

FACULTY OF LAW

LUND UNIVERSITY

AVE-LIIS SALUVEER

THE CONCEPT OF DERIVATIVE WORKS UNDER THE EUROPEAN

COPYRIGHT LAW IN RELATION TO THE DIGITAL ERA: FREE AND OPEN

SOURCE SOFTWARE LICENSING

JAEM03 MASTER THESIS

EUROPEAN BUSINESS LAW

30 higher education credits

Supervisor

BJÖRN LUNDQVIST

Term

SPRING 2014

SUMMARY

As today’s society is majorly influenced by the technological inputs and its developments, it

is necessary to have a clear understanding of the legal concepts in relation to this field. This

thesis focuses on software programs. Namely, this is a paper assessing the matter of

derivative works in relation to computer programs. The concept of derivative work itself

involves a level of uncertainty, but the author of this thesis aims to propose possible methods

in order to distinguish a derived work from an original within the field of computer programs.

Although the motion of free software promotion is not new, the field of free and open source

software has particularly grown over the past decades. The definition of derivative works

plays a significant legal role also in relation to this matter. Therefore, this thesis covers the

matter of free and open source software licensing, while mainly focusing on the sections

relating to the adaptations of the original work. Conclusive legal analyses are given through

an evaluation of the most common FOSS licences and their core values in regards to

derivative works.

PREFACE

“Only one thing is impossible for God: to find sense in any copyright law on

the planet.”

- Mark Twain

Yet, as many Master of law students and their final works, trying to find sense has as well

been my aim of this thesis. I have gathered my research on the matter of derivative works in

copyright law in order to hopefully expand some clarity in this aspect’s relation to computer

programs.

This thesis is one of the fruits of my studies in the Lund University over the past two years

and was inspired by an internship position in an IT law sector.

I would like to express my gratitude to the university, my supervisor as well as the lecturers,

who have openly shared their wisdom and experience. I am also extremely thankful for the

close people around me. They have withstood this busy and nervous period in my life, while

giving me enormous support and occasional hugs when needed.

I hope you will enjoy reading this thesis.

Ave-Liis Saluveer

Lund, June 2014

ABBREVIATIONS

AFC Abstraction-Filtration-Comparison

BSD Berkeley Software Distribution

CJEU The Court of Justice of the European Union

DRM Digital Restriction Management

EU European Union

EUPL European Union Public Licence

FIPR Foundation of Information Policy Research

FOSS Free and Open Source Software

FSF Free Software Foundation

GPL General Public Licence

GPL v3 version 3 of the General Public Licence

LGPL Lesser General Public Licence

PC Personal Computer

POSAR Planning-Operationalization-Separation-Analysis-Reporting

WIPO World Intellectual Property Organization

WPL World Programming Ltd.

ABBREVATIONS FOR LEGISLATIVE DOCUMENTS

Berne Convention Berne Convention for the Protection of Literary and Artistic Works

InfoSoc Directive Directive 2001/29/EC of the European Parliament and of the Council

of 22 May 2001 on the harmonisation of certain aspects of copyright

and related rights in the information society

Software Directive Directive 2009/24/EC of the European Parliament and of the Council

of 23 April 2009 on the protection of computer programs

TRIPS Agreement Agreement on Trade-Related Aspects of Intellectual Property Rights

Table of Contents

1.	 Introduction	 ..	 1	
1.1.	 Purpose	 ...	 1	
1.2.	 Method	 and	 Material	 ..	 1	
1.3.	 Delimitations	 ..	 2	
1.4.	 Research	 Questions	 ..	 2	
1.5.	 Disposition	 ..	 3	

2.	 Derivative	 Works	 in	 Copyright	 Law	 ..	 3	

2.1.	 The	 Definition	 of	 Derivative	 Works	 ..	 3	
2.2.	 International	 Framework	 for	 Derivative	 Works	 ..	 6	
2.3.	 Derivative	 Works	 and	 Software	 Directive	 ..	 7	

3.	 The	 Legal	 Concept	 of	 “Computer	 Programs”	 ..	 9	

4.	 Defying	 Free	 and	 Open	 Source	 Software	 ..	 11	

4.1.	 A	 Brief	 Overview	 of	 the	 Development	 of	 FOSS	 ..	 11	
4.2.	 The	 Core	 Aspects	 of	 FOSS	 ..	 13	
4.3.	 The	 Difference	 Between	 Free	 Software	 and	 Open	 Source	 Software	 	 13	
4.4.	 FOSS	 risks	 ..	 14	

5.	 Legal	 Evaluation	 of	 Derivative	 Works	 in	 Relation	 to	 Software	 Programs	 	 15	

5.1.	 Source	 Code	 Approach	 ...	 16	
5.1.1.	 POSAR	 testing	 ..	 19	

5.2.	 Component	 Based	 Approach	 ...	 20	
5.3.	 Communications	 Based	 Approach	 ..	 21	

6.	 FOSS	 Licensing	 and	 Copyleft	 ...	 22	

6.1.	 Copyleft	 Provisions	 ...	 23	
6.2.	 Licensing	 Classification	 ...	 25	
6.3.	 GNU	 General	 Public	 Licence	 ...	 27	
6.3.1.	 Derivative	 Works	 ...	 29	
6.3.2.	 Lesser	 General	 Public	 Licence	 ..	 31	

6.4.	 BSD	 Licences	 ...	 31	
6.4.1.	 Derivative	 Works	 ...	 33	

6.5.	 European	 Union	 Public	 Licence	 ..	 35	
6.5.1.	 EUPL	 and	 Derivative	 Works	 ...	 36	

7.	 Conclusive	 Legal	 Analysis	 on	 the	 FOSS	 Licences	 and	 Derivative	 Works	 	 37	

7.1.	 Hypothetical	 Example	 on	 Modifying	 FOSS	 Licensed	 Source	 Code	 ...	 40	

8.	 Conclusion	 ..	 41	

Bibliography	 ...	 43	

1

1. Introduction
In today’s society, largely influenced by digital and technological inputs, free and open source

software (hereinafter “FOSS”) has become an interesting phenomenon that has gained

increasing popularity among all continents. Although the notion of free software is not

necessarily new, the field has grown drastically over the past decades. While the concept has

reached a critical mass over the past year, there are still some legal uncertainties attached to

the field of software licensing.

One of the ambiguous matters lies in possible derivations of FOSS and this thesis will aim to

give a better understanding of the topic. By its very concept, FOSS users are encouraged to

modify and improve the source code and redistribute it back to the community for further

development for all of their users. Therefore, the legal perspective of derivative works is of

major importance within the technological community. It is thus vital to clarify the distinction

between the original work, potential derivative works as well as software that constitutes as a

new copyrighted work.

1.1. Purpose
The thesis will be focused on giving an in-depth analysis on derivative works in the copyright

law, while putting focus on the legal concept of derived works in relation to software

programs. This thesis also emphasises the problematic uncertainty in regards to derivative

works when derived from FOSS. The legal analysis is given through an evaluation of the

most common FOSS licences and their core values in regards to derivative works.

1.2. Method and Material
The thesis is written taken into consideration the traditional dogmatic approach in legal

research, while exercising comparative analysis in relation to different FOSS licences. The

author has sought to strike a balance between presenting merely academic argumentations and

illustrating the matter with practical elements through FOSS licences.

Sources of law derive from legal instruments, such as the international framework on

copyright law and legislation on the European level. Due to the global spread of software

2

projects and the legal aspects that follow in conjunction with the vast development of

technological society, the assessment has been done on the most common licences in relation

to this matter. Additionally, other sources of information include relevant case law, legal

journals and articles.

1.3. Delimitations
In order to provide a satisfactory conclusion to the specified research, there are several

limitations that need to be recognised. This thesis is limited to defining derivative works in

relation to computer programs, while the matter does not cover the legal issues in relation to

decompilation. Furthermore, in order to assess both the theoretical as well as practical aspect

in relation to the topic, the author has provided an analysis in relation to different FOSS

licences. However, the purpose of this thesis is not to give a full statement of all aspects in

FOSS licences and is therefore limited to assessing three main licences relevant to the topic at

hand: General Public Licence, BSD Licence and the European Union Public Licence.

1.4. Research Questions
When assessing derivative works in relation to FOSS, it is important to firstly stress that if a

work constitutes a derivative from the original product, that work generally needs to be

licensed under the relevant copyleft-licence. The underlying question of this thesis is to define

what works under the given circumstances need to be licensed under such copyleft-licence

and how the differentiation of derived and original works could be made. To fully

comprehend the issue at hand, it becomes necessary to examine the backgrounds, legal

frameworks and definitions of such terms as “derivative work” and “computer program” in

the legal context, while also emphasizing the free and open source software movement with

the common licence agreements. I will seek to clarify what constitutes a derivative work,

while proposing how the differentiation between an original work and derived work could be

assessed in the case of software programs. The assessment will be followed by an analysis of

different FOSS licence agreements focusing on the notions of derivative works, while also

bringing out the specific peculiarities in different FOSS licences. The following questions will

be researched and answered in this thesis:

• What are derivative works in the copyright law?

• How does the law protect derivative works?

3

• Is the programming architecture the only criteria when determining what a

derivative work is?

• What is the significance of the legal definition of computer programs?

• How should derivative works be defined in matters of computer programs?

• What are free and open source software programs and what is their relation to

derivative works?

• How are free and open source software programs legally protected?

• What requirements are set on derivative works under the most common FOSS

licence agreements?

1.5. Disposition
The thesis has been divided into eight parts. Firstly, the thesis gives the general background

on the definition of derivative works and the origin of this concept, while assessment has been

done in relation to the international framework as well as in relation to the European

legislation. Next a synopsis of the central topical issue of computer programs and the legal

understanding behind this term is set out. Thirdly, the development of free and open source

software has been stated in order to get a full understanding of the issue at hand. After the

information feature follows a legal assessment of the derivative works in relation to software

programs, where different possible approaches on distinguishing derivative works from

original works, in the field of computer programs, are given. Next, an analysis of the

peculiarities of different FOSS licences are given, while focus is put on matters of derivative

works and the “copyleft” principle. The thesis ends with a conclusive assessment aiming to

clarify the problematic issue on how derivative works could be defined in computer

programs, while being finalised with a brief summary and the author’s analysis.

2. Derivative Works in Copyright Law

2.1. The Definition of Derivative Works
 The term of “derivative works” is initially coming from the United States’ legal

concept and is defined as the following:

“derivative work” is a work based upon one or more pre-existing works, such

as a translation, musical arrangement, dramatization, fictionalization, motion

picture version, sound recording, art reproduction, abridgment, consideration,

4

or any other form in which a work may be recast, transformed, or adapted. A

work consisting of editorial revisions, annotations, elaborations, or other

modifications, which, as a whole, represent an original work of authorship, is a

“derivative work”.1

It is clear from the wording of the definition that the work has to be based upon one or more

pre-existing copyrighted works in order to fall within the scope of derivation. The U.S. case-

law has further elaborated on the definition stating that in matter of computer programs, the

program has to be substantially similar to the copyrighted work while including a portion of

that work in its final product.2 In Unites States v. Manzer, it was held that 70% similarity in

the code is to be considered sufficient to claim the work to be derivative.3

As to the aspect in Europe, the concept of derivative works is not straightforward either. For

the comparison, the exact corresponding definition as the U.S. legal concept is not commonly

used. In Europe, the term can be related to the adaptation matters in the relevant legislations.

The Foundation of Information Policy Research (hereinafter “FIPR”) however did define

derivative works in its guidance to implementing the EU Copyright Directive. Derivative

works under that were to be considered works that were based upon the original work or upon

the original work and other pre-existing works, such as translation, musical arrangement,

dramatization, sound recording or any other form in which the original work may be recast,

transformed or adapted.4 This definition is essentially a copy of the U.S definition and

emphasises further the matter that the derived work has to be based upon the original work in

order to fall within the scope of derivative works. In principle, both EU and U.S. recognise

derivative work rights as part of copyright that does also include the right to alter content of

an initial work, take extracts from the original work, combine them, translate them, or

otherwise create a new work from the existing work, an owner of the creative work does have

the absolute right to create such derivative works.5

1 U.S Code Title 17 Chapter 1 § 101.
2 Case Litchfield v. Spielberg, 736 F. 2d 1352, 9th Cir. (1984). 2 Case Litchfield v. Spielberg, 736 F. 2d 1352, 9th Cir. (1984).
3 Case United States v. Manzer, 69 F.3d 222, 8th Cir., (1995).
4 I. Brown, Implementing the EU Copyright Directive, (2003). Available at:
http://www.fipr.org/copyright/guide/eucd-guide.pdf (Last accessed: 26.05.2014).
5 F. Busnello, O. Romanenko, Copyright vs. Fan-made Derivative Works: Unresolvable Conflict or
Unavoidable Impulse for Reform of the Present Copyright System, (2012). Available at:
http://www.academia.edu/1255504/Copyright_vs._Fan-
made_Derivative_Works_unresolvable_conflict_or_unavoidable_impulse_for_reform_of_the_present
_copyright_system (Last accessed: 26.05.2014).

5

In essence, an otherwise copyrightable work has to satisfy two requirements in order to be

considered as a derivative work.6 Firstly, the work has to borrow from another work and

secondly, the work has to recast, transform or adapt the work upon which the new work is

based.7 Although the standard definition is to an extent understandable, the uncertainty lies in

the matter that there is no specification as to how different a derivative work has to be from

the original work to merit copyright protection. If one is to interpret an original work that has

fallen for an example into the public domain to an extent, the level of originality in order for

the new work to fall within the scope of copyright protection is unclear and principally rather

complex to be fixed, since the area itself is broad and the variety of possibilities for

modifications are immense.

From the abovementioned, it is clear that “derivative work” stands for a concept of work that

has a relation to a previously copyrighted work, although the exact level of originality when

forming a derivative piece involves a matter of uncertainty. In principle, there is an obligation

for the derivative work creator to obtain prior permission from the proprietor of the initial

work when creating such derived works, except when the basis for the derived piece belongs

to the public domain. The song “Love Me Tender” is credited as being the song written by

Elvis Presley and Vera Matson, although it was derived from a public domain song named

“Aura Lee”.8 No permission was required to publish the derivative piece and the authors of

“Love Me Tender” benefitted from the profits. However, Puff Daddy’s song “I’ll Be Missing

You” is a musical derivation based on Sting’s “Every Breath You Take” and thus the latter

consequently had the right to either give permission to use the original or not, while owning

part of the derivative work and subsequently making profit from the derivative work as well

as from the original piece.9 Therefore, there can be explicit occasions where the creation of

the derivative work is not questioned, but just as in the field of music, in the technological

matters the majority of possible derived works are not as clear-cut and the possibility to

successfully distinct the derived work from the original varies from case-to-case.

Another important difference needs to be brought out between a derivative and collective

work. Essentially, collective work is defined as a work in which the work in its entirety is in

6 D. J. Moser, C. L. Slay, Music Copyright Law, Course Technology PRT, (2011). ISBN:
9781435459724
7 Ibid.
8 Ibid.
9 Ibid.

6

an unmodified form, along with other contributions, constitutes a separate and independent

work in themselves and are assembled into a collective whole.10 It is vital to point out that

such work, which is considered to be a collective work, is not necessarily considered as

derivative work. Collective works in principle consist of separate and independent

copyrightable materials that have then been organised into a single unit. 11 Generally

periodicals, encyclopaedias or other forms of collective pieces fall within the scope of

collective works. The main common aspect for collective and derivative works lies in the fact

that they are both based on pre-existing copyrightable works.12 Initially the separation

between the two can be made from their core definition, since collective work consists of a set

of pre-existing works, while derivative work is a derived work based on one initial

copyrighted work. However, in the complex matter of software development, the two

concepts are not that clear-cut. A good way to distinguish the two in relation to software is to

examine how two independent works relate to each other. A work is likely to be considered as

a collective work, when two independent works are capable of sharing information, while

passing such information through published interfaces or temporary connection and there has

not been an a modification of one of the works by the other work.13 However, once one of the

works is modified in a manner that causes the second work to act in a unique way, the first

work can be considered a derived work even though the two works, in their source code form,

do not depend on each other.14

2.2. International Framework for Derivative Works
Berne Convention for the Protection of Literary and Artistic Works (hereinafter “Berne

Convention”) is one of the fundamental conventions dealing with the matter of copyright

protection. There is, however, no certain reference made to derivative works. The Convention

does, on the other hand, set out a certain list of uses of copyright protected works that have to

be provided with a protection. Article 2(3) Berne Convention provides for the translations,

adaptations, and arrangements of music and other alterations of literary as well as artistic

works and stands for their protection.15 Under the Berne Convention, in essence, the article

10 I. Brown, Implementing the EU Copyright Directive, (2003).
11 M. Webbink, Packaging Open Source, (2010). Available at:
http://www.groklaw.net/article.php?story=20100204170037353 (Last accessed: 26.05.2014).
12 Ibid.
13 Ibid.
14 Ibid.
15 Berne Convention, article 2(3).

7

sets out that derivative works have to be protected as original works without affecting the

copyright protection of the original works.16

Under the Agreement on Trade-Related Aspects of Intellectual Property Rights (hereinafter

“TRIPS”) the same provision is incorporated. Article 9 TRIPS clarifies the relation to Berne

Convention and requires the members to comply with article 1 through 21 of the Berne

Convention as well as the Appendix thereto.17

Furthermore, the World Intellectual Property Organization’s (hereinafter “WIPO”) Copyright

Treaty has been adopted aiming to update and supplement the major existing WIPO treaties

on copyright protection and in particular the Berne Convention.18 Among other matters the

purpose was to address the challenges related to the digital society in today’s common

picture, however the Copyright Treaty makes no clear reference to creation, distribution or

exploitation of derivative works within this digital society.19

2.3. Derivative Works and Software Directive
The relevant directive for the harmonious interpretation of the legal aspects of computer

programs is Directive 2009/24 (hereinafter “Software Directive”), however there is no exact

definition given to “adaptation” or “derivative works” under the Directive. The Software

Directive does on the other hand emphasise the value of interoperability. More specifically,

recital 10 states that the program’s function is to communicate as well as work together with

other components of a computer system and with users.20 For such purposes, a logical and

appropriate physical interconnection or interaction is necessary in order to permit all elements

to work with other software and hardware in all the ways in which they are intended to

function.21 It is clear that the interaction and interconnection necessity differentiates the

computer programs from other forms of copyrighted works. When dealing with music or

literature, no elements of interoperability occur. This is an interesting difference in relation to

derivative works evolved from copyrighted work as well, since if the interconnectivity is vital

for the program to operate with another software and thus modification is necessary, what is

16 Ibid.
17 TRIPS, article 9.
18 F. Busnello, O. Romanenko, Copyright vs. Fan-made Derivative Works, (2012).
19 Ibid.
20 Software Directive, Recital 10.
21 Ibid.

8

the legal status of such modification? As recital 10 states the program’s function is to

communicate and work together with other components of a computer system and therefore

the modification in order to apply the core function could be vital. Further clarification is set

in recital 15, where it is stated that an unauthorised reproduction, translation, adaption or

transformation of the form of the code of the program does constitute an infringement of the

exclusive rights of the proprietor.22 In terms of “derivative works”, as abovementioned, the

precise wording as such is not often used in the EU legal framework, however the adaptation

serves essentially the same aim. The given recital further sets out the exceptions. There can be

circumstances, where the reproduction of the code of the program as well as translation of its

form is vital in order to obtain the necessary information to achieve the interoperability with

other programs.23 The actual definition of interoperability is provided in recital 10, which

states that it is the ability to exchange information and mutually use the information that has

been exchanged.24 Furthermore, as stated in article 6 Software Directive, decompilation of a

program without the authorisation of the proprietor is allowed if it is indispensable when

obtaining the information vital for achieving the interoperability of an independently created

program with other programs.25 Therefore the matter of interoperability plays a significant

role when assessing the scope of adaptations allowed in order to obtain the information

necessary to create the interoperability with other programs.

In regards to the scope of other adaptations, article 4 Software Directive states that it is the

exclusive right of the proprietor to do or authorise the translation, adaptation, arrangement

and any other alteration of the program and the reproduction of the results thereof, without

prejudice to the rights of the person altering the program.26 Therefore, it could be interpreted

that when comparing the U.S. approach to derivative work and the EU legal framework, the

latter has defined the term in much broader and stricter sense. Namely, it is stated that any

alteration of existing programs creates a derivative work.27 Opposed to this, the U.S.

legislation creates a condition that the new work has to be based on the initial program and

thus narrows the concept to an extent. As the result of the Directive’s wording, one could

interpret it in a way that even when a minor passage of copyrighted source code is taken into a

22 Software Directive, Recital 15.
23 Ibid.
24 Software Directive, Recital 10.
25 Software Directive, article 6.
26 Software Directive, article 4.
27 M. Välimäki, GNU General Public License and the Ditribution of Derivative Works, 2005 (1), The
Journal of Information, Law and Technology (JILT).

9

combined program, this conduct may result in being considered as an “alternation of the

work”, whereas the overall new program might not necessarily be considered to be based on

that specific code.28 However, the given case law within the European jurisdiction indicates

that the approach is somewhat similar to the U.S. understanding. In Ibcos Computers v.

Barclays Mercantile Highland Finance, the court held that essential matter when assessing

whether the copying had occurred lied in the matter of whether a substantial part of the

original work had been reproduced.29

In addition to the economic matter of derivative works, it is necessary to also emphasise the

owner’s integrity, since there is a moral aspect that has to be considered in this matter as well.

As stated in article 6bis of the Berne Convention, separated from the economic rights, the

author also has the right to object to any modification of the given work that would be

prejudicial to his honour or reputation. Therefore, in circumstances, where software is being

modified to a derivative work that allegedly jeopardises the reputation or honour of the author

of the initial work, the original author has the right to object the derivative and potentially

stop the work from being distributed.

3. The Legal Concept of “Computer Programs”
In the early stage of the development of the computer industry, there was great uncertainty as

to whether and to what extent could computer programs be protected under the copyright

laws. On one hand, when written in a high-level source code the programs seemed to have all

the characteristics of a creative literary work.30 While on the other hand, computer programs

could to an extent be considered as merely integral parts of operational machines.31

Computer programs are defined as digital instructions that are used to drive the electronic

hardware of the computer itself and they may come in different forms.32 Apart from the well-

known personal computer (hereinafter “PC”) model, other devices such as mobile phones,

DVD players, automobile, household appliances can also embed a computer system within

28 Ibid.
29 Case Ibcos Computers v. Barclays Mercantile Highland Finance, (1994), FSR 275.
30 L. B. Burgunder, Legal Aspects of Managing Technology, South-Western Publishing Co. :
Cincinnati, (1995), p. 230.
31 Ibid.
32 W. Cornish, D. Llewelyn, T. Alpin, Intellectual Property: Patents, Copyright, Trade Marks and
Allied Rights, 7th ed., Sweet & Maxwell Ltd : London, (2010), p. 843.

10

them.33 While such embedded computing systems are designed to perform specific tasks

relevant for the particular device, the computer programs to PCs are the basic operating

systems of the machine and applications for a range of purposes.34 Copyright protection has

become the standard intellectual property tool in order to protect the proprietor and to prevent

the copying of most types of programs.35

As stated in Recital 7 of Software Directive, the term of a “computer program” includes

programs in any form.36 The term also involves programs that are incorporated into hardware

as well a preparatory design work that will lead to the development of an actual computer

program.37 Therefore, the definition under the Directive is relatively broad and involves

programs in any form regardless of whether they are intertwined with the hardware or have a

design aspect to them. Article 1 Software Directive further clarifies that for the purposes of

the Software Directive, the term shall also include the preparatory design material of the

actual computer programs, therefore the legal protection is also provided for the design

materials as such.38

As indicated on the international level, article 10 of TRIPS agreement stands for the

protection of computer programs regardless of whether they are in source or object code.39

The difference between a source and object code lies in the fact that source code can be

compiled into an object code. Source code is readable and thus can be modified by a man,

whereas object code is a machine language consisting of the numbers of 1 and 0. Without

assessing the matter in its actual depth, in principle, source code is to be containing

meaningful variables and helpful comments that are intended to be read by a man and a

complier then converts the source code to object code before the program can be executed.40

Object code is a sequence of bytes that encode specific instructions for the machine that are

executed by the microprocessor.41 In legal matters however, the protection of both codes is

covered in article 10 TRIPS.

33 Ibid.
34 Ibid.
35 Ibid.
36 Software Directive, recital 7.
37 Ibid.
38 Software Directive, Article 1.
39 TRIPS, Art 10.
40 D. Touretzky, Source vs. Object Code: A False Dichotomy, (2000). Available at:
https://www.cs.cmu.edu/~dst/DeCSS/object-code.txt (Last accessed: 26.05.2014)
41 Ibid.

11

Although, one could argue that the term “software” represents an umbrella definition that

covers computer programs as well as the components that are required in order to run the

program, for the purposes of this Thesis the two terms are used interchangeably.

4. Defying Free and Open Source Software

4.1. A Brief Overview of the Development of FOSS
The FOSS movement has a 20-year history essentially promoting the idea that software

licensing agreements should allow recipients to adapt, correct and develop the given program

and accompany it with other source material, subject only to a condition that such alterations

to the program will be made publicly available on the same initial terms.42 The movement has

gained a major popularity over the past decade, however it does create a level of legal

uncertainty specifically in relation to derivative works.

In the 1960s, when the first large-scale commercial computers were sold, they did come with

some software that was free – it could be freely shared among users, it came with a source

code and could be easily improved and modified.43 The situation changed over the 1960s and

by the mid-1970s, it was common to find proprietary software, that users were not allowed to

redistribute, the source code was not given to the users and nothing could be modified.44

4.1.1. GNU Project and Linux

In 1983, motivated by a printer that could not have been fixed due to the fact that the source

code had been withheld from users, Richard Stallman launched the GNU (acronym for

“GNU’s not Unix!”) Project in order to write an Unix-like operating system completely free

from constraints on using its source code.45

In regards to the GNU project, by the late 1980s, an almost complete free Unix-like operating

system had been created, however the kernel was still problematic. By 1991, Linus Torvalds,

42 W. Cornish, Intellectual Property, (2010), p. 845.
43 J. M. Gonzalez-Barahona, A Brief History of Open Source Software, (2000). Available at:
http://eu.conecta.it/paper/brief_history_open_source.html (Last accessed: 26.05.2014)
44 Ibid.
45 D. Bretthauer, Open Source Software: A History, (2001). Available at:
http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?article=1009&context=libr_pubs (Last
accessed: 26.05.2014)

12

a Finnish university student, had released Linux kernel and it was soon licenced under the

GNU GPL, since the combination of the two created a fully functional, free operating

system.46 Since Torvalds was already initially integrating GNU tools with his kernel, it has

been the view of Stallman that the correct wording of the system should have been GNU-

Linux instead.47

4.1.2. BSD Unix

Another development of the UNIX system took place in the University of California at

Berkeley, where the improvement of the system led to the creation of Berkeley Software

Distribution (hereinafter “BSD”) Unix.48 In the late 1980s, the Computer Science Research

Group was able to distribute the system under the BSD Licence, although at that stage the

users of BSD Unix still needed the AT&T initial licence, since some parts used were still

proprietary.49 In the beginning of 1990s, Bill Jolitz implemented the missing parts of the

system and as a result made an unencumbered version of BSD Unix, which he named

386BSD.50 It included utilities that enabled to form an entire operating system on a free

software platform covered by only BSD licence. An important difference between the GNU

GPL and the BSD licence is that the latter does not prevent the creation of proprietary

software packages that are based on modified BSD code.51

The initial BSD licence involved an interesting advertising clause that was questioned among

the community in regards to its purpose and necessity. The additional condition in the licence

required that all advertising materials mentioning the features or use of this software must

display the acknowledgment of the organisations involved.52 Firstly, there is the obvious

inconsistency with the later added opposite condition, which prohibits any promotion or

endorsement. Secondly, in case the developers started adding code to the original work. The

list of required advertising notices would then continue to increase to an unlimited degree and

46 Ibid.
47 Ibid.
48 Working Group on Libre Software, Free Software / Open Source : Information Society
Opportunities for Europe?, (2000). Available at: http://eu.conecta.it/paper.pdf (Last accessed:
26.05.2014)
49 Ibid.
50 Ibid.
51 D. Bretthauer, Open Source Software: A History, (2001).
52 Free Software Foundation, Inc., The BSD Lincense Problem, (2014). Available at:
http://www.gnu.org/philosophy/bsd.html (Last accessed: 26.05.2014)

13

the situation would potentially become unmanageable.53 In 1999, this condition was removed

of the BSD licence and the version including the advertising restriction is not considered to be

acceptable by the Open Source Initiative.54

4.2. The Core Aspects of FOSS
The task of specifically defying FOSS can be rather complex, since there are several

distinctions, slightly different movements and variants existing in the society. However, the

core idea behind the definition is rather simple.

The source code of the program is an absolute necessity in order to understand the

functionality of the software, to improve and to modify it.55 Therefore, once the access to the

source code has been achieved, a skilled programmer has the possibility to work further with

the software and that is the reasoning behind a major part of the developers concealing the

actual source code of a developed program. The term “open source” defines something that

can be modified due to the fact that its design is publicly accessible and accordingly “open

source software” stands for software, which is available for modification since its source is

available to the users.56

Therefore, the “proprietary software” or “closed source software” stands for the opposite of

FOSS, since they are controlled by the person, team or undertaking that has created the

program and the maintenance is exclusively controlled by an individual or a specific group of

people.57

4.3. The Difference Between Free Software and Open Source Software
It is vital to emphasise that Stallman does not consider himself as part of the open source

software movement, but instead prefers the combination of “free software”.58 Being the

53 A. Sinclair, Licence Profile: BSD, (2010). Available at:
http://www.ifosslr.org/ifosslr/article/view/28/62 (Last accessed: 26.05.2014)
54 Ibid.
55 Working Group on Libre Software, Free Software / Open Source : Information Society
Opportunities for Europe?, (2000).
56 Red Hat Inc., What is Open Source?, (2014). Available at: http://opensource.com/resources/what-
open-source (Last accessed: 26.05.2014).
57 Ibid.
58 D. Bretthauer, Open Source Software: A History, (2001).

14

founder of the FSF, he defines free software with 4 essential freedoms: freedom to run the

programs for any purpose; freedom to modify to suit one’s needs; freedom to redistribute,

freedom to distribute modified versions of the program.59 The FSF’s principle in this matter

lies in the fact that free software is a matter of liberty and not price.60 Free software stands for

the users’ freedom to run, copy, study, change, improve and distribute the software.61

Therefore, it is vital to emphasise that the FSF and the term “free software” does not stand for

software that is available for free, but rather the right to have the freedom to have access to

the source code of the program and to have the possibility to edit and modify the code.

The concept of “open source” was created in 1998 in California during a strategy session after

the announcement of the release of the Netscape source code.62 It is important to note that the

basic principal difference between the terms “free software” and “open software” is a rather

rhetorical matter. An illustrative way of describing the two concepts could be the comparison

of two political camps within the free software community, where the free software

proponents stand for the more ethical freedom matters, while the “open source” supporters

tend to focus more on the commercial interests.63 For the purposes of this thesis, the term Free

and Open Source Software (referred to as “FOSS”) is used to bridge the gap of the two

concepts.

4.4. FOSS risks
Although FOSS can be seen as a valuable way of improving technology while saving costs

and increasing the vastness of development, this way of operating comes with elements of

risk. The main matter emphasised in this thesis is the problematic aspect of derivative works

and the lack of clarity as to when should a program be considered to be a derivative product

incorporated with the open source and should fall under the same open source licence and

when should the product be considered as a new original work. But the risks involved with

FOSS is not only limited to the uncertainty in regards to derived works. Another potential risk

59 Ibid.
60 Free Software Foundation, Inc., What is GNU?, (2014). Available at: https://www.gnu.org (Last
accessed: 26.05.2014).
61 Ibid.
62 Open Source Initiative, History of the OSI, (2014). Available at: http://opensource.org/history (Last
accessed: 26.05.2014).
63 Free Software Foundation, Inc., Why “Free Software” is better than “Open Source”, (2014).
Available at: https://www.gnu.org/philosophy/free-software-for-freedom.html (Last accessed:
26.05.2014).

15

that can be associated with FOSS also include incorporating code that could infringe a patent,

the possibility of violating an open source licence’s attribution requirements without one’s

consent, while the use of FOSS also involve a lack of warranties and indemnities.64 It is

therefore not surprising that different undertakings have a level of wary in regards to using the

FOSS and investing their time, money and resources in developing such software, while the

legal aspects could result in a negative outcome for the undertaking itself.

Today, however, FOSS is widely used and as it has often occurred, undertakings tend to use

them without always consulting with the legal department.65 Since the use of FOSS has had

an extensive increase in its use over the past years, the legal matters and the licences have

developed along the process. There are more than 1400 unique licences that deal with the

legal complexity of managing a FOSS in a way that would be beneficial to all parties.66

5. Legal Evaluation of Derivative Works in Relation to Software

Programs
It can be claimed, especially in technological society, that most new works have influential

elements of the existing works and thus it is vital to make the correct distinction. There is a

thin line between a derivative work and an entirely new work. In a situation, where the

developer only uses a minimal amount of a pre-existing work, taking only the basic

functioning codes or a code that is not protected by copyright, or the pre-existing code is

taken in a way that results in an substantially different program than the initial software, the

works is to be considered new and original.67

Generally, the ownership of the a separate copyright in a derived work does not only require

more than a minimal input to the prior work, but the necessity of authorisation is no less

important to consider. The developer has to acquire permission from the owner of the pre-

64 A. T. Pham, M. B. Weinstein, J. L. Ryerson, Easy as ABC: Categorizing Open Source Lincenses,
(2010). Available at: http://www.ipo.org/wp-content/uploads/2013/03/EasyasABC.pdf (Last accessed:
26.05.2014).
65 W. H. Venema, Open Source Software, National Law Journal, (2008, Oct 20).
66 A. T. Pham, Easy as ABC: Categorizing Open Source Lincenses, (2010).
67 O. Johnny, M. Miller, M. Webbink, Copyright in Open Source Software – Understanding the
Boundaries, (2010). Available at: http://www.ifosslr.org/ifosslr/article/view/30 (Last accessed:
26.05.2014).

16

existing software when modifying the work and it is important to emphasise that when the

permission is given, the developer of the original work will only own the copyright of the

contributed work.68 In the FOSS society, the authorisation in essence comes in the form of the

FOSS licence. 69 The corresponding chapter on specific peculiarities and variations of

different FOSS licences is Chapter 6.

The most problematic task in relation to derivative works is to establish the distinction

between situations, where the software developer has created a derivative work from a

situation, where the work could be seen as the original. The differentiation is complex and not

entirely clear-cut, since the circumstances of different software programs and the input vary

from case to case. The following subheadings provide the possible methods of distinguishing

derived works from the original in three ways: interpretation on the basis of the source code,

component based interpretation and communications based interpretation.

5.1. Source Code Approach
The source code approach in its essence compares the two source codes and the assessment is

done based on that code. The legal world has mainly developed two different theories that can

be applicable for the source code analyses: idea-expression dichotomy and the abstraction-

filtration-comparison method.70 This thesis will also assess the recent improvement of the

latter method in the light of 5-step testing (see Chapter 5.1.1.).

The first approach, the idea-expression dichotomy is based on the understanding that

copyright law does not protect ideas but only expressions of those ideas.71 In Nova v.

Mazooma it was stated that the well-known dichotomy is intended to apply to copyright in

computer software.72 Although the case was from the U.S, the well-known aspect indicated

that this was not to be considered as an exceptional matter relevant to only some countries,

68 Ibid.
69 Ibid.
70 M. Välimäki, GNU General Public License, (2005).
71 N.Shemtov, The Legal Regulation of Decompilation of Computer Programs: Excessive, Unjustified
and in Need of Reform, (2012). Available at:
https://qmro.qmul.ac.uk/jspui/bitstream/123456789/3132/1/SHEMTOVTheLegal2012.pdf (Last
accessed: 26.05.2014),
72 Case Nova Productions Limited v. Mazooma Games Limited & Others, (2007), EWCA Civ 219,
para 31.

17

but the link is to be considered well-known all over the world.73 The universally held position

of copyright law is that ideas, concepts, systems, procedures and methods of operation are not

a subject matter to be suitable for copyright protection – this has support under TRIPS,

Copyright Treaty as well as the Software Directive.74 The concept stands for an understanding

that existing programs can be studied and assessed on the basis of new original programs and

the only restriction lies in the conduct of actual copying of the source or object code.75

Essentially, the idea-expression dichotomy indicates that copyright law as such does not

create restrictions on developing a new operating systems or compression algorithm, in

matters where there has not been a literal copying of any of the source or object codes.

For the other approach, the abstraction-filtration-comparison (hereinafter “AFC”) method, the

key case lies in the case of Computer Associtates International v. Altai.76 In principle, the

AFC test determines the non-literal elements of the program and assesses whether these

elements have been copied through a three-step procedure. Computer Associates had

developed a program called Adapter that was used with other programs to handle the

differences in operating system calls and services.77 A former employee had gone to work for

Altai and used the idea of Adapter to simplify the IBM operating systems there.78 Working

from Adapter listing, the employee put together a program named Oscar that was similar to

Adapter, whereas about 30% of the new program came from Adapter.79 In order to give a

proper judgment to the matter, the court conducted the AFC test.

Firstly, the elements of the programs at different levels are to be abstracted. When applied to

computer programs, the first step works in a manner that resembles reverse engineering on a

theoretical plane, where the structure and the functions of the suspected source codes are

abstracted.80 The process starts with the code, while ending with an articulation of the

program’s ultimate function.81 During the assessment at this level, it is vital to retrace and

73 N.Shemtov, The Legal Regulation of Decompilation, (2012).
74 Ibid.
75 M. Välimäki, GNU General Public License, (2005).
76 Case Computer Associates International v. Altai, (1992), 982 F.2d 693, 2d Cir.
77 Ibid.
78 Ibid.
79 Ibid.
80 M. Välimäki, GNU General Public License, (2005).
81 L. A. Hollaar, Chapter 2: Copyright of Computer Programs, (2002). Available at: http://digital-law-
online.info/lpdi1.0/treatise22.html (Last accessed: 26.05.2014).

18

map each of the steps by the designers, but in the opposite order of which they were taken

when creating the program.82

Secondly, as given from the test name itself, is the filtration step. The aim of this level is to

separate protectable elements of the expression from unprotected materials that include

elements that are dictated by efficiency, external factors or elements that are taken from the

public domain (83).84 This step varies largely between different programs, since the necessity

for filtration depends on the specific level of abstraction present.

Finally, the comparison of the protectable elements and the alleged infringement is finalised

in the last step. The elements that remain after the filtration step need to be substantially

similar with the elements of the program that has allegedly infringed the initial work. At this

stage, the court’s focus is put on the aspect of whether the defendant has copied any aspects

of the protected expression as well as assessing the portion’s relative importance with respect

to the overall program.85

As abovementioned, the landmark case of Computer Associtates International v. Altai has its

roots in the U.S Copyright system, however the same approach has been used in Europe. In a

Finnish case named Sonera Systems Oy v. VF Partner Oy, the same AFC principle was

applied in order to assess the potential infringement.86 The test was emphasised in the opinion

of a law professor and was further applied by a computer science professor as an expert

witness.87 The code had likely been copied by 10-15% and was not found to be a significant

amount, however the professor stressed that the similarities can be explained since the

programs were written by the same programmers, the same functionality was implemented,

the user interface was similar, the programming language have only limited possibilities for

variation, while the requirements forced one to implement specific parts in certain fashion.88

82 Ibid.
83 R. Nimmer, Legal Issues in Open Source and Free Software Distribution, (2004). Available at:
http://euro.ecom.cmu.edu/program/law/08-732/Transactions/LegalIssuesNimmer.pdf (Last accessed:
26.05.2014).
84 J. Richards, The “Abstraction, Filtration, Comparison” Test, (2002). Available at:
http://www.ladas.com/Patents/Computer/SoftwareAndCopyright/Softwa06.html (Last accessed:
26.05.2014)
85 L. A. Hollaar, Chapter 2: Copyright of Computer Programs, (2002).
86 Case 3571, Sonera Systems Oy v. VF Partner Oy, (1999), R 99/661.
87 M. Välimäki, GNU General Public License, (2005).
88 I. Haikala, Lausunto: Ohjelmistojen samankaltaisuus, VF Partner vs. Systek, (1996). Available at:

19

There is however no clarity as to whether the European Courts are to apply the AFC test

principle in matters related to potential infringement of computer programs.

5.1.1. POSAR testing

There has been further recent development in improving the testing in terms of specifying the

legal and the judicial domain in comparison with AFC test and the new extended version is

called the Planning-Operationalization-Separation-Analysis-Reporting (hereinafter

“POSAR”) test.89 As the name indicates, in this approach the step-by-step process involves 5

levels instead of the 3 levels used in the AFC test.

As the first step, the POSAR test requires the abstraction of the software by separating the

two software programs into their constituent structural parts by also taking into consideration

the forensic importance of different factors, such as programming remarks, blunders, and

errors, similarly looking items, program manuals and documents.90 The second step involves

examining and filtering the programming elements while also considering the elements from

both the software packages with the goal of preparing a set of two filtered abstractions.91 The

third step deals with the separation of the suspected modifications from the two filtered

abstractions, whereas the forth step covers the comparison of the remaining creative

expressions of the two programs with a consideration of other contributing elements.92 The

last phase is to prepare a forensic report in a particular judiciary-friendly format.93 When

comparing POSAR test with the general AFC test, it is clear that the POSAR test deals with a

more detailed process that results in an outcome that can potentially be more efficiently used

in judicial procedures and can thus be a beneficial tool to assess whether a work constitutes a

derivative from an original.

 http://www.valimaki.com/org/docs/haikala_1.pdf (Last accessed: 26.05.2014).
89 V. Bhattathiripad, Judiciary-Friendly Forensics of Software Copyright Infringement, (2014),
Chapter 8, ISBN: 978-1-4666-5805-9.
90 Ibid.
91 Ibid.
92 Ibid.
93 Ibid.

20

5.2. Component Based Approach
The second approach based on the components can practically be more useable in open source

development, that prefer programming paradigms relying on maximal source code reuse.94

The component-based approach is further supported by the General Public Licence

(hereinafter “GPL”) separating derived works on those bases. As an example, Section 2 of

version 2 states that in situations, where the identifiable sections of the work are not derived

from the initial program, and can further be reasonably considered as independent from that

program and can be seen as separate works, the licence at hand do not apply to those

particular section when distributed as separate works. The corresponding chapter of this thesis

for a specific assessment on GPL is Chapter 6.3.

There is no clear and single definition of the component in the literature. Understandably, the

different understandings of specific problems and solution approaches lead to different

understandings of the constituent parts.95 While software methodologist equate components

with units of project and configuration management and software architects see them as

design abstractions, the legal view tends to equate components to elements that can

essentially be reused.96 The component based approach can in principle be divided into the

following: components that are developer owned, components that are tailor made and third

party components.97

A rather complex matter can potentially occur when dealing with the third party components.

In a hypothetical situation, where a software developer uses a third party source code that is

distributed in a component, the problem raises with the derivative status once the outcome is

combined of the original main program and therefore under a partial control of the third party

copyright owner.98 From one aspect, once the third party’s component is of an essential aspect

for the program as a whole, one could see the potential of considering the work as being

derived from such components. However, on the other hand, if the new product merely uses

component’s functionality and copyright law does not cover the use of interfaces, the external

94 M. Välimäki, GNU General Public License, (2005).
95 F. Bachman, Volume II: Technical Concepts of Component-Based Software Engineering, (2000).
Available at:
http://www.win.tue.nl/~mchaudro/cbse/SEI%20Technical%20Concepts%20of%20CBSE.pdf (Last
accessed: 26.05.2014).
96 Ibid.
97 M. Välimäki, GNU General Public License, (2005).
98 Ibid.

21

unmodified runtime component that only operates through interface could not be seen as part

of the original work, thus no derivation occurs.99 Another complex and legally uncertain

situation can occur with library routines. In circumstances, where the software is linked to an

external library or device drives, does this make the program a derivative work of the library?

The key factor when assessing this matter lies again on the substantial role of the library,

since if those routines play a significant role in the functionality of the program itself, the

routine could be seen as serving a rather important role when operating with the program and

could therefore be seen as an integral part of the program. Potentially, the program would not

be seen as a derivative work of the server component in case it only uses the server’s services,

however if such program is majorly dependent on the server’s functionality and could not run

separately in any other setup without it, the work would likely be seen as a derived work.100

5.3. Communications Based Approach
Although the abovementioned approaches are essentially based on the contents of copyright

law, the third approach is supported by the Free Software Foundation (hereinafter “FSF”).

The FSF’s approach has its grounds on more technical aspect, where the emphasis is put on

the communication between the components.

When assessing whether and at what point combining two parts of components constitutes as

one software program, the FSF stresses that the proper criterion depends on the mechanisms

of communication and the semantics of communication.101 This approach provides that the

modules that are included in the same executable file should be seen as being combined in

one program.102 Furthermore, if the modules are designed to run in a way that they are linked

in a shared address space, they shall be considered as one program.103 In order to build a

better picture of the separate versions, in case the programs are ran by other communication

mechanisms that are used between two different programs (such as pipes, sockets, etc.), the

programs are to be seen as entirely separate. However, if the semantics of the communication

of these programs are still intense and the complex internal data structures are exchanged, that

99 Ibid.
100 Ibid.
101 Free Software Foundation, Inc., Frequently Asked Questions about Version 2 of the GNU GPL,
(2014). Availabe at: http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html (Last accessed:
26.05.2014).
102 Ibid.
103 Ibid.

22

too could be seen as two parts of programs that form a single unit.104 Similar to the

abovementioned approaches, the key factor of the assessment lies in the significance of

dependency and whether the new program can function as an individual piece. However, the

approach based on communications seems to have a better link with patent law method claims

criteria, since copyright law itself does not cover communication mechanisms or protocols as

such.

6. FOSS Licensing and Copyleft
As abovementioned, software is protected by copyright law as literary work under the general

legal norms. If one so wishes, the easiest way to put a program into the market for free, is to

put it in the public domain. There would be no copyright protection on the product and users

would be free to modify and distribute the software. However, the simplicity in this conduct is

shadowed by the possibility for developers to convert the modified version into a proprietary

work, thus gaining profit from initially free program. Therefore in order to avoid such

outcomes and develop the FOSS movement, there are a great number of different licences

available enabling the software developers to clarify what rights are granted to the users and

what are the conditions that have to be met when operating with a FOSS.

If one has access to the source code of a certain program, he is able to study the program,

modify it and further work with the program as the initial author of the software would. The

concept of freedom in relation to software and its codes has a slight conflict with how the

system works in practice. The fact that it is necessary to protect the free software with a

licence that imposes certain restrictions has caused some controversy in certain circles, since

the original concept of freedom is somehow then still restricted.105 On the other hand, the

explanation behind the necessity of licence agreements can be seen as serving the purpose of

guaranteeing the perpetuation of such freedom to all of its users and supporters of this

approach claim that this can only be done by limiting the ways of use and distribution of the

software.106

104 Ibid.
105 Working Group on Libre Software, Free Software / Open Source : Information Society
Opportunities for Europe?, (2000).
106 Ibid.

23

As abovementioned, there are a great number of FOSS licences available and they differ in

their characteristics. In order to get a better understanding of the FOSS licensing in practice,

this thesis focuses on three licences: GPL (also briefly LGPL), BSD and EUPL. Although the

authors are to provide the source code in all FOSS licence structures, the requirement for the

redistributors to provide the code varies from one licence to another. Furthermore, even

licences that set an obligation for the redistributor to provide the source code differ in their

regulations regarding the fees for distribution. However, the core emphasis in this thesis is put

on the aspect of derivative works and the legal certainty in relation to derivative works under

these licence agreements. The clauses on derivative works also vary from licence to licence,

since even when the access to the source code of the initial software is vital, the requirement

for the access to the source code of works derived from that software is not always presented.

6.1. Copyleft Provisions
As explained, copyright law on software involves a level of legal uncertainty. However, in the

context of open source software and copyleft, the vagueness is even more substantial. The

licences for FOSS and for ensuring the successful existence of copyleft are in some aspects

aiming the opposite goal than the regular licences in copyright law. As abovementioned, the

principle purpose for FOSS licensing is to safeguard the freedom to use the software and its

source code to all of the users. Therefore, one could claim that licensing is vital in order to

maintain a bigger freedom, whereas the regular licensing in copyright law tends to set out

specific restrictions attached to the use of the work.

The way of guaranteeing the freedom to the software is creatively called “copyleft”. When the

original proprietary work states “copyright, all rights reserved”, the opposite version claims

“copyleft, all rights reversed”, “copyleft, no rights reserved” or “copyleft, some rights

reserved” depending on the specificity of the licence.107 The copyleft provisions are arguably

the greatest risk posed to the commercial enterprises when engaging with FOSS.108 The term

“copyleft” – a combination of copyright and left – is used to refer to a general method or

licensing scheme for making software or other work open source, while requiring all modified

107 D. A. Frantsvog, All Rights Reversed: A Study of Copyleft, Open-Source, And Open-Content
Licensing, (2012). Available at:
http://journals.cluteonline.com/index.php/CIER/article/view/6782/6857 (Last accessed: 26.05.2014).
108 A. T. Pham, M. B. Weinstein, J. L. Ryerson, Easy as ABC: Categorizing Open Source Lincenses,
(2010).

24

versions to be open source as well.109 Therefore, copyleft is not only about making the

original work free when the copyright holder has released it, but it is also about keeping it

free when further developed and distributed.110 Therefore, in essence, what the principle of

copyleft stands for in relation to computer programs, is to make the program free to be used

and modified, while also providing that all derived works of the original work remain free as

well.

The copyleft concept uses copyright law in order to achieve the exact opposite of the usual

purpose of copyright law. Instead of aiming to privatize software, in copyleft licences the

rights that are granted in order to keep the software free.111 An author of the GPL-ed work or

a copylefted work does not give up the rights as a copyright holder, but instead uses these

rights in way that is different from the traditional copyright holder.112 It is vital to emphasise

that the copyleft-based licences have different effects and strengths in relation to derivative

works.113 For example, “weak-to-medium” copyleft licences are used when dealing with

licensing FOSS libraries, where only changes of the FOSS library itself are subject to the

copyleft provisions of the licence.114

While most copyleft licences are FOSS licences, not all FOSS licences are necessarily

copyleft. In a situation, where the FOSS licence is not copyleft, the software that is released

under such licence can be used as part of programs that are distributed under other licences.115

One of the examples of such permissive non-copyleft licences is the BSD licence, which is

further assessed in Chapter 6.4. Merely distributing a copyleft work alongside a proprietary

work does not cause the latter to fall under the copyleft conditions, these provisions only

apply to actual derivative works, where an existing copylefted work has been modified.116

109 Ibid.
110 S. Chen, Free/Open Source Software Licensing, (2006). Available at:
http://akgul.bilkent.edu.tr/iosn/foss-licensing.pdf (Last accessed: 26.05.2014).
111 Ibid.
112 Ibid.
113 A. T. Pham, M. B. Weinstein, J. L. Ryerson, Easy as ABC: Categorizing Open Source Lincenses,
(2010).
114 Ibid.
115 Open Source Initiative, Frequently Asked Questions, (2014). Available at:
http://opensource.org/faq#free-software (Last accessed: 26.05.2014).
116 Ibid.

25

In case the author of the software wants to make the program free and simply releases the

work into the public domain, the danger of the work becoming privatized and closed again is

greater.117 Therefore if the initial author aims to ensure that the work will remain freely

accessible to all users, claiming the work as public domain would simply not solve the risk.

By licensing the work under a FOSS licence, the author will have further assurance that the

potential developments made to the software will be available to public.

6.2. Licensing Classification
As abovementioned, there are a number of different FOSS licences currently available and the

conditions in them vary from licence to licence. However, in order to better observe the

variations between the licences, the licence grants are categorised into three classes on the

basis of their level of restrictions.

The first class stands for the non-copyleft licences that often also carry the name of

“academic” or “non-viral” licences.118 One should consider this form of licence beneficial for

commercial use, since under these conditions undertakings do not have the obligation to apply

the “same” licence requirements on derivative works.119 Therefore companies have the right

to choose the licence for the new work, however other non-restrictive conditions pertaining to

attribution may be imposed.120 Further, the licences may include a release of liability

condition, which means that the users have to agree not to file a suit against the author of the

original work or a notice of modifications requirement in case the original code has been

modified.121 One of the examples of such permissive licences is the abovementioned BSD

license.

The second class and the third class can both be seen as copyleft licences with a difference

between the specific conditions in terms of the constraints. Although the terms are stricter

than on the non-copyleft licences, it has been pointed out by the Open Source Initiative that

all FOSS licences can potentially be used for commercial purposes, however the main

purpose of the software program and the likeliness of the creation of derivative works that has

117 S. Chen, Free/Open Source Software Licensing, (2006).
118 A. T. Pham, Easy as ABC: Categorizing Open Source Lincenses, (2010).
119 Ibid.
120 Ibid.
121 Ibid.

26

to be taken into account.122 Not all licences involving copyleft terms impose the same licence

requirements on work that does not contain the code from the initial open source code and

these files can be licensed under a different agreement.123 An example of this type of licences

in the GNU Lesser General Public License (hereinafter “LGPL”).124

The strictest class of the three licensing classifications involves licence grants that require that

all combined files, even those that do not contain FOSS code in any way, have to be licensed

under the same licence as the FOSS work.125 This class of “unbounded” copyleft licences

considers that the derivative works are to be part of the compiled program and on the basis of

this, the licence sets a requirement that any new code from the FOSS work is to be licensed

under the same licence as the initial FOSS project.126 Good examples of this type of licences

are the GNU family’s GPLs.127

According to the abovementioned classification system, it is important for the undertakings to

acknowledge the variations in the FOSS licences in order to conclude a licence suitable to fit

the aims of a specific project. Authors of the software have the option to use different licences

for the programs, but the reality today is that the majority of the FOSS projects are covered

with one of the most common licenses known, although there can be minor modifications

made to the original agreement.128 Among the possible restrictions on derivative works, there

are other things that have to be considered. It is vital for the contracting party to assess the

protection of moral rights in the licence, although in many legislations an extent of moral

rights is protected by the legislation itself.129 Furthermore, an important element in the licence

agreement is the compatibility with proprietary licences, since some licences have formed a

structure that is completely incompatible with the proprietary software and this could

potentially become a problematic factor depending on the character of the project.130 Just as

122 Open Source Initiative, Basics of Open Source, (2014). Available at:
http://opensource.org/faq#commercial (Last accessed: 26.05.2014).
123 A. T. Pham, Easy as ABC: Categorizing Open Source Lincenses, (2010).
124 Free Software Foundation, Inc., GNU Lesser General Public License, (2007). Available at:
https://www.gnu.org/licenses/lgpl.html (Last accessed: 26.05.2014)
125 A. T. Pham, Easy as ABC: Categorizing Open Source Lincenses, (2010).
126 Ibid.
127 Free Software Foundation, Inc., GNU General Public License, (2014). Available at:
http://www.gnu.org/copyleft/gpl.html (Last accessed: 26.05.2014).
128 Working Group on Libre Software, Free Software / Open Source : Information Society
Opportunities for Europe?, (2000).
129 Ibid.
130 Ibid.

27

the compatibility needs to be assessed with a proprietary licence, the same has to be analysed

with other FOSS licences, since there can be conflicts between the different FOSS licences as

well. The latter situation occurs when the conditions of one of the FOSS licences cannot be

fulfilled in case the terms of the second FOSS licence are satisfied.131

6.3. GNU General Public Licence
The GNU GPL has been developed over the years by the Free Software Foundation and

currently the latest version of the licence agreement carries the number three. As

abovementioned, the same vision of four freedoms explained by Stallman is kept in mind

through the drafting process. Therefore, essentially the licence aims to guarantee that nobody

is restricted by the software used.132 The freedom to use and change the program, while also

having the freedom to share either the software or the changed version of the original, still

stand as the foundation of the licence agreement.133

Under the GPL, the copylefted software is first copyrighted, then with the distribution terms

added, which in turn give legal grounds for users to have the right to use, modify, and

redistribute the software program’s code or any program derived from it, the software is then

copylefted.134 The code and the freedoms thus become legally inseparable, yet the condition

that the distribution terms cannot be changed remains in force even if the modified work is to

be distributed.

The latest version of the GNU GPL (that is version 3, thereinafter “v3”) contains a basic

intent of the previous version and still constitutes as a licence with a strict copyleft, although

the language of the licence has been amended in order to be more comprehensive in response

to technical as well as legal matters.135 The new version aims to protect the users on three

problematic issues: tivoization, laws prohibiting free software and discriminatory patent

131 Ibid.
132 Free Software Foundation, Inc., A Quick Guide to GPLv3, (2014). Available at:
http://www.gnu.org/licenses/quick-guide-gplv3.html (Last accessed: 26.05.2014).
133 Ibid.
134European Parliament, Legal Aspects of Free and Open Source Software, (2013). Available at:
http://www.europarl.europa.eu/document/activities/cont/201307/20130702ATT68998/20130702ATT6
8998EN.pdf (Last accessed: 26.05.2014).
135 Institute for Legal Questions on Free and Open Source Software, What is the Difference between
GPLv2 and GPLv3?, (2013). Available at: http://www.ifross.org/en/what-difference-between-gplv2-
and-gplv3 (Last accessed: 26.05.2014)

28

deals.136 First matter stands for a situation, where the system does corporate a GPL-ed

software, but the hardware restrictions are used such a way that prevent users to run modified

version of the given software on that particular hardware.137

The second matter touches acutely upon the EU legislation, namely the Directive 2001/29/EC

(hereinafter “InfoSoc Directive”). The legislation does not allow to write or share any

software that can break Digital Restriction Management (hereinafter “DRM”).138 DRM is

defined as any technology that is created into an electronic product or service and aims to

limit its range of uses after the purchase.139 The technology works in a way that prevents

customers from using the technology in such ways that do not meet the business agenda of the

content provider.140 It is an issue that has both supporters and opponents, while the latter stand

for the vision of users having the right to unlimited use once the product has been purchased.

On the European level the issue raises with the InfoSoc Directive, where article 6 stands for

the necessity for member states to provide adequate legal protection against circumvention.

The article stresses that the protection is needed against any circumvention of effective

technological measures and against any activities (manufacturing, importing, distributing,

selling etc.) that essentially promote, advertise or market circumvention.141 In principle, GNU

is of the opinion that such legislation should not intervene with the rights acquired by the

GPL and thus some necessary amendments to the GPL v3 were made.

Thirdly, the issue occurred with discriminatory patent deals. It was stated by Microsoft that

no suing of free software users would occur as long as the software is obtained from a vendor

who is paying Microsoft for the privilege.142 In other words, Microsoft aimed to get royalties

for the use of free software under conditions that are conflicting with the GNU’s principles

and thus the solution for this was further developed in the new version.

Furthermore, the new version addresses questions that were insufficiently covered in the

previous version, such as the issue of compatibility, which in essence now simplifies

136 Free Software Foundation, Inc., A Quick Guide to GPLv3, (2014).
137 Ibid.
138 Ibid.
139 B. Mruk, M. Lee, What is DRM?, (2012). Available at: http://drm.info/en/what-is-drm (Last
accessed: 26.05.2014).
140 Ibid.
141 InfoSoc Directive, article 6(1)&(2).
142 Free Software Foundation, Inc., A Quick Guide to GPLv3, (2014).

29

combining GPL code with code that has been published under a different licence.143

Furthermore, the regulations in relation to digital rights management were applied in order to

keep GPL software from being changed at will since users appealed to the legal regulations to

be protected by “TPMs” (technical protective measures).144 An important note to stress here is

the fact that, the European Commission had been invited to participate in the making of the

GPL v3, but the Commission declined on the grounds that the governments participating were

not of the Commission’s level of importance and dignity.145

Therefore, in essence, what the GNU GPL stands for is that when developers write software

and release it under the terms of GPL, it will be free software and will remain free software

regardless of who modifies or distributes the software. Therefore, the core aim is to set aside

the restrictive measures provided by the proprietary software and guarantee freedom to use

the software while also contributing to the technological society yourself.

6.3.1. Derivative Works

With the GNU GPL concept, there is no limitation for the derived works when only used

internally, but copyleft is to be applied when derivative works are distributed in public and

the licence sets out that the derived works in such circumstances have to be as free as the

original work.146 By licensing under the GNU GPL, the initial authors will set out a

requirement for the people distributing the program and for the developers that distribute

modified works, to have the obligation to keep the derivative works as free as the original

work.147

Therefore, the source code of a software program is thus openly distributed, which potentially

encourages developers to study the code, get inspired and hopefully contribute more to the

society. However, from another angle, the licence also creates a level of limitation in

distribution. GNU GPL strictly controls the further distribution of such derivative works,

since it requires that the licence terms of the derivative works are not to be changed.148 The

core aim behind this restriction lies in the principle that since the original developer of the

143 Institute for Legal Questions on Free and Open Source Software, What is the Difference between
GPLv2 and GPLv3?, (2013).
144 Ibid.
145 European Parliament, Legal Aspects of Free and Open Source Software, (2013).
146 Ibid.
147 S. Chen, Free/Open Source Software Licensing, (2006).
148 M. Välimäki, GNU General Public License and the Ditribution of Derivative Works, 2005.

30

software has provided the source code for the general public, it would be a logical implication

that a subsequent developer should also contribute to the public and in order to ensure this,

the derivative work has to follow the same licence conditions.149 One can see the restriction

created by this condition, however as the aim of the GNU’s project consists in the matter of

liberty, the necessity to ensure that the derivative works fulfil the same goal is intelligible. As

GNU has described this approach in the preamble of the licence, the condition is there in

order to respect the freedom of others and thus certain responsibilities occur if one is to

distribute copies of the software.150 Developers who use the GPL protect the rights with two

steps: firstly, they assert copyright on the software and secondly, they offer the licence giving

one the legal permission to copy, distribute and modify the particular piece of work.151

There is further a possibility that a developer has created an aggregate, where other conditions

apply. Essentially, an aggregate embodies a number of programs that are separate, but

distributed on the same media.152 Under the GPL conditions, it is possible to create and

distribute an aggregate even under circumstances, where the other software programs

involved are non-free or GPL-incompatible, yet the only requirement that has to be met, is

that the developer cannot release such aggregate under a licence that would deny the users to

exercise the rights granted by each program’s individual licence.153 However, the matter of

when a programs constitutes as a single unity or can be seen as two individual programs is

still problematic and need to be assessed on case-by-case basis.

Theoretically, the issue of derivative works does not come into play under conditions, where

the programs are to be considered as separate works and the influence of one of the programs

to another is non-existent. However, it is vital to understand the principle distinction between

the possibility that programs have created a single unit and a situation, where the software

programs are to be seen separate. GNU is of the opinion that the distinction depends both on

the communication mechanism as well as the semantics of the communication.154 Therefore,

the first assessment should be done with analysing the mechanism that are used in order to

149 Ibid.
150 Free Software Foundation, GNU General Public License, (2007).
151 Ibid.
152 Free Software Foundation, Inc., Frequently Asked Questions about the GNU Licenses, (2014).
Available at: http://www.gnu.org/licenses/gpl-faq.html#MereAggregation (Last accessed:
26.05.2014).
153 Ibid.
154 Ibid.

31

link the programs, while the second matter involves the substantial elements indicating what

information is changed between the programs.

6.3.2. Lesser General Public Licence

The general concept of the LGPL is to permit modification as well as distribution of free

derivative works, but it precludes the creation of proprietary derivative works. As

abovementioned, not all licences impose the same requirements on work that does not involve

the code form the initial source and such files can successfully be licensed under a different

agreement – LGPL is an example of that.

The core difference between the GPL and LGPL is that the latter allows the use of the library

in proprietary software, while the GPL for a library enables it only for free programs.155

Therefore, the developer needs to particularly set out the aims for each individual program

and decide whether there occurs the necessity to use the library in proprietary software, when

choosing the appropriate licence agreement. Mostly, the LGPL can be a reasonable choice

when a free library’s features are available for proprietary software through other alternative

libraries, since the library cannot provide any additional advantage to the free software.156

Section 2 of the LGPL provides for the distribution of the modifications. It states that if a

developer modifies the copy of the library and in those modifications a facility is referring to

a function or data that is to be supplied by an application that uses the facility, then in

principle such copy of the modified version can be conveyed under specific conditions.157 The

requirement is either to convey the version under the same LGPL licence, while ensuring that

the facility still operates in the event that the application does not supply any function or data,

or under the GNU GPL with none of the additional consent of the LGPL applicable.158

6.4. BSD Licences
When considering popularity by the frequency of use, the BSD licence has been ranking at the

top of the list after the GNU GPL family and therefore, for the purposes of giving an accurate

155 Free Software Foundation, Inc., Why You Shouldn’t Use the Lesser GPL for Your Next Library,
(2014). Availablt at: http://www.gnu.org/licenses/why-not-lgpl.html (Last accessed: 26.05.2014).
156 Ibid.
157 LGPL, section 2.
158 Ibid.

32

overview on the essential issues of this thesis, it is vital to assess the peculiarities regarding

the BSD and the conditions of derivative works in relation to the BSD licence. According to

the analyses in 2012, approximately 7% of the FOSS projects use some form of BSD licence,

which made it the third most popular licence next to the GPL licences.159

The core of the BSD agreement is simplicity. The licence has a three-part structure that sets

forth an elementary copyright notice, has a short licence grant and warranty disclaimer with a

limitation of the liability clause.160 The BSD licence is particular due its refreshing shortness

and the fact that the entire licence can fit onto one page of paper.161 Essentially, what the BDS

licences cover is the right to use, copy and distribute unmodified and modified source or

binary forms of the program, while all the distributed programs were to be accompanied by

the licence.162 The names of the previous contributors are not to be used in order to promote

any modified versions without their acknowledgment and written consent.163

The first part of the three-level structure covers the copyright notice and in principle, follows

the style of the traditional copyright notice.164 Copyright notices are a common practice, since

they still serve the purpose of identifying the copyright owner to recipients of the created

work and given the fact that the BSD licence was initially developed in the 1980s, the notice

was then still required for enforceability under the US Copyright Act.165 Another interesting

aspect to the BSD licence is the still remaining “all rights reserved” notice that is not

commonly used among other FOSS licences. Although what seems to be a conflicting matter

with the aim of the FOSS movement, it is important to emphasise that not all the rights are

reserved in this aspect as the author is granting many rights in the same instrument as the

notice, but one could indeed see the BSD licence as being one of the more narrow licence

grants.166

159 R. Wilson, The Modified BSD License – An Overview, (2012). Available at: http://oss-
watch.ac.uk/resources/modbsd (Last accessed: 26.05.2014)
160 A. Sinclair, Licence Profile: BSD, (2010).
161 R. Wilson, The Modified BSD License – An Overview, (2012).
162 Ibid.
163 Ibid.
164 A. Sinclair, Licence Profile: BSD, (2010).
165 Ibid.
166 Ibid.

33

When assessing the second part of the BSD licence, it is interesting to note that the heart of

the licence agreement is formed in a single sentence. As abovementioned, the BSD licence

stands for the right of redistribution and use in source or binary forms, with or without

modification, in circumstances, where the necessary conditions are fulfilled.167 Firstly, the

redistribution of the source code has to retain the copyright notice, the list of conditions and

the disclaimer, while the redistributions of the binary forms have to reproduce the copyright

notice, the conditions and the disclaimer in the documentation or other materials that are

provided with such distribution.168 There are two versions of the BSD licences, subsequently

named as the “2-clause licence” and the “3-clause licence”. The difference between the two

versions lies in the optional third condition that can be added to the agreement. The third

condition stands for the requirement that neither the name of the potential undertaking nor the

names of the contributors may be used in order to endorse or promote products that are

derived from the initial software without their written consent.169

As software licensed under the BSD licence does not necessarily involve a charge or a

loyalty, it is reasonable that the licensees of the program do not receive commercial

guarantees.170 The final part of the BSD licence stands for this. Moreover, considering that

fact that the distribution stream would make warranties and liability terms difficult to

implement, the BSD licence wisely applies this to all the upstream copyright holders and

contributors.171 Therefore, the licensee does have the right to use and redistribute the modified

or unmodified program, but no warranty is given with the licence and none of the initial

authors of the software have any liability in regards to the merchantability or fitness of the

program.172

6.4.1. Derivative Works

Although there is no explicit clause in the BSD licence granting the licensee a right to modify

the original software, the fact that the licence includes the condition “with or without

167 Open Source Initiative, The BSD 2-Clause License, (2014). Available at:
http://opensource.org/licenses/bsd-license.php (Last accessed: 26.05.2014).
168 Ibid.
169 Open Source Initiative, The BSD 3-Clause License, (2014). Available at:
http://opensource.org/licenses/BSD-3-Clause (Last accessed: 26.05.2014).
170 A. Sinclair, Licence Profile: BSD, (2010).
171 Ibid.
172 B. Montague, Why You Should Use a BSD Style License For Your Open Source Project?, (2013).
Available at: https://www.freebsd.org/doc/en/articles/bsdl-gpl/article.html#bsd-advantages (Last
accessed: 26.05.2014)

34

modification” gives grounds to a reasonable presumption that the licence does not preclude

the right to modify the software.173 Furthermore, when dealing with the 3-Clause licence, the

additional condition specifically mentions the possible derivations of the original product

giving further support to the understanding that derived works of the initial software are in

accordance with the purposes of the given licence. This clause successfully eliminates the

potential threat of jeopardizing the honour or reputation of the initial author as set out in

article 6bis of the Berne Convention, since the linkage with the original contributors is

detached.

As it is clear that the licensee does have the right to distribute the work in accordance with the

BSD licence agreement, it would be difficult to argue that the licensee does not also have the

right to modify the program.174 As further indicated, when the permissive licences implement

no conditions for copying or merging the covered code, the interoperability in this sense is of

no issue.175 It is necessary in this aspect to emphasize that the term “interoperability” can be

used in relation to software programs’ co-operating abilities, while in the context of licences

the legal term stands for the possibility to reuse the covered code in other projects in

combination with codes that are covered with other licences, while keeping the freedom to

distribute the resulting combination.176 This term also includes works that could potentially be

considered as derivative works under the copyright law.177 While the BSD licence and similar

permissive licences are generally considered to be compatible with the copyleft licences, there

is an element of uncertainty in regards to the legal effect of combining the codes under the

BSD licence with the codes under the copyleft licence.178 Since the BSD licence does not

explicitly include the right to sublicense, there is an option that the BSD licence would be

compatible since the combined code can then be re-licensed under the copyleft licence, but in

those circumstances the reliance is then based on the licensor’s intent and the interpretation of

the community to read the sublicense right into the BSD licence’s terms.179 However, it is

vital to focus on the fact that the core of the open source modes is a direct grant form the

173 A. Sinclair, Licence Profile: BSD, (2010).
174 Ibid.
175 European Parliament, Legal Aspects of Free and Open Source Software, (2013).
176 Ibid.
177 Ibid.
178 Free Software Foundation, Inc., Various Licenses and Comments About Them, (2012). Available at:
https://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses (Last accessed: 26.05.2014).
179 A. Sinclair, Licence Profile: BSD, (2010).

35

copyright owner to the licensee and this does not involve sublicenses.180 In the opposite

situation, where instead of a sublicense, the combined codes would continue to be licensed

under the BSD licence, a conflict would occur with the terms of the copyleft licence, since the

latter traditionally requires that the derivative works would be licensed under the copyleft

licence.181 Therefore, the compatibility matters are not clear and do have potential to give

grounds on possible conflicts between the different licensing grants. The situation again

varies on the specific circumstances and peculiarities of the program, which, to a degree,

further explains the vagueness in this matter at hand. In principle, however, the general

community interpretation seems to claim that fundamentally the two versions of licences are

to be considered as being compatible.182

Although there is arguably an element of legal obscurity in BSD licences, the simplicity and

shortness of the licence grant has made BSD licences one of the most popular FOSS licences

in the technological society. The fact that the licence’s language includes some clues in

regards to the rights that are to be assumed to accompany the grant further supports that it is

indeed a very permissive licence.183 As abovementioned, the BSD licence does not include a

specific clause giving the right to modify the codes, however this approach can to an extent be

implied. Furthermore, another right that has not been specifically brought out, is the right to

reproduce. Some right of reproduction can potentially be read into the right to modify, since it

would be impractical to state that as the license covers computer code and gives the right to

the licensee to modify and distribute the software, but does not permit reproducing of the

software.184

6.5. European Union Public Licence
While the majority of the FOSS licences has been developed in the United States and

subsequently have had the impact of the copyright law within the United States, the European

Union has also developed its own template. The European Union Public Licence (hereinafter

“EUPL”), published by the Commission, was first launched in 2007.185 In 2012, the licence

180 Ibid.
181 A. Sinclair, Licence Profile: BSD, (2010).
182 Free Software Foundation, Various Licenses and Comments About Them, (2012).
183 A. Sinclair, Licence Profile: BSD, (2010).
184 Ibid.
185 European Parliament, Legal Aspects of Free and Open Source Software, (2013).

36

was used for more than 500 software and non-software projects in the Union.186 When

drafting the EUPL, certain requirements were set, while the aim was for the Commission to

lead by example of distributing its own produced software in order to encourage the public

sector in the member states to do the same.187 The EUPL is, similarly to GPL, a copyleft

licence that aims to avoid exclusive appropriation of the software and, although initially

aimed to focus on the public sector, the licence can be used by the EU institutions, member

states as well as individuals.188

When drafting the licence, there were specific requirements that the Commission underlined

considering the peculiarities of the Union’s operation. Among the core principle of providing

FOSS freedoms and ensuring the protection from exclusive software appropriation, the

Commission also stressed the fact that the EUPL would have a working value in all official

EU languages so that there would not be a necessity for sworn translators in the court and

other institutions for translations.189 Furthermore, it is the essential condition for the EUPL to

be in accordance with the European copyright legislation and terminology, while clarifying

the applicable law and competent courts as requested by the EU institutions.190 The EUPL is

generally considered relatively comprehensive and not too complex, although the length of

the licence exceeds the short versions of BSD licences.

6.5.1. EUPL and Derivative Works

As abovementioned, the EUPL is to be considered a copyleft licence. Therefore, in principle

EUPL provides for making the software free and further requires that the modified and

derived versions of the program remain to be free as well. The legal instrument is formed in a

way that the it gives users the right to use, modify and redistribute the software program’s

code as well as any derived work only with the condition that the terms are not changed.

As state by article 2 of the EUPL, the users have the right to modify the original work as well

as to make derivative works from the original.191 One has the right to sell the software or

works covered by the EUPL as well as related services at a determined price, but once that is

186 Ibid.
187 P. Schmitz, The European Public Licence (EUPL), (2013), International Free and Open Source
Software Law Review, vol. 5 issue 2.
188 European Parliament, Legal Aspects of Free and Open Source Software, (2013).
189 P. Schmitz, The European Public Licence (EUPL), (2013).
190 Ibid.
191 EUPL, article 2.

37

done, the covered work cannot be further subject to the management of royalties.192 This

approach constitutes a fundamental principle to FOSS licensing and there is a reasonable

elucidation behind this requirement. Namely, when freedom would be granted to all potential

recipients to exploit and further develop derivative works and to in turn distribute these

works, the control of the use for the royalty charging would in reality become impossible to

implement.193

For the matters of interoperability, article 5 of the EUPL is of relevance. It states that in case

the licensee distributes or communicates derivative works that can be based upon both the

original work licensed under the EUPL as well as another work that is licensed under another

compatible licence, it is possible for the conduct to be done under the terms of that compatible

licence. The conditions for the variable copyleft principle requires that the software code is

covered by the EUPL and has been combined in or with another work.194 Further, it is

required that such a combination forms a derivative work, while the merged code is to be

licensed as a whole and distinct licences under the given conditions is not allowed.195 The

other work merged with the code previously covered by the EUPL has to be obtained under a

compatible licence from a given list by the Commission, whereas then the same compatible

licence can be used in order to protect the derived work as a whole.196

7. Conclusive Legal Analysis on the FOSS Licences and Derivative

Works
As can be derived from the previous assessment on different FOSS licences, there are a

number of aspects that need to be considered when choosing the right licence for a specific

program.

The keyword for the BSD licences is simplicity – it is short and permissive. The agreement’s

main focus is put on the fact that the author of the program bears no liability in any event

regardless of whether a direct or indirect damage to the user has occurred. In principle, when

192 European Parliament, Legal Aspects of Free and Open Source Software, (2013).
193 P. Schmitz, The European Public Licence (EUPL), (2013).
194 European Parliament, Legal Aspects of Free and Open Source Software, (2013).
195 Ibid.
196 Ibid.

38

using the BSD licence, the software itself is as free as a GPL-ed software, but the essential

difference lies in the conditions set out in relation to derivative works. The reasoning behind

the sceptical approach in relation to the BSD licences lies in the fact that an undertaking can

potentially take a BSD licenced code and incorporate it into its own proprietary work.

Therefore, in circumstances, where the distribution of derived works is of importance, the

BSD licence may not be the best option. Since this licence constitutes a non-copyleft licence,

the matter of differentiating between original work and derivative work is of little

significance, since the copyright owner has not set restrictive conditions on the original work

itself.

However, when dealing with the GPL or EUPL, the conditions involving derivative works are

rather different. One of the main differences between the GPL and the EUPL is the fact that

while the GPL has a rather restrictive approach on the possibility of changing for another

licence, the EUPL provides a compatibility test. When it is necessary in order to avoid licence

conflicts, the software developers have the possibility to license a composed work under a

similar copyleft licence and are not necessarily bound to apply the EUPL. 197 As

abovementioned, the GPL stands for the four freedoms, while providing full support to the

copyleft principle. The core idea with the copyleft licences is to avoid the possibility that the

users would be restricted by the software they use. However, in order to achieve this aim, the

legal inseparability is created through the licence requirements. Namely, the goal is achieved

through the condition that the distribution terms cannot be changed when distributing the

derivative works. With this concept, it is vital for both parties to have a clear understanding as

to what constitutes a new work and what can still fall under the scope of being a derived work

from a GPL-licensed product. As there are currently no case law or disputes in Europe that

would involve the interpretation of the GPL or EUPL and no case law concerning the concept

of software adaptation, the clarity in the actual assessment process is still not certain in its

entirety.

When assessing the matter specifically in the context of EU legislation, the case of SAS

Institute is of relevance. It is clear that the basis of the software program is to be assessed

when considering whether the work constitutes as a derivative. In SAS Institute, the case dealt

197 P. Schmitz, EUPL or GPLv3? A Comparison Table of the Main Characteristics and Differences,
(2009). Available at: https://joinup.ec.europa.eu/community/eupl/news/eupl-or-gplv3-comparison-
table-main-characteristics-and-differences (Last accessed: 26.05.2014).

39

with two undertakings – SAS Institute is a developer of analytical software, while World

Programming Ltd. (hereinafter “WPL”) developed an alternative product designed to emulate

the SAS components as closely as possible and the attempt was to ensure that the same inputs

would produce the same outputs.198 This would further enable the users of the SAS system to

run the developed scripts initially used with the SAS in WPL’s system. The referring court

emphasised that it had not been established, that in order to develop the system, WPL had had

access to the source code of the SAS system, that it had copied any of the text of that source

code or had copied any of the structural design of the source code.199 Although this statement

essentially eliminates the possibility of derivative works, since the conduct of fully

developing the system without having access to the initial program’s code is implied, there

are still some vital points to bring out from this ruling. Although Directive 91/250/EEC was

applied to this ruling, the same conditions can be found in the more recent Software Directive.

Article 1(2) of both Directives provides that the protection of the Directive applies to the

expression in any form of a computer program, whereas the ideas and principles are not

protected.200 The Court of Justice of the European Union (hereinafter “CJEU”) clarified that

neither the functionality of the program nor the programming language and the format of data

files used in order to exploit certain aspects of its function constitute a form of expression and

are therefore not protected by copyright.201 When developing the ruling’s tendency, the Court

seems to be rather concise in its view that the only protection provided by copyright law is the

protection of the expression of the idea. One can potentially argue, that such approach gives

propensity towards the method of idea-expression dichotomy, since it is also based on the

core understanding that copyright law protects merely the expression of ideas and does not

provide protection on such ideas themselves. This approach has further support from the

TRIPS agreement, it is commonly stated that the ideas, concepts, systems, procedures and

methods of operation are not a subject matter to be suitable for copyright protection. When

following this pattern, the essence of a possible derivative work thus rests fully on the source

code. Therefore, when drawing a parallel with the ruling in SAS Institute while putting it in

the context of FOSS licensing, the only way to fall under the derivative work requirements is

thus when there has been a literal copying of the code.

198 Case C-406/10, SAS Institute Inc. v World Programming Ltd., (2012).
199 Ibid.
200 Software Directive, Directive 91/250/EEC.
201 Case C-406/10, SAS Institute Inc. v World Programming Ltd., (2012)

40

However, the GPL tends to support the component-based approach when distinguishing

whether the work constitutes a derivative work. Once the third party’s component is of an

essential element for the new program as a whole, the work is to be considered as derived

from the initial software component. Although, it is important to stress that in case the new

product merely uses component’s functionality and since copyright law does not cover the use

of interfaces, an external unmodified component that operates through an interface shall not

be seen as a substantial part of the work, and thus no derivation would occur. The general

approach supports the understanding that communication over interfaces does not create a

derivative work as such. The third option is to assess the matter form more complex technical

aspects, while focusing on the communication of the components and the similarities from

this perspective. As stressed by the FSF, the proper assessment shall depend on the

mechanisms and the semantics of communication. The key factor in this approach lies in the

level of dependency and whether the new product is capable of functioning as an individual

piece.

7.1. Hypothetical Example on Modifying FOSS Licensed Source Code

Hypothetically, a software developer “A” has in his possession a copy of a program “P” that

is licensed under the GPL principles. Next, A is entitled to modify the program by developing

some specific elements of the code, while also having the right to delete some functions from

the code. In doing so, a new program “N” is created. Considering the fact that P was protected

by the GPL, the issue of whether the new program N is also subject to the GPL conditions.

An interesting fact to accentuate is that, if A would only aim to use the new product privately,

there would be no necessity for applying GPL, the condition only occurs when the product is

being distributed. Therefore, depending on the aim of the developer, the derivative work may

never have to meet the requirements of the GPL. However, in case developer A wishes to

exercise the right to distribution of the derivative work, the new product needs to be subjected

to the term of GPL.

Further, if A wishes to distribute the product, it is important to ensure that the work is indeed

a derived work from the original and that the modifications to the initial source code were not

as substantial to create a completely new product. Considering the hypothetical facts of the

case and the abovementioned possibilities on differentiating the derivative work from the

original, it is rather clear that product N would constitute a derivative of the product P. Firstly,

for a work to constitute a derivative of another work, it has to borrow from the latter and this

41

conduct has occurred in the present example. Secondly, the work has to adapt the work upon

which the new work is based, thus when developing program P in this extent, the developer

has created a derivative and under the given circumstances, has to meet the terms of the GPL.

8. Conclusion
In essence, derivative works or as often referred to within European legislation – adaptations,

are works that have been based upon a pre-existing copyrighted work or works. In principle,

both EU and U.S. recognise derivative work rights as part of copyright that include the right

to alter content of an initial work, take extracts from the original work, combine them,

translate them, or otherwise create a new work from the existing work, an owner of the

creative work does have the absolute right to create such derivative works. There are two

conditions that have to be met in order to fall within the scope of the definition. Firstly, it is

vital that the derived work has borrowed form the pre-existing work and secondly, the work

has to recast, transform or adapt the pre-existing work. Although the core of the definition is

to an extent understandable, the problematic uncertainty occurs in the actual extent of

originality required in order to create a fully separate work.

In matters of software programming, the essential question is whether it is purely the

programming architecture that determines if a work constitutes a derivative from a pre-

existing work. This thesis gives guidance on the potential approach of defying a derivative

work in software matters, indicating that it is not purely a comparison of the two source codes

that brings the possible result, as the function of the source code can still be similar even if the

code functioning language has been consciously modified. Alternative ways of defying

whether the work could be seen as a derivative involve component-based as well as

communication-based approaches. There are also a number of tests, such as the AFC test and

POSAR test, available in order to compare the works. However, since the CJEU has not so far

given a ruling concerning the concept of adaptation of software, the certainty in the matter is

yet to be established.

Essentially, software is protected by copyright law as literary work. The easiest way to put a

program into the market for free is to put it in the public domain. Under these conditions,

there would be no copyright protection on the product and users would be free to modify and

distribute the software. However, the simplicity in this conduct is shadowed by the possibility

42

for developers to convert the modified version into a proprietary work, thus gaining profit

from a program that was initially free. In order to avoid such outcomes as well as to further

develop the FOSS movement, there are a number of different licences available enabling the

software developers to clarify what rights are granted to the users and what are the conditions

that have to be met when operating with a FOSS.

With the FOSS licences, a new definition of copyleft has developed. The copyleft concept

uses copyright law in order to achieve the exact opposite of the usual purpose of copyright

law. Instead of aiming to privatise software, in copyleft licences the rights that are granted in

order to keep the software free. An author of the copylefted work does not give up the rights

as a copyright holder, but instead uses these rights in way that differ from the traditional

copyright holder. The copyleft-based licences have different effects and strengths in relation

to derivative works and while most copyleft licences are FOSS licences, not all FOSS

licences are automatically copyleft.

Unfortunate for most software developers, creating a clear cut rule for establishing when a

work would constitute a derivative work of the pre-existing software program is not possible,

since the matter is complex and requires a case-by-case assessment. Essentially, if a code has

been copied from an existing code protected by a FOSS licence and minor revisions has been

made to it, the work constitutes a derivative work. In case the code has been written by a

developer itself and perhaps the idea behind a pre-existing work has been an element of

motivation, then the work should not be seen as a derivative of the pre-existing work.

However, scenarios between the two simple concepts require a case-by-case legal analysis.

43

Bibliography
OFFICIAL MATERIALS

Berne Convention for the Protection of Literary and Artistic Works

Directive 2001/29/EC of the European Parliament and of the Council of 22 May 2001 on the

harmonisation of certain aspects of copyright and related rights in the information society

Directive 2009/24/EC of the European Parliament and of the Council of 23 April 2009 on the

protection of computer programs

Agreement on Trade-Related Aspects of Intellectual Property Rights

U.S Code Title 17 Chapter 1 § 101.

BIBLIOGRAPHY

F. Bachman, Volume II: Technical Concepts of Component-Based Software Engineering,

(2000). Available at:

http://www.win.tue.nl/~mchaudro/cbse/SEI%20Technical%20Concepts%20of%20CBSE.pdf

V. Bhattathiripad, Judiciary-Friendly Forensics of Software Copyright Infringement, (2014),

ISBN: 978-1-4666-5805-9.

D. Bretthauer, Open Source Software: A History, (2001). Available at:

http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?article=1009&context=libr_pubs

I. Brown, Implementing the EU Copyright Directive, (2003). Available at:

http://www.fipr.org/copyright/guide/eucd-guide.pdf’

L. B. Burgunder, Legal Aspects of Managing Technology, South-Western Publishing Co. :

Cincinnati, (1995).

44

F. Busnello, O. Romanenko, Copyright vs. Fan-made Derivative Works: Unresolvable

Conflict or Unavoidable Impulse for Reform of the Present Copyright System, (2012).

Available at: http://www.academia.edu/1255504/Copyright_vs._Fan-

made_Derivative_Works_unresolvable_conflict_or_unavoidable_impulse_for_reform_of_the

_present_copyright_system

S. Chen, Free/Open Source Software Licensing, (2006). Available at:

http://akgul.bilkent.edu.tr/iosn/foss-licensing.pdf

W. Cornish, D. Llewelyn, T. Alpin, Intellectual Property: Patents, Copyright, Trade Marks

and Allied Rights, 7th ed., Sweet & Maxwell Ltd : London, (2010).

European Parliament, Legal Aspects of Free and Open Source Software, (2013). Available at:

http://www.europarl.europa.eu/document/activities/cont/201307/20130702ATT68998/201307

02ATT68998EN.pdf

D. A. Frantsvog, All Rights Reversed: A Study of Copyleft, Open-Source, And Open-Content

Licensing, (2012). Available at:

http://journals.cluteonline.com/index.php/CIER/article/view/6782/6857

Free Software Foundation, Inc., What is GNU?, (2014). Available at: https://www.gnu.org

Free Software Foundation, Inc., The BSD Lincense Problem, (2014). Available at:

http://www.gnu.org/philosophy/bsd.html

Free Software Foundation, Inc., Why “Free Software” is better than “Open Source”, (2014).

Available at: https://www.gnu.org/philosophy/free-software-for-freedom.html

Free Software Foundation, Inc., Frequently Asked Questions about Version 2 of the GNU

GPL, (2014). Availabe at: http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html’

Free Software Foundation, Inc., Frequently Asked Questions about the GNU Licenses, (2014).

Available at: http://www.gnu.org/licenses/gpl-faq.html#MereAggregation

45

Free Software Foundation, Inc., GNU Lesser General Public License, (2007). Available at:

https://www.gnu.org/licenses/lgpl.html

Free Software Foundation, Inc., GNU General Public License, (2014). Available at:

http://www.gnu.org/copyleft/gpl.html

Free Software Foundation, Inc., A Quick Guide to GPLv3, (2014). Available at:

http://www.gnu.org/licenses/quick-guide-gplv3.html

Free Software Foundation, Inc., Why You Shouldn’t Use the Lesser GPL for Your Next

Library, (2014). Availablt at: http://www.gnu.org/licenses/why-not-lgpl.html

Free Software Foundation, Inc., Various Licenses and Comments About Them, (2012).

Available at: https://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses

J. M. Gonzalez-Barahona, A Brief History of Open Source Software, (2000). Available at:

http://eu.conecta.it/paper/brief_history_open_source.html

I. Haikala, Lausunto: Ohjelmistojen samankaltaisuus, VF Partner vs. Systek, (1996).

Available at: http://www.valimaki.com/org/docs/haikala_1.pdf

L. A. Hollaar, Chapter 2: Copyright of Computer Programs, (2002). Available at:

http://digital-law-online.info/lpdi1.0/treatise22.html

Institute for Legal Questions on Free and Open Source Software, What is the Difference

between GPLv2 and GPLv3?, (2013). Available at: http://www.ifross.org/en/what-difference-

between-gplv2-and-gplv3

O. Johnny, M. Miller, M. Webbink, Copyright in Open Source Software – Understanding the

Boundaries, (2010). Available at: http://www.ifosslr.org/ifosslr/article/view/30

B. Montague, Why You Should Use a BSD Style License For Your Open Source Project?,

(2013). Available at: https://www.freebsd.org/doc/en/articles/bsdl-gpl/article.html#bsd-

advantages

46

D. J. Moser, C. L. Slay, Music Copyright Law, Course Technology PRT, (2011). ISBN:

9781435459724

B. Mruk, M. Lee, What is DRM?, (2012). Available at: http://drm.info/en/what-is-drm

R. Nimmer, Legal Issues in Open Source and Free Software Distribution, (2004). Available

at: http://euro.ecom.cmu.edu/program/law/08-732/Transactions/LegalIssuesNimmer.pdf

Open Source Initiative, History of the OSI, (2014). Available at: http://opensource.org/history

Open Source Initiative, Frequently Asked Questions, (2014). Available at:

http://opensource.org/faq#free-software

Open Source Initiative, Basics of Open Source, (2014). Available at:

http://opensource.org/faq#commercial

Open Source Initiative, The BSD 2-Clause License, (2014). Available at:

http://opensource.org/licenses/bsd-license.php

Open Source Initiative, The BSD 3-Clause License, (2014). Available at:

http://opensource.org/licenses/BSD-3-Clause

A. T. Pham, M. B. Weinstein, J. L. Ryerson, Easy as ABC: Categorizing Open Source

Lincenses, (2010). Available at: http://www.ipo.org/wp-

content/uploads/2013/03/EasyasABC.pdf

Red Hat Inc., What is Open Source?, (2014). Available at:

http://opensource.com/resources/what-open-source

J. Richards, The “Abstraction, Filtration, Comparison” Test, (2002). Available at:

http://www.ladas.com/Patents/Computer/SoftwareAndCopyright/Softwa06.html

P. Schmitz, The European Public Licence (EUPL), (2013), International Free and Open

Source Software Law Review, vol. 5 issue 2.

47

P. Schmitz, EUPL or GPLv3? A Comparison Table of the Main Characteristics and

Differences, (2009). Available at: https://joinup.ec.europa.eu/community/eupl/news/eupl-or-

gplv3-comparison-table-main-characteristics-and-differences

N.Shemtov, The Legal Regulation of Decompilation of Computer Programs: Excessive,

Unjustified and in Need of Reform, (2012). Available at:

https://qmro.qmul.ac.uk/jspui/bitstream/123456789/3132/1/SHEMTOVTheLegal2012.pdf

A. Sinclair, Licence Profile: BSD, (2010). Available at:

http://www.ifosslr.org/ifosslr/article/view/28/62

D. Touretzky, Source vs. Object Code: A False Dichotomy, (2000). Available at:

https://www.cs.cmu.edu/~dst/DeCSS/object-code.txt

W. H. Venema, Open Source Software, National Law Journal, (2008, Oct 20).

M. Välimäki, GNU General Public License and the Ditribution of Derivative Works, 2005

(1), The Journal of Information, Law and Technology (JILT).

M. Webbink, Packaging Open Source, (2010). Available at:

http://www.groklaw.net/article.php?story=20100204170037353

R. Wilson, The Modified BSD License – An Overview, (2012). Available at: http://oss-

watch.ac.uk/resources/modbsd

Working Group on Libre Software, Free Software / Open Source : Information Society

Opportunities for Europe?, (2000). Available at: http://eu.conecta.it/paper.pdf

LIST OF CASE LAW

Case Litchfield v. Spielberg, 736 F. 2d 1352, 9th Cir. (1984).

Case Computer Associates International v. Altai, (1992), 982 F.2d 693, 2d Cir.

Case Ibcos Computers v. Barclays Mercantile Highland Finance, (1994), FSR 275.

Case United States v. Manzer, 69 F.3d 222, 8th Cir., (1995).

Case 3571, Sonera Systems Oy v. VF Partner Oy, (1999), R 99/661.

48

Case Nova Productions Limited v. Mazooma Games Limited & Others, (2007), EWCA Civ

219.

Case C-406/10, SAS Institute Inc. v World Programming Ltd., (2012), (not yet published).

