
INTERFACING FUNCTIONAL

MOCK-UP UNITS IN

MODELICA

SIMON CÖSTER

Master’s thesis
2014:E11

Faculty of Engineering
Centre for Mathematical Sciences
Numerical Analysis

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

Abstract

Different simulation tools have their own definition of how a model
is represented. This causes complications when modeling in one tool
and trying to simulate in another, or if one wants to verify simulation
results in another tool. This thesis focuses on a way of interfacing the
Functional Mock-up Interface (FMI) into Modelica models. Modelica
is an open standard modeling language for modeling physicals model,
such as electrical circuits, drive trains etc. The Functional Mock-up
Interface is an interface which provides tool independent C-functions
for execution of models.

In this thesis we make use of the FMI specification and Modelica’s
external function interface to generate a complete Modelica model.
The results shows that the implementation works quite well, but with
some decrease of performance.

1

Preface
This report is my Master Thesis for my conclusion of a degree in Master
of Science in Engineering Physics at Lund Institute of Technology. It
is a Master Thesis in Numerical Analysis and all the work has been
performed at Modelon AB in Lund, Sweden.

My supervisor was Johan Åkesson and my assistant supervisor was
Bengt-Arne Andersson, both employed at Modelon AB. Examiner was
Claus Führer, professor at Numerical Analysis at Lund University.

2

Contents

Contents
Preface 2

1 Introduction 5
1.1 Purpose . 5
1.2 Delimitations . 5
1.3 Layout of this report . 5

2 Background 5

3 Theory 6
3.1 FMI . 6

3.1.1 Model Interface . 6
3.1.2 Mathematical description 8
3.1.3 Calling sequence . 10
3.1.4 Model Description Scheme 11
3.1.5 The FMI functions . 14

3.2 Modelica . 18
3.2.1 Equations, algorithms and when clauses 18
3.2.2 External Functions . 19
3.2.3 Packages . 21

3.3 CMake . 22

4 Pre-study 22

5 Method 25
5.1 Design of program and requirements 25
5.2 Testing Models . 31

5.2.1 PureDiscrete . 31
5.2.2 Bouncing Ball . 31
5.2.3 Pendulum . 32
5.2.4 Controlled Tanks . 32
5.2.5 Direct Feedthrough with Continuous Integrator 33
5.2.6 Direct Feedthrough with Feedback 33
5.2.7 Coupled Clutches . 34
5.2.8 3D robot . 34

6 Results 35
6.1 Testing Models . 35

7 Discussion 42
7.1 Future work . 43

A Model Description Schema 45
A.1 Example of ModelDescription.xml 45

B FMU Structure 46

C Model Interface 48
C.1 fmiModelFunctions.h . 48
C.2 fmiModelTypes.h . 51

3

List of Tables

List of Tables
1 Return values of the FMI functions. 8
2 Argument mapping types. [3] 20
3 Return types. [3] . 21
4 Mapping of vectors. [3] . 21
5 The CPU times for some of the models. 42

List of Figures
1 The figure shows a FMU instance and the data flow. [4] . . . 9
2 An event indicator changes its domain. [4] 10
3 The figure shows the UML State Machine of a FMU. [4] . . . 10
4 Top level description schema. [4] 11
5 The attributes of fmiModelDescription. [4] 12
6 Some of the attributes of a ScalarVariable. [4] 13
7 The figure shows the height of the ball in model BouncingBall. 19
8 FMU import feature of Dymola. 22
9 The figure shows OpenModelica’s FMI import. 25
10 The figure shows an example of external functions in a Mod-

elica package. 26
11 The figure shows the implementation process. 26
12 The figure shows the model Controlled Tanks. 32
13 The figure shows the connected blocks. 33
14 The figure shows a sinus signal feed backed. 33
15 The figure shows Coupled Clutches. 34
16 The figure shows a model of the 3D Robot 34
17 The figure shows the simulation result of the model PureDis-

crete. 35
18 The difference between variable d in model PureDiscrete. . . 35
19 The figure shows the simulation result of the model Bouncing-

Ball. Both height and impact variable is plotted. 36
20 The figure shows the difference in variable h of the Bouncing-

Ball model. 36
21 Both x and y variable of the pendulum model is plotted. . . . 37
22 The figure shows the difference in variable x from the Pendu-

lum model. 37
23 A plot of the levels in two controlled tanks. 38
24 The difference in level in the model ControlledTanks. 38
25 The simulation result for Coupled Clutches. 39
26 The figure shows the difference of variable w1 in model Cou-

pled Clutches. 39
27 The figure shows the simulation result for the 3D Robot model. 40
28 The figure shows the difference between the variable phi1 in

the model 3D Robot . 40
29 The figure shows the simulation result for a feed backed signal. 41
30 The figure shows the simulation result of a signal that is inte-

grated and summed. 41

4

Introduction

1 Introduction

1.1 Purpose

The purpose of this Master Thesis is to investigate how, if possible,
to interface Functional Mock-up Interface (FMI) into Modelica mod-
els. There are several challenges in this task; how should the code be
generated and more importantly, how to map the Functional Mock-up
Interface into the Modelica model to get numerical correct results. The
goal is to follow the Modelica language specification and the FMI spec-
ification as long as possible and to create a tool independent solution.

1.2 Delimitations

In this thesis, the focus is on FMI version 1.0. Additionally, only the
Model Exchange feature is studied and the Co-Simulation part is omit-
ted. This thesis also focuses on FMUs delivered with only a dynamic
linked library, ergo source code FMUs are not covered. One other
delimitation is that the program shall follow Modelica specification
3.2r2 [3].

1.3 Layout of this report

First, a brief background to the FMI is presented. The theory section
addresses the Functional Mock-Up Interface with its mathematical de-
scription and goals. Also, relevant information about the Modelica
language such as external functions and packages are addressed. Then
follows a short description on a compiler-independent build process us-
ing CMake. Program requirements and a description of the different
models that are tested are included in the Method-section. The results
are then presented followed by a discussion of the implementation.

2 Background

Different simulation tools usually have their own way to represent mod-
els, e.g. different programming languages and data storage. This be-
comes a problem when users want to create models in one tool, but
run the simulation in another. This problem is the underlying reason
for introducing the Functional Mock-up Interface. In 2010, the first
version of FMI was released, FMI 1.0. The intention is to transform
a dynamic system to an FMU (Functional Mock-up Unit) that imple-
ments the FMI (Functional Mock-up Interface). A FMU can then be
simulated in another tool by calling the FMI functions. There are two
features of the FMI; Co-Simulation (CS) where the FMU is self inte-
grating (the FMU is packed with a ODE solver) or Model Exchange
(ME) where the FMU requires a ODE solver to perform the integration
and simulation.

5

Theory

3 Theory

3.1 FMI
FMI - Functional Mock-up Interface is a tool independent standard
for Model Exchange (ME) or Co-Simulation (CO) [4]. It is developed
under the MODELISAR consortium. For model exchange the idea is
that a modeling tool can generate C-code of a dynamic system that can
be used by another tool. The executable that implements the interface
is called a Functional Mock-up Unit (FMU). The interface consists of
24 C-functions and type definitions. These 24 functions is all that is
needed to instantiate, initialize and run the simulation in the target
simulator. The 24 functions are [4]

• fmiGetBoolean
• fmiGetInteger
• fmiGetReal
• fmiGetString
• fmiInitialize
• fmiInstantiateModel
• fmiFreeModelInstance
• fmiSetTime
• fmiSetBoolean
• fmiSetInteger
• fmiSetReal
• fmiSetString

• fmiGetContinuousStates
• fmiGetNominalContinuousStates
• fmiSetContinuousStates
• fmiGetDerivatives
• fmiGetEventIndicators
• fmiEventUpdate
• fmiCompletedIntegratorStep
• fmiGetStateValueReferences
• fmiGetModelTypesPlatform
• fmiTerminate
• fmiGetVersion
• fmiSetDebugLogging

The FMU is distributed in a zip-file which contains at most three
parts [4]:

• A Model Description File (xml-file)
• Dynamic Linked Libraries, *.dll (Windows) or *.so (unix) and

sometimes the C-source code
• Other model data such as model icons, tables and documentation

3.1.1 Model Interface

The model description file contains all the information about the model
parameters and variables. C-source code and DLL can both be pro-
vided in the FMU, but at least one of them must be distributed.

The interface consist of two header files; fmiModelTypes.h and
fmiModelFunctions.h, see Appendix C.1 and Appendix C.2.
In fmiModelTypes.h, all the type definitions for input and output
of the FMI-specific functions are defined. Below, "standard32", a stan-
dard 32-bit platform is defined [4].

6

3.1 FMI

typedef void* fmiComponent;
typedef unsigned int fmiValueReference;
typedef double fmiReal;
typedef int fmiInteger;
typedef char fmiBoolean;
typedef const char* fmiString ;
#define fmiTrue 1
#define fmiFalse 0
#define fmiUndefinedValueReference(fmiValueReference)(-1)

The fmiComponent defines a pointer to a model specific data struc-
ture. The type fmiValueReference defines a unique (at least with
respect to the corresponding base type) handle to a variable of the
model. fmiReal defines a real number (64 bits), fmiInteger defines
a integer number (32 bits), fmiBoolean defines a boolean number (8
bits) and fmiString defines a character string. Also, if
fmiValueReference is undefined, it gets the value of
fmiUndefinedValueReference [4]. The file
fmiModelFunctions.h includes the header fmiModelTypes.h and
declares all the FMI-specific functions mentioned above. In order to
be able to use several models in one executable, the functions must
have unique function names. In fmiModelFunctions.h macros are
defined, that changes the actual name of the functions. This is made
in the following manner [4].

#define MODEL_IDENTIFIER MyFMU
#include "fmiModelFunctions.h"

fmiStatus fmiSetTime(...){
...
}

The macro MODEL_IDENTIFIER is used in the macros of
fmiModelFunctions.h to change the name of fmiSetTime
to MyFMU_fmiSetTime. The MODEL_IDENTIFIER for each model
can be found in the model description file under the attribute
modelIdentifier. An enumeration is also defined in
fmiModelFunctions.h that defines a status flag that is returned
by all FMI functions [4].

typedef enum {fmiOK,
fmiWarning,
fmiDiscard,
fmiError,
fmiFatal
} fmiStatus;

In table 1, these statuses are explained.

7

3.1 FMI

Status Description
fmiOK The function call was problem free

fmiWarning There were some complications in the
function but the simulation can proceed.
The function logger shall show a mes-
sage.

fmiDiscard This status is only available if it is
explicitly defined for fmiSetReal,
fmiSetContinuousStates,
fmiGetReal, fmiGetDerivatives
and fmiGetEventIndicators. If the
function returns with this status, it is
recommended that the solver shall use a
smaller step size. The logger shall show
a message.

fmiError The function discovered an error and the
simulation cannot continue.

fmiFatal The computations are corrupted for all
model instances.

Table 1: Return values of the FMI functions.

3.1.2 Mathematical description

The aim of the Model Exchange interface is to solve a system of hybrid
ordinary differential equations numerically. This system is a piecewise
continuous system which means that discontinuities can occur at dif-
ferent time instants [4]. These time instants, t0, t1, ..., tn, are called
events. If an event is known before hand, it is called a time event and
if an event is defined implicitly it is called a step event or state event.
In figure 1 below, a FMU instance is shown and the data flow between
the solver and the instance is described with arrows [4].

8

3.1 FMI

Figure 1: The figure shows a FMU instance and the data flow. [4]

x(t) is a vector of time-continuous states and inside every interval x(t)
is a continuous function of time. Constant states are represented by a
vector m(t), which is a set of real, integer, string and logical variables.
m(t) only changes at events and is constant between them. Events are
defined by the following conditions [4]:

1. A time event, ti is defined in the previous event ti−1 either by
the FMU or by the environment.

2. A state event occurs when an event indicator changes its domain
from zi > 0 to zi ≤ 0 or the other way round. This is also known
as zero-crossing. All event indicators are piecewise continuous
and are real numbers collected in a vector z(t). See figure 2.

3. Step events occurs if fmiCompletedIntegratorStep returns
with callEventUpdate = fmiTrue. Such an event can be
e.g. dynamic state selection, where the previous states are no
longer suited numerically.

Events are never triggered inside the FMU, so it is the simulation
environment’s responsibility to handle the event triggering. [4].

9

3.1 FMI

Figure 2: An event indicator changes its domain. [4]

3.1.3 Calling sequence

In figure 3 below the calling sequence of the FMI functions is shown in
an UML State Machine1.

Figure 3: The figure shows the UML State Machine of a FMU. [4]

Every implementation must support this calling sequence. At instan-
tiated, the inputs and start values can be set. The model needs to be
initialized using fmiInitialize to reach the state step Accepted.
The solution can be retrieved at initial time, after a completed inte-
grator step or after an event iteration.

1UML State Machine - Unified Modeling Language State Machine is a way of visualize the
way a program (or physical device) works. The program can be in only one state for a given time.

10

3.1 FMI

If fmiInitialize or fmiEventUpdate returs with
eventInfo.terminated = fmiTrue the model should be termi-
nated properly. After fmiSetTime has been called, the model is in
the step in process state, where an integrator step is performed.
When an integrator step is completed the function
fmiCompletedIntegratorStep must be called. If the environ-
ment has detected an event, first the inputs must be set before the
event iteration starts [4].

3.1.4 Model Description Scheme

Except from the model equations, all information needed about the
model is stored in a XML-file. The top level of the XML-scheme is
shown in figure 4.

Figure 4: Top level description schema. [4]

The element attributes defines all the global properties of the model,
see figure 5. UnitDefinitions is a list of definitions of units and
TypeDefinitions is a list of type definitions. VendorAnnotations
defines vendor specific data but can be ignored by other tools. Mod-
elVariables are all the variables of the model [4].

11

3.1 FMI

Figure 5: The attributes of fmiModelDescription. [4]

12

3.1 FMI

In figure 5 all attributes of the model are gathered. The GUID
(Globally Unique IDentifier)2, is a string that checks the compatibility
between the XML-file and the C-functions provided.

All model variables are defined in the ModelVariables element
which only consists of a set ScalarVariable. The attributes of a
ScalarVariable can be seen in figure 6.

Figure 6: Some of the attributes of a ScalarVariable. [4]

The attribute name is the full name of the variable and it is unique
within the model. The attribute valueReference is a handle to
identify the variables value in the interface. This reference is unique
for a specific base type (Real, Integer, String, Boolean) [4].
The definition of when a variable is allowed to be changed is repre-
sented by the attribute variability. Values of this enumeration

2For more information about Unique Identifiers see http://msdn.microsoft.com/en-
us/library/aa373931(VS.85).aspx, retrieved 2014-02-01

13

3.1 FMI

are [4]:

• constant: The value of the variable does not change.
• parameter: The value of the variable does not change after

initialization.
• continuous: The value can be changed in any way, no restric-

tions. Only Real variables can be Continuous.
• discrete: The value only change at events.

When connecting FMUs to each other, information about the
causality is needed. The causality can take four different val-
ues [4]:

• input: the variable is an input to the model.
• output: the variable is an output of the model.
• internal: the variable cannot be used in a connection.
• none: tool specific variable.

A variable can be an alias variable. An alias variable occurs when phys-
ical components are connected to each other, e.g. the assignment a := b
and for efficiency reasons a is removed and replaced with b. The de-
fault value for a variable is noAlias. If a variable has attribute alias
it is an alias variable and can be achieved by its valueReference.
If a variable has attribute negatedAlias the value retrieved by its
valueReference must be negated [4]. An example of a XML-file is
shown in Appendix A.1.

3.1.5 The FMI functions

The FMI defines 24 C-functions that interact with the FMU in differ-
ent ways.

fmiComponent fmiInstantiateModel(fmiString instanceName,
fmiString GUID,
fmiCallbackFunctions functions,
fmiBoolean loggingOn);

This function returns a new instance of the model. If the function
returns a null pointer, the instantiation failed and no other function
can be called. The argument instanceName is the name of the in-
stance and the argument GUID is the Globally Unique IDentifier as
mentioned in section 3.1.4. Argument functions is an instance of
fmiCallbackFunctions which is described below. loggingOn can
be either fmiTrue or fmiFalse and enables/disables debug logging
respectively [4].

14

3.1 FMI

void fmiFreeModelInstance(fmiComponent c);

The function above is used to deallocate all the memory for the instance
c. Switching between loggingOn = fmiTrue/loggingOn = fmiFalse
can be achieved by using the function

fmiStatus fmiSetDebugLogging(fmiComponent c,
fmiBoolean loggingOn);

These three functions deal with creation and destruction of model in-
stances and to set the desired debugging option [4].

In fmiInstantiateModel, an argument function is present,
which is an instance of fmiCallbackFunctions. This is a struct
defined in the following manner:

typedef struct {
void (*logger)(fmiComponent c, fmiString instanceName,

fmiStatus status, fmiString category,
fmiString message, ...);

void* (*allocateMemory)(size_t nobj, size_t size);
void (*freeMemory)(void* obj);

} fmiCallbackFunctions

This struct holds function pointers to three functions. The first, logger,
is a function that is called in the model, usually when the model func-
tion encounters some problem. The other two function pointers handles
memory allocation and deallocation [4]. In C, those will point to e.g.
calloc and free respectively.

During the simulation, different variables needs to be computed and
re-initialized. The following functions handles this type of interaction
with the model.

fmiStatus fmiSetTime(fmiComponent c, fmiReal time);

This function sets the new time for the instance and re-initializes vari-
ables that depend on the time [4].

fmiStatus fmiSetContinuousStates(fmiComponent c,
const fmiReal x[], size_t nx);

This function sets a new continuous states vector, x, with size nx and
re-initializes caching of variables that are state dependent.

fmiStatus fmiCompletedIntegratorStep(fmiComponent c,
fmiBoolean* callEventUpdate);

The environment must call this function after every completed inte-
grator step. The function fmiEventUpdate must be called if
fmiCompletedIntegratorStep returns with callEventUpdate
= fmiTrue [4].

15

3.1 FMI

fmiStatus fmiSetXXX(fmiComponent c,
const fmiValueReferences vr[],
size_t nvr, const fmiXXX value[]);

Inputs, start values and independent variables are set with the function
fmiSetXXX. Note that XXX can be any of Real, Integer, Boolean
or String. The ValueReferences are passed to the function as
vr, with nvr number of values. The argument value is a vector
containing the values that shall be set. [4]

The following functions are used to evaluate the model equations.

fmiStatus fmiInitialize(fmiComponent c,
fmiBoolean toleranceControlled,
fmiReal relativeTolerance,
fmiEventInfo* eventInfo);

This function initializes the model, which means that it computes the
start values for all the variables. fmiSetTime must be called before
this function. Furthermore, variables with a start attribute in the
ModelDescription file can be set before the model is initialized. The
function returns with eventInfo once the initialization is done. [4]

The structure fmiEventInfo is used in two functions;
fmiInitialize and fmiEventUpdate. This structure is defined
as [4]

typedef struct {
fmiBoolean iterationConverged;
fmiBoolean stateValueReferencesChanged;
fmiBoolean stateValuesChanged;

fmiBoolean terminateSimulation;
fmiBoolean upcomingTimeEvent;
fmiReal nextEventTime;

} fmiEventInfo;

The top three variables in this structure are only meaningful for
fmiEventUpdate and will always be fmiTrue for fmiInitialize.
If terminateSimulation = fmiTrue, the simulation shall suc-
cessfully be terminated. If upcomingTimeEvent = true, the sim-
ulator shall integrate to nextEventTime at most. Another event can
occur before nextEventTime, e.g. a step event, then nextEventTime
becomes meaningless. If upcomingTimeEvent = fmiFalse there
are no time events in the model. [4]

fmiStatus fmiEventUpdate(fmiComponent c,
fmiBoolean intermediateResults,
fmiEventInfo* eventInfo);

After an event has been triggered, this function shall be called and will
return with eventInfo. This function uses the three other variables
in fmiEventInfo. It shall be called until

16

3.1 FMI

eventInfo->iterationConverged = fmiTrue.
If eventInfo->stateValuesChanged = fmiTrue, then the new
states have to be achieved with the function
fmiGetContinuousStates.
If eventInfo.stateValueReferencesChanged = fmiTrue
the meaning of the states has changed. [4]

fmiStatus fmiGetDerivatives(fmiComponent c,
fmiReal derivatives[],
size_t nx);

Returns the states derivatives for the current states.
The element derivative[i] is corresponding to the derivative of
the state x[i].

fmiStatus fmiGetEventIndicators(fmiComponent c,
fmiReal eventIndicators[],
size_t ni);

Retrieves the vector containing the event indicators of the model.

fmiStatus fmiGetXXX(fmiComponent c,
const fmiValueReference vr[],
size_t nvr,
fmiXXX value[]);

Gets the values of the variables with corresponding ValueReference.

fmiStatus fmiGetContinuousStates(fmiComponent c,
fmiReal x[],
size_t nx);

Retrives the vector of continuous states. This function has to be called
after initialization and after an event iteration and the states have
changed indicated by
eventInfo->stateValuesChanged = fmiTrue. [4]

fmiStatus fmiGetNominalContinuousStates(fmiComponent c,
fmiReal x_nominal[],
size_t nx);

Returns the nominal values of the continuous states.

fmiStatus fmiGetStateValueReferences(fmiComponent c,
fmiValueReference vrx[],
size_t nx);

Returns the vector containing the value references of the state vector.

fmiStatus fmiTerminate(fmiComponent c);

Terminates the simulation. Also releases all the memory that has been
allocated during the simulation.

17

3.2 Modelica

3.2 Modelica
Modelica is an Object Orientated programming language for modeling
of physical systems [3]. Modelica Standard Library defines different
components such as electrical circuits, drive trains, hydraulic circuits
etc. These components contains connectors which can be connected be-
tween components. It is mainly a declarative programming language,
meaning the program expresses the logic of computation without any
information about the computation flow, it is the compiler’s respon-
sibility to chose the order of computation. Furthermore, a Modelica
tool is free to evaluate expression several times in an integrator step
and omit evaluation of variables if their value doesn’t influence the
result.This is in contrast to imperative programming which describes
statements that should be performed after each other. [3]

3.2.1 Equations, algorithms and when clauses

In Modelica, equations are listed inside an equation-block. As men-
tioned before, it is the Modelica compiler’s task to decide in which or-
der the expressions of an equation-block should be calculated. How-
ever, Modelica also offers an imperative way of stating relationships
and expressions, in algorithm-blocks. This works essentially like
equation-block, but the order is defined from top to bottom.

Before any calculations can be carried out, initialization takes place
to assign values to all variables in the model. Constrains to determine
the initial value of variables can be set using the word initial before
either equation or algorithm. The initial value for a variable can
be set using the attribute start = someExpression.

Events are triggered using the when-statement. A when-statement
has the following syntax [3]:

when expression then
{ statement ";" }

{ elsewhen expression then
{ statement ";" } }

end when;

Statements inside a when-statement are active only when an element
in the expression vector becomes true. when-statements cannot be
nested and they are not allowed inside while, if or for-clauses. Fur-
thermore, they cannot occur inside functions. At an event instant, the
continuous states should be reinitialized. Modelica offers the reinit-
operator that only can be used inside a when-statement. The operator
has the following syntax [3]:

reinit(x, expression);

This operator reinitializes x with expression. x must be of type
Real or an array of Real variables. Below, an example written in
Modelica is shown.

18

3.2 Modelica

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;

equation
impact = h <= 0;
der(v) = if flying then -g else 0;
der(h) = v;
when {impact, h <= 0 and v <= 0} then
v_new = if edge(impact) then -e*pre(v) else 0;
flying = v_new > 0;
reinit(v, v_new);

end when;
end BouncingBall;

The operator der is used to represent the symbolical derivative of the
variable its operating on, and the pre operator returns the value of the
variable after the last event iteration. The edge(a) operator expands
to the Boolean expression a and not pre(a). [3] This model gets
the result presented in figure 7.

Figure 7: The figure shows the height of the ball in model
BouncingBall.

3.2.2 External Functions

An interface for external function calls is provided in the Modelica lan-
guage. This interface provides support for external functions written
in C and FORTRAN 77 and mapping of types between Modelica and
the external language. The declaration of a external function is defined
in [3]:

19

3.2 Modelica

function IDENT string_comment
{ component_clause ";" }
[protected { component_clause ";" }]

external[language_specification] [external_function_call]
[annotation] ";"
[annotation ";"]

end IDENT;

Here, statements inside [] are optional and statements inside {} can
be repeated zero or several times. By default, C is chosen as external
language and it is not necessary to specify this as the
language_specification. In the public part of the declaration,
all the components must be declared either as input or output.
Annotations is used to include necessary header files or include different
libraries. [3] The annotations for interacting with external functions
are:

• annotation(Library="NameOfLibrary")
• annotation(Library={"NameOfLibrary1", "NameOfLibrary2"})
• annotation(Include="includeDirective")
• annotation(IncludeDirectory="modelica://URI/to/IncludeDir")
• annotation(LibraryDirectory="modelica://URI/to/LibraryDir")

The default URI3 to the IncludeDir is
modelica://LibraryName/Resources /Include,
and to LibraryDir is
modelica://LibraryName/Resources /Library [3]. More about
packages and libraries in section 3.2.3. External functions can use in-
ternal memory if the function is defined as an instance of the built
in Modelica class ExternalObject. This is a partial class which
means that no instance can be defined by this class, it has to be used
as an extension to ExternalObjects. The external object class
that extends ExternalObject must contain a constructor and
a destructor. External functions can operate on the class that ex-
tends ExternalObject. If an ExternalObject is used as input or
output of and external function written in C, it is mapped to void*. [3]
To be able to use external functions, some argument type mapping is
essential, see table 2 and 3.

Modelica C
input output

Real double double*
Integer int int*
Boolean int int*
String const char* const char**

Enumeration Type int int*
size(..., ...) size_t size_t

Table 2: Argument mapping types. [3]

3URI = Uniform Resource Identifier, see http://www.w3.org/TR/uri-clarification/

20

3.2 Modelica

The type returning from an external function is mapped according to
table 3.

Modelica C
Real double

Integer int
Boolean int
String const char*

Enumeration Type int

Table 3: Return types. [3]

Vectors can only be passed as argument to an external function and
not as a return type. When passing a vector to an external C-function,
the syntax in table 4 must be followed.

Modelica C
Input and Output

T[n] T’*, size_t n
T[n,m] T’*, size_t n, size_t m

Table 4: Mapping of vectors. [3]

In table 4, the type Tmust be one of the simple types, Real, Integer,
Boolean or String and the mapped type T’ must follow the map-
ping types defined in table 2 under the Input column.

3.2.3 Packages

A Modelica package is basically a namespace for classes, functions and
other definitions. It can be used to avoid name collisions and to map
class structures to a hierarchical File System [3].
There are two types of packages:

• Structured entities
• Non-structured entities

A non-structured entity is represented by a file classname.mo and
shall only contain definition of a class classname. A structured entity
are represented as a file structure with a directory packagename with
a file package.mo in it. In package.mo a package with a name
packagename shall be defined. Using this structure with a package
containing external functions enables the user to easily include header
files or use libraries with annotation defined in section 3.2.2. [3]

21

3.3 CMake

3.3 CMake

CMake is a cross-platform, open source, build system. CMake creates
makefiles for Unix based systems and Visual Studio Projects for Win-
dows based system. All commands are listed in a file CMakeLists.txt
which is used to generate the project. To every project one can add ex-
ecutables, libraries and add include directories etc. [2] In this project,
CMake was used to generate platform independent projects and to add
the external library FMIL (Functional Mock-up Interface Library) pro-
vided by Modelon AB. [2] It is outside the scope of this Thesis to go
deeper on this topic.

4 Pre-study

Several simulation tools offers an ’Import FMU’ feature which gener-
ates Modelica models ready to be simulated. Two of those, Dymola
and OpenModelica, has been studied. Both of these tools offers import
of FMU into their modeling environment. In Dymola, one can either
choose the ’Import FMU’ function or just drag the FMU file to the
window and release and the generation will begin. The import feature
is shown in figure 8

Figure 8: FMU import feature of Dymola.

This generates declarations of all the variables (including param-
eters and enumerations) in the model. A package fmi_Functions
is defined with some of the FMI functions and some help functions.
There is not a complete mapping of the FMI functions. All functions
are calling external C-functions, but the annotation is not including a
particular C file or library. Instead, in the annotation Dymola uses the

22

Pre-study

identifier Header and generates all the code for the specific C-function
inside the annotation. An example for the function fmiSetTime is
shown below:

function fmiSetTime
input fmiModel fmi;
input Real ti;
input Real preAvailable;
output Real postAvailable=preAvailable;

external "C"
BouncingBall_fmiSetTime2(fmi, ti);

annotation (Header = "
#ifndef BouncingBallFMI_C
#define BouncingBallFMI_C 1
#include \"FMI/fmiModelFunctions_.h\"
#include \"FMI/fmiImport.h\"
#endif
#ifndef BouncingBall_SetTime_C
#define BouncingBall_SetTime_C 1
#include <stdlib.h>
void BouncingBall_fmiSetTime2(void*m, double ti) {
struct dy_Extended*a=m;
fmiStatus status=fmiFatal;
if (a) {
a->dyTime=ti;
status=a->dyFmiSetTime(a->m, ti);

}
if (status!=fmiOK && status!=fmiWarning) {
ModelicaError(\"SetTime failed\");

}
}
#endif", Library="BouncingBall",
LibraryDirectory="modelica://BouncingBall_fmu/
Resources/Library/FMU/binaries");
end fmiSetTime;

One can see that Dymola uses Modelicas ExternalFunction to hold
internal memory of the FMU. A structure dy_Extended is used in
the wrapper function to typecast the object from Modelica. After a
NULL pointer check, the call to the FMI function is performed.

The calling sequence is the same for every model generated by Dy-
mola. Initial values and parameters are set in initial algorithm
and the model is initialized under initial equation. After that,
the main calling sequence is generated as:

23

Pre-study

equation
when initial() then
fmi = fmi_Functions.fmiModel(fmi_instanceName,

fmi_loggingOn);
end when;
fmi_ATime = fmi_Functions.fmiSetTime(fmi, time, 1);
fmi_AStates = fmi_Functions.fmiSetContinuousStates(

fmi, fmi_x, fmi_AParamsAndStart +
fmi_Initialized + fmi_ATime);

der(fmi_x) = fmi_Functions.fmiGetDerivatives(fmi,
size(fmi_x, 1), fmi_AStatesInputs);

fmi_z = fmi_Functions.fmiGetEventIndicators(fmi,
fmi_NumberOfEventIndicators, fmi_AStatesInputs);

for i in 1:size(fmi_z,1) loop
fmi_z_positive[i] = fmi_z[i] > 0;
end for;

algorithm
when cat(1, change(fmi_z_positive),

{time>=pre(fmi_TNext), fmi_StepEvent,
fmi_DiscreteInputChanged, initial()}) then

(fmi_TNext, fmi_NewStates) :=
fmi_Functions.fmiEventUpdate(fmi, fmi_AStatesInputs);
if fmi_NewStates then
reinit(fmi_x, fmi_Functions.fmiGetContinuousStates(

fmi, size(fmi_x,1), fmi_AStatesInputs));
end if;

end when;
equation
fmi_StepEvent = fmi_Functions.fmiCompletedStep(fmi,
fmi_AStatesInputs)>0.5;

Since there is no way of guarantee that the calling sequence is as stated,
Dymola have introduced some variables that make dependencies. For
example, the function fmi_Functions.fmiSetContinuousStates
cannot be called until the variables fmi_AParamsAndStart,
fmi_Initialized and fmi_ATime have been evaluated. This way,
the calling sequence can be controlled completely.

24

Method

OpenModelica’s FMI Import is experimental and there are limita-
tions when trying to simulate FMUs. The import interface is shown in
figure 9.

Figure 9: The figure shows OpenModelica’s FMI import.

When trying to simulate FMUs generated by Dymola in Open-
Modelica, the result is valid when the simulation time is chosen to
DefaultExperiment.stopTime defined under
fmiModelDescription. Any longer simulation will give a constant
zero result. The FMU is imported as a Co-Simulation model, which is
outside the scope of this thesis.

5 Method

5.1 Design of program and requirements
The program should be able to perform several tasks. Considering
Modelica’s structured packages, a design such that the *.dll (or *.so)
could be found easily is preferable. Since there are no way of loading
*.dll-files directly in Modelica, some type of wrapper functions must be
generated for every model that maps Modelica functions to C-functions
that loads the *.dll and calls the right FMI - function. Another re-
quirement is that the Modelica model, with its wrapper functions and
other files, should be packaged in a structural, compact way. The de-
fault search path in Modelica structured packages/libraries is defined
as a file structure with the package file package.mo and directory
Resources with subdirectories Include and Library. This is best
explained by the example in figure 10 below.

25

5.1 Design of program and requirements

Figure 10: The figure shows an example of external functions
in a Modelica package.

The example in figure 10 shows a package ExternalFunctions that
is mapped to the file system as a structured entity. Since this is the
default structure of a structured package in Modelica the program
should be able to generate a package with the model defined inside.
The program should also move or copy the FMI specific header files
fmiModelFunctions.h and fmiModelTypes.h to the Include di-
rectory along with the generated C-file with the wrapper functions.

Also, the program should be able to unzip the FMU file in some
way to get access to the *.dll file and the model description schema
(XML). Modelon offers a library written in C to interact with all parts
of FMUs including unzipping and parsing of XML files. [1] Using this
API, the program can unzip the FMU, parse the XML file and receive
all data needed to generate a Modelica model.

Figure 11: The figure shows the implementation process.

26

5.1 Design of program and requirements

Figure 11 illustrates the idea of the implementation process. The FMU
instance should be an instance of Modelica’s ExternalObject which in
C is mapped as void*. The FMU should be able to hold information
about the FMI functions, a handle to the *.dll file and other type of
information. The handle to the *.dll file is represented by the type
HANDLE on windows system [5] and by void* on unix systems [6].
The most natural choice to represent a FMU in C-code is to use a
structure. The idea is to have function pointers to the corresponding
function in the loaded *.dll file. The naming of these functions are the
same as the FMI function, but with underscores between the words,
e.g. the function pointer to fmiSetTime is named fmi_Set_Time.
The wrapper functions is named as the FMI function appended with
_wrapper. At instantiation, an instance of the structure is allocated
and the function pointers are set. The structure is defined in appendix
B. It holds a handle to the *.dll file, function pointers to all the FMI-
functions and a fmiComponent.
As mentioned in section 3.1.1, fmiComponent is a 32 bit pointer to a
model specific structure. This structure holds all information to pro-
cess model equation etc. It is the exporting tools task to implement this
structure and the importing environment does not know its content.
Furthermore three flags, currentTime, lastIntegratorStepTime
and stepEventTrigger, are present in the FMU structure. These
three flags will restrict the calls to fmiCompletedIntegratorStep,
as explained later.

The generated Modelica model will define a package fmiFunctions
with all the FMI functions as external function calls. Considering the
mapping types discussed in section 3.2.2, all FMI-functions shall be
mapped to the Modelica model. In Modelica, the FMU is represented
as an ExternalObject. The implementation looks like this:

class FMU
extends ExternalObject;
function constructor
input String instanceName;
input Boolean loggingOn;
input String dll_path;
input Sring GUID;
output FMU fmu;

external "C" fmu =
fmiInstantiateModel_wrapper(instanceName, loggingOn,

dll_path, GUID)
annotation (Include="#include <VDP_wrappers.c>");

end constructor;
function destructor

input FMU fmu;
external "C" fmiFreeModelInstance_wrapper(fmu);

annotation (Include="#include <VDP_wrappers.c>");
end destructor;
end FMU;

27

5.1 Design of program and requirements

This class contains two functions; the constructor and the de-
structor. The constructor and destructor are mapped to the FMI
functions fmiInstantiateModel and fmiFreeModelInstance
respectively. The function fmiInstantiateModel allocates mem-
ory for the FMU using the calloc-function. If allocation is successful,
all the function pointers are set to the correct function in the *.dll file.

One of the requirements of the program is that the FMI-functions
shall be mapped 1:1 in the Modelica code. An example of this is shown
below

function fmiGetContinuousStates
input FMU fmu;
input Integer n;
output Real x[n];

external "C" fmiGetContinuousStates_wrapper(fmu, x, n)
annotation(Include="#include <BouncingBall_wrappers.c>");

end fmiGetContinuousStates;

This function is mapped to the C-function

void fmiGetContinuousStates_wrapper(void* fmu,
double* states,
size_t num)

{
struct FMU* tmp = fmu;
fmiStatus status;
if(tmp != NULL){
status = tmp->fmi_Get_Continuous_States(tmp->component,

states,
num);

}
if(status != fmiOK && status != fmiWarning){
ModelicaError("Error using fmiGetContinuousStates");

}
}

This function follows the rules of mapping of arguments as mentioned
in table 2. The first argument fmu is an instance of ExternalObject
in Modelica and is mapped to void* in C. First, this variable has to
be casted to the type struct FMU*. If the pointer is not a NULL-
pointer the actual FMI-function is called and returns with status. If
status is not fmiOK and not fmiWarning, the simulation shall be
stopped.

The calling sequence is mainly based on algorithms because one can
control the evaluation order. Though, some operators such as reinit
are not allowed in algorithm sections, equations are used for these. An
example of the calling sequence is shown below

28

5.1 Design of program and requirements

initial algorithm
fmiFunctions.fmiSetReal(fmu, 637534210, vy_start, 1);
fmiFunctions.fmiSetReal(fmu, 637534212, x_start, 1);
fmiFunctions.fmiSetReal(fmu, 637534213, y_start, 1);
fmiFunctions.fmiSetReal(fmu, 16777216, g, 1);
fmiFunctions.fmiSetTime(fmu, startTime);
initNextTime := fmiFunctions.fmiInitialize(fmu);
states := fmiFunctions.fmiGetContinuousStates(fmu,

size(states,1));
algorithm
fmiFunctions.fmiSetTime(fmu, time);
states_set := fmiFunctions.fmiSetContinuousStates(fmu,

states, 1);
der_states := fmiFunctions.fmiGetDerivatives(fmu,

size(states,1));
vx := fmiFunctions.fmiGetReal(fmu, 637534208);
der_vx_ := fmiFunctions.fmiGetReal(fmu, 637534209);
vy := fmiFunctions.fmiGetReal(fmu, 637534210);
der_vy_ := fmiFunctions.fmiGetReal(fmu, 637534211);
x := fmiFunctions.fmiGetReal(fmu, 637534212);
der_x_ := fmiFunctions.fmiGetReal(fmu, 637534208);
y := fmiFunctions.fmiGetReal(fmu, 637534213);
der_y_ := fmiFunctions.fmiGetReal(fmu, 637534210);
F := fmiFunctions.fmiGetReal(fmu, 637534214);
for i in 1:size(eventIndicators, 1) loop
domain_change[i] := eventIndicators[i] > 0;

end for;
stepEvent := fmiFunctions.fmiCompletedIntegratorStep(

fmu, states_and_inputs_set) > 0.5;
equation

der(states) = der_states;
when cat(1, change(domain_change),

{time >= pre(tNext) and pre(tNext) > 0,
initial(), stepEvent}) then

(tNext, newStates, terminateSimulation) :=
fmiFunctions.fmiEventUpdate(fmu);

end when;
when cat(1, change(domain_change),

{time >= pre(tNext) and pre(tNext) > 0,
initial(), stepEvent}) then

if newStates then
tempStates =
fmiFunctions.fmiGetContinuousStates(fmu,

size(states, 1));
else

tempStates = pre(tempStates);
end if;

end when;
when cat(1, change(domain_change) and

{newStates for i in 1:size(domain_change)},
{time >= pre(tNext) and pre(tNext) > 0 and
newStates, initial() and
newStates, stepEvent and newStates} then

reinit(states, tempStates);
end when;
when terminateSimulation then

fmiFunctions.fmiTerminate(fmu);
terminate("Terminated by FMU");

end when;

29

5.1 Design of program and requirements

Initially, start values and parameters are set under the initial
algorithm section. After that, the start time is set and the model
is initialized with fmiInitialize. Then the continuous states are
retrieved. In the algorithm section, the time is set, the continuous
states are set and the derivatives are retrieved. The different variables
can be retrieved after this, with the fmiGetXXX functions. The event
indicators are retrieved and an iteration over this vector takes place
that check if the indicator is greater than zero. If so, the value True
is stored in a temporary vector domain_change, if not, the value
False is stored. Events are handled by when sections, see discussion
in section 7.

In Modelica, there is no way to know when an integrator step
has been completed, hence it it not straightforward to call the func-
tion fmiCompletedIntegratorStep. This function must be called
when an integrator step has been completed according to the FMI stan-
dard. The solution to this is to have the three flags currentTime,
lastIntegratorStepTime and stepEventTrigger in the FMU
structure to check if it is legal to call the function from the wrapper
function. The idea is that at initialization the flag
lastIntegratorStepTime is set to currentTime (most likely
tstart = 0) and stepEventTrigger = 0. Every time fmiSetTime
is called, currentTime is updated with the actual time. Then,
fmiCompletedIntegratorStep is called from the Modelica model
several times in one integrator step but the actual call to the function
fmi_Completed_Integrator_Step in the FMU structure is only
performed if currentTime > lastIntegratorStepTime.
If fmi_Completed_Integrator_Step returns with
callEventUpdate = fmiTrue, the flag stepEventTrigger is
set to 1 and lastIntegratorStep is set to currentTime. Then
function returns with 1 if a step event has been triggered and
currentTime >= lastIntegratorStepTime. This is shown be-
low:
int fmiCompletedIntegratorStep_wrapper(void* fmu){

struct FMU* tmp = fmu;
fmiStatus status;
fmiBoolean callEventUpdate;
if(tmp != NULL){
if(tmp->currentTime > tmp->lastIntegratorStepTime){

status = tmp->fmi_Completed_Integrator_Step(
tmp->component, &callEventUpdate);

tmp->lastIntegratorStepTime = tmp->currentTime;
if(callEventUpdate == fmiTrue){
tmp->stepEventTrigger = 1;

}
} else {

status = fmiOK;
}

}
if(status != fmiOK && status != fmiWarning){
ModelicaError("Error using fmiCompletedIntegratorStep");

}
return tmp->stepEventTrigger &&

tmp->currentTime >= tmp->lastIntegratorStepTime;
}

30

5.2 Testing Models

5.2 Testing Models

By generating some test models, one can compare with e.g. models
generated by Dymola to see if there are any numerical differences. The
goal with these different models that are tested is to have a good mix
of models with different behavior, i.e. different type of events. This
means that some models only have time events and other may only
have state events, or maybe a mixture of the both. Another aspect to
consider is whether the model have inputs and outputs and to see how
the model handles this. In this section, the models that are tested are
described briefly and the purpose to why this model was chosen.

5.2.1 PureDiscrete

This model is a simple model with only one discrete variable. It was
chosen in order to test that the program can handle purely discrete
models with no continuous states. Furthermore, this model lacks in-
puts and outputs and contains only time events.

model PureDiscrete
discrete Real d(start=1);

equation
when sample(0, 1) then
d = sign(sin(time));

end when;
end PureDiscrete;

5.2.2 Bouncing Ball

The Bouncing Ball model was chosen to test if models with state events
can be handled. Every time the ball touches the ground a reinitializa-
tion must be made such that the ball change direction upwards.

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;

equation
impact = h <= 0;
der(v) = if flying then -g else 0;
der(h) = v;
when {impact, h <= 0 and v <= 0} then
v_new = if edge(impact) then -e*pre(v) else 0;
flying = v_new > 0;
reinit(v, v_new);

end when;
end BouncingBall;

31

5.2 Testing Models

5.2.3 Pendulum

The pendulum model is special because of its change of state variables.
This model tests how the program handles step events.

model Pendulum
Real vx;
Real vy;
Real x(start=0.6);
Real y(start=0.8);
Real F;
parameter Real g = 9.82

equation
der(vx) = -x*F;
der(vy) = -y*F - g;
der(x) = vx;
der(y) = vy;
x*x+y*y=1;

end Pendulum;

5.2.4 Controlled Tanks

This model is used in order to test models using both continuous and
discrete states. The model is shown in figure 12.

Figure 12: The figure shows the model Controlled Tanks.

32

5.2 Testing Models

5.2.5 Direct Feedthrough with Continuous Integrator

This model is included in this test because it consists of three sub-
models that are coupled together. The block Constant gives a con-
stant signal to the Integrator which then goes to the Feedthrough
sum. The flow is shown in figure 13.

Figure 13: The figure shows the connected blocks.

5.2.6 Direct Feedthrough with Feedback

To test if the model can handle a feedback signal. This model consists
of a sinus signal coupled to one of the inputs of the Feedthrough model
and the output is feed backed to the outer input, as in figure 14.

Figure 14: The figure shows a sinus signal feed backed.

33

5.2 Testing Models

5.2.7 Coupled Clutches

Coupled clutches is a classic example that often is used in tests
examples. The model is shown in figure 15. This model contains both
time events and state events.

Figure 15: The figure shows Coupled Clutches.

5.2.8 3D robot

A bigger model to show that the program can handle industrial sized
models. Just like the Coupled clutches model, this model con-
tains both time- and state events. Furthermore, this model reaches
a stopping criteria when the robot reaches the end of the movement.
This will check if the models call the fmiTerminate correct.

Figure 16: The figure shows a model of the 3D Robot

34

Results

6 Results

6.1 Testing Models
Several models, described in section 5.2, where exported as FMUs from
Dymola 2014. These FMUs was then unzipped and parsed with the
program to generate the desired file structure with the Modelica model.

Figure 17: The figure shows the simulation result of the model
PureDiscrete.

0 10 20 30 40 50 60 70 80 90 100

−0.5

0

0.5

x 10
−10

t (s)

d
 −

 d
D

y
m

o
la

Difference between variable d in model PureDiscrete

Figure 18: The difference between variable d in model Pure-
Discrete.

35

6.1 Testing Models

Figure 19: The figure shows the simulation result of the model
BouncingBall. Both height and impact variable is plotted.

0 0.5 1 1.5 2 2.5 3
−8

−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−9

t (s)

h
 −

 h
D

y
m

o
la

 (
m

)

Difference between simulation results

Figure 20: The figure shows the difference in variable h of the
BouncingBall model.

36

6.1 Testing Models

Figure 21: Both x and y variable of the pendulum model is
plotted.

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

x 10
−10 Difference between the variable x in the Pendulum model

t (s)

x
 (

m
)

Figure 22: The figure shows the difference in variable x from
the Pendulum model.

37

6.1 Testing Models

Figure 23: A plot of the levels in two controlled tanks.

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−4

t (s)

le
v
e
l
−

 l
e
v
e
l d

y
m

o
la

Difference between simulation results

Figure 24: The difference in level in the model Controlled-
Tanks.

38

6.1 Testing Models

Figure 25: The simulation result for Coupled Clutches.

0 5 10 15

−0.5

0

0.5

x 10
−10

t (s)

ra
d
/s

Difference between variable w1 in Coupled Clutches

Figure 26: The figure shows the difference of variable w1 in
model Coupled Clutches.

39

6.1 Testing Models

Figure 27: The figure shows the simulation result for the 3D
Robot model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−6

−4

−2

0

2

4

6

8

10

12
x 10

−8

t (s)

p
h
i1

 −
 p

h
i1

d
y
m

o
la

Difference between simulation results

Figure 28: The figure shows the difference between the variable phi1 in the
model 3D Robot

40

6.1 Testing Models

Figure 29: The figure shows the simulation result for a feed
backed signal.

Figure 30: The figure shows the simulation result of a signal
that is integrated and summed.

The simulation times for the different models are shown in table 5.

41

Discussion

Model Dymola (s) Mine (s) Native (s)

Pure Discrete 0.031 0.031 0.031

Bouncing Ball 0.031 0.063 0.031

Pendulum 0.047 0.281 0.234

Controlled Tanks 0.015 0.313 0.015

Coupled Clutches 0.125 1.61 0.016

3D Robot 0.796 32.6 0.375

Table 5: The CPU times for some of the models.

7 Discussion

The calling sequence was chosen to be in an algorithm section to be able
to control the order of evaluation. However, it is not allowed to have
the reinit operator in algorithms, so the event handling is stated in
equations to follow the Modelica standard. Although it is not allowed
to have reinit in algorithms, Dymola choose to do so anyway. This
leads me to believe that Dymola is less strict when it comes to this,
or that Dymola supports Modelica 3.3 in which reinit is allowed in
algorithms. Comparing the generated models with models generated
by Dymola, we see that the results are quite consistent. There are small
numerical errors in some of the models and one model, Feedthrough
with feedback, was completely wrong. The numerical solver could
not proceed the simulation longer than 0.27. This model should be
quite simple, but something makes it fail and I am not shure why.

It is clear that the generated models requires more CPU time to be
simulated than both models generate by Dymola and native models.
This can be due to the function calls to fmiGetXXX and fmiSetXXX.
Now, one variable is set/get per function call which probably is not the
most efficient way to do. There might be some loop iterations going on
inside fmiGetXXX and fmiSetXXX for lookup of variables etc. which
will increase the computation time, especially in larger models. A prob-
ably better way to do this is to pass vectors of valueReferences
and the values. Hence, there will only be one call per base type and
the simulation will probably be a lot faster.

The main goal was to generate models that were independent of
simulation tool, which means that the models should be able to simu-
late in e.g. Dymola, OpenModelica and JModelica.org. It turns out,
that this is not the case. In OpenModelica, the models are getting
error type in operand to change must be simple type in com-
ponent <NO COMPONENT>, and I have not figured out what
is causing this error. OpenModelica obvious has some problems with

42

7.1 Future work

FMI models, which maybe related to this problem. JModelica.org does
not support fmiXXXString, which leads to problem when trying to
simulate the models. To simulate a model in JModelica one first com-
pile the model to an FMU, which then is loaded and simulated. The
generated models can be compiled without problem, but when the
compiled FMU shall be loaded, JModelica.org writes the error: Could
not load the FMI function ’fmiGetString’. First I thought this was
because in fmiInstantiate the function tries to set the pointer to
fmiGetString. But the error remains after those rows of code are
commented.

Another goal was to have a platform independent solution which
should work on both Windows system and UNIX system. Unfortu-
nately, there has been no time or equipment to test this program on
UNIX systems yet.

7.1 Future work
Some things that can be added in this kind of implementation are sup-
port for Co-Simulation and for FMI 2.0 in the future when it is released.
The function calls should really be changed so that fmiGetXXX and
fmiSetXXX are called with vectors of values instead of one value at
a time. I strongly believe that this will improve simulation speed. It
would be nice to give this program a GUI to make it more user friendly.

43

References

References
[1] FMI Library, http://www.jmodelica.org/FMILibrary
[2] CMake documentation, http://www.cmake.org/cmake/

help/documentation.html
[3] Modelica Association, Modelica R© - A Unified Object-Oriented Lan-

guage for Physical Systems Modeling, Version 3.2 revision 2. July
30, 2013.

[4] ITEA (Information Technology for European Advancement), Func-
tional Mock-up Interface for Model Exchange, Version 1.0, January
26, 2010.

[5] http://msdn.microsoft.com/en-us/library/windows/
desktop/ms684175(v=vs.85).aspx

[6] http://pubs.opengroup.org/onlinepubs/009695399/
functions/dlopen.html

44

http://www.jmodelica.org/FMILibrary
http://www.cmake.org/cmake/help/documentation.html
http://www.cmake.org/cmake/help/documentation.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
http://pubs.opengroup.org/onlinepubs/009695399/functions/dlopen.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/dlopen.html

Model Description Schema

A Model Description Schema

A.1 Example of ModelDescription.xml

<?xml version="1.0" encoding="UTF-8"?>
<fmiModelDescription
fmiVersion="1.0"
modelName="Lorenz"
modelIdentifier="Lorenz"
guid="{c9045968-fbcc-485e-b15f-2b708c32cf21}"
generationTool="Dymola Version 2014 (32-bit), 2013-03-25"
generationDateAndTime="2014-01-15T12:54:21Z"
variableNamingConvention="structured"
numberOfContinuousStates="3"
numberOfEventIndicators="0">
<DefaultExperiment startTime="0.0"

stopTime="50.0"
tolerance="1E-010"/>

<ModelVariables>
<ScalarVariable

name="x"
valueReference="33554432">
<Real start="10"

fixed="true"/>
</ScalarVariable>
<ScalarVariable

name="der(x)"
valueReference="587202560">
<Real/>

</ScalarVariable>
<ScalarVariable

name="y"
valueReference="33554433">
<Real start="1"

fixed="true"/>
</ScalarVariable>
<ScalarVariable

name="der(y)"
valueReference="587202561">
<Real/>

</ScalarVariable>
<ScalarVariable

name="z"
valueReference="33554434">
<Real start="5"

fixed="true"/>
</ScalarVariable>
<ScalarVariable

name="der(z)"
valueReference="587202562">

45

FMU Structure

<Real/>
</ScalarVariable>
<ScalarVariable

name="sigma"
valueReference="16777216"
variability="parameter">
<Real start="10"

fixed="true"/>
</ScalarVariable>
<ScalarVariable

name="rho"
valueReference="16777217"
variability="parameter">
<Real start="28"

fixed="true"/>
</ScalarVariable>
<ScalarVariable

name="beta"
valueReference="16777218"
variability="parameter">
<Real start="2.6666666666666665"

fixed="true"/>
</ScalarVariable>

</ModelVariables>
<Implementation>

<CoSimulation_StandAlone>
<Capabilities

canHandleVariableCommunicationStepSize="true"
canHandleEvents="true"
canBeInstantiatedOnlyOncePerProcess="true"/>

</CoSimulation_StandAlone>
</Implementation>

</fmiModelDescription>

B FMU Structure

46

FMU Structure
s
t
r
u
c
t
F
M
U

{
D
L
L
_
H
A
N
D
L
E

d
l
l
_
h
a
n
d
l
e
;

f
m
i
C
o
m
p
o
n
e
n
t

(
*
f
m
i
_
I
n
s
t
a
n
t
i
a
t
e
_
M
o
d
e
l
)
(
f
m
i
S
t
r
i
n
g

i
n
s
t
a
n
c
e
N
a
m
e
,

f
m
i
S
t
r
i
n
g

G
U
I
D
,

f
m
i
C
a
l
l
b
a
c
k
F
u
n
c
t
i
o
n
s

f
u
n
c
t
i
o
n
s
,

f
m
i
B
o
o
l
e
a
n

l
o
g
g
i
n
g
O
n
)
;

v
o
i
d

(
*
f
m
i
_
F
r
e
e
_
M
o
d
e
l
_
I
n
s
t
a
n
c
e
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
S
e
t
_
D
e
b
u
g
_
L
o
g
g
i
n
g
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
B
o
o
l
e
a
n

l
o
g
g
i
n
g
O
n
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
S
e
t
_
T
i
m
e
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
R
e
a
l

t
i
m
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
S
e
t
_
C
o
n
t
i
n
u
o
u
s
_
S
t
a
t
e
s
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
R
e
a
l

x
,

s
i
z
e
_
t

n
x
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
C
o
m
p
l
e
t
e
d
_
I
n
t
e
g
r
a
t
o
r
_
S
t
e
p
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
B
o
o
l
e
a
n
*

c
a
l
l
E
v
e
n
t
U
p
d
a
t
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
S
e
t
_
R
e
a
l
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

c
o
n
s
t

f
m
i
R
e
a
l

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
S
e
t
_
I
n
t
e
g
e
r
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

c
o
n
s
t

f
m
i
I
n
t
e
g
e
r

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
S
e
t
_
B
o
o
l
e
a
n
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

c
o
n
s
t

f
m
i
B
o
o
l
e
a
n

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
S
e
t
_
S
t
r
i
n
g
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

c
o
n
s
t

f
m
i
S
t
r
i
n
g

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
I
n
i
t
i
a
l
i
z
e
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
B
o
o
l
e
a
n

t
o
l
e
r
a
n
c
e
C
o
n
t
r
o
l
l
e
d
,

f
m
i
R
e
a
l

r
e
l
a
t
i
v
e
T
o
l
e
r
a
n
c
e
,

f
m
i
E
v
e
n
t
I
n
f
o
*
e
v
e
n
t
I
n
f
o
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
D
e
r
i
v
a
t
i
v
e
s
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
R
e
a
l

d
e
r
i
v
a
t
i
v
e
s
,

s
i
z
e
_
t

n
x
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
E
v
e
n
t
_
I
n
d
i
c
a
t
o
r
s
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
R
e
a
l

e
v
e
n
t
I
n
d
i
c
a
t
o
r
s
,

s
i
z
e
_
t

n
i
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
R
e
a
l
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

f
m
i
R
e
a
l

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
I
n
t
e
g
e
r
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

f
m
i
I
n
t
e
g
e
r

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
B
o
o
l
e
a
n
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

f
m
i
B
o
o
l
e
a
n

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
S
t
r
i
n
g
)

(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

c
o
n
s
t

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
,

s
i
z
e
_
t

n
v
r
,

f
m
i
S
t
r
i
n
g

v
a
l
u
e
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
E
v
e
n
t
_
U
p
d
a
t
e
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
B
o
o
l
e
a
n

i
n
t
e
r
m
e
d
i
a
t
e
R
e
s
u
l
t
s
,

f
m
i
E
v
e
n
t
I
n
f
o
*
e
v
e
n
t
I
n
f
o
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
C
o
n
t
i
n
u
o
u
s
_
S
t
a
t
e
s
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
R
e
a
l

s
t
a
t
e
s
,

s
i
z
e
_
t

n
x
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
N
o
m
i
n
a
l
_
C
o
n
t
i
n
u
o
u
s
_
S
t
a
t
e
s
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
R
e
a
l

x
_
n
o
m
i
n
a
l
,

s
i
z
e
_
t

n
x
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
G
e
t
_
S
t
a
t
e
_
V
a
l
u
e
_
R
e
f
e
r
e
n
c
e
s
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
,

f
m
i
V
a
l
u
e
R
e
f
e
r
e
n
c
e

v
r
x
,

s
i
z
e
_
t

n
x
)
;

f
m
i
S
t
a
t
u
s

(
*
f
m
i
_
T
e
r
m
i
n
a
t
e
)
(
f
m
i
C
o
m
p
o
n
e
n
t

c
)
;

f
m
i
C
o
m
p
o
n
e
n
t

c
o
m
p
o
n
e
n
t
;

d
o
u
b
l
e

c
u
r
r
e
n
t
T
i
m
e
;

d
o
u
b
l
e

l
a
s
t
I
n
t
e
g
r
a
t
o
r
S
t
e
p
T
i
m
e
;

i
n
t
s
t
e
p
E
v
e
n
t
T
r
i
g
g
e
r
;

}
;

47

Model Interface

C Model Interface

C.1 fmiModelFunctions.h
#ifndef fmiModelFunctions_h
#define fmiModelFunctions_h

/* This header file must be utilized when compiling a model.
It defines all functions of the Model Execution Interface.
In order to have unique function names even if several models
are compiled together (e.g. for embedded systems), every "real" function name
is constructed by prepending the function name by
"MODEL_IDENTIFIER" "_" where "MODEL_IDENTIFIER" is the short name
of the model used as the name of the zip-file where the model is stored.
Therefore, the typical usage is:

#define MODEL_IDENTIFIER MyModel
#include "fmiModelFunctions.h"

As a result, a function that is defined as "fmiGetDerivatives" in this header file,
is actually getting the name "MyModel_fmiGetDerivatives".

Revisions:
- Jan. 20, 2010: stateValueReferencesChanged added to struct fmiEventInfo (ticket #27)

(by M. Otter, DLR)
Added WIN32 pragma to define the struct layout (ticket #34)
(by J. Mauss, QTronic)

- Jan. 4, 2010: Removed argument intermediateResults from fmiInitialize
Renamed macro fmiGetModelFunctionsVersion to fmiGetVersion
Renamed macro fmiModelFunctionsVersion to fmiVersion
Replaced fmiModel by fmiComponent in decl of fmiInstantiateModel
(by J. Mauss, QTronic)

- Dec. 17, 2009: Changed extension "me" to "fmi" (by Martin Otter, DLR).
- Dez. 14, 2009: Added eventInfo to meInitialize and added

meGetNominalContinuousStates (by Martin Otter, DLR)
- Sept. 9, 2009: Added DllExport (according to Peter Nilsson’s suggestion)

(by A. Junghanns, QTronic)
- Sept. 9, 2009: Changes according to FMI-meeting on July 21:

meInquireModelTypesVersion -> meGetModelTypesPlatform
meInquireModelFunctionsVersion -> meGetModelFunctionsVersion
meSetStates -> meSetContinuousStates
meGetStates -> meGetContinuousStates
removal of meInitializeModelClass
removal of meGetTime
change of arguments of meInstantiateModel
change of arguments of meCompletedIntegratorStep
(by Martin Otter, DLR):

- July 19, 2009: Added "me" as prefix to file names (by Martin Otter, DLR).
- March 2, 2009: Changed function definitions according to the last design

meeting with additional improvements (by Martin Otter, DLR).
- Dec. 3 , 2008: First version by Martin Otter (DLR) and Hans Olsson (Dynasim).

Copyright c© 2008-2009, MODELISAR consortium. All rights reserved.
This file is licensed by the copyright holders under the BSD License
(http://www.opensource.org/licenses/bsd-license.html):

--
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--

48

C.1 fmiModelFunctions.h

with the extension:

You may distribute or publicly perform any modification only under the
terms of this license.

*/

#include "fmiModelTypes.h"
#include <stdlib.h>

/* Export fmi functions on Windows */
#ifdef _MSC_VER
#define DllExport __declspec(dllexport)
#else
#define DllExport
#endif

/* Macros to construct the real function name
(prepend function name by MODEL_IDENTIFIER "_") */

#define fmiPaste(a,b) a ## b
#define fmiPasteB(a,b) fmiPaste(a,b)
#define fmiFullName(name) fmiPasteB(MODEL_IDENTIFIER, name)

#define fmiGetModelTypesPlatform fmiFullName(_fmiGetModelTypesPlatform)
#define fmiGetVersion fmiFullName(_fmiGetVersion)
#define fmiInstantiateModel fmiFullName(_fmiInstantiateModel)
#define fmiFreeModelInstance fmiFullName(_fmiFreeModelInstance)
#define fmiSetDebugLogging fmiFullName(_fmiSetDebugLogging)
#define fmiSetTime fmiFullName(_fmiSetTime)
#define fmiSetContinuousStates fmiFullName(_fmiSetContinuousStates)
#define fmiCompletedIntegratorStep fmiFullName(_fmiCompletedIntegratorStep)
#define fmiSetReal fmiFullName(_fmiSetReal)
#define fmiSetInteger fmiFullName(_fmiSetInteger)
#define fmiSetBoolean fmiFullName(_fmiSetBoolean)
#define fmiSetString fmiFullName(_fmiSetString)
#define fmiInitialize fmiFullName(_fmiInitialize)
#define fmiGetDerivatives fmiFullName(_fmiGetDerivatives)
#define fmiGetEventIndicators fmiFullName(_fmiGetEventIndicators)
#define fmiGetReal fmiFullName(_fmiGetReal)
#define fmiGetInteger fmiFullName(_fmiGetInteger)
#define fmiGetBoolean fmiFullName(_fmiGetBoolean)
#define fmiGetString fmiFullName(_fmiGetString)
#define fmiEventUpdate fmiFullName(_fmiEventUpdate)
#define fmiGetContinuousStates fmiFullName(_fmiGetContinuousStates)
#define fmiGetNominalContinuousStates fmiFullName(_fmiGetNominalContinuousStates)
#define fmiGetStateValueReferences fmiFullName(_fmiGetStateValueReferences)
#define fmiTerminate fmiFullName(_fmiTerminate)

/* Version number */
#define fmiVersion "1.0"

/* Inquire version numbers of header files */
DllExport const char* fmiGetModelTypesPlatform();
DllExport const char* fmiGetVersion();

/* make sure all compiler use the same alignment policies for structures */
#ifdef WIN32
#pragma pack(push,8)
#endif

/* Type definitions */
typedef enum {fmiOK,

fmiWarning,
fmiDiscard,
fmiError,
fmiFatal} fmiStatus;

typedef void (*fmiCallbackLogger) (fmiComponent c, fmiString instanceName,
fmiStatus status,

fmiString category,
fmiString message, ...);

typedef void* (*fmiCallbackAllocateMemory)(size_t nobj, size_t size);
typedef void (*fmiCallbackFreeMemory) (void* obj);

typedef struct {
fmiCallbackLogger logger;
fmiCallbackAllocateMemory allocateMemory;
fmiCallbackFreeMemory freeMemory;

} fmiCallbackFunctions;

typedef struct {
fmiBoolean iterationConverged;
fmiBoolean stateValueReferencesChanged;

49

C.1 fmiModelFunctions.h

fmiBoolean stateValuesChanged;
fmiBoolean terminateSimulation;
fmiBoolean upcomingTimeEvent;
fmiReal nextEventTime;

} fmiEventInfo;

/* reset alignment policy to the one set before reading this file */
#ifdef WIN32
#pragma pack(pop)
#endif

/* Creation and destruction of model instances and setting debug status */
DllExport fmiComponent fmiInstantiateModel (fmiString instanceName,

fmiString GUID,
fmiCallbackFunctions functions,
fmiBoolean loggingOn);

DllExport void fmiFreeModelInstance(fmiComponent c);
DllExport fmiStatus fmiSetDebugLogging (fmiComponent c, fmiBoolean loggingOn);

/* Providing independent variables and re-initialization of caching */
DllExport fmiStatus fmiSetTime (fmiComponent c, fmiReal time);
DllExport fmiStatus fmiSetContinuousStates (fmiComponent c,

const fmiReal x, size_t nx);
DllExport fmiStatus fmiCompletedIntegratorStep(fmiComponent c,

fmiBoolean* callEventUpdate);
DllExport fmiStatus fmiSetReal (fmiComponent c,

const fmiValueReference vr, size_t nvr, const fmiReal value);
DllExport fmiStatus fmiSetInteger (fmiComponent c,

const fmiValueReference vr, size_t nvr, const fmiInteger value);
DllExport fmiStatus fmiSetBoolean (fmiComponent c,

const fmiValueReference vr, size_t nvr, const fmiBoolean value);
DllExport fmiStatus fmiSetString (fmiComponent c,

const fmiValueReference vr, size_t nvr, const fmiString value);

/* Evaluation of the model equations */
DllExport fmiStatus fmiInitialize(fmiComponent c, fmiBoolean toleranceControlled,

fmiReal relativeTolerance, fmiEventInfo* eventInfo);

DllExport fmiStatus fmiGetDerivatives (fmiComponent c, fmiReal derivatives,
size_t nx);

DllExport fmiStatus fmiGetEventIndicators(fmiComponent c, fmiReal eventIndicators,
size_t ni);

DllExport fmiStatus fmiGetReal (fmiComponent c, const fmiValueReference vr,
size_t nvr, fmiReal value);

DllExport fmiStatus fmiGetInteger(fmiComponent c, const fmiValueReference vr,
size_t nvr, fmiInteger value);

DllExport fmiStatus fmiGetBoolean(fmiComponent c, const fmiValueReference vr,
size_t nvr, fmiBoolean value);

DllExport fmiStatus fmiGetString (fmiComponent c, const fmiValueReference vr,
size_t nvr, fmiString value);

DllExport fmiStatus fmiEventUpdate (fmiComponent c,
fmiBoolean intermediateResults, fmiEventInfo* eventInfo);

DllExport fmiStatus fmiGetContinuousStates (fmiComponent c,
fmiReal states, size_t nx);

DllExport fmiStatus fmiGetNominalContinuousStates(fmiComponent c,
fmiReal x_nominal, size_t nx);

DllExport fmiStatus fmiGetStateValueReferences (fmiComponent c,
fmiValueReference vrx, size_t nx);

DllExport fmiStatus fmiTerminate (fmiComponent c);

#endif

50

C.2 fmiModelTypes.h

C.2 fmiModelTypes.h
#ifndef fmiModelTypes_h
#define fmiModelTypes_h

/* Standard header file to define the argument types of the
functions of the Model Execution Interface.
This header file must be utilized both by the model and
by the simulation engine.

Revisions:
- Jan. 4, 2010: Renamed meModelTypes_h to fmiModelTypes_h (by Mauss, QTronic)
- Dec. 21, 2009: Changed "me" to "fmi" and "meModel" to "fmiComponent"

according to meeting on Dec. 18 (by Martin Otter, DLR)
- Dec. 6, 2009: Added meUndefinedValueReference (by Martin Otter, DLR)
- Sept. 9, 2009: Changes according to FMI-meeting on July 21:

Changed "version" to "platform", "standard" to "standard32",
Added a precise definition of "standard32" as comment
(by Martin Otter, DLR)

- July 19, 2009: Added "me" as prefix to file names, added meTrue/meFalse,
and changed meValueReferenced from int to unsigned int
(by Martin Otter, DLR).

- March 2, 2009: Moved enums and function pointer definitions to
ModelFunctions.h (by Martin Otter, DLR).

- Dec. 3, 2008 : First version by Martin Otter (DLR) and
Hans Olsson (Dynasim).

Copyright c© 2008-2010, MODELISAR consortium. All rights reserved.
This file is licensed by the copyright holders under the BSD License
(http://www.opensource.org/licenses/bsd-license.html)

--
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--

with the extension:

You may distribute or publicly perform any modification only under the
terms of this license.

*/

/* Platform (combination of machine, compiler, operating system) */
#define fmiModelTypesPlatform "standard32"

/* Type definitions of variables passed as arguments
Version "standard32" means:

fmiComponent : 32 bit pointer
fmiValueReference: 32 bit
fmiReal : 64 bit
fmiInteger : 32 bit
fmiBoolean : 8 bit
fmiString : 32 bit pointer

*/
typedef void* fmiComponent;
typedef unsigned int fmiValueReference;
typedef double fmiReal;
typedef int fmiInteger;
typedef char fmiBoolean;
typedef const char* fmiString ;

51

C.2 fmiModelTypes.h

/* Values for fmiBoolean */
#define fmiTrue 1
#define fmiFalse 0

/* Undefined value for fmiValueReference (largest unsigned int value) */
#define fmiUndefinedValueReference (fmiValueReference)(-1)

#endif

52

Master’s Theses in Mathematical Sciences 2014:E11

ISSN 1404-6342

LUTFNA-3026-2014

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

