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Abstract

Grey-box identification is a tool to identify and improve nonlinear system models
by estimating parameters. The estimation is done by optimizing a cost function us-
ing measurement data. The robustness of the estimations can then be analyzed with
statistics. JModelica.org is a platform for modeling and optimization of dynamical
models. In order to do grey-box identification one need models and be able to opti-
mize. JModelica.org supports modeling and optimization so it has a huge potential
to support grey-box identification. So far there is no complete solution for grey-box
identification in JModelica.org. This work is focusing on how to implement grey-
box identification in JModelica.org in order to estimate parameters for nonlinear
models. The theory of grey-box identification has been investigated as well as the
possibilities with JModelica.org. Finally, an interactive method to estimate model
parameters and a method to calculate the confidence intervals for the estimates have
been implemented. The implementation has been tested for nonlinear models and
works as expected.
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1
Introduction

Models of dynamic systems are used in the design phase of product development
as well as for control design. The model design is a very important procedure to get
as accurate a model as possible. When modeling dynamic physical systems there
are three main parts in the model: the equations, the constants and the parameters.
The equations can be seen as the skeleton of the model and are derived from phys-
ical equations. The equations usually contain a set of constants and parameters.
Constants are well known without any uncertainties and could be for example the
physical constant of the electric charge of an electron e or the mathematical constant
π and will not cause any errors to the model. The parameters are instead quantities
with some uncertainty, for example the area A of a body or the mass concentration
ρ in a liquid. It can be hard to know the correct parameter values during the design
of the model so there is a need to estimate them by using some measurement data.

In grey-box identification, the uncertainties of nonlinear models are estimated.
For model design and verification, grey-box identification is used to identify the
uncertain parameters. The noise model can be included in the optimization. Exam-
ples of two methods that are used for parameter estimation of nonlinear systems are
Maximum Likelihood estimation and Output Error estimation. In [Bohlin, 2006] a
MATLAB toolbox for grey-box identification is presented and in [Sørlie, 1996] a
grey-box package was developed.

Modelica is a modeling language, mainly used for modeling dynamical system.
In order to improve Modelica models grey-box identification can be used. JModel-
ica.org is a platform for simulation and optimization of Modelica models. With the
support for simulation and optimization in JModelica.org there is a huge potential to
support grey-box identification but so far there is no complete solution for grey-box
implementation i JModelica.org.

1.1 This Thesis

The objective of this thesis is to see how far it is possible to implement grey-box
identification in JModelica.org. The focus of the work is to identify uncertain model
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1.2 Outline

parameters from measurement data. The work is limited to systems with white
Gaussian measurement noise without any stochastic system disturbances. The im-
plemented methods are limited to Maximum Likelihood estimation and Output Er-
ror estimation. The more concrete goals are to be able to present a step by step
method that can be used for parameter estimation but also for statistical analysis of
the result.

1.2 Outline

The report starts with an introduction to grey-box identification in chapter 2 fol-
lowed by a presentation of JModelica.org in chapter 3. The implementation of grey-
box identification in JModelica.org is described in chapter 4 and results are pre-
sented in chapter 5. Finally, discussion and conclusion are presented in chapter 6.

1.3 Notation

N(µ,r) denotes a normal distribution with expected value µ and covariance r. χ2
p(x)

denotes the survival function (1-cumulative distribution function) of x for a χ2 dis-
tribution with p degrees of freedom. When presenting results, relative error is cal-
culated as

estimated value - true value
true value

and relative value as

estimated value
true value

.
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2
Grey-Box Identification

There are two main methods for modeling a system. The model can be derived
from already known physical equations or by statistical analysis from measurement
data. Grey-box identification combines the two methods. Grey-box identification is
the common name for the identification process for system with partly unknown
dynamics, usually in terms of unknown parameter values. For parameter identifica-
tion, the identification is made off-line over a whole batch of measurement data and
is usually solved by minimizing a cost function.

The target of grey-box identification is to make a system model as accurate
as possible compared to the real system. When identifying nonlinear system it is
extremely helpful to use some dynamics of the system. Compared to black-box
identification, where nothing about the system is known, grey-box identification
use some information about the system, such as the main dynamics, to identify the
system. In order to get some information about how the system behaves, one also
needs some measurement data. To improve the model, by making it more accurate,
one can estimate the parameters in the model but also extend the system if the
system model does not include all variables or equations. In this work the physical
equations are assumed to be known but with some uncertainties in the parameters.
Two types of estimation methods are used in this thesis, Output Error estimation
(OE) and Maximum Likelihood estimation (ML), where measurement data is used
to estimate the unknown parameters.

An example of how to rewrite a system in order to identify some parameters is
shown in [Li and Ding, 2013]. In [Gunnar et al., 2006] a three step method is used
to estimate the parameters of a linear actuator. The two first steps estimate initial
values for OE estimation in the last step. For the parameters of a feed-water heater
model OE is used to initially estimate the parameters and to update the estimates
in [Barszcz and Czop, 2011]. Another method using OE as the cost function but
instead solving the estimations by using signal basis for parameter estimations and
an iterative scheme is presented in [Maruta and Toshuharu, 2013]. A parameter
estimation method with low computational time but still reliable is the two-stage
paradigm presented in [Garatti and Bittanti, 2013].

We will consider models on the form

14



2.1 Output Error (OE) Estimation


ẋ(t) = f (x(t),u(t),θ)
y(t) = h(x(t),u(t),θ)+ v(t)
x(0) = x0

(2.1)

where y(t) is the measurable system output, v(t) is the measurement noise with
covariance matrix R, x(t) is the system states, u(t) is the system inputs and θ is the
set of unknown parameters to be estimated. The discrete measurements used for the
identification are given by

h =
tn

n−1
(2.2)

T = [t0, t1, · · · , tn] (2.3)
tk = t0 +h · k (2.4)

t0 = 0 (2.5)
yM(tk) = y(tk)+ v(tk) (2.6)

v(tk) =
[
v1(k) v2(k) · · · vm(k)

]T (2.7)

R =


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rm

 (2.8)

vi(k) ∈ N(0,ri) (2.9)

where h is the sample time, n is the sample size, tn is the final time, yM(tk) is the
measured output, v(tk) is the measurement noise vector, R is the measurement noise
covariance matrix and m is the number of output signals. Equation (2.6) is rear-
ranged to

v(tk) = yM(tk)− y(tk) (2.10)

and is used in the optimization.
This chapter describes the two estimation methods used in this work as well as

some theory used to analyze the results. It is assumed that the measurement noise is
white Gaussian and that there are no stochastic system disturbances.

2.1 Output Error (OE) Estimation

OE estimation is a simple estimation method that just minimizes the error between
the predicted system output from the model and the measurements. Since most sys-
tem outputs are measured with noise, the initial states x0 are unknown and have to
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Chapter 2. Grey-Box Identification

be estimated as well as the parameters, which are the main target. Parameter esti-
mation for the system in Eq. (2.1) is done by minimizing the cost function [Isaksson
et al., 2010]

min
x0,θ ,x

VOE =
N

∑
k=1

v(tk)T v(tk)

subject to Eq. (2.1) and Eq. (2.10).
The advantage with OE estimation is mainly that it is easy to implement and

that the noise distribution does not effect the setup. A drawback is that all outputs
are treated equally even if some measurements may be better than others.

2.2 Maximum Likelihood (ML) Estimation

The idea with ML estimation is to formulate the problem as "which set of param-
eters makes the given measurements most likely?". For a set of parameters θ and
measurements y = [y1,y2, · · · ,yn], the estimated parameters are given by the θ̂ that
maximizes the following likelihood function:

L(θ ,Y ) =
N

∏
k=1

fv(yk;θ)

subject to Eq. (2.1) and Eq. (2.10). The probability density function, fv(v), for v in
Eq. (2.7) is the Gaussian density

fv(v) =
1√

(2π)k|R|
exp
(
− 1

2
vT R−1v

)
(2.11)

where R is given from Eq. (2.8).
If the parameters θ in the system in Eq. (2.1) are supposed to be estimated from

N measurements on the outputs, y ∈ℜn×1, the ML optimization problem will be

max
θ

L =
N

∏
k=1

fv
(
v(tk)

)
(2.12)

subject to Eq. (2.1) and Eq. (2.10).
Equation (2.12) is simplified with Eq. (2.11) into
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2.3 Large Sample Theory

(θ̂ , x̂) = argmax
θ̂ ,x̂

L =
N

∏
k=1

fv
(
v(tk)

)
=

N

∏
k=1

1√
(2π)k|R|

exp
(
− 1

2
v(tk)T R−1v(tk)

)
=

argmax
θ̂ ,x̂

logL = c+
N

∑
k=1
−1

2
v(tk)T R−1v(tk)−

1
2

log |R|=

argmin
θ̂ ,x̂

=
N

∑
k=1

v(tk)T R−1v(tk)+ log |R|

where θ̂ are the estimated parameters and x̂ the optimal state trajectories.
As one can see, ML estimation is similar to OE estimation, except for R. The

advantage with ML estimation is that it gives an opportunity to estimate the noise. In
ML estimation the noise is estimated together with the parameters and the estimated
noise covariances can be seen as a weight matrix designed during the estimation.
Since the initial states usually are unknown due to measurement noise they also
have to be estimated.

Thus the ML cost, for a continuous system with N samples, no process noise
and Gaussian measurement noise, will look like (see also [Isaksson, 2013])

min
x0,θ ,R,x

VML =
N

∑
k=1

v(tk)T R−1v(tk)+ log |R| (2.13)

subject to Eq. (2.1) and Eq. (2.10). R is the measurement noise covariance matrix
and the system input-signals u(t) are assumed to be known.

2.3 Large Sample Theory

In the previous sections, two methods to estimate parameters have been presented.
Both of these methods will give estimated parameters from given measurement data.
However, the result does not say anything about how accurate they are or how much
one can trust the result. For models that are not including all equations or vari-
ables to fully represent the system, it might be impossible to identify the parameters
correctly. Since the models in this work are assumed to include all equations and
variables, this will not be a hazard.

The estimation will face some trouble even if the model is designed in a cor-
rect way. Intuitively, by increasing the number of samples, the performance of the
estimation should increase. In [Mendel, 1995] it is stated that ML estimators are
asymptotically Gaussian with no bias, which means that the estimation is unbiased
for an infinite sample size. Unfortunately there are no infinite sample sizes in reality
so the sample size chosen in the estimation has to depend on its purpose. If a small
bias can be acceptable for the purpose of the estimation, then it is possible to use
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Chapter 2. Grey-Box Identification

a finite sample size and still get sufficiently good estimates. A simple example of
when the estimation is biased for finite samples and unbiased for infinite samples is
shown in Ex. 1.

EXAMPLE 1—NOISE ESTIMATION [MENDEL, 1995]
Assume a SISO system with the following dynamics:

yk = a+ vk

∀k ∈ [1,2, · · · ,N]

vk ∈ N(0,r)

where yk are the measurements. The target is to estimate the covariance r and the
parameter a with ML estimation. The cost function to minimize will be

min
r

VML =
N

∑
k=1

v2
k
r
+ log(r) =

N

∑
k=1

(yk−a)2

r
+ log(r)

and is solved by assuming that the only point where the derivatives of the cost
function is zero is equal to the local minimum.

∂VML

∂a
= 0 ⇐⇒

N

∑
k=1
−2(yk−a)

r
= 0 =⇒ â =

1
N

N

∑
k=1

yk

∂VML

∂ r
= 0 ⇐⇒

N

∑
k=1
− (yk−a)2

r2 +
1
r
= 0 =⇒ r̂ =

1
N

N

∑
k=1

(yk− â)2

The expected value of the estimated covariance r̂ is

E{r̂}= 1
N

N

∑
k=1

E
{
(yk− â)2

}
=

N

∑
k=1

E
{
(vk−

1
N

N

∑
i=1

vi)
2
}

=
1
N

N

∑
k=1

(
E
{

v2
k−

2
N

N

∑
i=1

vkvi +
1

N2

( N

∑
i=1

vi
)2
})

=
1
N

N

∑
k=1

(
r− 2

N
r+

1
N2 Nr

)
= r− 1

N
r =

N−1
N

r

As one can see the estimate r̂ is biased for a finite sample size but asymptotically
unbiased for an infinite sample size. 2

The bias in the estimation with finite sample size is not the biggest problem. A
worse scenario is if the estimation converges into an unwanted local minimum. In
[Bohlin, 1991] it is stated that estimation with finite sample size might have many
local minima but in this thesis no complete analysis for this is carried out.

18



2.4 Falsification and Over-parametrization

2.4 Falsification and Over-parametrization

For system identification the falsification procedure investigates whether the esti-
mated model is close enough to the real system. Since the work in this thesis only
treats parameter estimation, the falsification procedure will analyze how many and
which parameters to release in the optimization in order to find the best model with
as low complexity as possible. Another failure to investigate is if the solver has con-
verged to an unwanted minimum. By analyzing how reasonable the given measure-
ments would be given the estimated parameters, the probability that the estimated
model is too complex can be evaluated.

When identifying parameters it might be impossible to estimate all parameters
from a given set of data. When the system is represented with more parameters than
necessary it is called over-parametrization and might result in bad estimates.

The objective of the estimations in this work is to improve already existing
models by statistical optimization and analysis from measurement data from the
real system. In [Bohlin, 1991] there are several different falsification techniques
presented for different kinds of purposes. Many of the tests are more theoretical and
hard to implement. The most practical falsification technique for the purpose of this
thesis is the Likelihood-Ratio test presented in the next subsection.

2.4.1 The Likelihood-Ratio test
The Likelihood-Ratio (LR) test [Bohlin, 1991] offers an implementable and practi-
cal method to analyze the optimization result from ML estimation. The theory holds
for infinite samples but for practical reasons large sample sizes are assumed to give
the same results as for infinite sample size. Therefore the sample size N is assumed
to be arbitrarily large. For estimation with finite sample size, some parameters will
affect the system differently. From a given set of measurement data, one wants to
find the optimal set of parameters to estimate in order to find the best model with
least complexity. If the number of degrees of freedom increases, it is more likely
that the problem is over-parametrized and all parameters cannot be estimated from
the given data but also that the optimization converges to an unwanted minimum.
On the other hand, more free parameters might increase the performance and give
a better model than for a lesser number of parameters. The LR test is a tool to find
how many and which parameters to estimate in order to get the statistically best
model.

Let θ be the set of parameters to estimate and let F(θ) be the minimum in Eq.
(2.13):

F(θ) = min
x0,θ ,R,x

VML =
N

∑
k=1

v̂(tk)T R̂−1v̂(tk)+ log |R̂| (2.14)

Consider two sets of parameters θ0 and θ1, resulting in two new models of the
system. The sets of parameters are chosen so that dim(θ1)> dim(θ0) and θ1 contain
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Chapter 2. Grey-Box Identification

all parameters in θ0. If these two models represent the system equally well then
F(θ0)−F(θ1) ∈ χ2

p , where p = dim(θ1)−dim(θ0).
With this theory it is possible to perform a hypothesis test with the null hypoth-

esis, H0, and the alternative hypothesis, H1:{
H0 : ”θ0 gives equally good model as θ1”
H1 : ”θ1 gives a better model than θ0”

The risk, α is given from, α = ( "H1 is preferred if H0 is true"). The mathematical
expression for α is then:

α = χ
2
p
(
F(θ0)−F(θ1)

)
(2.15)

p = dim(θ1)−dim(θ0) (2.16)

where χ2
p(x) is the survival function of the chi-squared distribution with p degrees

of freedom.
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3
JModelica.org

JModelica.org is an open source platform, developed by Modelon AB in collab-
oration with the Department of Automatic Control Lund University, for powerful
system simulations and optimizations. Modelica is a modeling language while Op-
timica is an extension of Modelica for optimization, both are supported in JModel-
ica.org. To be able to do grey-box identification one needs a tool for model design,
an optimization tool and a tool for analyzing and handling of the data. The three
components used for this purpose are Modelica for model design and simulations,
Optimica for optimization and Python, which is also supported in JModelica.org, for
execution of the previous tools and for handling the data. A user guide for JModel-
ica.org can be found at [Modelon AB, 2013].

3.1 Modelica

Modelica is an open source language developed by the Modelica Association [Mod-
elica Association, 2014] for modeling physical systems. Modelica is object oriented
and equation based and is today, for example, used for modeling in the automotive
and power industry. An example of a Modelica code representation of a state space
model can be seen in Ex. 2.

EXAMPLE 2
This is a simple example of how to represent a system on state space form in Mod-
elica.

The following Modelica code:

model simple
parameter Real a = -1.0;
parameter Real b = 2.0;
parameter Real c = -1.5;
parameter Real d = -0.5;

parameter Real x10 = 0.0;
parameter Real x20 = 0.0;
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Chapter 3. JModelica.org

Real x1(fixed = true, start = x10)
Real x2(fixed = true, start = x20)

Real y1;
Real y2;

input Real u1;
input Real u2;

equation
der(x1) = a*x1 + b*x2 + u1;
der(x2) = c*x1 + d*x2 + u2;
y1 = x1;
y2 = x2;

end simple;

represents the following system:

[
ẋ1(t)
ẋ2(t)

]
=

[
a b
c d

][
x1(t)
x2(t)

]
+

[
1 0
0 1

][
u1(t)
u2(t)

]
[

y1(t)
y2(t)

]
=

[
1 0
0 1

][
x1(t)
x2(t)

]

with the control signals ui(t), the output signals yi(t) and a = −1.0,b = 2.00,c =
−1.5 and d =−0.5. 2

In JModelica.org the Modelica code used for simulations are compiled into a
FMU (Functional Mock-up Unit) model that can be loaded into Python.

3.2 Optimica

Optimica is an extension of Modelica used for optimization purposes. As for Mod-
elica code, Optimica code is compiled into a model. CasADi is a tool for auto-
matic differentiation. The current default model for optimization in JModelica.org
is CasADi and therefore are the Optimica models used in this thesis are compiled
into CasADi models. Unfortunately, there is currently no support for minimizing
sums in Optimica with CasADi. How to handle this is explained in Sec. 3.4. A
simple implementation of OE estimation is shown in Ex. 3.

EXAMPLE 3
This example illustrates OE estimation of the system in Ex. 2 where the unknown
parameters θ = [a,b,c,d] are to be estimated from measurements of 40 s. It is as-
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3.2 Optimica

sumed that the Modelica model in Ex. 2 is accessible from the following Optimica
model.

optimization OE(objectiveIntegrand=(v1^2)*(r1)^(-1) +
(v2^2)*(r2)^(-1) ),
startTime=0.0, finalTime = 40.0)

simple simp(x10 = x10, x20 = x20, a = a, b = b, c = c, d = d);

//noise covariance parameters
parameter Real r1(free = false) = 1;
parameter Real r2(free = false) = 1;

//initial states
parameter Real x10(free = true, initialGuess = 0.0) ;
parameter Real x20(free = true, initialGuess = 0.0) ;

// parameters to estimate
parameter Real a(free = true, initialGuess = 1.0,

min = -5, max = 5);
parameter Real b(free = true, initialGuess = 1.0,

min = -5, max = 5);
parameter Real c(free = true, initialGuess = 1.0,

min = -5, max = 5);
parameter Real d(free = true, initialGuess = 1.0,

min = -5, max = 5);

// control signals
input Real u1;
input Real u2;

// measurement signals
input Real y1;
input Real y2;

Real v1;
Real v2;

equation
v1 = (y1-simp.y1);
v2 = (y2-simp.y2);
u1 = simp.u1;
u2 = simp.u2;

end OE;

Note that both the measurements and the control signals are declared as inputs
since they are not predefined, but changes from estimation to estimation. All pa-
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rameters to estimate are declared with free = true. Since there is no support
for minimizing sums, the cost function is declared as an integral to minimize
objectiveIntegrand. 2

3.3 Python

Python [Python Software Foundation, 20140328] is a programing language that is
used in JModelica.org to execute Modelica and Optimica code. A Python script is
used to compile and load the Modelica models into FMUs as well as the Optimica
models into CasADi models. Also all data handling and analysis are made through
Python.

3.4 Limitations

Optimica is developed for continuous time optimization, while grey-box identifi-
cation is done in discrete time. The cost function is evaluated at every collocation
point at each element [Magnusson, 2012]. The default discretization method for op-
timization in JModelica.org is Radau collocation [Modelon AB, 2013]. When the
collocation points per element are set to 1, the evaluations in the integrand are made
only at the endpoint of each element. When the number of elements is set to the
number of measurements-1 the elements will have the same length as the sampling
time, and the endpoints are matched into the measurement points and basically no
interpolation is done. By the modifications described above, the cost function, im-
plemented as

min
x0,θ ,R,x

VML =
∫ tN

t1
v(tk)T R−1v(tk)+ log |R|

can be treated as the following cost function:

min
x0,θ ,R,x

VML = h
N

∑
k=2

v(tk)T R−1v(tk)+ log |R|

where h is the sampling time for the given measurements. Note that since we only
evaluate the endpoint of each collocation element we will lose the first measure-
ment, at time = 0.0, in the cost function.

The numerical solver will lose some of its accuracy with the necessary condi-
tions. When setting the number of collocation points to 1, the discretization method
will be implicit Euler discretization:
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3.4 Limitations


ẋ(t) = f (x,u, t)
xk+1 = xk +hẋk+1

x0 = x(0)

This will give a systematic error in the optimization. The reason that this has to be
done is because CasADi optimization with JModelica.org is currently not support-
ing cost functions as sums, but the optimization options are changed to make the
cost function to act like a sum. If the system is not evaluated over the measurement
points, the interpolation will be heavily affected by the measurement noises. This
result will be worse than for the case with a numerical solver with systematic er-
rors. There will not be any systematic errors for systems with constant derivative
between the samples.
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4
Implementation

The theory presented in chapter 2 has to be implemented in order to be able to use
grey-box identification. This chapter describes how the grey-box identification has
been implemented in JModelica.org. Section 4.1 describes how to simulate Model-
ica models in order to analyze the estimation for simulated systems. The optimiza-
tion is presented in Sec. 4.2 followed by implementation of estimation analysis in
Sec. 4.3.

4.1 Simulation

All estimation done in this work has been done based on artificial measurement
data. The measurement data is generated simply by adding white Gaussian noise to
the signals given from simulation of Modelica models. The advantage of estimating
parameters from artificial measurement data is that the whole system is known and
the robustness of the implementation is easier to analyze. As described in Sec. 3.4,
the optimization algorithm has some limitation in the discretization of the system.
Two types of discretization during the simulations has been done in this work, one
with implicit Euler in order to use the same discretization method as the optimiza-
tion, and one for the default settings used for FMUs. All measurement noise was
generated from the random module in the NumPy library [The Scipy Community,
2013].

It was not possible to simulate FMUs with implicit Euler with one collocation
point. To be able to generate measurement data with implicit Euler, another ap-
proach was used by generating measurement data from Optimica with the same
settings as for ML estimation with implicit Euler. The optimization was then made
by optimizing the outputs from the Modelica model, but with no free parameters.
Since Optimica simulates the model in order to find the optimal solution and no
parameters are free, the final solution will be the system simulated with the given
parameters. The setup in form of equations for generating N samples can be seen as
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4.2 Optimization

min
θ ,x

Vsim =
N

∑
k=1

y(tk)T y(tk)

where the y(t) is the system output, x(t) is the states of the systems, u(t) is the
system inputs and θ is the free parameters. By setting θ0 = [ ], no parameters are
estimated and the system will be simulated and all parameters can be defined in the
Optimica code.

The implementation of simulation with the default settings in FMU is straight
forward and can be seen in chapter 3.

4.2 Optimization

Two types of identification have been implemented in this work. OE estimation and
ML estimation. The limitations explained in Sec. 3.4 makes the approach a little bit
different depending on which type of estimation is done.

As long as no noise intensities are supposed to be estimated, it seems that the
sum in the cost function can be replaced with an integral without degrading the
performance of the estimation. Simply

min
x0,θ ,x

VML =
N

∑
k=1

v(tk)T R−1v(tk)+ log |R|

is replaced with

min
x0,θ ,x

VML =
∫ tN

t1
v(tk)T R−1v(tk)+ log |R| (4.1)

For ML estimation with free noise parameters the cost function is written in
Optimica as Eq. (4.1) but the collocation points are changed as explained in Sec.
3.4 to get a sum instead of an integral. The number of element is always set to be
the sample size-1 to make the element endpoints match each sample point.

4.3 Analysis

4.3.1 Interactive Identification
This iterative procedure is inspired by the MoCaVa MATLAB toolbox [Bohlin,
2006] and uses the theory from the LR-test in order to iteratively find the best model
with least complexity. Let θ be the set of parameters to be estimated and M(θ) the
model found by ML estimation with the free parameters in θ .

The null model is the current optimization result given from the free parameters
in θ0 and is used as a reference in order to see if the model can be improved or not.
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Chapter 4. Implementation

From Eq. (2.14), F(θ) is called the cost. For two different kinds of models with
different complexity the risk is calculated from Eq. (2.15).

In this section the step by step procedure of how to find the best model with
lowest complexity is explained. Initial guesses on parameter values including initial
states and measurement noise covariance are needed.

One wants to investigate whether it is worth to have more free parameters than
in the null model and which parameters to release. Let [θ1,θ2,θ3, · · · ,θn] be the
conditional parameter sets that include all parameters in the null model but also
some more parameters. The risk α is calculated as

α = χ
2
p(F(θi)−F(θ0))

p = dim(θi)−dim(θ0)

where the risk is the probability to choose the new model, given from θi, if the old
model is equally good as the new model. This works for a single conditional model.
If there are n conditional models the risk is

ᾱi = 1− (1−αi)
n

where ᾱi is the multiple conditional risk and accounts for the fact that the risk of
false positives is increasing when we have many hypothesis to choose from.

If the risk is low enough one can extend the null model by releasing the param-
eters one compared with. With many conditional models, the one with the greatest
cost reduction, F(θ0)−F(θi) is chosen if more than one model gives a low enough
risk.

The first parameters to release are always the initial states and the noise covari-
ances, usually this can be done with a single conditional model including all these
parameters. If it is possible to release these parameters one can start to try to re-
lease other parameters. For this case there might be multiple conditional models but
compared to the null model just one extra parameter is released for each conditional
model. This is repeated until no improvement is reached. If one parameter is chosen
to be released it will always be released for more complex models. If one suspects
constant disturbances in the system, constant disturbances should be included in the
model and should be released just after the initial states and the noise covariances.

4.3.2 Confidence Intervals
The LR test helps to reach the best model given the measurement data. However,
one might want to get some kind of information about the accuracy of the result. In
this work one big assumption is made in order to get a straight-forward method to
analyze the estimation. It is almost impossible to get an estimated model equal to the
true model, but if the error is small enough, the statistics will still give some useful
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and interesting information about the system. Bootstrapping [Zoubir and Iskander,
2007] is used to regenerate the sample data and use this to estimate the estimation
covariance. This approach only works for ML estimation, since measurement noise
covariance is needed.

ML estimation estimates the initial states, the measurement noise intensity and
the system parameters, the control signals are given, so one has all parameters to
regenerate measurement data by simulation. The idea is to simulate the system with
the estimated parameters and add white Gaussian noise with the estimated covari-
ance and then estimate the parameters from the simulated data. This is repeated for
a large number of times to get the distribution of the estimated parameters. Because
the real value for the simulated system is known one can investigate bias in the
estimation but also the covariance of the estimation.

If parameter estimates are uncorrelated to each other one can estimate the co-
variance from the single distribution of each parameter. In this work, all parameters
are treated separately, just because it is easier to visualize.
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5
Results

In this chapter, the results from the implementation of grey-box identification in
chapter 4 is presented. Analysis of the identification is presented in Sec. 5.1 and
Sec. 5.2 presents some examples of full estimations.

5.1 Identification Analysis

This section shows some tests made to analyze the performance of the estimation.
In Sec. 5.1.1 an example of pure noise estimation is presented. Subsection 5.1.2
illustrates the difference given for different kind of discretization methods used to
create the measurement data. Subsection 5.1.3 shows the advantage of using ML
estimation compared to OE. To show the performance of ML estimation, the pa-
rameters of a smaller nonlinear system are estimated and presented in Sec. 5.1.4.
Finally, the performance of ML implementation for white Gaussian measurement
noise for a two-point noise distribution is presented in Sec. 5.1.5.

5.1.1 Noise Estimation
ML estimation of covariance for a measurement with only noise was done as a
first simple estimation step. The advantage with this estimation is that it is simple
to calculate the result by hand and therefore one can compare the result with the
theory.

This estimation was done by making a Modelica model with a constant output
set to 0. Two ML estimates of the noise covariance were made, one with known
expected value of the noise and one with unknown expected value of the noise.
From Ex. 1, the ML estimates for estimating the covariance r and the expected
value µ are


µ̂ = 1

N ∑
N
i=1 yi

r̂ = 1
N ∑

N
i=1(yi− µ̂)2
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where r̂ is the estimated covariance and µ̂ is the estimated expected value.
If the expected value is known, the noise covariance ML estimate is

r̂ =
1
N

N

∑
i=1

(yi−µ)2.

1000 samples was used to estimate white Gaussian noise with µ = 0 and r = 1.
The result can be seen is Table 5.1.

Table 5.1 The ML estimated values for white Gaussian noise sampled with 1000
samples.

Parameter r̂ (µ known) r̂ (µ unknown) µ̂ (µ unknown)
Theoretical value 1.1201 1.0161 0.0054
Estimated value 1.1201 1.0161 0.0054
Estimated value -
Theoretical value −2.95 ·10−10 −2.9149 ·10−8 −2.6887 ·10−13

Since the differences between the estimated value and the value expected to get
from ML estimation is negligible, the conclusion is that it is possible to estimate
white Gaussian noise with the ML estimation with a negligible error.

5.1.2 Discretization
This example will show the effect of different discretization in the optimization and
the simulation. A system was simulated with two different kinds of discretization,
implicit Euler and the default discretization in JModelica.org. The state-space rep-
resentation of the system is



[
ẋ1(t)
ẋ2(t)

]
=

[
−a1 a2

−b1 −b2

][
x1(t)
x2(t)

]
+

[
u1(t)
u2(t)

]
[

y1(t)
y2(t)

]
=

[
x1(t) · x2(t)

x2(t)/
(
1+ x1(t)

)]

x1(0) = x10

x2(0) = x20

(5.1)

where ui(t) are the control signals, yi(t) is the system outputs and the parameters
[a1,a2,b1,b2,x10,x20] = [1.0,1.0,1.0,3.0,0.5,0.9]. The simulation with the two dif-
ferent discretizations can be seen in Fig. 5.1 and the differences between the simu-
lated signals can be seen in Fig. 5.2.
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Figure 5.1 System in Eq. (5.1) simulated with the default discretization in JMod-
elica.org and with implicit Euler.

Figure 5.2 The differentiates (Implicit Euler - Default) between the simulation
outputs from Fig. 5.1.

The two different sets of outputs given from the simulation were used, without
noise, to estimate the parameters in the system with OE estimation. The result can
be seen in Table 5.2.

One can see that the simulation with implicit Euler gives an unbiased estimation
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Table 5.2 Relative error of the OE estimated parameters for the system in Eq. (5.1)
with the signals in Fig. 5.1.

Parameters a1 a2 b1 b2 x10 x20
Imp. Euler Sim. 0.00% 0.00% 0.00% 0.00% 0.00 0.00%
Default Sim. -0.98% -1.02% 2.16% -7.72% 12.6% -3.62%

while the default simulation gives a clear bias. Intuitively, one could expect that the
default discretization should give the best estimation since it is a better discretiza-
tion than implicit Euler. The result is due to the different discretization between the
optimization and the simulation. With implicit Euler, the optimization can repro-
duce the data exactly using the correct parameters. With the default discretization,
it will try to adapt them to account for the differences in discretization.

5.1.3 ML and OE comparison
In this subsection, it is investigated how the noise covariance affects the results given
from ML and OE estimation. The system in Eq. (5.1) was simulated with implicit
Euler over 40 s and sampled with 500 samples with white Gaussian measurement
noise.

300 different estimates were made with a new noise realization for each and
with noise covariances with different magnitude, r1 = 0.1 and r2 = 0.001.

As one can see in Fig. 5.3, the estimate covariance is much smaller for ML
estimation than for OE estimation. The measurement noise covariances are chosen
with different magnitude to show the advantage with ML estimation compared to
OE estimation.

In Fig. 5.4, it is demonstrated how the ratio of measurement noise intensities
affects the estimation covariance. One can see that ML estimation gives a lower
covariance than OE for measurement covariances with different magnitude but not
for noise covariances with the same magnitude. This is because the noise intensity
estimates can be seen as measurement signal weights in the optimization. OE is
always unweighted which gives the best performance for noise covariances with
same magnitude while ML has to estimate the covariance which gives a higher
degree of freedom in the optimization. This is more significant for a low sample
size, because then it is harder to estimate the correct noise covariance with ML
estimation.
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Figure 5.3 The estimation distribution for ML and OE for 300 noise realizations
of the system in Eq. (5.1) simulated with implicit Euler with white Gaussian mea-
surement noises with covariance r1 = 0.1 and r2 = 0.001. All plots are showing the
relative value and are presented with the same scale.

Figure 5.4 The estimation covariance as a function of r2 for the system in Eq. (5.1).
150 different noise realizations was scaled with the noise covariances r1 = 0.01 and
r2 given from the x-axis.
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5.1.4 ML estimation for a nonlinear system
This example shows the performance of the implemented ML estimation for a small
nonlinear system. The state-space representation of the system is




ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

=


−a1 · x1(t) · x3(t)+a2 · x2(t)+ x3(t)
−b1 · x1(t)−b2 · x2(t)+ x4(t)
−c1 · x3(t)+ c2 · x4(t)

−d1 · x3(t)−d2 · x3(t) · x4(t)

+


0 0
0 0
1 0
0 1


[

u1(t)
u2(t)

]


y1(t)
y2(t)
y3(t)
y4(t)

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x1(t)
x2(t)
x3(t)
x4(t)


x1(0) = x10,x2(0) = x20,x3(0) = x30,x4(0) = x40

(5.2)

where x(t) is the states, y(t) is the outputs, u(t) is the control signals and θ =
[a1,a2,b1,b2,c1,c2,d1,d2,x10,x20,x30,x40] are parameters.

The system was simulated with implicit Euler for 40 s and sampled with
300 samples. 300 different estimates were made with a new noise realization for
each loop and with noise covariances with different magnitude, r1 = 0.001,r2 =
0.0001,r3 = 0.005,r4 = 0.005, the inputs ui(t)

u1(t) =
{

0 for t < 5.0
1 for t ≥ 5.0

u2(t) =
{

0 for t < 25.0
1 for t ≥ 25.0

and the parameters

[a1 = 1.0,a2 = 3.0,b1 = 0.5,b2 = 0.9,c1 = 0.8,c2 = 1.0,d1 = 0.7,
d2 = 0.3,x10 = 1.0,x20 = 1.0,x30 = 1.0,x40 = 1.0].

The estimate distribution can be seen together with a 95 % confidence interval
in Fig. 5.5 and the confidence values can be seen in Table 5.3. From the estimation
distribution it looks like the bias is negligible and the implementation manages to
estimate the parameters as expected. The intersection between the confidence in-
tervals are showing the mean values for the estimations. Since the plots show the
relative value, an estimate is unbiased if the mean value is 1. A small bias can be
expected, especially for the noise covariances, since the sample size is finite. For all
parameter estimates, the bias is negligible and one can confirm that the ML estima-
tion works for this system.
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Figure 5.5 Relative value for the estimated parameters for 300 different noise real-
izations for the system in Eq. (5.2) . The system was discretized and simulated with
implicit Euler. r1 = 0.001,r2 = 0.0001,r3 = 0.005,r4 = 0.005. The lines show the
95% confidence interval for each parameter estimate.
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Table 5.3 Confidence interval of the relative value given from the estimations from
Fig. 5.5.

Parameter a1 a2 b1 b2
Mean value 1.0004 1.0002 0.9998 0.9995
Interval min 0.9911 0.9933 0.9933 0.9873
Interval max 1.0097 1.0071 1.0064 1.0118
Parameter c1 c2 d1 d2

Mean value 1.0000 1.0002 0.9999 1.0012
Interval min 0.9959 0.9939 0.9964 0.9819
Interval max 1.0041 1.0064 1.0035 1.0205
Parameter x10 x20 x30 x40

Mean value 1.0000 1.0000 1.0000 1.0002
Interval min 0.9614 0.9862 0.9856 0.9838
Interval max 1.0366 1.0139 1.0144 1.0165
Parameter r1 r2 r3 r4

Mean value 0.9854 0.9856 0.9963 0.9973
Interval min 0.8308 0.8253 0.8294 0.8427
Interval max 1.1403 1.1458 1.1631 1.1518

5.1.5 Parameter estimation for two-point noise distribution
The system in Eq. (5.1) was simulated over 40 s, with a two-point noise distribution
with zeros mean values and the covariances r1 = 0.01 and r2 = 0.001. Note that the
covariances are the square root of the absolute noise values. The parameters were
estimated with ML estimation with the same cost function as for white Gaussian
measurement noise. The measurement signals, the optimal trajectory found from
the optimization, and the residuals can be seen in Fig. 5.6 and a histogram from the
residuals can be seen in Fig. 5.7. One can see that the residuals differ from a white
Gaussian noise realization. In the histograms, it looks like the residuals can be seen
as two separate white Gaussian distributions with mean values equal to the points
in the two point distribution.

A plot over the estimation distribution for 500 different noise realizations can
be seen in Fig. 5.8. One can see that even if the noise is not white Gaussian it
looks like the estimates are normal distributed. The noise covariance estimates are
biased what is expected for a ML estimation but they are not Gaussian. Just by
looking at the parameter estimation distribution it is impossible do discern the kind
of measurement noise.

The same system was sampled with 50 samples instead, to investigate how a low
sample size would effect the optimal trajectory. A histogram plot of the residuals
can be seen in Fig. 5.9. One can see from the histogram plot that the residuals
differ from two white Gaussian distributions. Some residual are close to zero which
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Figure 5.6 The system in Eq. (5.1) with two-point noise distribution with the co-
variances r1 = 0.01 and r2 = 0.001 estimated with ML estimation. The residuals =
optimal trajectory - measured signal.

indicates that the solver does not manage to find a good optimal trajectory.
The conclusions given from this test is that an analysis over the residuals is nec-

essary in order to identify the measurement noise distribution. ML estimation that
is formulated for white Gaussian measurement noise but in fact is measuring two-
point distributed noise are resulting in the same estimation distribution. A sample
size big enough for its purpose is also necessary in order to identify the system.
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5.1 Identification Analysis

Figure 5.7 Histogram over the residuals for the system in Eq. (5.1) when sampled
with 500 samples with the two-point noise covariances r1 = 0.01 and r2 = 0.001.

Figure 5.8 The estimation distribution for the parameters in system in Eq. (5.1)
for 500 different two-point noise distribution with the covariances r1 = 0.01 and
r2 = 0.001. The resuslt are presented in relative error. The lines are showing the
95 % confidence interval.
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Figure 5.9 Histogram over the residuals for the system in Eq. (5.1) when sampled
with 50 samples with the two-point noise covariances r1 = 0.01 and r2 = 0.001.

5.2 Full estimations

This section will show three full estimations including the analyses of the results.
The examples are chosen to show why or why not it might be possible to estimate all
parameters. The first example shows an example of a system where not all parame-
ters are possible to estimate. The second example shows a full estimation where all
parameters are estimated but also analysis of the estimates. The last example will
show how the methods work to fit a less complex model with data from a more
complex model.

5.2.1 RC-circuit Example
This example demonstrates how the interactive identification will falsify a too com-
plex model in order to represent the system. Assume that R and the C are supposed
to be estimated for the circuit in Fig. 5.10. The state-space representation of the
system is


ẋ(t) =

−1
R ·C

· x(t)+ 1
R ·C

u(t)

y(t) = x(t)+ v(t)
x(0) = x0

(5.3)

y(t) =Vout(t),u(t) =Vin,v(t) ∈ N(0,r). (5.4)
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5.2 Full estimations

Figure 5.10 RC-circuit with measured signals Vin and Vout

The system was simulated with implicit Euler and 300 samples. The parameters
where set to, x0(0) = 0 V , C = 0.11 mF and R = 0.9 kΩ, and the measurement noise
on Vout was white Gaussian with covariance r = 0.001.

Table 5.4 Initial guess of parameters for the RC-circuit in Eq. (5.3).

.
Parameter R [kΩ] C [mF ] x0 [V ] r

Initial Guess 15 0.10 0.0 0.1

The initial model parameters, to improve, can be seen in Table 5.4. The mea-
sured signal and the signal given from the initial model can be seen in Fig. 5.11.
The cost F(θ) given from the initial model, θ0 = 0, was F(θ0) =−663.4388.

The first parameters to release in the optimization was the initial state x0 and
the noise covariance r. This gives the null model θ0 = 0 and the conditional model
θ1 = [x0,r].The initial guesses are given from Table 5.4. The optimal trajectory
found from the estimation can be seen in Fig. 5.12 and the statistics in Table 5.5.

Table 5.5 Cost statistics for θ0 = 0 and the extra parameter (Released parameter)
for the system in Eq. (5.3).

Released parameter [x0,r]
Cost -1217.9394
Cost Reduction 554.5006
Risk 0.00

Since the risk that the null model is equally good as the conditional model, is
low, the procedure can go forward.
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Figure 5.11 The measured output and the initial model (Table 5.4) for the system
in Eq. (5.3). The residuals = optimal trajectory - measured signal.

Next, R and C are released so the conditional models are given by θ1 = [x0,r,R]
and θ2 = [x0,r,C] and the null model is given by θ0 = [x0,r]. The result can be seen
in Table 5.6.

Table 5.6 Cost statistics for θ0 = [x0,r] and the extra parameter (Released param-
eter) for the system in Eq. (5.3).

Released parameter R C
Cost -1739.5368 -1739.5368
Cost Reduction 521.5974 521.5974
Risk 0.00 0.00

It shows that the result is identical for the case were R or C is added to the
estimation, this suggesting that the optimal trajectories for both cases are identical.
The estimated results can be seen in Fig. 5.13.

Since the improvements compared to the first estimation is significantly better
with no risk both parameters are released to see if it is possible to improve the esti-
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Figure 5.12 The system in Eq. (5.3) was estimated with fixed C = 0.1mF and fixed
R = 1.5kΩ. The residuals = optimal trajectory - measured signal.

mates even more. Because the cost reduction is the same for R free and C free one
can use any of these models as the reference model. Let F(θ0) =−1739.5369,θ0 =
[x0,r,C] and θ1 = [x0,r,C,R]. The result can be seen in Table 5.7.

Table 5.7 Cost statistics for θ0 = [x0,r,C] and the extra parameter (Released pa-
rameter) for the system in Eq. (5.3).

Released parameter R
Cost -1739.5368
Cost Reduction 0.00
Risk 1.00

Unfortunately, the risk of releasing all parameters is 100 % and it is impossible
to get a better model than the previous given from R or C released separately. The
real values used in the simulation as compared to the ones given from the estima-
tions can be seen in Table 5.8 and it is shown that none of the estimates converge to
the right values.
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Figure 5.13 The system in Eq. (5.3) was estimated with free C and fixed R =
1.5kΩ. The residuals = optimal trajectory - measured signal.

Table 5.8 Real and estimated parameters for the RC-circuit in Fig. 5.10 with mea-
surement noise covariance 0.001.

.
Parameter R [kΩ] C [mF ] x0 [V ]
Real Value 9.0 0.11 0.0
R free 9.9 0.10 0.00
C free 15 0.066 0.00
R&C free 11 0.094 0.00

This is a known case of over-parametrization were the output does not depend
individually on R or C. Instead it depends on the time constant τ = R ·C. Note that
for all estimates in Table 5.8 the product of R and C is 1.0. For a model designer
that is just interested in the Vin−Vout relationship, the relevant parameter is τ . A
more relevant model would have replaced R ·C with τ . It looks like the residuals are
white Gaussian, which usually means that there is no more possibilities to improve
the system even if not all parameters are released into the optimization.
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5.2.2 Drum Boiler Example
This system and approach is taken from [Bohlin, 2006] with some modifications.
It shows how to approach grey-box identification in order to estimate the unknown
parameters with the lowest necessary complexity. All parameters are estimated by
ML estimation and all costs F(θ) are given from Eq. (2.14).

The state-space model of the system is

[
ẋ1(t)
ẋ2(t)

]
=

[
K1
TD
· (A1 · fc(t)−A2 ·uc(t) · x1(t)

K2
TR
· (A2 ·uc(t) · x1(t)−A3 · x2(t)

]
[

E
P

]
=

[
K3 ·

(
A4 ·A2 ·uc(t) · x1(t)+(1−A4) ·A3 · x2(t)

)
+wE

x1(t)+wP

]

x1(0) = x10

x2(0) = x20

(5.5)

with the states x(t), known constants in Table 5.9, unknown parameters in Table
5.10, constant disturbances w, the inputs uc(t) (control valve position) and fc(t) (
fuel flow [kg/s] ) and the outputs E(t) ( power [MW] ) and P(t) (drum pressure
[N/m2] ). The constant disturbances, wP,wE are included into the unknown param-
eters since they might be estimated as well.

Table 5.9 Constants for system in Eq. (5.5)

Constant K1 A1 A2 K2 A3 K3
Value 0.3 14 3.3 0.064 15 0.32

The system was sampled with 500 samples over 1000 s and simulated with im-
plicit Euler in order to eliminate the error from differences in discretization between
the simulation and the optimization. The simulation can be seen in Fig. 5.14.

This example will show how to estimate parameters step by step while trying
to avoid a too complex model. Assume that the parameters are unknown but with
initial guesses and the model one wants to improve is given from the parameters in
Table 5.10. As a first step the initial model is run to compare with the measurements
as well as to get a cost. The result can be seen in Fig. 5.15. The cost F(θ) was
3196935.

The next step is to investigate whether it is possible to improve the model by
releasing the initial states [x10,x20] and the measurement noise covariances [rE ,rP]
(and see if the improvements given from this estimation is better in order to increase
the complexity). The results can be seen in Table 5.11. Figure 5.16 shows the opti-
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Figure 5.14 The system in Eq. (5.5) simulated with unknown parameters and white
Gaussian measurements noise.

Table 5.10 Initial parameters for system in Eq. (5.5)

Parameter TD [s] TR [s] A4 wE wP x10 x20 rE rP
Initial Guess 250.0 30.0 0.50 0.0 0.0 0.0 0.0 1.0 1.0

mal trajectories found by the estimation. The risk is low, so more parameters can be
investigated and released.

Table 5.11 Cost statistics for the null model, θ0 = 0, for the system in Eq. (5.5)

Released parameters [x10,x20,rE ,rP]
Cost 5658.666
Cost Reduction 3191276
Risk 0.00

Since it looks like there is some kind of disturbances, the constant disturbances
are released in order to investigate if the new model is better than the old one. So
the null model θ0 and the conditional model θ1 are
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Figure 5.15 The system in Eq. (5.5) estimated with θ = 0. The residuals = optimal
trajectory - measured signal .

θ0 = [x10,xx20,rE ,rP]
θ1 = [x10,x20,rE ,rP,wP,wE ].
The results can be seen in Table 5.12 and Fig. 5.17.

Table 5.12 Cost statistics for the null model, θ0 = [x10,x20,rE ,rP], for the system
in Eq. (5.5)

Released parameters [wE ,wP]
Cost 3369.623
Cost Reduction 2289.044
Risk 0.0

Since the risk to release the disturbances is zero, more free parameters can be
investigated in order to improve the model. The estimated parameters from the last
test will be the new initial guesses shown in Table 5.13.
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Figure 5.16 The system in Eq. (5.5) estimated with θ = [x10,x20,rE ,rP]. The resid-
uals = optimal trajectory - measured signal .

Table 5.13 Initial guess after estimated system in Eq. (5.5) with θ = [x10,x20,rE ,-
rP,wP,wE ].

Parameter TD [s] TR [s] A4 wE wP
Initial Guess 250.0 30.0 0.50 9.57 -10.7
Parameter x10 x20 rE rP
Initial Guess 148 29.2 11.6 9.98

Next, we try to release TD,TR and A4 separately. In other words

θ0 =[x10,x20,rE ,rP,wP,wE ]

θ1 =[x10,x20,rE ,rP,wP,wE ,TD]

θ2 =[x10,x20,rE ,rP,wP,wE ,TR]

θ3 =[x10,x20,rE ,rP,wP,wE ,A4].
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Figure 5.17 The system in Eq. (5.5) estimated with θ = [x10,x20,rE ,rP,wP,wE ].
The residuals = optimal trajectory - measured signal .

The results can be seen in Table 5.14.

Table 5.14 Cost statistics for the null model, θ0 = [x10,x20,rE ,rP,wP,wE ] for sys-
tem in Eq. (5.5).

Released parameter TD TR A4
Cost 3281.737 3361.316 3121.397
Cost Reduction 87.886 8.307 248.226
Risk 0.000 0.012 0.000

Since the risk is zero for more than one parameter, A4 is chosen, since it gives
the greatest cost reduction. The optimal test results with A4 released can be seen in
Fig. 5.18. One can see that the residuals for E do not look like the white Gaussian
noise, so further improvements can probably be achieved.
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Figure 5.18 The system in Eq. (5.5) estimated with θ = [x10,x20,rE ,rP,wP,wE ,-
A4]. The residuals = optimal trajectory - measured signal .

For this step, the null model is given from the estimation of
θ0 = [x10,x20,rE ,rP,wP,wE ,A4]
and the more complex models are given from
θ1 = [x10,x20,rE ,rP,wP,wE ,A4,TD] and
θ2 = [x10,x20,rE ,rP,wP,wE ,A4,TR].
The initial guesses are given from θ0 and can be seen in Table 5.15.

Table 5.15 Initial guess after estimated system in Eq. (5.5) with θ = [x10,x20,rE ,-
rP,wP,wE ,A4].

Parameter TD [s] TR[s] A4 wE wP
Initial Guess 250.0 30.0 0.393 9.59 -10.8
Parameter x10 x20 rE rP
Initial Guess 149 27.4 7.03 10.0

The results of the new models can be seen in Table 5.16.
Since the risk is zero for TD, the model given from this estimation can be said to
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Table 5.16 Cost statistics for the null model, θ0 = [x10,x20,rE ,rP,wP,wE ,A4], for
system in Eq. (5.5).

Released parameter TD TR
Cost 3093.534 4714.292
Cost Reduction 27.863 -1532.865
Risk 0.000 1.00

be better than the null model. The test results for this estimation can be seen in Fig.
5.19. Note that the cost reduction for releasing TR is negative, this is probably due
to that the optimization converged to an unwanted minimum.

Figure 5.19 The system in Eq. (5.5) estimated with θ = [x10,x20,rE ,rP,wP,wE ,-
A4,TD]. The residuals = optimal trajectory - measured signal .

There are still some errors greater than one can expect from white Gaussian
noise, as can be seen in the residuals. Therefore the procedure goes forward and the
new null model is given from
θ0 = [x10,x20,rE ,rP,wP,wE ,A4,TD]
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and the conditional model is given from
θ1 = [x10,x20,rE ,rP,wP,wE ,A4,TD,TR].

Table 5.17 Initial guess after estimated system in Eq. (5.5) with θ = [x10,x20,rE ,-
rP,wP,wE ,A4,TD].

Parameter TD [s] TR [s] A4 wE wP
Initial Guess 272 30.0 0.405 9.68 -10.6
Parameter x10 x20 rE rP
Initial Guess 149 27.5 7.04 9.46

Table 5.18 Cost statistics for the null model, θ0 = [x10,x20,rE ,rP,wP,wE ,A4,TD],
for system in Eq. (5.5).

Released parameter TR
Cost 1765.775
Cost Reduction 1327.759
Risk 0.000

With the initial guesses in Table 5.17, the system was estimated with all param-
eters free and the cost statistics can be seen in Table 5.18. There is no risk to release
TR and the best model is found by estimating all parameters. The optimal trajectory
can be seen in Fig. 5.20 and one can see the significant improvement compared to
the initial model in Fig. 5.15. The real parameters used in the simulation to generate
the measurement data compared to the estimated parameters can be seen in Table
5.19. One can see that all parameters except for rP are estimated with an error less
than 2% compared to the real value.

Table 5.19 Real and estimated parameters for system in Eq. (5.5)

Parameter TD [s] TR [s] A4 wE wP
Real Value 285 19.0 0.260 10.0 -10.0
Estimated Value 283 19.1 0.260 10.0 -10.2
Parameter x10 x20 rE rP
Real Value 148 28.0 0.50 10.0
Estimated Value 148 28.0 0.50 9.41

To investigate the robustness of the estimation the final estimated parameters
were used to calculate the confidence interval with bootstrapping for each param-
eter, as described in Sec. 4.3.2. The 95% confidence interval, calculated from 500
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Figure 5.20 The system in Eq. (5.5) estimated with θ = [x10,x20,rE ,rP,wP,wE ,-
A4,TD,TR]. The residuals = optimal trajectory - measured signal .

simulations of the model given from the estimated values, is shown in Table 5.19
and the estimated relative error is shown in Table 5.21.

Table 5.20 Estimated confidence intervals for the final estimated parameters for
system in Eq. (5.5)

Parameters TD [s] TR [s] A4 wE wP
Bias 0.0% -0.1% -0.3% -0.1% -0.1%
Interval min -0.9% -4.8% -9.8% -3.0% -1.1%
Interval max 1.0% 4.6% 9.1% 2.8% 0.9%
Parameters x10 x20 rE rP
Bias 0.0% 0.2% -0.5% -1.2%
Interval min -0.2% -2.5% -12.4% -13.1%
Interval max 0.2% 3.0% 11.3% 10.8%
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Table 5.21 Estimated relative error for the final estimated parameters for system in
Eq. (5.5)

Parameters TD [s] TR [s] A4 wE wP
Relative Error -0.7% -0.5% 0.0% 0.0 % 2%
Parameters x10 x20 rE rP
Relative Error 0.0% 0.0% 0.0% -5.9%

One can see that the real values are in the confidence interval except for the
estimation of wp. Since the confidence intervals are not a guarantee for the real
value this could happen and it is not unlikely to happen for 1 of 9 parameters with
95% confidence intervals.

5.2.3 Heat Exchanger
The interactive method was applied to a simplified heat-exchanger model in order
to fit to a more complex model of the system. This was done as an experimental
example to see if it is possible to use the method for other purposes than just iden-
tifying the system from real measurement data. The complex model was simulated
and since the simulation was noise free, OE was used as identification method. For
this identification the measurements came from the complex model.

In Table 5.22 the step by step values for each parameter to estimate is shown.
Step 1 is the initial model to improve and step 7 is the final model that came out
from the interactive method.

One can see that C3 could not be estimated and that some parameter values
changed drastically compared to the initial model. A drawback with this identifi-
cation was that the initial state parameters [p0,hout0,Twall0] were dependent to the
other unknown parameters. The initial model compared to the measurements can be
seen in Fig. 5.21 and the final improved model can be seen in Fig. 5.22. If the target
is to have a model that just follows the two outputs given to the optimization, the
model has been improved. It is obvious from the plot that the initial states were hard
to estimate since there is a clear offset in the two output signals. There was also a
long sequence that was constant which does not contain any information about the
system and therefore is decreasing the performance of the estimation. This sequence
was kept in the optimization because it facilitated the estimation procedure to esti-
mate over one time sequence.
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Table 5.22 The estimated parameter values step by step for the Heat Exchanger. A
grey cell corresponds to a free parameter.

Parameter C1 C2 C3 αwall p0 hout0 Twall0

step 1 0.0680 0.800 0.400 3900 1.70 ·107 3.39 ·106 811
step 2 0.821 0.800 0.400 3900 1.70 ·107 3.39 ·106 811
step 3 119 0.800 0.400 527 1.70 ·107 3.39 ·106 811
step 4 119 0.800 0.400 527 1.70 ·107 1.00 ·106 811
step 5 874 0.00 0.400 826 1.70 ·107 1.00 ·106 811
step 6 806 0.00 0.400 867 1.70 ·107 1.00 ·106 800
step 7 806 0.00 0.400 869 1.71 ·107 1.00 ·106 800

Figure 5.21 The simulated model from step 1 in Table 5.22 compared to the mea-
sured signal.

55



Chapter 5. Results

Figure 5.22 The simulated model from step 7 in Table 5.22 compared to the mea-
sured signal.
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6
Discussion and Conclusion

In this work the possibilities of implementing grey-box identification in JModel-
ica.org have been investigated. Focus was on Maximum Likelihood (ML) estimation
for processes with white Gaussian measurement noise, in order to identify improved
parameter values for Modelica models from measurement data.

The behavior of the software and how to use it was investigated followed with
a method for identification and analyze the estimates. The conclusions given from
this work are focusing on challenges and performance of the implementation.

6.1 Discussion

Because no solution was found to change the discretization in the optimization, the
discretization in the simulation was instead changed to implicit Euler to reduce the
discretization error. To be able to estimate parameters for real systems without bias,
the discretization in the optimization has to be improved to reduce the discretization
error.

The identification works for simulations with implicit Euler. Estimation bias
due to discretization seems to come from differences in discretization between the
measurement data generation and the optimization. It is very likely that the imple-
mentation will work for real systems, if it is possible to minimize a sum in Optimica
with a better discretization than implicit Euler.

A possible way to get around the discretization problem might be to estimate
the measurement noise by itself and then use the estimated noise covariances as
fixed weights in the optimization. Then it is possible to improve the discretization
by choosing another discretization method with more than one collocation point.

The confidence interval has been calculated for each parameter independently.
The advantage with that implementation is that it is easy to implement but also easy
to analyze. A less conservative confidence interval for the whole system could be
achieved by calculating a confidence region that treats all parameters together, but
then the result is more complex to analyze since it is very likely that the parameter
estimates are correlated.
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The sample size larger than 500-1000, depending on the system, was affecting
the solver. If the sample size has been given too large it has been impossible for the
solver to converge. So depending on the model and the number of free parameters,
the sample size has been upper limited. At the same time, the theoretical perfor-
mance increases with a large sample size. The sample sizes used in this work was
been chosen with that in mind.

When the two estimation methods, OE and ML estimation, were used to esti-
mate parameters for different noise intensities, the differences for equal noise in-
tensities was shown to be small. If the measurement noise covariance is known, the
noise parameters in the optimization can be fixed to the corresponding noise to re-
duce the degrees of freedom. However, the advantage was shown to be small and so
fixing the noise parameters might not make a big difference.

When the discretization effects the estimation, another method that could be
useful was presented in [Garatti and Bittanti, 2013]. This method is often more
robust for systems with bad initial guesses that might converge to an unwanted
minimum. It also disregards the distribution of the noise which is an advantage for
unknown noise distributions.

6.2 Conclusions

The implementation can estimate noise intensity parameters for pure noise signals
with negligible errors compared to the theoretical values. For ML estimation im-
plemented for nonlinear systems, the parameter estimation distribution looked like
what is expected from a working ML estimation.

In order to generate sums to minimize, the optimization had to be discretized
using the implicit Euler method. The same system was simulated, with implicit Eu-
ler and with the default method in JModelica.org, in order to generate measurement
data. It was demonstrated that the simulation with implicit Euler resulted in better
estimations. This is probably due to the identification trying to account differences
in discretization by changing parameters.

Maximum Likelihood (ML) and Output Error (OE) estimation has been imple-
mented and was compared for different ratios of measurement noise covariances.
For same noise intensities, the OE estimation gave a little bit lower estimation error.
For noise covariance with different ratios, ML estimation gave a significantly lower
estimation covariance.

ML estimation for white Gaussian measurement noise was tested for a system
with two-point noise distribution. The optimization manage to find an optimal tra-
jectory close to the real system when using a large sample size. The parameter esti-
mate distribution given from measurements with two-point noise distribution were
similar to what one can expect from white Gaussian measurements. On the other
hand, the residuals differ from the residuals given from white Gaussian noise and
reveal the two-point distribution.
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6.2 Conclusions

An interactive method for how to approach grey-box identification was pre-
sented. The implemented interactive method was used for a simple RC circuit to
see how over-parametrization is handled. It was shown that the interactive method
falsified the option of releasing too many parameters, which indicated that it works
fine for over-parametrization.

Bootstrapping was used to get confidence intervals for the estimated parameters
for a drum boiler model. For this model, the dynamics of the model were all known
and all parameters were free in the final estimation. For eight of nine parameters,
the 95 % confidence interval that was calculated contained the real parameter value.
This indicates that the bootstrapping method works fine for the purpose of analyzing
the robustness of the estimation.

As a final case in this work, OE estimation was used to fit a simplified model to
data from a more complex model. The interactive method was used and the model
was improved with respect to minimizing the cost function. However, there was still
a clear difference between the optimal trajectory and the signal given from the more
complex model. A drawback with this model was that the initial state values were
dependent of the unknown parameters so it was hard to estimate the correct initial
states. Therefore, no real conclusion about the robustness of the iterative method for
this purpose can be drawn.

6.2.1 Future Work
In this work all measurement data was generated from simulations. The target is
however to improve models for real systems. A next step would be to try to apply
grey-box identification with the implementation in this work for real systems but
with similar complexity as the models used in this work.

The main focus with this work was to investigate how to do the optimization
for identification. The other side of the coin, how the model design affects the opti-
mization needs further investigations.

The work has been limited to system with only measurement noise, identifying
nonlinear systems with process disturbances using ML estimation has not been in-
vestigated. More work has to be done in order to implement a method for systems
with process disturbances.

Since this work has been limited to system with white Gaussian measurement
noise, the implementation is limited. To be able to identify parameters for system
with other noise distributions more analysis has to be done. For example, ML esti-
mation might not be asymptotically unbiased for other distributions.

The implementation of the iterative identification was focused on the approach
and need to be more user friendly in order to be easy to use.
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A
Optimica code

A.1 Drum Boiler

model DrumBoiler
//parameters
parameter Real T_D = 250.0; //drum time constant [s]
parameter Real TR = 30.0; // Reheater time constant [s]
parameter Real A4 = 0.5; // Drum yield
parameter Real w_E = 0.0; //Power disturbance
parameter Real w_P = 0.0; //Preassure disturbace
parameter Real x10 = 0.0; //initial state
parameter Real x20 = 0.0; //initial state

//constants
parameter Real K1(free = false) = 0.3;
parameter Real A1(free = false) = 14;
parameter Real A2(free = false) = 3.3;
parameter Real K2(free = false) = 0.064;
parameter Real A3(free = false) = 15;
parameter Real K3(free = false) = 0.32;

input Real uc; //control valve position
input Real fc; // fuel flow [kg/s]

Real x1(fixed = true, start = x10);
Real x2(fixed = true, start = x20);

Real E; //Power[M/W]
Real P; //Drum pressure[n/m^2]

equation
der(x1) = K1*(A1*fc-A2*uc*x1)/T_D;
der(x2) = K2*(A2*uc*x1-A3*x2)/TR;
E = K3*(A4*A2*uc*x1 + (1-A4)*A3*x2) + w_E;
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A.1 Drum Boiler

P = x1 + w_P;

end DrumBoiler;

optimization ML(objectiveIntegrand= (v1^2)*(r1)^(-1) +
(v2^2)*(r2)^(-1) + log(r1*r2),
startTime=0.0, finalTime = 1000.0)

//noise covariances
parameter Real r1(free = true,initialGuess = 1.0,

min = 0.0, max = 100.0)=1.0;
parameter Real r2(free = true,initialGuess = 1.0,

min = 0.0, max = 100.0)=1.0;

DrumBoiler DB(T_D = T_D,TR = TR, A4 = A4, w_E = w_E,
w_P = w_P, x10 = x10, x20 = x20);

parameter Real T_D(free = true, initialGuess = 250.0,
nominal = 284.87, min = 0,
max = 500) = 250.0; //drum time constant [s]

parameter Real TR(free = true, initialGuess = 30.0,
nominal = 19.0, min = 0,
max = 100) = 30.0; // Reheater time constant [s]

parameter Real A4(free = true, initialGuess = 0.393,
nominal = 0.26, min = 0.0,
max = 1.0) = 0.5; // Drum yield

parameter Real w_E(free = true,
initialGuess = 9.59) = 0.0; //Power disturbance

parameter Real w_P(free = true,
initialGuess = -10.8) = 0.0; //Preassure disturbace

parameter Real x10(free = true,
initialGuess = 0.0,
nominal = 148) = 0.0; //initial state

parameter Real x20(free = true,
initialGuess = 0.0,
nominal = 28) = 0.0; //initial state

//controlsignals
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Appendix A. Optimica code

input Real uc;
input Real fc;

input Real E;
input Real P;

Real v1;
Real v2;

equation
v1 = (DB.E-E);
v2 = (DB.P-P);
uc = DB.uc;
fc = DB.fc;

end ML;
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