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Abstract

Cardiovascular diseases are currently the leading cause of death in the world,
which killed nearly 17 million people in 2011 [3]. For this reason, research in Car-
diovascular diseases are of the up-most importance. In this thesis, real-time Cardiac
Magnetic Resonance Imaging data is used to create simulated cardiac cycles for
multiple phases of the respiratory cycle. By exploring image classification of both
cardiac and respiratory cycles with a combination of cycle detection methods (Fast
Fourier Transforms, Watershed Segmentation, K-means and locating maximas and
minimas) and using a RANSAC method for robustness, interpolated volumes for
each respiratory cycle can be created. The use of different interpolation methods
are also explored to discover how to produce the best results. In conclusion a
Monotonic Piecewise Cubic Spline Interpolation in combination with the use of an
optimisation method, to select the most suitable images, proved to be the most ac-
curate method to produce simulated cardiac cycles. The ejection fraction obtained
at expiration, from the simulated cardiac cycle, has a value of 55.6962 ± 1.6199%
which is within the current standard normal range of 55− 70%, [14], determined at
the same respiratory phase.

As a result of this research, a physiologist will have a useful tool to further
understand deformations of the heart due to respiratory motion with relation to the
ejection fraction. Further to this, this method could have the potential of being an
option for patients in the future. To obtain cardiac MRI data in a faster and less
distressing way, the patient would not be required to hold their breath, which can
be difficult for some patients.



Acknowledgements

Firstly I would like to thank my supervisors, Einar Heiberg and Sebastian Bidhult, for their
support during this thesis and their interesting discussions on the subject. Secondly I would like
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1 Introduction

Cardiovascular diseases are currently the leading cause of death in the world, which killed nearly
17 million people in 2011 [3]. For this reason, research in Cardiovascular diseases are of the
up-most importance, particularly for the Western World. Due to the continuing development
of computing and medical imaging, new ways of approaching Cardiac research are emerging.
Through the use of Magnetic Resonance Imaging (M.R.I.), the heart can be assessed in a non-
invasive way.

The Lund University Cardiac MR Group use MRI technology to develop a better under-
standing of how the heart functions to a much greater extent. By using MRI techniques new
aspects of pumping physiology of the heart in vivo can be seen and in doing so be able to assist
clinical physiologists in their understanding of the heart.

In recent developments, techniques have emerged so an MRI machine can acquire real-time
data. Thus, detailed studies of motion can be observed. This is of significant importance
because now possible to begin to understand how small changes within the body affect the
physiology.

The current method to obtain data requires the patient to hold their breath while the MRI
machine takes images at specified stages of the cardiac cycle when criterion are met using an
Electrocardiogram. This is called a gating method. In research published in 2008, [4], a method
was developed where the patient was free to breathe during the scan and images were taken
during all cardiac cycle phases. Here real-time acquisition was combined with a post processed
gating method in order to correct for respiratory motion and enhance the real-time image qual-
ity. This research provided the inspiration for this thesis work.
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2 Aim

In this thesis, real-time Cardiac Magnetic Resonance Imaging data is used to create simulated
cardiac cycles for multiple phases of the respiratory cycle. This makes it possible to observe
how the respiratory motion deforms the heart, which is of interest for physiologists. To achieve
the main aim of the thesis a method is developed which encompasses the following four key
stages:

1. Creating a classification method to accurately determine the respiratory motion of the
heart in real-time Cardiac Magnetic Resonance Imaging data.

2. Creating a classification method to accurately determine the Cardiac cycle of the heart in
real-time Cardiac Magnetic Resonance Imaging data.

3. Creating a method to construct interpolated cardiac cycles for each of the respiratory
classes.

4. Analyse the interpolate cardiac cycles to determine differences in left ventricle volumes
due to respiratory motion.

In addition these aims, by creating a method as described, it could have the potential of being
an option for patients in the future, to obtain cardiac MRI data in a faster and less distressing
way as the patient would not be required to hold their breath, which is also difficult for some
patients.
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3 Background

3.1 Physiological Background

3.1.1 Human Heart

The heart is divided into four connected chambers by heart valves. The two lower chambers are
called the left and right ventricles which are separated by a septum. The purpose of the right
ventricle is to pump deoxygenated blood to the lungs to be oxygenated and the left ventricle
receives oxygenated blood, via the left atrium, and pumps it to the aorta and around the body.
Since the left ventricle pumps blood to the rest of the body it has thicker myocardium (cardiac
muscle) walls.

Figure 1: Diagram of the Heart [6]

3.1.2 Magnetic Resonance Imaging (MRI) Physics

MRI is an imaging technique that uses strong magnetic fields and radio waves to image a pa-
tient. It is particularly effective due to the large percentage (∼ 60%) of water that makes up
the human body. The hydrogen in the water has magnetic moments which can be influenced
by a powerful magnetic field outwith the body. When a magnetic field is induced the moments
of the protons in the hydrogen align with the magnetic field.

An electromagnetic field in the radio range is then turned on which alters the protons rel-
ative alignment. When the radio waves are then turned off the protons are realigned with the
magnetic field causing a change in magnetic flux. As a result this changes the induced voltage
in the receiver coils and produces a measurable signal.

A modern MRI machine operates around 1.5-3 Tesla and the magnetic field is produced us-
ing a superconducting alloy niobium-titanium cooled to 4K with liquid helium. The frequency
at which the proton resonates depends on the strength of the magnetic field around the proton.
By applying magnetic fields that vary linearly over orthogonal locations, selected slices can be
imaged. The image is obtained by taking a 2-D Inverse Fourier transformation of the corre-
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sponding resonance frequencies of the protons and calculate a corresponding spatially resolved
image.

The T1 relaxation time is a measure of how quickly a group of protons moments, M =
(Mx,My,Mz), to return to 63% of the direction of magnetic field, M0 for magnetic field B, af-
ter the radio pulse, which is also referred to as the spin-lattice relaxation time. This time differs
in certain materials and with this knowledge, different contrast weighting can be produced on
the image to emphasize selected tissues.

The T2 relaxation time is a measure of how quickly a group of protons moments to return
to 63% of the direction perpendicular to that of magnetic field after the radio pulse, which is
also referred to as the spin-spin relaxation time. This time also differs in certain tissues.

These relaxation times are then used to describe the change in magnetic moments which is
characterised by the Bloch Equation.

dM

dt
= γM×B− Mx

T2
x̂− My

T2
ŷ − Mz −M0

T1
ẑ (1)

Where the gyromagnetic ratio for Hydrogen is γ = 2.68× 108 rad/s/T.

To produce an image, first the demodulated magnetic resonance signals, S(t), generated by
the precessing molecules in magnetic field gradient G are measured. This equates to the Fourier
transform of the spin density, ρ, which is given by the equation;

S(t) = ρ(

∫ t

0
G(t)dt) =

∫
ρ(r)e2πi(

∫ t
0 G(t)dt).rdr (2)

This in turn can produce an image,I, by using a inverse Fourier transform and making the
substitution k(t) =

∫ t
0 G(t)dt the image is represented by, [15];

I(r) =

∫
S(k(t))e−2πik(t).rdk (3)

3.1.3 Segment

Segment is a commercial version of the software package sold by the company Medviso AB and
developed by Lund Cardiac MR Group [5]. This program is used for viewing and processing
Cardiac Magnetic Resonance Imaging data. Some of the features includes left and right ventri-
cle segmentation, Strain analysis and flow analysis.

In this thesis, the developed method will work in conjunction with Segment, using some of
the existing function and data structures with the view to make a plug-in in a new Graphical
User Interface.
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Figure 2: Screen shot of Segment [5]
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3.2 Mathematical Background

3.2.1 Morphology

Erosion is a process that can be performed on a binary image with regions of foregrounds and
background. Using a small shape, B ⊂ Z2, which in most cases a circle, the origin of that shape
is then scribed around the edges between foreground, A /∈ ∅, and background, C ∈ ∅. Any of
the foreground region that falls beneath the small shape becomes background.

A⊕B = {x|((B̂)x ∩A) ⊆ A} (4)

Dilation is the opposite of erosion. The small shape follows the edge and any of the background
region that falls beneath the small shape becomes foreground.

A	B = {x|(B̂)x ∩A} (5)

Figure 3: Examples of erosion (left) and dilation (right)

3.2.2 Histogram Equalization

The histogram method is used to increase the global contrast of an image. This is done by
redistributing the intensities of every pixel so the cumulative histogram is linearly monotonic.

For some N × N image with a histogram, H0(p), with grey-levels p = 〈p0, pk〉, we find a
transform q = T (p) so that our new histogram equalized image has a uniform distribution of
pixel intensities, q = 〈q0, qk〉 with a histogram H1(q).

Due to the monotonicity of the transformation, it implies that:∫ q

q0

H1(q) dq =

∫ p

p0

H0(p) dp (6)

and that H1 has a uniform density such that:

H1(q) =
N2

(qk − q0)
(7)
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From this we can see that: ∫ q

q0

N2

(qk − q0)
dq =

∫ p

p0

H0(p) dp (8)

which can be rewritten as:

q = T (p) =
(qk − q0)
N2

∫ p

p0

H0(p) dp+ q0 (9)

and written in the discrete space as:

q = T (p) =
(qk − q0)
N2

p∑
i=p0

H0(i) + q0 (10)

3.2.3 RANdom SAmple Consensus (RANSAC)

The RANSAC method is an iterative method used to robustly estimate a mathematical model.
The idea is that the data consists of noise, which can cause issues with making an accurate
model. By choosing a random subset of the data to estimate the model, we can hopefully re-
move noisy data that skews the model. This method is repeated for a set number of iterations
and the best fit, based on a defined cost, usually a measure of how close the model compares
to the whole data set, then the best fit is kept as the model.

The advantage of this method is that it is very robust, and can be used to produce esti-
mated models when only 50% of the data fits the model. It’s main disadvantage is that there
is no end to the number of iterations that should be performed to estimate the model. With
each iteration, the probability of estimating the correct model improves. With this in mind,
the number of iterations can be estimated before hand to see if the RANSAC method is viable
option.

To ensure the total probability, p (usually set to 0.99), of finding the correct model, we
estimate, u, to represent the probability of a selected data point that is an inlier. The number
of iterations, N , is estimated to be:

N =
log(1− p)
log(1− um)

(11)

where m is the minimal number of selected data points required to estimate the model [1].

3.2.4 K-means Clustering

K-means Clustering is a method of finding clustered subsets within a set of data points,
(x1, .., xn). To initialise this method we must first define the number of clusters k we wish to
find. By then choosing, k, data points and allocating them as cluster centres, µi for i = 1, ..., k,
we can define for each data point which cluster it belongs to by looking at the nearest cluster
centre. The cluster centres are then updated as the mean of the cluster subset, S = S1, ..., Sk
and the data points are then reclassified according to their nearest cluster centre again. This is
then repeated until the cluster centres have converged. The K-means clustering problem solves:

arg min
S

k∑
i=1

∑
xj∈S
‖xj − µj‖2 (12)
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The method can encounter problems finding clusters if the initial centres are too close to
each other and can sometimes converge to local minimums but in general the k-means algorithm
is run multiple time to avoid these problems and on well clustered data, it is robust [2].

3.2.5 Monotonic Piecewise Cubic Spline Interpolation

The Monotonic Piecewise Cubic Spline interpolation is a form of Cubic Hermite spline inter-
polation that acts to preserve the monotonicity of the spline. By preserving the monotonicity,
the interpolated spline has no overshooting between two data points in order for the spline to
fit the knots.

Let there exist a set of data points, x1 < x2 < ... < xn, that partition the interval I =
[x1, xn]. The aim is to create a piecewise cubic function

p(x) = fi, i = 1, 2, ..., n for p(x) ∈ C 1[I] and is monotonic (13)

where fi is the value of the point xi. Between the data points the cubic polynomial s represented
by

p(x) = fiH1(x) + fi+1H2(x) + diH3(x) + fi+1H4(x) (14)

where the gradient of each data point is di = p′(xi) and the Hermite basis functions are Hk(x)
for k = 1, 2, 3, 4. As it can been seen in Equation (14), in order to maintain monotonicity, di
must be calculated in such a way to stop overshooting.

In the Fritsch - Carlson method, [13], a 5-part algorithm was proposed for calculating mono-
tonic splines.

1. Calculate the gradient for each of data points, δi =
fi+1 − fi
xi+1 − xi

for i = 1, ..., n− 1

2. Initialise the gradients between the data points, di =
δi−1 + δi

2
for i = 2, ..., n− 1

3. For i = 1, ..., n− 1, if δi = 0 then di = di+1 = 0 and these points are ignored for the next
2 steps since the spline must be flat.

4. Two gradient ratios are calculated to test for monotonicity, αi =
di
δi
, βi−1 =

di
δi−1

, if any

of these are less then zero then for those points di = 0

5. Finally to maintain monotonicity, the restrain di =
3αiδi√
α2
i + β2i

and di+1 =
3βiδi√
α2
i + β2i

are

used to update the data points gradients.

From these, the Monotonic Piecewise Cubic Hermite splines can be calculated using Equation
(14). In Matlab, they use this algorithm called “pchip”, which comes from Fortran code created
by D. Kahaner, C. Moler, and S. Nash [12].
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3.3 Magnetic Resonance Data

3.3.1 Magnetic Resonance Imaging Machine Specifications

Real-time imaging was performed on 1.5T MR2 Philips Medical Systems Intera at Lund univer-
sitetssjukhus,Sweden, using real time bSSFP imaging. The temporal discretization was 218.4
ms for a 250 by 250 by 200 matrix using the software version 1.9 R3420. In real life terms this
creates an image of 312.5 mm by 312.5 mm for 43466 ms. The thickness of each image slice is
8 mm. The scanning was performed on a healthy individual using a dual coil.

3.3.2 Magnetic Resonance Imaging Data

From the scan, images for each of the 200 time steps were produce for each slice. Multiple slices
at a discretized space are made to span the whole heart so a full 3D volume can be created
and each 3D pixel is called a voxel. For processing the image volumes were reduced in size
to matrices of 120 by 120 by 200 in the region of interest. This is achieved graphically using
segment.

In this thesis, we will only be looking at short axis images of the heart. The short axis is
an image plane that cuts through both the left and right ventricle as seen in the Figure 1. An
example slice is given in Figure 4.

Figure 4: Example of a Cardiac Magnetic image

By imaging multiple adjacent slices over a period of time, 4D data can be acquired, 3D in
the spacial domain and 1D in the time domain. A sequence of 1 slice over 6 time frames is
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shown in Figure 5, which is an example of the type of data that will be used in this thesis.

Figure 5: Example of Real-time Cardiac Magnetic sequence
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4 Method

4.1 Find the Positions of LV and RV

To start the method of reconstructing the cardiac motion at different phases of the respiratory
cycle, we must first be able to measure the respiratory motion. To do this the bottom of the
right ventricle, which is not strongly affected by the motion of the heart beating, was monitored
as there is a clear contrast between the right ventricle and the heart walls. A simple way would
be to create an image plane that cuts through the time domain by resampling along the line by
nearest neighbour interpolation for each of the time frames. This is called “mmode” in segment.
Below is an example of the mmode, Figure 6.

Figure 6: Examples of MRI image with left ventricle segmentation in red and the mmode line
in white (left) and mmode image (right)

The best place for the mmode line be would be cutting through the left ventricle and the
bottom of the right ventricle. For this, an automatic process was created with the option for
making the adjustment manually. The automatic process first locates the left ventricle, this is
achieved by normalizing all the images in the sequence and applying a Gaussian circle to em-
phasize the centre pixels. Then all the images were multiplied together, over time central pixels
of the left ventricle are unaffected by both cardiac motion and respiratory motion meaning that
when multiplied together this central point becomes the maximal area in the produced image.
By using this point, the left ventricle is located and Segment’s segmentation algorithm for the
left ventricle can be used to find the perimeter of the left ventricle for all time steps.
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The next process is to locate the right ventricle. By converting the sequence of images
to black and white images, through image thresholding, the two largest objects are both the
ventricles. Since the location of the left ventricle already known, this can be removed from the
black and white images, thus leaving the right ventricle and noise. The noise was cleared by
using a morphology process called opening, which is erosion followed by dilation. Then for each
image in the sequence the bottom of the right ventricle is located since the right ventricle is
triangular, then the mmode line is calculated to best fit the bottom of the right ventricle and
the centre of the left ventricle.

4.2 Detection of Respiratory Motion

The mmode image is separated into two high intensity regions, which are the left and right
ventricles, as seen in Figure 6. Again this image is transformed into a black and white image by
thresholding. Then using the left ventricle perimeter data, the left ventricle region was removed
and the bottom of the right ventricle was measured by creating a data point for each time
step by locating the edge between the right ventricle and the heart wall furthest away from the
left ventricle. These points were then smoothed to create a smooth line which can accurately
measure the respiratory motion. This process was iterated for 11 steps by moving the mmode
line in a perpendicular direction, 5 steps in each direction. At each line location rotations were
made from the centre of the line through 15 degrees in each direction. This creates a large data
set in which the respiratory motion can be seen and reduces errors within our data.

4.3 Fitting a Plane to Respiratory Motion surface

With this large data set of around 66000 data points for a sequence of 200 time frames, a
LOESS (locally weighted scatter-plot smoothing) plane was used to remove outliers and errors
were the detection of the respiratory motion was incorrect. Then a biharmonic plane was fitted
to the data using Matlabs built in function. This accurately fits plane that are 2 dimensionally
harmonic, which is ideal for this problem as the respiratory motion is harmonic, as seen in
Figure 7. After the fitting was complete, the data was then normalize for each of the respiratory
motion iterations, in Figure 7, so the data is corrected for shifts when different angles of mmode
were used, for example. From this normalised data, a discretization of 1 along the iterations
axis was used to reduce the number of points but also the surface will have the correct data
form so it may be represented in an image form.
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Figure 7: Example of the large respiratory cycle data in normalised surface form

4.4 Finding Respiratory Cycles

Now the data is in a form that can be analysed more easily, the respiratory data can start to be
classified. The first part of this classification is to detect the different breathing cycles. Since
data characteristics from various patients can be different, such as the temporal resolution,
different methods that could detect each of the cycles had there advantages and disadvantages.
Since not one method would satisfy data of all temporal resolutions, the decision was made
to create multiple methods to analyse the respiratory motion so jointly the machine can come
to a logical decision. The methods used are Fast Fourier Transform, Watershed segmentation,
K-means and simple peak finding, each will be explained in the following sections. By using
these methods the turning points can be determined. The turning points are locations where
the data is a local maxima or mininas, the first differential is 0 and the second differential is
6= 0.

4.4.1 Fast Fourier Transform

By averaging the points along the number of iteration on Figure 7, a 2-D graph was created
showing the average respiratory motion. From this, the 2-D graph was past through a Fast
Fourier Transform algorithm to transform the data into the frequency domain, see Figure 8.
The maximum magnitude of the frequencies was calculated, the frequency was then converted

so it was represented by a period since period =
1

frequency
, and the location of the maximum

frequency was the period of the respiratory cycle.
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Figure 8: Example of the result from a Fast Fourier Transform to calculate the frequency of the
respiratory motion

The turning points of the respiratory motion was also analysed and by using the period as a
guide, the starting turning point for the cycles were calculated by viewing which of the turning
points in the region t < (2 × period) would best suit the number of turning points evaluated
by card({0 mod(period)}), ∀(turning points) ∈ t. Once the starting point for the first cycle
is found, using the period the algorithm “leap frogs” one period and finds the closest turning
point and so on until all cycles are found.

The disadvantage with this method is that the period isn’t accurate on a sequence with a
low number of time frames otherwise it is a very reliable method.

4.4.2 Watershed segmentation

Watershed segmentation is a method combining similar regions together in an image. Using
the respiratory motion data in an image form, Watershed algorithm calculates the edges of
the image similarly to canny edge detection. The closed regions then undergoes morpholocial
opening to remove small closed regions. Each of the regions are then given a constant value
calculated by the average of the pixel intensities within each region. After a small amount
of Gaussian smoothing, the respiratory image is converted to a similar image but with block
intensity regions, that can seen in Figure 9.
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Figure 9: Example of Respiratory Data in Image format(left) and after Watershed segmentation
(right).

Like before the new image is then summed along each of the time steps so a 2-D graph is
created and the turning points are located. This time a method was used which placed a length
of seeds along the each of the turning points times and allowed these seeds to step in the time
direction towards the greater intensity until the seeds converged. By allowing the seeds to move
and converge, the majority of seed move towards the beginning or end of a respiratory cycle.
By repeating this process, eliminating minority locations (i.e. local minimas), this also allows
a convergence to the locations of the respiratory cycles, solely. This process can be sensitive to
some larger local convergent areas but this method is ideal for sequences with a short period.

4.4.3 K-means

The K-means method of detection is very similar to the Watershed segmentation method but it
uses K-means to find the regions of different intensities. In addition to this, K-means regions of
2-D gradients close to 0 were found and K-means regions of minimas for 2-D double differentials,
thus regions of potential turning points were found.
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Figure 10: Example of the 3 intensity regions from the respiratory image data when using K-
means. This is comparable to Figure 9 and it can be seen that high intensity regions are blue,
low intensity red and in between green.

Again this method is ideal for sequences with a short period.

4.4.4 Peak Finding

This is a simple method, which is just summing along each of the time steps and finding turning
points, as shown in Figure 11.
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Figure 11: Example of the graph produced when the summation of all iterations are applied.

4.4.5 Logical Decision

Each of the methods output a list of potential locations for the beginning and end of respiratory
cycles. Each location is allowed a shift of 3 time steps in each direction and the Fast Fourier
Transform method has a doubled weight as it is the more reliable method. If a location has
a majority vote, i.e. 3 or more, then that location is a true location, then a new set for true
locations is made.

4.5 Classification of Respiratory Cycles

From finding each of the respiratory cycles, these data points are then normalised in both
directions, in order to characterise the curve. Looking at the curve in Figure 12, there are two
main turning points, at the end of inspiration and at the beginning of expiration.

Figure 12: Example of a normalised respiratory cycle data, the points being the raw data from
the bottom of the right ventricle and the line is a least squares regression of those points.
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To classify this curve, the gradients are use to make an initial classification. All gradients
less than or equal to −0.5 are classed as inspiration and all gradients that are equal to or greater
than 1 are classed as expiration, everything else are classed as the breath being held. Since the
respiratory cycle is a fix cycle, to clear up the initial classification of misclassified points, we
use the RANSAC method. To determine the curve, only the locations of the two turning points
are required. This in turn reduces the number of iterations to find a suitable fit. Using the
formulation in Equation (11), N ≈ 200 iterations for total probability of 99%. In the costing
function for the RANSAC method, two of the points in the region between inspiration and
expiration were chosen at random and a fit of the ideal three classes in continuous regions and
any matches between the ideal classes and the class from the data was given a point. Extra
weight was used for inspiration and expiration within the turning points region to allow for a
better fit in these regions. The best fit was chosen to be the highest score and the data can be
fitted well, both inspiration and expiration classes were split into a further 3 subclasses based
on their respiratory motion positions. These subclasses are derived from 3 equidistant regions
from 0 to 1 in the respiratory motion axis.

This leads to a classification as shown in Figure 13. For each of the cycles the numeric
values of 1 to 7 are use. Inspiration has classes 1 to 3, full inspiration is class 4 and expiration
has classes 5 to 7.

Figure 13: Example of respiratory cycle classified. Each colour represents a specific class.

4.6 Classification of Cardiac Cycles

To classify cardiac cycles, the systole (when the heart contracts) was found by searching for
peaks. To do this all the left ventricle perimeters for all time frame, were transformed to cylindri-
cal coordinates relative to a common centre of all left ventricle perimeters. Then by computing
the summation of all points for each time frame, the peaks on this left ventricle graph are very
clear, as seen in Figure 17. From this, the period was found using a Fast Fourier Transform. To

classify the cardiac cycles, the discretization was calculated by dx =
1

peaki+1 − peaki
. Each

frame between is allocated a class value of 0 − 0.99 where the peaks, systole points have the
value 0.5. This means that each cardiac cycle has a value which relates to the position in the
cardiac cycle on how far the cycle is complete.
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4.7 Interpolation of Cardiac Cycles

4.7.1 Initial Method: Smoothing Spline Interpolation

With both the respiratory and cardiac classification, the frame numbers are sorted by there
classification so that a list of frame numbers are created for each category. For interpolation,
there is a loop for each pixel in the image, when a pixel is chosen, for all the frames in that
respiratory cycle, the intensity of the pixel are plotted against their Cardiac inter-beat (RR)
interval time. From this, a smoothing spline is fitted to the plot and the interpolated points
(which is a discretization of 0 to 0.9 in increments of 0.1) are passed back to fill the interpolated
volume. Due to the cyclic behaviour of a cardiac cycle, the first set of frames are copied to the
end and vice versa.
A problem with this method is that some of the interpolated images become blurred due to
variations in multiple images occupying the same respiratory class and heart beat class. This
can be viewed by looking at the left ventricle segmentations in Figure 14.

Figure 14: Scatter-plot of all left ventricle plots in one respiratory class.

4.7.2 Alternative Method: Image Selection and Monotonic Piecewise Cubic Spline
Interpolation

A solution to this would be a method to choose the best frames when there are multiple frames
at one location in RR time. This alternative method will look at all combinations of frames in
the whole RR time and create a curved surface to wrap around the contours. This is computed
by converting the coordinates to cylindrical coordinates on a regular discretization. From this,
the surface with the least radial change, relative to the straight line that best fits the centre of
all the contours, will be selected. The only exception to the selection will be around the RR
time of 0.5 where we would expect the heart to contract and so the maximal change will be
viewed.

The next problem with this is the computational side, by finding all combinations, this can
lead to many thousands of combinations of frames. To make it computationally viable, by
removing duplicate frames (i.e. when the 2-norm of any 2 left ventricles is very small), then the
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number of combinations falls dramatically.

The advantage of this method is that there only exist one frame at any given time step. For
this alternative method, a Monotonic Piecewise Cubic Spline Interpolation can be used in the
same manner as before but it will pass through all points giving a better image quality.

Figure 15: The red points are the left ventricle perimeters that have been selected for the best
fit. This is comparable to Figure 14.
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5 Results

5.1 Classification of Respiratory Cycles

From the graph in Figure 13 and below in Figure 16, it can been seen that the classification
for the respiratory has worked well. Only the two partial respiratory cycles at the edges, which
at the black coloured points in Figure 13, have not been classified. This was to be expected
since the classification method is gradient based and gradients required multiple points to be
calculated so these cannot be determined at the edges.

Looking again at Figure 13, all the other cycles were detected with clear boundaries between
cycles.

Figure 16: Example of respiratory cycle classified. Each colour represents a specific class.

On closer inspection of Figure 16, class 4, which is in red with a low respiratory motion
value, has been classified to great precision. It’s size spans the full length of the full inspiration
region and it can be noted that either side of class 4 are the beginnings of non-zero gradients.
The other classifications are also in good positions so the overall classification of the respiratory
motion is accurate.

In Appendix 1, the classifications for a full 4D volume are shown. These figures show the
robustness of the classification as only one respiratory cycle was unable to be classified, Figure 30
and another cycle where the respiratory motion was not a usual cycle, Figure 31.
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5.2 Classification of Cardiac Cycles

As seen in Figure 17, the Fast Fourier Transform was a logical step on creating a method to
detect the cardiac motion. Due to it’s highly oscillatory nature and clearly defined turning
points, the Fast Fourier Transform could calculate the period robustly. Since the interval
between the turning points, shown in red in Figure 17, are almost constant using the calculated
period works well with the “leap frogging” method to clearly determine each of the cycles.

Figure 17: Example of Cardiac cycles with the beginning and end of each cycle identified.

To be certain the classifications were in fact correct, a random selection of frames were
viewed manually and checked to see if they correspond to their classification. All appeared to
be correct.
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5.3 Interpolation of Cardiac Cycles

With the data sorted by their respective classification, both respiratory and cardiac, the final
volumes were interpolated. Below in Figures 18, 19 and 20, it shows the interpolated volumes
for the respiratory class 5 for each of the three methods used in development.

Figure 18 demonstrates using a smoothing spline to interpolate the volume. Although the
initial results look fine, much of the detail in the images are lost. This is due to many frames
occupying the same classification, when this occurs the frames are averaged. The most severe
case of this is around the RR = 0.5, at this time the heart has contracted the most so there
is the most movement in the images. As a result, two or more frames have different sizes of
myocardium, which causes are blurring effect at the edges.

Figure 18: Smoothing Spline interpolation Class 5.

Figure 19 shows a smooth spline with the frame selection method. By selecting the frames,
there has been an improvement on observing the motion of the myocardium. As it is seen on
frame RR = 0.5 the myocardium is more defined in comparison to Figure 18. Further to this
the whole set of data is more regular in shape and position due to the frame selection. Although
the results have improved, there are still smoothing issues, the contrast between the ventricles
and the heart walls are still not strong.
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Figure 19: Frame selected, Smoothing Spline interpolation Class 5.

In Figure 20, the best result was achieved. By using the frame selection and the monotonic
piecewise cubic spline, a much great definition in the images were gained. The contrasting is
the most similar to that of the raw data and the details of the papillary muscles e.t.c. came
through well.

Figure 20: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 5.

The result of the results can be found in the appendices. Appendix 2 shows the results for
all seven respiratory classes for the smoothing spline method. Appendix 3 shows the results for
all seven respiratory classes for the frame selection with smoothing spline method. Appendix 4
shows the results for all seven respiratory classes for the frame selection with monotonic piece-
wise cubic spline method.

As the latter method of interpolation proved to be the best, two RR times were selected to
compare the same point of cardiac cycle to determine differences between respiratory classifi-
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cations. Below are two figure, Figure 21 is at end-systole (full contraction) and Figure 22 us
at end-diastole (full expansion), which are at locations RR = 0.5 and RR = 0 respectively. It
is seen in both figures that the position of the heart moves between frames which is expected
since this is the respiratory motion. From these results, it is still difficult to determine heart
deformations due to the respiratory motion but a change of shape in the right ventricle can be
seen. Deformations in the left ventricle cannot be seen in Figure 21 because the respiratory
motion forces are negligible in comparison to the hearts contraction. In Figure 22, deformations
of the left ventricle can be seen. In classifications 1 and 7 the left ventricle has a more circular
shape where as in class 4, the left ventricle has deformed to flatter bottom. This result would
seem reasonable since at class 4 (full inspiration) is when the diaphragm is pushing most against
the heart causing this flat bottom effect.

Figure 21: Example of systole for each of the respiratory classes

Figure 22: Example of diastole for each of the respiratory classes
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5.4 Analysis of Interpolated Cardiac Cycles to Determine Differences in Vol-
ume for the Left Ventricle

To determine the clarity of the interpolation methods and to compare these results with known
physiological facts, the ejection fraction was calculated. The ejection fraction (EF) quantifies the
volume of blood pumped out of the left ventricle for each of the cardiac cycles. The interpolated
volumes had there left ventricles delineated to determine the change of volumes. The ejection
fraction compares the volume of the end-diastolic volume (EDV) with the end-systolic volume
(ESV) using the equation:

EF [%] =
EDV [ml]− ESV [ml]

EDV [ml]
(15)

The normal range of a ejection fraction is 55− 70% [14]. For comparison of methods the same
slice was used to calculate the ejection fraction and only one slice so the values are relative
to this slice and not a true representation of the left ventricle volume as seen in table below,
Table 1, and in Figure 23 which is the ejection fraction represented in graphical form to easily
compare the methods.

Method 1:Smoothing Spline 2:Frame selection, Smoothing Spline 3:Frame selection, Cubic Spline

Class EDV [ml] ESV [ml] EF [%] EDV [ml] ESV [ml] EF [%] EDV [ml] ESV [ml] EF [%]

1 19 14 26.3158 19 15 21.0526 18 10 44.4444

2 18 15 16.6667 17 12 29.4118 18 11 38.8889

3 17 15 11.7647 18 14 22.2222 17 10 41.1765

4 17 15 11.7647 17 12 29.4118 17 10 41.1765

5 18 16 11.1111 16 13 18.7500 17 10 41.1765

6 17 16 5.8824 15 9 40.0000 16 8 50.0000

7 20 15 25.0000 18 13 27.7778 17 11 35.2941

mean 18.0000 15.1429 15.5008 17.1429 12.5714 26.9466 17.1429 10.0000 41.7367

St. dev. ± 1.1547 0.6901 7.6186 1.3452 1.9024 7.1587 0.6901 1.0000 4.5857

Table 1: Ejection Fraction of interpolation methods

Figure 23: Ejection Fraction for each of the respiratory classes and interpolation methods

From looking at Figure 23, it is noted that the mean ejection fraction increases with the
improvements in the interpolation methods. This is a good result as it shows that the improve-
ments to the interpolation methods more accurately represents known information. Since the
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latest method is nearing the normal range with a smaller standard deviation, it implies that the
result is also more consistent for all respiratory cycles. The mean ejection fraction for the best
method is still out with the normal range but this may be due to only using one slice instead
of the whole volume.

Using the best method, a 4D volume was created for each of the respiratory cycles. From
this data the full volume ejection fraction was calculated to see if it conforms with the medical
data, Table 2 and Figures 24, 25, 26 shows the results. To calculate errors, since only one set
of volumes have been create so far due to limited MRI data, a reading error of ±0.5 ml was
given to each of the slices volumes. By combining errors the total volumes have an error of
±
√

1.25 ml and the ejection fraction error is calculated by;

EF error = ±EF ×

√√√√( √
1.25

ED − ES

)2

+

(√
1.25

ED

)2

(16)

Class 1 2 3 4 5 6 7

Slice (top -
bottom)

EDV
[ml]

ESV
[ml]

EDV
[ml]

ESV
[ml]

EDV
[ml]

ESV
[ml]

EDV
[ml]

ESV
[ml]

EDV
[ml]

ESV
[ml]

EDV
[ml]

ESV
[ml]

EDV
[ml]

ESV
[ml]

6000 19 9 20 10 20 9 18 9 18 9 19 8 19 8

45000 18 8 17 8 17 8 17 8 16 7 16 7 18 9

32000 16 8 17 8 16 7 16 6 15 7 15 11 16 7

28000 14 6 15 6 13 6 14 5 13 6 15 6 14 7

7000 12 6 11 4 11 5 9 4 10 5 9 4 12 4

sum 79 37 80 36 77 35 74 32 72 34 74 36 79 35

EF [%] 53.1646 55 54.5455 56.7568 52.7778 51.3514 55.6962

EF error [±
%]

1.6028 1.5950 1.6539 1.7372 1.7558 1.6984 1.6199

Table 2: Full 4D volume Ejection Fraction

Figure 24: End-Diastole Volume for each of the respiratory classes for full 4D volumes
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Figure 25: End-systole Volume for each of the respiratory classes for full 4D volumes

Figure 26: Ejection Fraction for each of the respiratory classes for full 4D volumes

As it is seen in Figure 26, some of the points and most of the error ranges are within the
medical normal of 55 − 70%. This is a promising result, as it shows that these simulations
do have a feasible cardiac motion comparable to that of previous ways of acquiring cardiac
MR images. The current standard is to look at the ejection fraction when the patient has full
expiration, from the results, this is the value at class 7 which is 55.6962± 1.6199%.

Further to this, by looking at Figures 24, 25, it can be noted that these results have a
correlation to the respiratory motion. At the point when class 4 changes to class 5, this is
the point of when inspiration is at its fullest. As mentioned before, the left ventricle seems to
deform into flat bottomed circle when the diaphragm has expanded which implies that the left
ventricle will lose volume. The result gives an initial confirmation to that idea, as they have a
parabolic shape and the local minima points in Figures 24, 25, are at class 4 and class 5.
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6 Discussion and Conclusions

Overall this thesis has been a success. The method created, uses real-time cine cardiac magnetic
resonance imaging to accurately represent cardiac motion at multiple respiratory phases. The
classification method robustly categorises each of the images then the interpolation method
uses this accordingly. The information presented from this method gives a deeper insight to
the forces on the heart and gives a tool to be used by physiologists. From the initial results
it can be seen that the heart does change in volume during respiratory motion which with
further research opens a discussion for physiologist on which respiratory phases gives the most
useful information. In addition this, by creating this method, it has the potential of being an
option for patients in the future, to obtain cardiac MRI data in a faster and less distressing way
as the patient would not be required to hold their breath, which is also difficult for some patients.

The main pitfall of this method would be the range of data that this method would work
for. A known issue would be that the cardiac magnetic resonance image has to be in an orien-
tation where the left and right ventricles are side by side, with the right ventricle on the left
hand side of the image. Another problem is that the data must contain enough respiratory
cycles. If not, then there is not enough data to appropriately fill the classification bins. When
there is a sparse set of data, the interpolation method has difficulties to interpolate accurately.
The temporal resolution must also be of a high enough resolution so the cardiac cycles can be
observed. The current data would be the minimum temporal resolution of 218.4 ms as this is
around 4 frames per cardiac cycle, anything less than this, the cardiac cycle cannot be observed.

If I were to have more time on this thesis, I would have liked to have tried to improve the
interpolation method. Currently the method does not observe adjacent voxels. By doing so,
more accurate interpolations can be made which could lead to improving the spacial resolution.
One method that I would propose would be to use Optical Flow. Optical Flow creates a di-
rectional mapping for pixels of similar intensity between adjacent time frames. Further to this,
since the left ventricle perimeters are known then this can be used to influence the direction of
the mapping.

Another way to improve the image quality would be instead of selecting frame to interpolate
from, using the selection method to create a reference frame for all other frames occupying the
same classification to be warped and then averaged. By doing so the signal to noise ratio of the
interpolated data would be greater and then it can be used to increase the spacial resolution
again.

Other areas for improvement would be the computational time. Currently one slice would
take around 10 minutes to compute interpolated volumes on a 2.5 GHz quad core processor.
All instances for parallelization within the method have already been pursued but at points in
the method, such as calculating the surface for the respiratory motion, is highly expensive in
memory use and computation time. For these instances a compromise in accuracy for a faster
method may be more suitable in the hope that the robustness of the classification method could
compensate.
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7 Appendices

7.1 Appendix 1: Classification of Respiratory Cycles for Full 4D Volumes

Figure 27: Classification of Respiratory cycle for slice 6000.

Figure 28: Classification of Respiratory cycle for slice 45000.
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Figure 29: Classification of Respiratory cycle for slice 32000.

Figure 30: Classification of Respiratory cycle for slice 28000.
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Figure 31: Classification of Respiratory cycle for slice 7000.
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7.2 Appendix 2: Smoothing Spline Method Results

Figure 32: Smoothing Spline interpolation Class 1.

Figure 33: Smoothing Spline interpolation Class 2.
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Figure 34: Smoothing Spline interpolation Class 3.

Figure 35: Smoothing Spline interpolation Class 4.
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Figure 36: Smoothing Spline interpolation Class 5.

Figure 37: Smoothing Spline interpolation Class 6.
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Figure 38: Smoothing Spline interpolation Class 7.
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7.3 Appendix 3: Frame Selection with Smoothing Spline Method Results

Figure 39: Frame selected, Smoothing Spline interpolation Class 1.

Figure 40: Frame selected, Smoothing Spline interpolation Class 2.

38



Figure 41: Frame selected, Smoothing Spline interpolation Class 3.

Figure 42: Frame selected, Smoothing Spline interpolation Class 4.

39



Figure 43: Frame selected, Smoothing Spline interpolation Class 5.

Figure 44: Frame selected, Smoothing Spline interpolation Class 6.
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Figure 45: Frame selected, Smoothing Spline interpolation Class 7.
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7.4 Appendix 4: Frame Selection with Monotonic Piecewise Cubic Spline
Interpolation Method Results

Figure 46: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 1.

Figure 47: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 2.
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Figure 48: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 3.

Figure 49: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 4.
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Figure 50: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 5.

Figure 51: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 6.
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Figure 52: Frame selected, Monotonic Piecewise Cubic Spline interpolation Class 7.
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