in commodities markets due to
the convenience yield, i.e. the benefit of holding the commodity, see [9]. For instance, if the long
term mean of the stochastic convenience yield is below the risk free rate, then the simulated
market will present a contango, in its overall distribution. On the other hand, if the long term
mean of the convenience yield excides the risk free rate, then the commodity distribution will
have expected value below the initial spot price, i.e. the market will be in backwardation.

Furthermore, the SCYH model allows for stochastic volatility as well as for inverse leverage
effect. The latter feature is commonly seen in commodities markets, which means that volatility
increases while the commodity price rises, i.e. ρSδ > 0. This feature is exactly the opposite of
what is seen in equity markets. For further information on inverse leverage effect see [2].

The SCYH model will be used to price American options on this general commodity price,
S (t), by using the LSM. Hence, the simulation of the stochastic differential equations (SDEs)
3.1-3.3 is a fundamental part of the pricing process.

Euler and Milstein schemes

Due to a lack of closed form solutions of general SDEs, the Euler and Milstein schemes are
used to discretize SDEs and to obtain accurate numerical approximations of unknown closed
solutions. Let’s explain how this schemes work.

Assume a general stochastic process X (t) that has the following SDE:
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dX (t) = a (X (t)) dt+ b (X (t)) dW (t) (3.6)

If we want to discretize it in a time span from zero to a final point T with s subintervals, we
can do it by defining ∆t = T

s
and ∆W (tj) =

√
∆tεj with εj ∼ N (0, 1) i.i.d standard normal

variable for j ∈ [1, s]. Then by assuming an initial condition X (t0) = x (t0), we can simulate
recursively X (tj) for j = 1 to s as follows:

Euler scheme

X (tj+1) = X (tj) + a (X (tj)) ∆t+ b (X (tj)) ∆W (tj+1) (3.7)

Milstein schemes

X (tj+1) = X (tj) + a (X (tj)) ∆t+ b (X (tj)) ∆W (tj+1)

+
1

2
b (X (tj)) b

′ (X (tj))
(
(∆W (tj+1))2 −∆t

) (3.8)

Note that b′ (X (tj)) is the first derivative w.r.t. the state variable X (tj). As s → ∞, the
discretization improves in precision for both of the schemes, till reaching the true solution of
the SDE theoretically. The Milstein scheme is usually more precise due to the fact that it is a
stochastic second order Taylor expansion.

SCYH model discretization

In the case of the SCYH model, the equations 3.1-3.3 can be discretized as follows:

S (tj+1) = S (tj) + S (tj) (r − δ (tj)) ∆t+ S (tj)
√
V (tj)∆W (tj+1)QS

+
1

2
S (tj)V (tj)

((
∆W (tj+1)QS

)2

−∆t

) (3.9)

δ (tj+1) = δ (tj) + kδ (θδ − δ (tj)) ∆t+ σδ∆W (tj+1)Qδ (3.10)

V (tj+1) = V (tj) + kV (θV − V (tj)) ∆t+ σV

√
V (tj)∆W (tj+1)QV

+
1

4
σ2
V

((
∆W (tj+1)QV

)2

−∆t

) (3.11)

Note that only the commodity price and the stochastic volatility processes use the Milstein
scheme. Albeit the convenience yield SDE was discretized with the Milstein scheme, the ap-
proximation would reduce to the Euler scheme. This is due to the fact that the diffusion term
of the stochastic convenience yield process does not depend on the convenience yield itself.
Thus, the discretization of the latter cannot exploit the famous quadratic variation feature of
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the Brownian motion. Nonetheless, note that the convenience yield process could have been
simulated explicitly, i.e. with a closed form solution, but in order to be consistent with the
other two SDEs, it was chosen to use the Euler scheme.

A Cholesky decomposition of the BMs’ covariance matrix, equation 3.5, is carried out in order
to make the three i.i.d. standard normally distributed random variables of the BMs correlated
to each other as specified in equation 3.4. Basically, assume a general covariance matrix A

dimension n by n, e.g. equation 3.5, and a vector ε̃ = [ε1, ..., εn]′ where εi ∼ N (0, 1) and the
different i are i.i.d with i ∈ [1, n]. In order to make the elements of ε̃ correlated to each other,
decompose A as A = LL′ where L is the lower triangular matrix of the Cholesky decomposition,
then a vector of correlated random variable is defined as η = L · ε̃.

Glasserman has an extensive explanation of Milstein and Euler scheme as well as cholesky
decomposition, i.e. for further information about such issues see [7].
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Chapter 4

Methodology of Analysis

In this chapter, there is a general explanation of the methodology adopted to investigate the
following questions, which are the kernel of the thesis:

• Which type of basis function is more suitable to price American options between the
Laguerre and the power polynomial, with and without convenience yield and/or stochastic
volatility as regressors?

• Can the LSM yields a higher price of the American option, if a stochastic convenience
yield and/or stochastic volatility is inserted in the pricing algorithm?

• Which variable matters the most, in the computation of the conditional expectation of
the payoffs in the backward induction of the LSM, between the convenience yield and
stochastic volatility?

These questions will be investigated numerically in the following chapter. Nonetheless, a general
explanation of the used methodology is presented in the following section. This will become
useful as a general picture of the numerical analysis, which will state the used methodology
step by step when presented anyway.

To conclude, the following methodology is applied to four different information sets: Aσ, Ak,
Aθ end Aρ in chapter 5.
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4.1 Methodology

Laguerre-power polynomial analysis

The starting point of the analysis is to provide a general information set AH, which represents
a vector of SCYH model parameters1, called θ̃, and the contract specifications (CS) of the
American option. It is worth pointing out that θ̃ does not need to incorporate all the parameters
of the SCYH model, but only a subset of them. Usually the complement of θ̃ is represented by
H, unless stated differently2. Likewise, AH does not need to incorporate all the necessary CS of
the American option. Fundamentally, we can defined the complement of AH as ĀH. Basically,
ĀH represents all the information needed to price an American option with the SCYH model
that are not included in AH.

Assume that AH is given and fixed with some values and CS of the American option. Then, we
can also define ĀH as ĀH1 with some chosen values for the parameters and CS. At this point, it
is possible to generate a number of paths of the SCYH model by Monte Carlo simulation. Let’s
define this latter object as PathsĀH1

. The same generated paths can be used to price the same
American option but with different conditional expectations of the payoffs in the backward
induction of the LSM, i.e. E [Y |X]. In this thesis, E [Y |X] can be either defined as E [Y |X]LQ(S)

or as E [Y |X]PQ(S) with Q = 0, ..., ϑ, where ϑ <∞.

Assume that we have priced 2 · (ϑ+ 1) American options. Half of them are priced by using
the Laguerre polynomial expectation by increasing Q, i.e. E [Y |X]LQ(S), and the other half is
priced by the power polynomial expectation by increasing Q, i.e. E [Y |X]PQ(S). Note that the
2 · (ϑ+ 1) options were priced by using the same PathsĀH1

. Let’s store the ϑ + 1 American
options priced by the Laguerre polynomial in the first row of a matrix DL and the ϑ + 1 ones
priced by the power polynomial in the first row of a matrix DP . Assume that DL and DP have
dimension ζ by ϑ+ 1.

Fix AH as it was for the aforementioned case, but define ĀH differently, as ĀH2 . For example,
ĀH2 can differ from ĀH1 in: the values of some parameters in the SCYH model, the time span of
the American contract and the moneyness3 of the option. Then, generate a new group of paths
defined as PathsĀH2

. These paths can be used to price other new 2 · (ϑ+ 1) American options,
which half of them are stored in the second row of DL matrix because priced by E [Y |X]LQ(S)

and the other half are stored in the second row of DP because priced by E [Y |X]PQ(S). Note that
the ϑ + 1 American option prices are computed by increasing Q from 0 to ϑ for the Laguerre
and power polynomial case, respectively.

This procedure can be repeated recursively and generate ζ of ĀH and PathsĀH , by keeping

1Considering also the initial condition of the SDEs of SCYH model.
2H represents the complement of θ̃ regarding the parameters in the latent processes in the SCYH model,

but not the initial condition of the SDEs.
3In this thesis moneyness is defined as the ratio between the strike price and spot price of the underlying.
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AH fix. Basically, we have generated ĀHi and PathsĀHi
and priced 2 · (ϑ+ 1) options for each

i in the previously explained way, for i = 1, ..., ζ. In this way the entire matrices DL and DP
are filled up. Element DL,ij is the option price for the i complement information set ĀHi and
the j− 1 Laguerre specifivation of the conditional expectation, i.e. Lj−1 (S), for i = 1, ..., ζ and
j = 1, ..., ϑ+ 14. The same logic is for element DP,ij but w.r.t. the power polynomial.

In the j column of DL, there are American option prices that have been computed from ζ

different ĀH, given the same AH. Nevertheless, all of them have been priced with the same
j − 1 Laguerre specification of the conditional expectation, i.e. Lj−1 (S). The same idea holds
for DP but w.r.t. the power polynomial.

Now define the average along the column of DL and DP as DAvL and DAvP , respectively. This
means that the DAvL,j element is the average American option price computed by the j − 1

Laguerre conditional expectation of the payoffs in the backward induction of the LSM algorithm,
i.e. Lj−1 (S). The same holds for DAvP,j element but w.r.t. the power polynomial. This implies
that if we plot and analyze DAvL and DAvP , we can see which specification maximizes the price
of the American option in average sense for the Laguerre and power polynomial, respectively.

Moreover, DAvL and DAvP can be compared to each other, in order to identify which between
Laguerre and power basis function performs better in terms of highest average American option
price, stability and behavior5. For instance, we could check, not only the average American
option price but, also each single case along the rows of DL and DP , i.e. if the ”average” result
changes in each single case or if it is robust. In other words, we want to see the variability of
the results in the latter example.

Yield-volatility basis function analysis

Assume that a well-behaved basis function specification, called benchmark, has been detected
between the Laguerre and power polynomial case, from the previous analysis. Call this latter
specification of the conditional expectation E [Y |X]1LQ(A)(S), if a Laguerre polynomial was the
chosen one6, e.g. LQ(A) (S). While, call it E [Y |X]1PQ(A)(S), if a power polynomial was taken7,
e.g. PQ(A) (S). Note that a general information set A was used, rather than AH. This is due
to the fact that we can analyze different information sets and it is better to generalize the
notation8. E [Y |X]1LQ(A)(S) or E [Y |X]1PQ(A)(S) is the specification that provides the highest value
of the American option in average sense and it has a robust behavior9, for the information

4The numerical indexing of matrices is the usual mathematical convention, i.e. starting from one. Neverthe-
less, the numerical indexing of the polynomials starts from zero. Thus there is one lag value between the two
notations.

5This will become clearer in the numerical analysis in the following chapter.
6Note that the exponent in E [Y |X]

1
LQ(A)(S)

is referred to the regression specification in table 4.1.
7Note that the exponent in E [Y |X]

1
PQ(A)(S)

is referred to the regression specification in table 4.2.
8Note that Q (A) depends on the variable information set A. Basically, different information sets can have

different specification of Q.
9For instance, the average result holds also in each single case.
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set A. After this, we wonder if extending E [Y |X]1LQ(A)(S) or E [Y |X]1PQ(A)(S) by inserting the
convenience yield, δ, and/or the stochastic volatility,

√
V , as regressors can improve the price

of the American option. In other words, if δ and/or
√
V can even further increase the value

of the American option by keeping the robustness of the LSM decision rule. The suggested
conditional expectation extensions for the Laguerre case are reported in table 4.1, whereas the
power extensions are reported in table 4.2. As it can be seen from the two tables, E [Y |X]1GQ(A)(S)

is the benchmark, whereas
{
E [Y |X]KGQ(A)(S)

}9

K=2
are the extensions, for G = L, P .

Table 4.1: This table shows different regression specifications for the computation

of the conditional expectation of the payoffs, i.e. E [Y |X]LQ(A)(S), in the back-

ward induction of the LSM. There is use of the commodity price S, stochastic

convenience yield δ and stochastic volatility
√
V .

RS E [Y |X]LQ(A)(S)

1 LQ(A) (S)

2 LQ(A) (S) + l0 (δ) β̂δ0

3 LQ(A) (S) +
∑1

j=0 lj (δ) β̂δj

4 LQ(A) (S) + l0

(√
V
)
β̂V0

5 LQ(A) (S) +
∑1

j=0 lj

(√
V
)
β̂Vj

6 LQ(A) (S) + l0 (δ) β̂δ0 + l0

(√
V
)
β̂V0

7 LQ(A) (S) +
∑1

j=0 lj (δ) β̂δj +
∑1

i=0 li

(√
V
)
β̂Vi

8 LQ(A) (S) + l0 (δ) β̂δ0 + l0

(√
V
)
β̂V0 + l0 (δ) l0

(√
V
)
β̂δ0V0

9 LQ(A) (S) +
∑1

j=0 lj (δ) β̂δj +
∑1

i=0 li

(√
V
)
β̂Vi + l0(δ)l0

(√
V
)
β̂δ0V0

Notes: RS stands for regression specification and the numerical notation will be

used in other tables, plots and in the text too. E [Y |X]LQ(A)(S) is the conditional

expectation of the payoffs in the backward induction of the LSM. Note that Q (A)

depends on the variable information set A. Basically, different information sets

can have different specification of Q. lq (J ) is defined in equation 2.2, for a general

variable J .
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The most important issue is that matrix X, in the LSM algorithm, can depend on the com-
modity price, S, on the stochastic convenience yield, δ, and on the stochastic volatility,

√
V ,

for both of the tables. The following methodology for analyzing yield-volatility specifications
will be explained for a general G, where G = L, P . This methodology is fairly similar to the one
explained for the Laguerre-power polynomial case.

Table 4.2: This table shows different regression specifications for the computation

of the conditional expectation of the payoffs, i.e. E [Y |X]PQ(A)(S), in the backward

induction of the LSM. There is use of the commodity price S, stochastic convenience

yield δ and stochastic volatility
√
V .

RS E [Y |X]PQ(A)(S)

1 PQ(A) (S)

2 PQ(A) (S) + p0 (δ) β̂δ0

3 PQ(A) (S) +
∑1

j=0 pj (δ) β̂δj

4 PQ(A) (S) + p0

(√
V
)
β̂V0

5 PQ(A) (S) +
∑1

j=0 pj

(√
V
)
β̂Vj

6 PQ(A) (S) + p0 (δ) β̂δ0 + p0

(√
V
)
β̂V0

7 PQ(A) (S) +
∑1

j=0 pj (δ) β̂δj +
∑1

i=0 pi

(√
V
)
β̂Vi

8 PQ(A) (S) + p0 (δ) β̂δ0 + p0

(√
V
)
β̂V0 + p0 (δ) p0

(√
V
)
β̂δ0V0

9 PQ(A) (S) +
∑1

j=0 pj (δ) β̂δj +
∑1

i=0 pi

(√
V
)
β̂Vi + p0 (δ) p0

(√
V
)
β̂δ0V0

Notes: RS stands for regression specification and the numerical notation will be used

in other tables, plots and in the text too. E [Y |X]PQ(A)(S) is the conditional expectation

of the payoffs in the backward induction of the LSM. Note that Q (A) depends on the

variable information set A. Basically, different information sets can have different

specification of Q. pq (J ) is defined in equation 2.3, for a general variable J .

Assume the same fixed information set AH and its complements ĀHi , for i = 1, ..., ζ, as ex-
plained in the Laguerre-power polynomial analysis. Generate new PathsĀHi

, for i = 1, ..., ζ,
and price 9 different American options with the following conditional expectation specifications
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{
E [Y |X]KGQ(AH)(S)

}9

K=1
, for each i. Then, all these option prices are stored in a matrix BG, with

dimension ζ by 9.

Now, let’s define the average along the column of BG as BAvG . The element BAvG,K, for K = 1, ..., 9,
is the average American option price computed with the K regression specification (RS) defined
in table 4.1 or 4.2, depending on what is G, i.e. L or P , respectively10.

By plotting and analyzing BAvG , it is possible to find which regression specifications increase
the American option price in average sense compared to the benchmark, i.e. BAvG,1. In other
words, it is possible to see which variable impacts the option price the most between δ and

√
V .

Moreover, by analyzing the rows of BG one by one, it is possible to define the variability and
robustness of the ”average” result.

In sample-out of sample test

Assume that the K regression specification, i.e. E [Y |X]KGQ(AH)(S), was found particularly relevant
for increasing the value of the American option11. Call this specification improved benchmark.
At this point, it is possible to perform an in sample-out of sample test (IOT)12 on the bench-
mark, i.e. E [Y |X]1GQ(AH)(S), and on the improved benchmark. Essentially, if the addition of
further explanatory variables is strong, then the average difference price between in sample and
out of sample options of the improved benchmark should not differ too much from the bench-
mark one. In other words, there should not be a break down when the improved benchmark is
used.

Note that the IOT is supposed to be performed on the same information set of the previous
analysis, i.e. AH. Also the same complements of the information set AH, i.e. ĀHi for i = 1, ..., ζ,
are used to price the in sample and out of sample options. On the other hand, new paths have
to be generated, i.e. PathsĀHi

for i = 1, ..., ζ.

Early exercise premium analysis

There is also an EEP analysis at the end of the thesis. Nevertheless, it is less theoretical and
it concludes the overall picture of the information set analysis for four different sets, i.e. Aσ,
Ak, Aθ end Aρ. As a result, its explanation will be given successively, while presenting the
numerical result in chapter 5.

10Theoretically speaking, the benchmark should not be calculated again. Nevertheless, the benchmark was
computed again for practical explanation of the topic and implementation of the algorithm in MATLAB.

11Of course, K 6= 1.
12The IOT is suggested by Longstaff and Schwartz in their paper, [11], to see the strength of the LSM decision

rule. The IOT consists in pricing an American option with some paths and simultaneously storing the estimated
βs in the backward induction of the LSM. After that, a new American option is computed with the same features
of the first one. Nonetheless, the second option is priced with new generated paths of the underlying model and
no regression is estimated. In the second option the computation of the conditional expectation of the payoffs
is performed by using the stored βs of the first option. In such a way we can investigate if the decision rule, i.e.
βs, of the LSM is robust even out of sample. Fundamentally, if the decision rule is strong, the in sample and
out of sample American option prices should not be so different from each other.
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Chapter 5

Basis Function Analysis

To start with, the entire basis function analysis, for any information set, is done on a plain
vanilla American option with payoff function Φ (S) = (K − S)+. Where, K is the strike price
and S is commodity spot price modeled by the SCYH model. The American contract has a
time span from zero to time T . All the rest of the information about the CS and the parameters
values will be given in each information set that is analyzed.

An important note is given on the choice of the parameter values. Due to the fact that the SCYH
model, as a whole, has never been tested empirically in the literature1, the choice of which values
assume, in the numerical analysis, has been challenging. As it was explained previously, the
SCYH model can be seen as a composition of the E. Schwartz, [12], and the James S. Doran
et al., [2], models2. Accordingly, the author chose to use the estimated oil parameters of the
convenience yield process from E. Schwartz, [12]3, and the estimated oil parameters for the
volatility process from James S. Doran et al., [2]4. On the one hand, the taken parameters
were calibrated on oil commodity and w.r.t. the Q measure, in both of the papers5. On the
other hand, the two papers use different sample periods and different methodology for their
estimation of the oil parameters6. By using the literature as starting point of our analysis,
four different information sets will be analyzed in the following sections, i.e. Aσ, Ak, Aθ and
Aρ. Then, conclusions about the Laguerre-power polynomial analysis and the yield-volatility
analysis will be given. After that, an EEP analysis will conclude the thesis.

However, note that in each information set there will be a comprehensive explanation of which
parameters were assumed and which were taken from the literature, with connected reference.

1At least of what the thesis author is aware of.
2See chapter 3.
3Table VI in [12] for oil parameters.
4Table 3 in [2] for crude oil parameters.
5In other words, we will simulate oil prices in the numerical application w.r.t. the Q measure.
6Unfortunately, this was the best combination of parameters that could be found in the literature.
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5.1 Information Set Aσ

The starting point of our analysis is to present the Laguerre-power polynomial analysis and to
identify the regression specification that better fits the information set at hand. After identifying
the benchmark, the yield-volatility basis function analysis is carried out to see if δ and/or

√
V

can further increase the value of the American option. Lastly, an IOT is implemented to see
the different reaction of the decision rule of LSM between the benchmark and the improved
benchmark7.

Aσ is the first information set that is analyzed, table 5.1. As it can be seen, its complement, i.e.
Āσ, includes: the initial condition of the commodity process, S0, the volatility of the stochastic
convenience yield, σδ, the volatility of the volatility process, σV , and the length of the American
option contract, T .

Table 5.1: Information set Aσ

Aσ r kδ θδ δ0 kV θV V0 ρSδ ρSV ρδV K n dy

Value 0.06 1.876 0.000456 θδ 27.636 0.077 θV 0.766 0.023 0 100 2 · 105 360

Notes: Parameters r, kδ, θδ and ρSδ are taken from [12]. While parameters kV , θV , ρSV are taken from

[2]. δ0 and V0 are the initial conditions of the SDEs for the yield and volatility process, respectively. They

are assumed to be equal to the long term mean of their process. ρδV and K are assumed to be equal to 0 and

100, respectively. n is the number of simulated paths, 50% of them are antithetic variates. dy is the number

of days per year and it is assumed to be also the number of exercise possibilities per year of the American

option. The values assumed by S0, σδ, σV and T are reported in the simulation tables in the Appendix, where

information set Aσ is used.

Tables B.1 and B.2, in the Appendix, report the computation of matrix DL and DP as well
as Āσi , for i = 1, ..., ζ = 20, for information set Aσ, respectively8. Figure, 5.1a shows the
DAvL and DAvP plots for information set Aσ9. As it can be seen from this figure, i.e. 5.1a, the
power polynomial increases the average American option price until reaching a maximum.
Then, the average American option price starts decreasing when we increase the complexity
of the conditional expectation of the payoffs. It is worth pointing out the smoothness of the
average American option price function in the power polynomial case. On the other hand, the
Laguerre polynomial has a more irregular pattern. The Laguerre polynomial pushes the average
American option price to its maximum and then it drops suddenly. In the author’s option, this

7See chapter 4 for the adopted terminology.
8It is clear that ϑ = 6 from the Appendix tables and from figure 5.1a
9In the figure the x-axis is represented by the number of Laguerre or power polynomials included in the

regression, i.e. LQ (S) or PQ (S). Nevertheless, the Q symbol was not accessible in MATLAB, thus the q one
was used. However, its meaning does not change.
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sudden drop is due to a loss of precision during the numerical inversion of the X ′X matrix in
the OLS regression. The Laguerre polynomial reaches a point when its complexity overwhelms
the benefit of capturing the non-linarites of the American option payoffs.

Figure 5.1: This figure shows: Laguerre-power polynomial analysis, tables B.1 and B.2 in the Appendix,

and yield-volatility basis function analysis, table B.3 in the Appendix, for information set Aσ, table
5.1.

(a) Laguerre-power polynomial analysis (b) yield-volatility basis function analysis

The issue now is to identify the maximum value obtained by the average American option price
in figure 5.1a, between the Laguerre and power polynomial cases. First, we define the maximum
in the Laguerre case and in the power case, respectively. After that, a comparison of the two
maximums will point out the most suitable specification of the conditional expectation of the
payoffs in the backward induction of LSM for information set Aσ.

At first hand, one could just select the conditional expectation specification that maximizes the
average American option price in figure 5.1a, for the Laguerre and power cases, respectively.
Nevertheless, this could mean selecting a conditional expectation specification that does not
give any sensible improvement from the previous one. This would mean to have a regression
that is over specified. In other words, this would increase the multicollinearity and difficulty in
the inversion of the X ′X matrix in the OLS regression10. Note that especially the latter issue is
the most relevant, i.e. the loss in precision can substantially impact the American option price.

As a result, we can focus on the increments of the plot, 5.1a, for the Laguerre and the power case,
respectively. Basically, if by increasing the conditional expectation specification, the increase in
the average American option price is lower than a certain cutoff value, then the latter increment
is worthless. For example, Assume that L1 (S) yields an average American option price of Π̄

L1(S)
A

and L2 (S) yields Π̄
L2(S)
A ; if the difference between Π̄

L2(S)
A and Π̄

L1(S)
A is greater than a U.S. dollar

10Also computational time would increase in such a way, but this is not an issue in this type of analysis.
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(USD) cent, then L2 (S) is preferred, while if it is less than a USD cent, L1 (S) is preferred11.
The USD cent cutoff value is used as decision rule to exclude or include a further regressor in
the conditional expectation throughout the entire basis function analysis12.

Table B.21 and B.22, in the Appendix, report the increments of the average American option
price function in plot 5.1a for the Laguerre and power polynomial cases, respectively. As the
tables point out the L2 (S) and P2 (S) are the two conditional expectation specifications that
maximize the average American option price for the Laguerre and power cases, respectively. This
choice is based on the one USD cent rule of thumb. Now, we should choose which between L2 (S)

and P2 (S) gives the highest American option price in average. Table B.23, in Appendix, reports
the difference between the average American option price function computed with Laguerre
polynomial and the one computed with the power polynomial, for information set Aσ. In other
words, this table shows the difference between the functions in plot 5.1a. It emerges from the
table that P2 (S) is preferred to L2 (S), because the former yields a higher average American
option price compared to the latter.

Lastly, by analyzing the single rows of matrix DL and DP , which correspond to tables B.1 and
B.2 in the Appendix, it is possible to check if the average result, i.e. P2 (S), holds also in the
single cases or at least if it is roubst. Basically, we wonder if the average result presents a large
variability or if it is stable13. After an accurate analysis, it is possible to state that the average
result is stable and robust. It means that P2 (S) specification is shown to be fairly consistent
in maximizing the American option price also in the single cases. This is not systematic, but
it holds in the large majority of the cases, i.e. Āσi for i = 1, ..., ζ = 20. To conclude, we can
state that P2 (S) is the conditional expectation specification that yields the highest average
American option price in the Laguerre-power polynomial analysis, and it is robust in the single
cases as well, for information set Aσ.14

The yield-volatility basis function analysis starts after identifying the benchmark form the
Laguerre-power polynomial analysis, i.e. E [Y |X]1PQ(Aσ)(S) = P2 (S). Therefore, the extensions
that will be compared to the benchmark are those specified in table 4.2 in chapter 4, i.e.

11Of course this is true if Π̄
L2(S)
A > Π̄

L1(S)
A , while if Π̄

L2(S)
A < Π̄

L1(S)
A than L1 (S) is without computation

whatsoever better than L2 (S).
12After extensive numerical simulations and computations, the one USD cent rule of thumb has been seen

quite effective. Nonetheless, there might be cases where it is up to the researcher to choose if the USD cent rule
is applicable or not. For example, if the average American option increment is 0.0099999 or 0.0100000001.

13On the one hand, the author chose not to report this part of analysis, in the Appendix, because it would
have overloaded the reader with figures and tables. One the other hand, the overall picture and result is reported
and commented in the main text. Nonetheless, this analysis can be extracted by the DL and DP tables reported
in the Appendix, if the reader wants to check.

14The Laguerre-power polynomial analysis was carried out also on the GBM example that Longstaff and
Schwartz, [11], have in their paper. The results lead to choose the same specification of the conditional expec-
tation of the payoffs as the one that Longstaff and Schwartz use in their paper, i.e. L2 (S) with the thesis
notation. The summary of the analysis is reported in the Appendix A.1, under performance test.
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{
E [Y |X]KPQ(Aσ)(S)

}9

K=2
. Table B.3, in the Appendix, reports the values of matrix BP , while figure

5.1b the vector, BAvP . As it can be seen in figure 5.1b15, the specifications
{
E [Y |X]KPQ(Aσ)(S)

}3

K=2

and
{
E [Y |X]KPQ(Aσ)(S)

}9

K=6
increase the average American option price, whereas, the

{
E [Y |X]KPQ(Aσ)(S)

}5

K=4

ones do not. This means that only the stochastic convenience yield as regressor raises the av-
erage American option price, while, the stochastic volatility as regressor does not. This implies
that all the specifications that contain the volatility process as regressor only increase the com-
plexity of the conditional expectation of the payoffs w.r.t. the benchmark, but not the price.
On the other hand, it is obvious form figure 5.1b that the convenience yield provides a higher
American option price in average w.r.t. the benchmark. In fact the difference between the av-
erage American option price provided by E [Y |X]2PQ(Aσ)(S), in table 4.2, and the one given by
the benchmark is 1.2553 USD. While the difference between the average American option price
given by E [Y |X]3PQ(Aσ)(S), in table 4.2, and the one given by the benchmark is 1.3292 USD.

These are remarkable results that point out the strength of adding δ as regressor in the
computation of the conditional expectation of the payoffs in the backward induction of the
LSM algorithm. Furthermore, these average results also hold in each single case, i.e. Āσi for
i = 1, ..., ζ = 20. This means that δ gives a edge in the LSM algorithm. It is clear that δ matters
more than

√
V in the computation of the conditional expectation. This is due to the fact that

the drift of the SCYH model impacts more the value of the American option rather than the
commodity higher distribution moments modeled by the volatility.

At this point an IOT is carried out on the benchmark, i.e. E [Y |X]1PQ(Aσ)(S) = P2 (S) table 4.2 or
in equation 5.1, and on improved benchmark, i.e. E [Y |X]2PQ(Aσ)(S) table 4.2 or equation 5.216.

E [Y |X]1PQ(Aσ)(S) = c+
2∑
q=0

pq (S) β̂q (5.1)

E [Y |X]2PQ(Aσ)(S) = c+
2∑
q=0

pq (S) β̂q + p0 (δ) β̂δ0 (5.2)

Tables B.4 and B.5, in the Appendix, report the IOT for the benchmark and the improved
benchmark, respectively. Moreover, table B.24, in the Appendix, reports the average difference
between the in sample and out of sample option prices for the benchmark and the improved
benchmark, respectively. The IOT shows that the LSM decision rule is really strong for both
the conditional expectation specifications, i.e. equation 5.1 and 5.2. This is due to the fact that
the average difference between in sample and out of sample options is lower than a USD cent
in both of the cases, i.e. equation 5.1 and 5.2 respectively.

15The x-axis represents the different regression specifications.
16Note that the improved benchmark could have been E [Y |X]

2
PQ(Aσ)(S)

, in table 4.2, as well. Nevertheless, it
is better to compare the closest extension to the benchmark as good rule of research.
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To conclude, we can say that equation 5.2 is the best possible specification that was identified in
the carried out analysis so far, i.e. in information set Aσ. This is in term of: average American
option price, robustness in the single cases, regression specification parsimonies and in the
IOT17. In other words, the stochastic convenience yield as regressor improves the precision of
the LSM, when an American option is written on a commodity and the SCYH model is used
as stochastic process, for information set Aσ.

5.2 Information Set Ak

The previous analysis pointed out the relevance of δ in predicting the continuation value of the
American option. Even if there is significant evidence of such a founding, the author chose to
investigate such issue even further. Basically, we wonder if by changing information set and its
complements the previous results will change too. In other words, will the convenience yield
be still so relevant in the LSM extension? Is this pattern persistent and reliable? In order to
investigate these questions, further numerical analysis is carried out.

To begin with, a new information set Ak is provided, table 5.2. Its general complement Āk is
made up of: S0, kδ, kV and T . Basically, the main difference between Aσ and Ak is that in the
latter the speed of mean reversion of the yield process and the volatility one will change over
the complements sets, Āki for i = 1, ..., ζ = 20. While in the former the volatilities changed
over the difference complements. Fundamentally, we want to see if with different setups of the
SCYH model parameters the general previously obtained results hold or not.

Table 5.2: Information set Ak

Ak r σδ θδ δ0 σV θV V0 ρSδ ρSV ρδV K n dy

Value 0.06 0.527 0.000456 θδ 0.443 0.077 θV 0.766 0.023 0 100 2 · 105 360

Notes: Parameters r, σδ, θδ and ρSδ are taken from [12]. While parameters σV , θV , ρSV are taken from

[2]. δ0 and V0 are the initial conditions of the SDEs for the yield and volatility process, respectively. They

are assumed to be equal to the long term mean of their process. ρδV and K are assumed to be equal to 0

and 100, respectively. n is the number of simulated paths, 50% of them are antithetic variates. dy is the

number of days per year and it is assumed to be also the number of exercise possibilities per year of the

American option. The values assumed by S0, kδ, kV and T are reported in the simulation tables in the

Appendix, where information set Ak is used.

Figure 5.2a shows the average American option price as a function of different Laguerre and
power polynomial specifications of the conditional expectation, i.e. LQ (S) and PQ (S) for Q =

17Also E [Y |X]
2
PQ(Aσ)(S)

, table 4.2, could have been a really good specification, but no IOT was carried out
for it. Furthermore, the author prefers to be parsimonious in the regression specification.
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0, ..., ϑ = 6, respectively18. As it can be seen from figure 5.2a, the power polynomial case shows
a quite smooth pattern after reaching the maximum level of the average American option price,
while the Laguerre one still presents an irregular movement. Both of them point out a decrease
trend in the average American option price in too complex specifications of the conditional
expectation of the payoffs. It is clear from the figure that the average American option reaches
its maximum at L1 (S) and P1 (S), for the Laguerre and power polynomial cases, respectively.
This is also shown by the one USD cent rule of thumb in table B.21 and B.22, in the Appendix.
In addition, table B.23, in the Appendix, points out that P1 (S) yields a higher average American
option price compared to the L1 (S) case. Besides, the P1 (S) conditional expectation of the
payoffs presents robust features also in the single cases, i.e. Āki for i = 1, ..., ζ = 20 19.

It is worth pointing out that in information set Aσ the benchmark was P2 (S), whereas in
information Ak the benchmark becomes P1 (S). This means that by changing some SCYH
model parameters, the regression specification that maximizes the American option changes
too. On the other hand, as it will be seen in the following lines, δ still remains a predominant
explanatory variable.

Figure 5.2: This figure shows: Laguerre-power polynomial analysis, tables B.6 and B.7 in the Appendix,

and yield-volatility basis function analysis, table B.8 in the Appendix, for information set Ak, table
5.2.

(a) Laguerre-power polynomial analysis (b) yield-volatility basis function analysis

As stated before, the new benchmark for the yield-volatility basis function analysis is E [Y |X]1PQ(Ak)(S) =

P1 (S). As a result, its extensions are
{
E [Y |X]KPQ(Ak)(S)

}9

K=2
and they are reported in table 4.2.

Figure 5.2b shows the average American option price computed with the benchmark, i.e. re-
gression specification one, and with the extensions of table 4.220. As it can be see, the figure

18The respective DL and DP matrices for the Laguerre and power polynomial are reported in the Appendix
in table B.6 and B.7, respectively. Moreover, figure 5.2a has on the x-axis the q symbol but it stands for Q one.

19This can be seen by analyzing the rows of table B.6 and B.7, in the Appendix, one by one.
20The computation of matrix BP is reported in the Appendix in table B.8.
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underlines the fact that only those extensions that incorporate δ increase the average American
option price w.r.t. the benchmark. This means that the specifications that contain the volatil-
ity as regressor add only complexity and no precision in the computation of the continuation
value of the American option. As a result, only the benchmark and

{
E [Y |X]KPQ(Ak)(S)

}3

K=2
are analyzed successively. In figure 5.2b the increment in the average American option price is
0.8524 USD, when we move from the benchmark, i.e. E [Y |X]1PQ(Ak)(S), to E [Y |X]2PQ(Ak)(S). This
points out again that δ improves the LSM algorithm when taken into account. Besides, this
result holds also in each single case of matrix BP , i.e. there is little variation from the average
American option price result and the single cases Āki for i = 1, ..., ζ = 2021.

Lastly, an IOT was performed on the following two specifications of the conditional expectations
of the payoffs:

E [Y |X]1PQ(Ak)(S) = c+
1∑
q=0

pq (S) β̂q (5.3)

E [Y |X]2PQ(Ak)(S) = c+
1∑
q=0

pq (S) β̂q + p0 (δ) β̂δ0 (5.4)

In other words, equation 5.3 is the benchmark, whereas equation 5.4 is the improved bench-
mark22. The average difference of in sample and out of sample prices for the benchmark is
2.82 ·10−4, whereas the one for the improved benchmark is −5.97 ·10−3 23. They are both really
close to zero, which means that the decision rule of the LSM is till robust when δ is added as
regressor. This is another remarkable results that underlines the consistency of adding δ in the
regression specification.

5.3 Information Set Aθ

The previous two information sets pointed out the better performances of the power polynomial
compared to the Laguerre one, and the increasing price of the American option when δ is used
as regressor. This section studies another information set, i.e. Aθ table 5.3, which has the long
term mean of the stochastic convenience yield and stochastic volatility processes changing in
Āθi for i = 1, ..., ζ = 20 24. A peculiarity of this section is that the values assumed by θδ and
θV , in Āθ, are fairly higher than what the literature has empirically presented, i.e. w.r.t. the
parameters taken from [12] and [2]. This choice of relatively higher values was made to test

21BP corresponds to table B.8 in the Appendix for information set Ak.
22The IOT for the benchmark is reported in table B.9, while the one of the improved benchmark in table

B.10 in the Appendix.
23These values are also reported in table B.24 in the Appendix.
24Also S0 and T still change in Āθi for i = 1, ..., ζ = 20 as usual.
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the reaction of our methodology of analysis and investigation questions even in fairly extreme
situations, e.g. in a black swan market.

Table 5.3: Information set Aθ

Aθ r kδ σδ δ0 kV σV V0 ρSδ ρSV ρδV K n dy

Value 0.06 1.876 0.527 θδ 27.636 0.443 θV 0.766 0.023 0 100 2 · 105 360

Notes: Parameters r, kδ, σδ and ρSδ are taken from [12]. While parameters kV , σV , ρSV are taken from

[2]. δ0 and V0 are the initial conditions of the SDEs for the yield and volatility process, respectively. They

are assumed to be equal to the long term mean of their process. ρδV and K are assumed to be equal to 0

and 100, respectively. n is the number of simulated paths, 50% of them are antithetic variates. dy is the

number of days per year and it is assumed to be also the number of exercise possibilities per year of the

American option. The values assumed by S0, θδ, θV and T are reported in the simulation tables in the

Appendix, where information set Aθ is used.

Figure 5.3a shows the Laguerre-power polynomial analysis for information set Aθ25. As it can
be seen from the figure, L1 (S) and P1 (S) maximize the value of the average American option
price, for the Laguerre and power cases, respectively26. As usual, the Laguerre polynomial case
decreases rapidly, whereas the power one slower and smoothly. On the other hand, in this case
the Laguerre polynomial specification pushes the average American option price higher than its
competitor27. Therefore, L1 (S) is preferred to P1 (S) in average sense; as well as in the single
cases too, i.e. Āθi for i = 1, ..., ζ = 2028 However, it is fair to point out that the variability is a
bit larger than in the previous two analyzed information sets.

The new benchmark for the yield-volatility basis function analysis becomes E [Y |X]1LQ(Aθ)(S) =

L1 (S) and its extensions
{
E [Y |X]KLQ(Aθ)(S)

}9

K=2
, which are presented in table 4.129. Figure 5.3b

points out the same fact as the other information sets, i.e. δ is the variable that matters and
not
√
V . Even if the Laguerre regression specification type is used in the yield-volatility basis

function analysis, δ is still the variable that can increase the value of the average American
option w.r.t. benchmark30. This latter result is also confirmed in the single cases, i.e. Āθi for
i = 1, ..., ζ = 20. Nonetheless, the variability of the results is a bit larger than the previous
information sets, but still really good31.

25The computations of matrix DL and DP are reported in the Appendix in table B.11 and B.12, respectively.
26The numerical values for the USD cent rule of thumb are reported in table B.21 and B.22 in the Appendix.
27This is showed in table B.23 in the Appendix.
28Each single row of tables B.11 and B.12, in the Appendix, show this latter feature.
29This is a different table than in the previous information sets.
30The computation of BL is reported in table B.13 in the Appendix.
31This latter statement can be extracted from table B.13 in the Appendix.
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Figure 5.3: This figure shows: Laguerre-power polynomial analysis, tables B.11 and B.12 in the Ap-

pendix, and yield-volatility basis function analysis, table B.13 in the Appendix, for information set Aθ,
table 5.3.

(a) Laguerre-power polynomial analysis (b) yield-volatility basis function analysis

To conclude, an IOT on the benchmark, equation 5.5, and on the improved benchmark, equation
5.6, was performed32.

E [Y |X]1LQ(Aθ)(S) = c+
1∑
q=0

lq (S) β̂q (5.5)

E [Y |X]2LQ(Aθ)(S) = c+
1∑
q=0

lq (S) β̂q + l0 (δ) β̂δ0 (5.6)

The average difference between the in sample and out of sample prices for the benchmark case
is 1.75 · 10−4, whereas for the improved benchmark 1.039 · 10−2 33. This is the first time that
the improved benchmark shows an IOT average difference that substantially differs from the
benchmark. In the author’s opinion this is due to the use of fairly high values of θδ and θV as
well as for the use of the Laguerre polynomial regression specification, rather than the power
one. Even though the result is not as good as in the previous information sets, δ still presents
strong properties to be used as a regressor in the LSM, even in a black swan market.

32The IOT for the benchmark is in table B.14, whereas the one for the improved benchmark is in table B.15
in the Appendix.

33This results are also reported in table B.24 in the Appendix.

31



5.4 Information Set Aρ

Throughout the basis function analysis different information sets have been analyzed to see the
reaction of the LSM algorithm by inserting the convenience yield and the volatility as regressors
in the computation of the conditional expectation of the payoffs. As the reader notices the choice
of the information sets, i.e. Aσ, Ak and Aθ, and their complements, i.e. Āσ, Āk and Āθ, was not
random. For instance, in Aσ the SCYH model parameters σδ and σV were allowed to change.
As it can be seen, in each information set different focus was given to different features of
the SCYH model. For example, in Ak the focus was on the speed of mean reversion of the
two state processes, whereas, in Aθ the focus was on the long term mean of the processes.
Fundamentally, the only pair of parameters that are left to be analyzed are those related to the
correlation matrix of the Brownian motions, i.e. ρSδ and ρSV 34.

The information set Aρ is presented in table 5.4 and its general complement Āρ is made up of
S0, ρSδ, ρSV and T . The analysis is carried out as usual and figure 5.4a shows the Laguerre-
power polynomial analysis. It is easy to see that P3 (S) is the specification that maximizes the
average American option price and it shows a well-defined quadratic function shape. P3 (S) has
also a strong and robust feature in each single case, i.e. Āρi for i = 1, ..., ζ = 20 35.

Table 5.4: Information set Aρ

Aρ r kδ θδ δ0 kV θV V0 σδ σV ρδV K n dy

Value 0.06 1.876 0.000456 θδ 27.636 0.077 θV 0.527 0.443 0 100 2 · 105 360

Notes: Parameters r, kδ, θδ and σδ are taken from [12]. While parameters kV , θV , σV are taken from [2].

δ0 and V0 are the initial conditions of the SDEs for the yield and volatility process, respectively. They are

assumed to be equal to the long term mean of their process. ρδV and K are assumed to be equal to 0 and

100, respectively. n is the number of simulated paths, 50% of them are antithetic variates. dy is the number

of days per year and it is assumed to be also the number of exercise possibilities per year of the American

option. The values assumed by S0, ρSδ, ρSV and T are reported in the simulation tables in the Appendix,

where information set Aρ is used.

Also information set Aρ shows a strong evidence in favor of the δ as a regressor in the yield-
volatility basis function analysis, showed in figure 5.4b. The benchmark E [Y |X]1PQ(Aρ)(S) =

34As it was explained in the previous information sets, ρδV is assumed to be zero. This is due to the fact that
no literature has investigated this parameter empirically so far, that the author is aware of. Hence, the author
of the thesis chose to leave the yield end volatility processes uncorrelated to each other. Furthermore, the values
assumed for ρSδ and ρSV are fairly in line with the literature, i.e. [12] and [2].

35As usual the computation of DL and DP are reported in table B.16 and B.17 in the Appendix. The
increments of plot 5.4a are reported in table B.21 and B.22 in the Appendix, for the Laguerre and power cases
respectively. Lastly, the value function differences in plot 5.4a are reported in table B.23 in the Appendix.
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P3 (S) in table 4.2 is definitively improved by E [Y |X]2PQ(Aρ)(S) and E [Y |X]3PQ(Aρ)(S) which in-
crease the average American option price by 0.8202 and 0.9165 USD, respectively 36. These
features are also consistent and stable in each single case too, i.e. Āρi for i = 1, ..., ζ = 20.

Figure 5.4: This figure shows: Laguerre-power polynomial analysis, tables B.16 and B.17 in the Ap-

pendix, and yield-volatility basis function analysis, table B.18 in the Appendix, for information set Aρ,
table 5.4.

(a) Laguerre-power polynomial analysis (b) yield-volatility basis function analysis

Lastly, an IOT was performed between the benchmark, equation 5.7, and the improved bench-
mark equation 5.8.

E [Y |X]1PQ(Aρ)(S) = c+
3∑
q=0

pq (S) β̂q (5.7)

E [Y |X]2PQ(Aρ)(S) = c+
3∑
q=0

pq (S) β̂q + p0 (δ) β̂δ0 (5.8)

The average difference between in sample and out of sample prices for the benchmark is 8.784 ·
10−3, whereas 4.351 · 10−3 for the improved benchmark37. This is the first time that the IOT
shows a better result for the improved benchmark compared to the benchmark. This means that
the addition of δ in the LSM decision rule does not increase systematically the βs imprecision
out of sample.

To conclude, all the information sets have showed strong evidence for inserting δ as regressor in
the LSM algorithm while strong rejection of the volatility process. On the other hand, the choice

36The computation of matrix BP is reported in the Appendix in table B.18. While E [Y |X]
2
PQ(Aρ)(S)

and

E [Y |X]
3
PQ(Aρ)(S)

are reported in table 4.2.
37The IOT for the benchmark is reported in table B.19 in the Appendix, while the one for the improved

benchmark is in table B.20. Moreover the average price difference between in sample and out of sample options
is reported in table B.24 in the Appendix.
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of which polynomial specification to use between Laguerre and power one is more uncertain.
Four out of three information sets pointed out the preference of the power polynomial for
its smoothness and stability in the American option price. In the author’s opinion the power
polynomial specification is more suitable than the Laguerre one due to less variability in its
performances. In a nutshell, the overall picture of the analysis is that a power polynomial
specification with δ as regressor, in addition to the commodity price, is an optimal conditional
expectation specification in the LSM with the SCYH model.

5.5 Early Exercise Premium Analysis

The EEP analysis closes the thesis investigation questions by seeing the EEP reaction when an
American option is priced with and without δ as regressor. Basically, by using a new information
set, which is predominantly based on the literature, surfaces of American option prices are
compared to each other, in order to investigate the main insights behind the insertion of δ as
regressor.

The information set Af is provided in table 5.5. The f stands for final and the yield parameters
kδ, θδ, σδ, ρSδ and r are taken from E. Schwartz, [12]. While the volatility ones, kV , θV , σV and
ρSV are taken from James S. Doran et al., [2]. All the other CS and values are assumed, as
usual.

Table 5.5: Information set Af

Af Value Af Value Af Value

S0 100 σV 0.443 ρSδ 0.766
r 0.06 kδ 1.876 ρSV 0.023

kV 27.636 θδ 0.000456 ρδV 0
θV 0.077 δ0 θδ n 2 · 105

V0 θV σδ 0.527 dy 360

Notes: Yield parameters and r are taken from

[12], while the volatility ones from [2]. All the

other information is assumed as usual.

The Laguerre-power polynomial analysis as well as the yield-volatility basis function analysis
is carried out in figure B.1, tables B.25 and B.26, in the Appendix, for information set Af . The
results point out that the most suitable specifications for the conditional expectation for the
benchmark and the improved benchmark are those in equation 5.9 and 5.10, respectively38.

38Note that in table B.25 the difference between L2 (S) and P2 (S) is basically zero and the author chose to
use the power specification due to its well-behaved properties.
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E [Y |X]1P
Q(Af)

(S) = P2 (S) = c+
2∑
q=0

pq (S) β̂q (5.9)

E [Y |X]2P
Q(Af)

(S) = c+
2∑
q=0

pq (S) β̂q + p0 (δ) β̂δ0 (5.10)

Where the notation used in equation 5.9 and 5.10 corresponds to the one reported in table 4.2.
These two specifications will be used to price American options surfaces that will be compared
to each other to see the insights behind the EEP. Define the American option price generated
by equation 5.9, when used in the LSM algorithm, by Π

P2(S)
A , whereas the one generated by

equation 5.10, when used in the LSM algorithm, by Πδ
A. We can define the EEP as the difference

between a general American option price, ΠA, and the equivalent European option price, ΠE.

EEP = ΠA − ΠE (5.11)

Note that ΠE is computed with Monte Carlo as well, i.e. by using equation 1.9.

Figure 5.5a shows the EEP behavior39 for different strikes, K, end times to maturity, T . Ba-
sically, the z-axis in computed by the difference between the American option price and the
equivalent European option price. The higher surface is computed by the following difference
Πδ
A −ΠE, whereas the lower surface is computed by the following difference Π

P2(S)
A −ΠE. As it

can be seen from figure 5.5a, the EEP computed with the improved benchmark always excides
the one computed with the benchmark. In both of the cases, the EEP increases with the length
of the contract, i.e. T , and also with ITM options.

Figure 5.5b shows the EEP premium calculated as in figure 5.5a but it has also been made as
a percentage of the equivalent European option. In other words, the z-axis of figure 5.5b shows
the increase in value of the American option w.r.t. the equivalent European one in percentage
terms. The surface that lies above is the one computed by equation 5.10, while the lower is
computed by equation 5.9. As it can be seen, the percentage increase is remarkable in deep
OTM options with long term to maturity. This increase can reach up to 50% and 70% for the
benchmark and improved benchmark, respectively.

Even if the thesis analysis has been focusing more on the pure price of the contingent claim, few
words can be spent on the standard errors of American and European options prices. Figure
5.5c shows the difference of American option standard errors and the equivalent European ones
for different K and T 40. In both of the surfaces, the European standard errors are larger for at
the money (ATM) options and for OTM options. This is due to the fact that the plot becomes
negative in such situations. On the other hand, the American standard errors become larger

39The z-axis represents the EEP.
40Figure 5.5a, 5.5b and 5.5c all refer to the same computed prices.
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in ITM options w.r.t. the equivalent European ones. However, the benchmark surface always
lies below the improved benchmark one. This means that the standard errors of the improved
benchmark are bigger than the one of the benchmark, i.e. there is less precision and more
uncertainty in the contingent claim price in the former case41.

Figure 5.5: These figures show a comparison between American options computed with P2 (S) and

with P2 (S) + p0 (δ) β̂δ0 w.r.t. their equivalent European option. Information set Af , table 5.5, is used.

(a) EEPA−E (b) EEPA−E%E

(c) s.e.A−E

Figure 5.6a shows the difference in price between Πδ
A and Π

P2(S)
A , which corresponds to the

difference in EEP between the improved benchmark and the benchmark. The plot underlines
the increase in the difference for long contract terms and deep ITM options. Moreover, the
horizontal surface shows the average increase of the EEP of improved benchmark w.r.t. the
benchmark one. In other words, the American option price increases by 0.5924 USD when δ is
inserted as regressor, over the entire surface in average.

Figure 5.6b shows the difference in EEP between Πδ
A and Π

P2(S)
A in percentage terms, w.r.t.

41All plots of figure 5.5 and 5.6 are computed from figure B.2, B.3 and B.4 in the Appendix.
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Π
P2(S)
A . Fundamentally, the figure points out how much the American option price computed

with equation 5.10 increases w.r.t. the 5.9 specification in percentage terms w.r.t. the latter.
Also in this case the biggest improvement is in long term options end especially in deep OTM
ones. The horizontal surface implies the average percentage increase over the entire surface,
which is 6.017%.

Figure 5.6: These figures show the difference between American options computed with P2 (S) and

with P2 (S) + p0 (δ) β̂δ0 w.r.t. the American option computed with P2 (S). Information set Af , table
5.5, is used.

(a) EEP δ−P2(S) (b) EEP δ−P2(S)
%P2(S)

(c) s.e.δ−P2(S)

Lastly, figure 5.6c represents the difference of American options standard errors between the
one corresponding to Πδ

A price and the one corresponding to Π
P2(S)
A price. As it can be seen, the

standard errors of the improved benchmark are always greater than the one of the benchmark.
However, the difference increases for ATM options with long maturity, while it decreases for
deep OTM options with short maturity. The horizontal surface shows the average difference,
which is 0.0017. Stated differently, the improved benchmark has higher imprecision especially
in ATM options compared to the benchmark.
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To conclude, we can state that the EEP increases with the improved benchmark especially
with moneyness. Moreover, the EEP increases also for deep OTM options with long contract
term, when EEP is looked in percentage terms. On the other hand, also the imprecision of the
Monte Carlo method increases with the improved benchmark. Nonetheless, the magnitude of
the improved price seems to fully offset the increment of the standard error.
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Chapter 6

Conclusion

The thesis has presented and discussed a general contingent claim pricing framework as well as a
practical implementation of the LSM for pricing American options. Then, a commodity process
has been introduced, i.e. SCYH model. Then, the used methodology of analysis introduced
the reader to the basis function analysis. Laguerre-power polynomial analysis as well as yield-
volatility basis function analysis have been extensively analyzed for different information sets.
Then an EEP behavior of the benchmark and improved benchmark has been showed graphically.

The main result of the Laguerre-power polynomial analysis is that the power polynomial shows
better properties than the Laguerre one. The average American option price as function of the
power polynomial shows a smooth trend and good stability as well. As a result, the power
polynomial is suggested to be used in real world applications.

The main result of the yield-volatility analysis is that the convenience yield, when added as
regressor, further increases the American option price while the volatility process does not. This
is due to the fact that the first moment of the distribution of the underlying asset matters more
than higher moments, when the contingent claim is priced. As a result, this leads to suggest
the insertion of convenience yield as regressor in the LSM algorithm.

The EEP analysis showed the relevance of the convenience yield especially for deep OTM
options with long contract term, when the EEP is looked in percentage terms. Moreover, the
benefits of the convenience yields increases with moenyness. As a result, the convenience yield
impacts prominently over the entire option term structure as well as contract specifications.

The entire thesis analysis was based on numerical computations. Nevertheless, analytical proofs
should be carried out in order to investigate the thesis questions from a more theoretical per-
spective. Unfortunately, this goes beyond the purpose of this thesis and it is left to future
research.
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Appendix A

Geometeric Browmian Motion Test

A.1 Numerical Example

LSM comparison

In order to guarantee an error free code, the thesis reproduces the pricing of an American put
option with underlying asset modelled as GBM with no dividends, e.g. a stock. Basically, there
is a comparison between the results obtained by Longstaff and Schwartz, [11], and the one
obtained by the author of the thesis. The setup is as the one in their paper and it is as follows.

The payoff function of the American put is defined as Φ (S) = (K − S)+, where K is the strike
price and S is the underlying asset. The dynamic of the underlying financial security is defined
as:

dS (t) = S (t) rdt+ S (t)σdW (t)Q (A.1)

The simulation of the SDE in equation A.1 was done with its well-known closed form solution.
The number of paths is 100.000 (50.000 plus 50.000 antithetic). The risk free rate r and the
volatility σ are constant. The risk free rate is assumed to be 0.06, while the strike price to be 40
and the number of exercise possibilities is 50 per year. The first three Laguerre basis functions
were used to compute the conditional expectation of the payoff, i.e. L2 (S) was used. All the
other features are defined in table A.1 in the Appendinx.

As it can be seen in table A.1 the difference between the American option computed in the
reference paper, Π+

A, and the one computed in the thesis, Π∗A, is minimal. In other words, the
average mean difference between the two prices is -0.00713, which is less than a USD cent. This
points out that the algorithm is fairly good in computing the price of the contingent claim at
hand.

On the other hand, the author noticed that the difference between the standard error reported
in the reference paper and the one computed in the thesis, i.e. se+ − se∗, is systematically
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positive. This means that the performance of the algorithm in the thesis outperforms the one
in the original paper. This is due to a small bug or imperfection in the original paper in the
use of the antithetic variates. The original paper computes the price of the American option
as a mere average of the discounted payoffs after the implementation of the core of the LSM
algorithm. Nonetheless, this is not fully correct in the case of the use of antithetic variates, when
we want to compute the price standard error as well. In such a latter case the computation
of the contingent claim price should be as the expectation over the independent generated
payoffs. Basically, the first n/2 generated payoffs should be added to the corresponding n/2
antithetic ones and divided by 2. Then, the average of this new random vector should be used
as numerical approximation of the contingent claim price and this new random vector should
be used to compute the price standard error. Note that the price of the contingent claim does
not change between the two different procedures, whereas the standard error does change, and
it becomes smaller. This is due to the fact that in the latter way, the negative covariance of
the antithetic variates is exploited while in the former way is not, see Glasserman for further
explanation on antithetic variates [7].

Anyhow, the algorithm coded in the thesis seems to perform really well and it will be used for
the rest of the thesis too.

Test procedure

Figure A.1: Laguerre and power polynomial comparison of the GBM Numerical Exmaple that corre-

spond to the setting presented by Longstaff and Schwartz, see [11] or section A.1 under LSM compar-

ison.
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Table A.1: Comparison between the prices of the American put option computed in the paper

of Longstaff and Schwartz and in this thesis.

S0 σ T Π+
A se+ EEP+ Π∗A se∗ EEP ∗ Π+

A − Π∗A se+ − se∗

36 0.2 1 4.472 0.01 0.628 4.477 0.006 0.633 -0.005 0.004
36 0.2 2 4.821 0.012 1.058 4.826 0.007 1.063 -0.005 0.005
36 0.4 1 7.091 0.02 0.380 7.100 0.008 0.389 -0.009 0.012
36 0.4 2 8.488 0.024 0.788 8.520 0.011 0.820 -0.032 0.013

38 0.2 1 3.244 0.009 0.392 3.250 0.005 0.398 -0.006 0.004
38 0.2 2 3.735 0.011 0.744 3.752 0.006 0.761 -0.017 0.005
38 0.4 1 6.139 0.019 0.305 6.141 0.008 0.306 -0.002 0.011
38 0.4 2 7.669 0.022 0.690 7.651 0.010 0.672 0.018 0.012

40 0.2 1 2.313 0.009 0.247 2.317 0.005 0.250 -0.004 0.004
40 0.2 2 2.879 0.01 0.523 2.890 0.006 0.534 -0.011 0.004
40 0.4 1 5.308 0.018 0.248 5.322 0.009 0.262 -0.014 0.009
40 0.4 2 6.921 0.022 0.595 6.933 0.010 0.607 -0.012 0.012

42 0.2 1 1.617 0.007 0.152 1.621 0.006 0.157 -0.004 0.001
42 0.2 2 2.206 0.01 0.365 2.205 0.007 0.364 0.001 0.003
42 0.4 1 4.588 0.017 0.209 4.614 0.010 0.236 -0.026 0.007
42 0.4 2 6.243 0.021 0.507 6.239 0.011 0.503 0.004 0.010

44 0.2 1 1.118 0.007 0.101 1.105 0.005 0.088 0.013 0.002
44 0.2 2 1.675 0.009 0.246 1.687 0.007 0.258 -0.012 0.002
44 0.4 1 3.957 0.017 0.174 3.963 0.011 0.180 -0.006 0.006
44 0.4 2 5.622 0.021 0.420 5.635 0.012 0.433 -0.013 0.009

Notes: Π+
A and se+ represent the American option price and standard error as reported in,

[11], EEP+ is computed as Π+
A minus BS put price, Π∗A and se∗ represent the American

option price and standard error computed in the thesis, EEP ∗ is computed as Π∗A minus BS

put price.

As it can be seen in figure A.1 both the Laguerre and the power function show a quite stable
asymptotic behavior when reaching the maximum average American option price. However,
the Laguerre cases still shows a small drop. By looking at table A.2 and A.3 it is obvious
that the L2 (S) specification is the most suitable one. It is not a coincidence that this is the
same specification used by Longstaff and Schwartz, in their paper, see [11]. This points out the
strength of the adopted methodology in the thesis for selecting the regression specification.
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Table A.2: This table shows the increments of the average American option

price plotted in figure A.1, which correspond to the GBM numerical example,

in the Laguerre and power polynomial specification.

∆G Ii=0 Ii=1 Ii=2 Ii=3 Ii=4 Ii=5

∆L -0.02224 -0.01138 -0.00092 0.003288 -0.00275 -0.00015
∆P -0.05377 -0.00994 -0.00069 -0.00119 9.91E-05 0.006669

Notes: Where Ii = Π̄A,Gi(S)−Π̄A,Gi+1(S) and Π̄A,Gi(S) is the average American

option price for a chosen specification G, which can be either Laguerre (L)

or power (P) polynomial, e.g. the i Laguerre specification.

Table A.3: This table shows the difference between the value function of the Laguerre and power

polynomial plotted in figure A.1, which corresponds to the GBM numerical example.

q in figure 0 1 2 3 4 5 6

GBM 0.030367 -0.00116 0.000273 0.000502 -0.00398 -0.00113 0.005682

Notes: Any numerical value is computed by subtracting the power polynomial value function from

the Laguerre one. In other words, a negative value implies that the power polynomial specification

gives a higher price to the American option in average.
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Appendix B

Basis Function Tables and Figures

In the following pages the computation of the DL, DP , BL and BP matrices will be presented
as well as the in sample and out of sample tests for the benchmark and improved benchmark.
These tables are reported for each information set analyzed in the basis function analysis.
Then, surfaces of American options prices and standard errors will be presented as fundamental
underlying of the EEP analysis.

B.1 Tables
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Table B.1: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the Laguerre polynomial

and the information set is Aσ, table 5.1.

S0 σδ σV T L0 (S) L1 (S) L2 (S) L3 (S) L4 (S) L5 (S) L6 (S)

90 0.3 0.2 1 13.604 13.762 13.812 13.816 13.803 13.347 13.822
90 0.7 0.2 2 16.173 16.280 16.320 16.313 15.716 15.145 15.312
90 0.3 0.6 1 13.644 13.772 13.818 13.827 13.653 13.357 13.829
90 0.7 0.6 2 16.147 16.253 16.294 16.290 16.200 15.397 16.275

95 0.3 0.2 1 10.669 10.786 10.822 10.832 10.802 9.861 10.643
95 0.7 0.2 2 13.138 13.241 13.267 13.272 13.268 12.529 13.269
95 0.3 0.6 1 10.625 10.745 10.767 10.780 10.780 10.708 10.778
95 0.7 0.6 2 13.121 13.209 13.246 13.240 13.029 13.072 13.238

100 0.3 0.2 1 8.134 8.235 8.271 8.275 8.278 8.111 8.208
100 0.7 0.2 2 10.582 10.652 10.686 10.674 10.659 10.559 9.721
100 0.3 0.6 1 8.115 8.212 8.245 8.247 8.235 8.083 8.218
100 0.7 0.6 2 10.598 10.653 10.687 10.028 10.624 9.625 10.683

105 0.3 0.2 1 6.089 6.173 6.205 6.202 6.210 6.190 6.194
105 0.7 0.2 2 8.395 8.461 8.491 8.134 8.491 8.223 8.439
105 0.3 0.6 1 6.089 6.165 6.196 6.198 6.205 6.090 5.778
105 0.7 0.6 2 8.414 8.466 8.496 7.961 8.377 8.147 8.145

110 0.3 0.2 1 4.483 4.541 4.560 4.557 4.566 4.516 4.371
110 0.7 0.2 2 6.610 6.668 6.690 6.643 6.695 6.665 6.095
110 0.3 0.6 1 4.486 4.546 4.576 4.545 4.577 4.461 4.577
110 0.7 0.6 2 6.626 6.674 6.697 6.553 6.697 6.618 6.406

Notes: LQ (S) is defined in equation 2.4.
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Table B.2: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the power polynomial and

the information set is Aσ, table 5.1.

S0 σδ σV T P0 (S) P1 (S) P2 (S) P3 (S) P4 (S) P5 (S) P6 (S)

90 0.3 0.2 1 13.505 13.774 13.809 13.822 13.824 13.822 13.801
90 0.7 0.2 2 16.090 16.287 16.323 16.313 16.321 16.314 15.408
90 0.3 0.6 1 13.551 13.778 13.818 13.830 13.830 13.833 13.830
90 0.7 0.6 2 16.062 16.256 16.300 16.287 16.296 16.291 15.449

95 0.3 0.2 1 10.577 10.791 10.820 10.831 10.826 10.832 10.827
95 0.7 0.2 2 13.062 13.242 13.266 13.271 13.274 13.256 13.232
95 0.3 0.6 1 10.539 10.753 10.767 10.782 10.784 10.786 10.272
95 0.7 0.6 2 13.046 13.211 13.248 13.240 13.246 13.244 13.185

100 0.3 0.2 1 8.071 8.237 8.270 8.276 8.283 8.029 8.257
100 0.7 0.2 2 10.519 10.655 10.682 10.679 10.681 10.640 10.648
100 0.3 0.6 1 8.048 8.220 8.245 8.245 8.248 8.246 8.251
100 0.7 0.6 2 10.534 10.655 10.687 10.681 10.685 10.678 10.499

105 0.3 0.2 1 6.033 6.175 6.204 6.210 6.215 6.212 5.807
105 0.7 0.2 2 8.339 8.460 8.493 8.491 8.494 8.478 8.372
105 0.3 0.6 1 6.038 6.169 6.195 6.203 6.203 6.201 6.047
105 0.7 0.6 2 8.360 8.466 8.495 8.490 8.495 8.465 8.029

110 0.3 0.2 1 4.446 4.542 4.558 4.567 4.568 4.570 4.564
110 0.7 0.2 2 6.565 6.669 6.692 6.697 6.697 6.694 6.252
110 0.3 0.6 1 4.443 4.549 4.576 4.576 4.583 4.582 4.579
110 0.7 0.6 2 6.581 6.675 6.699 6.702 6.699 6.701 6.687

Notes: PQ (S) is defined in equation 2.5.
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Table B.3: This table shows the price of American put options w.r.t. the information set Aσ, table 5.1. The
conditional expectation of the payoffs, i.e. E [Y |X]PQ(Aσ)(S), is defined as in table 4.2.

S0 σδ σV T 1 2 3 4 5 6 7 8 9

90 0.3 0.2 1 13.838 14.067 14.120 13.841 13.841 14.066 14.119 14.068 14.119
90 0.7 0.2 2 16.318 19.363 19.486 16.319 16.318 19.365 19.489 19.363 19.489
90 0.3 0.6 1 13.803 14.039 14.090 13.808 13.810 14.045 14.093 14.046 14.091
90 0.7 0.6 2 16.287 19.404 19.515 16.300 16.303 19.405 19.511 19.405 19.513

95 0.3 0.2 1 10.789 10.980 11.019 10.790 10.793 10.978 11.019 10.980 11.018
95 0.7 0.2 2 13.311 16.015 16.150 13.311 13.312 16.015 16.151 16.017 16.151
95 0.3 0.6 1 10.762 10.952 10.994 10.766 10.768 10.958 10.993 10.961 10.994
95 0.7 0.6 2 13.245 16.048 16.176 13.255 13.257 16.052 16.178 16.056 16.179

100 0.3 0.2 1 8.239 8.407 8.429 8.241 8.241 8.406 8.431 8.408 8.431
100 0.7 0.2 2 10.670 13.019 13.156 10.672 10.670 13.019 13.157 13.019 13.158
100 0.3 0.6 1 8.265 8.426 8.445 8.272 8.271 8.428 8.455 8.430 8.454
100 0.7 0.6 2 10.677 13.095 13.226 10.686 10.686 13.097 13.223 13.098 13.223

105 0.3 0.2 1 6.210 6.331 6.346 6.211 6.209 6.334 6.345 6.333 6.347
105 0.7 0.2 2 8.488 10.462 10.574 8.491 8.493 10.464 10.572 10.466 10.572
105 0.3 0.6 1 6.185 6.302 6.324 6.191 6.192 6.302 6.328 6.301 6.327
105 0.7 0.6 2 8.506 10.447 10.571 8.508 8.508 10.448 10.573 10.451 10.575

110 0.3 0.2 1 4.580 4.663 4.676 4.579 4.580 4.663 4.674 4.664 4.676
110 0.7 0.2 2 6.680 8.234 8.344 6.682 6.680 8.233 8.345 8.234 8.345
110 0.3 0.6 1 4.584 4.673 4.682 4.585 4.586 4.673 4.683 4.672 4.684
110 0.7 0.6 2 6.710 8.293 8.411 6.713 6.716 8.292 8.412 8.293 8.412

Notes: the first regression specification, i.e. 1, is defined as P2 (S). All the other regression specifications

follow as descibed in table 4.2
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Table B.4: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set

Aσ, table 5.1. The specification of the conditional expectation of the payoff is

P2 (S).

S0 σδ σV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.3 0.2 1 13.801 0.013 13.819 0.013 -0.018 0.000
90 0.7 0.2 2 16.315 0.016 16.320 0.016 -0.005 0.000
90 0.3 0.6 1 13.826 0.014 13.821 0.014 0.005 0.000
90 0.7 0.6 2 16.280 0.017 16.278 0.017 0.001 0.000

95 0.3 0.2 1 10.809 0.011 10.791 0.011 0.018 0.000
95 0.7 0.2 2 13.295 0.015 13.289 0.015 0.007 0.000
95 0.3 0.6 1 10.779 0.012 10.758 0.012 0.021 0.000
95 0.7 0.6 2 13.266 0.016 13.240 0.016 0.026 0.000

100 0.3 0.2 1 8.248 0.011 8.272 0.011 -0.024 0.000
100 0.7 0.2 2 10.685 0.014 10.655 0.014 0.030 0.000
100 0.3 0.6 1 8.245 0.011 8.244 0.011 0.001 0.000
100 0.7 0.6 2 10.682 0.015 10.680 0.015 0.002 0.000

105 0.3 0.2 1 6.175 0.011 6.203 0.011 -0.028 0.000
105 0.7 0.2 2 8.450 0.014 8.511 0.013 -0.061 0.000
105 0.3 0.6 1 6.185 0.012 6.186 0.012 0.000 0.000
105 0.7 0.6 2 8.521 0.014 8.509 0.014 0.011 0.000

110 0.3 0.2 1 4.581 0.011 4.551 0.011 0.030 0.000
110 0.7 0.2 2 6.663 0.013 6.674 0.013 -0.011 0.000
110 0.3 0.6 1 4.576 0.011 4.559 0.011 0.017 0.000
110 0.7 0.6 2 6.716 0.014 6.697 0.014 0.019 0.000

Notes: Πin
A and sein represent the price and standard error of the American

option computed in sample, respectively, whereas Πout
A and seout represent the

price and standard error of the American option computed out of sample, re-

spectively. Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.5: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set

Aσ, table 5.1. The specification of the conditional expectation of the payoff is

P2 (S) + p0 (δ) β̂δ0 .

S0 σδ σV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.3 0.2 1 14.055 0.014 14.059 0.014 -0.004 0.000
90 0.7 0.2 2 19.372 0.019 19.387 0.019 -0.015 0.000
90 0.3 0.6 1 14.055 0.015 14.044 0.015 0.011 0.000
90 0.7 0.6 2 19.401 0.020 19.409 0.020 -0.008 0.000

95 0.3 0.2 1 11.006 0.013 10.982 0.013 0.024 0.000
95 0.7 0.2 2 16.005 0.019 16.002 0.019 0.003 0.000
95 0.3 0.6 1 10.993 0.013 10.962 0.013 0.031 0.000
95 0.7 0.6 2 16.052 0.020 16.043 0.020 0.009 0.000

100 0.3 0.2 1 8.405 0.012 8.420 0.012 -0.015 0.000
100 0.7 0.2 2 13.046 0.019 13.011 0.018 0.035 0.000
100 0.3 0.6 1 8.408 0.013 8.401 0.012 0.008 0.000
100 0.7 0.6 2 13.109 0.019 13.049 0.019 0.059 0.000

105 0.3 0.2 1 6.283 0.012 6.316 0.012 -0.034 0.000
105 0.7 0.2 2 10.404 0.018 10.431 0.018 -0.027 0.000
105 0.3 0.6 1 6.315 0.012 6.296 0.012 0.019 0.000
105 0.7 0.6 2 10.489 0.019 10.484 0.019 0.005 0.000

110 0.3 0.2 1 4.674 0.012 4.644 0.012 0.030 0.000
110 0.7 0.2 2 8.227 0.017 8.223 0.017 0.004 0.000
110 0.3 0.6 1 4.659 0.012 4.649 0.012 0.010 0.000
110 0.7 0.6 2 8.304 0.018 8.303 0.018 0.001 0.000

Notes: Πin
A and sein represent the price and standard error of the American

option computed in sample, respectively, whereas Πout
A and seout represent the

price and standard error of the American option computed out of sample, re-

spectively. Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.6: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the Laguerre polynomial and

the information set is Ak, table 5.2.

S0 kδ kV T L0 (S) L1 (S) L2 (S) L3 (S) L4 (S) L5 (S) L6 (S)

90 0.876 20 1 14.476 14.551 14.533 14.529 14.521 13.970 14.109
90 2.876 20 2 15.112 15.335 15.356 15.373 15.383 15.390 15.374
90 0.876 34 1 14.524 14.592 14.570 14.561 14.556 13.634 14.546
90 2.876 34 2 15.100 15.328 15.337 15.359 15.320 15.365 15.365

95 0.876 20 1 11.266 11.338 11.308 11.307 11.070 10.909 11.299
95 2.876 20 2 12.181 12.386 12.404 12.419 12.416 11.898 11.652
95 0.876 34 1 11.265 11.332 11.304 11.305 11.304 11.182 11.227
95 2.876 34 2 12.182 12.376 12.417 12.429 12.288 11.941 12.372

100 0.876 20 1 8.510 8.552 8.533 8.535 8.505 8.473 8.507
100 2.876 20 2 9.714 9.880 9.906 9.924 9.932 9.201 9.924
100 0.876 34 1 8.493 8.539 8.522 8.005 8.524 8.339 8.324
100 2.876 34 2 9.751 9.916 9.941 9.955 9.848 9.694 9.960

105 0.876 20 1 6.231 6.269 6.258 6.017 6.259 6.167 5.879
105 2.876 20 2 7.673 7.813 7.832 7.246 7.860 7.571 7.672
105 0.876 34 1 6.236 6.279 6.271 6.267 6.269 6.256 6.129
105 2.876 34 2 7.668 7.815 7.843 7.836 7.858 7.867 7.855

110 0.876 20 1 4.454 4.499 4.500 4.481 4.497 4.493 4.453
110 2.876 20 2 5.988 6.110 6.136 6.128 6.146 6.127 6.126
110 0.876 34 1 4.452 4.491 4.488 4.490 4.490 4.487 4.183
110 2.876 34 2 5.986 6.109 6.135 6.120 6.144 6.098 5.896

Notes: LQ (S) is defined in equation 2.4.
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Table B.7: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the power polynomial and the

information set is Ak, table 5.2.

S0 kδ kV T P0 (S) P1 (S) P2 (S) P3 (S) P4 (S) P5 (S) P6 (S)

90 0.876 20 1 14.445 14.552 14.535 14.530 14.521 14.397 14.412
90 2.876 20 2 14.955 15.335 15.347 15.371 15.371 15.378 15.391
90 0.876 34 1 14.506 14.590 14.575 14.561 14.550 14.290 14.458
90 2.876 34 2 14.957 15.331 15.331 15.366 15.363 15.372 15.366

95 0.876 20 1 11.245 11.340 11.309 11.313 11.302 11.232 11.285
95 2.876 20 2 12.066 12.386 12.398 12.420 12.417 12.423 12.089
95 0.876 34 1 11.243 11.329 11.305 11.310 11.295 11.291 11.102
95 2.876 34 2 12.070 12.376 12.408 12.430 12.438 12.444 11.818

100 0.876 20 1 8.484 8.554 8.535 8.536 8.528 8.518 8.440
100 2.876 20 2 9.612 9.887 9.904 9.925 9.920 9.921 8.972
100 0.876 34 1 8.475 8.539 8.521 8.526 8.522 8.515 8.483
100 2.876 34 2 9.659 9.922 9.938 9.955 9.957 9.960 9.980

105 0.876 20 1 6.215 6.268 6.259 6.260 6.258 6.046 6.202
105 2.876 20 2 7.600 7.816 7.831 7.730 7.853 7.364 7.874
105 0.876 34 1 6.215 6.282 6.272 6.275 6.266 6.260 6.260
105 2.876 34 2 7.588 7.817 7.838 7.852 7.492 7.732 7.881

110 0.876 20 1 4.441 4.501 4.499 4.497 4.494 4.218 4.468
110 2.876 20 2 5.927 6.115 6.137 6.146 6.151 6.119 6.161
110 0.876 34 1 4.436 4.490 4.489 4.490 4.487 4.483 4.477
110 2.876 34 2 5.916 6.110 6.132 6.144 6.140 6.139 6.036

Notes: PQ (S) is defined in equation 2.5.
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Table B.8: This table shows the price of American put options w.r.t. the information set Ak, table 5.2. The

conditional expectation of the payoffs, i.e. E [Y |X]PQ(Ak)(S), is defined as in table 4.2.

S0 kδ kV T 1 2 3 4 5 6 7 8 9

90 0.876 20 1 14.572 15.966 16.196 14.581 14.582 15.968 16.195 15.968 16.194
90 2.876 20 2 15.327 16.345 16.330 15.332 15.332 16.352 16.333 16.352 16.335
90 0.876 34 1 14.586 15.979 16.199 14.592 14.591 15.976 16.199 15.973 16.199
90 2.876 34 2 15.316 16.352 16.325 15.315 15.315 16.349 16.328 16.351 16.330

95 0.876 20 1 11.319 12.498 12.657 11.320 11.318 12.501 12.663 12.503 12.664
95 2.876 20 2 12.391 13.305 13.288 12.402 12.397 13.307 13.298 13.307 13.296
95 0.876 34 1 11.335 12.475 12.664 11.335 11.334 12.477 12.663 12.477 12.663
95 2.876 34 2 12.407 13.299 13.262 12.410 12.412 13.302 13.265 13.302 13.266

100 0.876 20 1 8.541 9.461 9.610 8.550 8.550 9.461 9.617 9.461 9.618
100 2.876 20 2 9.864 10.659 10.636 9.874 9.876 10.664 10.637 10.665 10.636
100 0.876 34 1 8.537 9.457 9.609 8.537 8.535 9.460 9.608 9.459 9.608
100 2.876 34 2 9.901 10.681 10.659 9.904 9.904 10.679 10.660 10.677 10.660

105 0.876 20 1 6.242 6.930 7.046 6.248 6.251 6.935 7.049 6.937 7.048
105 2.876 20 2 7.824 8.430 8.428 7.833 7.832 8.435 8.431 8.436 8.432
105 0.876 34 1 6.266 6.952 7.065 6.271 6.274 6.953 7.065 6.954 7.065
105 2.876 34 2 7.819 8.456 8.434 7.820 7.822 8.459 8.435 8.459 8.435

110 0.876 20 1 4.509 5.013 5.091 4.517 4.517 5.013 5.098 5.012 5.099
110 2.876 20 2 6.119 6.639 6.622 6.122 6.122 6.642 6.621 6.644 6.622
110 0.876 34 1 4.505 5.008 5.087 4.509 4.509 5.009 5.089 5.008 5.089
110 2.876 34 2 6.108 6.632 6.609 6.109 6.110 6.635 6.613 6.634 6.616

Notes: the first regression specification, i.e. 1, is defined as P1 (S). All the other regression specifications

follow as descibed in table 4.2
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Table B.9: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set Ak,
table 5.2. The specification of the conditional expectation of the payoff is P1 (S).

S0 kδ kV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.876 20 1 14.581 0.014 14.590 0.014 -0.009 0.000
90 2.876 20 2 15.276 0.017 15.307 0.017 -0.031 0.000
90 0.876 34 1 14.604 0.014 14.614 0.014 -0.010 0.000
90 2.876 34 2 15.332 0.016 15.321 0.016 0.011 0.000

95 0.876 20 1 11.307 0.013 11.280 0.013 0.027 0.000
95 2.876 20 2 12.362 0.015 12.397 0.015 -0.035 0.000
95 0.876 34 1 11.326 0.012 11.313 0.013 0.012 0.000
95 2.876 34 2 12.405 0.015 12.386 0.015 0.019 0.000

100 0.876 20 1 8.544 0.012 8.527 0.012 0.018 0.000
100 2.876 20 2 9.874 0.014 9.904 0.014 -0.030 0.000
100 0.876 34 1 8.531 0.011 8.533 0.011 -0.002 0.000
100 2.876 34 2 9.888 0.014 9.897 0.014 -0.009 0.000

105 0.876 20 1 6.260 0.011 6.256 0.011 0.004 0.000
105 2.876 20 2 7.822 0.014 7.805 0.014 0.017 0.000
105 0.876 34 1 6.283 0.011 6.272 0.011 0.011 0.000
105 2.876 34 2 7.819 0.014 7.843 0.014 -0.024 0.000

110 0.876 20 1 4.496 0.010 4.453 0.010 0.043 0.000
110 2.876 20 2 6.118 0.014 6.108 0.014 0.010 0.000
110 0.876 34 1 4.470 0.010 4.480 0.010 -0.009 0.000
110 2.876 34 2 6.106 0.014 6.113 0.014 -0.007 0.000

Notes: Πin
A and sein represent the price and standard error of the American op-

tion computed in sample, respectively, whereas Πout
A and seout represent the price

and standard error of the American option computed out of sample, respectively.

Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.10: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set Ak,
table 5.2. The specification of the conditional expectation of the payoff is P1 (S)+

p0 (δ) β̂δ0 .

S0 kδ kV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.876 20 1 15.986 0.017 15.970 0.017 0.016 0.000
90 2.876 20 2 16.345 0.017 16.358 0.017 -0.013 0.000
90 0.876 34 1 15.961 0.017 16.006 0.017 -0.046 0.000
90 2.876 34 2 16.327 0.017 16.364 0.017 -0.037 0.000

95 0.876 20 1 12.457 0.016 12.478 0.016 -0.021 0.000
95 2.876 20 2 13.284 0.016 13.312 0.016 -0.028 0.000
95 0.876 34 1 12.439 0.016 12.449 0.016 -0.010 0.000
95 2.876 34 2 13.321 0.016 13.301 0.016 0.019 0.000

100 0.876 20 1 9.482 0.015 9.459 0.015 0.023 0.000
100 2.876 20 2 10.660 0.015 10.674 0.015 -0.014 0.000
100 0.876 34 1 9.455 0.015 9.471 0.015 -0.016 0.000
100 2.876 34 2 10.684 0.015 10.653 0.015 0.031 0.000

105 0.876 20 1 6.955 0.014 6.969 0.014 -0.014 0.000
105 2.876 20 2 8.451 0.014 8.456 0.014 -0.005 0.000
105 0.876 34 1 6.959 0.014 6.960 0.014 -0.002 0.000
105 2.876 34 2 8.449 0.014 8.469 0.014 -0.021 0.000

110 0.876 20 1 4.998 0.013 4.974 0.013 0.024 0.000
110 2.876 20 2 6.644 0.014 6.614 0.014 0.030 0.000
110 0.876 34 1 4.958 0.013 4.973 0.013 -0.015 0.000
110 2.876 34 2 6.621 0.014 6.644 0.014 -0.023 0.000

Notes: Πin
A and sein represent the price and standard error of the American op-

tion computed in sample, respectively, whereas Πout
A and seout represent the price

and standard error of the American option computed out of sample, respectively.

Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.11: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the Laguerre polynomial and

the information set is Aθ, table 5.3.

S0 θδ θV T L0 (S) L1 (S) L2 (S) L3 (S) L4 (S) L5 (S) L6 (S)

90 0.1 0.2 1 22.807 22.923 22.920 22.913 22.914 22.892 22.917
90 0.2 0.2 2 36.609 36.834 36.779 36.811 35.901 36.820 36.722
90 0.1 0.3 1 26.085 26.225 26.243 26.234 25.984 26.185 26.167
90 0.2 0.3 2 40.227 40.452 40.398 40.420 35.399 40.422 37.247

95 0.1 0.2 1 20.090 20.182 20.185 20.182 19.985 19.982 20.161
95 0.2 0.2 2 34.251 34.449 34.384 34.412 34.411 34.430 34.433
95 0.1 0.3 1 23.669 23.752 23.770 23.754 23.193 23.764 23.768
95 0.2 0.3 2 38.152 38.355 38.291 38.299 37.843 38.310 35.616

100 0.1 0.2 1 17.647 17.727 17.736 17.733 16.467 17.700 17.732
100 0.2 0.2 2 31.965 32.128 32.073 32.093 30.470 32.104 32.098
100 0.1 0.3 1 21.391 21.481 21.481 21.484 20.254 18.825 21.483
100 0.2 0.3 2 36.217 36.370 36.322 36.326 36.319 36.341 36.233

105 0.1 0.2 1 15.376 15.462 15.473 15.479 15.040 15.472 15.470
105 0.2 0.2 2 29.834 29.982 29.918 29.925 29.362 29.362 29.938
105 0.1 0.3 1 19.297 19.380 19.381 19.370 17.773 19.363 19.380
105 0.2 0.3 2 34.291 34.447 34.382 34.390 32.196 34.390 32.607

110 0.1 0.2 1 13.394 13.455 13.469 13.470 12.711 12.643 13.456
110 0.2 0.2 2 27.833 27.978 27.925 27.914 27.675 27.919 27.925
110 0.1 0.3 1 17.410 17.475 17.487 15.977 17.458 17.477 17.481
110 0.2 0.3 2 32.457 32.622 32.565 32.544 28.889 32.239 32.584

Notes: LQ (S) is defined in equation 2.4.
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Table B.12: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the power polynomial and

the information set is Aθ, table 5.3.

S0 θδ θV T P0 (S) P1 (S) P2 (S) P3 (S) P4 (S) P5 (S) P6 (S)

90 0.1 0.2 1 22.675 22.922 22.914 22.915 22.913 20.518 22.893
90 0.2 0.2 2 36.643 36.836 36.782 36.815 36.820 36.818 36.820
90 0.1 0.3 1 25.954 26.234 26.245 26.231 26.229 26.220 26.224
90 0.2 0.3 2 40.199 40.444 40.391 40.423 40.424 40.432 40.427

95 0.1 0.2 1 19.999 20.191 20.188 20.181 20.173 20.185 20.171
95 0.2 0.2 2 34.268 34.444 34.387 34.417 34.429 34.421 34.422
95 0.1 0.3 1 23.557 23.761 23.768 23.754 23.766 23.770 17.432
95 0.2 0.3 2 38.115 38.335 38.286 38.301 38.307 38.323 38.316

100 0.1 0.2 1 17.553 17.732 17.731 17.733 17.734 17.730 17.727
100 0.2 0.2 2 31.982 32.126 32.067 32.095 32.103 32.113 32.107
100 0.1 0.3 1 21.287 21.487 21.482 21.483 21.490 21.486 21.483
100 0.2 0.3 2 36.178 36.371 36.323 36.332 36.340 36.354 36.353

105 0.1 0.2 1 15.289 15.468 15.470 15.479 15.470 15.472 15.468
105 0.2 0.2 2 29.823 29.977 29.901 29.926 29.942 29.951 29.948
105 0.1 0.3 1 19.191 19.380 19.384 19.376 19.379 19.381 19.374
105 0.2 0.3 2 34.258 34.446 34.380 34.393 34.391 34.401 34.383

110 0.1 0.2 1 13.321 13.458 13.468 13.467 13.468 13.464 13.460
110 0.2 0.2 2 27.819 27.976 27.922 27.914 27.927 27.932 27.934
110 0.1 0.3 1 17.336 17.477 17.484 17.493 17.481 17.487 17.482
110 0.2 0.3 2 32.423 32.612 32.563 32.554 32.575 32.581 32.580

Notes: PQ (S) is defined in equation 2.5.
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Table B.13: This table shows the price of American put options w.r.t. the information set Aθ, table 5.3.

The conditional expectation of the payoffs, i.e. E [Y |X]LQ(Aθ)(S), is defined as in table 4.1.

S0 θδ θV T 1 2 3 4 5 6 7 8 9

90 0.1 0.2 1 22.943 23.200 23.374 22.948 22.947 23.200 23.380 23.200 23.384
90 0.2 0.2 2 36.826 37.425 37.405 36.826 36.824 37.429 37.412 37.429 37.412
90 0.1 0.3 1 26.247 26.448 26.593 26.243 26.248 26.451 26.588 26.450 26.586
90 0.2 0.3 2 40.442 40.905 40.872 40.441 40.440 40.901 40.869 40.902 40.873

95 0.1 0.2 1 20.180 20.462 20.621 20.178 20.180 20.458 20.623 20.459 20.624
95 0.2 0.2 2 34.435 35.001 35.008 34.431 34.431 35.004 35.011 35.003 35.010
95 0.1 0.3 1 23.756 23.928 24.033 23.754 23.754 23.927 24.039 23.928 24.041
95 0.2 0.3 2 38.368 38.761 38.757 38.367 38.365 38.767 38.758 38.768 38.761

100 0.1 0.2 1 17.723 17.958 18.073 17.725 17.726 17.959 18.071 17.962 18.075
100 0.2 0.2 2 32.119 32.726 32.760 32.120 32.121 32.728 32.756 32.727 32.758
100 0.1 0.3 1 21.485 21.624 21.732 21.489 21.487 21.625 21.728 21.627 21.730
100 0.2 0.3 2 36.317 36.757 36.777 36.315 36.320 36.755 36.770 36.754 36.774

105 0.1 0.2 1 15.472 15.701 15.841 15.470 15.470 15.703 15.844 15.707 15.844
105 0.2 0.2 2 29.992 30.622 30.621 29.985 29.983 30.621 30.619 30.621 30.620
105 0.1 0.3 1 19.424 19.555 19.645 19.426 19.428 19.560 19.641 19.560 19.644
105 0.2 0.3 2 34.445 34.886 34.870 34.437 34.441 34.887 34.870 34.888 34.872

110 0.1 0.2 1 13.518 13.695 13.806 13.516 13.519 13.691 13.805 13.696 13.807
110 0.2 0.2 2 27.957 28.537 28.547 27.952 27.952 28.533 28.550 28.536 28.553
110 0.1 0.3 1 17.430 17.577 17.676 17.431 17.431 17.576 17.677 17.581 17.676
110 0.2 0.3 2 32.649 33.055 33.069 32.644 32.644 33.057 33.062 33.050 33.067

Notes: the first regression specification, i.e. 1, is defined as L1 (S). All the other regression specifications

follow as descibed in table 4.1
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Table B.14: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set

Aθ, table 5.3. The specification of the conditional expectation of the payoff is

L1 (S).

S0 θδ θV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.1 0.2 1 22.944 0.019 22.949 0.019 -0.005 0.000
90 0.2 0.2 2 36.829 0.021 36.809 0.020 0.021 0.000
90 0.1 0.3 1 26.259 0.021 26.235 0.021 0.025 0.000
90 0.2 0.3 2 40.463 0.025 40.449 0.024 0.013 0.000

95 0.1 0.2 1 20.157 0.017 20.200 0.017 -0.043 0.000
95 0.2 0.2 2 34.403 0.019 34.417 0.019 -0.014 0.000
95 0.1 0.3 1 23.715 0.019 23.764 0.019 -0.048 0.000
95 0.2 0.3 2 38.350 0.024 38.335 0.024 0.015 0.000

100 0.1 0.2 1 17.720 0.015 17.712 0.015 0.008 0.000
100 0.2 0.2 2 32.177 0.018 32.133 0.018 0.044 0.000
100 0.1 0.3 1 21.485 0.017 21.484 0.017 0.001 0.000
100 0.2 0.3 2 36.347 0.023 36.399 0.023 -0.051 0.000

105 0.1 0.2 1 15.502 0.015 15.498 0.015 0.004 0.000
105 0.2 0.2 2 29.986 0.017 29.972 0.017 0.014 0.000
105 0.1 0.3 1 19.377 0.016 19.370 0.016 0.008 0.000
105 0.2 0.3 2 34.404 0.021 34.443 0.021 -0.039 0.000

110 0.1 0.2 1 13.481 0.015 13.500 0.015 -0.019 0.000
110 0.2 0.2 2 27.938 0.016 27.918 0.016 0.020 0.000
110 0.1 0.3 1 17.474 0.017 17.455 0.017 0.019 0.000
110 0.2 0.3 2 32.646 0.020 32.614 0.020 0.032 0.000

Notes: Πin
A and sein represent the price and standard error of the American

option computed in sample, respectively, whereas Πout
A and seout represent the

price and standard error of the American option computed out of sample, re-

spectively. Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.15: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set

Aθ, table 5.3. The specification of the conditional expectation of the payoff is

L1 (S) + l0 (δ) β̂δ0 .

S0 θδ θV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.1 0.2 1 23.202 0.019 23.206 0.019 -0.004 0.000
90 0.2 0.2 2 37.440 0.024 37.434 0.024 0.006 0.000
90 0.1 0.3 1 26.423 0.022 26.430 0.022 -0.007 0.000
90 0.2 0.3 2 40.834 0.028 40.893 0.027 -0.059 0.000

95 0.1 0.2 1 20.434 0.017 20.438 0.017 -0.005 0.000
95 0.2 0.2 2 34.997 0.024 35.050 0.023 -0.052 0.000
95 0.1 0.3 1 23.905 0.020 23.920 0.020 -0.016 0.000
95 0.2 0.3 2 38.767 0.027 38.741 0.027 0.026 0.000

100 0.1 0.2 1 17.970 0.016 17.971 0.016 -0.001 0.000
100 0.2 0.2 2 32.754 0.023 32.749 0.023 0.005 0.000
100 0.1 0.3 1 21.634 0.018 21.631 0.018 0.003 0.000
100 0.2 0.3 2 36.771 0.026 36.744 0.026 0.026 0.000

105 0.1 0.2 1 15.713 0.016 15.722 0.016 -0.008 0.000
105 0.2 0.2 2 30.557 0.022 30.576 0.022 -0.019 0.000
105 0.1 0.3 1 19.520 0.017 19.524 0.017 -0.004 0.000
105 0.2 0.3 2 34.854 0.025 34.891 0.025 -0.037 0.000

110 0.1 0.2 1 13.690 0.017 13.703 0.017 -0.013 0.000
110 0.2 0.2 2 28.534 0.021 28.577 0.021 -0.043 0.000
110 0.1 0.3 1 17.625 0.018 17.598 0.018 0.027 0.000
110 0.2 0.3 2 33.061 0.023 33.092 0.023 -0.031 0.000

Notes: Πin
A and sein represent the price and standard error of the American

option computed in sample, respectively, whereas Πout
A and seout represent the

price and standard error of the American option computed out of sample, re-

spectively. Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.16: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the Laguerre polynomial and

the information set is Aρ, table 5.4.

S0 ρSδ ρSV T L0 (S) L1 (S) L2 (S) L3 (S) L4 (S) L5 (S) L6 (S)

90 0.65 0 1 13.858 13.967 13.999 14.005 14.003 12.892 13.194
90 0.85 0 2 15.929 16.147 16.170 16.147 16.161 15.994 16.191
90 0.65 0.2 1 13.896 14.000 14.029 14.027 14.016 13.379 14.038
90 0.85 0.2 2 16.007 16.185 16.222 16.238 16.197 15.891 15.059

95 0.65 0 1 10.744 10.856 10.874 10.376 10.877 10.573 10.882
95 0.85 0 2 12.778 12.972 13.003 13.020 13.028 12.401 13.033
95 0.65 0.2 1 10.758 10.861 10.880 10.883 10.882 10.367 10.657
95 0.85 0.2 2 12.813 13.011 13.027 13.048 12.951 12.539 13.044

100 0.65 0 1 8.187 8.274 8.303 8.268 8.303 8.266 8.295
100 0.85 0 2 10.088 10.273 10.300 10.310 10.315 10.182 10.197
100 0.65 0.2 1 8.200 8.289 8.304 8.301 8.307 8.280 7.739
100 0.85 0.2 2 10.055 10.231 10.249 10.263 10.266 10.071 10.239

105 0.65 0 1 6.137 6.211 6.226 6.230 6.230 6.064 5.893
105 0.85 0 2 7.766 7.919 7.951 7.167 7.957 7.731 7.776
105 0.65 0.2 1 6.116 6.186 6.210 6.163 6.210 6.204 5.719
105 0.85 0.2 2 7.750 7.880 7.910 7.917 7.920 7.461 7.545

110 0.65 0 1 4.519 4.567 4.582 4.576 4.588 4.577 4.578
110 0.85 0 2 5.851 5.988 6.016 6.016 6.020 5.987 5.802
110 0.65 0.2 1 4.471 4.518 4.536 4.281 4.516 4.533 4.356
110 0.85 0.2 2 5.816 5.948 5.973 5.912 5.984 5.889 5.555

Notes: LQ (S) is defined in equation 2.4.
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Table B.17: This table shows the price of an American put option for different parameters

and basis function specifications. The basis function used is the power polynomial and the

information set is Aρ, table 5.4.

S0 ρSδ ρSV T P0 (S) P1 (S) P2 (S) P3 (S) P4 (S) P5 (S) P6 (S)

90 0.65 0 1 13.782 13.975 13.999 14.005 14.000 13.971 13.980
90 0.85 0 2 15.823 16.150 16.166 16.194 16.205 16.204 15.869
90 0.65 0.2 1 13.830 14.009 14.029 14.034 14.041 14.035 13.814
90 0.85 0.2 2 15.922 16.189 16.220 16.239 16.246 16.097 15.514

95 0.65 0 1 10.693 10.856 10.876 10.875 10.872 9.850 10.873
95 0.85 0 2 12.700 12.975 13.003 13.022 13.035 13.033 13.029
95 0.65 0.2 1 10.709 10.865 10.877 10.884 10.889 10.888 10.750
95 0.85 0.2 2 12.736 13.009 13.028 13.051 13.058 13.062 13.058

100 0.65 0 1 8.139 8.277 8.302 8.303 8.279 8.302 7.697
100 0.85 0 2 10.026 10.278 10.296 10.313 10.323 10.321 10.023
100 0.65 0.2 1 8.157 8.290 8.301 8.305 8.311 8.290 8.294
100 0.85 0.2 2 9.988 10.230 10.247 10.265 10.277 10.166 10.125

105 0.65 0 1 6.098 6.212 6.225 6.231 6.020 6.226 6.234
105 0.85 0 2 7.706 7.924 7.949 7.961 7.972 7.969 7.436
105 0.65 0.2 1 6.083 6.188 6.209 6.213 6.216 6.216 6.187
105 0.85 0.2 2 7.697 7.884 7.910 7.920 7.921 7.928 7.100

110 0.65 0 1 4.488 4.569 4.583 4.588 4.585 4.588 4.499
110 0.85 0 2 5.804 5.990 6.014 6.013 6.029 6.033 5.827
110 0.65 0.2 1 4.445 4.521 4.534 4.537 4.534 4.536 4.254
110 0.85 0.2 2 5.777 5.949 5.972 5.985 5.989 5.987 5.987

Notes: PQ (S) is defined in equation 2.5.
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Table B.18: This table shows the price of American put options w.r.t. the information set Aρ, table 5.4. The

conditional expectation of the payoffs, i.e. E [Y |X]PQ(Aρ)(S), is defined as in table 4.2.

S0 ρSδ ρSV T 1 2 3 4 5 6 7 8 9

90 0.65 0 1 13.991 15.092 15.188 14.001 14.002 15.094 15.193 15.094 15.194
90 0.85 0 2 16.197 17.454 17.598 16.200 16.202 17.458 17.600 17.458 17.601
90 0.65 0.2 1 14.002 15.088 15.180 13.977 13.976 15.092 15.178 15.091 15.180
90 0.85 0.2 2 16.236 17.478 17.643 16.195 16.195 17.480 17.641 17.481 17.641

95 0.65 0 1 10.913 11.827 11.923 10.922 10.924 11.832 11.924 11.831 11.924
95 0.85 0 2 13.035 14.153 14.280 13.043 13.044 14.154 14.279 14.153 14.279
95 0.65 0.2 1 10.882 11.785 11.879 10.869 10.869 11.784 11.875 11.782 11.875
95 0.85 0.2 2 13.033 14.113 14.264 13.008 13.008 14.115 14.265 14.117 14.264

100 0.65 0 1 8.305 9.018 9.095 8.316 8.313 9.020 9.099 9.021 9.101
100 0.85 0 2 10.274 11.200 11.316 10.274 10.280 11.203 11.319 11.203 11.318
100 0.65 0.2 1 8.307 9.040 9.102 8.302 8.301 9.039 9.109 9.037 9.107
100 0.85 0.2 2 10.274 11.174 11.301 10.247 10.247 11.173 11.305 11.180 11.303

105 0.65 0 1 6.218 6.757 6.817 6.222 6.221 6.758 6.821 6.761 6.821
105 0.85 0 2 7.950 8.705 8.792 7.956 7.953 8.704 8.795 8.705 8.794
105 0.65 0.2 1 6.199 6.739 6.785 6.195 6.196 6.741 6.790 6.744 6.789
105 0.85 0.2 2 7.926 8.658 8.753 7.915 7.913 8.661 8.753 8.660 8.754

110 0.65 0 1 4.586 4.921 5.038 4.581 4.601 4.921 5.041 4.936 5.042
110 0.85 0 2 6.057 6.643 6.707 6.065 6.064 6.646 6.704 6.646 6.706
110 0.65 0.2 1 4.527 4.914 4.968 4.526 4.527 4.917 4.966 4.917 4.964
110 0.85 0.2 2 6.000 6.557 6.620 5.998 5.998 6.558 6.623 6.561 6.622

Notes: the first regression specification, i.e. 1, is defined as P3 (S). All the other regression specifications

follow as descibed in table 4.2
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Table B.19: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set Aρ,
table 5.4. The specification of the conditional expectation of the payoff is P3 (S).

S0 ρSδ ρSV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.65 0 1 14.015 0.014 13.995 0.014 0.020 0.000
90 0.85 0 2 16.233 0.016 16.184 0.016 0.049 0.000
90 0.65 0.2 1 14.019 0.014 14.003 0.014 0.016 0.000
90 0.85 0.2 2 16.262 0.016 16.243 0.016 0.019 0.000

95 0.65 0 1 10.920 0.012 10.915 0.012 0.005 0.000
95 0.85 0 2 13.013 0.015 13.062 0.015 -0.049 0.000
95 0.65 0.2 1 10.931 0.012 10.908 0.012 0.023 0.000
95 0.85 0.2 2 13.044 0.015 13.011 0.015 0.033 0.000

100 0.65 0 1 8.325 0.011 8.327 0.011 -0.001 0.000
100 0.85 0 2 10.290 0.014 10.295 0.014 -0.005 0.000
100 0.65 0.2 1 8.302 0.011 8.326 0.011 -0.024 0.000
100 0.85 0.2 2 10.258 0.013 10.254 0.013 0.003 0.000

105 0.65 0 1 6.225 0.011 6.219 0.011 0.005 0.000
105 0.85 0 2 7.955 0.013 7.960 0.013 -0.005 0.000
105 0.65 0.2 1 6.192 0.011 6.175 0.011 0.016 0.000
105 0.85 0.2 2 7.913 0.012 7.898 0.012 0.015 0.000

110 0.65 0 1 4.595 0.011 4.588 0.011 0.007 0.000
110 0.85 0 2 6.047 0.012 6.035 0.012 0.011 0.000
110 0.65 0.2 1 4.553 0.011 4.533 0.011 0.019 0.000
110 0.85 0.2 2 5.999 0.012 5.984 0.012 0.016 0.000

Notes: Πin
A and sein represent the price and standard error of the American op-

tion computed in sample, respectively, whereas Πout
A and seout represent the price

and standard error of the American option computed out of sample, respectively.

Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.20: This table shows the comparison between the computed prices of

American put options in sample and out of sample, for the information set Aρ,
table 5.4. The specification of the conditional expectation of the payoff is P3 (S)+

p0 (δ) β̂δ0 .

S0 ρSδ ρSV T Πin
A sein Πout

A seout Πin−out
A sein−out

90 0.65 0 1 15.084 0.017 15.071 0.017 0.013 0.000
90 0.85 0 2 17.475 0.018 17.445 0.018 0.030 0.000
90 0.65 0.2 1 15.081 0.017 15.101 0.017 -0.020 0.000
90 0.85 0.2 2 17.470 0.017 17.475 0.017 -0.004 0.000

95 0.65 0 1 11.856 0.016 11.795 0.016 0.061 0.000
95 0.85 0 2 14.134 0.017 14.156 0.017 -0.022 0.000
95 0.65 0.2 1 11.810 0.015 11.816 0.015 -0.006 0.000
95 0.85 0.2 2 14.128 0.017 14.132 0.016 -0.005 0.000

100 0.65 0 1 9.047 0.015 9.045 0.015 0.003 0.000
100 0.85 0 2 11.204 0.016 11.226 0.016 -0.022 0.000
100 0.65 0.2 1 9.034 0.014 9.052 0.014 -0.017 0.000
100 0.85 0.2 2 11.187 0.016 11.154 0.016 0.032 0.000

105 0.65 0 1 6.763 0.014 6.760 0.014 0.003 0.000
105 0.85 0 2 8.699 0.015 8.698 0.015 0.001 0.000
105 0.65 0.2 1 6.741 0.014 6.722 0.014 0.019 0.000
105 0.85 0.2 2 8.647 0.015 8.659 0.015 -0.012 0.000

110 0.65 0 1 4.977 0.013 4.982 0.013 -0.006 0.000
110 0.85 0 2 6.645 0.014 6.629 0.014 0.016 0.000
110 0.65 0.2 1 4.960 0.013 4.942 0.013 0.019 0.000
110 0.85 0.2 2 6.565 0.014 6.561 0.014 0.005 0.000

Notes: Πin
A and sein represent the price and standard error of the American op-

tion computed in sample, respectively, whereas Πout
A and seout represent the price

and standard error of the American option computed out of sample, respectively.

Note that Πin−out
A = Πin

A −Πout
A and sein−out = sein − seout.
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Table B.21: This table shows the increments of the average American option price

plotted in figure 5.1a, 5.2a, 5.3a and 5.4a, which correspond to the information

sets Aσ, Ak, Aθ end Aρ, respectively, in the Laguerre polynomial specification.

∆L Ii=0 Ii=1 Ii=2 Ii=3 Ii=4 Ii=5

Aσ -0.087630399 -0.03269 0.088032 -0.024 0.308038 -0.16486
Ak -0.112248605 -0.00424 0.065475 -0.04527 0.206431 -0.08953
Aθ -0.133917542 0.024885 0.072726 0.974247 -0.8198 0.161036
Aρ -0.127171582 -0.02398 0.080857 -0.07916 0.27245 -0.02548

Notes: Where Ii = Π̄A,Li(S) − Π̄A,Li+1(S) and Π̄A,Li(S) is the average American

option price for a chosen specification of the Laguerre polynomial, i.e. the i speci-

fication.

Table B.22: This table shows the increments of the average American option price

plotted in figure 5.1a, 5.2a, 5.3a and 5.4a, which correspond to the information

sets Aσ, Ak, Aθ end Aρ, respectively, in the power polynomial specification.

∆P Ii=0 Ii=1 Ii=2 Ii=3 Ii=4 Ii=5

Aσ -1.5784E-01 -0.02904 -0.00226 -0.00288 0.018928 0.193868
Ak -0.174218752 -0.00111 -0.00376 0.015573 0.061151 0.04741
Aθ -0.190386104 0.027123 -0.00727 -0.004 0.115967 0.201843
Aρ -0.18683052 -0.01995 -0.00997 0.006903 0.054903 0.157596

Notes: Where Ii = Π̄A,Pi(S) − Π̄A,Pi+1(S) and Π̄A,Pi(S) is the average American

option price for a chosen specification of the power polynomial, i.e. the i specifica-

tion.

Table B.23: This table shows the difference between the value function of the Laguerre and power

polynomial plotted in figure 5.1a, 5.2a, 5.3a and 5.4a, which correspond to the information sets Aσ,
Ak, Aθ end Aρ, respectively.

q in figure 0 1 2 3 4 5 6

Aσ 0.066485681 -0.00373 -7.75E-05 -0.09037 -0.06925 -0.35836 0.000361
Ak 0.060417489 -0.00155 0.001576 -0.06766 -0.00681 -0.15209 -0.01515
Aθ 0.056627147 0.000159 0.002397 -0.0776 -1.05585 -0.12009 -0.07928
Aρ 0.056870864 -0.00279 0.001238 -0.08959 -0.00353 -0.22107 -0.038

Notes: Any numerical value is computed by subtracting the power polynomial value function from the

Laguerre one. In other words, a negative value implies that the power polynomial specification gives

a higher price to the American option in average.
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Table B.24: This table shows the average difference value be-

tween in sample and out of sample option prices as defined in

tables B.4-B.5, B.9-B.10, B.14-B.15 and B.19-B.20 in the Ap-

pendix.

Aσ Ak Aθ Aρ

Benchmark 0.002 2.82E-04 0.000175 0.008784
Benchmark + δ 0.007 -0.00597 -0.01039 0.004351

Notes: BenchmarkAσ = P2 (S), BenchmarkAk = P1 (S),

BenchmarkAθ = L1 (S) and BenchmarkAρ = P3 (S).

Benchmark + δ ≡ adding δ as regressor.
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B.2 Figures

Af Analysis

Figure B.1: This figure shows: Laguerre-power polynomial analysis and yield-volatility basis function

analysis for information set Af , table 5.5.

(a) Laguerre-power polynomial analysis (b) yield-volatility basis function analysis

Table B.25: This table shows the difference between the value function of the Laguerre and

power polynomial plotted in figure B.1a, which corresponds to information set Af , table 5.5.

q in figure 0 1 2 3 4 5 6

Af 0.065215 -0.00377 4.30E-05 -0.0851 -0.07857 -0.35689 -0.00147

Notes: Any numerical value is computed by subtracting the power polynomial value function

from the Laguerre one. In other words, a negative value implies that the power polynomial

specification gives a higher price to the American option in average.

Table B.26: This table shows the increments of the average American option

price plotted in figure B.1a, which correspond to information set Af , table
5.5, in the Laguerre and power polynomial specification.

∆G Ii=0 Ii=1 Ii=2 Ii=3 Ii=4 Ii=5

∆L -0.12198 -0.02654 0.076108 -0.00487 0.294538 -0.2017
∆P -0.19096 -0.02272 -0.00904 0.001663 0.016218 0.153715

Notes: Where Ii = Π̄A,Gi(S)−Π̄A,Gi+1(S) and Π̄A,Gi(S) is the average American

option price for a chosen specification G, which can be either Laguerre (L) or

power(P) polynomial, e.g. the i Laguerre specification.
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Af Surfaces

Figure B.2: This figure shows the surfaces of American option prices and standard errors computed

with P2 (S). Information set Af , table 5.5.

(a) Π
P2(S)
A (b) s.e.P2(S)

A

Figure B.3: This figure shows the surfaces of American option prices and standard errors computed

with P2 (S) + p0 (δ) β̂δ0 . Information set Af , table 5.5.

(a) Π
P2(S)+p0(δ)β̂δ0
A (b) s.e.

P2(S)+p0(δ)β̂δ0
A
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Figure B.4: This figure shows the surfaces of European option prices and standard errors computed

with Monte Carlo by using equation 1.9. Information set Af , table 5.5.

(a) ΠE (b) s.e.E
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