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Abstract

A selection of well known period luminosity relations for Cepheid variables are studied
under the assumption that they have a mean vertical velocity of zero in the Galactic plane.
Proper motion data from Hipparcos and Tycho-2 catalogues are coupled with the distances
obtained from applying the period luminosity relations on a database of known classical
Cepheids to calculate their velocities. A statistical analysis is performed on the velocities
to identify the best sample of Cepheids to perform the kinematic check on. Two samples
are found depending on whether the period luminosity relation has a colour term or not.
Examining the samples leads to rejecting one sample and the other sample shows that
in order to agree with the above assumption the solar vertical velocity w� is unlikely to
be around the conventional 7 km s−1, but has to be lowered to around 6.5 km s−1 or less;
or the period luminosity relations have to be corrected on the order of −0.2 mag, i.e. a
little brighter than previously assumed. It is further argued that the correction to the
period luminosity relations is more in agreement with other studies than lowering the solar
velocity.





Populärvetenskaplig beskrivning

I den här uppsatsen undersöker jag en ny metod för att testa period-luminositetsrelationen
för cepheider. Detta har stort intresse eftersom denna relation är en viktig faktor vid
avst̊andsbestämning p̊a kosmologisk skala.

Avst̊andet till en viss stjärna kan bestämmas om vi känner den ljusmängd stjärnan
producerar, allts̊a dess luminositet, s̊a att vi kan jämföra den med den mängd ljus v̊ara
teleskop uppf̊angar.

En cepheid är en stjärna vars luminositet varierar över en bestämd period och för vilken
denna period är direkt kopplad till stjärnans luminositet. Genom att t̊almodigt observera
en cepheid under allt fr̊an n̊agra dagar till flera månader kan perioden bestämmas. Med
hjälp av period-luminositetsrelationen kan man s̊a beräkna luminositeten, vilken i sin tur
ger oss avst̊andet till stjärnan s̊asom beskrivet ovan.

Vi vet inte det exakta förh̊allandet mellan period och luminositet fr̊an teoretiska beräk-
ningar, s̊a det m̊aste bestämmas empiriskt. Det görs genom att mäta perioden för cepheider
i v̊ar närhet, till vilka vi kan bestämma avst̊andet p̊a annat sätt. När vi vet avst̊andet till
en cepheid och dess skenbara ljusstyrka kan vi beräkna dess luminositet. P̊a s̊a sätt är
det möjligt att bestämma luminositeten för cepheider i v̊ar närhet och tillsammans med
observationer av perioden kan vi komma fram till relationen mellan period och luminositet.
Denna process inneh̊aller ett antal osäkerheter vilket medför att m̊anga olika versioner av
relationen har presenterats genom åren.

Den nya metod jag undersöker i den här uppsatsen bygger p̊a hypotesen att cephei-
der i v̊ar närhet rör sig slumpmässigt vinkelrätt (vertikalt) mot Vintergatans plan. Det
innebär att deras genomsnittliga vertikala hastighet bör vara noll. För att kunna beräkna
cepheidernas hastighet krävs dels avst̊andet till dem, dels observationer av hur de rör sig
relativt oss. Den första delen är information vi har fr̊an de olika versionerna av period-
luminositetsrelationen, den andra delen kommer fr̊an observationer gjorda av Hipparcos-
satelliten. Tillsammans gör de det möjligt att beräkna varje cepheids hastighet relativt
oss. Genom att därefter applicera solens hastighet kan vi komma fram till cepheidens
hastighet vinkelrätt mot det galaktiska planet. Den ursprungliga hypotesen är att denna
är noll, om den inte är det beror det antingen p̊a att hypotesen är inkorrekt eller p̊a att
den undersökta period-luminositetsrelation är felaktig.

Resultatet är därmed en bedömning av hur väl de olika versionerna av relationen mel-
lan period och luminositet stämmer överens med den enkla hypotesen att cepheidernas
genomsnittliga vertikala hastighet är noll.
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Chapter 1

Introduction

Cepheids are stars with a peculiar property of regularly changing their brightness with a
consistent period. It turns out that this property can be used to determine the distance to
such Cepheids. Given an estimate of about 20000 Cepheids in the Milky Way (Windmark
et al. 2011) as well as the more than 3000 known Cepheids in the Large Magellanic Cloud
(Joshi & Joshi 2014) it is no surprise that Cepheids are found in other galaxies. This
makes Cepheids particularly useful for determining extra-galactic distances. Cepheids have
historically played and still play an important role in astronomy with regards to the effort
of learning more about the distance scale of the universe we live in (Hubble 1925; Marconi
2009).

However, there are disagreements on how good the distances are that we can deduce
from this property of Cepheids. So this study looks into several results from previous stud-
ies on Cepheids and examines how well these results can be applied to classical Cepheids
that have been observed within a distance of a few kpc from the Sun. This is done by mak-
ing the assumption that these Cepheids on average has zero vertical velocity with respect
to the Galactic plane. Kinematics together with statistics is used to analyse the data and
reach a result.

In Ch. 2 the property that makes Cepheids interesting is introduced and described.
In Ch. 3 the thesis assumption is presented and it is explained how the kinematics and
statistics are applied. The data selected as foundation for this study are presented in Ch. 4
and the results of the study follow in Ch. 5. Finally the results are discussed in Ch. 6.

This thesis assumes that the reader is familiar with physics on the level of a third year
undergraduate student. Please notice that a basic introduction to some of the astrophysical
concepts used throughout the thesis has been provided and can be found in Appendix A.
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Chapter 2

Cepheid variables

Cepheids are bright variable stars that can be seen from far away. There is a relation be-
tween how bright they are and how their light varies which makes Cepheids very important
for distance determination on intergalactic scales. This property of Cepheids is central to
this thesis, and thus this chapter is dedicated to introducing Cepheids and explaining how
they can be used for determining distances.

First the concept of variable stars is introduced. Cepheids are pulsating variable stars,
and what that entails is described next. The pulsation mechanism leads to the so-called
period-luminosity-colour (PLC) relation, which is the key part to using Cepheids for dis-
tance determinations, so this relation is explained in some detail at the end of the chapter.

2.1 Variable stars

Stars whose brightness changes as we observe them over time are called variable stars. A
supernova that appears like a new star and then fades away is a variable star. A star that
interchangeably appears dim at some times and bright at other times is also a variable
star and perhaps the type of variable star that is most often referred to. The change in
brightness can be caused by many different phenomena, for instance it could be an eclipsing
binary where one star at times hides behind another star making their combined light less
bright. Or it could be a star that in some way is unstable causing it to change its brightness
regularly. Unstable stars are not that uncommon since most stars go through an instability
period towards the end of their life.

In Fig. 2.1 many of the conventional types of variable stars have been mapped on a
Hertsprung-Russel diagram. The Cepheids important for this study are marked as classical
Cepheids in the figure.

2.2 Pulsating variable stars

Stars that regularly change their brightness due to some instability are called pulsating
stars. By observing how the Doppler shift of the light from pulsating stars changes over
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CHAPTER 2. CEPHEID VARIABLES

Figure 2.1: The location of variables in a Hertsprung-Russel diagram. (Karttunen et al.
2007, Fig. 13.2)

time it is apparent that the stars change their size rather rapidly during one period of
pulsation. A doubling of the star’s radius is not unusual. Apart from magnetic variables,
flare stars and dwarf novae, all of the types of variables shown in Fig. 2.1 are pulsating
variable stars.

The pulsation mechanism can be explained by thinking of the outer layer of a pulsating
star as a control mechanism that regulates if the radiation produced by the nuclear fusion
in the centre of the star is allowed to escape. When the star is contracted the outer
layer consists of doubly ionized helium which is opaque and thus prevents radiation from
escaping, but the continued production of radiation will cause the pressure to rise forcing
the star to expand in size. As the star expands the outer layer cools and go from consisting
of doubly ionized helium to consists of singly ionized helium. Singly ionized helium is
transparent to the radiation which can then escape, causing the radiation pressure to drop
and thus the star begins to contract. The contraction will heat up the helium causing it
to be doubly ionized again and then the cycle begins anew. The inertia of the outer layer
will cause this to become a self oscillatory phenomenon driven by the energy coming from
the fusion process at the core, which means that it can be quite a stable oscillation for a
long time. This description with ionized helium as the control mechanism has been shown

6



2.2. PULSATING VARIABLE STARS

Figure 2.2: The luminosity cycle of a pulsating star. The disks illustrate how the Cepheid
changes its colour and size during a period of pulsation. (Jenkins 2013, Fig. 31)

to be a good model for classical Cepheids (Zhevakin 1963), but it is fair to say that the
mechanism is not understood in full detail (Madore & Freedman 1991). For other pulsating
stars the pulsation mechanism may differ from classical Cepheids. And to complicate the
picture even more, some pulsating stars are oscillating in higher harmonics, called overtone
pulsators.

The luminosity of the pulsating star is strongest just as the trapped light contained
behind the opaque layer is allowed to escape, giving a luminosity curve as illustrated in
Fig. 2.2.

Arguably the most interesting aspect of pulsating stars is the Ritter relation (Ritter
1879),

P
√
ρ = Q(P ), (2.1)

where P is the period of the pulsation (assuming it is not an overtone pulsation), ρ the
mean density of the star and Q is a weak function of the period.

It is not an isolated phenomena that the time of the oscillation process is proportional
to the inverse square root of the mean density. Infall to a point source of gravity for
a homogeneous sphere shares this result. For the homogeneous sphere, where the mass
enclosed inside radius r is M(r) = 4

3
πr3ρ, a test particle is subject to a gravitational

acceleration which is

d2r

dt2
= −GM(r)

r2
= −4πGρ

3
r, (2.2)

where ρ is the mean density, t is time, r radius of the sphere and G the gravitational
constant. This is a homogeneous second order linear differential equation that can be
identified as the equation of motion for a harmonic oscillator (Binney & Tremaine 2008,
p. 64). The general solution to this differential equation with the initial condition of zero
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CHAPTER 2. CEPHEID VARIABLES

velocity is

r(t) = k cos

(√
4πGρ

3
t

)
, (2.3)

where k is some constant that requires a second initial condition for it to be determined.
The infall time to the centre is a quarter period, i.e. r(t = P/4) = 0, which gives√

4πGρ

3

P

4
=
π

2
⇔ P

√
ρ =

√
3π

G
, (2.4)

and a relation similar to the Ritter relation is found.
All stars are subject to gravitational infall and a star like the Sun would collapse in

about 20 to 30 minutes if allowed. Fortunately the radiation pressure from the fusion
processes in the core prevents this from happening, and the Sun and other main sequence
stars are in a so-called hydrostatic equilibrium where these forces keep each other in check.
If someone compressed the Sun a little it would resist and expand again, but it would not
begin oscillating as friction would quickly dampen it back to hydrostatic equilibrium.

However, for a Cepheid, the hydrostatic equilibrium is confused since the pressure
force depends on whether or not the outer helium layer is opaque or transparent. As
a consequence of this variation the size of the Cepheids oscillate. Given that the force
controlling the infall is gravity it means that inertia governs the time scale of the oscillation,
and thus it is not surprising that the Ritter relation is similar to the relation found for
gravitational infall.

With stellar models that uses hydrostatic equilibrium (and spherical symmetry) as
requirements it is possible to show that the mean density is related to the radius of the
star. So for a Cepheid we have a relation between its period of oscillation and its mean
radius. This will be useful when looking into the PLC relation.

2.3 The period-luminosity-colour relation

Returning to Fig. 2.1 and looking on the “instability strip” that marks the classical
Cepheids, it is clear that the strip is not infinitely thin, so there is not a bijective re-
lation between colour and luminosity, i.e. for a given luminosity there could be several
choices of colour. While it was contested for a while whether or not colour should be
included in the relation, it has been shown empirically that it is necessary to take colour
into account (Martin et al. 1979).

It is possible to get a general outlook on the PLC relation by looking at the Stefan-
Boltzmann law for black body radiation (Madore & Freedman 1991). The Stefan-Boltzmann
law applies to Cepheids because their radiation curves follows that of a black body radi-
ation curve, which mean that the luminosity can be described as function of radius and
effective temperature:

L = 4πR2σT 4
eff. (2.5)
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2.3. THE PERIOD-LUMINOSITY-COLOUR RELATION

L is the luminosity of the Cepheid, R is the radius of the Cepheid, Teff is the effective
temperature and σ is the Stefan-Boltzmann constant. The effective temperature is often
called the surface temperature even though stars don’t have well defined surfaces. Using
the definition of absolute bolometric magnitude, Mbol, the Stefan-Boltzmann’s law can be
rewritten to

Mbol = −2.5 log10(k1L) = −5 log10(R)− 10 log10(Teff) + k2, (2.6)

where k1 is a constant with unit time per energy (like W−1), which wraps up all the con-
stants coming from converting the flux to the luminosity (as well as taking the magnitude
difference with the star Vega as described in appendix A), and k2 = −2.5 log10(k14πσ).
Physically Mbol is unitless, but to keep the equation simple it is not shown how the units
cancel out.

In the previous section it was shown that the period of a Cepheid is related to its radius,
so the “−5 log10(R)” expression can be converted to a “α log10 P” expression. Further it is
known that a colour index can be used to describe the effective temperature, which leads
to converting “−10 log10(Teff)” to “β(〈B0〉−〈V0〉)”. Together this leads to the conventional
way of expressing the PLC relation, which here is described as the mean absolute visual
magnitude taken over a full pulsation period:

〈MV 〉 = α log10 P + β(〈B0〉 − 〈V0〉) + γ, (2.7)

where 〈MV 〉 is the mean absolute magnitude of the Cepheid, P the period of pulsation, 〈B0〉
and 〈V0〉 the mean intrinsic colours of the star as per the UBV photometric system. α, β
and γ are constants that cover the underlying physics described above. The reason for this
format is that the period as well as the intrinsic colours are obtainable through observations,
and thus it is possible to obtain observational data and analyse it to empirically determine
the constants through a fitting process.

The challenge is to get these constants right. Different studies have been done into
the PLC relation and they disagree on exactly what values should be assigned to these
constants. In fact many studies do not include a colour term as the authors find it unclear
how big a contribution the colour term adds compared to the statistical noise. This will
be examined in more detail later in this thesis in Sect. 4.2.

The usage of colour indices is not without problems. There is a phenomenon called
reddening, which exists because interstellar dust scatters blue light more than red. So if
light from a star travels through a significant amount of dust it will appear both redder
and less intense at the observer’s end. To solve this problem it is possible to determine
empirically what the colour index should be for the observed period and assume that
the difference in result is due to reddening. Another possibility is to use the “Wesenheit
function”, which provides a reddening-free magnitude (see Appendix A).

The constant α is often referred to as the slope and γ as the zero-crossing, since histori-
cally the PLC relation did not include the colour term (Leavitt & Pickering 1912). Leavitt
& Pickering (1912) found a relation based on the apparent visual magnitude, V , which is

〈V 〉 = αV log10 P + γV , (2.8)

9



CHAPTER 2. CEPHEID VARIABLES

with subscripts on the constants to distinguish them from the constants in above PLC
relation. Given the distance modulus (µV ), described in Appendix A as µV = V −AV −MV ,
the PLC relation without a colour term is quickly recovered:

〈MV 〉 = αV log10 P + γV − 〈µV 〉 − AV . (2.9)

The AV term is called the visual extinction and describes the reddening effect, which
can be considered to be a constant in the time scale of pulsation. Similarly µV can be
considered a constant. Thus the three constants in Eq. 2.9 can be combined to the γ
constant of the PLC relation. All the uncertainties that arise due to the difficulty of
determining reddening is therefore contained in the γ constant. In contrast the period is
rather simple to observe and the errors are negligible in comparison. This makes the zero
crossing the constant that is most likely to be incorrect when analysing a PLC relation.
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Chapter 3

Theory of the kinematic check

The title of this thesis is “A kinematic check of the distance scale of Galactic Cepheids”
and this chapter covers the meaning behind the “kinematic check”. The foundation of
the kinematic check is an assumption about the motions of the Galactic Cepheids, and
this is described first. The kinematic check utilizes the velocities of the Galactic Cepheids
and how the velocities of the Cepheids are calculated follows next. Finally the theory and
implementation of the kinematic check is discussed in detail.

3.1 The thesis assumption

The central assumption for the kinematic check is the assumption that the expectation
value of the vertical velocity (perpendicular to the Galactic plane) of the classical Galactic
Cepheids is equal to zero, that is:

〈w〉 = 0, (3.1)

where w is the vertical velocity of the Cepheids with respect to the Galactic plane and the
angular brackets denote the mean value or expectation. Furthermore it is understood that
the distribution of velocities will be symmetric around the expectation value.

The classical Galactic Cepheids are important for this thesis because they are heavy
and thus short lived stars. The short life span means that these Cepheids do not have
enough time to experience many encounters that change their orbital path in the Galaxy
and are therefore expected to follow circular-like orbits around the Galactic centre. Other
types of Cepheids, like population II Cepheids and dwarf Cepheids, have long life spans
which makes them less ideal for this study. Further, any perturbation that may cause a
Cepheid to have a velocity perpendicular to the Galactic plane is equally likely to be “up”
or “down” making the distribution symmetric. In other words, the thesis assumption is
reasonable.

11



CHAPTER 3. THEORY OF THE KINEMATIC CHECK

3.2 Calculating the velocities of the Cepheids

With instruments like the Hipparcos satellite it is possible to measure the proper motion of
nearby stars. Proper motion of a star is the motion a star has on the sky (usually expressed
in mas yr−1) and can be measured without knowing the distance to the star. Knowing the
distance to the star will enable calculation of the vertical velocity (usually expressed in
km s−1). However, the Sun’s motion has to be taken into account, as the desired velocity
needs to be independent of the Sun’s motion, but proper motion is measured from our
perspective. With a little geometry the calculation is

w = µd+ w�, (3.2)

where w� is the vertical velocity of the Sun’s with respect to the galactic plane, µ is the
vertical proper motion of the observed star, d the distance to the star and w the star’s
vertical velocity with respect to the galactic plane.

Proper motion measured by the Hipparcos satellite are in equatorial coordinates, which
is a spherical coordinate system aligned with the celestial sphere as it was oriented at some
specific time, called the epoch of the equatorial coordinate system. However, given the
need of this study to calculate with velocities perpendicular to the Galactic plane it is
natural to convert the proper motion measurements to the Galactic coordinate system,
which is also a spherical coordinate system, but with the Sun at its centre and oriented
towards the Galactic centre (Blaauw et al. 1960).

Converting equatorial coordinates to Galactic coordinates is somewhat complicated,
but algorithms describing this in detail exist (van Altena 2013, Ch. 4). After such a
transformation µ in Eq. (3.2) becomes the proper motion in Galactic latitude.

3.3 The kinematic check

The thesis assumption is that the expectation value of the vertical velocities should be zero
with a distribution that is symmetric around this expectation value. The symmetry implies
that if a random Cepheid is examined there is a 50% chance that it would have negative
velocity and a 50% chance that it would have a positive velocity. Given a sample of n
Cepheids, the number of Cepheids that has negative velocity, say it lies in the “negative
bin”, follows a binomial distribution.

The binomial distribution is described by its probability function, Pbin, which gives the
probability that k Cepheids out of a sample of n Cepheids all lie in the same bin when
there is p probability for one Cepheid to be in that bin. The probability function is defined
by

Pbin(k) =

(
n
k

)
pk(1− p)n−k, k = 0, 1, ..., n. (3.3)
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3.3. THE KINEMATIC CHECK

As mentioned above the chance to be in any of the bins is 50% so p = 1/2, which simplifies
the distribution expression a bit to

Pbin(k) =

(
n
k

)
1

2n
, k = 0, 1, ..., n. (3.4)

A sample of n Cepheids taken out of the population of all Cepheids is descriptive of the
full population, but only to a certain degree. The uncertainty is described by the variance
of the distribution, which is conventionally1 written as σ2. The variance of the binomial
distribution is σ2 = np(1− p), where n is the sample size and p is the probability to be in
one of the bins. For p = 1/2 it reduces to σ2 = n/4. The square root of the variance gives
the standard deviation which is then

σ =

√
n

2
. (3.5)

In order to compare samples of different sizes it is more useful to express the distribution
of stars in fractions. Such a frequency description is attained simply by dividing by the
sample size, which leads to a standard deviation that is

σ =
1

2
√
n
. (3.6)

The expectation value is 1
2
, since ideally half of the stars should be in a bin. Together

with the standard deviation it is possible to set up an interval that covers the distance
of one standard deviation to each side of the expectation value, which is called a (68%)
confidence interval. For the above distribution the confidence interval for the fraction k/n
is

Iconf =

[
1

2
− 1

2
√
n
,
1

2
+

1

2
√
n

]
. (3.7)

A binomial distribution is a discrete distribution, but a binomial distribution with
np(1 − p) > 10, that is n > 40 with p = 1/2, can be approximated with a normal
distribution. The larger the n the better the approximation. For a normal distribution the
probability that the fraction (of stars in a bin) is in the confidence interval is 68%.

For this study there are three points of interest, the median and the two boundary points
of the confidence interval. The median should preferably be zero in order to match the
thesis assumption, but the confidence interval gives lower and upper boundary points that
should be examined as well. So for example for a sample with 16 Cepheids the boundaries
for the confidence interval in terms of fractions is{

1

2
± 1

2
√

16

}
=

{
3

8
,
5

8

}
. (3.8)

1Since the dimension of the variance is the square of the dimension of the mean
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CHAPTER 3. THEORY OF THE KINEMATIC CHECK

Examining the velocity that splits the 3/8 most negative velocities from the rest and the
velocity that splits 5/8 most negative velocities from the rest gives two velocities with
which a confidence interval in terms of velocities can be constructed. The smaller this
interval is the more it is possible to confidently express what the median of the velocity
distribution is. Being able to confidently determine if the velocity distribution matches the
thesis assumption is obviously very important.

As the sample size increases the confidence interval in terms of fractions will inevitable
creep closer to the median giving the impression that the more Cepheids added to the
sample the merrier. However, it is important to keep in mind that the velocity distribution
may change as Cepheids are added to the sample. If a Cepheid with a large measurement
error is added to the sample then the quality of data may be diluted to such a degree
that the confidence interval in terms of velocity grows even though the fractions interval
shrinks.

A good method to find the best sample is to take all the available Cepheids and sort
them based on the error associated to each of them. Such an error could for instance be
in the measurements of proper motion measurements which will translate directly into an
error in the vertical velocity calculation. The confidence interval in terms of velocity is
examined as the Cepheids are added to the sample. As long as adding a new Cepheid to
the sample causes the confidence interval in terms of velocities to shrink more Cepheids
can be added. Once the confidence interval in terms of velocities starts to grow due to
reaching the Cepheids with large errors no more Cepheids should be added.

The elegance of this method is that it is possible to find the sample with the smallest
error without the need to know exactly how any errors in proper motion or other sources
propagates through the calculations.

The results obtained with this method are in the unit of velocity, which is not very
useful when looking at a period-luminosity-colour (PLC) relation which is in the unit of
magnitudes. However, it is possible to keep changing the constants in the PLC relation
until the found median in the selected sample is zero, i.e. changing the PLC relation until
it matches the thesis assumption. As the γ constant is the constant associated with most
uncertainties this process can be restricted to changing that constant only. The same can
be done for the boundary points of the confidence interval. The result is then a measure
of change, with confidence interval, needed for a given PLC relation to match the thesis
assumption.
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Chapter 4

Data used in this study

176 classical Cepheids in the Galactic neighbourhood have been selected for this study.
These Cepheids forms the base on which a kinematic check is performed on ten different
period-luminosity-colour (PLC) relations. An important part of the kinematic check is
the solar velocity. This chapter describes where the data is obtained from and the post
processing that is performed on the data.

4.1 Selected Cepheids

Berdnikov et al. (2000) have compiled a list of 455 Galactic classical Cepheids which is
one of the largest catalogues of Cepheids available with good homogeneous BVI colour
data. Tammann et al. (2003a) have worked with this catalogue and both removed known
overtone pulsators as well as included and corrected colour excess information by Fernie
et al. (1995). In this process the data set has been reduced to 321 fundamental mode
Galactic classical Cepheids.

I have correlated the 321 Cepheids with proper motion information from the Hipparcos
and Tycho-2 catalogues. A total of 176 Cepheids have been found to have a complete
dataset needed for the kinematic check, of these 156 have proper motion from the Hipparcos
catalogue. The 176 Cepheids are listed in Appendix B.

Technically the Cepheid catalogue of Tammann et al. (2003a) has been downloaded
from the VizieR star catalogue service (Ochsenbein et al. 2000). The SIMBAD database
(operated at CDS, Strasbourg, France) has been queried with a query script containing
all the stars from the Cepheid catalogue and the returned proper motion data from the
Hipparcos and Tycho-2 catalogues have been merged with the Cepheid catalogue.

As the kinematic check requires that the Cepheids are ordered by error, an error value
has been assigned to each Cepheid. The error value is based on the error ellipse of the proper
motions as obtained from Hipparcos and Tycho-2 catalogues and is defined by multiplying
the two axis of the error ellipses associated with the proper motion measurements. The
data from the Tycho-2 catalogue is classified as having a lower quality than the data from
the Hipparcos catalogue and to include this information in the ordering of the Cepheids,
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CHAPTER 4. DATA USED IN THIS STUDY

(a) Product of the proper motion error
ellipse axes

(b) Rough estimate on velocity error

Figure 4.1: Error values of the selected Cepheids.

the Cepheids are ordered by the combined index (quality, error value). This means that
the Cepheids associated with proper motion data from the Hipparcos catalogue will appear
first in the ordered list, internally ordered by error value, and when that list is exhausted
the Cepheids associated with proper motion data from the Tycho-2 catalogue will follow.
To visualize this the error values are displayed in Fig. 4.1a ordered by the algorithm just
described.

While the kinematic check works as long as the Cepheids are sorted by the magnitude
of the error, it is nice to have a rough estimate on how the measurement errors in the
proper motions translates into errors in the velocities of the Cepheids. This estimate is
shown in Fig. 4.1b. The estimate has been calculated by taking the square root of the
error value, as it is the product of the error ellipse axes, and multiplied with the distance
to the given Cepheid. The distances needed have been obtained by using the 1991-MF
PLC relation, which is described below. Note that this estimate does not translate the
error ellipse into Galactic coordinates and hence should not be used for anything other
than getting an impression of the scale of the error.

The absorption coefficient, which is the ratio between the visual extinction and the
B−V colour excess, is near constant for most stars and is often set to 3.1, as mentioned in
Eq. A.8 in Appendix A. Tammann et al. (2003a) have evaluated this absorption coefficient
by examining studies of Cepheids in open clusters and associations and Cepheids with
Baade-Becker-Wesselink distances and determined the coefficient to be

R = 3.17± 0.13, (4.1)

which is adopted in this study.
The stars from the database are shown in Fig. 4.2 which is a map of the stars as they

appear when projected onto the Galactic plane (in Galactic coordinates) relative to the
Sun. The Sun is located at coordinates (0,0) in the map and has a velocity vector pointing
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4.2. SELECTED PERIOD-LUMINOSITY-COLOUR RELATIONS

along the y-axis in positive direction (straight up). The black line marks the direction to
the Galactic centre. The database contains right ascension and declination information
for the stars and the distance scale is found by using the 1991-MF PLC relation, which is
described below.

Figure 4.2: Galaxy map of the positions of the selected Cepheids projected onto the Galac-
tic plane. The red circle in the centre marks the Sun’s location and the Sun is moving in
positive Y direction. The black line is the direction towards the Galactic centre.

4.2 Selected period-luminosity-colour relations

Recall the PLC relation from Eq. (2.7) in Sect. 2.3, repeated here:

〈MV 〉 = α log10 P + βBV (〈B0〉 − 〈V0〉) + γ. (4.2)

Some PLC relations use the (V − I)0 colour index instead with the following format:

〈MV 〉 = α log10 P + βV I(〈V0〉 − 〈I0〉) + γ. (4.3)

As mentioned in Sect. 2.3 there are different determinations that not all agree on what
the constants in the PLC relation should be. Perryman (2009) has provided an overview of
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CHAPTER 4. DATA USED IN THIS STUDY

Table 4.1: Summary of selected period-luminosity-colour (PLC) relations. The subscript
of the β constant governs the format of the PLC relation. The MV magnitude is provided
to give a quick comparison between the relations and it is calculated using a Cepheid
from the dataset with a typical period, having the following data log10 P = 0.94 days,
〈B0〉 − 〈V0〉 = 0.62 and 〈V0〉 − 〈I0〉 = 0.70.

PLC α βBV βV I γ Typical 〈MV 〉
[mag]

1991-MF −2.76 0 0 −1.40 −3.99
1997-FC −2.81 0 0 −1.43 −4.07
1997-FW −3.80 2.70 0 −2.38 −4.28
1998-Lu −2.12 0 0 −1.73 −3.72
1999-La −2.77 0 0 −1.44 −4.04
2001-Fr −3.255 0 2.45 −2.644 −3.99
2003-Ta −3.141 0 0 −0.826 −3.78
2007-vL −3.29 0 2.45 −2.576 −3.95
2013-An −3.08 0 0 −0.94 −3.84
2013-Ma −3.245 0 2.45 −2.545 −3.88

PLC relations released up to 2009, which provides a base set of PLC that can be examined
with the kinematic check described in Ch. 3. I have further found and added two PLC
relations, which are more recent.

The selected PLC relations for this study are listed in chronological order by publication
date in the following. For all relations the period P is in the unit of days. A summary
of all selected PLC relations is found in Table 4.1. Please take note of the magnitudes
calculated for a typical star in the 〈MV 〉 column. The values varies over a range of 0.56
mag. By definition of magnitudes this translates to a distance factor of ca. 1.3. I.e. the
distance to the Cepheid is 30% greater using 1997-FW compared to using 2003-Ta.

PLC 1991-MF

Madore & Freedman (1991) uses what was at the time new measurements in the near
infrared to evaluate reddening and generate PLC relations for more than just the visual
colour band. The relevant PLC relation is:

〈MV 〉 = −2.76(±0.11)(log10 P − 1.00)− 4.16(±0.05). (4.4)

PLC 1997-FC

Feast & Catchpole (1997) adopt a slope from a previous study of Cepheids in the Large
Magellanic Cloud, but estimate a zero crossing by using Hipparcos parallax data. They

18
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find the PLC relation to be

〈MV 〉 = −2.81 log10 P − 1.43(±0.10). (4.5)

PLC 1997-FW

Feast & Whitelock (1997) adopt the α and the βBV from the PLC relation determined by
Feast & Walker (1987) and recalculate the γ using Hipparcos parallax data. They find

〈MV 〉 = −3.80 log10 P + 2.70(〈B0〉 − 〈V0〉)− 2.38(±0.10). (4.6)

PLC 1998-Lu

Luri et al. (1998) use a maximum likelihood approach to estimate the PLC relation using
219 Cepheids from the Hipparcos catalogue and find

〈MV 〉 = −2.12(±0.08) log10 P − 1.73(±0.20). (4.7)

PLC 1999-La

Lanoix et al. (1999) build on the previous result by Feast & Catchpole (1997), but argue
that the result can be improved by using Monte Carlo simulations and find

〈MV 〉 = −2.77 log10 P − 1.44(±0.05). (4.8)

PLC 2001-Fr

Freedman et al. (2001) calibrate a PLC relation based on a multitude of secondary distance
determination methods and averaging them out. The PLC relation is in its original form
expressed using the Wesenheit function

〈MW 〉 = −3.255(±0.01)(log10 P − 1)− 5.899(±0.01), (4.9)

where W = V − 2.45(V − I). Translated into an absolute visual magnitude this gives

〈MV 〉 = −3.255(±0.01)(log10 P − 1) + 2.45(〈V0〉 − 〈I0〉)− 5.899(±0.01). (4.10)

PLC 2005-Ta

Tammann et al. (2003b) put together a database (which is the database used for this
project) to estimate a PLC relation and they find

〈MV 〉 = −3.141(±0.100) log10 P − 0.826(±0.119). (4.11)
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CHAPTER 4. DATA USED IN THIS STUDY

PLC 2007-vL

van Leeuwen et al. (2007) revise Hipparcos parallaxes and as part of that process they
update the PLC relation from the work of Freedman et al. (2001) and find

〈MV 〉 = −3.29 log10 P + 2.45(〈V0〉 − 〈I0〉)− 2.576(±0.030). (4.12)

PLC 2013-An

Anderson et al. (2013) use Galactic Cepheids in open clusters and use alternative distance
determinations to the clusters to calibrate the PLC relation and find

〈MV 〉 = −3.08(±0.50) log10 P − 0.94(±0.42). (4.13)

PLC 2013-Ma

Mager et al. (2013) team up with Madore and Freedman to determine metallicity depen-
dencies of PLC relations. For that study they use an analysis on Cepheids in the Large
Magellanic Cloud (LMC) done by Soszynski et al. (2008) and couple it with a selected
distance modulus to the LMC and find

〈MV 〉 = −3.245(±0.035)(log10 P − 1) + 2.45(〈V0〉 − 〈I0〉)− 5.790(±0.042). (4.14)

4.3 Selected solar velocity

In his overview of results obtained by using Hipparcos data Perryman (2009) has provided
an extensive list over different solar velocities with respect to the Galactic plane. As only
the vertical component of the Sun’s velocity vector (w�) is of interest for this study the
following discussion will be limited to this part of the velocity vector.

Perryman recommends using w� = 7.17±0.38 km s−1, which is a result from Dehnen &
Binney (1998), because that study used a kinematically-unbiased sample and further is in
good agreement with work done before the availability of data from the Hipparcos satellite.
Binney has on several occasions revisited the result from 1998, and the latest estimate is
found to be w� = 7.25+0.37

−0.36 km s−1 (Schönrich et al. 2010). Subsequently a study that
builds on the measurements done by the Radial Velocity Experiment (RAVE) survey finds
w� = 6.57± 0.21 km s−1 (Coşkunoǧlu et al. 2011). A recent study on young objects where
the differential rotation of the galaxy and the effects of the spiral arm density wave is taken
into account finds w� = 6.5 ± 0.3 km s−1 (Bobylev & Bajkova 2014). However, part of
that study depends on Cepheids, and if they are excluded from the data used, to get an
estimate independent of Cepheids, w� = 7.06±0.65 km s−1 is found by examining the data
in their Table 1 or 2.

This study will thus focus on examining the PLC relations with respect to a selection
of solar velocities in the range between 6.5 km s−1 and 7.2 km s−1.
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Chapter 5

Results

The kinematic check has been implemented as a function in the software package MATLAB
using the Cepheid database described in Sect. 4.1. The implementation can be found in
Appendix C. An example script illustrating how the function has been used is shown in
Appendix D.

First the results from analysing the median velocity of the Cepheids is shown and it
discussed how this relates to the choice of solar velocity. This is followed by the results
obtained when the selected Cepheid sample is forced to a given size in order to examine
how the period-luminosity-colour (PLC) relations relate relatively to each other.

5.1 Velocity distribution

The Cepheid velocities have been calculated using the various PLC relations and Table 5.1
shows the found medians with confidence interval. The preferred sample in the table is the
sample size where the confidence interval in terms of velocities is smallest. The length has
been divided by two to give a better impression of the distance to each side of the median,
even though the median may not be entirely in the middle of the interval. To show the
result independently of the choice of solar velocity the median of w′ = w − w� is used
instead of the median of w discussion in Sect. 3.3. The median of w′ should then be −w�
instead of zero if the thesis assumption is true and the used PLC relation is correct. Using
Eq. (3.2) and the definitions of magnitudes in Appendix A the required γ correction of the
used PLC relation is thus expressed as

γcorr = 5 · log10

(
w′

−w�

)
. (5.1)

All the plots in Fig. 5.1 are based on the 1991-MF PLC relation. In Fig. 5.1a the
velocity distribution obtained using the PLC relation is shown. Notice that the Cepheids
are ordered by the error value along the x-axis. In Fig. 5.1b the cumulated density function
of the velocity distribution of the preferred sample of Cepheids have been plotted such that
if the velocities have a normal distribution the cumulated density function should follow a
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Table 5.1: Result of kinematic check in terms of w − w�.

PLC Pref. sample Median(w − w�) Iconf(w − w�) Length/2

[km s−1] [km s−1] [km s−1]
1991-MF 116 −6.29 [−7.02,−5.53] 0.75
1997-FC 116 −6.57 [−7.22,−5.73] 0.75
1997-FW 88 −4.59 [−5.32,−3.94] 0.69
1998-Lu 85 −4.23 [−4.80,−3.26] 0.77
1999-La 116 −6.44 [−7.17,−5.65] 0.76
2001-Fr 88 −4.56 [−5.37,−3.59] 0.89
2003-Ta 116 −5.88 [−6.26,−4.97] 0.65
2007-vL 88 −4.48 [−5.30,−3.54] 0.88
2013-An 116 −5.97 [−6.36,−5.11] 0.63
2013-Ma 87 −4.38 [−5.22,−3.53] 0.84

(a) Velocity distribution (b) Normal plot of preferred sample

(c) Confidence interval in terms of velocities (d) Half length of confidence interval

Figure 5.1: Velocity distributions and confidence intervals for 1991-MF. The plots for the
other PLC relations can be found in Appendix E.
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5.2. FORCED SAMPLE SIZE

Figure 5.2: w−w� distributions using preferred sample of each PLC relation. The dotted
lines marks the range of possible solar velocities adopted in this study.

straight line. Fig. 5.1c shows how the confidence intervals in terms of velocity develop as
Cepheids are added to the sample. The dotted straight lines in Fig. 5.1c indicate the range
of values the median should take to agree with the thesis assumption based on the selection
of solar velocity. Fig. 5.1d shows the half length of the intervals to better illustrate the
minimum.

The other PLC relations produces plots that are very similar and are thus omitted here.
The interested reader can find these plots in Appendix E.

The result from Table 5.1 is plotted in Fig. 5.2. The selection range of the solar velocity
is marked to show how the PLC relations agree with this range.

5.2 Forced sample size

It is clear from Table 5.1 that there are two preferred samples that are found by several
PLC relations. To examine how the PLC relations perform relatively to each other it has
been examined what the results are, if the sample selection is forced. The forced samples
used are 88 and 116 Cepheids, which are plotted respectively in in Fig. 5.3 and in Fig. 5.4.
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Figure 5.3: w − w� distributions using sample with 88 Cepheids. The dotted lines marks
the range of possible solar velocities adopted in this study.

Figure 5.4: w−w� distributions using sample with 116 Cepheids. The dotted lines marks
the range of possible solar velocities adopted in this study.
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(a) R = 2.8 (b) R = 3.5

Figure 5.5: w−w� distributions using different R value. The dotted lines marks the range
of possible solar velocities adopted in this study.

5.3 Choice of R

Examining the effects of the choice of the absorption coefficient R, which is the ratio
between the visual extinction and the B−V colour excess as explained in Sect. 4.1, yields
the results that can be seen in Fig. 5.5. The PLC relations that preferred the sample with
116 Cepheids with R = 3.17 still prefers the sample with 116 Cepheids independent of the
choice of R. The PLC relations that previously preferred the sample with 88 Cepheids now
seem to vary a bit between samples with 90 Cepheids when choosing R = 3.5 and sample
with 92 Cepheids when choosing R = 2.7. Thus the PLC relations still divides into two
distinct groups.
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Chapter 6

Discussion

In this final chapter the results are discussed followed by the conclusions I draw from these
results.

6.1 Discussion

There are a few trends in the results that are worth discussing. Firstly it is a good thing
that the velocity distributions indeed seem to be ordered by error, as the large velocities
confined at the end of the plot in Fig. 5.1a are clearly linked to the large errors estimated
in Fig. 4.1b. It is also worth noticing that the preferred samples, apart from the tails,
appear to have normal distributed velocities, as shown in Fig. 5.1b.

From Fig. 5.1c it may seem like the median velocity is not very stable. This is not an
issue, as the median velocity changes in the order of a few km s−1, while the velocities in
Fig. 5.1a vary in the tens of km s−1 to hundreds of km s−1. It is interesting to see that
local minima appear in Fig. 5.1d, which suggests that the amount of dilution added to the
sample does not grow consistently with each Cepheid added to the sample. However, all
but one period-luminosity-colour (PLC) relation have a clear global minimum. That PLC
relation is the 1998-Lu PLC relation, which can be seen in Appendix E in Fig. E.7. This
means that the choice of preferred sample for this relation is somewhat arbitrary and thus
not to be trusted.

For the PLC relations without a colour term there is a very clear preference for the
sample with 116 Cepheids, as seen in Table 5.1. The only exception is for 1998-Lu, but
as mentioned above this relation does not have a clear preferred sample. Like the PLC
relations without a colour term, the PLC relations with a colour term agree on a common
sample size, namely the sample with 88 Cepheids.

Forcing the PLC relations without a colour term to use the preferred sample of the
PLC relations with a colour term and vice versa shows that the corrections found are quite
similar across the board when using the same sample, as illustrated by Fig. 5.3 and Fig. 5.4.
It thus becomes clear that the biggest impact on the result lies in the choice of sample.

Looking at the results in Sect. 5.3 it is also clear that the PLC relation’s choice of
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preferred sample seems to be quite insensitive to the choice of the absorption coefficient,
R.

It is not obvious if the sample with 116 Cepheids should be preferred over the sample
with 88 Cepheids. Looking at the Fig. 5.1c the mean of the sample reaches a general
maximum in the sample size 50 to 100 region after which it declines. That sample with
88 Cepheids is thus at an extreme, which could be considered to just be a chance result.
However, the errors does not really start to grow big until sample size 130 to 150 is reached
as illustrated in Fig. 4.1b, so arguably the sample with 116 Cepheids could be preferred
over the sample with 88 Cepheids simply because it is larger.

Assuming that the sample with 116 Cepheids is somewhat more trustworthy, Fig. 5.4
shows that the median of w − w� is relatively close to −6.5 km s−1. Thus with a solar
velocity of 6.5 km s−1 and the sample with 116 Cepheids little to no correction is needed
to the γ constants in the PLC relations in order for the result to agree with the thesis
assumption. This is shown in Fig. 6.1a. Insisting on a solar velocity of 7.0 km s−1 (using
7.0 km s−1 since it is a reliable results from kinematics studies using Hipparcos data), the
result would instead be a correction on about −0.2 mag to the γ constant in the PLC
relations. This is shown in Fig. 6.1b.

However, going to the other end of the spectrum with a choice of solar velocity between
6.5 km s−1 and 7.0 km s−1 and using the sample with 88 Cepheids the corrections are more
in the region of −0.7 mag to −1.0 mag as shown in Fig. 6.1c and Fig. 6.1d.

A negative correction means that the stars are actually brighter than previously be-
lieved, meaning that they must be further away than initially anticipated. For example,
a correction of −0.2 mag means that the distances should be increased by about 10%.
This change of distance scaling will naturally have consequences for our cosmology as the
Hubble constant would decrease and the age of the universe would be greater than previ-
ously believed. But fortunately there are other ways to determine the Hubble constant,
such as using distance determinations to supernovae or galaxy surface brightness functions
(Freedman et al. 2001), so it is possible to argue whether the suggested corrections are
acceptable.

One such possibility is to compare how well these results affect the distance to the
Large Magellanic Cloud (LMC). The distance to the LMC is usually expressed in distance
modulus and given the definition of distance modulus a negative γ correction will result in
a positive adjustment of the distance modulus. There are several good measurements of
the distance to the LMC independent of Cepheids, and although there has been discussion
about publication bias, the consensus is a distance modulus of 18.49(±0.09) mag (de Grijs
et al. 2014). Note that de Grijs et al. (2014) have included distances determined with the
use of Cepheids in this distance modulus. However, their Fig. 1 to 3 shows that modern
distance determinations using RR Lyrae and CMD (colour-magnitude-diagram) gives val-
ues for the distance modulus between 18.40 and 18.50 mag, and distance determination
methods using eclipsing binaries gives a distance modulus between 18.50 and 18.55 mag.
So the exclusion of cepheids will not change the estimate significantly.

Luri et al. (1998) has examined the distance to the LMC with both his own 1999-Lu
PLC relation, but also with the 1997-FC PLC relation. The distances found are respectively

27



CHAPTER 6. DISCUSSION

(a) Sample 116, w� = 6.5 km s−1 (b) Sample 116, w� = 7.0 km s−1

(c) Sample 88, w� = 6.5 km s−1 (d) Sample 88, w� = 7.0 km s−1

Figure 6.1: γ corrections as consequence of choice of forced sample and selected solar
velocity.

18.32(±0.17) mag and 18.21(±0.20). These distances are slightly lower than the consensus
by 0.2 to 0.3 mag, which coincide quite interestingly with the γ correction from using
sample 116 and a solar velocity of 7.0 km s−1. However, the correction from using the
sample with 88 Cepheids is in the order of 0.7 to 1.0 mag depending on the choice of solar
velocity, which give a distance modulus to the LMC of 19 mag or more. This correction is in
strong disagreement with the consensus, so accepting this correction is not very reasonable.

There is of course the possibility that the thesis assumption is not correct, for instance
if the Cepheids are not distributed evenly in the galaxy and thus could be affected by some
local velocity irregularity, for example caused by a warp in the Galactic disk. Galaxy maps
for each of the two discussed samples are shown in Fig. 6.2. There seems to be a slight
concentration of Cepheids along a line going from north-north-west to south-south-east,
but in general the Cepheids are fairly well spread out, and rather similar in the samples.
Thus the difference between the results for the two samples cannot simply be explained by
their different positions, but it is not possible to rule out a bias caused by other effects.

28



6.2. CONCLUSION

(a) Sample with 88 Cepheids (b) Sample with 116 Cepheids

Figure 6.2: Galaxy maps filtered by sample selection.

6.2 Conclusion

The conclusions I draw from this study are that

• the choice of sample has a significant impact on the result,

• the sample with 116 Cepheids is probably more reliable due to simply being larger
than the sample with 88 Cepheids; also the 88 sample gives an unreasonably large
correction,

• by accepting the 116 sample, a discrepancy is found which can be explained by
selecting a solar velocity of 6.5 km s−1, even though this is in disagreement with
Hipparcos w� = 7.0 km s−1 result and

• by accepting the 116 sample and requiring w� = 7.0 km s−1, a −0.2 correction to the
γ constants in the PLC relations is found (corresponding to 10% larger distances),
which in turn is in good agreement with LMC distance modulus studies.

It is interesting to see that the result of this study can suggest a correction to the PLC
relations such that they get a better agreement with the conventional distance modulus to
the LMC, however it is clear that further investigation should be conducted into why the
result is so sensitive to the selection of the sample.

With the launch of the Gaia satellite it is quite likely that the database of Cepheids
can be increased in size, as Gaia is estimated to observe around 9000 Cepheids (Windmark
et al. 2011). A larger database with smaller errors in the proper motion observations would
undoubtedly increase the quality of the kinematic check.
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Coşkunoǧlu, B., Ak, S., Bilir, S., et al. 2011, MNRAS, 412, 1237

de Grijs, R., Wicker, J. E., & Bono, G. 2014, AJ, 147, 122

Dehnen, W. & Binney, J. J. 1998, MNRAS, 298, 387

Feast, M. & Whitelock, P. 1997, MNRAS, 291, 683

Feast, M. W. & Catchpole, R. M. 1997, MNRAS, 286, L1

Feast, M. W. & Walker, A. R. 1987, ARA&A, 25, 345

Fernie, J. D., Evans, N. R., Beattie, B., & Seager, S. 1995, Information Bulletin on Variable
Stars, 4148, 1

Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47

Hubble, E. P. 1925, The Observatory, 48, 139

Jenkins, A. 2013, Phys. Rep., 525, 167

Joshi, Y. C. & Joshi, S. 2014, New A, 28, 27
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Appendix A

Basic Astrophysics

This appendix gives a brief introduction to the astrophysics used in this thesis with the
aim to make the content available to a reader without a background in astrophysics.

Luminosity

In astrophysics the amount of energy radiated out of a star per unit of time is called the
luminosity of the star. In essence it is a measure of how bright the star is. Under normal
circumstances it is not possible to measure the luminosity of a star by observing it, instead
it is possible to measure the flux of energy at the observers position. Assuming that the
star is radiating the energy uniformly in all directions and no light is absorbed between
the star and the observer, the flux at distance d then becomes

F =
L

4πd2
, (A.1)

where F is the flux and L is the luminosity. If there is a loss of light between the star and
the observer the measured flux will be reduced, this will be covered in the section below
under the term reddening.

Magnitude

The difference in brightness between two stars can be described as the difference in mag-
nitude of the two stars and is defined by

M1 −M2 = −2.5 · log10

(
F1

F2

)
, (A.2)

where M1−M2 is the difference in magnitude of two stars and Fi is the flux of star i. It is
possible to talk about the magnitude of a star, which is then by convention the magnitude
difference between the star and the star named Vega. Magnitude is physically unitless,
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Figure A.1: The UBVRI filters showing the fraction of radiation flux being measured at a
given wavelength, 1.0 being 100%. (Karttunen et al. 2007, Fig. 4.6)

but is often denoted with the unit “mag”. The -2.5 factor is purely a historical remnant to
make the magnitude definition somewhat compatible with ancient ways of classifying the
brightness of stars, where a class 1 star is brighter than a class 2 star.

Two types of magnitudes are used regularly: Apparent and absolute magnitude. Ap-
parent magnitude means that the fluxes used in the relation are the fluxes measured at
the Earth; this then becomes a measure of how bright a star is on the sky (compared to
Vega). Absolute magnitude means that the fluxes used are the fluxes as they would have
been measured at a fixed distance of 10 pc from the star with no loss of light between the
star and the observer; thus the absolute magnitude is directly linked to the luminosity of
the star.

Colour

Measuring the energy flux for all types of radiation can be quite difficult, because the
atmosphere of the Earth blocks many wavelengths of non-visible light. But it is possible to
use a colour filter and only measure the flux for a certain wavelength range, for instance the
flux of blue light. In order to compare the flux measurements between different observers
the set of colour filters have been standardized. The most common standard of colour
filters used is the UBVRI photometric system (Ultraviolet, Blue, Visual, Red, Infrared),
which is illustrated in Fig. A.1.

Given that fluxes are often measured through a colour filter, it is possible to talk about
magnitudes for a specific colour. For instance the apparent visual magnitude of a star is
then the magnitude difference between the star and Vega with fluxes measured at the Earth
using a visual light filter (the V peak with centre at 550 nm in Fig. A.1). A magnitude
value that is based on fluxes without any filters is called a bolometric magnitude.
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APPENDIX A. BASIC ASTROPHYSICS

Colour indices

Subtracting one colour magnitude from another gives a colour index, for instance B − V
is the colour index where B is the apparent blue magnitude and V is the apparent visual
magnitude. A colour index is used to give an indication of the colour of the star, i.e. how
much blue light there is compared to the visual spectrum. The spectral class categorization
system (OBAFGKM—O is blue and M is red) is based on the colours of the stars, and
thus there is a direct link between B − V colour index and spectral class. The Sun has
colour index B − V = 0.656 and belongs to spectral class G.

Reddening

When light travels from a star to the Earth the light may encounter “dust” on the way,
which may scatter the light away from the line of sight to the observer. This process
has varying efficiency which depends on the wavelength of the light and is more efficient
for blue light than red light, so that more blue light than red light is “lost”; hence this
extinction phenomena is often called reddening.

The amount of extinction that happens as the light travels through this “interstellar
medium” depends on the so-called optical thickness of the medium, which is denoted with
a τ . The influence that optical thickness have on the flux can be described with

Freddened(d) = F (d) · e−τ . (A.3)

Since the absorption is dependent on the wavelength of the light each colour filter gives
different values for τ .

Apparent magnitude is based on the reddened flux, while the absolute magnitude is
based on the intrinsic flux, thus the relation between apparent (V ) and absolute (MV )
magnitude can be described using (A.2) as

V −MV = −2.5 · log10

(
Freddened(d)

F (10 pc)

)
= −2.5 · log10

(
L · e−τ

4π · d2
· 4π · (10 pc)2

L

)
= 5 · log10

(
d

10 pc

)
+ 2.5τ log10(e) = 5 · log10

(
d

10 pc

)
+ AV , (A.4)

where AV = 2.5τ log10(e) is called the visual extinction (and similarly the blue extinction
for AB etc.). This can be rewritten as

V = V0 + AV , V0 = MV + 5 · log10

(
d

10 pc

)
, (A.5)

where V0 is called the intrinsic apparent visual magnitude, as it is the apparent visual
magnitude without any reddening. An interesting consequence of this is that

(B − V )0 = B0 − V0 = MB −MV . (A.6)
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Analysing a colour index gives

B − V = (MB + 5 · log10

(
d

10 pc

)
+ AB)− (MV + 5 · log10

(
d

10 pc

)
+ AV )

= (MB −MV ) + (AB − AV ) = (B − V )0 + EB−V , (A.7)

where EB−V = (B − V )− (B − V )0 is called the colour excess.
It turns out that the ratio (R) between the visual extinction and the B − V colour

excess is near constant for most stars, i.e.

R =
AV

AB − AV
=

AV
EB−V

≈ 3.1. (A.8)

Distance modulus

The logarithmic expression shown in Eq. A.5 is per definition called the distance modulus
(µ), and is often used as an expression of distance with the unit of mag, i.e.

µV = V0 −MV = 5 · log10

(
d

10 pc

)
. (A.9)

The Wesenheit function

It is possible to define a magnitude that is free of reddening. The Wesenheit function
defines a W magnitude as

W = V −RV I · (V − I), (A.10)

where V is apparent visual magnitude, I is apparent infrared magnitude and RV I is defined,
using (A.8) from above, as

RV I =
AV
EV−I

=
R · EB−V
EV−I

≈ 3.1 · EB−V
EV−I

. (A.11)

Using V = V0 + AV it is quickly proven that AW = 0, i.e. the W magnitude is free of
reddening:

W = (V0 + AV )−RV I · ((V0 + AV )− (I0 + AI))

= V0 + AV −RV I · (V0 − I0 + EV−I) = V0 + AV −RV I · (V0 − I0)− AV = W0.

Given that the Wesenheit magnitude is free of reddening the distance modulus in terms
of Wesenheit magnitudes are often called the true distance modulus (µ0):

µW = W −MW = W0 −MW = µ0. (A.12)
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Appendix B

Cepheid database

Table B.1: Cepheid database sorted by quality and error value. The error value is the
product of the two axis of the error ellipse of the proper motion data. Quality 1 means
proper motion data from Hipparcos catalogue, while quality 2 means proper motion data
from Tycho-2 catalogue.

Star log10 P V EB−V (B − V )0 (V − I)0 µb ErrVal Qlty

[mag] [mag] [mag] [mag] [mas yr−1] [mas2 yr−2]
l car 1.551 3.737 0.160 1.103 0.968 −2.167 0.070 1
x sgr 0.846 4.562 0.201 0.549 0.654 −1.710 0.074 1
y sgr 0.761 5.743 0.188 0.667 0.722 −0.536 0.126 1
t vul 0.647 5.753 0.067 0.577 0.592 −6.686 0.134 1

bet dor 0.993 3.754 0.069 0.734 0.724 −0.003 0.167 1
t cru 0.828 6.564 0.178 0.752 0.728 −1.652 0.168 1
s tra 0.801 6.391 0.082 0.664 0.697 −1.046 0.182 1
x cyg 1.215 6.392 0.261 0.875 0.821 +3.276 0.193 1
r tra 0.530 6.660 0.134 0.582 0.641 −3.035 0.224 1
r mus 0.876 6.319 0.134 0.639 0.650 −2.136 0.231 1
s sge 0.923 5.610 0.112 0.694 0.690 −4.754 0.235 1
r cru 0.766 6.765 0.150 0.638 0.669 −2.201 0.265 1
sv vul 1.653 7.209 0.518 0.944 0.853 −2.068 0.312 1
t mon 1.432 6.125 0.195 0.972 0.895 +0.303 0.314 1
rs pup 1.617 7.034 0.453 0.975 0.962 −1.376 0.319 1
bg vel 0.840 7.643 0.439 0.741 0.751 −2.589 0.326 1
u car 1.589 6.282 0.287 0.896 0.862 −0.718 0.336 1
s cru 0.671 6.597 0.162 0.602 0.638 −3.383 0.360 1
av cir 0.487 7.402 0.368 0.000 0.580 +0.367 0.360 1

ap pup 0.706 7.381 0.241 0.622 0.620 −2.500 0.370 1
ax cir 0.722 5.889 0.262 0.471 0.557 −0.107 0.398 1
er car 0.888 6.819 0.099 0.771 0.744 −0.988 0.410 1
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Star log10 P V EB−V (B − V )0 (V − I)0 µb ErrVal Qlty

[mag] [mag] [mag] [mag] [mas yr−1] [mas2 yr−2]
it car 0.877 8.094 0.209 0.770 0.760 −0.593 0.427 1
v car 0.826 7.359 0.157 0.713 0.736 −0.582 0.448 1
rz vel 1.310 7.082 0.293 0.834 0.851 +1.334 0.451 1
u vul 0.903 7.129 0.593 0.683 0.760 −0.649 0.455 1
x lac 0.736 8.406 0.339 0.563 0.618 +0.482 0.462 1

at pup 0.824 7.979 0.167 0.629 0.692 −2.058 0.469 1
su cyg 0.585 6.863 0.088 0.482 0.554 −2.150 0.476 1
v vel 0.640 7.575 0.212 0.571 0.616 +1.703 0.490 1
rv sco 0.782 7.041 0.338 0.628 0.707 −7.048 0.589 1
ry cma 0.670 8.106 0.223 0.624 0.687 −1.574 0.589 1
v cen 0.740 6.820 0.264 0.610 0.676 −4.199 0.614 1
xx cen 1.039 7.819 0.258 0.718 0.752 +0.926 0.656 1
s nor 0.989 6.429 0.178 0.766 0.778 −0.021 0.672 1
u aql 0.846 6.430 0.371 0.676 0.676 −3.168 0.681 1

vz cyg 0.687 8.957 0.274 0.604 0.640 −1.594 0.689 1
bb sgr 0.822 6.934 0.276 0.710 0.747 −1.639 0.690 1
bf oph 0.610 7.340 0.247 0.614 0.663 −0.182 0.713 1
xx car 1.196 9.322 0.343 0.722 0.765 +0.492 0.736 1
u sgr 0.829 6.695 0.403 0.694 0.730 −0.151 0.742 1
xy car 1.094 9.290 0.408 0.804 0.818 +2.805 0.757 1
rx aur 1.065 7.673 0.276 0.677 0.658 −0.320 0.759 1
sx vel 0.980 8.262 0.250 0.657 0.691 +0.078 0.765 1
s mus 0.985 6.128 0.220 0.626 0.657 −1.767 0.766 1
st tau 0.605 8.220 0.339 0.510 0.641 +0.743 0.773 1
ry vel 1.449 8.372 0.554 0.809 0.835 −0.224 0.783 1
ss sct 0.565 8.204 0.317 0.635 0.681 −0.622 0.806 1

hw car 0.964 9.128 0.184 0.813 0.879 +0.750 0.810 1
bg lac 0.727 8.887 0.316 0.643 0.669 +0.871 0.815 1
t vel 0.667 8.035 0.271 0.663 0.729 −3.376 0.815 1

dl cas 0.903 8.969 0.479 0.671 0.700 −1.004 0.821 1
yz car 1.259 8.711 0.372 0.754 0.787 −0.508 0.851 1

mw cyg 0.775 9.490 0.615 0.716 0.786 +0.779 0.854 1
uw car 0.728 9.418 0.439 0.583 0.649 +0.701 0.856 1
w sgr 0.881 4.670 0.112 0.632 0.679 −4.856 0.858 1

rx cam 0.898 7.678 0.536 0.665 0.735 −3.041 0.879 1
fm aql 0.786 8.275 0.617 0.686 0.700 −1.043 0.920 1
w gem 0.898 6.952 0.266 0.648 0.641 −0.660 0.924 1
sz cyg 1.179 9.430 0.587 0.916 0.881 −1.220 0.931 1
fr car 1.030 9.668 0.322 0.811 0.826 +0.131 0.940 1
vy cyg 0.895 9.584 0.615 0.626 0.669 −0.858 0.942 1
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APPENDIX B. CEPHEID DATABASE

Star log10 P V EB−V (B − V )0 (V − I)0 µb ErrVal Qlty

[mag] [mag] [mag] [mag] [mas yr−1] [mas2 yr−2]
tx cyg 1.168 9.512 1.111 0.679 0.859 −1.403 0.946 1
fn aql 0.977 8.377 0.490 0.752 0.752 −3.395 0.969 1
sw vel 1.370 8.120 0.337 0.815 0.853 −2.780 0.979 1
z lac 1.037 8.416 0.378 0.718 0.735 −0.297 0.980 1
sz aql 1.234 8.631 0.552 0.881 0.858 −1.275 1.006 1
dd cas 0.992 9.879 0.493 0.709 0.666 +0.229 1.006 1
cd cyg 1.232 8.949 0.486 0.817 0.824 −1.721 1.050 1
dr vel 1.049 9.523 0.680 0.845 0.825 −0.623 1.053 1
gx car 0.857 9.341 0.379 0.668 0.720 −0.366 1.060 1
v lac 0.697 8.941 0.315 0.558 0.648 −0.451 1.072 1

vz pup 1.365 9.626 0.452 0.704 0.746 +0.367 1.075 1
ry cas 1.084 9.948 0.613 0.760 0.758 −3.193 1.080 1
uz car 0.716 9.331 0.184 0.696 0.729 +1.237 1.081 1
rs cas 0.799 9.942 0.784 0.701 0.719 −0.349 1.100 1
rr lac 0.808 8.847 0.296 0.589 0.651 −0.128 1.110 1
wz sgr 1.339 8.027 0.428 0.973 0.950 +0.285 1.148 1
cp cep 1.252 10.576 0.702 0.954 0.903 −0.270 1.155 1
rt aur 0.572 5.448 0.049 0.542 0.575 −8.505 1.173 1
aq car 0.990 8.853 0.158 0.768 0.782 +0.509 1.186 1
ux car 0.566 8.285 0.091 0.553 0.619 −2.315 1.195 1
ad pup 1.133 9.897 0.343 0.700 0.748 +0.654 1.216 1

v1162 aql 0.731 7.808 0.187 0.694 0.723 −11.521 1.265 1
uu mus 1.066 9.783 0.400 0.750 0.780 −0.221 1.299 1
rw cas 1.170 9.226 0.409 0.795 0.813 −3.735 1.299 1
ay cen 0.725 8.813 0.295 0.763 0.742 −0.687 1.311 1
wz car 1.362 9.259 0.362 0.788 0.822 −0.149 1.330 1
st vel 0.768 9.699 0.496 0.730 0.776 −1.895 1.357 1
ae vel 0.853 10.242 0.639 0.631 0.711 −1.704 1.379 1
cr cep 0.794 9.656 0.697 0.727 0.784 −0.525 1.382 1
z sct 1.111 9.586 0.491 0.855 0.827 −0.025 1.404 1

rt mus 0.490 8.990 0.292 0.547 0.654 −3.422 1.449 1
vx per 1.037 9.306 0.496 0.659 0.674 −3.760 1.458 1
gh cyg 0.893 9.897 0.629 0.651 0.660 −1.149 1.459 1
y aur 0.587 9.627 0.356 0.553 0.599 −0.738 1.465 1
sy cas 0.610 9.889 0.430 0.553 0.585 −1.252 1.476 1
yz sgr 0.980 7.341 0.285 0.749 0.761 −3.855 1.486 1
ss cma 1.092 9.941 0.533 0.690 0.763 −0.909 1.488 1
vx cyg 1.304 10.078 0.830 0.890 0.852 −0.136 1.504 1
sy aur 1.006 9.062 0.453 0.596 0.610 +0.053 1.598 1
kn cen 1.532 9.853 0.774 0.839 0.871 −2.013 1.600 1
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Star log10 P V EB−V (B − V )0 (V − I)0 µb ErrVal Qlty

[mag] [mag] [mag] [mag] [mas yr−1] [mas2 yr−2]
x sct 0.623 10.010 0.557 0.617 0.675 −3.766 1.613 1

vy car 1.277 7.465 0.260 0.905 0.861 −0.146 1.663 1
tt aql 1.139 7.129 0.462 0.843 0.815 −2.565 1.680 1
x pup 1.414 8.526 0.409 0.798 0.830 +1.260 1.702 1
xy cas 0.653 9.976 0.480 0.657 0.624 +0.607 1.706 1
sx car 0.687 9.090 0.310 0.608 0.656 −1.371 1.713 1
sw cas 0.736 9.706 0.449 0.635 0.683 −2.961 1.732 1
ap sgr 0.704 6.951 0.174 0.647 0.687 −4.389 1.840 1
bn pup 1.136 9.890 0.417 0.778 0.798 −0.415 1.899 1
vw cas 0.777 10.756 0.485 0.730 0.742 −0.383 1.972 1
ww car 0.670 9.748 0.392 0.507 0.603 −1.302 1.993 1
sv vel 1.149 8.587 0.365 0.723 0.782 −1.276 2.017 1
x vul 0.801 8.843 0.790 0.606 0.633 −1.270 2.017 1

ww pup 0.742 10.613 0.362 0.491 0.643 −0.951 2.069 1
xz car 1.221 8.596 0.341 0.926 0.919 +0.028 2.071 1
u nor 1.102 9.228 0.862 0.754 0.773 +1.793 2.202 1
y sct 1.015 9.627 0.767 0.773 0.801 −1.924 2.249 1
br vul 0.716 10.686 0.866 0.601 0.553 +2.451 2.264 1
bk aur 0.903 9.438 0.424 0.647 0.645 −3.927 2.273 1
cn car 0.693 10.683 0.395 0.715 0.825 −0.589 2.324 1
y lac 0.635 9.147 0.202 0.530 0.592 −1.449 2.345 1

cd cas 0.892 10.788 0.748 0.708 0.793 −1.438 2.443 1
wy pup 0.720 10.579 0.292 0.565 0.576 −2.090 2.512 1
vw cen 1.177 10.250 0.417 0.941 0.962 −1.735 2.605 1
ey car 0.459 10.322 0.335 0.518 0.653 +1.432 2.664 1
sv mon 1.183 8.268 0.250 0.796 0.815 −0.628 2.891 1
ch cas 1.179 11.000 0.955 0.690 0.748 −1.265 3.255 1
rz gem 0.743 10.021 0.503 0.532 0.629 −0.554 3.505 1
uz cas 0.629 11.370 0.434 0.640 0.686 −4.582 3.647 1
tz mon 0.871 10.789 0.431 0.701 0.769 −1.132 3.745 1
cr ser 0.724 10.858 0.961 0.661 0.729 −2.261 3.888 1

aa gem 1.053 9.728 0.380 0.692 0.659 +1.483 3.958 1
ck sct 0.870 10.613 0.784 0.767 0.830 −2.532 4.248 1
cf cas 0.688 11.136 0.531 0.668 0.701 −1.945 4.295 1

cv mon 0.731 10.304 0.702 0.601 0.757 −5.954 4.369 1
ac mon 0.904 10.096 0.507 0.672 0.738 +0.258 4.469 1
ru sct 1.294 9.463 0.930 0.742 0.798 −2.093 4.716 1
aq pup 1.479 8.704 0.531 0.832 0.878 +4.058 5.429 1
kq sco 1.458 9.810 0.839 1.098 1.076 −1.465 5.452 1
vv cas 0.793 10.744 0.482 0.653 0.699 −3.146 5.757 1

39



APPENDIX B. CEPHEID DATABASE

Star log10 P V EB−V (B − V )0 (V − I)0 µb ErrVal Qlty

[mag] [mag] [mag] [mag] [mas yr−1] [mas2 yr−2]
vw pup 0.632 11.383 0.483 0.632 0.684 −0.988 6.000 1
cy cas 1.158 11.623 0.947 0.720 0.784 −0.194 6.035 1
sy nor 1.102 9.502 0.696 0.661 0.705 +2.789 6.037 1
gu nor 0.538 10.355 0.629 0.658 0.753 +1.059 6.132 1
ty sct 1.043 10.815 0.937 0.774 0.788 −4.044 6.468 1

ek mon 0.598 11.069 0.551 0.655 0.752 −0.632 6.872 1
tx mon 0.940 10.967 0.492 0.619 0.702 +2.898 7.687 1
kk cen 1.086 11.461 0.572 0.734 0.782 +0.351 7.814 1
ay sgr 0.818 10.620 0.841 0.582 0.762 −1.012 8.917 1
ak cep 0.859 11.202 0.635 0.693 0.731 +0.757 9.091 1
ry sco 1.308 8.012 0.714 0.751 0.820 −0.576 10.651 1
tw nor 1.033 11.667 1.214 0.791 0.822 −0.686 22.464 1
su cru 1.109 9.782 0.998 0.774 0.845 −14.849 40.347 1
ux per 0.660 11.633 0.512 0.525 0.502 +13.300 75.928 1
s vul 1.836 8.962 0.737 1.152 1.076 +1.217 1.320 2

v1344 aql 0.874 7.772 0.569 0.788 0.731 −1.152 1.820 2
x cru 0.794 8.395 0.284 0.709 0.739 −1.062 2.100 2
gy sge 1.713 10.150 1.236 1.049 1.064 −2.880 2.560 2
bz cyg 1.006 10.218 0.839 0.762 0.817 +0.411 3.060 2
bv mon 0.479 11.381 0.582 0.513 0.580 +3.702 3.610 2
uy car 0.744 8.949 0.177 0.660 0.725 −5.835 4.370 2
ez cyg 1.067 11.052 0.784 0.688 0.597 +1.669 5.060 2
ag cru 0.584 8.211 0.226 0.523 0.570 +2.585 9.300 2
vw cru 0.722 9.604 0.603 0.716 0.853 −6.952 10.730 2
fi car 1.129 11.613 0.684 0.881 0.907 +3.095 10.880 2
ct car 1.257 12.234 0.553 0.831 0.834 +1.817 13.680 2

xx mon 0.737 11.915 0.586 0.597 0.662 −4.292 14.040 2
ap cas 0.836 11.565 0.787 0.620 0.549 −5.801 14.820 2
dw per 0.562 11.579 0.591 0.577 0.561 +10.366 16.800 2
ex vel 1.122 11.578 0.809 0.780 0.773 −4.433 19.780 2
fo car 1.015 10.735 0.466 0.804 0.853 −5.174 20.210 2
uy per 0.730 11.343 0.869 0.606 0.739 +12.293 24.500 2
vy sgr 1.132 11.448 1.143 0.865 0.792 −5.473 27.000 2
vy per 0.743 11.255 0.935 0.604 0.754 +7.934 36.580 2
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Appendix C

Matlab function: kinematiccheck.m

function [ returnData ] = kinemat iccheck ( plcMatr ix , wSun , i n c l u d e d i s t a n c e i n e r r o r v a l u e ,
r e q u i r e I c o l o u r )

%KINEMATICCHECK take s a l i s t o f PLCs and do a kinematic check on them , based on a database
o f 215 g a l a c t i c cephe ids .

%
% Input parameters :
% plcMatr ix shou ld contain a PLC per row tha t d e f i n e s an ab so l u t e v i s u a l
% magnitude and must have four coloumns fo r the cons tant s :
% alpha , beta BV , beta VI , gamma
% wSun i s the Sun ’ s v e r t i c a l speed in km/s , u sua l l y around 7 km/s
% inc l u d ed i s t an c e i n e r r o r v a l u e == 1 means t ha t the PLC di s tance i s inc luded in the error

va lue
% re qu i r e I c o l ou r == 1 means t ha t a l l PLC r e l a t i o n s w i l l r e qu i r e I co lour in f o even i f i t

i s not used
%
% returnData s t r u c t u r e :
% one row fo r each PLC with the f o l l ow i n g columns :
% N = maxium sample s i z e
% n = opt imal sample s i z e based on v e l o c i t y conf idence i n t e r v a l
% w quants = the q uan t i l e s o f the v e l o c i t y d i s t r i b u t i o n based on binomia l d i s t r i b u t i o n
% w d i f f = the l eng t h o f the conf idence i n t e r v a l
% d i s t r i b u t i o n s = a l l the v e l o c i t y d i s t r i b u t i o n s f o r each sample
% n = opt imal sample s i z e based on the magnitude conf idence i n t e r v a l
% mag quants = the q uan t i l e s t r an s l a t e d to magnitudes
% mag d i f f = the l eng t h o f the i n t e r v a l in magnitudes
% er ro r va l u e = sor t ed l i s t o f error va lue s used

% cons tant s in use
Rv = 3 . 1 7 ; % +/−0.13 reddening f a c t o r
Ri = 1 . 8 9 ; % +/−0.12 reddening f a c t o r
Rb = 4 . 1 7 ; % +/−0.15 reddening f a c t o r
K = 4 . 7 4 0 5 ; % convers ion from mas/yr to km/s/kpc
GtrnspE = [ −0.054875560416215 −0.873437090234885 −0.483835015548713 ;

0.494109427875584 −0.444829629960011 0.746982244497219 ;
−0.867666149019005 −0.198076373431202 0.455983776175067 ] ;

alphaG = 192 .85948 ; % [ deg ]
deltaG = 27 . 1282 ; % [ deg ]
lOmega = 32 .93192 ; % [ deg

% read in the database
cephdata = dlmread( ’ cephe iddata . txt ’ , ’ ; ’ ) ;
cephdata ( cephdata ( : , 1 8 ) ==0 ,:) = [ ] ; % de l e t e e n t r i e s with no proper motion

% add error va lue s as 19 th coloumn and so r t matrix by i t
ErrVal = cephdata ( : , 1 5 ) .∗ cephdata ( : , 1 6 ) + ( cephdata ( : , 1 8 )−1)∗1000 ;
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cephdata = [ cephdata , ErrVal ] ;
cephdata = sortrows ( cephdata , s ize ( cephdata , 2 ) ) ; % sor t on l a s t column

ID = cephdata ( : , 1) ; % − ID number , a l t e r n a t i v e l i s t f o r name lookup
logP = cephdata ( : , 2) ; % − l o g 10 o f per iod in days
Bmag = cephdata ( : , 3) ; % [mag ] − reddened B magnitude
Vmag = cephdata ( : , 4) ; % [mag ] − reddened V magnitude
Imag = cephdata ( : , 5) ; % [mag ] − reddened I magnitude (0 i f no data )
EBVf = cephdata ( : , 6) ; % [mag ] − co lour exces s E(B−V) f e rn i e system
EBV = cephdata ( : , 7) ; % [mag ] − co lour exces s E(B−V) correc t ed
EVI = cephdata ( : , 8) ; % [mag ] − co lour exces s E(V−I ) cor rec t ed
BV0 = cephdata ( : , 9) ; % [mag ] − i n t r i n s i c (B−V) 0 co lour
VI0 = cephdata ( : , 1 0 ) ; % [mag ] − i n t r i n s i c (V−I ) 0 co lour (0 i f no data )
RA = cephdata ( : , 1 1 ) ; % [ deg ] − pos i t i on , r i g h t ascension
DE = cephdata ( : , 1 2 ) ; % [ deg ] − pos i t i on , d e c l i n a t i on
PMra = cephdata ( : , 1 3 ) ; % [mas/yr ] − proper motion , r i g h t ascension (0 i f no data )
PMde = cephdata ( : , 1 4 ) ; % [mas/yr ] − proper motion , d e c l i n a t i on (0 i f no data )
Ema = cephdata ( : , 1 5 ) ; % [mas/yr ] − error e l i p s e , major ax i s (0 i f no data )
Emi = cephdata ( : , 1 6 ) ; % [mas/yr ] − error e l i p s e , minor ax i s (0 i f no data )
Eang = cephdata ( : , 1 7 ) ; % [ deg ] − error e l i p s e , ang le (0 i f no data )
Qlty = cephdata ( : , 1 8 ) ; % − 1=good qua l i t y , 2=not as good (0 i f no data )
ErrVal = cephdata ( : , 1 9 ) ; % − r ede f ined to make sure i t i s in sor t ed order

% apparent v i s u a l magnitude reddening correc ted , i . e . i n t r i n s i c apparent v i s u a l
magnitude

Vmag0 = Vmag − Rv∗EBV;

% ca l c u l a t e proper motion
C1 = sind ( deltaG ) .∗ cosd (DE)−cosd ( deltaG ) .∗ sind (DE) .∗ cosd (RA−alphaG ) ;
C2 = cosd ( deltaG ) .∗ sind (RA−alphaG ) ;
mu b = ( 1 . / sqrt (C1 .ˆ2 + C2 . ˆ 2 ) ) .∗ (−C2 .∗ PMra + C1 .∗ PMde) ;

% analyse each PLC in turn and s t o r e r e s u l t s
returnData = ce l l ( s ize ( plcMatrix , 1 ) , 9 ) ; % prepare data s t r u c t u r e
for p lc Idx = 1 : s ize ( plcMatrix , 1 )

alpha = plcMatr ix ( plcIdx , 1 ) ;
beta BV = plcMatr ix ( plcIdx , 2 ) ;
beta VI = plcMatr ix ( plcIdx , 3 ) ;
gamma = plcMatr ix ( plcIdx , 4 ) ;

s e l e c t i o n = ID > 0 ; % as d e f a u l t s e l e c t a l l cephe ids
i f beta VI > 0 | | r e q u i r e I c o l o u r > 0

s e l e c t i o n = s e l e c t i o n & Imag > 0 ; % i f p l c r e qu i r e s Imag info , reduce
s e l e c t i o n

end
N = sum( s e l e c t i o n ) ;
returnData {plcIdx ,1} = N; % sto r e number o f cephe ids f o r g iven s e l e c t i o n

% de f ined the s e l e c t e d data s e t s
s e l l o g P = logP ( s e l e c t i o n ) ;
sel BV0 = BV0( s e l e c t i o n ) ;
s e l V I 0 = VI0 ( s e l e c t i o n ) ;
sel Vmag0 = Vmag0( s e l e c t i o n ) ;
se l mu b = mu b( s e l e c t i o n ) ;

% op t i ona l cho ice to modify the error va lue s o r t i n g by inc l ud ing the d i s t ance
ob ta ined v ia the PLC

i f i n c l u d e d i s t a n c e i n e r r o r v a l u e == 1
tmp dist = f indDi s tance ( sel Vmag0 , alpha ∗ s e l l o g P + beta BV∗ sel BV0 + beta VI

∗ s e l V I 0 + gamma ) ;
tmp ErrVal = ErrVal ( s e l e c t i o n ) ;
tmp ErrVal ( tmp ErrVal>1000) = tmp ErrVal ( tmp ErrVal>1000)−1000; % undo q u a l i t y
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adjustment
tmp ErrVal = tmp ErrVal .∗ tmp dist + ( Qlty ( s e l e c t i o n )−1)∗1000 ; % and then

re in t roduce i t
[ tmp ErrVal , so r t Index ] = sort ( tmp ErrVal ) ;
s e l l o g P = s e l l o g P ( sor t Index ) ;
sel BV0 = sel BV0 ( so r t Index ) ;
s e l V I 0 = s e l V I 0 ( so r t Index ) ;
sel Vmag0 = sel Vmag0 ( so r t Index ) ;
se l mu b = sel mu b ( so r t Index ) ;
returnData {plcIdx ,9} = tmp ErrVal ;

else
returnData {plcIdx ,9} = ErrVal ;

end

% de f ine the PLC
% − gammacorr i s the co r r ec t i on the PLC i s run with
% − n reduces the da ta s e t so the PLC can be ana lysed f o r d i f f e r e n t cepheid samples
p l c = @( gammacorr , n ) alpha ∗ s e l l o g P ( 1 : n) + beta BV ∗ sel BV0 ( 1 : n) + beta VI ∗

s e l V I 0 ( 1 : n) + gamma + gammacorr ;

% f ind the w d i s t r i b u t i o n
w di s t = @( gammacorr , n ) f indVertSpeed ( se l mu b ( 1 : n) , sel Vmag0 ( 1 : n) , p l c (

gammacorr , n ) , K , wSun ) ;

% analyze the PLC for each sample o f cephe ids n = 1 . .N
w d i s t r i b u t i o n s = ce l l (N, 1 ) ;
w quants = zeros (N, 3 ) ;
p l c c o r r = zeros (N, 3 ) ;
for n = 1 :N

% determine the speed d i s t r i b u t i o n wi thout doing any cor r ec t i on
d i s t = w di s t (0 , n ) ;
w d i s t r i b u t i o n s {n ,1} = d i s t ;

% f ind the q uan t i l e s o f above speed d i s t r i b u t i o n
speeds = quantile ( d i s t , [ 0 . 5 ∗ (1 − 1/ sqrt (n) ) , 0 . 5 , 0 . 5 ∗ (1 + 1/ sqrt (

n) ) ] ) ;
w quants (n , : ) = speeds ;

% t r an s l a t e speed quan t i l e s in to magnitude q uan t i l e s
% f i r s t by d e f i n i n g func t i ons t ha t shou ld be zero g iven a cor rec t i on
n e g d i f f = speeds (2 ) − speeds (1 ) ;
p o s d i f f = speeds (3 ) − speeds (2 ) ;
neg func = @( co r r ) median( w d i s t ( corr , n )+n e g d i f f ) ;
mid func = @( co r r ) median( w d i s t ( corr , n ) ) ;
pos func = @( co r r ) median( w d i s t ( corr , n )−p o s d i f f ) ;
% then f ind the co r r e c t i on s needed to make above func t i ons zero , i n i t i a l guess

no cor r ec t i on
[ neg corr , ˜ , e x i t v a l u e ] = fzero ( neg func , 0) ;
i f e x i t v a l u e ˜= 1

display ( [ ’ e r r o r [ neg ] with sample = ’ ,num2str(n) ] ) ;
end
[ mid corr , ˜ , e x i t v a l u e ] = fzero ( mid func , 0) ;
i f e x i t v a l u e ˜= 1

display ( [ ’ e r r o r [ mid ] with sample = ’ ,num2str(n) ] ) ;
end
[ pos cor r , ˜ , e x i t v a l u e ] = fzero ( pos func , 0) ;
i f e x i t v a l u e ˜= 1

display ( [ ’ e r r o r [ pos ] with sample = ’ ,num2str(n) ] ) ;
end
p l c c o r r (n , : ) = [ neg co r r , mid corr , p o s c o r r ] ;

end
% f ind sample with sma l l e s t d i f f
d i f f = w quants ( : , 3 )−w quants ( : , 1 ) ;
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d i f f ( 1 : 1 0 ) = max( d i f f ) ; % make sure the f i r s t 10 en t r i e s are not found as b e s t
returnData {plcIdx ,2} = find ( d i f f == min( d i f f ) , 1) ;

% sto r e the d i s t r i b u t i o n s a long with the quants and d i f f e r e n c e f o r p l o t t i n g
returnData {plcIdx ,3} = w quants ;
returnData {plcIdx ,4} = w quants ( : , 3 )−w quants ( : , 1 ) ; % sto r e the d i f f
returnData {plcIdx ,5} = w d i s t r i b u t i o n s ;

% al so f i nd opt imal sample f o r p l c correc t ion , to check i f same
d i f f = p l c c o r r ( : , 3 )−p l c c o r r ( : , 1 ) ;
d i f f ( 1 : 1 0 ) = max( d i f f ) ; % make sure the f i r s t 10 en t r i e s are not found as b e s t
returnData {plcIdx ,6} = find ( d i f f == min( d i f f ) , 1) ;

% sto r e p l c co r r ec t i on
returnData {plcIdx ,7} = p l c c o r r ;
returnData {plcIdx ,8} = p l c c o r r ( : , 3 )−p l c c o r r ( : , 1 ) ; % sto r e the d i f f

end

end

% de f ine a func t i on tha t t ake s an ab so l u t e v i s u a l magnitude , turns i t in to
% a d i s t ance modulus and f ind the d i s t ance in k i l o parsecs
function [ l o c a l d ] = f indDi s tance ( l o ca l V0 , local Mv ) % ’ l o c a l ’ to avoid scope

i s s u e s
l o c a l d = (10 ∗ 1 0 . ˆ ( ( loca l V0−loca l Mv ) /5) ) / 1000 ; % [ kpc ]

end

% de f ine a func t i on tha t t ake s an ab so l u t e v i s u a l magnitude , turns i t in to a
% d i s tance modulus and based on proper motion f i nd the v e r t i c a l speed in km/s
function [ l o c a l w ] = f indVertSpeed ( loca l mu b , l o ca l V0 , local Mv , K , wSun ) % ’

l o c a l ’ to avoid scope i s s u e s
l o c a l w = loca l mu b .∗ f i ndDi s tance ( l o ca l V0 , local Mv ) .∗ K + wSun ; % [km/s ]

end
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Appendix D

Matlab example script

% sc r i p t t ha t ana ly se s the s e l e c t e d PLCs
clear a l l ;
close a l l ;

p lcMatr ix = [ −2.76 , 0 , 0 , −1.40; % 1991−MF
−2.81 , 0 , 0 , −1.43 ; % 1997−FC
−3.80 , 2 . 70 , 0 , −2.38; % 1997−FW
−2.12 , 0 , 0 , −1.73; % 1998−Lu
−2.77 , 0 , 0 , −1.44; % 1999−La
−3.255 , 0 , 2 . 45 , −2.644; % 2001−Fr
−3.141 , 0 , 0 , −0.826; % 2003−Ta
−3.29 , 0 , 2 . 45 , −2.576; % 2007−vL
−3.08 , 0 , 0 , −0.94; % 2013−An
−3.245 , 0 , 2 . 45 , −2 .545 ] ; % 2013−Ma

wSun = 7 . 0 ;

data = a n a l y s e p l c s ( plcMatrix , wSun , 0 , 0) ;

display ( ’====================================================’ ) ;
display ( [ ’wSun = ’ ,num2str(wSun) , ’ km/ s ’ ] ) ;

for p lc Idx = 1 : s ize ( plcMatrix , 1 )
N = data{plcIdx , 1 } ;
sample = data{plcIdx , 2 } ;
w quants = data{plcIdx , 3 } ;
w d i f f = data{plcIdx , 4 } ;
w d i s t s = data{plcIdx , 5 } ;
sample2 = data{plcIdx , 6 } ;
mag quants = data{plcIdx , 7 } ;
mag d i f f = data{plcIdx , 8 } ;

display ( ’ ’ ) ;
display ( [ ’PLC ’ ,num2str( p l c Idx ) ] ) ;
display ( [ ’ Pre f e r ed sample i s n = ’ ,num2str( sample ) , ’ ( check vs : ’ ,num2str( sample2 ) , ’ ) ’

] ) ;
display ( [ ’ Magnitude c o r r e c t i o n = ’ ,num2str( mag quants ( sample2 , 2 ) ) , ’ , i n t e r v a l : [ ’ ,

num2str( mag quants ( sample2 , 1 ) ) , ’ , ’ ,num2str( mag quants ( sample2 , 3 ) ) , ’ ] , l ength = ’ ,
num2str( mag d i f f ( sample2 ) ) ] ) ;

end
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Velocity distribution plots

Figure E.1: Velocity distributions for 1991-MF.

Figure E.2: Confidence intervals in terms of velocity for 1991-MF.
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Figure E.3: Velocity distributions for 1997-FC.

Figure E.4: Confidence intervals in terms of velocity for 1997-FC.

Figure E.5: Velocity distributions for 1997-FW.
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Figure E.6: Confidence intervals in terms of velocity for 1997-FW.

Figure E.7: Velocity distributions for 1998-Lu.

Figure E.8: Confidence intervals in terms of velocity for 1998-Lu.
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Figure E.9: Velocity distributions for 1999-La.

Figure E.10: Confidence intervals in terms of velocity for 1999-La.

Figure E.11: Velocity distributions for 2001-Fr.
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Figure E.12: Confidence intervals in terms of velocity for 2001-Fr.

Figure E.13: Velocity distributions for 2003-Ta.

Figure E.14: Confidence intervals in terms of velocity for 2003-Ta.
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Figure E.15: Velocity distributions for 2007-vL.

Figure E.16: Confidence intervals in terms of velocity for 2007-vL.

Figure E.17: Velocity distributions for 2013-An.
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Figure E.18: Confidence intervals in terms of velocity for 2013-An.

Figure E.19: Velocity distributions for 2013-Ma.

Figure E.20: Confidence intervals in terms of velocity for 2013-Ma.
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