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Abstract

In this thesis we consider a general approach to modeling dependence in extreme val-
ues of exchange rates by using copulas. As specific examples the following pairs of cur-
rencies are analyzed: Swedish krona to U.S. dollar (SEK/USD), Swedish krona to Euro
(SEK/EUR), Swedish krona to British pound (SEK/GBP), Swedish krona to Japanese Yen
(SEK/JPY), Swedish krona to Danish krone (SEK/DKK) and Swedish krona to Norwe-
gian krone (SEK/NOK). The daily log-return series are first modeled individually using
ARMA-GARCH models. In some cases, when it is statistically significant, we also use three
month Stockholm Interbank Offered Rate (STIBOR) as a covariate in our models. After
the models have been fitted to the datasets the residuals are considered for further analysis.
We fit several bivariate copula models to the residual series and use different measures of
goodness-of fit to choose one between competing models. We demonstrate the flexibility of
the approach by repeating our analysis both for the original residuals as well as the monthly
and quarterly extreme values of the series.

Keywords. GARCH, EGARCH, copula, extreme values, exchange rates, modelling

2



Acknowledgements

I would like to thank my supervisor Nader Tajvidi for all his support and suggestions. I am also
grateful for all the interesting courses that are given at the Centre for Mathematical Sciences
at Lund University which have enabled me to write this thesis. At last I would like to express
my gratitude towards the Technische Universität Berlin where I during my exchange got the
opportunity to deepen my understanding of the effects of monetary policies, which has been
very useful in this thesis.

3



Contents

1 Introduction 5

2 Information about the exchange rate series 6

3 Used models and their distributions 7
3.1 The ARMAX(r, m, v) - GARCH(p, q) model . . . . . . . . . . . . . . . . . . . . 8
3.2 The EGARCH(p,q) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 The copula function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 The t-copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 The Plackett copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 The Gumbel copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.4 The Hustler-Reiss copula . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.5 The Galambos copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.6 The Tawn copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 The distributions of innovations and residuals . . . . . . . . . . . . . . . . . . . . 11
3.4.1 The Student’s t distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 The skewed Student’s t distribution . . . . . . . . . . . . . . . . . . . . . 13
3.4.3 The Logistic distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.4 The Generalized Extreme Value distribution . . . . . . . . . . . . . . . . . 13

4 Validation of the models 13
4.1 The autocorrelation function and the partial autocorrelation function . . . . . . . 14
4.2 The Lagrange Multiplier Test of Engle . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Q-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Information Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Sign Bias Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.7 The GMM Orthogonality Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.8 The Non-Parametric Density Test of Hong and Li . . . . . . . . . . . . . . . . . . 18
4.9 Kupiec’s and Christoffersen’s test . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.10 Measures of dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.11 Goodness-of-fit test for copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Method of finding suitable models 24

6 Result 25
6.1 Model choice - ARMA-GARCH models for the daily returns . . . . . . . . . . . . 25
6.2 Model choice - copula models for the residuals . . . . . . . . . . . . . . . . . . . . 28

7 Conclusions and fields of further studies 33

A Appendix: plots and tables 37

4



1 Introduction

In this thesis several different exchange rates will be studied, namely SEK/USD (Swedish krona
to U.S. dollar), SEK/EUR (Swedish krona to Euro), SEK/GBP (Swedish krona to British
pound), SEK/JPY (Swedish krona to Japanese Yen), SEK/DKK (Swedish krona to Danish
krone) and SEK/NOK (Swedish krona to Norwegian krone). The daily log-return series will
first be modelled individually using ARMA-GARCH models. In cases when it adds informa-
tion to the model an external regressor will be used as an input signal, in this case the three
month Stockholm Interbank Offered Rate, STIBOR, which consists of daily observations of the
reference rate that is based on the interest rate Swedish banks are willing to offer each other
for lending money over a three-months period. After the data has been fitted to the models
the residuals will be considered, since these might contain information about the series that the
ARMA-GARCH models were not able to replicate. Since the exchange rate market in general,
and exchange rates with one currency in common in particular, are affected by the same external
factors, it seems probable that the dependence between them will be high. With this in mind
the residual series will be bivariately fitted to copula models; the original residual series as well
as the monthly and quarterly extreme values of the series. To find the ARMAX-GARCH models
for the exchange rate returns the package rugarch in R will be used. For estimation of the copula
models for the residuals the R-package copula will be used.

Before starting a few things should be noticed. Some aspects make financial time series special.
By observing daily financial time series across a wide range of products like log-returns of
exchange rates, equities and commodity prices it can be seen that these time series show special
characteristics that are less common in time series within other fields. Based on these empirical
observations a number of statistical properties have been recognized over the years and now go
under the name of stylized facts. These are:

• Return series, although they show very little serial correlation, are not i.i.d.

• Absolute or squared returns show serial correlation.

• The conditional expected returns are close to zero.

• Volatility seems to vary over time.

• The return series are leptokurtic, i.e. heavy-tailed.

• Extreme values appear in clusters.

In general this is true for the daily returns, but for longer time horizons the return series start
to show less signs of volatility clustering, become less heavy-tailed and more i.i.d. This can be
explained through the fact that the central limit theorem applies to the GARCH models that
in general can be used to model these time series.[11] These stylized facts explain the need and
development of the GARCH models, which allow the volatility to change over time.

Next we will consider the dynamics between two currencies. To buy a currency also means selling
another currency. Hence an exchange rate can both be expressed as foreign currency/domestic
currency and domestic currency/foreign currency. The first system is called Brittish terms and
the second system is called European terms. The exchange rates used in this thesis are quoted
in European terms. How the exchange rate changes is complex and depends on many factors,
but to give a very rough and simplified picture of it, it works in the following way. It is as-
sumed that there is no arbitrage in the exchange rate market, that is, it is not possible to e.g.
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buy Euro by paying in Swedish krona, use the Euro to buy U.S. dollars and then use the U.S.
dollars to buy Swedish krona again and thereby getting more money than what was originally
used to buy currency. It is also assumed that if a product is much cheaper in one country than
in another, the country with the expensive product will buy the cheap product from the other
country, thereby increasing the import from that country as well as the demand of that currency.
But since the demand of that currency increases, it will also become more expensive to buy the
currency, until in the long run the exchange rate has changed so that the price of the product
is the same in both countries. Another factor that affect the exchange rate is inflation. Assume
that one country prints money to pay for its expenses. This will lead to inflation in this country,
and if one country has a higher level of inflation than another, then the money supply in the
first country will be larger than before, causing the exchange rate to change so that the currency
of the first country costs less than previously, measured in the currency of the other country. A
way for a country to control the inflation is by using the prime lending rate. This is the rate to
which the central bank lends money to banks. Since the banks want to make a profit they can
never lend money to their customers to a rate lower than this one. In the same way the banks
will never borrow money from customers to a rate higher than this one. If the prime lending
rate is increased, this means that both the banks’ rate for borrowing and lending will increase.
This makes it more attractive for foreign investors to invest their money in that market, since,
simplified, it will give a higher return to put the money into a bank account in that country than
in the home country. Likewise people will be more reluctant to take loans and make investments.
This will at first increase the demand of that currency, making it more expensive to buy. With
the new exchange rate, it will be profitable to import foreign goods, which again will change the
exchange rate until a new equilibrium has been reached.[5] A lower prime lending rate would
make borrowing more tempting, both for domestic and foreign investors. This would lead to
a larger supply of money in the market, the inflation would increase and the money could be
invested in production, leading to more goods to consume as well as to export. The increased
export would then increase the value of the domestic currency again, and a new equilibrium
would be found. In Sweden the prime lending rate is set by the central bank only a few times a
year and is hence not a very good source of information when daily exchange rate observations
should be modelled, but as mentioned the STIBOR rate gives daily information about what rate
the largest banks in Sweden are willing to offer each other and follow the prime lending rate
very closely. Since this is an indirect indicator of the state of the Swedish economy, the choice
was made to see if this rate could be used as an external regressor.

A closer look at the properties of the exchange rate data series will be taken in section 2, followed
by section 3 on theory about the models and section 4 about different tests and measures that
are used for finding a suitable model. After that the procedure that was used to find the models
will be stated in section 5, followed by the results, i.e. the models that were chosen and their
parameter values, in section 6. At last, in section 7, conclusions and fields of further studies will
be discussed.

2 Information about the exchange rate series

As explained in the introduction six different time series of exchange rates will be considered.
These are SEK/USD (Swedish krona to U.S. dollar), SEK/EUR (Swedish krona to Euro),
SEK/GBP (Swedish krona to British pound), SEK/JPY (Swedish krona to Japanese Yen),
SEK/DKK (Swedish krona to Danish krone) and SEK/NOK (Swedish krona to Norwegian
krone). For the Swedish krona and Danish krone and the Swedish krona and the Norwegian
krone the exchange rate is for historical reasons given as SEK/100 DKK and SEK/100 NOK
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whereas the other rates are directly quoted as SEK/other rate. The choice of studying the rela-
tionship between SEK and the currencies USD, EUR, GBP and JPY was made because these
four currencies are the ones most frequently traded according to the Triennial Central Bank
Survey from 2013. According to the same survey the Swedish krona is the 11th most traded
currency.[1] The exchange rates SEK/DKK and SEK/NOK were chosen since Denmark and
Norway are small countries neighbouring to Sweden with the difference that the Danish krone
is bound to the euro[3] whereas the Norwegian krone has no such bound. It could be interesting
both to see how alike the model for SEK/EUR and SEK/100 DKK are and how big the differ-
ence is between the model for SEK/100 DKK and the one for SEK/100 NOK.

The exchange rates have been obtained from the homepage of Sveriges riksbank, which is the
central bank of Sweden. Each exchange rate series contain daily observations of the exchange
rate over a period of 10 years, from the 4th of January 1993 to the 30th of August 2013. This
makes a total of 5190 observations in each series. In the case of SEK/USD one value in the
series is missing. This has been replaced by using linear interpolation. After this all the daily
observations of the exchange rates have been transformed into daily returns. Information about
the mean, standard deviation, maximum, minimum, skewness and kurtosis for the different re-
turn series is presented in table (1). Comparing these to the ones in e.g. the work of Roy[15]
these values seem reasonable.

Table 1: Information about the daily returns of the different exchange rate series before mod-
elling.

SEK/USD SEK/EUR SEK/JPY SEK/GBP SEK/100 DKK SEK/100 NOK
mean -0.00001 0.00000 0.00003 -0.00001 0.00001 0.00001

std. dev 0.00772 0.00483 0.00968 0.00643 0.00485 0.00477
maximum 0.04667 0.03671 0.07755 0.03741 0.03607 0.02793
minimum -0.04667 -0.02927 -0.05918 -0.04185 -0.04527 -0.03186
skewness 0.13663 0.16817 0.39537 -0.04582 0.02676 -0.13616
kurtosis 5.93726 6.86278 7.69107 5.52991 7.77955 5.94280

For notational convenience the exchange rates will in some of the figures in this report only
be referred to as "USD", "EUR" etc. when "SEK/USD", "SEK/EUR" are meant. Similarly,
when pairs of residuals are considered, combinations like "USD-EUR" represents the residuals
coming from the SEK/USD series and the residuals from the SEK/EUR series combined as pairs.

3 Used models and their distributions

All the exchange rates that were presented in the introduction show clear signs of heteroscedas-
ticity. To be able to model these rates a model will be needed which can handle volatility
clustering. A group of models that are known for being able to model this are the Generalized
AutoRegressive Conditional Heteroskedasticity (GARCH) models. There is a large amount of
different versions of the standard GARCH model, where each version has been developed to
better replicate a certain behaviour of time series which the standard model can not handle.
Out of all of these models, only the two GARCH models which were chosen as the final models
for the exchange rates are presented: the standard GARCH model and the EGARCH model.
These can be found in sections 3.1 and 3.2.
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Even after the heteroscedasticity has been removed from the time series with the help of a
GARCHmodel serial dependence might remain. This is solved by introducing an AutoRegressive-
Moving-Average(ARMA) part to the model. When an explanatory external signal is available,
which in the case of the exchange rates will be represented by the STIBOR rate, this signal can
be added to the ARMA model as an external regressor. The ARMA model then turns into an
ARMAX model. The ARMA and the ARMAX model is presented in section 3.1.

Once suitable ARMA(X)-GARCHmodels have been found for the series of exchange rate returns,
bivariate copula models will be found for all pairs of residuals resulting from the ARMA(X)-
GARCH models. The bivariate copula model is presented in section 3.3.

As will be explained in section 3.1, the innovations in the GARCH model can come from different
distributions. Which distribution is assumed to have generated the data series has great impact
on how the values of the series may look, especially when it comes to extreme values. The
distributions that have been used in the final models for the exchange rates are the Student’s
t distribution and the skewed Student’s t distribution, which are presented in sections 3.4.1 and
3.4.2. In the process of estimating a copula model for the residuals resulting from the ARMA(X)-
GARCH models the choice of which distribution could best represent the residuals lay on either
the logistic model or the skewed Student’s t distribution. For extreme value copulas it is assumed
that the observations can be modelled by a generalized extreme value distribution. The logistic
distribution and the generalized extreme value distribution are presented in sections 3.4.3 and
3.4.4.

3.1 The ARMAX(r, m, v) - GARCH(p, q) model

For the standard Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model
we will assume that {Zt} is a sequence of i.i.d. random variables with mean 0 and variance 1.
The process (Xt) will be a GARCH(p,q) process if it is strictly stationary and satisfies

Xt = σtZt (1)

σ2
t = ω +

q∑
i=1

αiX
2
t−i +

p∑
j=1

βjσ
2
t−j (2)

where ω > 0, αi ≥ 0 for i = 1, . . . , p and βj ≥ 0 for j = 1, . . . , q to ensure positive variances and∑p
i=1 αi +

∑q
j=1 βj < 1 to preserve stability.[17]

The GARCH model can, as mentioned in the introduction of this section, take care of the
heteroscedasticity in the series, but the series might still show signs of serial correlation. This
can be handled by adding an autoregressive–moving-average (ARMA) part to the GARCHmodel
above. In the ARMA(r,m) model below the Xt is the same Xt that is found in equation (1) and
thus it connects the two parts of the model:

Yt = µ+
r∑

k=1

φkYt−k +Xt +
m∑
l=1

θlXt−l (3)

Here Yt in this report represents the log return of the exchange rate series at time t. If external
regressors are available the ARMA model can be transformed into an ARMAX(r,m,v) model by
adding one sum to equation (3) in the following manner:
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Yt = µ+
r∑

k=1

φkYt−k +Xt +
m∑
l=1

θlXt−l +
v∑

u=1

δuwu,t (4)

[9]. Here wu,t is an external regressor, which in this report will be the STIBOR rate.

3.2 The EGARCH(p,q) model

A problem with financial time series is often that a negative innovation has larger impact on
the volatility than a positive innovation. This is mostly observed in negative and positive asset
returns and is known as the leverage effect. The standard GARCH model is symmetric, but by
using the exponential GARCH model, EGARCH, asymmetry can be introduced in the model.
The EGARCH(p,q) model is given by

log(σ2
t ) = ω +

q∑
i=1

(
αiZt−i + γi(|Zt−i| − E|Zt−i|)

)
+

p∑
j=1

βj log(σ2
t−j) (5)

where αi gives impact to the sign of Zt−i whereas γi gives impact to the size of Zt−i. It should
be noted that it is the standardized innovation Zt that is used here and not Xt.[9]

3.3 The copula function

In section 3.1 we assumed that the innovations {Zt} were a sequence of i.i.d. random variables
with mean 0 and variance 1. Had the ARMA(X)-GARCH model found been perfect we should
indeed only have residuals equalling {Zt} coming from the distribution assumed. The model is
in practise, however, not perfect and as mentioned in the introduction there is reason to believe
that the exchange rates are affected by the same factors and thus that observing one exchange
rate would give a certain measure of information about the behaviour of another exchange rate.
This is where copulas come into the picture, which are distribution functions that describe the
dependence between random variables.

If X = (X1, . . . , Xd) is a random vector with continuous marginal cumulative distribution func-
tions F1, . . . , Fd, then their joint cumulative distribution function HX1,...,Xd

(x1, . . . , xd) can be
described by

HX1,...,Xd
(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (6)

where the copula C is a unique function C : [0, 1]d → [0, 1]. For the copula C the following
properties have to hold:

1. C(u1, . . . , ud) is increasing in each component ui.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ [1, . . . , d], ui ∈ [0, 1].

3. For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi it holds that

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1 , . . . , udid) ≥ 0

where uj1 = aj and uj2 = bj for all j ∈ [1, . . . , d].[11]
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Using these properties one can derive the Fréchet-Hoeffding bounds which in the bivariate case
are max(u+v−1, 0) ≤ C(u, v) ≤ min(u, v), where max(u+v−1, 0) is known as Fréchet-Hoeffding
lower bound and min(u, v) is known as Fréchet-Hoeffding upper bound.

A special class of copulas are known as Archimedean copulas. An Archimedean copula can be
written on the form

C(u1, . . . , ud) = Φ−1
(
Φ(u1) + · · ·+ Φ(ud)

)
where Φ is a strictly decreasing function in [0, 1]→ [0,+∞) with pseudo-inverse Φ−1. Φ is called
the generator.

There also exists a class of copulas known as extreme value copulas. A copula C∗ is called an
extreme value copula if there exists a copula C such that

C∗(u1, . . . , ud) = lim
n→∞

Cn(u
1/n
1 , . . . , u

1/n
d )

for all i ∈ [1, . . . , d], ui ∈ [0, 1]. The copula C is said to be in the domain of attraction of C∗.[12]

3.3.1 The t-copula

The Student’s t copula belongs to the family of elliptical copulas, for which the dependency
structure can be described by the covariance matrix Σ. For these distributions independence is
equivalent to zero correlation.

The multivariate Student’s t density function is defined as

fX(x) =
Γ(1

2(v + d))

Γ(1
2v)(πv)d/2|Σ|1/2

(
1 +

(x− µ)TΣ−1(x− µ)

v

)− v+d
2

Here d is the dimension, v is the degree of freedom, µ is the mean, Σ is the covariance matrix
and Γ is the gamma distribution function. In the bivariate case the t-copula is then defined as

Ctv,Σ(u) = tv,Σ(t−1
v (u1), t−1

v (u2)) (7)

where tv is the one dimensional cumulative distribution function and tv,Σ is the bivariate cumu-
lative distribution function. [16]

3.3.2 The Plackett copula

The Plackett copula is defined as

C(u, v) =

 (1+(θ−1)(u+v))−
√

(1+(θ−1)(u+v))2−4uvθ(θ−1)
2(θ−1) if θ > 0 and θ 6= 1

uv if θ = 1
(8)

If θ → 0 then the copula becomes the Fréchet-Hoeffding lower bound, if θ →∞ then the copula
becomes the Fréchet-Hoeffding upper bound and for θ = 1 we have the independence copula. In
other words the Plackett copula is a comprehensive copula.[12]
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3.3.3 The Gumbel copula

The Gumbel copula is both an archimedean copula and an extreme value copula. In the bivariate
case it is defined as

C(u, v) = exp
(
−
(
(−log u)θ + (−log v)θ

)1/θ) (9)

where θ ∈ [1,∞). When θ = 1 the variables (u, v) are independent and when θ →∞ we obtain
perfect positive dependence between the variables. For θ > 1 the Gumbel copula exhibits upper
tail dependence, i.e. if u is large then v is also expected to be large. [16]

3.3.4 The Hustler-Reiss copula

The Hustler-Reiss copula is an extreme value copula and in the bivariate case it is defined as

G(u, v) = exp
(
−û Φ

[
1

θ
+
θ

2
log
(
û

v̂

)]
− v̂ Φ

[
1

θ
+
θ

2
log
(
v̂

û

)])
(10)

where û = −log(u), v̂ = −log(v), Φ[.] is the standard normal distribution function and θ ∈
(0,∞). As θ approaches zero independence is obtained and when θ goes to infinity complete
dependence is obtained. [14]

3.3.5 The Galambos copula

The Galambos copula is an extreme value copula which, for the bivariate case, is defined as

C(u, v) = uv exp
((

(−log u)−θ + (−log v)−θ
)−1/θ

)
(11)

where θ ∈ (0,∞). When θ → ∞ complete dependence is obtained and as θ → 0 dependence is
obtained. [14]

3.3.6 The Tawn copula

The Tawn copula is an extreme value copula and is in the bivariate case defined as

C(u, v) = uv exp
(
−θ log(u) log(v)

log(uv)

)
(12)

where θ ∈ (0, 1). For θ = 0 independence is achieved but it is not possible to obtain complete
dependence. [14]

3.4 The distributions of innovations and residuals

The properties of the distribution which Zt in equation (1) belongs to determines how extreme
the values that the random variables can take on can be, and whether or not it is possible
for negative (positive) innovations to take on higher absolute values than positive (negative)
innovations. The last effect mentioned has to do with the skewness of the distribution, where
a skewness not equal to zero means that the density function is not symmetric. Skewness is
defined as

skewness =
E[(Z − µ)3]

σ3
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where µ is the mean and σ the standard deviation. A positive skew indicates that the tail on
the left hand side is shorter than the tail on the right hand side, whereas a negative skew would
indicate the opposite.

How rare an extreme observation is and what magnitude it has is dependant on the kurtosis,
which is a measure of how heavy the tails of the distribution are. The normal distribution has a
kurtosis of 3 and a distribution with a kurtosis larger than 3 is said to have excess kurtosis and
will have more mass at the tails of its distribution than what the normal distribution has. The
kurtosis is defined as

kurtosis =
E[(Z − µ)4]

σ4

using the same notation as above.[4]

The starting point when creating a GARCH model as in equations (1-2) is often to assume that
the innovations, Zt, come from a normal distribution. The problem with the normal distribution
is often that the data series one want to fit have a skewness or excess kurtosis that does not agree
with the one of the normal distribution. The problem of excess kurtosis can often be solved by
instead assuming that Zt belongs to a Student’s t distribution since this distribution has heavier
tails than the normal distribution. To solve the problem of skewness a distribution that allows
for skewness has to be found. There are a lot of possible distributions that will not be discussed
here since they did not result in any improvements in the models fitted to the exchange rates.
In the following the Student’s t distribution, the skewed Student’s t distribution, the logistic
distribution and the generalized extreme value distribution will be presented.

3.4.1 The Student’s t distribution

The Student’s t distribution is a symmetric distribution with heavier tails than the normal
distribution. The distribution can be described by only using the shape parameter, v, but since
the innovations of the GARCH model need to be standardized the following representation of
the density function also includes the location, α, and scale, β, parameters:

fX(x) =
Γ(v+1

2 )
√
βvπΓ(v2 )

(
1 +

(x− α)2

βv

)−( v+1
2

)
where −∞ < x <∞

Since we want to standardize the distribution we can put the following requirement on the scale
parameter:

V ar(x) =
βv

v − 2
= 1

⇒ β =
v − 2

v

Substituting β in this way leads to the standardized Student’s t distribution:

fX

(x− µ
σ

)
=

1

σ
fZ(z) =

Γ(v+1
2 )

σ
√

(v − 2)π Γ(v2 )

(
1 +

z2

v − 2

)− v+1
2 where −∞ < x <∞

(13)

For v > 4 the Student’s t distribution has zero skewness and an excess kurtosis equal to 6/(v-4).
As the degrees of freedom, given by the shape parameter v, grows, the Student’s t distribution
approaches the standard normal distribution.[9]
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3.4.2 The skewed Student’s t distribution

By introducing inverse scale factors in the positive and negative real half lines, a unimodal and
symmetric distribution can be made skew. The density function of a random variable X can be
represented as

fX(x|ξ) =
2

ξ + ξ−1
[f(ξx)H(−x) + f(ξ−1x)H(x)] where −∞ < x <∞ (14)

Here ξ ∈ R is the skew parameter, H(·) is the Heaviside function and fX(·) is the Student’s
t distribution as in equation (13). The standardization of the distribution is made using the
central moments.[9]

3.4.3 The Logistic distribution

The logistic distribution shows a lot of resemblance with the normal distribution but has higher
kurtosis. It has the density function

fX(x) =
exp

(
−x−m

s

)
s
(
1 + exp

(
−x−m

s

)) (15)

where m is the location parameter and s is the scale parameter. Its mean is m and its variance
is π2s2

3 .[14]

3.4.4 The Generalized Extreme Value distribution

The Generalized Extreme Value distribution or the GEV distribution is a distribution to which
extreme values converge, regardless of the distribution of the population. Let

Mn = max(X1, . . . , Xn)

where X1, . . . , Xn are independent random variables coming from the same distribution. Then,
if there exists constants an > 0 and bn > 0 such that

P
(
Mn − bn

an
≤ z
)
→ G(z)

as n→∞, where G is a non-degenerate distribution function, then G has a distribution of the
form

G(z) = exp

{
−
(

1 + γ

(
z − µ
σ

))−1/γ
}

(16)

where −∞ < µ <∞ is the location parameter, σ > 0 is the scale parameter and −∞ < γ <∞ is
the shape parameter. This distribution is known as the Generalized Extreme Value distribution
and is defined on {z : 1 + γ(z − µ)/σ > 0}. [2]

4 Validation of the models

In the process of finding a suitable ARMA-GARCH model for the data a lot of tests can be
preformed. To get an idea as to which kind of model could fit the data it is useful to look at the
autocorrelation function and the partial autocorrelation function for the returns and the squared
returns of the data series to discover serial dependence and serial dependence in the variance,
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i.e. conditional heteroscedasticity or ARCH effects. Another way to test for ARCH effects is to
use the Lagrange multiplier test of Engle.

After a model has been fitted to the data it is important to check if the model suits the data,
that is to check if it seems probable that the residuals would look the way they do if the data
truly came from the assumed model. This can be done in a number of ways. One way is to
use the sign bias test, which uses the residuals to tests if the volatility is affected differently by
positive and negative shocks and how well the model handles this. It is also possible to visually
estimate the goodness of fit by looking for instance at the autocorrelation function and partial
autocorrelation function, but this time for the standardized residuals and squared standardized
residuals. Another way is to compare the histogram of the standardized residuals with the as-
sumed probability density function of the chosen distribution, or to look at the quantile-quantile
plot.

To compare different fitted models to each other it is possible to use visual methods for the
comparison like the ones just mentioned, but this can be hard if the models are similar. It is
also possible to use different information criteria or, if one model is just an extended version of
the other model, one can use the likelihood ratio test to compare which of the models that gives
the best fit to the data without adding an unnecessarily large amount of parameters.

There are several other tests that can be performed on the standardized residuals after the model
has been fitted. One of them is the GMM Orthogonality Test which compares the moments of
the standardized residuals with those expected, had they come from the chosen distribution.
The Hong and Li test tests whether the conditional density fits the underlying data. By simu-
lating a new data series from the chosen model and calculating the exceedances of Value at Risk
the Kupiec and Christoffersen tests can be preformed.

For copulas it is important to know how large the dependence between two data series is and
if this changes with time. To be able to measure dependence that is not linear Kendall’s τ
and Spearman’s ρ is calculated. To check the goodness of fit of different types of copulas a
goodness-of-fit test is used. The construction of the goodness-of-fit test depends on if the copula
is an ordinary copula or an extreme value copula. The tests mentioned are described below.

4.1 The autocorrelation function and the partial autocorrelation function

The auto-covariance function for yt is defined as ry(k) ≡ C[yt, yt−k] where k is the lag. The
autocorrelation function for yt is then defined as

ρy(k) =
ry(k)

ry(0)
, k = 0, 1, 2, . . . (17)

and hence |ρy(k)| ≤ 1. For a white noise process with zero mean and constant variance the
random variables are uncorrelated, why ry(k) will take on the value of σ2 when k = 0 and zero
otherwise, leading to ρy(k) = 1 when k = 0 and zero otherwise. In the following it will be
explained how this can be used to find a suitable model order for a time series.

The biased estimator of the auto-covariance is

r̂y(k) =
1

N

N∑
t=k+1

(yt − m̂y)(yt−k − m̂y)
T
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for 0 ≤ k ≤ N − 1, where m̂y = 1
N

∑N
t=1 yt is the mean of the process. If et is the realization of

a white noise process with zero mean and variance σ2
e , with r̂e(k) estimated like above and the

estimated autocorrelation function, ρ̂e(k), is estimated using equation (17), then the following
holds:

E[ρ̂e(k)] = 0

V[ρ̂e(k)] =
1

N

for all k 6= 0, with N being the number of observations. For k > 0, ρ̂e(k) will be asymptotically
normal distributed.

Let us define a moving average process, MA process, as:

yt = et + c1et−1 + · · ·+ cmet−m

where et is a zero mean white noise process with variance σ2
e . The autocorrelation function for

the MA(m) process will be

ry(k) =

{
σ2
e(ck + c1ck+1 + · · ·+ cm−lcm) if |k| ≤ m

0 if |k| > m

This means that the autocorrelation function should be zero for all lags greater than m.[10] This
can be used in the process of finding a model for the data series. If the data was generated by
an MA(m) process the autocorrelation function could be plotted and the model order can be
found by finding when the autocorrelation function turns zero.

Similarly, the autoregressive process, AR process, is defined as

yt = φk,1yt−1 + · · ·+ φk,kyt−k + et

where, again, et is a white noise process with zero mean and variance σ2
e that is uncorrelated

with yt−l for l > 0 and φk,l is the l:th AR coefficient of an AR(k) model. The covariance function
is

E[etyt−k] = ry(k)− φ1ry(k − 1)− · · ·+ φpry(k − p) = σ2
eδK(k)

where δK(k) is the Kronecker delta function and where the last equality comes from et being
uncorrelated with yt−l for l > 0. Re-writing this it is possible to form the Yule-Walker equations
as 

1 ρy(1) . . . ρy(k − 1)
ρy(−1) 1 . . . ρy(k − 2)

...
...

. . .
...

ρy(k − 1) ρy(k − 2) . . . 1



φk,1
φk,2
...

φk,k

 =


ρy(1)
ρy(2)
...

ρy(k)


By solving this equation system one can obtain φk,k which is the partial auto-correlation function,
PACF. For an AR(p) process, φk,k will be equal to zero for all k > p. Just like for the MA(m)
process it is possible to determine the order of the AR process by determining for which k the
partial autocorrelation function turns zero. If φ̂k,k is estimated using the equation above the
following holds:

E[φ̂k,k] = 0

V[φ̂k,k] =
1

N
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for k > p and for k > p, φ̂k,k will be asymptotically normal distributed.[10]

It has now been explained how the ACF and PACF can help with finding the model order of an
MA and AR process, respectively. Further, if the data series has been fitted to a model that well
describes the behaviour of the data, then the (standardized) residuals, Zt, should behave like
white noise and be asymptotically normal distributed. If the autocorrelation function and partial
autocorrelation function is plotted, every lag, except for ρ(0) which is equal to one, should be
within the approximative confidence interval of ±λα/2/

√
N . [10] This is a good way to visually

find out if there is still serial dependence in the residuals. To look for serial dependence in the
variance, the (standardized) residuals can be squared or their absolute value can be used and
then the ACF and PACF are calculated for these values. The correspondence to the parameters
in the GARCH(p,q) model is however not as clear as the correspondence to the ARMA(r,m)
parameters.

4.2 The Lagrange Multiplier Test of Engle

If the data series has no significant correlations it is possible to preform the Lagrange Multiplier
Test of Engle directly. If not, we denote the residuals

εt = yt − µ−
r∑

k=1

φkyt−k −
m∑
l=1

θlXt−l (18)

i.e. ε is the estimated value of Xt from equation (3). If the conditional mean model was defined
properly the residuals εt should now have mean zero and be uncorrelated. They can however
still be serially dependent. The Lagrange Multiplier Test of Engle checks this by testing the
alternative hypothesis

H1 : ε2
t = α0 + α1ε

2
t−1 + · · ·+ αmε

2
t−m + et for t = m+ 1, . . . , T

against the null hypothesis

H0 : α1 = · · · = αm = 0

where et is a white noise process, m is the number of lags tested and T is the sample size. The
test statistics is the F statistics for the regression on the squared residuals ε2. Under the null
hypothesis the F statistics is asymptotically chi-squared distributed with m degrees of freedom.
The null hypothesis is rejected if F > χ2

m(α) with χ2
m(α) being the upper 100(1−α)th percentile

of χ2
m or, alternatively, if the p-vaule of F is less then α.

The F statistics is obtained by letting SSR0 =
∑T

t=m+1(ε2
t − ε̄2)2, where ε̄2 is the mean of

the series {ε2}, and SSR1 =
∑T

t=m+1 ê
2
t , where êt is the least squares residual of the linear

regression above. At last

F =
(SSR0 − SSR1)/m

SSR1/(T − 2m− 1)

is calculated to conclude if H0 should be rejected or not.[17]

4.3 Q-Statistics

This is the test statistics of Ljung and Box’s test that checks for autocorrelation at multiple lags
jointly. The null hypothesis is H0 : ρ1 = ρ2 = · · · = ρm = 0 with ρ denoting the autocorrelation.
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The test statistics is

Q(m) = N(N + 2)

m∑
i=1

ρ̂2
i

N − i

where N is the number of observations and m is the number of lags being tested.[17] This test
is preformed both on the standardized residuals and on the squared standardized residuals to
make sure that the residuals have been reduced to white noise.

4.4 Likelihood Ratio Test

To perform a likelihood ratio test one of the two models that are to be compared has to be
a restricted version of the other model. This means that there are m different restrictions on
the value of the parameter vector θ for the restricted model. The restricted model is called the
null model whereas the unrestricted model is called the alternative model. When the models are
fitted to the data the log-likelihood functions are maximized under the restricted and unrestricted
model assumptions, respectively. If we let l(θ0) denote the maximized log-likelihood for the null
model and l(θ1) denote the maximized log-likelihood for the alternative model, then

2
(
l(θ1)− l(θ0)

)
v χ2(m)

The null model is rejected in favour of the alternative model if 2
(
l(θ1) − l(θ0)

)
> cα where cα

is the (1− α) quantile of the χ2(m) distribution. [2]

4.5 Information Criteria

For models which are not nested the likelihood ratio test described above can not be used.
To be able to choose between different models one can instead use information criteria for
guidance. In the rugarch package four different types of information criteria are used. Common
for all of them is that they weight the model’s log likelihood value together with the number
of parameters estimated. This means that models which are over-fitted and naturally have
a higher log likelihood value get a penalty for the number of parameters that are estimated.
This in turn makes the effects of the model comparable to models with less (more) parameters.
The four criteria are Akaike information criterion (AIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC) and Shibata information criterion (SIC). These
are defined as

AIC = −2LL

N
+

2m

N

BIC = −2LL

N
+
m log(N)

N

HQIC = −2LL

N
+

2m log
(
log(N)

)
N

SIC = −2LL

N
+ log

(
N + 2m

N

)

where LL is the log likelihood for the model, N is the number of observations and m is the
number of parameters estimated.[9]
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4.6 Sign Bias Test

A correctly specified GARCH model should be able to handle the changes in volatility. For some
products, with stocks being among to most well known, the volatility reacts asymmetrically to
the sign of the shock or innovation, and in the case with the stock, causes a larger increase in
the volatility if the shock is negative than if it is positive. The sign bias test of Engle and Ng
uses the squared standardized residuals to check for leverage effect by regressing the residuals
on lagged negative and positive shocks:

ẑ2
t = c0 + c11(ẑt−1 < 0) + c21(ẑt−1 < 0)ẑt−1 + c31(ẑt−1 ≥ 0)ẑt−1 + ut

where 1 is the indicator function and ẑt are the estimated standardized residuals. The null
hypothesis is that ci = 0 for all i and that jointly c1 = c2 = c3.[9]

4.7 The GMM Orthogonality Test

This test is based on the generalized method of moments, and checks if the standardized residuals
fulfil a number of moment conditions which would hold if the model was correctly specified. The
null hypothesis is that the model is correctly specified and the alternative hypothesis is that the
moments are not equal to zero. In the rugarch package the following conditions are tested:

M1 : E[zt] = 0 (19)

M2 : E[z2
t − 1] = 0 (20)

M3 : E[z3
t ] = 0 (21)

M4 : E[z4
t − 3] = 0 (22)

Q2 : E[(z2
t − 1)(z2

t−j − 1)] = 0 (23)

Q3 : E[(z3
t )(z3

t−j)] = 0 (24)

Q4 : E[(z4
t − 3)(z4

t−j − 3)] = 0 (25)

where j is the lag, which in the rugarch package is set to 4. The first four moments tests
the mean, variance, skewness and kurtosis whereas Q2, Q3 and Q4 checks the joint conditional
moment conditions for variance, skewness and kurtosis and are χ2(j) distributed. A joint Wald
test can also be preformed to test the moments jointly and is then χ2(3j + 4) distributed.[9]

4.8 The Non-Parametric Density Test of Hong and Li

The test of Hong and Li jointly tests the hypothesis of i.i.d. and U(0,1) of data transformed by
the probability integral transformation (PIT). The transformed standardized residuals are used
for checking for misspecification in the conditional moments. Both individual tests and general
misspecification of the model is tested and are both distributed as N (0,1) if the null hypothesis
is correct. Only upper tail critical values are used since negative values only occur under the
null hypothesis.

A kernel estimator ĝj(x1, x2) for the joint density gj(x1, x2) of the pair {xt, xt−j} is compared
to the product of two U(0,1) distributions. Here j is the lag order and j > 0. If the sample size
is n, the joint density is estimated as:

ĝj(x1, x2) = (n− j)−1
n∑

t=j+1

Kh(x1, X̂t)Kh(x2, X̂t−j)
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with X̂t = Xt(θ̂), and θ̂ being a
√
n consistent estimator of θ0. Kh is the boundary modified

kernel:

Kh(x, y) =


k(x−y

h
)h−1∫ 1

−x/h k(u)du
if x ∈ [0, h)

k(x−yh )h−1 if x ∈ [h, 1− h)
k(x−y

h
)h−1∫ (1−x)/h

−1 k(u)du
if x ∈ [1− h, 1)

where h = h(n) is a bandwidth such that h → 0 as n → ∞ and the kernel k(.) is a symmetric
probability density that in the rugarch package is implemented as

k(u) =
15

16
(1− u2)2

1(|u| ≤ 1)

where 1 is the indicator function. The test statistics is defined as

Ŵ (p) = p−1/2
p∑
j=1

[
(n− j)hM̂(j)−A0

h

]
/
√
V0 (26)

where

M̂(j) =

∫ 1

0

∫ 1

0
[ĝj(x1, x2)− 1]2dx1 dx2

and the centering and scaling factors A0
h and V0 are defined as

A0
h =

[
(h−1 − 2)

∫ 1

−1
k2(u)du + 2

∫ 1

0

∫ b

−1
k2
b (u)dudb

]2

− 1

V0 = 2

[∫ 1

−1

[∫ 1

−1
k(u+ v)k(v) dv

]2

du

]2

where

kb(.) = k(.)/

∫ b

−1
k(v)dv .

To be able to investigate the possible causes of misspecification when a model is rejected the
following test statistics is also used:

M(m, l) =

[∑n−1
j=1 w

2(j/p)(n− j)ρ̂2
ml(j)−

∑n−1
j=1 w

2(j/p)
]

[
2
∑n−2

j=1 w
4(j/p)

]1/2
(27)

where ρ̂ml(j) is the sample cross-correlation between X̂m
t and X̂ l

t−|j| and w(.) is a weighting
function of lag order j, in the rugarch package implemented as the Bartlett kernel.[9]

4.9 Kupiec’s and Christoffersen’s test

In risk management Vaule at Risk, VaR, is often used to calculate the amount of money a com-
pany would loose at the most in (1 - α)% of the cases. In general, however, it calculates the
α quantile, and hence the value is determined by the assumed distribution and the estimated
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variance. Since the observed values should exceed VaR (α × 100) percent of the time it is pos-
sible to calculate the expected number of exceedances and compare it to the actual number of
exceedances. If the model suits the data the number of observed exceedances should not deviate
too much from the expected number of exceedances and this is where the tests of Kupiec and
Christoffersen come into play.

In the following, the indicator function It+1 will be defined as

It+1(α) =

{
1 if yt,t+1 ≤ −V aRt(α)

0 if yt,t+1 > −V aRt(α)

where yt,t+1 is the observation over a fixed time interval and V aRt(α) is the value at risk at time
t for the α percentile. The indicator function will form a sequence, e.g. (0001010011), indicating
when the VaR was violated. This sequence should be iid as Bernoulli random variables with
probability α.

Kupiec’s test was one of the first tests proposed for VaR backtesting and is only concerned with
whether or not the number of times the VaR is violated differs too much from the expected α
percent, i.e. unconditional coverage. If it does, this would indicate that the model is misspecified.
Hence the null hypothesis is that the observed number of violations equals the expected number
of violations. Letting I(α) =

∑T
t=1 It(α) and α̂ = I(α)/T where T is the number of observations,

Kupiec’s test statistics is

LRuc = 2log

((
1− α̂
1− α

)T−I(α)( α̂
α

)I(α)
)
∼ χ2(1) (28)

Christoffersen’s test does not only take the unconditional coverage into account, but also the
conditional coverage, i.e. if the values of the indicator function are independent, since this is
another way in which a model can be misspecified. The test statistics for the unconditional
coverage is still given by equation (28). When it comes to the unconditional coverage, nij will
denote the number of days state i on the first day was followed by state j on the next, and i and
j takes on the values 1 or 0, where 1 represents a violation of VaR and 0 represents no violation.
Further, πij will denote the probability that state j occurs if the state of the previous day was
i, whereas the observed probabilities are

π̂01 =
n01

n00 + n01
, π̂11 =

n11

n10 + n11
, π̂2 =

n01 + n11

n00 + n10 + n01 + n11

The test statistics for the conditional coverage is then

LRind = −2 log
(
(1− π̂2)n00+n10 π̂n01+n11

2

)
+ 2 log

(
(1− π̂01)n00 π̂n01

01 (1− π̂11)n10 π̂n11
11

)
Under the null hypothesis that the unconditional coverage is correct and that the exceedances
are independent the test statistics for the conditional coverage will be

LRcc = LRuc + LRind (29)

with LRcc being χ2(2) distributed.[4]

Both Kupiec’s and Christoffersen’s tests should be preformed out of sample to give a valid result
of the hypothesis test, why in this thesis the 500 data points saved for model validation are used
for this purpose.
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4.10 Measures of dependence

In copula models the dependence between the data series it should represent is crucial. The
common way of thinking of dependence is by correlation, but this is a measure of linear depen-
dence. If one wants to account for other types of dependence other than the linear dependence,
Kendall’s τ and Spearman’s ρS can be used. In this report these measures will be used to see
how strong the dependence between different data series is and how this changes when going
from daily observations to monthly and quarterly extreme values. Below the Pearson’s corre-
lation, which is the "standard" correlation, Kendall’s τ and Spearman’s ρS are stated together
with their relationship to each other.

Pearson’s correlation. Pearson’s correlation is defined as

ρ(X,Y) =
Cov(X,Y)√

V ar(X)
√
V ar(Y)

where X and Y are vectors, Cov(X,Y) = E[(X − E[X])(Y − E[Y])] is the covariance
between the vectors and V ar(X) = Cov(X,X) is the variance.

Kendall’s τ . Kendall’s τ is defined as

τ(X,Y) = P[(X− X̃)(Y − Ỹ) > 0]− P[(X− X̃)(Y − Ỹ) < 0] =

= 4

∫ ∫
C(u, v)dC(u, v)− 1 = 4E[C(u, v)]− 1

where P() denotes the probability and both (X,Y) and (X̃, Ỹ) have the same copula C.
The relationship between Kendall’s τ and Pearson’s ρ is

τ(X,Y) = Corr[Sign(X− X̃), Sign(Y − Ỹ)] where Sign(X) =


1 if X > 0
0 if X = 0
−1 if X < 0

Spearman’s ρS. Spearman’s ρS is defined as

ρS(X,Y) = 3
(
P[(X− X̃)(Y −Y′) > 0]− P[(X− X̃)(Y −Y′) < 0]

)
= ♦

with definitions as above. Spearman’s ρS is related to Pearson’s ρ by

♦ = 12

∫ ∫
uv dC(u, v)− 3 = 12E[uv]− 3 =

E[uv]− 1/4

1/12
=

= ρ
(
F1(X), F2(Y)

)
where again C is the copula.[12]
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4.11 Goodness-of-fit test for copulas

Goodness-of-fit test for copulas based on the empirical copula

The goodness-of-fit test used for the daily residual series tests the null hypothesis H0 : C ∈ C0,
where C is the copula C (FX(x), FY (y)) and C0 is a specific parametric family of copulas. The
test is based on ranks. The empirical distribution, defined as

Cn(u, v) =
1

n

n∑
i=1

1(Ui ≤ u, Vi ≤ v)

where (U,V) are pseudo-observations, is used to compare the "distance" between the empirical
distribution Cn and the parametric estimation Cθn of C under the null hypothesis. θn is an
estimate of θ where the estimation is based on the pseudo-observations. The test statistics is

Sn =

∫
[0,1]2

n(Cn(u, v)− Cθn(u, v))2 dCn(u, v) (30)

In practice this is calculated by using a parametric bootstrap method in the following way: [8]

1. Calculate the empirical distribution Cn from the sample and estimate θ using an estimation
method of choice.

2. (a) Generate a random sample from Cθn and compute the pseudo-observations (U∗1, . . . ,U
∗
m).

(b) Approximate Cθn by

B∗m(u) =
1

m

m∑
i=1

1(U∗i ≤ u), u ∈ [0, 1]d

(c) Approximate Sn by

Sn =

n∑
i=1

(Cn(Ui)−B∗m(Ui))
2

3. Repeat for k ∈ [1, . . . , N ]:
(a) Generate a random sample (Y∗1,k, . . . ,Y

∗
n,k) from Cθn and compute their rank vectors

(R∗1,k, . . . ,R
∗
n,k)

(b) Compute the pseudo-observations U∗i,k = R∗i,k/(n+1) for i ∈ [1, . . . , k]. Then calculate

C∗n,k(u) =
1

n

n∑
i=1

1((U∗i,k ≤ u), u ∈ [0, 1]d

and estimate θ.
(c) Follow the procedure in step 2b and c to estimate S∗n,k

4. The approximate p-value is then given by 1
N

∑N
k=1 1(S∗n,k > Sn).

In the computations for this report maximum pseudo-likelihood was used to estimate θn.

22



Goodness-of-fit for extreme value copulas using the dependence function

In this test for extreme value copulas a non-parametric estimator is compared to a parametric
estimator to test the goodness-of-fit of the parametric model. It can be shown that a bivariate
extreme value copula C can be described by

Cθ(u, v) = exp
(
log(uv)A

(
log(v)

log(uv)

))
(31)

where u, v ∈ (0, 1) and the function A : [0, 1] → [1/2, 1] is Pickands dependence function. For
all w ∈ [0, 1] we have that max(w, 1− w) ≤ A(w) ≤ 1 where A(w) = 1 would mean total inde-
pendence between u and v and A(w) = max(w, 1 − w) would mean total dependence between
u and v.

It is also possible to make a non-parametric estimation of A. Let ξi(0) = −log(Ui) and ξi(1) =
−log(Vi) where Ui and Vi are pseudo-observations and

ξi(w) = min
(
−log(Ui)

1− w
,
−log(Vi)

w

)
for all w ∈ (0, 1). Then a non-parametric estimator of An is

ACFGn (w) = exp

{
−γ − 1

n

n∑
i=1

log(ξi(w))

}
(32)

where γ is Euler’s constant and ACFGn (w) is known as the CFG estimator after Caperaa, Fougeres
and Genest.

In the goodness-of-fit test for the extreme value copulas the pseudo-observations (U,V) will be
used to test the null hypothesis

H0 : A ∈ A = {Aθ : θ ∈ O}

where A is a specific parametric class and O is an open subset of Rp for some integer p. This
will be tested by comparing the non-parametric estimator An of A to the parametric estimator
Aθn using the Cramér-von-Mises statistic

Sn =

∫ 1

0
n|An(w)−Aθn(w)|2 dw (33)

Again a bootstrap procedure is used for the calculations of the goodness-of-fit test, this time
with the following procedure: [7]

1. Compute An from the pseudo-observations (U,V) and estimate θ using a rank-based
estimator.

2. Compute the test statistics in equation (33).

3. For k = 1, . . . , N , where N is some large integer, do:
(a) Generate a sample (Xk,Yk) from Cθn and compute the pseudo-observations (Uk,Vk).
(b) Derive Ank and θnk from (Uk,Vk).
(c) Insert Ank and θnk into equation (33) and compute Snk.
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4. The p-value of the test is given by

1

N

N∑
k=1

1(Snk ≥ Sn)

In this report, inversion of Kendall’s τ was used to estimate θnk.

5 Method of finding suitable models

As already mentioned, each of the six exchange rates consist of ten years of daily observations,
resulting in 5190 observations per exchange rate. Since data will be needed to validate the
models the full series is not used for modelling. Instead 500 data points are saved for validation
and the models are thus based on the values of the first 4690 points.

As a first step the log returns of each series is created and the ACF and the PACF of the returns
and the squared returns are plotted to get an idea of which type of model the series might have
come from. The Lagrange Multiplier Test is also performed to make sure that there is serial
dependence in the variance and thus that there is a need for a GARCH model. By varying the
distribution of Zt and the number of parameters in the ARMA(r, m) model as well as shifting
between a standard GARCH and an EGARCH model the information criteria for all these com-
binations can be calculated and compared. By comparing these values it is often evident which
type of model fits the return series the best. It is also checked if the model can be improved by
adding the STIBOR rate as an external regressor.

The best models are examined more closely and it is checked if all estimated parameters are
significant and if any of the lags can be removed while still maintaining a good model. The
sign bias test is also used for checking if the model reflects the nature of the sign changes in the
series. If the sign bias test does not signal that there is a problem with the sign changes for
the standard GARCH model there is no need to consider the EGARCH model. The ACF and
the PACF of the standardized residuals and the squared standardized residuals of the models
should be looked upon to make sure that there is no longer any sign of serial correlation and
the quantile-quantile-plot should be considered to make sure that it seams reasonable that the
standardized residuals indeed came from the distribution that was assumed by the model. Once
good models have been found they are compared using the likelihood ratio test or information
criteria to conclude which model should be used. In cases when the value of the two information
criteria tests are the same the rule of keeping the model as simple as possible while retaining a
sufficiently good result is used.

The goodness of fit of the chosen model is further examined by using tests like Kupiec’s and
Christoffersen’s test, the GMM orthogonality test and the test of Hong and Li. If these tests are
not passed by the model it is a sign of model misspecification and one has to take a step back
and try to find another model that suits the data better.

When suitable ARMA-GARCH models have been found, the residuals resulting from these mod-
els are next in line to be examined. First suitable distributions for the univariate residuals are
to be found. This is done by fitting different distributions that graphically seems to be suitable
for the series to the data. The fitted distributions are then evaluated with both a qq-plot and a
χ2-test to find the best fit. For the monthly and quarterly maxima Generalized Extreme Value
distributions, GEV, are considered since, given a large enough sample of extreme values, these
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will converge in distribution to the GEV distribution.[2]

Due to the long computational time of the goodness-of-fit tests the residuals are next fitted
pairwise to different probable copulas, using the distributions for the individual series as marginal
distributions. This means that 15 different pairs of residuals are fitted to various copulas. For
the fitted copulas with the lowest information criteria value a goodness of fit test is preformed.
If the copula should be rejected by the test, other copulas are examined by the goodness-of-fit
test in the hopes of finding a suitable copula.

6 Result

In this section the models that were chosen for the data set will be presented, first the ARMA-
GARCH model for the daily returns and then the copula models for the residuals.

6.1 Model choice - ARMA-GARCH models for the daily returns

Before transformation the original data series consists of the exchange rate between the Swedish
krona and another currency. A series like this might look as in figure (1) where the original
series of the exchange rate SEK/EUR is plotted. Before the modelling can begin the series has
to be transformed into daily log returns. As an example, figure (2) shows the daily log returns
for SEK/EUR. Next the autocorrelation function and the partial autocorrelation function for
the daily return series and the squared daily return series is studied to see if there are signs of
heteroscedasticity and to see what type of model might be suitable for the series. Again taking
the SEK/EUR as an example, the partial autocorrelation function for the daily return series
and for the squared daily return series can be seen in figures (3) and (4). From figure (4) it can
be seen that there are clear signs of heteroscedasticity. The same conclusion is reached by using
the Lagrange multiplier test of Engle, in which the null hypothesis can be rejected for all of the
exchange rates.

Figure 1: The original data series of the
exchange rate SEK/EUR.

Figure 2: The series of SEK/EUR after it has
been transformed into daily log returns.

After extensive testing of different combinations of models, parameters and distributions, suit-
able ARMA-GARCH models are found for the exchange rate series. The parameter values
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Figure 3: The partial autocorrelation function
for the return series SEK/EUR together
with the confidence interval where α = 0.05.

Figure 4: The partial autocorrelation function
for the squared return series SEK/EUR together
with the confidence interval where α = 0.05.

for the different models can be seen in table (2). As can be seen, the SEK/EUR, SEK/JPY,
SEK/100 DKK and SEK/100 NOK are all versions of AR-EGARCH models, SEK/GBP is
an ARX-EGARCH model which uses the STIBOR rate as external input and SEK/USD is a
GARCH model. All of the models are assumed to have innovations coming from a Student’s t
distribution except the model for SEK/JPY in which it is assumed that the innovations come
from a skewed Student’s t distribution.

Table 2: Estimated parameter values for the chosen ARMA(X)-(E)GARCH models.

φ1 φ2 φ3 δ1 ω α1 β1 γ1 df skew

SEK/USD - - - - 0.0000 0.052 0.9374 - 12.95 -
SEK/EUR -0.0392 -0.0578 -0.0528 - -0.0954 0.0427 0.9913 0.1371 9.76 -
SEK/JPY 0 -0.0342 -0.0315 - -0.1538 0.0485 0.9839 0.1436 10.24 1.11
SEK/GBP 0 -0.042 -0.0353 0.0464 -0.1346 0.0248 0.9869 0.1205 12.78 -

SEK/100 DKK -0.0312 -0.0519 -0.0453 - -0.0959 0.0437 0.9913 0.1338 9.86 -
SEK/100 NOK 0 -0.0427 - - 0.0000 0.0590 0.9263 - 8.91 -

As already mentioned an important tool to see how well a model fits a data series is to look at
the ACF and PACF for the residuals after a model has been fitted to the data. As an example of
what this may look like, in figure (5) and (6) the autocorrelation function for the standardized
residuals and the squared standardized residuals after the final model has been fitted can be
seen. For the corresponding plots for the other data series, please see the appendix in appendix
A. In the plots the 95% confidence interval has been marked. Another way to check if any serial
dependence is left in the standardized residuals is to use the Q-Statistics on the standardized
residuals and on the squared standardized residuals.

Next the sign bias test is considered. When this test signals that there is a problem with sign
bias it is often a good idea to introduce an EGARCH model. Sometimes, however, it can be
hard to get rid of the sign bias even with an EGARCH model or other versions of the GARCH
model. As can be seen in table (3) which displays the probabilities, all values are insignificant
at the 1% level except for SEK/JPY which shows a bad result and SEK/100 NOK where the is
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Figure 5: The autocorrelation function for the
standardized residuals of the SEK/EUR series
after the final AR-EGARCH model has been
fitted.

Figure 6: The autocorrelation function for the
squared standardized residuals of the SEK/EUR
series after the final AR-EGARCH model has
been fitted.

a problem with the negative sign bias. It should be noted though, that several values are close
to the 1% limit.

Table 3: Results from the sign bias test after the data has been fitted to the final models.

SEK/USD SEK/EUR SEK/JPY SEK/GBP SEK/100 DKK SEK/100 NOK
Sign Bias 0.4545 0.3539 0.6193 0.02 0.1884 0.0258

Negative Sign Bias 0.4041 0.0377 0.093 0.9572 0.1962 0.0063
Positive Sign Bias 0.1526 0.4671 4e-04 0.0963 0.0159 0.6964

Joint Effect 0.3706 0.1456 0.0000 0.0644 0.0427 0.0371

Apart from the visual tests of the ACF and PACF, the Q-Statistics and the sign bias test, three
other tests are preformed: the GMM orthogonality test, the non-parametric density test of Hong
and Li and Kupiec’s and Christoffersen’s tests. The result of these tests for the different series
after the data has been fitted to the models can be seen in table (4). In the table, Q2, Q3 and
Q4 refer to the GMM test in equations (23), (24) and (25), and J refers to the joint test of
these moments. Further, M(1,1), M(2,2), M(3,3), M(4,4), M(1,2) and M(2,1) in the table refer
to Hong and Li’s test in equation (27) and W refer to the test in equation (26). At last, LRuc
refer to the Kupiec’s test in equation (28) and LRcc refer to Christoffersen’s test in equation
(29). If the test failed to reject the null hypothesis H0 this is marked in table (4) by fail t.r.
and if the test could reject the null hypothesis then this is marked in the table by reject. As
can be seen in the table, all models except the one for SEK/JPY pass the GMM test and the
test of Hong and Li. The tests of Kupiec and Christoffersen are more troublesome: SEK/USD
pass none of these tests and the other exchange rates pass the unconditional coverage test of
Kupiec but fail the conditional coverage test. In all of the cases this is due to too few VaR
exceedances, meaning that if the data had come from the chosen model it would have exceeded
the VaR more times than the actual data did. To investigate this further, 5190 data points
are simulated from the different models 100 times. The mean, standard deviation, maximum,
minimum, skewness and kurtosis is then calculated for each series and the mean of these values
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for the 100 simulations is calculated. These estimated values can be seen in table (5) and can
be compared to the values of the original return series in table (1). In general this comparison
looks good but the models seem to have a lower kurtosis than what the actual distributions have.

Table 4: Results from the GMM test, the test of Hong and Li and Kupiec’s and Christoffersen’s
test of the ARMA-GARCH models. Fail t.r. means that the test failed to reject the null
hypothesis and reject means that the test rejected the null hypothesis.

SEK/USD SEK/EUR SEK/JPY SEK/GBP SEK/100 DKK SEK/100 NOK
Q2 fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
Q3 fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
Q4 fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
J fail t.r. fail t.r. reject fail t.r. fail t.r. fail t.r.

M(1, 1) fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
M(2, 2) fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
M(3, 3) fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
M(4, 4) fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
M(1, 2) fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
M(2, 1) fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
W fail t.r. fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
LRuc reject fail t.r. fail t.r. fail t.r. fail t.r. fail t.r.
LRcc reject reject reject reject reject reject

Table 5: Mean, standard deviation, maxima, minima, skewness and kurtosis resulting from
simulations from the ARMA-GARCH models chosen for each exchange rate. The values are the
means of 100 simulations in which 5190 data points were generated each time.

SEK/USD SEK/EUR SEK/JPY SEK/GBP SEK/100 DKK SEK/100 NOK
mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

std. dev 0.0075 0.0048 0.0094 0.0064 0.0047 0.0048
maximum 0.0422 0.032 0.0643 0.0349 0.0314 0.0299
minimum -0.0438 -0.0341 -0.0573 -0.0362 -0.0312 -0.0313
skewness -0.0042 -0.0332 0.266 -0.0147 -0.0232 -0.0296
kurtosis 4.9948 7.0213 6.0863 4.6677 6.736 5.8045

As can be concluded from the results of the various tests presented above it has not always been
easy to find suitable models that are not too complicated for the data series. For the data series
for which the fit of the model is not very good the hope is that the remaining dependence will
be removed when copulas are introduced with the purpose of modelling the residuals.

6.2 Model choice - copula models for the residuals

Once the models for the individual daily return series have been found, the search for copula
models that can describe the standardized residuals of the ARMA-GARCH models begins, here-
after referred to only as "the residuals". For each residual series the daily residuals are used
as well as the monthly maxima of the residuals and the quarterly maxima of the residuals. As
expected, the daily residuals are all correlated with the other exchange rate residuals. The same
thing is valid for the monthly and quarterly maxima of the residuals. This can be observed
in table (6) where the values of the dependency measures Pearson’s ρ, Kendall’s τ and Spear-
man’s ρS for the residuals can be seen. The values for the daily residual series are marked with
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"D", the values for the monthly maxima are marked with "M" and the values for the quarterly
maxima are marked with "Q". All measures show positive dependence between the exchange
rates, but the dependence seems to lessen for the monthly and quarterly maxima. This could be
interpreted as a sign of decreasing dependence when the time steps grow larger and that major
changes in the exchange rates are less dependent on movements of other currencies than the
daily fluctuations are.

Table 6: Values of Pearson’s ρ, Kendall’s τ and Spearman’s ρS for the different pairs of exchange
rates. The values for the daily residuals are marked with "D", the monthly maxima are marked
with "M" and the quarterly maxima are marked with "Q".

Pear D Pear M Pear Q Kend D Kend M Kend Q Spear D Spear M Spear Q
USD-EUR 0.4896 0.3818 0.3859 0.3314 0.245 0.2246 0.4694 0.3620 0.3145
USD-GBP 0.6530 0.4870 0.4320 0.4630 0.3456 0.2653 0.6416 0.4922 0.3715
USD-JPY 0.6294 0.4886 0.3314 0.4505 0.3386 0.2426 0.6220 0.4924 0.3480
USD-DKK 0.4695 0.3397 0.3676 0.3177 0.2286 0.2074 0.4507 0.3324 0.2975
USD-NOK 0.3573 0.3080 0.3355 0.2466 0.2070 0.1862 0.3564 0.3075 0.2904
EUR-GBP 0.5977 0.5298 0.5539 0.4132 0.3101 0.3427 0.5754 0.4407 0.4693
EUR-JPY 0.5217 0.2967 0.2775 0.3588 0.1810 0.1416 0.5077 0.2585 0.1984
EUR-DKK 0.9751 0.9144 0.9272 0.8952 0.7893 0.7872 0.9771 0.9013 0.8976
EUR-NOK 0.5794 0.5500 0.5335 0.4263 0.3396 0.3732 0.5818 0.4747 0.5144
GBP-JPY 0.5015 0.3937 0.2765 0.3533 0.2709 0.2387 0.5022 0.3998 0.3483
GBP-DKK 0.5689 0.4544 0.4938 0.3934 0.2534 0.2911 0.5505 0.3660 0.4019
GBP-NOK 0.4370 0.4400 0.4157 0.3020 0.2395 0.2465 0.4301 0.3483 0.3509
JPY-DKK 0.5163 0.2888 0.2529 0.3572 0.1837 0.1088 0.5054 0.2636 0.1687
JPY-NOK 0.3649 0.2416 0.1054 0.2486 0.1659 0.0923 0.3598 0.2363 0.1466
DKK-NOK 0.5787 0.4793 0.4904 0.4269 0.2990 0.3560 0.5828 0.4178 0.4889

The strength of the dependence between two data series is reflected in the copula by the copula
parameters, θ. But for θ to be constant over time, and thus the copula, the dependence be-
tween two data series has to be constant. To check if this is the case the value of Kendall’s τ
is calculated once more, but this time a rolling estimation is used. Kendall’s τ for the different
residual pairs is thus calculated with a window of 250 days for the original residuals, 12 months
for the monthly maxima and 3 years for the quarterly maxima. The result for the daily residu-
als can be seen in figures (7)-(10). As can be seen some of the estimated values of Kendall’s τ
seem fairly stationary whereas the estimation for some of the other residuals, for example daily
JPY/DKK in figure (10), vary a lot over time. The corresponding plots for the monthly and
quarterly maxima can be found in appendix A. There are several interesting ways to handle
time-varying copulas, but they often suffer from problems with parameter estimation and no
developed goodness-of-fit tests, see [13] for further details. Because of these problems, it will in
the following be assumed that the dependence between the time series is stationary enough for
the copula to be constant.

The first step in finding a copula is to find suitable marginal distribution for the individual resid-
ual series. For the extreme value series the marginal distribution should according to theory
belong to a GEV-distribution as in equation (16). For the daily residuals the logistic distribu-
tion in equation (15) and the skewed Student’s t distribution in equation (14) are found to be
plausible choices of marginal distributions. An example can be seen in figure (11) where the his-
togram of the daily residuals from the SEK/EUR series are plotted together with the empirical
cumulative distribution function (CDF) and the CDFs of the logistic and the skewed Student’s
t distribution. The choice between these distributions is determined by a χ2 test. The χ2 test
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Figure 7: A rolling estimation of Kendall’s τ with a window size of 250 days for the daily residual
pairs USD-EUR, USD-GBP, USD-JPY and USD-DKK.

rejects the logistic distribution in several of the cases and in the other cases the p-value is close
to the 5% significance level. That the residuals come from a skewed Student’s t distribution
can, on the other hand, not be rejected for any of the data series. Thus, the skewed Student’s t
distribution is the one used as marginal distribution for the daily residual series.

The scatterplot for the daily residuals can be seen in figure (12) and the corresponding plots for
the monthly and quarterly maxima can be found in appendix A. Looking at this figure it seems
as a good idea to investigate the fit of a normal copula and a t-copula for the different pairs.
The first of the goodness-of-fit tests described in section 4.11 is used to get an estimate of how
well the copulas fit the data. The normal copula is rejected for all of the residual pairs, but the
t-copula seems to be a better alternative. The daily residual pairs USD-EUR, USD-JPY, USD-
DKK, USD-NOK, EUR-GBP, EUR-JPY, GBP-DKK, GBP-NOK, JPY-DKK and JPY-NOK
pass the goodness-of-fit test, i.e. 10 out of 15 pairs pass the test.

For the remaining daily residual pairs that did not pass the goodness-of-fit test other types of
copulas are examined. It turns out however, that no copula is found for which the goodness-of-fit
test is passed. In cases when it is not possible to calculate the p-value it is recommended that
the copula wit the lowest Sn statistics is chosen. [6] Thus, in these cases the copula with the
lowest statistics value is presented as the final model, even though these have not passed the
goodness-of-fit test. For all daily residual pairs except for one this means that the t-copula is
chosen with skewed Student’s t margins. For GBP-JPY the Plackett copula with skewed Stu-
dent’s t margins is chosen instead. The type of copula, margins and their parameter values can
be seen in table (7).
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Figure 8: A rolling estimation of Kendall’s τ with a window size of 250 days for the daily residual
pairs USD-NOK, EUR-GBP, EUR-JPY and EUR-DKK.

Table 7: The type of copula, its parameter θ and when applicable the degrees of freedom of the
copula dfcop, the parameter values for the skewed Student’s t marginal distributions df1, skew1,
df2 and skew2 and the p-value from the goodness-of-fit test for the copula.

copula θ dfcop df1 skew1 df2 skew2 p− value
USD-EUR t 0.4938 5.5429 11.6446 1.0308 8.8849 1.052 0.5030
USD-GBP t 0.6558 9.0738 11.5891 1.0134 10.3915 0.9939 0.0015
USD-JPY t 0.6429 5.5304 11.1041 1.0148 8.9754 1.0920 0.0584
USD-DKK t 0.4750 5.4263 11.6021 1.0325 8.949 1.0521 0.4920
USD-NOK t 0.3727 7.0187 11.7533 1.0285 8.4801 0.9844 0.1234
EUR-GBP t 0.5999 5.4924 9.0273 1.0330 11.2646 0.9952 0.2682
EUR-JPY t 0.5291 6.6795 8.9340 1.0543 9.4998 1.1174 0.7507
EUR-DKK t 0.9841 0.8975 5.9202 1.0411 6.0205 1.0411 0.0005
EUR-NOK t 0.6162 3.0664 7.9585 1.0242 7.4518 0.9856 0.0065
GBP-JPY Plackett 9.2808 - 12.0487 1.0466 10.3138 0.9847 0.0005
GBP-DKK t 0.5738 5.6128 11.0116 0.9977 8.9931 1.0333 0.1314
GBP-NOK t 0.4528 5.3248 11.1323 1.0019 8.5275 0.9865 0.3711
JPY-DKK t 0.5267 6.4191 9.4599 1.1163 8.9735 1.0569 0.7168
JPY-NOK t 0.3761 8.0647 9.7964 1.1124 8.6071 0.9914 0.1334
DKK-NOK t 0.6161 3.1024 7.8611 1.0283 7.3078 0.9876 0.0035

Next, extreme value copulas should be found for the monthly and quarterly residual maxima.
Since, assuming that the copulas pass the goodness-of-fit test, the copula for which the infor-
mation criteria is the lowest should be chosen, the residual pairs are first fitted to the different
extreme value copulas of Husler-Reiss, Gumbel, Galambos and Tawn and Akaike’s and the
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Figure 9: A rolling estimation of Kendall’s τ with a window size of 250 days for the daily residual
pairs EUR-NOK, GBP-JPY, GBP-DKK and GBP-NOK.

Bayesian information criteria are calculated and compared. Thereafter the goodness-of-fit test
for extreme value copulas is performed for the copula with the lowest value of the informa-
tion criteria. It is done in this order since the goodness-of-fit test is computationally expensive
whereas the fitting of the copula to the data is relatively cheap. As long as the copula passes
the goodness-of-fit test, this is the copula that would have been chosen and if it does not pass
the test, the search would have continued in any case.

For the monthly extreme value residuals it turns out that all pairs except for EUR-DKK pass
the goodness-of-fit test. For the EUR-DKK pair the remaining three copulas, i.e. Husler-Reiss,
Galambos and Tawn copula, are examined with the goodness-of-fit test. Unfortunately, none
of these copulas pass the goodness-of-fit test. As all models have the same value of the test
statistics, the Gumbel copula is chosen as the final model for the EUR-DKK pair, even though
this is not a good model. All of the chosen copulas, their parameters, the parameters of the
marginal GEV-distributions and the p-value for the goodness-of-fit test for the monthly maxima
pairs can be found in table (8).

For the quarterly extreme value residuals all pairs except for EUR-DKK pass the goodness-of-fit
test. When making the goodness-of-fit test for the remaining copulas for the EUR-DKK pair the
Husler-Reiss copula and the Galambos copula turn out to pass the test at the 1% significance
level. Out of these the Galambos copula has the lowest information criteria value, why this
copula is chosen for the EUR-DKK pair. The chosen copulas, their parameters, the parameters
of the marginal GEV-distributions and the p-value for the goodness-of-fit test for the quarterly
maxima pairs can be found in table (9).
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Figure 10: A rolling estimation of Kendall’s τ with a window size of 250 days for the daily
residual pairs JPY-DKK, JPY-NOK and DKK-NOK.

Table 8: The chosen copula, its parameter θ, the parameters of the marginal GEV-distribution
µ1, σ1, γ1, µ2, σ2 and γ2 and the p-value for the goodness-of-fit test for the monthly maxima
residual pairs.

copula θ µ1 σ1 γ1 µ2 σ2 γ2 p-value
USD-EUR HR 0.9475 1.7048 0.5527 -0.1594 1.6303 0.5566 0.0806 0.9476
USD-GBP Tawn 0.7894 1.7036 0.5485 -0.1596 1.6582 0.4752 0.0198 0.4171
USD-JPY HR 1.1423 1.699 0.5524 -0.1376 1.7019 0.5896 -0.0138 0.1663
USD-DKK Gumbel 1.2764 1.7056 0.5544 -0.1562 1.6360 0.5553 0.0648 0.8736
USD-NOK HR 0.8169 1.7034 0.552 -0.1589 1.6289 0.5826 -0.0094 0.7847
EUR-GBP Galambos 0.7160 1.6374 0.5591 0.0601 1.6549 0.4696 0.0076 0.6648
EUR-JPY Gumbel 1.1951 1.6397 0.5613 0.0536 1.7071 0.5893 -0.0495 0.6938
EUR-DKK Gumbel 5.2441 1.6074 0.5441 0.1461 1.6147 0.5449 0.1270 0.0005
EUR-NOK Tawn 0.8267 1.6240 0.5470 0.0529 1.6422 0.5783 -0.0377 0.1334
GBP-JPY HR 0.9760 1.6524 0.4739 0.0286 1.7025 0.5892 -0.0188 0.2592
GBP-DKK HR 0.9991 1.6569 0.4723 0.003 1.6406 0.5567 0.0512 0.8556
GBP-NOK HR 0.9594 1.6558 0.4715 -0.0013 1.6313 0.5819 -0.0247 0.5020
JPY-DKK Galambos 0.4360 1.7097 0.5907 -0.0491 1.6420 0.5594 0.0503 0.7468
JPY-NOK Galambos 0.3998 1.7044 0.5880 -0.0398 1.6327 0.5853 -0.0172 0.2383
DKK-NOK Tawn 0.7471 1.6264 0.5455 0.0468 1.6436 0.5787 -0.0417 0.1104

7 Conclusions and fields of further studies

In this report we have seen how it is possible to model different exchange rates with ARMA-
GARCH models and that even though it is normally assumed that all of the dependence in the
data has been modelled when the ARMA-GARCH modelling is finished, it is still possible to find
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Figure 11: Histogram of the residuals from the SEK/EUR series together with the empirical
CDF (in black) and the CDFs of the logistic (in dotted green) and the skewed Student’s t
distribution (in dotted red).

Table 9: The chosen copula, its parameter θ and the parameters of the marginal GEV-
distribution µ1, σ1, γ1, µ2, σ2 and γ2 and the p-value for the goodness-of-fit test for the quarterly
maxima residual pairs.

copula θ µ1 σ1 γ1 µ2 σ2 γ2 p-value
USD-EUR Tawn 0.5962 2.241 0.4578 -0.1768 2.2732 0.6176 0.0851 0.5380
USD-GBP Tawn 0.7228 2.2412 0.4608 -0.1696 2.2013 0.5054 0 0.4091
USD-JPY HR 0.9266 2.2494 0.4684 -0.1454 2.2713 0.5326 0.0748 0.8786
USD-DKK Galambos 0.526 2.2522 0.4674 -0.1792 2.2519 0.6088 0.0398 0.4141
USD-NOK HR 0.8738 2.2489 0.4675 -0.1541 2.2263 0.5777 0.0187 0.7727
EUR-GBP Tawn 0.8285 2.2796 0.6121 0.0369 2.1739 0.4912 -0.0248 0.5539
EUR-JPY HR 0.7802 2.2625 0.6056 0.0636 2.283 0.5386 0.0251 0.6998
EUR-DKK Galambos 0.9475 1.7048 0.5527 -0.1594 1.6303 0.5566 0.0806 0.0115
EUR-NOK Tawn 0.8479 2.2407 0.5913 0.0851 2.2407 0.5788 -0.0051 0.5679
GBP-JPY HR 0.9248 2.1779 0.4971 0.0223 2.2693 0.5340 0.1003 0.3511
GBP-DKK Galambos 1.5004 2.2333 0.6027 0.0778 2.2333 0.5782 0.0077 0.0115
GBP-NOK HR 0.9599 2.1842 0.4962 -0.0272 2.2303 0.5782 0.0057 0.7847
JPY-DKK HR 0.7386 2.2838 0.5384 0.0217 2.2516 0.6078 0.0383 0.6269
JPY-NOK HR 0.5751 2.2789 0.5374 0.0411 2.2315 0.5797 0.0027 0.7647
DKK-NOK Gumbel 1.5004 2.2333 0.6027 0.0778 2.2333 0.5782 0.0077 0.7268

a bivariate copula model for the residuals resulting from the ARMA-GARCH model. This is a
clear sign that the exchange rates are closely connected to each other and that there is reason to
take other exchange rates into account if an exchange rate should be modelled. This is especially
so when risk management is concerned, as we have seen that it was easiest to find good copula
models for the extreme values of the residuals. The implication of this is that if dealing with
positively dependant exchange rates, you would be extra vulnerable should an extreme event
occur. On the contrary, if it was possible to find two exchange rates with negative dependence,
one could be used to hedge a position in the other.
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Figure 12: Scatterplot for the daily residual pairs.

As mentioned in section 2 it could be interesting to compare the models found for the data series
SEK/EUR, SEK/100 DKK and SEK/100 NOK. It comes as no surprise that the AR-EGARCH
models for SEK/EUR and SEK/100 DKK are close to identical as the Danish krone is bound to
the euro. When it comes to the model for SEK/100 NOK there are however large differences.
This is an AR-GARCH model with parameters clearly different from the other two models.
This difference is a sign of the autonomy of the Norwegian krone and shows the difference in
the relations between the Swedish krona and the Danish krone and that of the Swedish krona
and the Norwegian krone. Comparing the copula models for the daily residuals of EUR-NOK
and DKK-NOK the parameter of the t copula and the degrees of freedom are close to the same.
Also the estimated parameters for the marginal distributions are very similar. For the monthly
maxima models both EUR-NOK and DKK-NOK are modelled with Tawn copulas with param-
eters fairly close to each other. But the similarities end by the quarterly maxima models where
EUR-NOK is modelled with a Tawn copula whereas DKK-NOK is modelled by a Gumbel copula.

When it comes to the usefulness of the STIBOR rate, it turned out that it could only be used in
one of the cases, namely to model SEK/GBP. In the cases of the other rates, it was hard to tell if
it actually made a difference, why it was left out of the models in order to keep them as simple as
possible. But since the STIBOR was not deemed to be entirely useless, it could be interesting to
investigate if other rates of this type could be used as external signals, perhaps in combination,
e.g. the Euribor and the LIBOR, which are the Eurozone’s and British counterparts to STIBOR.

It could be discussed whether or not it is sensible to use an EGARCH model for exchange rates.
The reason is that there is always two sides of an exchange rate: Currency X/Y quoted in the
first currency is equal to Y/X, then quoted in the second currency. As a result, that negative
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innovations of an exchange rate have larger impact on the volatility than the positive innova-
tions must mean that, quoted in the other currency, the positive innovations have larger impact
than the negative innovations. That a negative innovation has larger impact on the volatility
could seem natural, but that a positive innovation would have the same effect seems less so. A
symmetrical model would appear to better catch this two-way behaviour. As it is, however, the
EGARCH model proved a better fit for several of the exchange rates and helped removing some
of the sign bias that was there while only using a GARCH model.

For the monthly residual maxima no good copula model was found for the EUR-DKK series.
To find a better model more types of copulas should be tried, e.g. the models implemented
in the evd package in R. In that case a goodness-of-fit test for extreme value copulas would
however need to be implemented, since there is none in this package. It should also be noticed
that there was also a problem with the EUR-DKK series for the quarterly maxima, and that the
EUR-DKK series has a dependence far higher than any of the other residual pairs. This makes
it more probable that there is something peculiar with this series that the other series lack and
that this might be solved with another type of model. In the same way more models would have
to be tried for the daily residuals, since there were several of these for which no good copula
model was found. It could also be interesting to investigate why it was so much harder to find
convincing models for the daily residuals than for the monthly and quarterly maxima. Could
it be that there is less information to model in the daily returns since this is better caught by
the ARMA-GARCH model and that more information remains in the extreme values, or is it
simply depending on what copula models were tested for the different series?
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A Appendix: plots and tables

The auto correlation function for the standardized residuals and the squared standardized resid-
uals after fitting the data series to the final ARMA-GARCH models in table (2) can be found
in figures (13)-(14) for SEK/USD, (5)-(6) for SEK/EUR, (15)-(16) for SEK/JPY, (17)-(18) for
SEK/GBP, (19)-(20) for SEK/100 DKK and (21)-(22) for SEK/100 NOK.

Figure 13: The autocorrelation function for
the standardized residuals of the SEK/USD
series after the final GARCH model has
been fitted.

Figure 14: The autocorrelation function for the
squared standardized residuals of the SEK/USD
series after the final GARCH model has been
fitted.

The rolling estimation of Kendall’s τ with a window size of 12 months for the monthly residual
maxima pairs can be seen in figures (23)-(26). The corresponding plots for the quarterly maxima
with a window size of 12 quarters can be seen in figures (27)-(30).

The scatterplots for the monthly maxima pairs and the quarterly maxima pairs can be found in
figures (31) and (32).
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Figure 15: The autocorrelation function for
the standardized residuals of the SEK/JPY
series after the final AR-EGARCH model has
been fitted.

Figure 16: The autocorrelation function for the
squared standardized residuals of the SEK/JPY
series after the final AR-EGARCH model has
been fitted.

Figure 17: The autocorrelation function for
the standardized residuals of the SEK/GBP
series after the final ARX-EGARCH model
has been fitted.

Figure 18: The autocorrelation function for the
squared standardized residuals of the SEK/GBP
series after the final ARX-EGARCH model has
been fitted.
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Figure 19: The autocorrelation function for
the standardized residuals of the SEK/100
DKK series after the final AR-EGARCH
model has been fitted.

Figure 20: The autocorrelation function for the
squared standardized residuals of the SEK/100
DKK series after the final AR-EGARCH model
has been fitted.

Figure 21: The autocorrelation function for
the standardized residuals of the SEK/100
NOK series after the final AR-EGARCH
model has been fitted.

Figure 22: The autocorrelation function for the
squared standardized residuals of the SEK/100
NOK series after the final AR-EGARCH model
has been fitted.
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Figure 23: A rolling estimation of Kendall’s τ with a window size of 12 months for the monthly
residual maxima pairs USD-EUR, USD-GBP, USD-JPY and USD-DKK.

Figure 24: A rolling estimation of Kendall’s τ with a window size of 12 months for the monthly
residual maxima pairs USD-NOK, EUR-GBP, EUR-JPY and EUR-DKK.

40



Figure 25: A rolling estimation of Kendall’s τ with a window size of 12 months for the monthly
residual maxima pairs EUR-NOK, GBP-JPY, GBP-DKK and GBP-NOK.

Figure 26: A rolling estimation of Kendall’s τ with a window size of 12 months for the monthly
residual maxima pairs JPY-DKK, JPY-NOK and DKK-NOK.
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Figure 27: A rolling estimation of Kendall’s τ with a window size of 12 quarters for the quarterly
residual maxima pairs USD-EUR, USD-GBP, USD-JPY and USD-DKK.

Figure 28: A rolling estimation of Kendall’s τ with a window size of 12 quarters for the quarterly
residual maxima pairs USD-NOK, EUR-GBP, EUR-JPY and EUR-DKK.
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Figure 29: A rolling estimation of Kendall’s τ with a window size of 12 quarters for the quarterly
residual maxima pairs EUR-NOK, GBP-JPY, GBP-DKK and GBP-NOK.

Figure 30: A rolling estimation of Kendall’s τ with a window size of 12 quarters for the quarterly
residual maxima pairs JPY-DKK, JPY-NOK and DKK-NOK.
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Figure 31: Scatterplot for the monthly maxima
of the residual pairs.

Figure 32: Scatterplot for the quarterly maxima
of the residual pairs.
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