

Modelling of Wave Propagation
in Combustion Engines

Emma Gustavsson

June 2014, Lund

Föreliggande examensarbete p̊a civilingenjörsniv̊a har genomförts vid Avd. för
Förbränningsmotorer, Inst. för Energivetenskaper, Lunds Universitet - LTH samt
vid Modelon i Lund. Handledare p̊a Modelon: Daniel Andersson; handledare p̊a
LU-LTH: Prof. Per Tunest̊al; examinator p̊a LU-LTH: Docent Martin Tunér.

Examensarbete p̊a Civilingenjörsniv̊a

ISRN LUTMDN/TMHP-14/5316-SE

ISSN 0282-1990

c©2014 Emma Gustavsson samt Energivetenskaper

Förbränningsmotorer
Institutionen för Energivetenskaper
Lunds Universitet - Lunds Tekniska Högskola
Box 118, 221 00 Lund

www.energy.lth.se

Abstract

In engine design and control a phenomenon having a large impact is the pressure
waves in the intake and outlet manifolds. The transient behaviour of the flow will af-
fect the performance of an engine and is therefore important to be modelled correctly.
There exist a number of different methods solving transient flow situations, mainly
divided into two groups: lumped- and distributed parameter models. The first are
often lacking in physical accuracy, for example by using mean valued methods, but
are easy to simulate. The latter are accurate but are often heavy to simulate. In this
report a lumped-parameter model called the Quasi-Propagatory Method, the QPM,
is presented. This method takes into account the inertia of the fluid and captures
the waves in a physically adequate manner. The lumping property of the model
enables the possibility of simulation in real-time, still the method is accurate and
true to nature. Starting from the governing equations for unsteady flow and using
theory from the Method of Characteristics, a dynamic expression for the velocity in
a pipe is found. In this report the theory behind, and an implementation in Model-
ica of the Quasi-Propagatory Method is given. The method presented is general and
suffers from the need of solving non-linear systems of equations which may in certain
cases prohibit real-time simulations. A loss in generality would however solve this
problem which is described in the report. The model is found to give reasonable
results that captures transients and is then compared to two other models. The
comparisons are not optimal, since the assumptions made in the different models
are not equivalent and none is proven to be superior, therefore experimental results
would be desirable to ensure the applicability of the model.

Acknowledgements

First of all I would like to thank my advisors Daniel Andersson, at Modelon, and
Per Tunest̊al, at the Energy Science Department at Lund University, for helping
and guiding me through the project. I would also like to thank Modelon for the
opportunity to do my master thesis there. Special thanks to Antonio Sciarretta for
taking time to answer my questions about your articles. Lastly, thanks to father,
family and friends for supporting me through the project.

Contents

1 Introduction 9

1.1 Methods for Solving Pipe Flow . 10

2 Theory 13

2.1 Governing Equations . 13

2.2 Four-Stroke Engines . 14

2.2.1 Pressure Waves . 14

2.2.2 The Manifolds . 15

2.3 Method of Characteristics . 16

2.4 The Quasi-Propagatory Method . 17

2.4.1 Homentropic Flow . 17

2.4.2 Non-Homentropic Flow . 21

2.4.3 Static vs Stagnation BC . 22

3 The Model 25

3.1 Implementation of the Model . 25

3.2 Preliminary Tests . 34

4 Results 49

4.1 Comparing with simpleP ipe . 49

4.2 Compare with MOC . 53

5 Discussion 63

5

CONTENTS CONTENTS

5.1 Comparing with simpleP ipe . 63

5.2 Comparing with MOC . 63

5.3 Conclusion . 66

Bibliography 67

A Boundary Conditions 69

A.1 Homentropic Inflow . 69

A.1.1 Partially Open Boundary . 70

A.2 Homentropic Outflow . 71

A.3 Non-homentropic Inflow . 73

B Derivations 75

B.1 Eq. 2.1.1 – Continuity . 75

B.2 Eq. 2.1.2 – Momentum . 76

B.3 Eq. 2.1.3 – Energy . 76

B.4 Eq. 2.4.5 and 2.4.6 – Successions . 77

B.5 Eq. 2.4.9 and 2.4.12 – Dynamic Model 78

B.6 Eq. 2.4.15 and 2.4.16 – Successions 79

C Setup of Tests 81

D Modelica Code 83

6

Nomenclature

Lower case
a local speed of sound [m/s]
c wave propagation speed [m/s]
f Fanning friction factor [-]
fD Darcy-Weisbach friction factor [-]
h specific enthalpy [J/kg]
k0 model parameter (=1) [-]
p pressure in the middle of the pipe [kg/(m·s2)]
pu0 pressure of linearised upstream boundary condition u=0 [kg/(m·s2)]
pd0 pressure of linearised downstream boundary condition u=0 [kg/(m·s2)]
ps critical pressure (sonic limit) [kg/(m·s2)]
q heat transfer per unit mass per unit time [J/(kg · s)]
t time [s]
u velocity in x-direction in the middle of the pipe [m/s]
x spatial coordinate [m]

Upper case
A dimensionless local speed of sound [-]
A slope of upstream boundary condition [kg/(m2·s)]
B slope of downstream boundary condition [kg/(m2·s)]
C characteristic slope [kg/(m2·s)]
D diameter of pipe [m]
F cross-section area of pipe (circular) [m2]
G friction force per unit mass [m/s2]
L length of pipe [m]

Q̇ net heat energy transfer [J/s]
R specific gas constant [J/(mol · K)]
U dimensionless velocity [-]

7

CONTENTS CONTENTS

Greek Letters
α1,2 non-homentropic term [kg/(m · s2)]
∆1,2,3 non-homentropic term [m/s2]
∆p pressure difference [kg/(m·s2)]
κ specific heat ratio [-]
λ model parameter [-]
ξ model parameter [-]
τ time constant [s]
ρ density [kg/m3]
φ area ratio downstream [-]
ψ area ratio upstream [-]
ω pulsation [rad/s]

Subscripts
∞ steady-state
d downstream end
int intersection
u upstream end
j time succession

Abbreviations
CFD Computational Fluid Dynamics
MOC Method of Characteristics
MTF Method of Transfer Functions
QPM Quasi-Propagatory Method
SBF Spatial Base Functions

8

Chapter 1

Introduction

It has long been known that the performance of an engine depends on the transient
behaviour of the flow in the intake- and exhaust manifolds. In [1](p. 13) it is stated
that as early as 1938, Framer refers to work from one hundred years before, where
it was found that the volumetric efficiency, that is connected to the performance,
of an engine can be affected by the length of the exhaust pipe. Due to the periodic
process in an internal combustion engine, pressure waves will travel back and forth
in the manifolds, affecting the mass flow into and out of the cylinder and thus the
performance of the engine. Ergo, it is important that these transients are correctly
modelled to be able to optimise the volumetric efficiency when designing an engine.
Another aspect that is highly up-to-date is the importance of being able to estimate
the amount of air inside the cylinder to optimise the fuel consumption and the
amount of emissions in order to reduce the environmental impacts.

In this work the aim is to find a model to simulate the pressure waves in the manifolds
in real-time. There are many methods existing to solve the governing equations for
a flow, but to find an accurate model with the capacity to be solved in real-time is a
challenge. The focus in this report will be on a method called the Quasi-Propagatory
Method. First, some other methods will be mentioned and given a brief overview
below, with focus on methods aiming for real-time simulations. In the second chapter
a deeper description of the theory behind the problem and the Quasi-Propagatory
Method is given. This is followed up by a discussion of some implementational
issues when implementing the method and some preliminary tests are provided to
give an insight into how the model works. Finally, comparisons with other models,
from Modelon’s library and provided through [2], are made and results are presented
and discussed. In the Appendix, derivations of boundary conditions used, and the
implementation of the model in Modelica can be found. Also, some extra derivations
are given for certain equations in the Appendix for interested readers.

9

1.1. METHODS FOR SOLVING PIPE FLOW CHAPTER 1. INTRODUCTION

1.1 Methods for Solving Pipe Flow

In order to solve the pressure waves in a pipe, many models are available, with their
pros and cons. By manipulating the governing equations, the equations describing
the flow, and make different simplifying assumptions the models provide results
with more or less accuracy. General assumptions made in e.g. system- and control
design in engine applications are that the flow can be considered as one-dimensional
and that the fluid can be modelled as an ideal. One of the earliest approaches to
solve the unsteady flow was the Method of Characteristics, MOC. This method was
dominating earlier, but is now replaced by finite-differences, FD, and finite-volume,
FV, methods [1](p. 54). These methods are accurate but computationally heavy
since they are solving an approximate pressure profile on a grid throughout the
whole region. Models using this approach are called distributed-parameter models.
The opposite, models capturing the nature of the flow in discrete points are called
lumped-parameter models. One widely used lumped-parameter model is the filling-
emptying method, connecting the pressure difference over a region with a mean
velocity of the flow within the region. This method models the flow in a steady
manner, ignoring the inertia of the fluid, thus the velocity is changing immediately
with a change of pressure. The MOC, FV and FD methods are accurate and may
be necessary when simulating three-dimentional flows. However, in a pipe one can,
as said, in general assume one-dimensional flow as a compromise between accuracy
and computational time. A number of works have been performed trying to find
a more efficient method to capture the pressure wave phenomenon without loss in
accuracy in one dimension, some of them will be reviewed in the following.

The first method to be mentioned, found in [3], uses analogies with mass-spring-
damper systems and the transfer functions describing these. One considers the
compressibility of the gas as equivalent to a spring, the air in the pipe as a mass and
the viscosity as a damper. Through the Laplace transform a transfer function can be
identified connecting the pressure with the mass flow in the frequency domain. Not
having to solve the differential equations in the time domain makes this method ef-
ficient and possible to simulate in real-time. However, the transfer function depends
on empirically determined parameters and is thereby only applicable in certain cases
and configurations. It is shown that the parameter can be determined analytically,
as a function of the length and diameter of the pipe, when using a simple geometry.
In these simplified cases this is a cheap method that gives accurate results. A major
drawback is nevertheless this dependance on experimental data, further investiga-
tions and new experiments would have to be made to include for example junctions,
throttles and temperature differences.

The next method, found in [4], uses empirically determined spatial base functions,
SBF, onto which the partial differential equations, the governing equations, are pro-
jected to obtain ordinary differential equations. These are then solved using a finite
volume scheme on a grid, staggered in time and space. The use of SBF allows the
properties of the fluid to be non-uniform over the control volume, giving the possi-
bility to reduce the number of cells without reducing the accuracy. This approach

10

CHAPTER 1. INTRODUCTION 1.1. METHODS FOR SOLVING PIPE FLOW

could give the possibility of real-time simulations, but, as in the previous case, the
need of experimentally, or through CFD simulations, decided base functions, de-
pending on both geometry and boundary conditions is an inconvenience limiting
the applicability of this method.

One last method that could be interesting to investigate further in a future work
is the Method of Transfer Functions, MTF. In this method the flow is modelled
in analogy with electrical phenomena and the equations are again solved using the
Laplace transform. In [5] this method is improved including non-homentropic con-
ditions and more accurate modelling of the boundary conditions. It is then said to
have the same accuracy as the Method of Characteristics and the Quasi-Propagatory
Method, and less computational time.

Finally, the method that is focused on in this report, the Quasi-Propagatory Method,
will be introduced. The Quasi-Propagatory Method is a lumped-parameter model
that, in contrast with the filling-emptying method, includes the inertia of the fluid.
The method is described in [6], [7] and [2]. In the Quasi-Propagatory Method, further
on called the QPM, the geometry is divided into one or more branches connected
to each other by finite volumes called capacities. In the capacities the pressure
and the temperature of the fluid are evaluated. When knowing the pressure and
temperature in the capacities, the velocity in the branches in-between the capacities
can be calculated in the middle points. The velocities in the branches affect the
pressures in the capacities that will change and thus change the velocities in the
branches and so on. One wants to link the pressure difference over the branch
with its middle-point velocity and this is done through an analysis of waves using
the Method of Characteristics. Through MOC the proceeding of velocity states
in the pipe towards steady state is provided and with given boundary conditions,
dynamical expressions for the velocity in the middle point is found. The idea is that
a system will always strive, as described by the dynamic expression, towards steady
state. When the boundary conditions are changing the steady value of the velocity
is changing and through the dynamic model the velocity will strive towards this new
value. The lumped-parameter approach of the method decreases the computational
time, and a physically authentic derivation of equations used, increases the accuracy
of the method. In [6], [7] and [2] the method is shown to give accurate results. The
reason this method was chosen was that it is relatively well-documented, and has a
low enough complexity to be implemented and simulated in real-time.

11

Chapter 2

Theory

In this chapter the necessary theory will be given, starting with the governing equa-
tions describing the flow, followed by an introduction to the flow situation in engine
manifolds. Finally, the derivation of the method to be used, the Quasi-Propagatory
Method, is given. Some equations are derived in more detail in Appendix B for the
interested reader.

2.1 Governing Equations

The governing equations describing the flow in a pipe are the continuity equation,
momentum equation and energy equation for unsteady and compressible flow. In
this case the study of the pressure waves in the intake and exhaust manifolds in an
engine are of interest. For a pipe section in the manifolds the flow can be treated
as one-dimensional if the ratio of the pipe’s length and diameter is large enough for
the flow to become fully developed, a valid assumption in the pipe sections of an
engine manifold where the ratio is usually small and the velocity is large, [8] (p.
6-7). This assumption is not valid when considering bends or junctions of a pipe,
which is often compensated using empirically determined loss coefficients [1](p. 27).
The governing equations describing this case are given in [9](p. 62-68), simplified
for an ideal gas in a pipe with cross-section area F , possibly varying with x. They
are the continuity equation

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+
ρu

F

dF

dx
= 0, (2.1.1)

the momentum equation

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+G = 0 (2.1.2)

and the energy equation

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
− (κ− 1)ρ(q + uG) = 0, (2.1.3)

13

2.2. FOUR-STROKE ENGINES CHAPTER 2. THEORY

where G = 1
2
u|u|f 4

D
, with u as the velocity in the x-direction, D as the diameter

of the pipe and f as the Fanning’s friction factor. Furthermore, the pressure of the
fluid is denoted p, the local speed of sound a, the density ρ and the specific heat
ratio κ. Finally, the heat transfer energy per unit mass and unit time q, found in
the energy equation, is calculated through the net heat energy transfer rate Q̇ as

q = Q̇
ρFL

, where L is the length of the pipe. The governing equations are partial
differential equations that are not possible to solve analytically; numerical methods
are needed.

2.2 Four-Stroke Engines

A four-stroke engine is characterised by, as the name suggests, four strokes in each
cycle. The first is the intake stroke, the second the compression stroke, the third is
called the power stroke and the last is the exhaust stroke. During the intake stroke,
the intake valve is open and the piston is moving downwards, increasing the volume
in the cylinder making the fluid in the intake duct flow into the cylinder. This fluid
may be air or air mixed with fuel, possibly also mixed with exhaust gas when using
EGR, depending on the type of engine. In the next stroke, the compression stroke,
the intake valve closes and the piston is now going upwards making the pressure
increase in the cylinder. In the beginning of the power stroke the combustion is
started increasing the pressure even more, causing the piston to be pushed down,
performing work. Finally, the exhaust valve opens and the exhaust stroke starts
when the piston is at the bottom. The piston is going up causing the combustion
gases to exit the cylinder before the cycle repeats [10](p. 3).

2.2.1 Pressure Waves

In the following, the focus will be laid on the first and the last stroke in the cycle,
investigating the pressure waves developed when the valves are opened and closed.
The reason for this interest is that the pressure at the intake valve to a considerable
degree influences the performance of the engine. The performance of the engine
can is dictated by the volumetric efficiency that is the ratio between the amount
of air that can be ingested in the cylinder and the maximal amount of air that
theoretically can be contained in the cylinder [1](p. 8). Since the mass flow is
connected to the pressure difference over the valve, a high pressure at the inlet
valve will give a high mass flow into the cylinder, thus increasing the volumetric
efficiency. One part of engine design is to consider this and optimise the length of
the intake duct, ensuring the pressure wave to arrive at the right time to maximise
the amount of air in the cylinder. Another interest is to be able to predict the
transient behaviour in real-time to use online in control systems. It is therefore
crucial to correctly model the behaviour of these pressure waves [1](p. 14). This
consideration of the transient behaviour is mainly of interest in naturally aspirated
engines. In contrast, turbocharged engines, using compressors and turbines to force

14

CHAPTER 2. THEORY 2.2. FOUR-STROKE ENGINES

air into the cylinders, will not be as affected by these phenomena [1](p. 5).

The pressure waves emerge when the valves are open and the movement of the piston
is causing the pressure in the cylinder to decrease, when the intake valve is open and
the piston is moving downwards, or increase, when the exhaust valve is open and
the piston is going upwards. This reduction, respectively enhancement, in pressure
will propagate into the intake or exhaust pipe respectively. In the intake pipe a
rarefaction wave will be developed and travelling through the pipe. When reflected
at the end of the pipe this rarefaction wave will become a compression wave, due
to the open-end boundary, travelling back towards the cylinder. Optimally, the
compression wave would reach the intake valve when it is closing, boosting the
inflow. At the exhaust pipe, a compression wave will propagate from the cylinder
towards the end of the pipe, where it is being reflected and becomes a rarefaction
wave. Depending on the period of the valves, if the intake and exhaust valves are
open partially at the same time, this wave could propagate into the intake pipe,
affecting the flow situation [10](p. 459-462). This is yet another thing to consider
when optimising the design of an engine. The rarefaction wave can also benefit the
scavenging of the cylinder, i.e. the emptying and filling of the cylinder [1](p. 206).

2.2.2 The Manifolds

Simplified, the intake manifold of an engine consists of one or more pipes, one for
each cylinder in the engine, with either one air filter for each pipe or a single filter
from which the airflow can be distributed into the different pipes. Upstream of the
inlet manifold there is in gasoline engines a throttle valve used to control the mass
flow into the cylinder, [11] (p. 83).

The exhaust manifold is essentially the reverse of the intake manifold, the exhaust
gas from the cylinders is collected into one exhaust pipe [11] (p.88-92). In the
exhaust system there is also a silencer and a catalytic converter.

The flow and the propagation of pressure waves through junctions are a multi-
dimensional problem that is hard to represent and solve in one- dimension. Instead
one often relies on empirical studies providing loss coefficients. The same holds
for the throttle, the air filter, the silencer and the catalytic converter, as well as
the valves. The loss coefficients are given for most situations in tables and enables
calculations of the pressure drop caused by the component.

EGR, exhaust gas recirculation, meaning that some of the exhaust gas is mixed with
the inflow can be handled by considering a new fluid. Based on information about
the exhaust gas, new properties of the fluid can be determined.

15

2.3. METHOD OF CHARACTERISTICS CHAPTER 2. THEORY

2.3 Method of Characteristics

In this section the Method of Characteristics, MOC, will be briefly summarised. For
further investigations a detailed analysis can be found in [9].

To begin with, different sources use different foci; in [9], the analysis is made with
respect to u and a, the velocity and the velocity of sound, whereas [6], [7] and [2]
are considering u and p, the velocity and the pressure, as independent variables. For
an ideal gas with constant specific heats it holds that a2 = κp

ρ
, so the analysis can

easily be translated from one set of states to the other.

Now, starting by combining the governing equations to two new equations as
1
ρa

(Eq. 2.1.3 + a2 Eq. 2.1.1 ± ρa Eq. 2.1.2) = 0 (here written with notations as

in [2]),

1

C

(
∂p

∂t
+ (u+ a)

∂p

∂x

)
+

(
∂u

∂t
+ (u+ a)

∂u

∂x

)
+ ∆1 + ∆2 + ∆3 = 0 (2.3.1)

and

1

C

(
∂p

∂t
+ (u− a)

∂p

∂x

)
−
(
∂u

∂t
+ (u− a)

∂u

∂x

)
+ ∆1 + ∆2 −∆3 = 0. (2.3.2)

Here C = κp
a

, ∆1 = − (κ−1)(q+uG)
a

, ∆2 = au
F
dF
dx

and ∆3 = G. The energy equation can
be written as

1

C

(
∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

))
+ ∆1 = 0. (2.3.3)

The idea is now to find lines, so called characteristics, along which these partial
differential equations can be transformed to a set of ordinary differential equations.
The solution of the partial differential equations is of the form p = p(x, t), u =
u(x, t). Assuming there exists a function c = c(p(a), u) uniquely connecting the
pressure and the velocity, the solution is of the form c = c(x, t). By the chain rule
dp
dt

= ∂p
∂t

+ ∂p
∂x

dx
dt

and du
dt

= ∂u
∂t

+ ∂u
∂x

dx
dt

. Now, defining the characteristic lines as dx
dt

= c
and taking c(p(a), u) = u+a, Eq. 2.3.1 is given as an ordinary differential equation.
That is, the characteristics for Eq. 2.3.1 are given by

dx

dt
= u+ a, , (2.3.4)

dp

dt
=
∂p

∂t
+ (u+ a)

∂p

∂x
(2.3.5)

and
du

dt
=
∂u

∂t
+ (u+ a)

∂u

∂x
. (2.3.6)

Using these expressions Eq. 2.3.1 can be written as

1

C

dp

dt
+
du

dt
+ ∆1 + ∆2 + ∆3 = 0. (2.3.7)

16

CHAPTER 2. THEORY 2.4. THE QUASI-PROPAGATORY METHOD

This is called the compatibility equation and Eq. 2.3.4 is called the direction equa-
tion. The direction equation gives the slope of the characteristics in the x-t plane
and the compatibility equation gives the relation between the states p and u along
these lines.

In the same way one gets the other direction equations and their compatibility
equations. To summarise there are three sets of characteristic equations: dx

dt
= u±a

with
1

C

dp

dt
± du

dt
+ ∆1 + ∆2 ±∆3 = 0 (2.3.8)

and dx
dt

= u with

1

C

(
dp

dt
− a2dρ

dt

)
+ ∆1 = 0. (2.3.9)

The characteristic equations are ordinary differential equations that, when solved
using the correct time step, as described by the direction equation, will describe the
unsteady flow, thus including the pressure waves.

2.4 The Quasi-Propagatory Method

In the Quasi-Propagatory Method, the QPM, analysis of waves using MOC provides
a derivation of a dynamical model that links the pressure difference over a pipe to
the velocity in the middle of the pipe. As previously mentioned, this is called
a lumped-parameter model, since the whole pipe is described in one velocity. In
the following the derivation of the dynamical model is performed starting with a
simplified QPM, assuming homentropic flow. Finally, the QPM for non-homentropic
flow is introduced.

2.4.1 Homentropic Flow

In the following, homentropic flow will be considered in a pipe of constant cross-
section area. For homentropic flow a graphical representation of the problem can be
provided, giving a feeling for how the method works. Homentropic flow is defined as
a flow where the entropy is uniform in time and space. For now it will be assumed
that the flow has no heat transfer or wall friction, that is q = 0 and f = 0, as
described in [1] (p.32). In this case ∆1 = ∆2 = ∆3 = 0. The energy equation is now
a2 = dp

dρ
, which is the relation between the pressure, density and speed of sound at

isentropic conditions, and the characteristic equation sets are

dx

dt
= u± a (2.4.1)

and
dp

du
= ∓C = ∓κp

a
. (2.4.2)

17

2.4. THE QUASI-PROPAGATORY METHOD CHAPTER 2. THEORY

These equations are often represented in the so-called position and state diagram
respectively. The state of a point defined by the intersection of two characteristics
in the position plane, is given by the corresponding intersection point in the state
plane. From a boundary condition that models the relation between p and u, or a
and u, the solution of the problem can be achieved by finding intersection points in
the state diagram using the known slopes of the characteristics given by Eq. 2.4.2
and then the corresponding points in the position diagram. In MOC, the states, the
velocities and pressures, of the fluid are resolved from the state diagram and the
positions and time points where and when these states are achieved can be resolved
from the position diagram.

One can note that u + a is the speed of a pressure wave in the flow direction and
u− a the speed of a pressure wave in the opposite direction. The characteristics are
thus corresponding to waves propagating information in the flow.

u_inf

p_d

p_inf

p_u

0
2

1
3

 Velocity, u

 P
re

s
s
u

re
,

p

 State Diagram

Figure 2.1: The state diagram with
the boundary curves for the up-
stream and downstream boundary
conditions.

u_inf

p_d

p_inf

p_u

0

2

1

3

 Velocity, u

 P
re

s
s
u

re
,

p

 State Diagram

Figure 2.2: The state diagram with
the boundary curves and the lin-
earised boundary conditions for the
upstream and downstream boundary
conditions.

A dynamical model describing how the velocity strives towards the steady state is
sought. A state diagram showing the boundary conditions is given as in [6] and [7]
and is seen in Fig. 2.1. The pressure upstream of the pipe is denoted pu and the
pressure downstream is called pd. As indicated in the figure the steady state values,
p∞ and u∞, are given by the intersection of the boundary conditions. The boundary
conditions are, as mentioned earlier, models of the relation between the velocity and
pressure at the boundary. Modelled at the upstream end is the pressure drop, from
pu to the pressure inside the boundary, occuring at an accelleration to a certain
velocity inside of the boundary. As seen in Fig. 2.1, the upstream boundary condition
shows a pressure decreasing as the flow is accellerating. At the downstream end the
model describes the pressure needed inside of the boundary to have an outflow at
a certain velocity given the downstream pressure pd, a higher velocity demands a
higher pressure inside of the boundary. The steady state is reached when both
these conditions are fulfilled. Note that this steady value holds within the pipe,

18

CHAPTER 2. THEORY 2.4. THE QUASI-PROPAGATORY METHOD

x=0 x=L/2 x=L

t1

t2

t3

 Space, x

 T
im

e
,
t

 Position Diagram

0

1

2

Figure 2.3: The position diagram corresponding to the characteristics in Fig.2.2.
The time points for the states to arrive at the middle point are indicated.

outside each end of the pipe there is still a pressure difference driving the flow at a
velocity u∞ at steady state. Some states are indicated in the figure as points and
the characteristic lines are shown as dashed lines, showing how the velocity state
strives towards steady state. The slope of the characteristics are ±C = ±κp

a
, as

stated in Eq. 2.4.2.

Given the steady values one can easily linearise the boundary conditions as seen in
Fig. 2.2. The linearised boundary conditions are given by

p = pu −
pu − p∞
u∞

u = pu − Au (2.4.3)

and

p = pd +
p∞ − pd
u∞

u = pd +Bu, (2.4.4)

where A and B are the linearised slopes of the upstream respectively downstream
boundary conditions. From the different slopes in the linearised state diagram the
succession of the velocity states can now be shown to be

u2j+2 = (1− λ)u∞ + λu2j (2.4.5)

and
u2j+1 = (1− ξ)u∞ + ξu2j, (2.4.6)

where λ = (C−B)(C−A)
(C+B)(C+A)

and ξ = C−B
C+A

.

The position diagram corresponding to the state diagram Fig. 2.2 is seen in Fig. 2.3.
In this case the system starts from a zero velocity state and a disturbance in pressure
is occurring at t = 0 at the upstream end. The slopes of the characteristics in the
position diagram are u±a as stated in Eq. 2.4.1. The time points at which the middle
point will achieve the states (0, 1, 2, ...) are indicated as dots, as in [6]. As seen this

19

2.4. THE QUASI-PROPAGATORY METHOD CHAPTER 2. THEORY

is a simplification, assuming that the states are achieved when the wave has travelled
from one end to the other the time points will be slightly shifted. At first the whole
system has the initial states, p = pd, u = 0. At time t1 the information from
the upstream boundary will reach the middle point, the state is now as indicated in
Fig. 2.2, u1 and p1. Again, this is a simplification as the information actually reached
the middle point earlier, at time t1 the information has reached the downstream end
at x = L. This value is kept until the conditions from the downstream boundary
propagate to the middle point that achieves the state u2, p2, at time t2. Assuming
that the slopes of the characteristics, i.e. the propagation velocities from upstream
and downstream is c = a ± u depending on the propagation direction of the wave,
then the time points in Fig. 2.3 can be calculated as tj = j L

c
, where L is the length

of the branch.

It can now be shown that for λ > 0 the even velocity states (u0, u2, u4, ...) are given
by

u(t) =
(

1− e−
t
τ

)
u∞ (2.4.7)

and the odd velocity states are given by

u(t) =

(
1− ξ√

λ
e−

t
τ

)
u∞, (2.4.8)

with τ = − 2L
clnλ

. These equations correspond to the dynamical model

du

dt
=
u∞ − u

τ
. (2.4.9)

If λ < 0 the even velocity states are given by

u(t) =
(

1− e−
t
τ cos(ωt)

)
u∞ (2.4.10)

and the odd velocity states by

u(t) =

(
1− ξ√

λ
e−

t
τ sin(ωt)

)
u∞, (2.4.11)

with τ = − 2L
cln|λ| and ω = πc

2L
. The dynamical model is then

d2u

dt2
= −2

τ

du

dt
+

(
1

τ 2
+ ω2

)
(u∞ − u). (2.4.12)

The sign of λ is shown in [7] to be dependent on the area ratios at the throats, that
are the ratios between the throat areas and the pipe cross-section areas at each end.
When there is a small opening the velocity will oscillate around the steady value
before reaching it, with an angular frequency ω. From these dynamical models the
velocity in the middle point of a branch can be calculated from the conditions in the
capacities surrounding it. The solution procedure as described in [6] is to first define
a time interval. Then, at each time step the velocities in each branch are calculated
through either Eq. 2.4.9 or Eq. 2.4.12 depending on the value of λ, depending on

20

CHAPTER 2. THEORY 2.4. THE QUASI-PROPAGATORY METHOD

the boundary conditions at that time point. From these, the mass and energy flow
rates can be calculated and used to evaluate the pressures and temperatures in the
capacities through the mass and energy equations.

In Appendix A boundary condition equations are derived, as well as their linearisa-
tion, when possible, giving A, pu0, B and pd0.

2.4.2 Non-Homentropic Flow

In a non-homentropic case the entropy is no longer constant and both wall friction
and heat transfer are present. One could probably assume homentropic flow in the
inlet duct since the temperature does not affect the flow significantly, but the exhaust
pipe flow is a totally different case where there are large temperature fluctuations
that have a substantial impact on the flow. Therefore, it is important to derive a
model considering the non-homentropic effects for usage in engine applications.

The idea of the method is still the same; for a specific pressure difference over a
duct with certain geometry, the velocity will strive towards a steady value. If the
boundary conditions are changing, the steady state will change and the velocity will
follow.

In [2] the velocity and pressure states resulting from upstream respectively down-
stream conditions are denoted uu,j and pu,j for the upstream end and ud,j and pd,j
for the downstream end. In [2] the boundary conditions for homentropic flow are
still used, now linearised around the value of the velocity in the middle point, u∗,
and relations for the variables are claimed to be

pu,j = pu0 − Auu,j, (2.4.13)

pd,j = pd0 +Bk0ud,j. (2.4.14)

Here k0 is the ratio between the steady entropy levels upstream and downstream
of the pipe, that is equal to one when the flow is homentropic. However, since
the motivation of these relations is not stated, boundary conditions are derived
considering entropy changes and found in Appendix A, thus non-homentropic flow
are used, thus the correction is not needed and one can set k0 = 1.

Combining Eq. 2.4.13 and 2.4.14 with 2.3.8, integrated over the time between two
wave reflections, one can eventually reach the expressions for the progression of the
upstream and downstream velocities as

uu,i+1 =
C −B
C +B

C − A
C + A

uu,i +
2

C +B

C

C + A
(pu0 − pd0)− 1

C + A

(
α1
C −B
C +B

− α2

)
(2.4.15)

and

ud,i+1 =
C −B
C +B

C − A
C + A

ud,i +
2

C +B

C

C + A
(pu0 − pd0)− 1

C +B

(
α1 − α2

C − A
C + A

)
,

(2.4.16)

21

2.4. THE QUASI-PROPAGATORY METHOD CHAPTER 2. THEORY

with α1 = ∆1+∆2+∆3

a+u
CL and α2 = −1−∆1−∆2+∆3

a−u CL.

From these expressions one can calculate the steady values for the upstream and
downstream velocity states by setting u(·,i+1) = u(·,i). In the homentropic case, when
both α1 and α2 are equal to zero, the upstream and downstream velocities achieve
the same steady value,

uint =
pu0 − pd0

A+B
, (2.4.17)

which again is the intersection between the boundary conditions.

In the non-homentropic case the expressions for the steady values are found to be

uu,∞ = uint −
C +B

A+B

1

2C

(
α1
C −B
C +B

− α2

)
(2.4.18)

and

ud,∞ = uint −
C + A

A+B

1

2C

(
α1 − α2

C − A
C + A

)
. (2.4.19)

It can be seen that the non-homentropic steady values are the homentropic steady
value minus some non-homentropic terms including the friction and heat transfer.

With

λ =
C −B
C +B

C − A
C + A

, (2.4.20)

as before, the two equations Eq. 2.4.15 and Eq. 2.4.16 can be written as

uu,i+1 = λuu,j + (1− λ)uu,∞ (2.4.21)

and
ud,i+1 = λud,j + (1− λ)ud,∞. (2.4.22)

Since the same model is valid for both the upstream and downstream velocity, it is
assumed to be applicable also for the middle point velocity, i.e.

uj+1 = λuj + (1− λ)u∞, (2.4.23)

with u∞ =
uu,∞+ud,∞

2
.

The dynamical models for the different cases, λ > 0 and λ < 0, are then the same
as for the homentropic case, i.e. Eq. 2.4.9 and Eq. 2.4.12.

2.4.3 Static vs Stagnation BC

As previously stated, the derivation of boundary conditions can be found in Ap-
pendix A. These are the boundary conditions for so called stagnation, or total,
pressure conditions in the inflow case and static conditions in the outflow case. As
described in [12] the stagnation conditions are applicable for inflow from a large
reservoir when there is a pressure drop over the boundary driving the flow into the

22

CHAPTER 2. THEORY 2.4. THE QUASI-PROPAGATORY METHOD

pipe. When the boundary is not bordering a reservoir, but is located inside a pipe
there is no pressure drop over the boundary. When discretising a pipe, static con-
ditions, i.e. constant pressure over the boundary, should be used at the inlet to
avoid unphysical pressure drops decreasing the velocity. There are however some
difficulties associated with this condition. Since the pressure is constant over the
boundary, the slope of the boundary curve, A, is zero. If the outflow side is fully
opened, B will also be close to zero. This combination is of course dangerous since
both the steady value of the velocity and the time variable τ are then approaching
infinity. This can be handled as done in [13], finding the dynamic model for the
velocity like before but with constant boundary equations as

u̇ =
(pu − pd)c

CL
. (2.4.24)

To include the non-homentropic effects, the friction is included, giving the dynamic
model

u̇ =
(pu − pd)c

CL
−G. (2.4.25)

23

Chapter 3

The Model

3.1 Implementation of the Model

The model is going to be implemented in Modelica, an object-oriented, equation-
based language aiming for modelling of the dynamical behaviour of multi-domain
systems. The model is simulated using Dymola that is a Modelica Simulation Envi-
ronment. Introductions to Modelica and Dymola can be found e.g. in [14] and [15].

All the Modelica code can be found in Appendix D. In this section the important
parts in the implementation will be discussed with parts of the code present.

The model to be implemented is based on the QPM for non-homentropic flow pre-
sented in the previous section and is a component corresponding to one branch.
Models for the capacities already exist in Modelon’s library, calculating the pres-
sure and temperature using the governing equations. The inflow is considered to
be a non-homentropic process due to the vortices that influences the energy in the
flow. The fluid is flowing out of the pipe under the assumption that the geometry
is changing smoothly and that there will not be as great influence of vortices that
it will affect the entropy. Therefore, the flow is being considered to be homentropic
in the outflow. When linearising the boundary conditions the linearisation is made
around the state u that is the current velocity in the middle of the pipe.

The goal is that the model should be able to be simulated in real-time with a given
time step. It should be able to handle geometry with different area ratios at the ends
and a linear change in cross-section area over the pipe. Pressure values should be
given at the ends and a possible heat transfer should be given either as an ambient
temperature, using some kind of heat transfer model, or as an energy flow. The
model will be implemented in Modelica and simulated with Dymola, and will be
compatible with Modelon’s Media library for ideal gases.

To help the solver and avoid e.g. denominators equal to zero, φ and ψ, that are
the ratios between the downstream respectively upstream throat area and the pipe
section area at each end, will be bounded between 0.01 and 0.999. The velocity will

25

3.1. IMPLEMENTATION OF THE MODEL CHAPTER 3. THE MODEL

be bounded from below to 0.1 m/s in some calculations. In the model the problem
with a denominator equal to zero is generally handled by limiting the denominator
from below by a suitably small value.

The Dynamic Model As described above the QPM is using MOC to get a
dynamical expression describing the change of the velocity in the middle of the
pipe. The dynamical model for the velocity is, depending on the value of λ

du

dt
=
u∞ − u

τ

or
d2u

dt2
= −2

τ

du

dt
+

(
1

τ 2
+ ω2

)
(u∞ − u)

for positive or negative values of λ respectively.

Since Modelica is an equation-based language, these dynamical equations can be
implemented as they are, using a help variable to be able to express the second
derivative since Modelica can handle first derivatives only, as seen below.

if (lambda > 0) then

der(u) = (u_inf - u) / tau;

der(u_temp) = -u_temp / tau;

else

der(u_temp) = -2/tau * der(u) + (1/tau^2 + omega ^2)*(u_inf - u);

der(u) = u_temp;

end if;

Here the variable u is assumed to be known in every time step, and the value
of its derivative is found using a numerical algorithm to update it. There are a
number of different numerical algorithms available in Dymola, like Euler and Runge-
Kutta, [16]. The sign of λ will depend on the area ratios as described in [7]. For an
area ratio below a critical value the velocity will oscillate around the steady value
before reaching it. Calculation of the help variable utemp = du

dt
has to be performed

at each step, even if the value of λ is positive and the second derivative is not needed.
Identifying, when λ > 0, dutemp

dt
= d

dt

(
u∞−u
τ

)
= − 1

τ
du
dt

= − 1
τ
utemp, this can be used

as an update of the help variable when λ > 0.

To make the code faster the function noEvent can be used as seen below.

der(u) = noEvent(

if lambda > 0 then

(u_inf - u) / tau

else

u_temp);

der(u_temp) = noEvent(

if lambda > 0 then

26

CHAPTER 3. THE MODEL 3.1. IMPLEMENTATION OF THE MODEL

-u_temp/tau

else

-2/tau*der(u) + (1/ tau ^2+ omega ^2)*(u_inf -u));

An event occurs when a condition is activated and will then stop the simulation
to find the exact time point at which the condition was achieved and then an
initialisation problem will be solved from this point. This will make the simula-
tion slow, so if the exact time at which the conditions are achieved is considered
to be of less importance noEvent can be used even though this will give less ac-
curacy, [17]. In the model there is a parameter called useEventLambda, that is
true if one wants to handle the events and false if one thinks it is enough to use
noEvent. For an engine application the value of λ should vary frequently and using
useEventLambda = false may be necessary to be able to simulate in real-time,
results can then be confirmed by simulating with useEventLambda = true.

As been discussed, there is a special case when the upstream boundary is static and
the downstream end is fully opened. When this occurs the dynamic model is as
given in Eq. 2.4.25 and this is included as seen in the final code below.

if p_u >p_d and static_upstream and phi ==1 or

p_d >p_u and static_downstream and psi ==1 then

der(u)=(p_u -p_d)*c/(C*L)-G;

der(u_temp)=0;

else

if useEventLambda then

if (lambda > 0) then

der(u) = (u_inf - u) / tau;

der(u_temp) = -u_temp/tau;

else

der(u_temp)= -2/tau * der(u) +

(1/ tau^2 + omega ^2)*(u_inf - u);

der(u)= u_temp;

end if;

else

der(u) = noEvent(

if lambda > 0 then

(u_inf - u) / tau

else

u_temp);

der(u_temp) = noEvent(

if lambda > 0 then

-u_temp/tau

else

-2/tau*der(u) + (1/ tau ^2+ omega ^2)*(u_inf -u));

end if;

end if;

There is two Boolean parameters static upstream and static downstream present.
The first condition is considering non-reversed flow and the latter is considering
reversed flow. The user is defining whether or not the boundary should be given
static or total conditions. The upstream end is the end corresponding to an area

27

3.1. IMPLEMENTATION OF THE MODEL CHAPTER 3. THE MODEL

ratio called ψ and the downstream end corresponds to the end where the area ratio is
called φ. As will be discussed below this is just notations, when the flow is reversed
the downstream end will physically be upstream. When the flow is non-reversed,
the upstream end is static and the downstream end is fully opened the dynamic
model will be given as in Eq. 2.4.25. Corresponding conditions are present for the
reversed flow case.

Calculation of c The values of τ and ω are calculated as previously derived as
τ = − 2L

cln|λ| and ω = πc
2L

. The question is how to calculate the value of c that
is alternating between a + u and a − u depending on which direction the wave is
travelling. The derivation of the dynamical equations uses the analysis of one wave
to link pressure differences to the velocity in the middle of the pipe. Now, if one
chooses to consider a wave starting at the upstream end and tracking the wave using
the knowledge of the speed and the length of the pipe, it is possible to change the
value of c when it reaches the end of the pipe.

der(x) = c;

xMod = noEvent(mod(x,2*L));

c = noEvent(

if xMod > 0 and xMod < L then

a_u+u

else

a_u -u);

Here a modulo operation is performed to find out where the wave is and where it
is heading. Normally, the modulo operation triggers an event and this will, as been
mentioned, slow down the simulation considerably. To have an event triggered in
each time step is unthinkable if one aims for real-time simulations. For this reason
noEvent is used when calculating the modulo of x. The dynamics of this kind of
system is fast, the wave could travel back and forth in milliseconds. To be able to
simulate in real-time one cannot afford the vast amount of events triggered for each
time c is changed either. Therefore, noEvent is used also for this operation.

Calculation of λ The value of λ, also used in the expressions for τ and ω, is
calculated as

tau = -2*L/(c * log(min(0.999 ,abs(lambda))));

omega = Modelica.Constants.pi * c /(2*L);

lambda = (C-abs(B))/(C+abs(B))*(C-abs(A))/(C+abs(A));

C = k_u*p_u/a_u;

where the properties of the media at the upstream end will be used. This is a
simplification since the state of the fluid outside the pipe is considered, not taking
into account the throat.

28

CHAPTER 3. THE MODEL 3.1. IMPLEMENTATION OF THE MODEL

When the velocity is small A and B approaches zero and λ will be close to one. This
will make the dynamics very slow since τ becomes large and thus du

dt
will become

small. This is a correct behaviour as described by MOC, but when λ becomes equal
to one τ will get a denominator value equal to zero, something that can not be
handled in the simulation. Therefore, the value of λ is limited by 0.999.

The use of absolute values of A and B is due to the reversed flow case and will be
discussed later.

Calculation of A, B, pu0 and pd0 using the Boundary Equations The values
of A and B, as well as pu0 and pd0 used for example in the calculation of u∞ are
calculated, as described in Appendix A, through linearisation of the boundary equa-
tions around the velocity u∗ = u, see Eq. A.0.1, Eq. A.0.2, Eq. A.0.3 and Eq. A.0.4.
In the boundary equations the state of the fluid at the respective end is used, e.g. ku
and au are used in the boundary equations for the upstream end. As has been said
before, the outflow is considered to be homentropic and the inflow non-homentropic.
Both these boundary conditions are derived in Appendix A for subsonic and sonic
flow.

In the case of subsonic outflow the boundary equation does not allow linearisation,
since it is not possible to find an analytic expression p = f(u), see Eq. A.2.4.
There are two alternative approaches to this problem. The first is to, instead of
linearising around u∗ as in [2], instead use the linearisation proposed in [6] and [7],
Eq. 2.4.3 and Eq. 2.4.4. To do this one must find the intersection of the boundary
curve describing subsonic outflow and the boundary curve describing the inflow,
depending on whether the inflow is subsonic or sonic. This will lead to non-linear
systems of equations. Then pd0 = pd and B = p∞−pd

u∞
. In [2], this approach is used

under the assumption that one of the ends is always fully opened, ending up in
simple analytic expressions.

The second approach is to use the definition of the derivative and linearise around
u∗ using B = p1−p2

2∆u
. Here p1 is the pressure solving the boundary equation for

subsonic outflow with a velocity u∗ + ∆u and p2 the pressure solving the equation
for u∗ − ∆u. If one lets ∆u approach zero this would give the derivative of the
function describing the relation between p and u at subsonic outflow around u∗. In
this case it is probably enough to take some percentages of the value of u∗ as the
value of ∆u. The value of pd0 can in this case be set according to Eq. A.0.3, where
f(u∗) is the pressure value corresponding to u∗, given by the boundary equation. The
advantage of this approach is a more accurate slope of the boundary condition, since
the linearisation is made around u∗. The drawback is that three non-linear systems
will occur, one for p1, one for p2 and one for solving the pressure corresponding to
u∗, called psubOut. Nevertheless, this is the approach chosen in the model.

To investigate the behaviour of the boundary condition for subsonic outflow, the
velocity is calculated and plotted for both positive and negative pressures to see all
the possible solutions the solver could find for a specific u. As seen in Fig. 3.1 there is
several solutions for many values of u. There is a great risk that the wrong solution

29

3.1. IMPLEMENTATION OF THE MODEL CHAPTER 3. THE MODEL

0 1000 2000 3000 4000
−2

−1

0

1

2
x 10

6
 Subsonic Outflow, k = 1.4, p

d
 = 1e5, φ = 0.5

 Velocity, u

 P
re

s
s
u

re
 i
n

s
id

e
 b

o
u

n
d

a
ry

,
p

Figure 3.1: The relation between pressure and velocity at the outflow end for sub-
sonic outflow. The downstream pressure is 1 bar. The dashed line shows the critical
pressure.

will be found if using the expression for subsonic outflow as derived in Eq. A.2.4,
especially for low velocities. One solution to this is to rewrite the expression not
allowing the negative solution that is unphysical. Also the solution should not be
found below pd or above the critical pressure, ps, presented below, at which the flow
becomes sonic.

To do this a help variable ptemp is introduced, where p = |ptemp| + pd. A boundary
equation that secures the goals described above can now be found as

u = −sign(ptemp)
min(|ptemp|, ps − pd)−max(|ptemp|, ps − pd) + |ptemp| − (ps − pd)

2max(10−8, (max(|ptemp|, ps − pd)−min(|ptemp|, ps − pd)))

·

√√√√√√√√
∣∣∣∣∣∣∣∣∣

2a2
d

k − 1

max
(

1, |ptemp|+pd
pd

) k−1
k
−1

1

max

(
10−8,φ2max

(
1,
|ptemp|+pd

pd

) 2
k−1

)

∣∣∣∣∣∣∣∣∣ (3.1.1a)

−sign(ptemp)
min(|ptemp|, ps − pd)−max(|ptemp|, ps − pd)− |ptemp|+ (ps − pd)

2max(10−4, (max(|ptemp|, ps − pd)−min(|ptemp|, ps − pd)))

· ad
(
|ptemp|+ pd

pd

) k−1
2k

ψp
− k+1
k−1

cr . (3.1.1b)

Here the expression 3.1.1a is a slightly modified version of the subsonic outflow
boundary condition and 3.1.1b is the expression for sonic outflow. The rest of the
expression ensures that the subsonic expressions are used for pressure values below
the critical pressure and the sonic expressions are used for pressure values above
the critical pressure. Even if the solution to this expression is not going to be used

30

CHAPTER 3. THE MODEL 3.1. IMPLEMENTATION OF THE MODEL

when the pressure is exceeding the critical pressure, one wants to have a smooth
curve and reasonable values to start from in the next step. The reason for having
a max(10−8, ...) in one of the denominators and max(10−4, ...) in the other is that
Dymola will create a residual function which it will try to minimise. If the two
denominators have the exact same expression Dymola will manipulate the residual
function that will be ”simplified” by being multiplied by the denominator, that is,
u · denominator− numerator = 0. In this case there is a solution that holds for all
values of u; |ptemp| = ps − pd, when both the denominator and the numerator are
zero.

Calculating and plotting the velocity against ptemp and against p, Fig. 3.2 shows
that the value of p will follow the subsonic boundary condition while below ps and
then follow the sonic condition.

−150 −100 −50 0 50 100 150

2

4

6
x 10

5

 Velocity, u

 P
re

s
s
u

re
,

p

−150 −100 −50 0 50 100 150
−5

0

5
x 10

5
 Subsonic Outflow, k = 1.4, p

d
 = 1e5, φ = 0.5

 Velocity, u

 p
te

m
p

Figure 3.2: The upper figure shows the value of u for different values of ptemp.
The real pressure, p, is shown in the lower figure as circles. The solid lines show
the boundary condition for subsonic and sonic outflow. The horizontal dashed line
shows the value of ps, the critical pressure.

Critical Pressure In Appendix A derivations of the critical pressures are made for
inflow and outflow through a partially open boundary. If the pressure difference over
a throat is large enough the flow will become sonic in the throat and this will define
how the velocity and pressure is related to each other through different boundary
equations. Whether or not the flow becomes sonic over the boundary is determined
by the critical pressure. At inflow the critical pressure is calculated using the pressure
inside of the boundary and it is then compared with the upstream pressure. If the
upstream pressure is larger than the critical pressure then the pressure difference over

31

3.1. IMPLEMENTATION OF THE MODEL CHAPTER 3. THE MODEL

the boundary is large enough to make the flow sonic. For outflow the pressure inside
of the boundary is compared to a critical pressure calculated using the downstream
pressure. At both boundaries, what equation to be used is decided depending on
whether the flow is subsonic or not. Thus depending on the pressure inside the
boundaries the boundary equations will differ. At the same time, the pressure
inside the boundary also depends on whether or not the flow is sonic. That is,
knowing the velocity and what boundary equation to be used, the pressure inside
a boundary can be calculated, but to know what equation to be used the value of
the pressure inside of the boundary is needed. If one assumes that it is enough to
use the value of the pressure inside of the boundary from the previous time step one
breaks up the system of equations for calculating the pressure inside the boundary
at the current time. Here the function delay is used to get the value from the
previous time step. When translating the model one must use the Dymola flag
Advanced.BreakDelayLoops = true to ensure that the previous value are assumed
to be known in the current step. If one does not use this option the model will have
six non-linear systems of equations to solve: of size two - one system of equation for
the temperatures upstream and downstream of the pipe; and of size one - one each
for p1, p2, psubOut and the pressures inside the boundaries. The two last non-linear
systems of equations, for the pressures inside the boundaries, are avoided if one uses
Advanced.BreakDelayLoops = true, which could be favourable.

Like the boundary equation for subsonic outflow, the computation of the critical
pressure for subsonic outflow has to be handled with care. In this case the critical

pressure is ps = pd

(
A
Ad

) 2κ
κ−1

cr
, where

(
A
Ad

)
cr

fulfills Eq. A.2.7. In [2] an alternative

expression is stated and this will be used since Eq. A.2.7 does not give a unique
solution. The approximate expression stated in [2],(

A
Ad

)
cr

= 1 +
kd − 1

4

√
1− φ2, (3.1.2)

and the exact expression, Eq. A.2.7, are shown Fig. 3.3. This shows that Eq. 3.1.2
gives a good approximation for most area ratios, φ (in reality 0 ≤ φ ≤ 1). The
critical pressure has to be larger than the downstream pressure, but there is a chance
that the solver, if one uses the exact expression, will give a critical pressure below the
downstream pressure when searching a solution corresponding to a certain φ. Using
Eq. 3.1.2 this cannot happen and one avoids the non-linear system of equations
otherwise needed to be solved, that is, Eq. A.2.7.

Reversed Flow The model should be able to handle reversed flow occurring when
pd > pu. The variables A and pu0 will still correspond to the same end, the end
where the area ratio is denoted ψ, called the ”upstream” end corresponding to e.g.
pu, even though it is not actually the upstream end anymore. That is however simply
a matter of notations. The same holds for B and pd0, these corresponds to the end
where the area ratio is denoted φ.

To handle the reversed flow a new coordinate system is considered, namely the
mirrored coordinate system. The velocity in the old coordinate system is negative

32

CHAPTER 3. THE MODEL 3.1. IMPLEMENTATION OF THE MODEL

0 1 2 3
−1

0

1

2

3

4
x 10

5
 Critical pressure, k = 1.4, p

d
=1e5

 Area ratio, φ

 C
ri
ti
c
a

l
p

re
s
s
u

re
,

p
s

Figure 3.3: The critical pressure for different area ratios. The circles shows the
approximated expression, Eq. 3.1.2 and the line the exact expression.

since the flow is opposing the positive direction of the system. In the new, mirrored
system the velocity is positive with the same magnitude as in the old and here the
same boundary equations can be used for outflow and inflow as before. Now, the
steady value, u∞, is searched for in this new coordinate system. It is clear that
the steady value in the old system is then −1 · u∞. The values of A and pu0 are
calculated using the boundary equations for outflow in the new coordinate system
and the values of B and pd0 using the boundary equations for inflow. The equations
is thus the same, it is enough to simply switch pu to pd and so on. All variables
used to calculate the steady value will use the absolute value of u, as well as the
absolute values of A and B since they are assumed to be positive in the derivation.
The value of uint also needs to be corrected with a minus sign for reversed flow.
Then −1 · u∞ will be used in the dynamical model to calculate u, now in the old
coordinate system.

Mass Flow Rate Since the model is lumping the whole pipe into one middle
point velocity, the mass flow is also lumped and calculated as seen below.

m_flow_middle= u *(F+0.5*L*dFdx)*(rho_d+rho_u)/2;

port_d.m_flow = - m_flow_middle;

port_u.m_flow = m_flow_middle;

The mean of the densities are used as a middle point density. The mass flows in
and out of a pipe can momentarily differ in a dynamic flow case. Here, the mass
conservation is however assumed to be fulfilled over the pipe.

33

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Numerical Issues When calculating the values of A, pu0, B and pd0 the function
spliceFunction from Modelon’s library is used. This function enables a smooth
conversion between the expressions for subsonic and sonic flow to be used. This will
give better numerical properties of the model through avoiding large gradients.

There are a number of modifications used in the model, and it is important to be
aware of where they are. There is for example the parameter dp used in spliceFunction
defining the interval over which a smoothing function will be used. The value of
dp has to be large enough to ensure a smooth continuous transition between the
two expressions, but small enough not to affect the result. Another example is the
variable ∆u that has to be limited not to be too small, i.e. there is a limiting value
that has to be of appropriate size. A change of the limiting value should not have
a great impact on the solution. The same holds for the limiting values used to
avoid zero-valued denominators. All these modifications are used to help the solver
through good numerical properties, but it is important that they do not affect the
solution. If the results of the model prove to diverge a lot from the real solution
these values could be altered to ensure that the problem does not originate from
them.

When calculating the variables connected to the boundary conditions there is an
if-statement for pu > pd. When the flow is reversed the expressions are changed and
events are created. This should not be a problem since there should not be a lot of
reversed flow cases in the combustion engine application. In a case where reversed
flow is common, maybe a trade-off between accuracy and real-time is needed, using
noEvent.

3.2 Preliminary Tests

Some tests have been simulated to ensure that the model can handle different config-
urations of geometry and boundary conditions, etc. This is a first check to see that
it looks reasonable, but comparison with other models and experiments is impor-
tant to establish the reliability of the model. The configurations do not necessarily
reflect an engine application, but will hopefully give the reader an insight into how
different factors affect the flow and the model.

The tests are simulated using the explicit Euler method that uses a fixed time step,
something that is necessary for real-time simulations. The CPU-time for integration
given by Dymola will be noted to investigate the possibility to use the model in real-
time simulations. A CPU-time lower than the simulated time will not guarantee that
the model can be simulated in real-time but can give an idea of the possibility. The
CPU-time should not be larger than the real time simulated.

The tests use, unless otherwise announced, a pipe without area changes inside the
pipe. The length of the pipe is set to 1 m, the diameter to 5 cm and the friction factor
to 0.05. The media used from Modelon’s library is the Fast Air, fixed composition,

34

CHAPTER 3. THE MODEL 3.2. PRELIMINARY TESTS

Figure 3.4: The upper figure shows the pressure upstream and downstream of the
pipe. The middle figure shows the velocity together with its steady value for ψ = 0.7
and the lower for ψ = 0.3.

linear cp, 20-600 ◦C, an ideal gas. The temperature is 25 ◦C in both ends and
there is no heat-transfer in general. The time step is in most cases 1 ms. A full
presentation of configurations in the non-discretised cases are given in Table C.1 in
the Appendix C together with the CPU-time for simulating each case.

Positive and Negative λ The first test uses a fixed geometry and a constant
downstream pressure. The upstream pressure is changing as a ramp. Two different
configurations of the geometry are simulated to confirm the different dynamical
models for different signs of λ. In [7] a critical area ratio is calculated, below which
the area ratio will give rise to oscillations as the value of λ becomes less than zero.
The first configuration uses φ = ψ = 0.7 and the second φ = 0.7 and ψ = 0.3.
The results are shown in Fig. 3.4.

For the case where ψ = 0.3 the value of λ will be negative and the oscillating nature
is clearly shown in Fig. 3.4.

35

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Figure 3.5: The upper figure shows the pressure upstream and downstream of the
pipe. The lower figure shows the velocity in the middle of the pipe and the steady
value of the velocity. The frequency of the upstream pressure is 1 Hz.

Changing Upstream Pressure Now both φ and ψ are set to 0.7. The down-
stream pressure is constant, and the higher upstream pressure is changing as a sinus
function. Two configurations are simulated with frequency of the sinus function set
to 1 Hz respectively 10 Hz. The first results are shown in Fig. 3.5 and the latter in
Fig. 3.6.

A first notation is that the velocity is changing in accordance to the changes in the
upstream pressure. When the pressure changes, the boundary condition will change
and this will make the steady value, towards which the velocity strives, change. One
can note that in the first case with lower frequency the velocity is almost the same as
the steady value. In the case of higher frequency the inertia will prevent the velocity
to reach the steady value before this is changing. This can be seen in Fig. 3.6, in the
lower picture one can clearly see how the velocity strives towards the steady value
but the changes are too fast for it to actually reach it.

36

CHAPTER 3. THE MODEL 3.2. PRELIMINARY TESTS

Figure 3.6: The upper figure shows the pressure upstream and downstream of the
pipe. The lower figure shows the velocity in the middle of the pipe and the steady
value of the velocity. The frequency of the upstream pressure is 10Hz. Note the
different time scales.

37

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Changing Area Ratio It has already been shown that the values of the area
ratios have an impact on the dynamical behaviour of the velocity. Now, the pressure
upstream and downstream, as well as the upstream area ratio ψ, are kept constant
and the downstream area ratio, φ is changing between 0 and 1. As said before,
the values of the area ratios actually used are limited between 0.01 and 0.99. The
simulation proves to be unstable for small values of φ. As the area ratio approaches
zero, that is, a fully closed end, the solution is oscillating and in some cases the
simulation breaks down. The solution is to decrease the time step or change to a
more stable method e.g. Runge-Kutta. The results can be seen in Fig. 3.7.

The velocity is oscillating when φ is close to zero due to natural oscillations since
the area ratio is below a critical area ratio, making the value of λ negative. It is
well known that the sampling frequency has to be at least twice the highest system
frequency for a stable simulation. The small area ratio may give rise to dynamics
of higher frequencies, thus demanding the smaller step size. The simulation time is
increased with the decrease of step size, but there is still indications that the models
could be simulated in real-time.

The same behaviour holds when changing ψ instead of φ in the same manner.

Reversed Flow Starting with an easy case where the upstream pressure is below
the downstream pressure at all points in time, the resulting velocity is shown in
Fig. 3.8. Here φ, ψ and pd are held constant and the upstream pressure (which
is only a notation, since the ”upstream end” is now physically downstream), pu
is varying as a sine with a frequency of 1 Hz. For comparison the opposite case is
simulated with the same pressure difference but a higher upstream than downstream
pressure.

The result seems reasonable, the velocity becomes negative since the flow is reversed
due to the higher pressure at the downstream end. When the pressure change
decreases, so does the velocity. Once again the effects of the inertia is visible, the
steady value is zero when the upstream pressure is equal to the downstream pressure,
but the mid-point velocity does not have time to actually reach that value. One can
see that the velocities in the two cases are essentially just mirrored around zero.
There is a slight change in magnitude though, that originates from the magnitude
of the pressure. Even if the pressure differences are the same, the magnitude of the
pressure is lower in the reversed flow case, affecting the state of the fluid. The result
is physically plausible since the geometry is symmetric.

Next step is to simulate a case where the upstream pressure is varying between
larger and smaller values than the downstream pressure. This case is shown in
Fig. 3.9. The upstream pressure is oscillating around the downstream pressure with
a frequency of 1 Hz.

One can see that the manner of the velocity changes is plausible. The velocity is
varying between a positive and a negative value of the same magnitude, which is
reasonable since the pressure difference is the same only directed differently. The

38

CHAPTER 3. THE MODEL 3.2. PRELIMINARY TESTS

Figure 3.7: The upper figure shows the downstream area ratio. The lower figure
shows the midpoint velocity.

39

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Figure 3.8: The upper figure shows the upstream and downstream pressure for the
two cases. The case with higher upstream than downstream pressure is shown as
thinner lines. The lower figure shows the midpoint velocity and its steady value for
higher downstream pressure as thick solid and dashed lines.

40

CHAPTER 3. THE MODEL 3.2. PRELIMINARY TESTS

Figure 3.9: The upper figure shows the upstream and downstream pressure. The
lower picture shows the velocity and its steady value.

steady value of u is having peaks when u becomes small. This is due to the behaviour
of the boundary equations for small velocities, where they are close to constant, A
and B that are the slopes of the boundary conditions approaches zero as u becomes
small. Since the steady value can somewhat be seen as the intersection between the
two boundary conditions, it will obviously become large as the boundary conditions
approaches a constant behaviour. The peaks will drive the velocity away from the
zero value.

The same test is made using a higher frequency and the result can be seen in
Fig. 3.10. As before one can see the inertia effects more clearly for the faster dy-
namics, u is a bit shifted from the steady value.

Larger Friction Factor In the cases above the friction factor, f , has been given
the value 0.05. Fig. 3.11 shows the results for the configuration used in Fig. 3.5,
simulated with f = 0.05 and f = 0.5. One can see that the shape of the velocity

41

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Figure 3.10: The upper figure shows the upstream and downstream pressure. The
lower figure shows the velocity and its steady value.

42

CHAPTER 3. THE MODEL 3.2. PRELIMINARY TESTS

Figure 3.11: The upper figure shows the upstream and downstream pressure. The
lower picture shows the velocity for f = 0.05 as the dashed line and f = 0.5 as the
solid line.

is the same but the magnitude and amplitude is lower, which seems correct since a
higher friction factor implies higher friction, thus more energy is lost.

Heat Transfer Using a heat transfer coefficient equal to 500, with a temperature
of 25 ◦C at both ends of the pipe and an ambient temperature at 100 ◦C the velocity
is barely changing as can be seen in Fig. 3.12. The mass flow is changing a bit more
due to a change of the state of the fluid, the density downstream will change. The
setup is again the same as in Fig. 3.5.

A Complex Configuration As a last test, using only one pipe segment, both
the upstream and downstream pressures and the area ratios are changed with time.
One can see in Fig 3.13 how the velocity gets a more complex behaviour. However,
it is impossible to know if this is a correct behaviour. To be able to establish if this

43

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Figure 3.12: The upper figure shows the velocity with and without heat transfer.
The middle figure shows the outflow in the two cases. The lower figure shows how
the density is changing downstream when including heat transfer.

44

CHAPTER 3. THE MODEL 3.2. PRELIMINARY TESTS

Figure 3.13: The upper figure shows the upstream and downstream pressure. The
middle figure shows the area ratios. The lower picture shows the middle point
velocity.

is the correct velocity profile one should compare with other models and especially
with experiments.

Multiple Branches To increase the resolution of the pressure waves in the flow,
one can use several branches with capacities in-between. In Fig 3.14 the mass flow
out of the pipe is calculated using only one segment and then using two, three
and five segments. The result is shown when using only total boundary conditions
and when using static. Using several segments demands a shorter time-step due to
shorter lengths, increasing the simulation time. Additional non-linear systems of
equations will also increase the simulation time and it is doubtful that this could be
simulated in real-time, even when using a more stable solver like Runge-Kutta.

One can see that the oscillating nature is resolved when using several pipe segments.
When only using one pipe section these oscillations are smoothed out since the

45

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Figure 3.14: In all figures the mass outflow is shown using one QPM as a solid line.
In the upper figure the result using two QPM pipes are shown using static boundary
conditions, as a dashed line, and using total boundary conditions, as a dotted line.

46

CHAPTER 3. THE MODEL 3.2. PRELIMINARY TESTS

Figure 3.15: The upstream and downstream pressure of the whole pipe is shown as
thick and thin dashed lines. The pressure in the volume inbetween the pipe segments
are shown and denoted p1...p4.

pressure wave dependence is included only through the parameter τ . When using
more pipe sections the wave itself is used to calculate the boundary conditions and
thus the velocity. When using the static boundary condition the steady value is
close to the steady value given using only one pipe segment. When only using total
boundary conditions there will be pressure drops over each boundary and the mass
flow out of the pipe will decrease as the velocity is decreased. One can note that
when using more segments the difference in steady values when using static or not
will increase. This is natural since there are more boundaries at which the pressure
will drop in an unphysical manner.

The pressure in the four volumes in-between the five QPM segments are shown
in Fig. 3.15. Here the progression of the wave is shown. An initial disturbance
is travelling and will successively reach the different capacities. After a while the
system finds a steady state.

47

3.2. PRELIMINARY TESTS CHAPTER 3. THE MODEL

Figure 3.16: The solid line shows the middle point velocity when using only one
segment. The dashed line is the result when using three segments with volumes of
size 1e-4 m3. The resulting velocity when using volumes of size 5e-4 m3 is shown as
a dotted line.

When using several segments, capacities are used in-between the branches. A test
using three segments, i.e. two capacities, is simulated using different volume sizes.
The result is again compared with the result using only one segment and shown in
Fig. 3.16. Here, it is shown that there will be some disparities when changing the
volume of the capacities.

48

Chapter 4

Results

In the previous chapter some preliminary tests were simulated to give the reader an
insight into different features of the model. Now, this is followed by a comparison
of QPM with an available model from Modelon’s library, the simpleP ipe. Finally,
some tests found in [2] are recomposed. Thereby the model is compared to the
Method of Characteristics.

4.1 Comparing with simpleP ipe

To get an idea of the behaviour of the QPM, comparisons with another model are
made. The model compared with is the simpleP ipe from Modelon’s library. This
model can optionally simulate dynamical behaviours of a flow by including the mass
flow as a state. The mass flow is then calculated from a friction model. The pressure
waves can be captured by connecting several simpleP ipes with volumes, capacities,
in-between them.

To be able to compare the models an appropriate test case has to be found. Starting
with the geometry, simpleP ipe is less general than QPM and can solve flow in a pipe
with constant cross-section area and with fully open ends. There are a number of
different friction models that can be used. The QPM uses the Fanning friction factor,
f , to model the friction. Therefore, the friction model Darcy-Weisbach formulation
is used in simpleP ipe since the Darcy-Weisbach friction factor fD = 4f . In the
Darcy-Weisbach model the mass flow is calculated using the pressure drop

∆p = fD
L

D

ρu2

2
. (4.1.1)

It is important when discretising the pipe, that one uses the Darcy-Weisbach friction
factor corresponding to the length of the section, not the length of the whole pipe.

The simulation performed and presented here uses the configuration seen in Fig. 4.1
with three QPM-pipes connected corresponding to a pipe branching off to two cylin-
ders. The friction factor f = 0.01, the length of each pipe is 0.5 m and the diameter

49

4.1. COMPARING WITH SIMPLEPIPE CHAPTER 4. RESULTS

Figure 4.1: Configuration corresponding to a pipe that branches off into two pipes.

is 3 cm. The upstream pressure is constant and the downstream pressures change
as sinuses with different phases. The same case is simulated using instead three
simpleP ipes. In Fig. 4.2 the mass outflow from the two branches are shown and in
Fig 4.3 the mass outflow the first 0.05 seconds are shown.

50

CHAPTER 4. RESULTS 4.1. COMPARING WITH SIMPLEPIPE

Figure 4.2: The upper figure shows the outflow from the upper branch, and the
lower the outflow from the lower branch. The solid lines show the results obtained
when simulating using simpleP ipes, the dashed lines are the results given when
using QPM and static boundary conditions. The case is also simulated using QPM
and only total boundary conditions and the results are shown as dotted lines.

51

4.1. COMPARING WITH SIMPLEPIPE CHAPTER 4. RESULTS

Figure 4.3: The upper figure shows the outflow from the upper branch, and the
lower the outflow from the lower branch. The solid lines show the results given
when simulating using simpleP ipes, the dashed lines are the results obtained when
using QPM and static boundary conditions. The case is also simulated using QPM
and only total boundary conditions and the results are shown as dotted lines.

52

CHAPTER 4. RESULTS 4.2. COMPARE WITH MOC

4.2 Compare with MOC

In [2] some well documented results can be found where QPM is compared to MOC.
In the figures from [2] included below the MOC is plotted as a dashed line and
their QPM, a bit different than the model presented here, is plotted as a solid line.
The first nine cases in [2] will all be simulated using the method presented in this
work. These tests uses different friction factors and different area ratios at the ends,
for a pipe of length 1 m and a diameter of 0.03 m. At the downstream end the
temperature is 400 K and the pressure is 0.9 bar. The upstream pressure is 1 bar or
3 bar and the temperature is 300 K. The upstream area ratio ψ = 1 in all cases. The
number of segments used and the size of the capacities are not given in [2]. In the
simulations performed three QPM-pipes are used with volumes of size 2 · 10−4 m3

in-between. The velocity in the middle pipes are compared to the results shown
in [2]. Most cases do not differ substantially and hence only some will be displayed
graphically. In Table 4.1 all configurations are given with respectively steady state
provided through the graphical results in [2] and through the simulations using the
QPM with static boundary conditions at the inner boundaries, i.e. the boundaries
located inside of the pipe, not bordering a reservoir. In the table the steady value
using only one segment is given in parentheses.

Some cases will be analysed in more detail, starting with test case number 1. In this
case there is no friction, and the static conditions at the inner boundaries together
with the fully opened ends will give problems when discretising the pipe. The
dynamic model is as given by Eq. 2.4.25 with G = 0, that is the velocity is growing
infinitely. The result is shown in Fig. 4.4. Tests 2 and 3 are similar and only test 2
is shown graphically, see Fig. 4.5. In test case number 4 the friction is again zero
and only one configuration is simulated; the set up with only one segment, with the
result shown in Fig. 4.6. Tests 5 and 6 are similar in shape and only test 5 is shown
graphically and is seen in Fig. 4.7. In the last three test cases the downstream
area ratio is changed. Here test 7 is shown in Fig. 4.8 and test 8 is shown in Fig.
4.9. The result of test case 9 gives no additional information and will not be shown
graphically.

Test case number 9 has however been used to investigate the simulation time. One
QPM segment has been simulated with the Runge-Kutta method with time step
0.1 ms for 0.1 s. The case has been simulated with and without the previously men-
tioned Advanced.BreakDelayLoops flag. When simulating without this flag six
non-linear systems of equations are present and the simulation took 0.039 s. To in-
vestigate the amount of computing time used for each equation in the model the flag
Advanced.GenerateBlockT imers = true is used and one can then see that out of a
total CPU time of 0.039, the DynamicsSection block is essentially responsible for
the CPU-time. In the DynamicsSection two non-linear system blocks are included.
The first is the non-linear system of equation of size two evaluating the tempera-
tures, Tu and Td. This block takes 0.015 s. The second block includes the non-linear
systems of equations evaluating p1,temp, p2,temp and psubOut,temp (the help variables
for calculation of ,p1, p2 and psubOut), and pBCd and pBCu, that are the pressures

53

4.2. COMPARE WITH MOC CHAPTER 4. RESULTS

Figure 4.4: Test case 1: The upper figure shows the resulting velocity when sim-
ulating with one QPM as the solid line, with three QPMs using static boundary
conditions at the inner boundaries as a dashed line, and with three QPMs with
total boundary conditions at all boundaries as a dotted line. The lower figure is the
result provided for this case in [2]. Note the different time scales.

54

CHAPTER 4. RESULTS 4.2. COMPARE WITH MOC

Figure 4.5: Test case 2: The upper figure shows the resulting velocity when sim-
ulating with one QPM as the solid line, with three QPMs using static boundary
conditions at the inner boundaries as a dashed line, and with three QPMs with
total boundary conditions at all boundaries as a dotted line. The lower figure is the
result provided for this case in [2]. Note the different time scales.

55

4.2. COMPARE WITH MOC CHAPTER 4. RESULTS

Figure 4.6: Test case 4: The upper figure shows the resulting velocity when simulat-
ing with one QPM. The dashed line is the velocity of sound upstream. The middle
figures show the sonic limits and corresponding pressures, when pu > ps,u the inflow
is sonic and when pBC,d > ps,d the outflow is sonic. The lower figure is the result
provided for this case in [2]. Note the different time scales.

56

CHAPTER 4. RESULTS 4.2. COMPARE WITH MOC

Figure 4.7: Test case 5: The upper figure shows the resulting velocity when sim-
ulating with one QPM as the solid line, with three QPMs using static boundary
conditions at the inner boundaries as a dashed line, and with three QPMs with
total boundary conditions at all boundaries as a dotted line. The lower figure is the
result provided for this case in [2].

57

4.2. COMPARE WITH MOC CHAPTER 4. RESULTS

Figure 4.8: Test case 7: The upper figure shows the resulting velocity when sim-
ulating with one QPM as the solid line, with three QPMs using static boundary
conditions at the inner boundaries as a dashed line, and with three QPMs with
total boundary conditions at all boundaries as a dotted line. The lower figure is the
result provided for this case in [2]. Note the different time scales.

58

CHAPTER 4. RESULTS 4.2. COMPARE WITH MOC

Figure 4.9: Test case 8: The upper figure shows the resulting velocity when sim-
ulating with one QPM as the solid line, with three QPMs using static boundary
conditions at the inner boundaries as a dashed line, and with three QPMs with
total boundary conditions at all boundaries as a dotted line. The lower figure is the
result provided for this case in [2]. Note the different time scales.

59

4.2. COMPARE WITH MOC CHAPTER 4. RESULTS

Test Case pu [bar] φ f u∞ [m/s] as in [2] u∞ [m/s]
1 1 1.0 0.00 148 - (154)
2 1 1.0 0.05 55 55 (54)
3 1 1.0 0.10 40 41 (40)
4 3 1.0 0.00 375 - (390)
5 3 1.0 0.05 137 128 (139)
6 3 1.0 0.10 105 97 (103)
7 1 0.5 0.00 72 71 (74)
8 1 0.5 0.05 44 46 (46)
9 1 0.5 0.10 35 36 (36)

Table 4.1: The different cases simulated with the steady values given in [2] and given
simulating the QPM presented in this report. The steady value, in the last column,
is taken in the middle of three QPM pipes simulated using static conditions at the
inner boundaries and in parentheses the steady value in the middle using only one
segment is given.

Test Case pd [bar] φ Diam. Variation u∞ [m/s] as in [2] u∞ [m/s]
10 0.9 1.0 0 % 148 154
11 0.9 1.0 -4 % 13 146
12 0.6 1.0 0 % 330 336
13 0.6 1.0 -4% 27 295
14 0.9 0.5 0 % 72 74
15 0.9 0.5 -4 % 5 71

Table 4.2: The different cases simulated with the steady values given in [2] and given
by the QPM presented in this report.

inside of the boundaries. The four first of these non-linear systems of equations take
0.023 s and the last, pBCu, takes 0.001 s. Using Advanced.BreakDelayLoops = true
there is four non-linear systems of equations. The DynamicsSection is again dom-
inating and has a CPU time of 0.038 s. The first non-linear system of equations for
the temperatures now takes 0.014 s to evaluate and the three non-linear systems of
equations for the evaluation of p1,temp, p2,temp and psubOut,temp takes 0.024 s.

In [2] a number of tests are also simulated with converging and diverging pipes.
Only a few results will be presented and only the steady values will be given. Using
a convergent pipe the upstream pressure is kept at 1 bar, ψ = 1 and there is no
friction. The mean diameter is set to 0.03 m and results with a diameter variation
of 4 % over the pipe will be presented. This means that the upstream diameter is
3.06 cm and the downstream diameter 2.94 cm. By definition dF

dx
= Fd−Fu

L
, where

Fu is the area of the pipe at the upstream end and Fd is the area of the pipe at
the downstream end. Then dF

dx
= −5.7699 · 10−5 when the mean diameter is 3 cm

and the diameter variation 4 %. Using this the result is shown in Table 4.2. In the
divergent case it is assumed that the upstream pressure is still 1 bar, φ = 1 and
that the mean diameter is still 3 cm. The downstream pressure is 0.97 bar and ψ
is varying between 1 and 0.5. In this case an increase of the diameter of 1 % over

60

CHAPTER 4. RESULTS 4.2. COMPARE WITH MOC

the pipe is used. However, only the base case is presented here, when there is no
diameter variation. In this case the steady state given in [2] is 125 m/s and the
result given in simulations using the QPM presented here gives a steady value of 80
m/s. The difference is so large; one has to assume a misinterpretation of one ore
more parameters has been made. Thereby, this result will conclude this section.

61

Chapter 5

Discussion

In the previous section comparisons with simpleP ipe from Modelon’s library and
with some of the results presented in [2] have been made. As always, without
experimental results it is hard to draw any certain conclusions. In this section the
results given shall nevertheless be discussed and analysed. Further improvements of
the model will also be discussed.

5.1 Comparing with simpleP ipe

When comparing with simpleP ipe in Section 4.1 one can see that the magnitude dif-
fers substantially between the two configurations, using QPM pipes or simpleP ipes.
The homentropic assumptions used in the QPM could be one explanation for this
behaviour. Using only one QPM versus one simpleP ipe, the steady value is higher
using simpleP ipe. In the simpleP ipe model there is no storage of energy or mass,
and the flow is steady. The QPM uses the governing equations, the continuity,
momentum and energy equation for non-steady flow and these give rise to the non-
homentropic parts (α1 and α2) decreasing the steady value. This could possibly be
the main cause of this difference. Put aside the magnitude difference the shape of
the results are similar which could be an indication that the model captures the
wave phenomena in a correct manner.

5.2 Comparing with MOC

In Section 4.2 some cases are simulated in order to compare with the results in [2],
thus comparing with MOC. In most cases the steady values become close to the
values in [2], these results are a bit better when only using one segment. To capture
some of the initial oscillations discretisations are required and static boundary con-
ditions should be used at all inner boundaries, where the boundary is not bordering

63

5.2. COMPARING WITH MOC CHAPTER 5. DISCUSSION

a reservoir.

The first case simulated is seen in Fig. 4.4. Using only one segment one gets a
steady state value close to the one given in [2] by MOC. One major difference is the
time it takes for the velocity to reach the steady value. MOC seems to predict a
faster convergence towards steady state than the QPM presented here. When using
a discretised pipe both the result using static boundary conditions and using total
boundary conditions at inner boundaries are shown. Using total boundary condi-
tions gives a stable but immensely wrong result. Using static boundary conditions
will give problems. As been said before, the dynamic model used in a case with
static upstream condition and fully opened downstream end, as is the case in the
last two QPM pipe segments, given in Eq. 2.4.25, will when the friction is zero
make the velocity grow infinitely. Obviously this is a problematic case. However,
thankfully, in reality there is no engine application where the friction will actually
be zero.

In the second case friction is included and both the case with one segment and the
discretised case using static boundary conditions will give correct steady values, see
Fig. 4.5. Again, the MOC will predict a faster reaching of steady state. There
seems to be some discrepancy when comparing the initial oscillations. However,
there is also some difference in the results between the MOC and the QPM used
in [2]. The version of the QPM introduced in this report uses somewhat different
boundary conditions and the parameter k0 = 1, and the first peak present in the
result from [2] is not present when using this model, nor in the MOC results, the
dashed line. Around 10 ms, up to 20 ms, the QPM gives results that oscillates a bit
more than MOC.

When increasing the upstream pressure and using again zero friction, only the result
from one segment is presented. This case is not simulated for a discretised pipe since
the results will be unstable when the friction is zero. In this case there is a clear
disparity in the results. The QPM will actually give a result where the velocity for
a short time overshoots the velocity of sound, see Fig 4.6. After this the velocity
finds a steady value slightly below the speed of sound, about 15 m/s higher than
the steady value given by the MOC. The velocity increases until around 300 m/s
when the upstream pressure exceeds the sonic limit and the inflow becomes sonic.
The outflow becomes sonic soon after this. In the model used in [2] and probably
in the MOC used, there is no sonic limit for the inflow and the sonic limit is for the
outflow in [2] pu > ps = pd, always fulfilled in this configuration. An extra condition
is used in [2] when pu > ps = pd, when u < us where us is the velocity given by
the continuity equation for a flow where the velocity in the outlet throat equals the
local speed of sound. This is also the velocity where the sonic outflow boundary

curve is exceeding ps and it is us = φau

(
pd
pu

)κ−1
2κ
(
A
Ad

) 2κ
κ−1

cr
, in this case equal to ad.

These are different than the sonic limits used in this model so the disparities in the
results are not that surprising. The obvious question; which is more correct, requires
experimental data or CFD simulations to be answered.

In the next two cases the upstream pressure is still increased, but friction is in-

64

CHAPTER 5. DISCUSSION 5.2. COMPARING WITH MOC

troduced. In these cases there is somewhat more difference in results when using
a discretised pipe, for reasons unknown, then the steady state is around 10 m/s
lower compared to the result given using a non-discretised pipe and using MOC.
The shape however, with a high peak in the beginning, is similar to the result given
in [2], see Fig. 4.7.

The next test is interesting since it is again zero friction. The throat at the down-
stream end will in this case stabilise the model enabling discretisation. In the middle
segment the dynamic model will be the same as in the first test case, but the last
segment will have a downstream end that is not fully opened. Again there are some
similarities between QPM and MOC, see Fig. 4.8. The main difference is that QPM
yet again keeps oscillating for a longer time and reaches the steady value a bit later.
The same holds for the last case seen in Fig. 4.9

One major disadvantage when comparing the results of the model introduced in this
report with the results in [2] is that the number and size of volumes are not noted.
As seen in Fig. 3.16, the size of the volume will influence the result. Different volume
sizes could maybe explain the different oscillating behaviours. It is also not stated
what boundary conditions are used in the MOC simulations, but one could assume
the same boundary conditions are used as in the QPM presented in [2]. Since the
model introduced here is not using the same boundary conditions as in [2] this could
give rise to the disagreements seen in the results.

As has been seen, most of the simulation time is spent on the non-linear systems of
equations present in the model. Since these have to be solved for each pipe section
used when discretising, this is a large disadvantage for the model that will probably
prohibit real-time simulations. The main part of the time is laid on the non-linear
system of equations solving p1,temp, p2,temp and psubOut,temp. The existence of these
non-linear systems of equations has its origin in the way the model uses the slope of
the boundary equations together with the property of the subsonic outflow boundary
condition, not being able to be linearised. In [2] this is solved through a less general
assumption about the geometry; that one of the ends is always fully opened. Two
cases are considered; total conditions at the inflow and φ = 1, and static inflow and
ψ = 1. These assumptions may be enough for an engine application and in these
cases no non-linear systems of equations are needed. When φ = 1, the subsonic
boundary equation for outflow is constant. When ψ = 1, the inflow condition is
static, thus constant, and through the intersection the steady values for the velocity
and the pressure is known and could be used to get an approximate slope. On
one hand this restriction of geometry could force a discretisation in the cases when
none of the ends are fully opened. On the other hand, the rescindment of the non-
linear systems of equations needed to solve the linearisation problem of the subsonic
outflow case will reduce the simulation cost for each segment extensively. The need
of smaller time steps for shorter pipe sections will probably not exceed this gain,
and it would probably be possible to simulate this in real-time.

In the last tests the diameter varied over the pipe length and the disparities in
the results were vast. When simulating the diverging pipe case even without the

65

5.3. CONCLUSION CHAPTER 5. DISCUSSION

diameter variation the results were so diverse, there was no meaning in continuing
the tests in this case. When using a converging pipe the results given in [2] showed a
huge reduction of velocity even for small diameter changes. The reason behind these
different results is presumably, in the diverging pipe case; a lack of information,
and in the converging pipe case; a lack of details in the description leading to
misinterpretations about the parameter set-ups. One motivation for this assumption
is the physical meaning of the results given in [2]. Suppose the parameter set-up
were correctly interpreted, the difference between the upstream and downstream
diameter where 1.2 mm. That is, looking at test case 10 and 11, without any
diameter variance the velocity is 148 m/s, a 1.2 mm variation of the diameter over
the whole pipe length of 1 m decreases the velocity to 13 m/s. This is not reasonable.
If that was the case, a pipe designed with accuracy less than a tenth of a millimetre
could get a velocity variation between 150 and 10 m/s. The QPM presented here
gives a much more reasonable change in velocity in accordance to the small change
in diameter. To conclude, a plausible explanation to why the MOC in [2] is giving
so different results is that the two cases simulated are in fact not the same at all.

5.3 Conclusion

The goal of this project was to implement a model that is able to simulate the flow in
a pipe, capturing the wave phenomena, in real-time. The Quasi-Propagatory Model
found was a good candidate and a slightly modified version of the, in several articles,
presented QPM, has been exhibited in this work. The lumping property of the model
has proven to be efficient and there is potential to simulate the model in real-time
especially when using only one segment. However, to capture the wave phenomena
discretisation is required and to remain stability when the length decreases in each
segment the time step may need to be decreased. At the same time, when discretising
the pipe the number of non-linear systems of equations needed to be solved at each
time step is increased and it may altogether prohibit the possibility of simulating
in real-time. One solution would be to avoid these non-linear systems of equations
by loosening the generality of the model. To ensure the accuracy of the model
experimental data would be optimal, but through comparisons with other models
the model is found to give plausible results, have in mind the different assumptions
made.

66

Bibliography

[1] D.E. Winterbone and R.J. Pearson. Design Techniques for Engine Manifolds:
Wave Action Methods for IC Engines. Professional Engineering Pub. Limited,
1999.

[2] R. Cipollone and A. Sciarretta. The quasi-propagatory model: A new approach
for describing transient phenomena in engine manifolds. SAE Technical Paper
2001-01-0579, 2001, doi:10.4271/2001-01-0579, 2001.

[3] D. Mezher, H.and Chalet, J. Migaud, and P. Chesse. Frequency based approach
for simulating pressure waves at the inlet of internal combustion engines using
a parametrized model. Applied Energy, Vol. 106, June 2013, p. 275-286, 2013.

[4] S. Stockar, M. Canova, Y. Guezennec, A. Della Torre, G. Montenegro, and
A. Onorati. Modeling wave action effects in internal combustion engine air
path systems: Comparison of numerical and system dynamics approaches. In-
ternational Journal of Engine Research, August 2013, 14(4):391-408, 2013.

[5] R. Cipollone, L. Martella, L. Scarpone, and R. Valente. New modeling to
predict the fluid dynamic transient phenomena in ice ducts. SAE Technical
Paper 2008-01-2389, 2008, doi:10.4271/2008-01-2398, 2008.

[6] R. Cipollone and A. Sciarretta. A new modelling for the air and gas dynamics
in ice manifolds oriented to air-fuel ratio control. SM - PUBLICATIONS - ICE;
32, 1;1103-144, ASME: Internal Combustion Engine Division, Spring technical
conference, 1999.

[7] R. Cipollone and A. Sciarretta. On the air dynamics in ice intake manifolds
the development of a quasi-propagatory model. Control and Systems, Mediter-
ranean conference; 6:th, Control and Systems; 189-197, 1998.

[8] D.E. Winterbone and R.J. Pearson. Theory of engine manifold design: wave
action methods for IC engines. Professional Engineering Pub., 2000.

[9] R.S. Benson, J.H. Horlock, and D.E. Winterbone. The Thermodynamics and
Gas Dynamics of Internal-combustion Engines. Number v. 1 in Oxford science
publications. Clarendon Press, 1982.

[10] B. Johansson. Förbränningsmotorer. Institutionen för värme- och kraftteknik,
Lunds tekniska högsk., 2003.

67

BIBLIOGRAPHY BIBLIOGRAPHY

[11] V.A.W. Hillier and P. Coombes. Hillier’s Fundamentals of Motor Vehicle Tech-
nology. Number bd. 1 in Hillier’s Fundamentals of Motor Vehicle Technology.
Nelson Thornes, 2004.

[12] Flow Science. Boundary conditions - pressure. http://www.flow3d.com/

cfd-101/cfd-101-boundary-conditions-pressure.html, February 2014.

[13] A Sciaretta. La regolazione del rapporto aria-combustibile in MCI ad accensione
comandata. PhD thesis, University of LAquila, Italy, 1999.

[14] Modelica Association. Modelicatm - a unified object-oriented lan-
guage for physical systems modeling. https://modelica.org/documents/

ModelicaTutorial14.pdf, December 2000.

[15] D. Brück, H. Elmqvist, H. Olsson, and S.E. Mattsson. Dymola for multi-
engineering modeling and simulation. In 2nd International Modelica Confer-
ence, Proceedings, 2002.

[16] Dymola Introduction Course Volume I. Modelon AB, 2012.

[17] Dymola Introduction Course Volume II. Modelon AB, 2014.

68

http://www.flow3d.com/cfd-101/cfd-101-boundary-conditions-pressure.html
http://www.flow3d.com/cfd-101/cfd-101-boundary-conditions-pressure.html
https://modelica.org/documents/ModelicaTutorial14.pdf
https://modelica.org/documents/ModelicaTutorial14.pdf

Appendix A

Boundary Conditions

In this section a number of different boundary conditions are going to be derived
using homentropic and non-homentropic assumptions. From the boundary condi-
tions the variables A, B, pu0 and pd0 used in QPM can be calculated. This is done
through a linearisation of the boundary condition around u∗. Before deriving the
boundary conditions identification of the variables is done. Assuming a boundary
condition p = f(u), the linearisation around u is p = f(u) − f ′(u∗)u∗ + f ′(u∗)u.
Comparing this with 2.4.13 and 2.4.14 one can identify

pu0 = f(u∗)− f ′(u∗)u∗ (A.0.1)

and

A = −f ′(u∗), (A.0.2)

for an upstream boundary condition p = f(u), and

pd0 = f(u∗)− f ′(u∗)u∗ (A.0.3)

and

B = f ′(u∗), (A.0.4)

for a downstream boundary condition p = f(u).

A.1 Homentropic Inflow

The first boundary to be modelled is a simple case; inflow through a completely open
boundary from a reservoir of stagnation conditions, p0 and a0, assuming homentropic
flow, that is, no entropy change, [9](p. 105-106). The derivation starts from the so-
called ellipse of energy, the energy equation for steady flow,

a2
u = a2 +

κ− 1

2
u2. (A.1.1)

69

A.1. HOMENTROPIC INFLOW APPENDIX A. B.C.

This equation is derived in [9](p. 38-39) and is the energy equation for flow through
a duct or nozzle with constant enthalpy. The Eq. A.1.1 is written in non-dimensional
form as

Au = A2 +
κ− 1

2
U2, (A.1.2)

where Au = au
aref

, A = a
aref

and U = u
aref

.

Taking aref = au, using that a2 = κRT for a ideal gas and a
au

=
(
p
pu

)κ−1
2κ

, that is

the conservation of entropy, one get the expression found in [6] and [7],

u2 =
2κRTu
κ− 1

(
1−

(
p

pu

)κ−1
κ

)
. (A.1.3)

A.1.1 Partially Open Boundary

In this case the inflow through a partially open end from a reservoir of static condi-
tions, pu and au is considered. The ratio between the inlet area and the pipe area is
called ψ. To get an explicit expression for this case [6] assumes that the density is
constant between the throat and the inlet. The general case can be found in [9](p.
130-131).

When the flow enters the region, through the throat, there will be a zone of recircu-
lating flow. The point in the pipe where this zone ends is called point 1 in [9]. The
inlet is called point 2. The continuity equation for steady flow is

u2ρ2F2 = u1ρ1F1 ⇐⇒ u1 = u2

(
F2

F1

)
= u2ψ, (A.1.4)

assuming constant density. This simplification, together with the assumption that
u2 can be calculated as the velocity of the inflow through an open boundary, i.e.
through Eq. A.1.3, as well as assuming the pressure p = p1 = p2, gives the expression
for the inlet velocity (u = u1) simply as

u2 =
2κRTu
κ− 1

ψ2

(
1−

(
p

pu

)κ−1
κ

)
. (A.1.5)

Using this expression one can calculate the variables A and pu0 as

A =
κu∗

ψ2a2
u

pu

(
1− κ− 1

2ψ2

(
u∗

au

)2
) 1

κ−1

(A.1.6)

70

APPENDIX A. B.C. A.2. HOMENTROPIC OUTFLOW

and

pu0 = pu

(
1− κ− 1

2ψ2

(
u∗

au

)2
) κ

κ−1

+ Au∗. (A.1.7)

For sonic flow u2 = a2 = a2
u

(
p
pu

)κ−1
κ

. Using this, the critical pressure ratio, the

pressure difference that will make a velocity equal to the local velocity of sound
choking the inflow, can be found as

u2 = a2
u

(
p

pu

)κ−1
κ

=
2κRT0

κ− 1
ψ2

(
1−

(
p

pu

)κ−1
κ

)
⇐⇒ pu

p
=

(
κ− 1 + 2ψ2

2ψ2

) κ
κ−1

.

(A.1.8)

The critical pressure is ps = p
(
κ−1+2ψ2

2ψ2

) κ
κ−1

. If the pressure upstream pu > ps the

driving pressure upstream is that much higher than the pressure in the pipe that
the flow will be sonic in the throat. Then another boundary equation has to be used
but this will not be presented here.

A.2 Homentropic Outflow

The derivation of the boundary condition for outflow through a nozzle assuming
isentropic change can be found in [9](p. 117-120). The derivation starts with the
energy equation in dimensionless form with static conditions outside the nozzle, pd
and ad,

A2
0 = A2 +

κ− 1

2
U2 = A2

d +
κ− 1

2
U2
d , (A.2.1)

with A0 corresponding to the stagnation speed of sound in the pipe and A corre-
sponding to the speed of sound at the boundary just inside of the nozzle. Here the
notation is in analogy with the inflow through a open boundary case, i.e. A = a

aref
.

Assuming isentropic flow and using that ρ
ρref

=
(

a
aref

) 2
κ−1

for isentropic flow, the

continuity equation, ρuF = ρdudFd can be written as

UA
2

κ−1 = φA
2

κ−1

t Ut, (A.2.2)

where φ = Fd
F

. Combining the dimensionless energy equation and the dimensionless
continuity equation one can now derive the equation

U2 =
2

κ− 1

A2 −A2
d

1
φ2

(
A
Ad

) 4
κ−1 − 1

. (A.2.3)

71

A.2. HOMENTROPIC OUTFLOW APPENDIX A. B.C.

For a subsonic flow aref = ad, giving the boundary equation

u2 =
2κRTd
κ− 1

(
p
pd

)κ−1
κ − 1

1
φ2

(
p
pd

) 2
κ − 1

. (A.2.4)

For the sonic case when ud = ad, the critical pressure is ps = pd

(
A
Ad

) 2κ
κ−1

cr
. When the

pressure in the pipe p > ps the flow will be choked, the velocity in the outlet will be
equal to the local speed of sound. The continuity equation can be written as

U

(
A
Ad

) 2κ
κ−1

= φUd = φAd ⇐⇒
U

Ad
= φ

(
Ad
A

) 2κ
κ−1

cr

⇐⇒ U

A
= φ

(
Ad
A

)κ+1
κ−1

cr

(A.2.5)

From the energy equation an expression for
(
A
Ad

)
cr

can be derived, rewriting the

dimensionless energy equation as

2

κ− 1

(
A
Ad

)2

+

(
U

Ad

)2

=
κ+ 1

κ− 1
. (A.2.6)

Now, putting
(
A
Ad

)
=
(
A
Ad

)
cr

and using the continuity equation, this can be written

φ2 =

(
κ+ 1

κ− 1
− 2

κ− 1

(
A
Ad

)2

cr

)(
A
Ad

) 4
κ−1

cr

, (A.2.7)

giving an expression for
(
A
Ad

)
cr

to be used in the boundary equation and the sonic

limit.

Using the boundary condition, Eq. A.2.5, B and pd0 can be written as

B =
2κ

κ− 1
pd


(
A
Ad

)κ+1
κ−1

cr

adφ


2κ
κ−1

(u∗)
κ+1
κ−1 (A.2.8)

and

pd0 = pu

u∗
(
A
Ad

)κ+1
κ−1

cr

adφ


2κ
κ−1

−Bu∗, (A.2.9)

for the sonic case.

For the subsonic case the boundary function cannot be linearised in the same way
since p cannot be explicitly expressed as a function f(u).

72

APPENDIX A. B.C. A.3. NON-HOMENTROPIC INFLOW

A.3 Non-homentropic Inflow

In an engine manifold one can maybe assume that the flow is homentropic at the
outflow since there will not be that many vortices decreasing the energy of the flow
if the geometry is changing gently. In the inflow case there may be more vortices.
Benson has derived boundary equations for non-homentropic inflow in [9]. The flow
is assumed to change from the stagnation pressure, pu isentropically to the pressure
in the throat, pt and then adiabatically to the pressure in the pipe, p. In the subsonic
case the pressure pt is assumed to be equal to the pressure in the pipe.

For subsonic flow the boundary equation is derived using the continuity equation,
the energy equation and the equation for the speed of sound, a2 = κp

ρ
. Using these

equations together with the assumption that pt = p and that the flow expands isen-
tropically from outside the pipe into the throat, one eventually reach the equation
for the subsonic inflow. Starting by writting the continuity equation for pt = p as,
ut = 1

ψ
ρ
ρt

and using that the equation for the speed of sound can be written as

ρ

ρt
=

p

pt

(at
a

)2

=
(at
a

)2

(A.3.1)

the continuity equation becomes

ut =
1

ψ

at
a
. (A.3.2)

The ellipse of energy is again used, now in the form

a2
t = a2

u −
κ− 1

2
u2
t . (A.3.3)

Combining these equations, the following expression is found;

ψ
au
at

(
2

κ− 1

((
au
at

)2

− 1

)) 1
2

=

(
u
au

)
(
a
au

)2 . (A.3.4)

The energy equation can also be written in the form(
a

au

)2

= 1− κ− 1

2

(
u

au

)2

, (A.3.5)

and
au
at

=

(
pu
pt

)κ−1
2κ

=

(
pu
p

)κ−1
2κ

. (A.3.6)

Inserting these two expressions in Eq. A.3.4 gives the boundary equation

ψ

(
pu
p

)κ−1
2κ

(
2

κ− 1

((
pu
p

)κ−1
κ

− 1

)) 1
2

=
u
au

1− κ−1
2

(
u
au

)2 . (A.3.7)

73

A.3. NON-HOMENTROPIC INFLOW APPENDIX A. B.C.

From this equation one can find

p = pu

(√
g(u)2 + 4g(u)− g(u)

2

) κ
κ−1

= f(u), (A.3.8)

with

g(u) =
2ψ2

κ− 1

(
a2
u

u2
− κ+ 1 +

(
κ− 1

2

)2
u2

a2
u

)2

(A.3.9)

that can be linearised around u∗.

This will give

A = −pu
κ

κ− 1

(√
g(u∗)2 + 4g(u∗)− g(u∗)

2

) 1
κ−1

g′(u∗)

2

(
g(u∗) + 2√

g(u∗)2 + 4g(u∗)
− 1

)
,

(A.3.10)
and pu0 can be calculated as f(u∗).

At the sonic boundary ut = at and p = pt . The energy equation is then, using
ut = at,

a2
u = at +

κ− 1

2
a2
t =

κ+ 1

2
a2
t ⇐⇒

au
at

=

(
κ+ 1

2

) 1
2

. (A.3.11)

Again using au
at

=
(
pu
p

)κ−1
2κ

the critical pressure is derived as ps = p
(
κ+1

2

) κ
κ−1 .

When the flow is sonic in the throat the assumption that pt = p no longer holds.

Using ut = at the continuity can now be written, using ρ
ρt

= p
pt

(
at
a

)2
, as

u = ψ

(
a

at

)2(
pt
p

)
at ⇐⇒

u

au
= ψ

(
a

at

)2(
au
at

)(
pt
pu

)(
pu
p

)
. (A.3.12)

Using the form of the energy equation given in Eq. A.3.5 and Eq. A.3.11, equivalent

to pt
pu

=
(

2
κ+1

) κ
κ−1 due to the isentropic change of state, and substituting these

expressions into the continuity equation the boundary equation for choked flow in
the throat is derived as

p = puψ

(
2

κ+ 1

) κ+1
2(κ−1)

1− κ−1
2

(
u
au

)2

u
au

 = f(u). (A.3.13)

From this pu0 can be calculated as f(u∗), and A as −f ′(u∗);

A = −puψ
(

2

κ+ 1

) κ+1
2(κ−1)

(
− au

(u∗)2
− κ− 1

2au

)
. (A.3.14)

74

Appendix B

Derivations

For readers interested in details derivations or verifications of some equations are
given here.

B.1 Eq. 2.1.1 – Continuity

The derivation of the continuity equation for non-steady flow, Eq. 2.1.1, is given as
in [9] (p. 62).

When deriving the governing equations a pipe-section is considered, with an area
change dF

dx
over the control-volume that is of length dx. The continuity expresses

how the net outflow rate of the volume,(
ρ+

∂ρ

∂x
dx

)(
u+

∂u

∂x
dx

)(
F +

dF

dx
dx

)
− ρuF,

is equal to the rate of decrease in mass inside of the volume,

− ∂

∂t
(ρFdx).

The first expression can be expanded and simplified, including only first order terms,
as

dx

(
ρu
dF

dx
+ ρF

∂u

∂x
+ uF

∂ρ

∂x

)
= dx

∂(ρuF)

∂x

Using this and − ∂
∂t

(ρFdx) = −dxF ∂ρ
∂t

, the continuity equation for non-steady flow
is given as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+
ρu

F

dF

dx
= 0.

75

B.2. EQ. 2.1.2 – MOMENTUM APPENDIX B. DERIVATIONS

B.2 Eq. 2.1.2 – Momentum

The derivation of the conservation of momentum, Eq. 2.1.2, is given in [9] (p. 63)
and same control volume as in the previous section is used. In the momentum
equation the sum of the pressure forces,

pF −
(
p+

∂p

∂x
dx

)(
F +

dF

dx
dx

)
+ p

dF

dx
dx ≈ − ∂

∂x
(pF)dx+ p

dF

dx
dx,

and the shear forces,

−f ρu
2

2
πDdx,

is equal to the sum of the rate of change of momentum,

∂

∂t
(ρFudx),

and the net outflow of momentum from the control surface,(
ρ+

∂ρ

∂x
dx

)(
u+

∂u

∂x
dx

)2(
F +

dF

dx
dx

)
− ρu2F ≈ ∂

∂x
(ρu2Fdx).

The momentum equation can then be written as, expanding the derivatives,

u

(
∂ρ

∂t
+ ρ

∂u

∂x
+
ρu

F

dF

dx
+ u

∂ρ

∂x

)
+ f

ρu2

2

4

D
+
∂p

∂x
+ ρ

∂u

∂t
+ ρu

∂u

∂x
= 0.

Identifying the continuity equation this expression simplifies to

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+G = 0,

with G = 1
2
u|u|f 4

D
.

B.3 Eq. 2.1.3 – Energy

The energy equation is derived in [9] (p.64), starting from the first law of thermo-
dynamics for the same control volume used above. The first law of thermodynamics
states that, with an external shear work equal to zero, the heat transfer rate

Q̇ = qρFdx

is equal to the sum of the rate of change of total energy, E, inside the volume

∂E

∂t
=

∂

∂t

(
ρFdx

(
p

(κ− 1)ρ
+
u2

2

))
,

76

APPENDIX B. DERIVATIONS B.4. EQ. 2.4.5 AND 2.4.6 – SUCCESSIONS

and the net outflow of stagnation enthalpy,

∂

∂x

(
ρFu

(
p

(κ− 1)ρ
+
u2

2
+
p

ρ

))
dx.

The energy equation is then

qρFdx =
∂

∂t

(
ρFdx

(
p

(κ− 1)ρ
+
u2

2

))
+

∂

∂x

(
ρFu

(
p

(κ− 1)ρ
+
u2

2
+
p

ρ

))
dx.

The version of the energy equation used in this work is the equation above simplified
using the continuity and momentum equation. The full derivation with all steps can
be found in [9].

B.4 Eq. 2.4.5 and 2.4.6 – Successions

In Chapter 2 the succession of the velocity states in the homentropic case is given as
Eq. 2.4.5 and Eq. 2.4.6. Looking at Fig. 2.2 the slope of the characteristic between
a state u2j and the subsequent state u2j+1 is

C =
p2j+1 − p2j

u2j+1 − u2j

.

Further the slopes of the approximated boundary equations are

A =
p2j+1 − p∞
u∞ − u2j+1

and

B =
p2j − p∞
u2j − u∞

.

Combining the equations for the different slopes gives the succession from u2j to
u2j+1 as

u2j+1 =
A+B

C + A
u∞ +

C −B
C + A

u2j ⇐⇒ u2j+1 =

(
1− C −B

C + A

)
u∞ +

C −B
C + A

u2j,

which is equivalent to the Eq. 2.4.6. In the same manner the Eq. 2.4.5 can be
derived starting with

−C =
p2j+1 − p2j+2

u2j+1 − u2j+2

.

Note that A is the slope with a minus sign by definition.

77

B.5. EQ. 2.4.9 AND 2.4.12 – DYNAMIC MODELAPPENDIX B. DERIVATIONS

B.5 Eq. 2.4.9 and 2.4.12 – Dynamic Model

The successions can be expressed using only the steady value, derived using u0 = 0
and Eq. 2.4.5 and Eq. 2.4.6. The even states for λ > 0 are easily shown to be

u2j =
(
1− λj

)
u∞.

The time between each of these states is 2L
c

, where c is the velocity of the wave. A
time dependent expression corresponding to the discrete model is then

u(t) =
(

1− λ
tc
2L

)
u∞ ⇐⇒ u(t) =

(
1− e

−t
τ

)
u∞,

where τ = −2L
clnλ

. At time-points t = 2L
c
j the discrete model will be fulfilled,

u
(
t = 2L

c
j
)

= u2j.

In the same manner the successions can be given for λ > 0 for the odd states as

u2j+1 =
(
1− ξλj

)
u∞.

It holds that u
(
t = 2L

c

(
j + 1

2

))
= u2j+1 and the time dependent model is then for

this case

u(t) =

(
1− ξ√

λ
e
−t
τ

)
u∞.

For λ < 0 the expressions are

u2j =
(
1− (−|λ|)j

)
u∞

and

u2j+1 =
(
1− ξ(−|λ|)j

)
u∞.

The time dependent expressions are

u(t) =
(

1− e
−t
τ cos(ωt)

)
u∞,

and

u(t) =

(
1− ξ√

λ
e
−t
τ sin(ωt)

)
u∞.

The cosine and sine function ensures that there will be a correct sign inside the
parentheses through ω = πc

2L
and will become ±1 for t = 2L

c
j respectively t =

2L
c

(
j + 1

2

)
.

That the dynamical models, 2.4.9 and 2.4.12, holds can easily be shown differenti-
ating the time dependent expressions and substituting into the equations.

78

APPENDIX B. DERIVATIONS B.6. EQ. 2.4.15 AND 2.4.16 – SUCCESSIONS

B.6 Eq. 2.4.15 and 2.4.16 – Successions

The successions in the non-homentropic case are somewhat different from the ones
in the homentropic case. First of all, here the successions are from one state at
the upstream boundary to the next at the upstream boundary, and vice versa,
corresponding in the homentropic case to a succession of step-size two.

The derivation starts with four expressions Eq. 2.4.13 and Eq. 2.4.14

pu,j = pu0 − Auu,j,
pd,j = pd0 +Bk0ud,j.

that are the approximated boundary conditions, and

1

C

dp

dt
± du

dt
+ ∆1 + ∆2 ±∆3 = 0 (B.6.1)

that are combinations of the governing equations, as described in Chapter 2. Starting
by integrating the upper-sign version of Eq. 2.3.8 over the time it takes for a forward
going wave to pass the whole pipe, that is, a wave starting at the upstream end at
time t1 at state (uu,j, pu,j), ending at the downstream end at state (ud,j, pd,j) at time
t2. This gives

p(t2)− p(t1) + Cu(t2)− Cu(t1) + C(∆1 + ∆2 + ∆3)(t2 − t1) = 0.

Using that t2 − t1 = L
a+u

, one gets the expression

pd,j − pu,j + Cud,j − Cuu,j + α1 = 0, (B.6.2)

where α1 = CL
a+u

(∆1 + ∆2 + ∆3).

The lower-sign of Eq. 2.3.8 is integrated over a backward going wave, from (ud,j, pd,j)
at time t2 to (uu,j+1, pu,j+1) at time t3, giving

p(t3)− p(t3)− Cu(t3) + Cu(t2) + C(∆1 + ∆2 −∆3)(t3 − t2) = 0

or

pu,j+1 − pd,j − Cuu,j+1 + Cud,j + α2 = 0, (B.6.3)

where α2 = CL
a−u(∆1 + ∆2 −∆3)

Now, the successions at the upstream and downstream end can be found by com-
bining Eq. 2.4.13, Eq. 2.4.14, Eq. B.6.2 and Eq. B.6.3. First the expression for the
upstream end is sought, starting with the expression

(C +B)(C + A)uu,j+1 − (C −B)(C − A)uu,j − 2C(pu0 − pd0)

= C(Cuu,j+1 − Cuu,j + Auu,j+1 + Auu,j − 2(pu0 − pd0)) (B.6.4)

+B(Cuu,j+1 + Cuu,j + Auu,j+1 − Auu,j).

79

B.6. EQ. 2.4.15 AND 2.4.16 – SUCCESSIONS APPENDIX B. DERIVATIONS

Now, two expressions combining Eq. 2.4.13 and Eq. 2.4.14 are given as

pu,j − pd,j = pu0 − pd0 − Auu,j −Bud,j

and
pd,j − pu,j+1 = −pu0 + pd0 + Auu,j+1 +Bud,j.

These can be combined in the following ways

(pu,j − pd,j)− (pd,j − pu,j+1) = 2(pu0 − pd0)− Auu,j − Auu,j+1 − 2Bud,j

⇐⇒
Auu,j + Auu,j+1 − 2(pu0 − pd0) = −2Bud,j − (pu,j − pd,j) + (pd,j − pu,j+1),

and
(pu,j − pd,j) + (pd,j − pu,j+1) = Auu,j+1 − Auu,j.

Now, these expressions can be inserted into Eq. B.6.4 giving

(C +B)(C + A)uu,j+1 − (C −B)(C − A)uu,j − 2C(pu0 − pd0)

= C(Cuu,j+1 − Cuu,j − (pu,j − pd,j) + (pd,j − pu,j+1))

+B(Cuu,j+1 + Cuu,j + (pu,j − pd,j) + (pd,j − pu,j+1)− 2Cud,j)

⇐⇒

uu,i+1 =
C −B
C +B

C − A
C + A

uu,i +
2

C +B

C

C + A
(pu0 − pd0)− 1

C + A

(
α1
C −B
C +B

− α2

)
.

In the same manner one can get the succession for the downstream end as

ud,i+1 =
C −B
C +B

C − A
C + A

ud,i +
2

C +B

C

C + A
(pu0 − pd0)− 1

C +B

(
α1 − α2

C − A
C + A

)
.

To get the steady values upstream and downstream set u·,i+1 = u·,i = u·,∞ and solve
for u·,∞.

80

Appendix C

Setup of Tests

Here most of the setups of the simulated configurations discussed in 3.2 are pre-
sented. In the following explicit Euler was used, the length of the pipe was set to 1
m, the diameter to 5 cm and the friction factor was set to 0.05. The media used was
from Modelon’s library the ideal fluid Fast Air, fixed composition, linear cp, 20-600
◦C. The temperature where 25 ◦C in both ends and there was no heat-transfer.

81

APPENDIX C. SETUP OF TESTS

T
ab

le
C

.1:
T

ab
le

over
th

e
setu

p
in

con
fi
gu

ration
s

sim
u
lated

an
d

sh
ow

n
in

th
e

fi
gu

res
in

d
icated

u
n
d
er

C
ase.

C
ase

p
u

[b
ar]

ψ
p
d

[b
ar]

φ
tim

e-
step
[m

s]

R
u
n
-

tim
e

[m
s]

C
P

U
-

tim
e

[m
s]

F
ig.

3.4
ram

p
:

1.5
to

2
0.7

1.5
0.7

1.0
50

15
0.3

18

F
ig.

3.5
1.7

+
0.1sin

(π
t)

0.7
1.5

0.7
1.0

3000
463

F
ig.

3.6
1.7

+
0.1sin

(10π
t)

0.7
1.5

0.7
1.0

3000
505

F
ig.

3.7
2

0.7
1.5

0.5
+

0.5sin
(π
t)

0.2
3000

2430

F
ig.

3.8
1.4

+
0.2sin

(π
t)

0.7
1.6

0.7
1.0

3000
600

F
ig.

3.9
1.5

+
0.2sin

(π
t)

0.7
1.5

0.7
1.0

3000
542

F
ig.

3.10
1.5

+
0.2sin

(10π
t)

0.7
1.5

0.7
1.0

3000
542

F
ig.

3.13
1.5

+
0.2sin

(10π
t

+
10)

0.7
+

0.2sin
(5π

t
+

5)
1.5
−

0.1sin
(π
t

+
90)

0.5
+
sin

(π
t

+
45)

0.2
3000

2370

82

Appendix D

Modelica Code

model QPM_pipe

replaceable package Medium =

Modelon.Media.PreDefined.IdealGases.FastDryAir constrainedby

Modelon.Media.Interfaces.GenericMedium "Fluid model"

annotation(choicesAllMatching);

parameter Real timeStep = 0.0001 "Time step size";

Real x(start = 0) "Where is the wave";

Real xMod "x mod 2L";

parameter Boolean useEventLambda = false

"true if one want to have an event each time lambda changes

sign";

// Geometry

parameter Modelica.SIunits.Length L = 1 "Length of pipe";

parameter Modelica.SIunits.Diameter D = 0.05 "Diameter of pipe";

parameter Modelica.SIunits.Area F = Modelica.Constants.pi*D^2/4

"Pipe area upstream";

parameter Real dFdx = 0 "Change of F along x";

Real phi_real(max=1, min =0) "Throat area downstream / Area pipe";

Real psi_real(max=1, min =0) "Throat area upstream / Area pipe";

Real phi "Limited area ratio phi";

Real psi "Limited area ratio psi";

parameter Boolean static_upstream = false;

parameter Boolean static_downstream = false;

// Initially

parameter Modelica.SIunits.Pressure p_init = 1e5

"Initial pressure";

// Medium

Medium.ThermodynamicState state_u

"State at upstream end non -reversed flow" ;

Medium.ThermodynamicState state_u_rev

83

APPENDIX D. MODELICA CODE

"State at upstream end reversed flow";

Medium.ThermodynamicState state_d

"State at downstream end non -reversed flow";

Medium.ThermodynamicState state_d_rev

"State at downstream end reversed flow";

Modelica.SIunits.SpecificHeatCapacity Cp_u

"Specific heat upstream";

Modelica.SIunits.SpecificHeatCapacity Cv_u

"Specific heat upstream";

Real k_u "Ratio of specific heats upstream";

Modelica.SIunits.SpecificHeatCapacity Cp_d

"Specific heat downstream";

Modelica.SIunits.SpecificHeatCapacity Cv_d

"Specific heat downstream";

Real k_d "Ratio of specific heats downstream";

Modelica.SIunits.Pressure p_u(start = p_init)

"Pressure upstream";

Modelica.SIunits.Pressure p_d(start = p_init)

"Pressure downstream";

Modelica.SIunits.Velocity a_u(start = 400)

"Speed of sound upstream";

Modelica.SIunits.Velocity a_d(start = 400)

"Speed of sound downstr.";

Modelica.SIunits.Density rho_u "Density upstream";

Modelica.SIunits.Density rho_d "Density downstream";

Modelica.SIunits.MassFlowRate m_flow_middle;

Real G "Friction force/unit mass";

parameter Real f = 0.05 "Friction factor";

Real q "Heat flow rate /unit mass/unit time";

Modelica.SIunits.HeatFlowRate Q_flow "Net heat energy transfer";

// QPM -variables

Real lambda(start = 1) "(C-B)/(C+B)*(C-A)/(C+A)";

Real A(start = 1) "Appr. slope of upstream b.c.";

Real p_u0(start = p_init) "Pressure at u=0, upstream b.c";

Real B(start = 1) "Appr. slope of downstream b.c.";

Real p_d0(start = p_init) "Pressure at u=0, downstream b.c";

Real C "dp/du , slope in state diagram";

Modelica.SIunits.Velocity c(start = 400) "Velocity of wave";

Modelica.SIunits.Velocity u_inf(start = 400) "Steady value of u";

Modelica.SIunits.Velocity u(start = 1) "Midpoint velocity";

Modelica.SIunits.Acceleration u_temp "Midpoint acceleration";

Real u_uinf(start = 300) "Steady state upstream end";

Real u_dinf(start = 300) "Steady state downstream end";

Real alpha_1(start = 1) "Non -homentropic term";

Real alpha_2(start = 1) "Non -homentropic term";

Real D1(start = 1) "Non -homentropic term";

Real D2(start = 1) "Non -homentropic term";

Real D3(start = 1) "Non -homentropic term";

Real u_int(start = 300) "Homentropic steady state";

84

APPENDIX D. MODELICA CODE

Real tau(start = 2* timeStep) "Time constant";

Real omega(start = 3.14 /(2* timeStep)) "Pulsation constant";

Modelica.SIunits.Pressure p_BCu(start=p_init)

"Pressure inside pipe at upstream end";

Modelica.SIunits.Pressure p_BCd(start=p_init)

"Pressure inside pipe at downstream end";

Real p_cr(start = 1) "Critical pressure ratio for outflow";

Real p_cr_rev(start = 1) "Cr. pr. ratio for outflow if rev. flow";

parameter Real dp = 1e3 "spliceFunction parameter";

Real p1(start=p_init ,nominal = 1e5 ,min = 0) "Linearisation var.";

Real p2(start=p_init ,nominal = 1e5 , min= 0) "Linearisation var.";

Real p_subOut(start=p_init , nominal = 1e5 , min = 0) "Lin. var.";

Real du(start=0.1) "Linearisation variable";

Real p1_temp(start = 1) "Linearisation help variable";

Real p2_temp(start = 1) "Linearisation help variable";

Real p_subOut_temp(start = 1) "Linearisation help variable";

Real psu "Critical pressure upstream end , non -reversed flow";

Real psu_rev "Critical pressure upstream end , reversed flow";

Real psd "Critical pressure downstream end , non -reversed flow";

Real psd_rev "Critical pressure downstream end , reversed flow";

Modelon.ThermoFluid.Interfaces.FlowPort port_u(

redeclare package Medium=Medium)

a;

Modelon.ThermoFluid.Interfaces.FlowPort port_d(

redeclare package Medium=Medium)

a;

Modelica.Blocks.Interfaces.RealInput port_psi

a;

Modelica.Blocks.Interfaces.RealInput port_phi

a;

Modelon.ThermoFluid.Interfaces.FlowHeatPort heatPort

a;

equation

//Avoid fully closed and fully open ends

phi = min(max(phi_real ,0.01),0.99);

psi = min(max(psi_real ,0.01),0.99);

// Dynamic model

if p_u >p_d and static_upstream and phi ==1 or

p_d >p_u and static_downstream and psi ==1 then

der(u)=(p_u -p_d)*c/(C*L)-G;

der(u_temp)=0;

else

if useEventLambda then

if (lambda > 0) then

der(u) = (u_inf - u) / tau;

der(u_temp) = -u_temp/tau;

85

APPENDIX D. MODELICA CODE

else

der(u_temp)= -2/tau * der(u) +

(1/tau^2 + omega ^2)*(u_inf - u);

der(u)= u_temp;

end if;

else

der(u) = noEvent(

if lambda > 0 then

(u_inf - u) / tau

else

u_temp);

der(u_temp) = noEvent(

if lambda > 0 then

-u_temp/tau

else

-2/tau*der(u) + (1/ tau ^2+ omega ^2)*(u_inf -u));

end if;

end if;

tau = -2*L/(c * log(min(0.999 ,abs(lambda))));

omega = Modelica.Constants.pi * c /(2*L);

lambda = (C-abs(B))/(C+abs(B))*(C-abs(A))/(C+abs(A));

C = k_u*p_u/a_u;

// Follow the wave

der(x) = c;

xMod = noEvent(mod(x,2*L));

c = noEvent(

if xMod > 0 and xMod < L then

a_u+u

else

a_u -u);

// Help variables

u_uinf=u_int -(C+abs(B))/ max(0.001 ,(abs(A)+abs(B)))*

0.5/C*(alpha_1 *(C-abs(B))/max(0.001 ,(C+abs(B)))- alpha_2);

u_dinf=u_int -(C+abs(A))/ max(0.001 ,(abs(A)+abs(B)))*

0.5/C*(alpha_1 -alpha_2 *(C-abs(A))/(C+abs(A)));

D1 = -(k_u -1)*(q+abs(u)*G)/a_u;

D2 = (a_u*abs(u)/F)*dFdx;

D3 = G;

alpha_1 = (D1+D2+D3)/(a_u+abs(u))*C*L;

alpha_2 = -1*(-D1 -D2+D3)/(a_u -abs(u))*C*L;

u_int = if p_u > p_d then

(p_u0 -p_d0)/max(0.001 ,(abs(A)+abs(B)))

else

-1* (p_u0 -p_d0)/max(0.001 ,(abs(A)+abs(B)));

u_inf = if p_u > p_d then

0.5*(u_uinf+u_dinf)

else

- 0.5*(u_uinf+u_dinf);

86

APPENDIX D. MODELICA CODE

// Critical pressure (used in outflow B.C)

p_cr = 1 + (k_d -1)/4* sqrt(1-phi ^2);

p_cr_rev = 1 + (k_u -1)/4* sqrt(1-psi ^2);

// Boundary conditions

psu = delay(p_BCu ,timeStep)*((k_u + 1)/2)^(k_u/(k_u - 1));

psu_rev = p_u*p_cr_rev ^(2* k_u/(k_u -1));

psd = p_d*p_cr ^(2* k_d/(k_d -1));

psd_rev = delay(p_BCd ,timeStep)*((k_d + 1)/2)^(k_d/(k_d - 1));

// Subsonic outflow

du = max(abs(u)/100 ,1);

max(abs(u),0.1) + du = (

if p_u > p_d then

sign(p1_temp)*(-1)*(min(abs(p1_temp),(psd -p_d))-

max(abs(p1_temp),(psd -p_d))+abs(p1_temp)-(psd -p_d))/

(2* max((max(abs(p1_temp),(psd -p_d))-

min(abs(p1_temp),(psd -p_d))),1e -8))*

sqrt(abs (2* a_d ^2/(k_d - 1)* max(1e-8,(

max(1, (abs(p1_temp)+p_d)/p_d)^((k_d - 1)/k_d) - 1)/

(1/ phi ^2* max(1, (abs(p1_temp)+p_d)/p_d)^(2/ k_d) - 1)))) +

sign(p1_temp)*(-1)*(min(abs(p1_temp),(psd -p_d))-

max(abs(p1_temp),(psd -p_d))-abs(p1_temp)+(psd -p_d))/

(2* max((max(abs(p1_temp),(psd -p_d))-

min(abs(p1_temp),(psd -p_d))),1e -4))*

a_d *((abs(p1_temp)+p_d)/p_d)^((k_d -1)/(2* k_d))*

psi*p_cr ^((-1*(k_d +1))/(k_d -1))

else

sign(p1_temp)*(-1)*(min(abs(p1_temp),(psu_rev -p_u))-

max(abs(p1_temp),(psu_rev -p_u))+abs(p1_temp)-(psu_rev -p_u))/

(2* max((max(abs(p1_temp),(psu_rev -p_u))-

min(abs(p1_temp),(psu_rev -p_u))),1e -8))*

sqrt(abs (2* a_u ^2/(k_u - 1)* max(1e-8,(

max(1,(abs(p1_temp)+p_u)/p_u)^((k_u - 1)/k_u)-1)/

(1/ psi ^2* max(1, (abs(p1_temp)+p_u)/p_u)^(2/ k_u) -1)))) +

sign(p1_temp)*(-1)*(min(abs(p1_temp),(psu_rev -p_u))-

max(abs(p1_temp),(psu_rev -p_u))-abs(p1_temp)+(psu_rev -p_u))/

(2* max((max(abs(p1_temp),(psu_rev -p_u))-

min(abs(p1_temp),(psu_rev -p_u))),1e -4))*

a_u *((abs(p1_temp)+p_u)/p_u)^((k_u -1)/(2* k_u))*

psi*p_cr_rev ^((-1*(k_u +1))/(k_u -1)));

max(abs(u),0.1) - du = (

if p_u > p_d then

sign(p2_temp)*(-1)*(min(abs(p2_temp),(psd -p_d))-

max(abs(p2_temp),(psd -p_d))+abs(p2_temp)-(psd -p_d))/

(2* max((max(abs(p2_temp),(psd -p_d))-

min(abs(p2_temp),(psd -p_d))),1e -8))*

sqrt(abs (2* a_d ^2/(k_d - 1)* max(1e-8,(

max(1, (abs(p2_temp)+p_d)/p_d)^((k_d - 1)/k_d) - 1)/

(1/ phi ^2* max(1, (abs(p2_temp)+p_d)/p_d)^(2/ k_d) -1)))) +

sign(p2_temp)*(-1)*(min(abs(p2_temp),(psd -p_d))-

max(abs(p2_temp),(psd -p_d))-abs(p2_temp)+(psd -p_d))/

87

APPENDIX D. MODELICA CODE

(2*max((max(abs(p2_temp),(psd -p_d))-

min(abs(p2_temp),(psd -p_d))),1e -4))*

a_d*((abs(p2_temp)+p_d)/p_d)^((k_d -1)/(2* k_d))*

phi*p_cr ^((-1*(k_d +1))/(k_d -1))

else

sign(p2_temp)*(-1)*(min(abs(p2_temp),(psu_rev -p_u))-

max(abs(p2_temp),(psu_rev -p_u))+abs(p2_temp)-(psu_rev -p_u))/

(2*max((max(abs(p2_temp),(psu_rev -p_u))-

min(abs(p2_temp),(psu_rev -p_u))),1e -8))*

sqrt(abs (2* a_u ^2/(k_u - 1)*

max(1e-8,(max(1, (abs(p2_temp)+p_u)/p_u)^((k_u - 1)/k_u)-1)/

(1/psi^2*max(1, (abs(p2_temp)+p_u)/p_u)^(2/ k_u) - 1)))) +

sign(p2_temp)*(-1)*(min(abs(p2_temp),(psu_rev -p_u))-

max(abs(p2_temp),(psu_rev -p_u))-abs(p2_temp)+(psu_rev -p_u))/

(2*max((max(abs(p2_temp),(psu_rev -p_u))-

min(abs(p2_temp),(psu_rev -p_u))),1e -4))*

a_u*((abs(p2_temp)+p_u)/p_u)^((k_u -1)/(2* k_u))*

psi*p_cr_rev ^((-1*(k_u +1))/(k_u -1)));

max(abs(u),0.1) = (

if p_u > p_d then

sign(p_subOut_temp)*(-1)*(min(abs(p_subOut_temp),(psd -p_d))

max(abs(p_subOut_temp),(psd -p_d))+abs(p_subOut_temp)-

(psd -p_d))/(2* max((max(abs(p_subOut_temp),(psd -p_d))-

min(abs(p_subOut_temp),(psd -p_d))),1e -8))*

sqrt(abs (2* a_d ^2/(k_d - 1)* max(1e-8,(

max(1,(abs(p_subOut_temp)+p_d)/p_d)^((k_d -1)/ k_d)-1)/

(1/phi^2*max(1, (abs(p_subOut_temp)+p_d)/p_d)^(2/ k_d) -1))))+

sign(p_subOut_temp)*(-1)*(min(abs(p_subOut_temp),(psd -p_d))-

max(abs(p_subOut_temp),(psd -p_d))-abs(p_subOut_temp)+

(psd -p_d))/(2* max((max(abs(p_subOut_temp),(psd -p_d))-

min(abs(p_subOut_temp),(psd -p_d)))1e -4))*

a_d*((abs(p_subOut_temp)+p_d)/p_d)^((k_d -1)/(2* k_d))*

phi*p_cr ^((-1*(k_d +1))/(k_d -1))

else

sign(p_subOut_temp)*(-1)*

(min(abs(p_subOut_temp),(psu_rev -p_u))-

max(abs(p_subOut_temp),(psu_rev -p_u))+

abs(p_subOut_temp)-(psu_rev -p_u))

/(2* max((max(abs(p_subOut_temp),(psu_rev -p_u))-

min(abs(p_subOut_temp),(psu_rev -p_u))),1e -8))*

sqrt(abs (2* a_u ^2/(k_u - 1)* max(1e-8,(

max(1, (abs(p_subOut_temp)+p_u)/p_u)^((k_u - 1)/k_u) - 1)/

(1/psi^2*max(1,(abs(p_subOut_temp)+p_u)/p_u)^(2/ k_u) -1))))+

sign(p_subOut_temp)*(-1)*

(min(abs(p_subOut_temp),(psu_rev -p_u))-

max(abs(p_subOut_temp),(psu_rev -p_u))-

abs(p_subOut_temp)+(psu_rev -p_u))

/(2* max((max(abs(p_subOut_temp),(psu_rev -p_u))-

min(abs(p_subOut_temp),(psu_rev -p_u)))1e -4))*

a_u*((abs(p_subOut_temp)+p_u)/p_u)^((k_u -1)/(2* k_u))*

psi*p_cr_rev ^((-1*(k_u +1))/(k_u -1)));

p1 = (

if p_u > p_d then

abs(p1_temp) + p_d

88

APPENDIX D. MODELICA CODE

else

abs(p1_temp) + p_u);

p2 = (

if p_u > p_d then

abs(p2_temp) + p_d

else

abs(p2_temp) + p_u);

p_subOut = (

if p_u > p_d then

abs(p_subOut_temp) + p_d

else

abs(p_subOut_temp)+p_u);

A = (

if p_u > p_d then

if static_upstream then

0

else

spliceFunction(

-1*p_u*k_u/(k_u -1)*(0 .5*(sqrt(functions.g(abs(u),k_u ,a_u ,psi)^2+

4* functions.g(abs(u),k_u ,a_u ,psi)) -

functions.g(abs(u),k_u ,a_u ,psi)))^(1/(k_u - 1))*

0.5*functions.dgdu(abs(u),k_u ,a_u ,psi)*

((functions.g(abs(u),k_u ,a_u ,psi) + 2)/

sqrt(functions.g(abs(u),k_u ,a_u ,psi)^2 +

4* functions.g(abs(u),k_u ,a_u ,psi)) - 1),

-1*p_u*psi *(2/(k_u + 1))^((k_u + 1)/(2* k_u - 2))*

(-a_u/(abs(u)^2) - (k_u - 1)/(2* a_u)),

psu -p_u ,

dp)

else

spliceFunction(

-1* (p1-p2)/(2* du),

-1*2*k_u/(k_u -1)*(p_cr_rev ^((k_u +1)/(k_u -1))/

(a_u*psi))^(2* k_u/(k_u -1))* abs(u)^((k_u +1)/(k_u -1))*p_u ,

psu_rev -delay(p_BCu ,timeStep),

dp));

p_u0 = (

if p_u > p_d then

if static_upstream then

p_u

else

spliceFunction(

A*abs(u)+p_u*(0.5*(sqrt(functions.g(abs(u),k_u ,a_u ,psi)^2 +

4* functions.g(abs(u),k_u ,a_u ,psi)) -

functions.g(abs(u),k_u ,a_u ,psi)))^(k_u/(k_u - 1)),

A*abs(u)+p_u*psi *(2/(k_u + 1))^((k_u +1)/(2*k_u -2))*(a_u/abs(u)-

(k_u - 1)/2* abs(u)/a_u),

psu - p_u ,

dp)

else

spliceFunction(

A*abs(u) + p_subOut ,

A*abs(u) + (p_cr_rev ^((k_u +1)/(k_u -1))* abs(u)/

(a_u*psi))^(2* k_u/(k_u -1))*p_u ,

89

APPENDIX D. MODELICA CODE

psu_rev -delay(p_BCu ,timeStep),

dp));

B = (

if p_u > p_d then

spliceFunction(

(p1-p2)/(2* du),

2*k_d/(k_d -1)*(p_cr ^((k_d +1)/(k_d -1))/(a_d*phi))^

(2*k_d/(k_d -1))* abs(u)^((k_d +1)/(k_d -1))*p_d ,

psd -delay(p_BCd ,timeStep),

dp)

else

if static_downstream then

0 else

spliceFunction(

p_d*k_d/(k_d - 1)*(0.5*(sqrt(functions.g(abs(u),k_d ,a_d ,phi)^2 +

4* functions.g(abs(u),k_d ,a_d ,phi)) -

functions.g(abs(u),k_d ,a_d ,phi)))^(1/(k_d - 1))*

0.5*functions.dgdu(abs(u),k_d ,a_d ,phi)*

((functions.g(abs(u),k_d ,a_d ,phi) + 2)/

sqrt(functions.g(abs(u),k_d ,a_d ,phi)^2 +

4* functions.g(abs(u),k_d ,a_d ,phi)) - 1),

p_d*phi *(2/(k_d + 1))^((k_d + 1)/(2* k_d - 2))*

(-a_d/(abs(u)^2) - (k_d - 1)/(2* a_d)),

psd_rev -p_d ,

dp));

p_d0 = (

if p_u > p_d then

spliceFunction(

-B*abs(u) + p_subOut ,

-B*abs(u) + (p_cr ^((k_d +1)/(k_d -1))*

abs(u)/(a_d*phi))^(2* k_d/(k_d -1))*p_d ,

psd -delay(p_BCd ,timeStep),

dp)

else

if static_downstream then

p_d else

spliceFunction(

-B*abs(u) + p_d *(0.5*(sqrt(functions.g(abs(u),k_d ,a_d ,phi)^2 +

4* functions.g(abs(u),k_d ,a_d ,phi)) -

functions.g(abs(u),k_d ,a_d ,phi)))^(k_d/(k_d - 1)),

-B*abs(u) + p_d*phi *(2/(k_d + 1))^((k_d + 1)/(2* k_d - 2))*

(a_d/abs(u) - (k_d - 1)/2* abs(u)/a_d),

psd_rev -p_d ,

dp));

p_BCu = (

if p_u > p_d then

if p_u > p_d then

if static_upstream then

p_u

else

spliceFunction(

p_u *(0.5*(sqrt(functions.g(abs(u),k_u ,a_u ,psi)^2 +

4* functions.g(abs(u),k_u ,a_u ,psi)) -

90

APPENDIX D. MODELICA CODE

functions.g(abs(u),k_u ,a_u ,psi)))^(k_u/(k_u - 1)),

p_u*psi *(2/(k_u + 1))^((k_u + 1)/(2* k_u - 2))*

(a_u/abs(u) - (k_u - 1)/2* abs(u)/a_u),

psu -p_u ,

dp)

else

spliceFunction(

p_subOut ,

(p_cr_rev ^((k_u +1)/(k_u -1))*

abs(u)/(a_u*psi))^(2* k_u/(k_u -1))*p_u ,

psu_rev -delay(p_BCu ,timeStep),

dp));

p_BCd = (

if p_u > p_d then

spliceFunction(

p_subOut ,

(p_cr ^((k_d +1)/(k_d -1))* abs(u)/(a_d*phi))^(2* k_d/(k_d -1))*p_d ,

psd -delay(p_BCd ,timeStep),

dp)

else

if static_downstream then

p_d else

spliceFunction(

p_d*(0.5*(sqrt(functions.g(abs(u),k_d ,a_d ,phi)^2 +

4* functions.g(abs(u),k_d ,a_d ,phi)) -

functions.g(abs(u),k_d ,a_d ,phi)))^(k_d/(k_d - 1)),

p_d*phi *(2/(k_d + 1))^((k_d + 1)/(2* k_d - 2))*

(a_d/abs(u) - (k_d - 1)/2* abs(u)/a_d),

psd_rev -p_d ,

dp));

// Medium

state_u_rev = Medium.setState_phX(

p_u , port_u.h_outflow ,port_u.X_outflow);

state_u = Medium.setState_phX(

p_u , inStream(port_u.h_outflow), inStream(port_u.X_outflow));

state_d_rev = Medium.setState_phX(

p_d , inStream(port_d.h_outflow), inStream(port_d.X_outflow));

state_d = Medium.setState_phX(

p_d , port_d.h_outflow ,port_d.X_outflow);

k_u = Cp_u/Cv_u;

Cp_u = if u > 0 then

Medium.specificHeatCapacityCp(state_u)

else

Medium.specificHeatCapacityCp(state_u_rev);

Cv_u = if u > 0 then

Medium.specificHeatCapacityCv(state_u)

else

Medium.specificHeatCapacityCv(state_u_rev);

a_u = if u > 0 then

Medium.velocityOfSound(state_u)

else

Medium.velocityOfSound(state_u_rev);

91

APPENDIX D. MODELICA CODE

rho_u =if u > 0 then

Medium.density(state_u)

else

Medium.density(state_u_rev);

k_d = Cp_d/Cv_d;

Cp_d = if u > 0 then

Medium.specificHeatCapacityCp(state_d)

else

Medium.specificHeatCapacityCp(state_d_rev);

Cv_d = if u > 0 then

Medium.specificHeatCapacityCv(state_d)

else

Medium.specificHeatCapacityCv(state_d_rev);

a_d = if u > 0 then

Medium.velocityOfSound(state_d)

else

Medium.velocityOfSound(state_d_rev);

rho_d =if u > 0 then

Medium.density(state_d)

else

Medium.density(state_d_rev);

G = f*abs(u)*abs(u)*2/D;

q = Q_flow /(rho_u*F*L);

// Connect

heatPort.T = if u > 0 then

(Medium.temperature(state_u)+ Medium.temperature(state_d))/2

else

(Medium.temperature(state_u_rev)+

Medium.temperature(state_d_rev))/2;

heatPort.Q_flow = Q_flow;

phi_real = port_phi;

psi_real = port_psi;

m_flow_middle= u *(F+0.5*L*dFdx)*(rho_d+rho_u)/2;

port_d.m_flow = - m_flow_middle;

port_u.m_flow = m_flow_middle;

p_d = port_d.p;

p_u = port_u.p;

port_u.h_outflow = -sign(port_u.m_flow)*(port_d.m_flow *

inStream(port_d.h_outflow)-Q_flow)/max(abs(port_u.m_flow),0.00001);

port_d.h_outflow = -sign(port_d.m_flow)*(port_u.m_flow *

inStream(port_u.h_outflow)-Q_flow)/max(abs(port_d.m_flow),0.00001);

port_u.X_outflow = inStream(port_d.X_outflow);

port_d.X_outflow = inStream(port_u.X_outflow);

port_u.C_outflow = inStream(port_d.C_outflow);

port_d.C_outflow = inStream(port_u.C_outflow);

a

end QPM_pipe;

92

APPENDIX D. MODELICA CODE

package functions

function g

input Real u;

input Real k;

input Real a;

input Real F_change;

output Real gu;

algorithm

gu :=2* F_change ^2/(k - 1)*((a/max(u,0 .0001))^2 -

k+1+((k -1)/2)^2*(u/a)^2);

end g;

function dgdu

input Real u;

input Real k;

input Real a;

input Real F_change;

output Real dgu;

algorithm

dgu := 2* F_change ^2/(k-1)*(-2*a^2/(max(u,0.01)^3)+

(k -1)^2/4*2* max(u,0.01)/(a^2));

end dgdu;

end functions;

93

	Introduction
	Methods for Solving Pipe Flow

	Theory
	Governing Equations
	Four-Stroke Engines
	Pressure Waves
	The Manifolds

	Method of Characteristics
	The Quasi-Propagatory Method
	Homentropic Flow
	Non-Homentropic Flow
	Static vs Stagnation BC

	The Model
	Implementation of the Model
	Preliminary Tests

	Results
	Comparing with simplePipe
	Compare with MOC

	Discussion
	Comparing with simplePipe
	Comparing with MOC
	Conclusion

	Bibliography
	Boundary Conditions
	Homentropic Inflow
	Partially Open Boundary

	Homentropic Outflow
	Non-homentropic Inflow

	Derivations
	Eq. 2.1.1– Continuity
	Eq. 2.1.2– Momentum
	Eq. 2.1.3– Energy
	Eq. 2.4.5and 2.4.6– Successions
	Eq. 2.4.9and 2.4.12– Dynamic Model
	Eq. 2.4.15and 2.4.16– Successions

	Setup of Tests
	Modelica Code

