Using the Go Programming Language in
Practice

Erik Westrup and Fredrik Pettersson
Department of Computer Science, Lund University

June 5, 2014

Introduction

When developing software today we often use programming languages and tools
that has been around for a very long time or we have a lot of experience with.
This especially applies for companies where a change would mean huge invest-
ments in education of developers. However, it could be profitable to switch to a
modern language in the long run. Using a modern language has the potential of
making the development faster and more flexible, team work easier, bug finding
less complicated, build times shorter and maintenance more viable.

New programming languages are invented all the time but there are a few
languages that are more distinct than others. The Go Programming Language is
one of these. Go was created and designed at Google and it became a public open
source project in 2009. There are several reasons that make this language stand
out. Go has built-in concurrency mechanisms. Because of this the problem of
organizing many tasks running at the same time becomes simple. Other things
that makes Go stand out is e.g. fast compilation, light syntax and constructs
and garbage collection.

Go at Axis

This thesis was carried out at Axis Communications. Today Axis mostly develop
their software using the C language but they are starting to glance at other, more
modern, languages. The main reason being that they feel that their development
process would benefit from it. The purpose of this thesis was to investigate the
challenges of introducing Go as the main language for Axis in development
of their software. This means not only investigating the language itself but
investigating the whole software development process using Go. Furthermore,
there are two different compilers for Go: The standard Go compiler and a front-
end to GCC. Because the standard compiler does not support the architecture in
many Axis products, another purpose for this thesis was to investigate different
tools for cross-compilation, including the Go front-end to GCC.



Go and Its Tools

The first thing you notice about a language is its syntax. The syntax of Go will
be familiar to programmers that are used to languages from the C-syntax family
but it’s clean like Python’s. There is some differences though, for example type
declarations in Go are done in same order as you read it from left-to-right, unlike
C.

As described in the introduction, a big aspect of Go is its concurrency model.
Built into Go there are constructs used to achieve concurrency including the so
called goroutines which are lightweight threads, channels used for communica-
tion and the select statements for handling channel events. Compared to other
languages like Java and C, with these constructs Go-developers can create con-
current programs in a natural way which clearly communicates what is going
on.

The fast compilation for Go programs is achieved by using a smart depen-
dency resolution method. When compiling a Go program, no dependency is ever
resolved twice for example. Because of this, large Go programs are compiled in
a few seconds on a single computer. On our desktop computer, the whole Go
distribution with standard library is compiled in about 30 seconds.

A feature that could be very advantageous for companies with their code-
base written in C is the possibility for C integration in Go. This feature makes
it possible to import and use existing C-libraries. This means that when in-
troducing Go, there is no need to rewrite entire applications. Instead, code
replacement can be done in an iterated fashion.

Conclusions

After having used Go for a few months we have found some good things about
it. We found Go to be really fun to use and easy to learn. Writing concurrent
software feels very easy and clean when using goroutines and channels for com-
munication. The language makes it easy to write object-oriented software using
composition over inheritance. The build tools are simple to use (no need for any
Makefiles or Autotools) and the builds are fast. The built-in package manager
makes usage of third party libraries a lot easier. We found the Go community
to be helpful and active when we took part in the discussions on the mailing
lists and proposed patches to some bugs we found in the build tools.

During our work, the part we had the most trouble with was to get cross-
compiling to work with up-to-date tools. Building a cross-compiling toolchain
from scratch, we found, is still hard. To get it to work with the Go tools is even
harder.

Go includes some basic data structures but not nearly as many as e.g. Java’s
collection framework. This could offend programmers that are used to have
everything at hand. Another drawback of Go is the fact that debugging is
currently not well supported.

Considering the good things and the bad things, we feel that Go is ready
for personal use and for some corporate usage. However we feel that Go needs
some more time for the tools to become more stable until it can be adopted in
the embedded field of programming.



