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Abstract 
This work presents an observer design for grid current and capacitor voltage of 
voltage source pulse-width modulation (PWM) converters with LCL filter. 
Theoretical aspects including the mathematical LCL filter system observability, 
observer placement strategy and practical discretization implementation. It gives 
insight to mathematical modelling of the line filters dynamics. By the limitations 
of how the components in the line filter operates, the Kalman filter is adjusted 
accordingly. 
The strategy for designing the Kalman filter is presented. A time-varying KF is 
developed, benchmarked and implemented in simulator. 
Through an explanation of the magnetic field fundamentals, a nonlinear model of 
the inductors is modeled and used. An observer scheduling development has been 
implemented on the nonlinear system. The effect of sampling frequency is studied 
for KF and for the observer as well. At last the results are presented and analyzed. 
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1.  Introduction 
This chapter starts by describing the company background and the company’s 
product, an Active Dynamic Filter (ADF), next, the motivation of the thesis and an 
overview of the problem is presented. Finally, the outline of the thesis is 
presented. 

1.1   Background 

Energy consumption has increased drastically in both industrialized and 
developing countries and it is predicted to continue increasing. Technological 
innovation will play a central role by improving energy efficiency. Comsys AB is 
one of the companies which have a vision to provide the knowledge and 
equipment needed for minimizing energy consumption. Comsys AB has focused 
on finding solutions for improving power quality. The term power quality can be 
described as a set of values of parameters and disturbances that cause deviations 
from pure sinusoidal waveform in an Alternating Current (AC) system [35]. The 
most well-known disturbances are harmonics connected in the sinus waveform for 
AC power, frequency variations, voltage unbalances and transients. These 
disturbances may cause significant loss of performance and life time of equipment 
etc. 

Comsys AB has developed a product that can overcome these kinds of 
problems and thereby improve energy efficiency. The product is an active filter 
called Active Dynamic Filter (ADF). An active filter can compensate almost any 
power quality issues. There are several different ADF models. These models differ 
from each other depending on their compensation current capacity. 
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Fig. 1.1 Block diagram of an ADF 

 
The main components of ADF are: 

 Power converter:  the converter that is used in ADFs consist of a DC-
link to store energy, an Insulated-Gate Bipolar Transistor (IGBT) and a  
Back Charging (BC) board 

 

 Line filter (LCL): LCL filters have several tasks to do such as: decouple 
energy between grid-connected voltage source converters, attenuate 
current ripple, filter differential mode and common mode inverter 
switching noise[2], make it possible to create arbitrary current needed to 
counteract the measured disturbances, etc. [35] 

 
 Computer control:  Sniff Computer Control (SCC2) is an advanced 

stand-alone real time control system for distributed three phase power 
converter control in ADF compensation applications.  

 
SCC2 consist mainly of: 

1. An A/D converter that reads the voltage value and converts it to the 
digital value which is fetched by the Field Programmable Gate Array 
(FPGA)  
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2. FPGA supports the DSP by controlling/sampling A/D conversion and 
generating Pulse Width Modulation (PWM) pulses. FPGA is running at 
60MHz. 

3.  Digital Signal Processor (DSP) is running the high-level code, i.e. 
control loop and communications and it is the master of the system. It is 
a fixed point 32bit processor running at 600MHz, named Blackfin as 
well. 

   

 
Fig. 1.2 A simplified block structure of the SCC2 

 

1.2   Project Motivation 

Many systems in nature are nonlinear [41]. Some control methods that have been 
developed for nonlinear plants approximate the nonlinearity as linear. However, 
the linearization methods may fail if the system is highly nonlinear. The 
nonlinearities that are of interest for this thesis are those belonging to the 
components in the LCL filter. The inductance values decrease with increasing 
current through them, since the inductors are non-ideal. It would be more 
beneficial, both from a technical and a usability point of view, to have a design 
where the non-linearity of the components is taken into consideration [35]. A 
system with this new model design would optimize future control algorithms and 
lead to decreased model faults. A system with these properties can also be realized 
by control observer design and modeling. These observers are usually utilized to 
augment or replace sensors in control systems in order to avoid non-feasible 
measurements or to decrease cost. An observer of this kind would have a number 
of benefits such as increased robustness and stability [37]. 
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1.3   Problem Formulation 

After introducing the basic idea and motivation of the work previously, the tasks 
of this work are described in the following. 

The problem formulation for this project is how to investigate and review a 
model for three-phase LCL filter with nonlinear characteristics of the components 
and design an observer that calculate continually the voltage over capacitance ( ௖ܷ) 
and the current trough ܮଶ. 

 

 
Fig. 1.3 Single-phase LCL filter 

 

The primary goals are to: 

 Calculate a model for the three-phase LCL Filter considering with 
the non-ideal components and make a state-space of the model. 

 Use this model and together with the measurement make an 
observer and a KF that calculates ௖ܷ and ݅ଶ 

Since there are good control tools in Matlab/Simulink and the ADF current 
control design has been simulated in Matlab as well, it would be the obvious 
choice for simulating the model and the eventual observer. 

1.4   Outline of the Project 

This report is divided into 8 main chapters which also represent how the thesis 
work was done in chronological order. 
 
Chapter 2 gives a short introduction to different line-filter models. This chapter 
also provides some background on active filters and how they are used to counter 
power quality issues [35] 
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Chapter 3 begins with an overview of the three-phase grid connected voltage 
source converter with LCL filter. Next, a mathematical model for each part of the 
system is described.  

 
Chapter 4 begins with a short introduction about inductances and their 
characteristics, and then a model for a nonlinear inductor is developed. 

 
Chapter 5 shows the simulation model and results for nonlinear inductors. 

 
Chapter 6 begins with a definition of the observer and KF, and then proceeds 
with the mathematical algorithm of a KF in both continuous and discrete time. 
Finally it describes the observer scheduling method that is used to overcome the 
nonlinearity.  

 
Chapter 7 presents the simulation results for the linear line filter and nonlinear 
system with linear observers and the results are analyzed. 
 
Chapter 8 shows a list of references that is used in this work 
 
Two appendices are added to the work, Appendix A is provided the simulations 
block and how they connected. Appendix B is provided the Matlab codes for KF 
and the observer used in this study. 
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2.  Line Filters Topology 
This chapter describes the line-filters topology and includes a short overview 
about different sorts of line filters and their constraints. 

2.1   Line Filter  

In this chapter an introduction to line-filters is described briefly. There are at least 
three types of line filters but two types of line filters are mostly used in an 
application of grid-connected voltage source converters: the traditional L-filter 
and the LCL filter. A lot has been published about line filters and their 
characteristics [1, 5, 38, and 39]. These filters are used to attenuate common mode 
noises and normal mode noises generated in electrical devices including a 
switching power supply source [1]. The frequency of a power switch commonly is 
about 2-15 kHz, so the voltage source converter will cause high frequency 
harmonics around the switching frequency. The traditional way to solve the 
problem is to use an inductor in series with a converter in each phase, the L-filter. 
This solution works well in low-power systems. However, an unstable system 
operation and poor system dynamics will accrue for high-voltage power system 
[38]. In high-voltage power systems the inductance L should be increased to 
obtain sufficient attenuation of the harmonics that injected by the converter. To 
decrease the inductance L without affecting the filter, a LCL filter was suggested 
in 1995 [27]. The LCL filter is a third-order system which is obtained by 
connecting capacitors, one in each phase, in Y or delta connection on the line side 
of the L-filter [38]. Furthermore the inductors, one per phase, are connected to the 
line side of the capacitors. The functions of these inductors are first to stop current 
harmonics from parallel loads from overloading the capacitors of the line filter and 
secondly to tune the resonance frequency of the line filter [5]. The LCL filter is 
even useful when the converter is used to generate reactive power. In this case the 
capacitors will produce reactive power. Furthermore, the impedance at the grid 
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side will suffer less stress and lower ripple current stress across the grid inductor 
[39]. 
     Compared to the L filter the LCL filter is more complex to implement in the 
control computer but it has better attenuation of the harmonics that are caused by 
the converter, especially for higher frequencies than the resonance frequency. The 
other interesting advantage of LCL filters is that they make it possible to lower the 
value of inductors [5]. Small inductance will improve the response time and 
stability but a large inductance leads to better filter effect. The choice of the 
inductance is limited and it is difficult to fulfill all restrictions. 
 

 
Fig. 2.1 The frequency response (magnitude (top) and phase (bottom)) for undamped LCL 

filter (blue curve) and Bode plot for undamped L-filter (green curve). 

 
     As one can see the LCL filter has good performance in current ripple 
attenuation even for small inductances. However there is a drawback. The LCL 
filter brings an undesired resonance effect that generates stability problems. This 
problem has been solved in an ADF by using the damping resistor in series with 
the capacitances in each phase, this method is called “passive damping” in 
literature. There is another better method to damp the resonance peak but this is 
the task for another thesis. 
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3.  Mathematical Model and 
Transfer functions for LCL 
Filters 

This chapter starts with an overview of the three-phase voltage source converter 
connected to the LCL filter. Next, mathematical modeling of the LCL filter and 
the main circuit of three phase voltage source PWM converter with LCL filters are 
presented. The model contains the parasitic resistors.  

3.1   Background 

The three-phase PWM converter with either an inductor as an output filter or more 
complex output has good functions such as “DC link voltage control [8], 
sinusoidal input current, unity power factor control and bidirectional power flow”. 
 

 
Fig. 3.1 Topology of three-phase voltage source connected with LCL filter on the 

right side and it connected to the grid on the left side 
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3.2   Mathematical Model Including Stray 
Resistor  

The choice of component values has a direct effect on grid current	݅ଶ, the 
converter current ݅ଵ the capacitor current ݅௖ and the capacitor voltage	ܷ஼.  Transfer 
functions for the system should be calculated. 

To calculate the transfer functions for the system in Fig. 3.1, a single line 
diagram for the system is drawn as in Fig. 3.2. The components of the filter are 
considered to be ideal. 
 

 
Fig. 3.2 Line diagram for the system  

 
The following equations have been used to investigate the transfer functions for 
the filter. 

 
݅ଵ െ ݅௖ െ ݅௚ ൌ 	0 (3.1)	
 
		 ௜ܷ௡௩ െ ௖ܷ ൌ 	 ݅ଵሺܮݏଵ ൅ ܴଵሻ (3.2)	
  
					 ௖ܷ െ ௚ܷ ൌ 	 ݅௚ሺܮݏଶ ൅ ܴଶሻ (3.3)	
  
															 ௖ܷ ൌ 	݅௖ሺ1/ܥݏ௙ ൅ ܴ௖ሻ  (3.4)	
 

where the following notation is used: 

 U୧୬୴ , inverter voltage 

 U୥, grid voltage 

 Uୡ, voltage drop over filter capacitor 

 iଵ,	inverter current 

 i୥,	grid current 

 iୡ,		current	through the filter capacitor 
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 Lଵ, filter inductance on converter side 

 Lଶ,	 filter inductance on grid side 

 C୤,	filter capacitance 

 Rଵ, parasitic resistance in series with	Lଵ 

 Rଶ,	parasitic resistance in series with Lଶ 

 Rୡ,	parasitic resistance in series with c୤ 
 

The following transfer functions can be calculated from the converter output 
voltage to these respective states. These transfer functions are required to show the 
properties of the system. The properties of the different transfer functions can be 
illustrated by their transient or frequency response [30]. 
 

 
Fig. 3.3 Block diagram for LCL filter with the parasite resistances 

 
The transfer function relating to the voltage at the converter output with the 

current flowing through the ܮଶinductor, ݅ଶ ௜ܷ௡௩, is calculated as Eq. (3.1)  
The converter voltage in the Eq. (3.2) should be written as: 
 

௜ܷ௡௩ ൌ ݅௚ሺܮݏଶ ൅ ܴଶሻ ൅ ሺ݅௖ ൅ ݅ଶሻሺܮݏଵ ൅ ܴଵሻ   (3.5)	
   

௜ܷ௡௩ ൌ ݅௚ሺܮݏଶ ൅ ܴଶ ൅ ଵܮݏ ൅ ܴଵ ൅
ሺ௦௅భାோభሻ൫௦మ஼೑௅మା௦஼೑ோమ൯

௦஼೑ோ೎ାଵ
	ሻ  (3.6)	

   
 
The transfer function for ݅ଵ ௜ܷ௡௩is calculated as 
 

H(s)   =		
௜భሺ௦ሻ

௎೔೙ೡሺ௦ሻ
                                                                                                     (3.7) 

          =	
௦మ஼೑௅మାଵା௦ோమ஼೑ା௦ோ೎஼೑

	௦య஼೑௅భ௅మା௦మ஼೑ሺሺ௅మோ೎ା௅భோభሻା൫௅భሺோ೎ାோమሻ൯ା௦ቀ௅భା௅మା஼೑ሺோ೎ோమାோ೎ோభାோమோభሻቁାோభାோమ
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Fig. 3.4 The Bode plot for iଵ U୧୬୴ when the inductances decrease. (Lଵ ൌ 150	μH and 
Lଶ ൌ 50	μH	 (blue curve)), ( Lଵ ൌ 140μH	and	Lଶ ൌ 45	μH (green curve)) and Lଵ ൌ

130	and	Lଶ ൌ 40 (red curve)) 

The transfer function from ݅ଵ ௜ܷ௡௩ is used for describing the input-output 
behavior of the system dynamics and designing the estimator. As one can see in Fig 3.4 the 
bandwidth of the system is changed by changing the inductances of the inductors. 
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4.  Inductor 
This chapter attempts to define the inductor characteristics and then simulate a 
model of the inductances for the nonlinear inductors. 

4.1   Introduction 

Inductors are manufactured as coils of conducting material such as copper or 
aluminum. The core, if any, may be of laminated iron with various alloy additives 
of iron powder or of ferrite. The physical characteristics of inductors are 
determined with Eq. (4.1) [2]. 
 

ܮ ൌ 	ܰଶμ
஺

௟
                                                                                                   (4.1) 

where  

 L	 is inductance in henry ሾH] 
 N is the number of winding turns  
 µ is permeability in henry/meter [H/m] 
 A is effective magnetic core cross-sectional area in meter [m] 
 l is effective magnetic core length in meter [m] 

4.2   Inductor Characteristics 

Inductors store energy in the form of magnetic fields. Inductance can be defined in 
several ways. The inductance of a device describes the capability of the device to 
store the magnetic energy. The energy definition of the inductance is the most 
fundamental definition of the inductance. But a more popular definition is through 
the magnetic flux Eq. (4.2). 
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ቊ
ܮ ൌ 	

ɸ

௜
ߣ ൌ ɸܰ

                                                                                                     (4.2) 

 
where  

 λ	flux linkage.  

 i is current in Ampère [A]. 

 ɸ	is the magnetic flux in weber [Wb]. 
The magnetic flux is also expressed as  
  

ɸ	 ൌ 	
ேమ௔ஜ

௟
                                   (4.3) 

 
As can be seen the magnetic flux is proportional to the core permeability. The 

magnetic flux will change if the permeability of the core is changing. 
 

where 

 a is cross-sectional area of the magnetic circuit          
                                                           

The Maxwell and Ampère equations are the set of fundamental laws for time-
varying electromagnetic phenomena. 

From Faraday’s law, voltage is linked to the magnetic flux by Eq.  (4.4) 
 

ܸ ൌ 	െ
డɸ

డ௧
                                                                                                   (4.4) 

 
By substituting Eq. (4.2) into Eq. (4.4) we get Eq. (4.5). It means that the 

voltage drop across a device is proportional to the time-derivative of the current.  
 

ܸ ൌ ܮ
ௗ௜

ௗ௧
                                                                                                     (4.5) 

 
In a linear model of an inductor, the permeability is assumed to be constant 

regardless of the magnitude of the flux in the core. This assumption allows the 
inductance to remain constant [25]. This simplification is not possible when 
modeling the nonlinear characteristic, since the core of the inductor will exhibit 
different material properties. 
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4.3   Modeling Nonlinear Inductors 

Definition 
Inductors are generally idealized as obeying the mathematical relations that 
describe the inductors characteristic [2]. In modeling an ideal inductance, the stray 
resistance, due to the resistance of the wires, and parasitic capacitance are omitted. 
However the behavior of the real inductors departs from the ideal, simple 
inductors. The inductors have nonlinear behavior. The inductors with nonlinear 
core (the permeability is not constant) have nonlinear behavior. A core may be 
non-ideal due to its magnetic properties and dimension [26]. The inductance will 
decrease from its nominal value when the core is saturated. The core will be 
saturated if the large current goes through the inductor, in which the flux linkage 
is no longer a linear function of the current.  

Magnetic Field Fundamentals  
The current that flows into the inductor is a nonlinear function of the flux linkage 
(λ) and the flux in turn is a function of voltage appearing across the inductors 
terminals. These relationships between voltage, flux and current are given by Eqs. 
(4.6-9) for both linear and nonlinear inductances [26].  

Linear representation: 
 
ܮ ൌ 	μ௥μ௢ܰܣଶ/݈                                                                                         (4.6)   

ɸ ൌ
௜௅

ே
                                                                                                          (4.7)          

                                         
Nonlinear representation: 

 

											݅	 ൌ
ு೙೚೙೗೔೙௟

ே
                                                                                        (4.8)       

ɸ௡௢௡௟௜௡ ൌ  (4.9)                                                                                     ܣ௡௢௡௟௜௡ܤ
                                                                                                                                           
where   

 ܪ	is magnetic field strength measured in [A/m] 

 ܤ	is the magnetic flux density measured in Tesla ሾܶሿ 
 μ௥ is relative permeability of core measured in  ሾܪ/݉ሿ ൌ .ߨ4 10ି଻ 

 μ௢	is permeability of free space measured in  ሾܪ/݉ሿ 
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i, H, B and ɸ are non-linear values in nonlinear representation. The non-linearity is 
defined as an interval around the saturation point in Figs. 4.2-3. 

Another common way to represent the magnetic permeability (µ) in the 
inductor is by representing the relationship between magnetic flux density (B) and 
magnetic field strength (H). 

In linear representation both	μ௥	ܽ݊݀	μ௢	are constant regardless of the 
magnitude of the flux in the core. The linear representation is described by Eq. 
(4.1) 

 
ܤ ൌ 	μ௥μ௢(4.10)                                                                                               ܪ    

                                                                                          
In Nonlinear representation the flux density is a function of the magnetic 

field strength. At each instance of time the core’s flux density has different values. 
 
   ௡௢௡௟௜௡ሻ                                                                               (4.11)ܪ௡௢௡௟௜௡= μ௢fሺܤ

                                                                       
The behavior of a saturable magnetic core is typically described in terms of 

its magnetic flux density vs. magnetic field intensity. There are several possible 
ways to govern the smooth and effective magnetization B-H curve for inductors 
with ferromagnetic core material. Some of these methods are published in [24].  
One way to create the improved nonlinear B-H curve is by using a Fourier series, 
based on a set of measurement data [24].  The magnetic energy density can be 
calculated by the Fourier series expression and then the result is used to terminate 
the permeability everywhere within the ferromagnetic core. A more thorough 
description of these methods is outside the scope of the project. But there is 
another method to get the smooth B-H curve. One approach is based on a 
determination of analytic expressions of the non-linear inductance. The 
mathematical expression that I used to plot the BH-curve is represented in Eq. 
(4.12) [26] and the result is shown in Figs. 4.2-3. 

 
ܤ ൌ ௦௔௧ܤ tanhሺܽܪሻ                               (4.12) 
 
where 

 ܤ௦௔௧	is core fully saturated  

 a	 is a coefficient 
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The magnetic flux-current characteristics of nonlinear inductors and the 
magnetic field strength-magnetic flux density are plotted in Fig. 4.2 by using the 
Eqs. (4.6-12) for L=150µH as a test inductance.  In these plots the slope of the 
curve are representing the inductance. The inductance will decrease as current 
through the inductors increase. 

 
 

 
Fig. 4.2 The Magnetic Flux-current curve for Lଵ=150µH in nonlinear case (green) and for 

linear case (blue) 

 

Nonlinear Inductance Design 
The behavior of linear and nonlinear circuits can be modeled in time-domain using 
differential equations which usually have the form of differential algebraic 
equations. For modeling the nonlinear inductances the mathematical constitutive 
differential Eqs. (4.13-15) are used. The current through the inductor creates a 
flux, inducing a voltage across the inductor. It means that any change in the 
current will result in the flux changing. The voltage that is induced by changes in 
magnetic flux is described by Faraday’s law of induction in Eqs. (4.4-5). 

 
ௗɸ

ௗ௧
	ൌ ݑ െ ܴ݅                                                                                             (4.13) 

		ɸ ൌ  ሺ݅ሻ݅                                                                                                (4.14)ܮ

ݑ			 ൌ ܴ݅ ൅ ሺ݅ሻܮ
ௗ௜

ௗ௧
	                                                                                    (4.15) 
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where  

 R is stray resistance 

 ܮሺ݅ሻ, inductance that is depended on current 
 

By taking the integral of the Eq. (4.13) (the voltage across the inductance) the 
linkage-flux will be calculated. The simulation model for the nonlinear inductance 
is showed in “simulation tools” chapter 5. 
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5.  Simulation Results 
In this chapter the inductance modeling in Simulink environmental is described 
and the result for the nonlinear behavior of the inductors is shown. 

5.1   Simulation Model for Linear LCL Filter 

The focus is only on the line filter and the nonlinearity character of the filter 
components in this part of thesis. The simulation model is developed in 
MATLAB/Simulink for the purpose of simulating the Line filter in the ADF. This 
model simulates the electrical three-phase grid, Line-filter and the voltage source 
converter (Fig. 5.1). The Simulink model is developed so that both linear and 
nonlinear cases can be studied easily. 

5.2   Modeling the Nonlinear Inductance under 
Matlab/Simulink 

In this thesis the focus is on improving the model for the existing LCL filter in an 
ADF. The work environment has been MATLAB. I used the existing equivalent 
Simulink circuit for both the converter side of the line filter and the grid side for 
an ADF to execute and test the new, improved and nonlinear line-filter model. An 
equivalent circuit of an ADF converter connected to the line-filter is shown in Fig. 
5.1, it has six inductors, two for each phase. The components values for the system 
are shown in Table 5.1. 
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Table 5.1 lists the system parameters in an ADF. 

 

L1 L2

Cf

A

B

C



ig
i1

Ug

Fig. 5.1 Equivalent circuits of converter, line filter and the grid. 

In this thesis the focus is on improving the model for the existing LCL filter 
in an ADF. The work environment has been MATLAB. I used the existing 
equivalent Simulink circuit for both the converter side of the line filter and the 
grid side for an ADF to execute and test the new, improved and nonlinear line-
filter. An equivalent circuit of an ADF converter connected to the line filter is 
shown in Fig. 5.1, it has six inductors, two for each phase. The components values 
for the system are shown in Table 1. 

There isn’t any analytical expression representation for the inductors 
nonlinear characteristics (i.e. shape of the current-flux curve) for the high values 
of the magnetic flux ɸ. Therefore, I read the data points into the Lookup Table 
block in Simulink, with ɸ shown on y-axis and i on the x-axis, [26] and then used 
the linear interpolation between two consecutive points in the iterations on the 
code under Simulink. The value for ɸ is deduced from the datasheet of the 
inductors. In other words, this approach can now solve problems with modeling, 
simulation and optimization of the line filter in the ADF. 
 

Symbol  Quantity Value 

Rଵ Converter side filter resistance 0.01 Ω 

Rଶ Converter side filter resistance 0.01 Ω 

Rୡ Dampening resistance 0.2   Ω 

Lଵ Converter side filter inductance 150 µH 

Lଶ Converter side filter inductance 50 µH 
C Filter capacitance 0.000016.3F 
uୈେ DC-link voltage 400 V 
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Fig. 5.2 Implementation of the nonlinear inductance under Simulink for L=50µH when L is 
linear (linear inductance block on top) and when it is not (saturated inductance block at the 

bottom) 

     The linear and nonlinear simulation circuits are built by using 
MATLAB/Simulink, in order to show the differences in current behaviors. These 
currents will then be used in the estimator design for the LCL filter. By running 
the model that is shown in Fig. 5.3, the linear and nonlinear cases of the 
inductance are plotted at the same time. The Lଵ	and Lଶ blocks in Fig. 5.3 are 
implemented as the Simulink model that is showed in Fig. 5.2. Figure 5.4 shows 
the inductance behavior of both ideal and real inductors in the model. 
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Fig. 5.3 Simulink model of the nonlinear system 
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The result for the outputs of the nonlinear LCL filter is shown in Fig. 5.5. The 
converter connected inductance (Lଵ= 150 μH) will be reduced by 20% and the grid 
connected inductance (Lଶ= 50 μH) will reduce its value by 20% when the 
converter current goes from 0 A to 200 A.   
 

 
(a) 

 
(b) 

Fig. 5.4(a): The currents shape for linear system (b): the currents shape for nonlinear 
system. (For (a) and (b) the following is shown from top to bottom: converter current, grid 

current). 
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     As it is seen in the Fig. 5.4 the nonlinearity is not only changing the shape of 
the currents but also changes the ripple amplitude. That is because there is always 
a ripple current through the output inductors as a result of charging and 
discharging the inductors. This charging and the discharging are caused by the 
transistor switching. As one can see the ripple current becomes higher when the 
inductors are nonlinear. 

The effect of the nonlinearity is visible in the wave form of the current, 
which is highly distorted. 

 

Fig. 5.5 The FFT (fast Fourier Transformer) diagram of the converter current when the 
linear inductors are applied to the system 

 

Fig. 5.6 The FFT diagram of the converter current when the nonlinear inductors are applied 
to the system 
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Analysis of the Influence of Inductor Saturation 
As can be seen in the Fig. 5.4 the difference between the current waveform’s 
results for the models are great. These two curves (Fig. 5.4) are fitted only in the 
linear area. The elimination of the nonlinearity of the components in the LCL filter 
model will lead to failure of the model. In Fig. 5.4 one can compare the currents 
shape and magnitude trough the Lଵ	and the Lଶ	in the LCL filter for both linear 
model inductance and nonlinear model inductance. The inverter output current, the 
grid input current and the capacitance current are shown for both linear inductors 
and the nonlinear ones under the same circumstances.  By comparing the 
converter current that is showed in both Fig 5.4 and Fig. 5.5 one can see how the 
nonlinearity of the inductors affect the shape of the current, i.e.  in Fig 5.4 the 
inductance reduces its value by more than 20%  when the amplitude of the current 
increases. In Figs. 5.5-6 the converter current ripple is plotted in the frequency 
domain.  

Conclusion and Future Works 
The purpose of the first part of my thesis has been to compare the features and the 
capabilities of available inductor models and a possible way to implement 
advanced, correct saturated behavior of the inductors in an ADF. In order to 
overcome limitations due to the limited amount of information about flux 
saturated values estimated values of flux density has been used for both 	
Lଵand Lଶ	in the line filter. 

The outcome of this part of the investigation suggests that the ADF lacks an 
advanced, nonlinear inductance model. The nonlinear inductance has been 
simulated and it showed good potential, but more work has to be done to refine the 
estimation of the magnetic flux and magnetic strength field from available data for 
each inductor in the ADF. Thus, an improved procedure for modeling the 
nonlinear characteristic of the inductors with ferromagnetic material, in this case 
SF16, is needed at present. 
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6.  Observer Algorithm and 
Parameters 

This chapter covers the state-space form of the line filter representation and 
related Kalman filter theory. The scheduled observer theory is presented at the 
end. 

6.1   Theoretical Formulation of the Kalman 
Filter 

The original Kalman filter (KF) presented by R. E. Kalman in 1960 was designed 
for linear models. The KF is one of the most well-known and optimal linear 
estimators based on an iterative process (least-squares error) which means the new 
measurements can be processed as they arrived [41].  The KF produces an optimal 
estimate of the state in the sense that the mean value of the sum (any linear 
combination) of the estimation error gets a minimal value [14]. Another benefit of 
the KF is that it is recursive in discrete time, which allows reprocessing without 
storage of previous data. It recursively evaluates an optimal estimate of the state 
variable. At each iteration a new estimate of the state will be evaluated. This 
estimated state is based on the previous state estimate, which allows efficient real-
time calculation [13]. The new information is now available to the filter and can 
be used. In our case, the state parameters are the voltage over the line filter 
capacitance and the current through the net. The KF is not optimal to use for non-
linear systems and non-Gaussian filters [11]. One early attempt to adapt KF to 
nonlinear problems was done by using the Extended Kalman Filter (EKF). EKF 
uses the original KF, [10] [12] [14], EKF simply linearizes the non-linear model 
so that the KF can be applied to it. 

There are two well-known drawbacks of using the EKF: 
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1. The derivation of the Jacobian matrices [42] is nontrivial and lead to 
implementation difficulties 

2. Calculation of Jacobian matrices can be very difficult [15]; making the 
implementation of EKF hard to achieve. 

 

 
Fig. 6.1 Shows the inputs and the output of an observer 

 
EKFs may not perform well enough in cases of large scale nonlinear 

problems or highly nonlinear dynamics [10] but EKFs are widely used in 
applications.  

 

6.2   General Information 

State-space Form 
A state-space representation is a mathematical model of a, dynamic system as a set 
of inputs, outputs and state variables related by a set of first-order differential 
equations. 

Most signal input and output relations can be described by a differential 
equation, and the state-space representation may provide a compact and 
convenient way to model and analyze the system.  

State Vector 
The state vector contains the variables which should be predicted. Often variables 
in the state vector cannot be measured directly or it is not economical to do so, 
these variables must be inferred from the measured variables. 

If the full state vector is not available to measurement it can be reconstructed 
from available measurement signals and an input signal from a model. This can be 
done in several ways. 
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Reconstruction through direct calculations: this method is the most straight 
forward approach to reconstruct the states by using the input and output signals. 
This method has the drawback that it may be sensitive to disturbances [4]. The 
method takes information from k different sampling instants. This method is not 
used in this thesis but it is described deeply in [4].  

Observer-based reconstruction: this method uses the model information 
explicitly. This is a better alternative. The method gives the state as a function of 
past inputs and outputs. The reconstruction can be improved by using the 
measured outputs. This can be done by introducing a feedback from the difference 
between the measured and estimated outputs, ݕ െ  .ොݔܥ

The reconstructed signals in this work are obtained by using the second 
method, Observer-based reconstruction. 

6.3   Kalman Observer Design for LCL Filter 

In Chapter 3 the mathematical model of the system and its transfer functions are 
briefly described. The differential equations of the system are derived in Eqs. (3.1-
4). The state-space form of the system is derived by using these equations and by 
knowing the state variables and the measured signals for the system. 

Continuous-Time State-Space System 
Analytical system modeling can be performed in the discrete or continues time 
plane. In this work first continuous time modeling will be described and then, 
discrete modeling will be used.  
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ݕ ൌ 	 ሺ1	0		0	ሻᇣᇧᇤᇧᇥ
஼

ቌ
iଵ
Uୡ
i୥
ቍ    (6.2) 

 
An explicit continuous-time state-space technique is used and it given by 

Eqs. (6.1-2). In this case the output of the LCL filter is the measured variable, the 
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filter current (iଵ), which is the same as the inverter current and A, ܤଵ, ,ଶܤ  	ܥ	݀݊ܽ
are the continuous time state-space matrices that express the system dynamics. 
Where the state variables are converter current,		iଵ, the capacitor voltage,	uୡ , and 
the grid current, i୥. The measured inputs to the system are	u௜௡௩, the voltage 

applied by converter and grid voltage, ,௚. The output is the converter currentݑ iଵ.  

The deterministic part of the model is described in the A matrix and describes how 
the estimate propagate with the time. Rewriting Eqs. (6.1-2) in compact form, one 
has 
 

൜
ሶݔ ሺݐሻ ൌ ሻݐሺݔܣ ൅ ଵܤ ௜ܷ௡௩ሺݐሻ ൅	ܤଶ ௚ܷ	ሺݐሻ ൅ ሻ݊݋݅ݐܽݑݍ݁	݁ݐܽݐݏሺ						ሻݐଵሺݒ
ሻݐሺݕ ൌ ሻݐሺݔܥ ൅ 	ሻ݊݋݅ݐܽݑݍ݁	ݐ݊݁݉݁ݎݑݏሺ݉݁ܽ																																				ሻݐଶሺݒ

		(6.3)  

 
where 

 ݒଵis an additive process noise term with covariance ܳ 

 ݒଶ	is an additive measurement noise with covariance ܴ which is 
uncorrelated with ݒଵ 

        
The use of a state estimator lets us obtain the complete state vector from the 

measurement of the converter voltage and current and grid voltage. Here we need 
the dynamic of the estimator. An observer is an open loop model of the system 
which includes a correcting term based on the measured output [28].  

 
 

൜ݔො
ሶ ሺݐሻ ൌ ሻݐොሺݔܣ ൅ ሻݐሺݑܤ ൅ ݕሺܭ െ ොሻݕ
ሻݐሺݕ ൌ 																																								ሻݐොሺݔܥ

                         (6.4)  

 
The continuous-model (6.3) is given and the problem is to estimate the states 

from observation of y and u.  The quality of the estimate ݔොሺݐሻ can be assessed by 
the quantity	ݕሺݐሻ െ  ሻ and there is no measurementݐሻ is equal to xሺݐොሺݔ ሻ. Ifݐොሺݔܥ
noise, the quantity would be zero. By feeding back this measurement of the 
quality of ݔොሺݐሻ to the simulation we obtain the observer (6.5). 

 

ොሶݔ      ൌ ොݔܣ ൅ ଵܤ ௜ܷ௡௩ ൅ ଶܤ ௚ܷ ൅ ݕሺܭ െ  ොሻ                             (6.5)ݕ

   (6.6)	ොݔܥ = ොݕ     
 
where 
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 ݔො	is an observer state vector and the diacritic ሺ^ሻ denotes that it is an 
estimated quantity 

 ݕො	is the observer output signals  

 K is the KF gain 
 
Since the goal here is that ݔොሺݐሻ should be close to the true state xሺݐሻ, the 

estimate error is defined as: 
 

ሻݐ෤ሺݔ ൌ ሻݐሺݔ െ  ሻ                       (6.7)ݐොሺݔ
   

By substituting the Eqs. (6.3) and (6.5) we will get: 
 

෤ሶݔ ሺݐሻ ൌ ሺܣ െ ෤ݔሻܥܭ ൅ ଵݒ െ                                                (6.8)		ଶݒܭ
 

From the above equation, it is seen that the Kalman gain, K, affects the 
estimation error both on the determining the matrix ሺܣ െ  ሻ and measurementܥܭ
error, Kݒଶ. The KF’s features would be decided by eigenvalues of the matrices 
ሺܣ െ  and therefore the choice of vector K is a balance between sensitivity to	ሻܥܭ
the measurement disturbances and adaptability to the influence of the system 
disturbances [30]. This determines how fast we need to reconstruct the states 
(eigenvaluesሺܣ െ  and how sensitive we can be to the measurement	ሻሻܥܭ
disturbances (Kݒଶሻ [30]. A fast observer will converge quickly, but it will also be 
sensitive to measurement error	ݒଶ. 

There are various different ways to determine the matrix K. To determine K 
we introduce the reconstruction error (6.7). The matrix K should be selected so 
that the state estimation error goes to zero asymptotically. By introducing a 
feedback from the measurements in the reconstruction, it is thus possible to make 
the error go to zero. In other words the K matrix should be chosen so that the 
matrix ሺܣ െ  ሻ has prescribed eigenvalues. However, this problem is solved in	ܥܭ
connection with the pole-placement problem. In this work the poles for the 
observer are placed 3 times faster than for the dynamic system and the Matlab 
commands eig(A), acker and kalman are used in order to place the observers poles 
in the desired place. As I mentioned before the selection of the observer poles is a 
trade-off between sensitivity to measurement errors and rapid recovery of initial 
error [4]. A fast observer will converge quickly, but it will also be sensitive to 
measurement errors.   
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Another way to determine the optimal filter gain K with considering both the 
process disturbances and the measurement noises is by solving an algebraic 
Riccati equation [30]. See Eqs. (6.9-11)  
 

ܭ ൌ ଶ்ܴܥܲ
ିଵ                       (6.9) 

 
where  

 ܴଶ is the noise covariance matrix 

 P is the symmetric positive semi definite matrix 
 
P is also equal to the prediction error covariance matrix of the optimal 

estimation error, the solution to the Algebraic Riccati equation. The goal is to find 
the minimum of this matrix. This occurs by Eq. (6.12). 
 

lim
௧→	ஶ	

ܲ ൌ lim
௧→	ஶ	

ሻݐሺݔሼሾܧ െ ሻݐሺݔሻሿሾݐ෤ሺݔ െ                                   (6.10)		ሻሿ்ሽݐሺݔ

ܲܣ ൅ ்ܣܲ െ ሺ்ܲܥ ൅ ܴܰଵଶሻܴଶ
ିଵሺ்ܲܥ ൅ ܴܰଶሻ் ൅ ܴܰଵ்ܰ ൌ ሶܲ               (6.11)  

 
If the linear model is time invariant then a steady-state version of the system 

can be found. This is done by setting  ሶܲ  in Eq. (6.11) to zero. In this case the state, 
input, output, Kalman gain and covariance matrices become time invariant.  

The state error covariance matrix is a square and symmetric matrix (6.10), 
and must remain positive definite in order for filter stability to be retained [31]. 
Diagonal elements of this matrix are variances of errors of the estimations for 
corresponding components of the state vector. 

The solution of the Riccati equation was found to provide a measure of how 
well the state variables can be estimated in terms of mean-square estimation error. 
These nonlinear matrix Riccati equations are particularly significant in optimal 
control, filtering and estimation problems. Riccati equations play significant roles 
in optimal control of multivariable estimation. 

The covariance matrices, Q and R are determined as part of a system 
identification procedure [36]. For an initial guess of the covariance value, a very 
large value could be selected if very poor sensors are used for the measurements. 
This makes the filter very conservative. The opposite will happen if very good 
sensors are used for measurement [31]. 

The optimal gain matrices K in Matlab is given by state-space model, SYS, of 
the plant and covariance matrices Q and R (see below). 

[Observer, k] = Kalman (SYS, Q, R)                                   (Matlab command) 
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The Q and R parameters are design parameters with the origin in process 
noise and the measurement disturbance in (6.1).  

The matrices Q and R can be calculated from measurement data by means of 
system identification [36]. 

Discrete Time 
Micro-controller measurements are described with discrete equations and since the 
KF will be implemented on a micro controller the discrete KF form will be used. 
Time is given in discrete interval and denoted with subscript k. 

The treatment of measurements is completely identical with the continuous 
time in the discrete time case. The observer formulation in the discrete time 
domain has the advantages of the straight forward modeling when additional time 
delays are considered. By taking the characteristic zero-order hold behavior of the 
analog-to-digital signal conversion into account, the equivalent state space model 
in the discrete time domain is derived using the transformation laws presented in 
[29] (6.12-13).  

 
ௗܣ ൌ ݁஺ ೞ்                       (6.12) 

ௗܤ ൌ ׬ ݁஺௧ೞ்
଴  (6.13)                     ݐ݀ܤ

 
 where 

 ܣௗ is the discretized matrices of A  

 ܤௗ is the discretized matrices of the B with sampling time Ts 
 
The resulting state-space model for the LCL filter is presented by using the 

Matlab command c2d with 14 kHz sampling frequency. 
The measurement is unchanged but discrete. 
 

   
ୢ

ୢ୲
ቌ
iଵሺ݇ ൅ 1ሻ
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൱ ൬ ௜ܷ௡௩ሺ݇ሻ
௚ܷሺ݇ሻ

൰	  (6.14) 

                      
The observer by stationary KF is determined according to state Eq. (6.14). 
 

൜
ොሺ݇ݔ ൅ 1ሻ ൌ ොሺ݇ሻݔௗܣ ൅ ሺ݇ሻݑௗܤ ൅ ሺ݇ሻݕሺܭ െ ොሺ݇ሻሻݕ
ሺ݇ሻݕ ൌ 																																																														ොሺ݇ሻݔௗܥ

                    (6.15) 
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A discrete- time representation of (6.4), with sampling period ௦ܶis given by 
(6.16) 

 
ොሺ݇ݔ  ൅ 1ሻ ൌ ሺܣ െ ොሺ݇ሻݔሻܥܭ ൅ ଵܤ ௜ܷ௡௩ሺ݇ሻ ൅ ଶܤ ௚ܷሺ݇ሻ ൅  (6.16)		        ሺ݇ሻሻݕሺܭ

 
State estimation error for the model in discrete time (6.18). Let the error be 

the difference between the state and the state estimate. 
 
݁ሺ݇ሻ ൌ ሺ݇ሻݔ െ  ොሺ݇ሻ                                                                                 (6.17)ݔ
 
Furthermore, the mean value of the state estimation error covariance matrix 

which will be called ௞ܲ is defined as (6.18). 
 
				 ௞ܲ ൌ  ሼሾ݁ሺ݇ሻ݁ሺ݇ሻ∗ሿሽ                                                                           (6.18)ܧ

௞ܲାଵ ൌ 	ܳሺ݇ሻ ൅ ሾܣሺ݇ሻ െ  ሺ݇ሻ                                        (6.19)்ܣௗሺ݇ሻሿܲሺ݇ሻܥܭ
    
Based on the a priori estimate and its error covariance, P, the KF gain is 

computed as Eq. (6.20) [40]. 
 

ሺ݇ሻܭ ൌ 	ܲሺ݇ሻ்ܥሺ݇ሻሾሺܥሺ݇ሻܲሺ݇ሻ்ܥ ൅ ܴሿିଵ                                            (6.20) 
 
The gain matrix is computed, followed by prediction of the state vector at the 

next time step. As in the case of continuous time if the state representation of the 
system is linear time invariant, the steady state version of the filter can be used. 

 
The design problem concerns how to choose K so that all eigenvalues of 

AെKC are within the stability domain (implementation of equations are shown in 
appendix B) 

6.4   Observer Scheduling  

The state and parameters estimation problem for nonlinear systems and the 
classical solution, Extended Kalman Filter (EKF), for such problems have been 
widely discussed in the literature [17]. In order to overcome some EKF 
drawbacks, different improvements of this algorithm have been proposed. 

The solution proposed in this thesis is called Observer Scheduling. Inspired 
by the popular theory of gain scheduling, the idea, depicted in Fig. 6.2 using three 
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observers. Observer scheduling is switching or blending the dynamics matrix (A) 
values, observers or models depending on the operating conditions. Observer 
scheduling may either involve continues or discrete scheduling of the observers 
with the respective dynamic model. Conceptually, observer scheduling is based on 
a linear, time-invariant, parameter dependent plant [5]. Three different observers 
are parallel connected in this work and each filter has its own state vector. In 
particular each KF has been chosen so that the complete nonlinear estimation 
problem is divided into three linear time-verging parallel sub-problems. This 
solution is a simple approach to overcome the complexity of the EKF. A scheme 
of the observer scheduling idea is showed in Fig. 6.2. 

 

 
Fig. 6.2 Observer scheduling scheme 

6.5   Scheduling Approaches 

This thesis evaluated two gain scheduling approaches: 

Kalman Filter Scheduling 
In this case, three linear parallel KFs are used to create an observer bank, in which 
each observer is tuned to have a specific operating point. Then a switch block is 
used to provide the selection of the observer at each sample as a source of the 
estimated state values. This switching method is based on the measured values of 
the signal, in this case the converter current. This measured signal must have a 
strong correlation with the internal states. The scheduling method is simple and 
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has no stability problems because each KF in the observer bank is linear and 
constitutes a linear feedback filter, which has no nonlinear terms and model 
uncertainty, and is therefore stable by construction. 

Observer Scheduling 
Linearization based on scheduling yields a set of locally valid, linear parameter-
dependent plant models. 
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7.  MATLAB/Simulink Result 
The objective of this chapter is to present and discuss the results of the simulations 
of the equations described in Chapter 6 of the line-filter model for an active 
dynamic filter and the KF. The result is showed for an observer and a KF. Two 
different sampling frequencies have been run and plotted for each case. 

7.1   Experimental setup 

To check if the KF has sufficient performance during time-varying operation, the 
algorithm has been implemented using the KF theory (explained in the previous 
chapter) using Simulink tools and Matlab-functions (presented in Appendix A). 

The KF function reconstructed the capacitance voltage and the grid current 
signals and returns them into the ADF controller. For all of the result the sampling 
rate of 14 kHz has been used. The construction has also been tested with higher 
sampling rate. 

The block diagram of the simulated system is shown in Fig. 7.1. The system 
was built using the Power System Toolbox in Simulink. Fig. 7.2 shows the KF 
block diagram that was implemented for the controller. 

The Simulink model for the observer schedule is shown in Fig. 7.3 and the 
Matlab embedded function for the KF is attached in appendix B. 



42 
 

 
 

Fig. 7.1 Simulink model of grid connected inverter 
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Fig. 7.2 Simulink model of the KF with the inputs signal and the outputs signals 
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Fig. 7.3 Observer schedules for nonlinear plant 
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7.2   Simulation for Linear System Dynamics 

Linear System Dynamics 
An alternative to the KF is an observer, it has the same structure as the KF but it is 
estimating the signals from specific estimator errors. The algorithm of the 
observer for the linear LCL filter has been tested in absence of measurement 
disturbances and process noise using Matlab and the SimPowerSystems Toolbox. 

The basic simulation setup consists of a voltage source converter (VSC) of 
400 kVa connected to an ideal grid generator by means of an LCL filter similar to 
the one used in the experimental test. 

The measured and the estimated waveform for the states that is described in 
the previous chapter is simulated and shown in Fig.  7.4. A very good grid current 
and capacitance voltage performance is achieved. The poles are placed 10 times 
faster than the system poles and I did it by using Matlab commands that are 
mentioned in chapter 6. A load will be connected to the system at time 0.25s and it 
shows up as a step in all Figures. The discrete system model that I have used in 
this Simulation is: 

 

൜
ොሺ݇ݔ ൅ 1ሻ ൌ ොሺ݇ሻݔܣ ൅ ଵܤ ௜ܷ௡௩ሺ݇ሻ ൅ ଶܤ ௚ܷሺ݇ሻ

ሺ݇ሻݕ ൌ 																																					ොሺ݇ሻݔௗܥ
  

       
     where         
                              

A = ൭
0.7150			 െ0.2797 0.2790
0.8157			 െ0.1272 െ0.8099
0.8679	 0.8639 0.1202

൱ 

 

൭	ଵ =ܤ
			0.4424			
0.2750
0.1627

൱ 

 

ଶ = ൭ܤ
െ0.1627			
0.8522
െ1.0266

൱ 

 
 ሻ	0		0	ௗ =  ሺ1ܥ
    
The observer that I have used is: 
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ቊ
ሶ෠ݔ ൌ ොݔܣ ൅ ௜௡௩ݑଵܤ ൅ ௚ݑଶܤ ൅ ݕሺܭ െ ොሻݕ
ොݕ ൌ 																																																							ොݔܥ	

          

    when K =൭
െ0.0601
1.2169	
0.4016

൱ the observers poles will be placed ten times faster. 
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Fig. 7.4  The two plots on top: capacitance voltage (green) and estimated capacitor voltage 

(pink) in one phase, grid current (green) and estimated grid current (pink) in one phase  

 

 
Fig. 7.5 The estimation error for the capacitance voltage (top) and for the grid current 

(bottom) 
 
In these Figures the observer had a sampling frequency equal to 14 kHz 

while the signals that should be estimated are 100 times faster sampling 
frequency. As one can see the estimator is following the analog signal well but it 
cannot follow the ripples on the signals. In order to follow the signal and even the 
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ripple for the signal, the sampling frequency must be at least twice the ripple 
frequency according to Nyqvist theorem.  

 

Studying the Effect of Sampling Frequency 
The objective of this section is to investigate how sampling frequency affect the 
choice of the poles and accuracy of estimated signals. Different sampling 
frequencies were applied to the observer. The result was compared and showed in 
this section. Two scenarios have been simulated: 

 Scenario 1, lower sampling frequency for the observer than for the 
system 

 Scenario 2, The KF was sampled with high frequency. 

Scenario 1: Observer with Low Sampling Frequency 
In order to test the effect of the sampling frequency on the observer, the observer 
is updated once every 10 samplings. In Fig. 7.6 the result for an observer with 10 
times lower sampling frequency than the measured signal is showed (Code for this 
experiment is showed in Appendix B). This test was applied in a Matlab script not 
in the Simulink environment which means that the system as well as the observer 
is ideal, the sampling frequency was 100 kHz (see Table 7.1). In the Fig. 7.6 the 
observer has been sampled at a lower frequency than the system. In order to study 
the effect of the low sampling frequency an error plot for the signals is done, see 
Fig. 7.7. In order to be able to compare the estimation error for lower sampling 
frequency with that for higher sampling frequency plots for the estimation error 
has been done (see Fig. 7.7-8), the system and the observer have the same 
sampling frequency in Fig. 7.8 and the observer has lower sampling frequency in 
Fig. 7.7. 
 

Symbol  Quantity Value 

Rଵ Converter side filter resistance 0.01  Ω 

Rଶ Converter side filter resistance 0.01  Ω 

Rୡ Dampening resistance 0.01  Ω 

Lଵ Converter side filter inductance 150  µH 

Lଶ Converter side filter inductance 50    µH 

C୤ Filter capacitance 0.00005  F 
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    Table 7.1 the component values that are used in the scenario 
 
 
The system dynamics that is implemented in this scenario is showed below: 
 

A =	൭
െ0.0133		 െ0.6667	 0.0067
2.0000			 0 െ2.0000
0.0200 2.0000 െ0.0400

൱1.0e+04,  

 

൭	ଵ =ܤ
0.6667
0
0

൱,  

 

൭	ଶ =ܤ
			0			
0
െ2

൱,   

 
  	,ሻ	0		0	ௗ =  ሺ1ܥ
 

K =	൭
െ0.1456				
0.1544	
1.3574

൱ 

 
       Observer poles are placed on (0.9048 + 0.0000i, -0.3640 - 0.7182i, -0.3640 + 
0.7182i) while the system poles are placed on (0.3718, 0, 0).1.0e-43  
  

			U୧୬୴ DC-link voltage 1  V 

fୱ Sampling frequency for observer 10 kHz 

		fୱ୷ୱ Sampling frequency for system  100 kHz 
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Fig. 7.6 The two plots on top are: capacitance voltage (red) and estimated capacitance 

voltage (blue), grid current (red) and estimated grid current (blue) when the estimator were 
sampled 10 times slower than the system were sampled.    

 

 
Fig. 7.7 The estimation error for the capacitance voltage (top) and for the grid current 

(bottom) 
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Fig. 7.8 The estimation error for the capacitance voltage (top) and for the grid current 

(bottom) when the observer has the same sampling frequency as the system 

 
The slow estimator (see Fig. 7.6) has less accuracy than the fast observer. 

The result is benchmarked by comparing Fig. 7.7 with Fig. 7.8. 
Result for this test showed that in order to track the signals with this slow 

observer (scenario 1), the observer poles needed to be placed faster. The poles 
should have been placed far from the origin on the negative side of the coordinate 
system in the continuous time domain in order to correctly reconstruct the signals. 
The observer will be implemented in the FPGA and this micro controller has 
sampling frequency 14 kHz and the signal that should be estimated have sampling 
frequency at least 100 times faster which means that scenario 1 is the actual 
scenario for the ADF.     

Scenario 2, Case 2: The KF Design with High Sampling 
Frequency 
A KF has been designed in Matlab/Simulink for the system with the same 
parameters as the observer (see the previous subsection) in order to compare the 
performance of the KF with the observer. The KF with high sample frequency are 
plotted and shown in Figs. 7.9-12. The Table below shows the specification for the 
components and the frequencies in this scenario. 
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    Table 7.2 the component values that are used in this scenario 

 
For plots in Fig. 7.8 and the discrete system dynamics with sampling 

frequency equal to 14 kHz and the weighting matrices are described as below: 
 

A =	൭
			0.7272					 		െ0.2767	 0.2673
0.8648	 െ0.0498 െ0.8596
0.8018 0.8252 	0.1872

൱, 

 

൭	ଵ =ܤ
		0.4155			
0.2631
0.1388

൱ , 

 

൭	ଶ =ܤ
െ0.1389	
0.7866
െ0.9640

൱ , 

 
 ሻ	0		0	ௗ =  ሺ1ܥ
 
Measurement disturbances: R =  1  
The process disturbance: Q =  diag([1 0 1]) 

Symbol  Quantity Value 

Rଵ Converter side filter resistance 0.01  Ω 

Rଶ Converter side filter resistance 0.01  Ω 

Rୡ Dampening resistance 0.2    Ω 

Lଵ Converter side filter inductance 150 µH 

Lଶ Converter side filter inductance 50  µH 

C୤ Filter capacitance 0.000016.3 F 
			U୧୬୴ DC-link voltage 400 V 

						f୊୔ୋ୅ FPGA sampling frequency 14     kHz 

		fୱ୷ୱ Sampling frequency for system  1400 kHz 

fୌୱ High Sampling frequency for observer 140     kHz 

fୱ Sampling frequency for observer 14     kHz 



 

53 
 

Fig. 7.9  Two plots on top are: capacitance voltage (pink) and estimated capacitance voltage 

(green), grid current (pink) and estimated grid current (green) for the KF for with 
sampling frequency =14 kHz 

 

Fig. 7.10 The estimation error for the capacitance voltage (top) and for the grid current 
(bottom) 

 
An analysis of the estimation error has been done and it is showed in Table 7.3 
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Table 7.3 the quantitative analysis of the KF with sampling frequency equal to 140 kHz 

Signals  Mean value of the 
Absolut values of 
the signals 

Standard deviation Maximum error 

			Uୡ [V] 8.0606 6.5281 64.0722 

			i୥  [A] 6.9604 5.4948 45.5386 

 
For plots in Fig. 7.11 and the discrete system dynamics with sampling 

frequency equal to 140 kHz and the weighting matrices are described as below: 
  

A =	൭
	0.995	 െ0.0460	 	0.0043
	0.143	 	0.9867 െ0.1437
0.0128 		0.1379 0.9859

൱, 

 

൭	ଵ =ܤ
	0.0462	
0.0033
0.0002

൱, 

 

൭	ଶ =ܤ 
െ0.0002	
0.010

െ0.1381
൱, 

 
 ሻ	0		0	ௗ =  ሺ1ܥ
 
Measurement disturbances: R =  1  
The process disturbance:     Q =  diag([1 0 1])  
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Fig. 7.11 Two plots on top are: capacitance voltage (pink) and estimated capacitance 

voltage (green), grid current (pink) and estimated grid current (green) for the KF for with 
sampling frequency =140 kHz 

 

Fig. 7.12 The estimation error for the capacitance voltage (top) and for the grid current 
(bottom) 
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Table 7.4 The quantitative analysis of the KF with sampling frequency equal 

to 140 kHz 
Signals  Mean value of the 

Absolut values of 
the signals 

Standard deviation Maximum error 

			Uୡ [V] 7.9393 6.1763518 59.9393 

			i୥  [A] 5.3901 4.335787 47.7983 

 
      By comparing the Table. 7.3 and 7.4, one can see that the KF with higher 
sampling frequency gives a more accurate estimation of both signals  

 

7.3 Simulation for Nonlinear System Dynamics 

In this section the inductors in the line filter have been replaced by the designed 
nonlinear inductors in Matlab/Simulink in order to study the behavior of the 
system with this nonlinearity and then design a scheduled observer and the 
scheduled KF to estimate the desired signals. The effect of sampling frequency is 
studied in each design. 

The nonlinear system in this case is described as: 
 

ୢ
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Observers/KF Scheduling 
The observer Scheduling theory has been described in the previous chapter.  

In this section two different scheduling methods have been investigated and the 
results are shown and compared. Since the high sampling frequency has been 
investigated in the previous sub-section and it gave a better result. Below the 
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scenarios have been simulated with high sampling frequency (fs = 140 kHz). The 
scheduling has been done by using the measurement signal (݅ଵ).  
 

 Scenario 1, three parallel observers for a nonlinear system are designed 
using the pole placement method 

 Scenario 2, three parallel KF for a nonlinear system are designed solving 
the Riccati equation 

Scenario 1, Estimation of Signals in the Nonlinear 
System by Using the Scheduled Observer 
The signals were estimated by the observer and compared. The system dynamics 
for each observer are shown in Appendix B. The poles for each observer are 
placed as: 

 
       P1 =  (0.7165 + 0.0000i, -0.3113 - 0.0058i, -0.3113 + 0.0058i) 
       P2 = (0.3520 - 0.7768i, 0.3520 + 0.7768i, 0.9582 + 0.0000i) 
       P3 = (0.2705 + 0.4764i, 0.2705 - 0.4764i, 0.8508 + 0.0000i) 
 

 
Fig. 7.13 The plot on top shows both the estimated ݑ௖ (pink) and the measured ݑ௖ (green) 
in the nonlinear system. The plot below shows the estimated ݅௚(pink) and the measured  ݅௚ 

(green) in the nonlinear system 
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Fig 7.14 The scheduled observer estimation error for the capacitance voltage (top) and for 

the grid current (bottom) 
 

Table 7.5 The quantitative analysis of the Scheduled observer error with 
sampling frequency equal to 140 kHz 

Signals  Mean value of the 
Absolut values of 
the signals 

Standard deviation Maximum error 

			Uୡ [V] 17.2768 14.8262 124.3164 

			i୥  [A] 61.5416 40.8865 229.6074 

 
Result: as one can see the ground tone is closely followed by the estimator. 

The estimator can’t follow the high frequent ripple exactly. The estimation error 
for ripple current and voltage is quite high because the nonlinearity of the 
inductors affects the switching ripple directly by not damping them.  
 

Scenario 2, Estimation of signals in the Nonlinear 
System by Using the Scheduled KF  
The objective of this simulation is to show the performance of scheduled KF for 
two different weighting matrices. Figures 7.15-16 show the result for the 
scheduled KF with Q = diag ([1 1 1]) and R = 1.  
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Fig.7.15 The plot on top shows both the estimated ݑ௖ (pink) and the measured ݑ௖ (green) in 

the nonlinear system. The plot on bottom shows the estimated ݅௚ and the measured  ݅௚ in 

the nonlinear system 

 

 
Fig. 7.16 The scheduled KF estimation error for the capacitance voltage (top) and for the 

grid current (bottom) 
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Table 7.6 The quantitative analysis of the Scheduled KF error with sampling 
frequency equal to 140 kHz 

Signals  Mean value of the 
Absolut values of 
the signals 

Standard deviation Maximum error 

			Uୡ [V] 24.2478 21.6220 200.5603 

			i୥  [A] 18.9009 18.8269 155.1762 
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     Figures 7.17-18 show the result for the scheduled KF with Q = diag ([1 1 2]) 
and R = 10 
 

 
Fig. 7.17 The plot on top shows both the estimated ݑ௖ (pink) and the measured ݑ௖ (green) 

in the nonlinear system. The plot on bottom shows the estimated ݅௚ and the measured  ݅௚ in 

the nonlinear system 

 
Fig. 7.18 The estimation error for the capacitance voltage (top) and for the grid current 

(bottom) 
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Table 7.7 The quantitative analysis of the Scheduled KF error with sampling 
frequency equal to 140 kHz 

Signals  Mean value of the 
Absolut values of 
the signals 

Standard deviation Maximum error 

			Uୡ [V] 23.6893 22.2021 124.315 

			i୥  [A] 20.2223 19.8116 153.3619 

 

 
      By introducing some model error (is described in subsection under title” Case 
2, Estimation of Signals in the Nonlinear System by Using the Scheduled Kalman 
Filter”) we see that the KFs produce usable estimates. The ݑ௖ signal will be used 
in the controller in an ADF and a better estimation of the ݑ௖ is obtained by 
scheduled KF with Q = diag ([1 1 2]) and R = 10. The benefit of using KF is 
increased robustness of feedback control at sensor failure. 

Discussion, Future works and Recommendations 
By comparing the plots that are shown in this chapter, I can show that a better 
estimation of signals will be obtained by having higher sampling frequency. A 
better performance is obtained when the KF with high sampling frequency is 
applied on the system. Another main conclusion is that estimating continuous-time 
system by using sampled observers requires more care about how to choose 
sampling method.  The ripple current and voltage on the signals have very high 
frequency and high amplitude. The ripple amplitude in the nonlinear system 
became somehow more than twice the ripple amplitude in the linear system (see 
Fig. 5.4). The result of this observer scheduling method that I used in this thesis to 
overcome the nonlinearity are presented in the previous subsection. They indicate 
that the design method is not well suited for these high frequent ripples. However, 
it is up to Comsys AB to decide how to use the result. Additional studies are 
needed, before Comsys AB use the result in ADFs control loop. 

There are many publications that describe line filter performances from 
different aspects (i.e. [5]), but there is almost no literature that describe the effect 
of nonlinear inductors in the line filter. The focus in this thesis was mainly on the 
nonlinearities due to the non-ideal inductors in the line filter. The simulated model 
of the LCL filter was connected to the simulated converter with high switch. The 
switching frequency has an influence on the current harmonics distortions and the 
losses in the line filter inductors, especially on the ܮଵ [5, 43]. The resonance 
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frequency of the system (see Bode diagrams in the chapter 2 and 3) will change 
since the inductances for ܮଵ	and ܮଶ are changed. Different resonance frequencies 
will give different bandwidths for the system. The change of the bandwidth will 
lead to a poor dynamic performance of the control system [43].  As it is shown in 
Fig. 3.5 the decrease of the inductance value will lead to the improving of the 
bandwidth and thereafter a better system dynamics but the attenuation of the 
current ripple will decline. Figures 5.6-7 show how the current ripple will be at 
least twice as high when the inductances decrease only by 20%.  There must be 
other publications that study these nonlinearities but in this work they were not 
considered, consequently, the designed observer for the nonlinear LCL filter does 
not estimate these nonlinearities. Advanced system identification is required in 
order to configure the behavior of the system when it is connected to the other part 
of the ADF system as well as to be able to study the disturbances and the noise in 
the line filter. An extended Kalman filter (EKF) may give batter result but in order 
to implement the EKF Comsys need to study the mathematical relationship 
between the inductance and the current for the inductors. A scheduled observer 
has been applied and the result has been presented in this work.  Depending on 
what is required of the estimator (to estimate the ground tone or estimate the ripple 
currents and voltage) this solution can work well. 

Validity 
I haven’t been able to find research publications concerned with line filters that 
take non-linearity of inductors into account. Therefore it isn’t possible to validate 
and support the results by comparison with results from similar projects. Since 
running the line filter model was totally depended on the others parts of the 
Simulink model for ADF and since studying the other parts of the ADF was 
outside of the thesis scope, the result might be affected by some other parameters. 
For example there were some “sample and hold” blocks in the control part of the 
Simulink model and the observers are placed in the same block as the controller 
model which means that the observers will be affected by delay that is caused by 
the “sample and hold” blocks.  
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Appendix A 
The information of the filter capacitor voltages and grid currents are needed in the 
purpose of the reducing the number of the sensor. 
An illustration of how the KF was implemented in Simulink is shown in Fig.  (6.2) 
 

 
Fig. 8.1 Implementation of the continues-time KF in Simulink 

Appendix B 

Matlab code for embedded Scheduled KF  
 
function xhatout = kalmanfilter(i_con,u_g,u_inv) 
 
persistent xhat Ad  Bd Cd  p1 Kg Ad1 Ad2  Bd1 Bd2 Kg1 
Kg2 p p2 p3  Q R   
 
if isempty(p) 
 
   xhat = zeros(3,1); 
Ad= [-(R_C1+R_L1)/L1 -1/L1 R_C1/L1; 1/C1 0 -
1/C1;R_C1/L2 1/L2 -(R_C1+R_L2)/L2]; 
 
Ad1= [-(R_C1+R_L1)/L1K1 -1/L1K1 R_C1/L1K1; 1/C1 0 -
1/C1;R_C1/L2K1 1/L2K1 -(R_C1+R_L2)/L2K1]; 
 
Ad2= [-(R_C1+R_L1)/L1K2 -1/L1K2 R_C1/L1K2; 1/C1 0 -
1/C1;R_C1/L2K2 1/L2K2 -(R_C1+R_L2)/L2K2]; 
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B1= [1/L1;0;0]; 
B2= [0 ;0; -1/L2]; 
Bd= [B1 B2]; 
Bd1=[1/L1K1 0; 0 0 ;0 -1/L2K1]; 
Bd2=[1/L1K2 0; 0 0 ;0 -1/L2K2]; 
   
Cd = [1 0 0]; 
p1 = zeros(3); 
p3 = zeros(3);  
p2 = zeros(3); 
Q = 1*eye(3); 
R = 10; 
    
end 
p=1; 
 
if abs(i_con)>=0  &&  abs(i_con) <= 50      
  
    xhat = Ad*xhat+ Bd(:,1)*u_inv + Bd(:,2)*u_g;  
    p1 = Ad*p1*Ad'+ Q; 
    Kg = p1*Cd'/ (Cd*p1*Cd'+R); 
    resid = i_con - Cd*xhat; 
    xhat = xhat + Kg*resid;     
    p1 = (eye (size(Kg,1))- Kg*Cd)*p1; 
 
elseif abs(i_con)>50  &&  abs(i_con) < 150 
     
    xhat = Ad1*xhat+ Bd1(:,1)*u_inv + Bd1(:,2)*u_g;  
    p2 = Ad1*p1*Ad1'+Q; 
    Kg1 = p2*Cd'/ (Cd*p1*Cd'+R); 
    resid = i_con - Cd*xhat; 
    xhat = xhat + Kg1*resid;             
    p2 = (eye (size (Kg1,1))- Kg1*Cd)*p2;  
 
else abs(i_con)>= 150  &&  abs(i_con) < 190 
     
    xhat = Ad2*xhat+ Bd2(:,1)*u_inv + Bd2(:,2)*u_g;  
    p3 = Ad2*p3*Ad2'+Q; 
    Kg2 = p3*Cd'/ (Cd*p3*Cd'+R); 
    resid = i_con - Cd*xhat; 
    xhat = xhat + Kg2*resid;             
    p3 = (eye (size (Kg2, 1)) - Kg2*Cd)*p3;   
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end 
xhatout = xhat; 

 Matlab Code for the Observer 
A = [-(R_C1+R_L1)/L1 -1/L1 R_C1/L1; 1/C1 0 -
1/C1;R_C1/L2 1/L2 -(R_C1+R_L2)/L2]; 
B1= [1/L1;0;0 ]; 
B2= [0 ;0; -1/L2]; 
B = [B1 B2 ]; 
C = [1 0 0]; 
D = 0; 
fs=2*7200; 
ts=1/fs; 
t_sim=ts/100; 
Ts_FPGA_Speed = t_sim; 
 
%sysem description------------------ 
 
Plant =ss(A,B ,C,D); 
[sysd] = c2d(Plant,ts);       
Cd=sysd.c; 
Bd=sysd.b; 
Ad=sysd.a; 
SystemContinusPoles = eig(A); 
eig(Ad); 
POlesPlacering = exp(SystemContinusPoles.*36*ts); 
K = acker(sysd.a',sysd.c',POlesPlacering)'; 
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