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Abstract

Quantum dots are interesting candidates for a broad variety of elec-
tronic components, with single electron transistors and LEDs being two
examples already well on their way. In nanostructures, such as quantum
dots, quantum e�ects greatly in�uence the transport. In a spin polar-
ized quantum dot system with two energy levels, interference e�ects have
been found to cause a strong suppression of conductance [Phys. Rev.
Lett. 104, 186804 (2010)]. In the present work, this system is further
investigated with thermopower acting as probing tool. Thermopower is
a measure of the voltage induced by a temperature di�erence, attributed
to the Seebeck e�ect, at vanishing current. While conductance probes
transport at and around the Fermi level, thermopower does so for a wider
range of energies. For the system addressed in this work, thermopower is
evaluated as a probing tool complementary to conduction. To simulate
transport, a generalized master equation approach is used; the second or-

der von Neumann approach. This method takes into account second order
tunneling as well as interference e�ects; coherence and correlations. The
simulations show that the conductance suppression manifest itself also in
the thermopower and furthermore, with a more prominent signal.
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Part I

Introduction and outline

1 Introduction

1.1 Transport in nanostructures

The applications of nanostructures have expanded in pace with the development
of the technology. Often it is the size itself, or the properties that come with
the size, that are desirable in a structure. A quantum dot (QD) con�nes charge
carriers in all three dimensions, resulting in a 0D system. Such structures are
often formed by sandwiching one type of semiconductor with another. With
two di�erent band gaps, their conduction bands will form a well when merged
together. This potential well is what con�nes electrons and forms the QD.
QDs made out of metal are also common. These QDs have much more dense
energy levels, thereby they contain many more electrons[1]. Therefore, transport
through QDs of metal or semiconductors has to be described di�erently. In
this work, we are considering semiconductor QDs with only two well separated
energy levels.

By connecting a QD to leads via tunneling barriers, it is possible to run a
current through the device. Conducting QDs have already been used as com-
ponents of electric circuits such as in single electron transistors[2] and LED's[3].
These components have the advantage that that they allow for high control over
conductance properties. One is able to determine the energy of electrons that
are allowed to pass through the device. A small semiconductor QD with only a
few energy levels that are well separated is well suited for fundamental research.
One can investigate how the transport is a�ected by, e.g., Coulomb repulsion or
quantum e�ects like coherence and interference.

When two energy levels are degenerate, interference e�ects can play an extra
role for transport. A simple system, where one can investigate this, is a two
level QD coupled to leads. At degeneracy of two levels of di�erent spin, the
conductance experiences an enhancement at low temperatures. This is because
a single electron in the QD and electrons in the leads form a singlet state in
resonance with the Fermi energy; the Kondo e�ect [4] In Ref. [5], the authors
model the rarer case of two degenerate levels of the same spin. They found that,
at degeneracy, conductance was suppressed due to electron correlation e�ects.
In Ref. [6], the authors realized this system in an InSb nanowire QD. In this
QD, they could get a level crossing of same spin thanks to the large Zeeman
splittings that were acquired with a magnetic �eld.

Parity is a property of wavefunctions that can a�ect the tunneling through
the QD and leads. The parity of a wavefunction can be odd or even according
to:
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ψ (−r) = ±ψ(r)

{
even parity

odd parity

The tunneling rate of electrons from a state in a lead to a state in the QD is
given by the tunneling amplitude t. These amplitudes are given by the overlap
of the QD and lead wavefunction. Therefore, the sign of the wavefunction at the
overlap a�ects t. In Ref. [6] they found, both experimentally and theoretically,
that the suppression at degeneracy was more extensive if the levels had di�erent
parities.

In this work, I investigate if probing the system in Ref. [6] with thermopower
could give any further insight into the transport mechanisms.

1.2 Thermopower

Heat is often a by-product from conversions of energy, for example in car engines
and in power plants. Often this heat is wasted instead of converted into electric-
ity. The usual way to go about, when generating electricity from heat, is to let
heat evaporate water and let the steam run a turbine. The mechanical energy
from the turbine can then be converted to electricity with a generator. With a
thermoelectric material, you can take a shortcut. Utilizing the Seebeck e�ect,
where a temperature di�erence is turned into a voltage, one can directly gener-
ate an electric current. If a thermoelectric element in a closed circuit is heated
in one end, the temperature di�erence can drive a current from the heated side
to the cooler, or the reversed, and through the circuit. Devices on a nanoscale
for thermoelectric applications, reviewed in for example Ref. [7], are expected

to greatly improve the performance of thermoelectric materials[8][9].
Thermopower is a measure of the voltage generated by a temperature dif-

ference for vanishing current. To get a high e�ciency when converting heat to
electric current, the thermopower should be high. The focus in this thesis how-
ever is not to maximize the thermopower in a quantum dot. There is another
aspect to thermopower; it is a way to probe energy features of a system. It can
capture properties that conductance can not.

2 Outline

In the theory part of this thesis, I �rstly present some basics knowledge of how
electrons tunnel through a QD in Sec. 3. In Sec. 4, I go on to describe the
model used for transport in this thesis, the second order von Neumann (2vN)

approach, which is a generalized master equation approach[10]. This method
takes into account features such as Coulomb interaction, interference e�ects and
cotunneling. In the ensuing Sec. 5, I further introduce thermopower; generally
and in QDs. I describe the basics of two articles about two QD conductance
phenomenons that are important for the work in this thesis. I also describe how
the 2vN method is used in the model to calculate the thermopower in a QD.
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In the result part, I �rstly, in Sec. 6, describe details about the simulated
model; a two level QD. In Sec. 7, I present some results from the thermopower
simulations and in Sec. 8 a discussion of the results and a quick outlook are
presented.
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Part II

Theory

3 Quantum dot transport

3.1 Transport in QDs

Fig. 1 shows an example of an arrangement for measuring current through a QD.
To allow for transport, the QD is coupled to leads via tunneling barriers. The
leads work as electron reservoirs from which electrons can easily be released. The
barriers preserve the con�nement of the electrons in the QD, but still allow for
transport through tunneling. A bias V is applied over the leads and controlled
from a power source. The current is measured with an ammeter. In addition,
to be able to tune the levels in the dot up and down, a gate voltage Vg is often
applied to the QD.

lead
QD

lead

I

V

Figure 1: Transport measurement through a quantum dot.

An energy sketch of a QD connected to leads is displayed in Fig. 2a. The
chemical potentials, or Fermi levels, of the leads are represented by µL and µR.
I will refer to the energy in between µL and µR as the Fermi energy EF . As V
will be applied symmetrically around EF , it will always be in between µL and
µR. In Fig. 2, the QD has four spinless energy levels. Accordingly, there can
only be one electron in each level. In an occupied energy level, the electron is
represented with a black circle. All energy levels of the QD that are below µL
and µR are occupied while the ones above are empty. This is because an empty
level below µL and µR is instantly �lled by the entering of an electron from one
of the leads. For a dot level to be occupied, there must be electrons in the leads
with the same energy as it takes to enter the level. This is the case below µL
and µR, but not above.
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lead
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V
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(b)

Figure 2: A four level QD connected to leads via tunneling barriers. a) No
current goes through the dot. b) With the applied bias over the QD, there
can be sequential tunneling. With resonant tunneling, an electron comes into
the dot level from the left lead. Again with resonant tunneling, the electron
continues to the other lead and relaxes down to the chemical potential.

The largest contribution to the current through a QD comes from sequential
tunneling. This is the process of one electron tunneling from one lead into the
dot and then onwards to the other lead by two uncorrelated resonant tunneling
events [1].

In Fig. 2b a bias is applied over the leads. This gives a bias window between
µL and µR. For sequential tunneling to occur, there must be a dot level in the
bias window. The potential di�erence drives electrons from one lead, through
the QD, and over to the other in two resonant tunneling events. Once in the
other lead, the electron relaxes down to the chemical potential.

3.2 Coulomb blockade

Coulomb repulsion has a large impact on the current through a QD. Because
the electrons are con�ned in such a small volume, the Coulomb repulsion can
be on the same energy scale as the level spacing. With Coulomb's law, you �nd
that the interaction between two charges increases with decreasing distance as:

|F | = 1
4πε0ε

|q1q2|
r² . For a QD with a size of 30nm, this results in a Coulomb

repulsion of 2meV .
In Fig. 3, a two level QD with Coulomb repulsion U is shown.
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Figure 3: Coulomb blockade; current through E2 is blocked because of the
Coulomb repulsion from the electron in E1.

If one level is occupied, it takes U more energy to occupy the other level. In
Fig. 3, E1 is occupied and thus, the energy it takes to occupy the second state
is E2 + U . Without interaction, E2 would be in the bias window and current
would �ow. To overcome the Coulomb blockade and get sequential tunneling,
the gate voltage needs to be tuned so that E2 + U is in the bias window.

3.3 Second order tunneling

When current is blocked because of Coulomb repulsion, or when there is no
level in the bias window, there can not be any sequential tunneling. A smaller
amount of current however, can still run through processes of higher order tun-
neling. The model of transport used in this thesis includes second order tun-
neling. These are events that include two tunneling events under a short time
span. Therefore, if the sequential tunneling rate is Γ, the rate for second order
tunneling is Γ2. Second order tunneling includes cotunneling and pairtunneling.
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Figure 4: Example of cotunneling: two tunneling events involving two di�erent
electrons occur under a short time. The electron labeled 1 tunnels to µR after
which the electron labeled 2 tunnels into the dot. The dot remains in the same
state after the cotunneling, which is called elastic cotunneling.

A cotunneling event is illustrated in Fig. 4. With sequential tunneling,
energy is conserved in both tunneling events, in and out of the dot. In Fig. 4,
the two separate tunneling events do not conserve energy, but together they do.
The two tunnelings can occur if they happen within a short enough time span,
as validated by Heisenberg's uncertainty principle, 4E4t ≥ ~

2 . Cotunneling
is either an elastic or inelastic process. The elastic does not a�ect the total
energy of the dot, while the inelastic leaves the dot with a new total energy,
i.e., an excited state. To deexcite after an inelastic tunneling event, the QD can
either relax with another cotunneling event, with sequential tunneling or with
phonon emission. These extra processes result in higher current from inelastic
than elastic cotunneling.

Pairtunneling is when two electrons simultaneously tunnel into two di�erent
levels in the dot that together conserves energy. These events are normally
less common than cotunneling, but for attractive particle interaction, they are
dominating the current[11][12].
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4 Transport modeling

In this section the second order von Neumann (2vN) approach is introduced.
This is the approach used in this thesis for calculating current through a QD
connected to leads. This method was �rst outlined in Ref. [10].

As long as a QD is relatively small, up to around ten electrons, the Eigen-
states can be found by solving the Schrödinger equation. In the leads however,
there are too many electrons to do this. Here, you are required to make approx-
imations. Using the density operator one can describe how the electron density
is changing without solving each lead state. The description of the density
operator follows the treatment of Ref. [13].

The generalized master equation approach is a frequently used method for
calculating current through nanosystems. As the name suggests, it is the de-
scription of the use of a master equation to calculate the rate of tunneling. A
density operator is used to describe the system and the equation of motion for
the density operator gives the systems development in time. 2vN is an exten-
sion to this approach as it includes additional tunneling e�ects; cotunneling and
coherence. This is done by using a slightly di�erent scheme when solving the
equations of motion.

4.1 The density operator

When a system is not in a pure state, but in a statistical ensemble {|ψn〉}, it is
said to be in a mixed state. Then it is not established what state the system is
in, but it has di�erent probabilities to be in any of the states |ψn〉. This should
be distinguished from, for example; |ψ〉 = 1√

2
(|a〉+ |b〉), where the state |ψ〉 is

in a superposition, i.e., in both states |a〉 and |b〉 at the same time.
In contrast to a pure state, a mixed state can not be written as a sum of

vectors, as with a wave function. Instead, it can be described by the density
operator ρ:

ρ =
∑
n

pn |ψn〉 〈ψn| (1)

where the mixed state is in the state |ψn〉 with probability pn and the condition∑
n pn = 1 must be ful�lled. The density operator may be written in matrix

form. To do this we choose a basis {|i〉} and rewrite Eq. (1) by inserting the
basis using closure relation:∑

n

pn |ψn〉 〈ψn| =
∑
n,i,j

pn |i〉 〈i| |ψn〉 〈ψn| |j〉 〈j|

The corresponding density matrix elements are thus given by

ρij = 〈i|ρ|j〉 =
∑
n

pn 〈i|ψn〉 〈ψn|j〉
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The density operator contains all the available information about the mixed
state, correspondingly to how the normal wave function describes a pure state.
Even for a pure states there can be advantages with the density operator for-
malism. For a pure state, there is only one possible possibility p = 1 and the
density operator becomes simply

ρ = |ψn〉 〈ψn|

The time evolution for the density operator is governed by the von Neumann
equation

i~
d

dt
ρ = − [ρ,H] (2)

The expectation value for an operator A acting on a mixed state represented
by ρ is[14]

〈A〉 =
∑
n

pn 〈ψn |A |ψn〉 =
∑
i

〈i|Aρ|i〉 = Tr {Aρ} (3)

where �Tr� denotes the trace which is the sum of the diagonal elements in
a matrix. For a pure state, this becomes simply 〈A〉 = Tr {Aρ} = 〈ψ |A |ψ〉.

4.2 The density operator for composite systems

In this section it will be explained how the density operator formalism can
become very useful when applied to composite quantum systems. A composite
system consists of two or more subsystems, for example the two subsystems;
quantum dot and leads.

Here we consider a composite system consisting of two subsystems S and T.
If it is assumed that at some initial time t = 0, there is no correlation between
the two subsystems, the density matrix for the total system can be factorized
as

ρ (0) = ρS (0)⊗ ρT (0)

Assume further that at some time t, an interaction starts between the sub-
systems, for example electron tunneling. If there is correlation between the
subsystems the factorization will not hold. There will be mixing between ρS (0)
and ρT (0). An expression for a single subsystem, say S, at any time, is given
by the reduced density operator:

ρS = TrT ρ (4)

s
where TrT is the partial trace over ρ. The partial trace means that the trace

is only over the sub blocks of ρ, belonging to the subsystem T. The reduced
density matrix ρS contains all the information about the subsystem S that are
contained in the total density matrix ρ.

14



Consider an operator A that only acts on the Hilbert space of S, HS . Acting
on the total system it is written A = AS ⊗ IT where IT is the identity operator
of HT . The expectation value of A (see Eq. (3)) becomes

〈A〉 = Tr {ρAS ⊗ IT } =
∑
s,t

〈s| ⊗ 〈t| ρAS ⊗ IT |s〉 ⊗ |t〉

=
∑
s,t

〈s| 〈t| ρ |t〉AS |s〉 = TrS{ρSAs}

So, an observable in subsystem S depends only on ρS where the subsystem T
is �traced out�. The combination of QD and leads constitutes a typical example
where this becomes useful. Often one wants to get rid of the part of the density
matrix that denotes the leads because they typically have a lot of states.

4.3 Second order von Neumann

In this section the second order von Neumann (2vN) approach is described for
a system of a QD connected to two leads. The goal is to �nd an expression for
the current through the system. Thus, we need to know how many electrons
that are tunneling from one lead into the dot per unit time. To do this, we need
to look at the dynamics of the system via the von Neumann equation and the
Hamiltonian involved. This section follows Ref. [15].

4.3.1 The model Hamiltonian

The Hamiltonian considered here has three parts, two describing the subsystems;
the QD and the leads, and one describing the tunneling between them:

H = HQD +Hleads +Ht

The details of the respective parts are (written in second quantization for-
malism):

1. The part governing the quantum dot, without interaction with the leads.
It is assumed that HQD is diagonizable, i.e., that the solutions to the
Schrödinger equations can be found and thus, the eigenvalues Ea and the
eigenstates |a〉 are known.

HQD =
∑
a

Ea |a〉 〈a| (5)

2. The part governing the leads:

Hleads =
∑
kσl

Ekσlc
†
kσlckσl

where k denotes the lead state, σ spin up or down and l the lead, in
this case, the left L or the right R. The lead states are described as free
particle states. c†kσl/ckσl are the creation/annihilation operator which
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creates/annihilates an electron in state kσl in the leads. c†kσlckσl is called
the number operator since when it operates on a wave function or a density
matrix, it gives back the number of particles in state kσl.

3. The tunneling Hamiltonian, describing the tunneling between dot and
leads

Ht =
∑
kσl,ab

(
tba (kσl) |b〉 〈a| ckσl + c†kσl |a〉 〈b| t

∗
ba (kσl)

)
where tba (kσl) are the tunneling amplitudes. These are the probabilities
for tunneling from the state kσl in to the dot, thereby changing the dot
state from |a〉 to |b〉. We use the convention that state |b〉 contains one
more electron than |a〉, |c〉 one more electron than |b〉, and so on.

4.3.2 Second order von Neumann

The QD and the leads constitute the system that 2vN is set out for in this
section. The two subsystems, QD and leads, are interacting through electron
tunneling. At t = 0, if it is assumed that no interaction has started, the density
operator can be factorized as ρ (0) = ρQD (0)⊗ ρleads (0).

Some formalism is necessary to understand the expression for the current
shown below. Both lead states are represented by the state vector |g〉. The total
system is represented by the tensor product |ag〉 = |a〉 ⊗ |g〉. By choosing the

basis {|ag〉}, the matrix elements of the density operator is de�ned as ρ
[n]
ag;bg′ =

〈ag|ρ|bg′〉. The number n in the square bracket ρ[n] denotes the number of
electron tunnelings that are involved in bringing the system from state |ag〉
to state |bg′〉. For example, ρ

[1]
ag,bg−kσl is the matrix element that denotes the

transition between the dot states |a〉 and |b〉. This transition means that one
electron tunnels from one lead into the dot. With that, the lead state changes
to |g − kσl〉.

The current through the system, Jl, equals the change in population of one
of the leads, say the left lead l = L:

JL = − d
dt

∑
kσL

〈
c†kσlckσl

〉
= − d

dt

∑
kσL,bg

ρ
[0]
bg,bgkσl

= − 2
~

∑
kσL,cb

Im

(∑
g

t∗cb (k) ρ
[1]
cg−kσl,bg

)
(6)

The average of the number operator,
〈
c†kck

〉
, for all values of kσL gives

the population. After the second equality sign, with use of Eq. (3), this is
instead expressed in terms of the density matrix. In the density matrix, it is

the diagonal elements, ρ
[0]
bg,bgkσl, that represent the populations.

With the sum
∑
g in Eq. (6), summing over all the lead states, the advantage

with density matrix formalism appears. When all lead states are summed over,
the resulting density matrix becomes a much smaller, more manageable matrix
with the dimensions of the number of states in the dot.
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To study how the current changes in time we need to study the equation
of motion for the matrix elements in Eq. (6). The sum

∑
g is �rst performed,

then the matrix elements are inserted into the von Neumann equation, Eq. (2).
The resulting equation is a di�erential equation where the time dependence
of the ρ[1] elements depends on ρ[0] and ρ[2] elements. Thus, the equation of
motions for these ρ[0] and ρ[2] elements needs to be studied as well. As it turns
out, all matrix elements ρ[n] depend on higher orders of n. This results in an
in�nite set of di�erential equations. To get a solution, it is necessary to make
approximations. In 2vN, all matrix elements n ≥ 3 are put to zero. Beyond
that, a few further approximations need to be performed before the system of
equations can be solved, see Ref. [15].

4.3.3 Review

There are di�erent ways to make the approximations and truncation that are
necessary in order to solve the equation of motion for the density matrix.∑

g ρ
[0] is the reduced dot density matrix ρdot, see Eq. (4). In the master

equation approach, the current is approximated to depend only on the popula-
tions; the diagonal elements of ρdot . In this case, the current is composed of
sequential tunneling events that are incorporated in ρdot via Ht .

In the generalized master equation approach, the o�-diagonal matrix ele-
ments of ρdot are also included. These matrix elements correspond to coherence,
or, superpositions between dot states. With that, the possibility is included,
that when an electron passes through the system, it goes through two dot levels
at the same time.

The 2vN approach goes beyond that, as elements ρ[2] from the total density
matrix are also included. These elements correspond to second order tunneling.
As the ρ[0] and ρ[1] elements depend on ρ[n] for higher values of n, these elements
become more exact with the inclusion of ρ[2] elements.

The choices of approximations and truncation level should depend on the
systems properties such as; energy con�guration and coupling strength. The
properties settle which quantum e�ects and components to the current that are
essential to the accuracy. In 2vN, all n ≥ 3 is put to zero. This approximation
works for the coupling strength between leads and dot that is used in this thesis.
For stronger coupling strength, higher order tunneling might become important.
A topic that is discussed in this thesis is Coulomb blockade, described under
section 3.2, where single electron tunneling is blocked. Under these conditions,
second order tunneling becomes crucial as it is the �rst non-vanishing order.
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5 Thermopower

5.1 Thermopower

Consider a rod of an arbitrary material, isolated from its surroundings, with
di�erent temperatures at its two ends. As an isolated system always goes to-
wards thermal equilibrium, as time goes, the temperature di�erence in the rod
will start to even out. Heat in materials is transported in two ways; by lat-
tice vibrations (phonons) or charge carriers, i.e., mainly electrons or holes. The
thermal conductance, the ability to transport heat, is denoted by κ = κe + κph.

The density of free carriers throughout the rod will be the same, however,
the ones in the hot end will have higher momenta. Thus, there will be a net
di�usion of charge from the hot to the cold end. The drifting charge carriers
give rise to an electrical current I as well as a heat �ow J. The electric current
is de�ned by the �ow of electric charge per second (Cs ), while the heat current

is the amount of heat carried by the charge carriers per second (Js ). With more
charge carriers ending up at the cold end than the hot, there will be a voltage
drop over the rod. The build up of a voltage due to a temperature di�erence
is called the Seebeck e�ect. This is parametrized by the Seebeck coe�cient, or,
Thermopower. Thermopower is de�ned by this voltage V when the current I is
zero, divided by the temperature di�erence:

S = − V

∆T

∣∣∣∣
I=0

(7)

This de�nition holds for small temperature di�erences, thus near equilib-
rium. The sign of the voltage will be opposite if the majority of charge carriers
are electrons or holes. With this de�nition, the thermopower will be negative
when the current is carried by electrons and positive for holes. If there are an
equal amount of both, drifting to the colder end, their charge will cancel and
there will be no voltage build up. This is why metals, with half �lled bands
and thus similar amount of free electrons and hole charge carriers, have small
thermopowers[16]. Semiconductors can be doped to have only one sort of free
charge carrier and thus acquire large thermopowers[16].

The '�gure of merit' is a quantity used to give a notion of the performance of
a device relative to others. For the ability to convert heat to electrical current
the �gure of merit ZT is de�ned as [17]

ZT =
S2σT

κ
(8)

For a good conversion, the thermopower S should be high, i.e., a large voltage
response to a given temperature di�erence ∆T . The electric conductance σ
( CV s ) describes how easily the charge carriers travels from the hot to cold end.

Together S²σ is proportional to the power production of the device[18]. The
thermal conductance κ ( Js² ) is in the denominator as it stands for the ability
to conduct heat and thus remove the temperature di�erence. For a high ZT ,
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the temperature di�erence should be easy to maintain. For a useful device, ZT
should be equal to one or higher.

The thermal and electrical conductances are closely related through the
Wiedemann-Franz law:

κ = σl0T

where l0 = π2

3
k2B
e2 is the Lorentz number. This brings on a con�ict in the

ZT expression as you want the electric conductance to be high but the thermal
conductance to be low. A high ZT can be acquired in devices for which the
Wiedemann-Franz law breaks down, which can be the case in nanosystems[19].

5.2 Thermopower in a QD

In the rod from the last section, the charge carriers give rise to a voltage be-
cause the hot carriers are more mobile, they have higher energy, than the cold
ones and di�use easier. In a system of a QD connected to leads, the transport
mechanism is not di�usion but tunneling. Tunneling through a QD is energy de-
pendent because of the QD's discrete energy levels, but a higher energy does not
equal higher tunneling probability than a lower energy. Even so, a temperature
di�erence over a QD can create a thermocurrent.

In this section, thermopower will be discussed for the system used in the
simulations of this work. The system is outlined in Fig. 5, with a Coulomb
repulsion that is smaller than the QD's levels spacing. In this work, the QD
coupled to leads are modeled as an open system which means that the tem-
peratures of the leads will be constant. A temperature di�erence between the
leads will lead to a current if there are suitable QD levels, but it will not give
rise to a voltage between the leads. The thermopower is then de�ned as the
applied voltage it would take to counteract the �ow of electrons induced by the
temperature di�erence. The voltage is given by

V =
µL − µR
−e

In this work, metallic leads are considered, thereby the occupation of carriers
follows the Fermi function:

f(E) =
1

1 + exp
(
E−µ
kBT

)
Consider a temperature di�erence between the leads ∆T = Thot − Tcold. The
Fermi function of the warmer lead has got a larger spread around its chemical
potential, see Fig. 5. At energies above the Fermi level, there are more electrons
in the hot lead than in the cold. At the same time, there are more electrons in
the cold lead at energies just below the Fermi level. At the Fermi level, there
are equal amount of electrons in both. Given that there are available energy
levels that can conduct the current, the di�erence in occupations gives electric
currents. A larger di�erence will give a larger current.
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Figure 5: A two level QD connected to leads of di�erent temperatures Thot >
Tcold. The Fermi distributions of the leads are outlined. a) The levels are situ-
ated symmetrically around the chemical potential. For equal coupling strength,
the current that goes through the upper and lower level will be equal and the
net current zero. b) The lower level is closer to the chemical potential than
the higher. Therefore, more current will run through the lower level. The net
current is non-zero and consequently the thermopower is non-zero. c) A sketch
of fL − fR.

In Fig. 5a, a current runs from the hot to the cold lead through the QD level
situated above the Fermi level. Another current runs in the opposite direction
via the level below the Fermi level. Provided that the levels have equal coupling
strength and are at the same distance from the Fermi level, both currents will
be of equal size and the net current becomes zero. The transport in the �lled
levels below the Fermi level is in solid state physics formalism said to be carried
by a hole. At this con�guration, electrons and holes here contribute equally to
the current. This will be referred to as the electron hole symmetry point.

If the current is zero for V = 0, the thermopower, Eq. (7), is zero. Energy is
still transferred from the hot to the cold lead with a heat current. The amount
of charge carriers tunneling to the right and left may be equal, but the electrons
tunneling from the hot to the cold lead have higher energy and are thus carrying
more heat.

Whenever the temperature di�erence of the leads creates a net thermocur-
rent, the thermopower will be non-zero. In Fig. 5b the lower energy level is
situated closer to the Fermi level than the one above. Presuming equal coupling
strengths, the current via the level that is closer to a maximum of fL − fR will
be larger. Therefore, there will be a net thermoelectric current going below EF .
In other words, the largest part of the current is carried by holes. This can be
read from the sign of the thermopower, which is positive.
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5.3 Single level QD thermopower lineshape using trans-

mission formalism

In this section follows a short description of the thermopower lineshape of a
single level QD, that is, how the thermopower depend on the chemical poten-
tial. In Ref. [20], it is concluded that the lineshape of a QD depends on the
parameters kBT , Γ and ∆E's relative magnitude.

Without considering any interactions, the thermopower can be calculated
using transmission formalism. For non interacting electrons, the current through
the QD can be calculated with the Landauer-Büttiker formula:

I =
−2e

h

∞̂

−∞

(fL (E)− fR (E))T (E) dE (9)

The transmission function T (E) can be approximated with the Breit-Wigner
formula. For one energy level it reads

T (E) =

∣∣∣∣ Γ

E − E1 + iΓ

∣∣∣∣2 (10)

In Fig. 6 is an example of the thermopower S in a single level QD coupled
to leads of di�erent temperatures, as a function of the energy of the eigenstate
E1. The current is calculated with the Landauer-Büttiker formula, Eq. (9) and
S is found with Eq. (7).

Figure 6: Thermopower as a function of E1 in a single level QD. Parameters
used are: E1 = Vg, kBTL = 6.05, kBTR = 6.00 and Γ = 1 using arbitrary units.
The energy scale in transport through nanosystems is Γ ∼ 0.1meV .
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From Eq. (9), it appears that I = 0 if either of the terms fL(E) − fR(E)
or T (E) equals zero. In Fig. 6, when E1 is at the Fermi energy EF = 0, then
fL(E1)− fR(E1) = 0 and I = 0. From the de�nition of thermopower, Eq. (7),
it is evident that S = 0 at this point because the voltage it takes to get zero
current is V = 0. The function T (E) in Eq. (10) is centered around E1, so
when E1 is at an energy where fL(E)− fR(E) 6= 0, a bias V 6= 0 is required to
get I = 0.

Initially, |S| grows as E1 is tuned away from EF . This is because then, the
largest contribution to the current comes from electrons tunneling at energies
around E1, where T (E) is at its maximum. Accordingly, to get I = 0, V
is increased. However, as E1 is tuned away from EF , the contribution from
electrons tunneling in the tail of T (E), around EF , increases. When |S| starts
to decrease at around E1 = ±34, the contribution to I due to tunneling in the
tail exceeds tunneling around the T (E) maximum. Then tunneling again occurs
close to EF and a smaller V is required for I = 0. If the transmission function
was a delta function, S would just keep growing linearly with E1. But, as S
reaches its maximum, the �nite width of T (E) means that electrons can tunnel
away from the energy E1.

From the sign of S, one can conclude whether the largest part of the current
is carried by electrons or holes. When E1 is below EF , the average tunneling
charge carrier is a hole and thus, S is positive. When E1 is over EF , there are
mostly electrons contributing to the current and S is negative.

It is evident that S gives information about the energies where tunneling
occurs. According to Ref. [21], thermopower is in fact �a measure of the average
energy that the electrons carry during tunneling processes�.

The transmission formalism does not distinguish between di�erent kinds of
tunneling. However, in Ref. [21] it is outlined that the linear increase in S is
due to sequential tunneling, while after S reaches its maximum, second order
tunneling takes over. The electrons involved in second order tunneling pertains
to energies around the Fermi level; that is why there is a sudden decrease in S
when those processes become more probable.

5.4 Optimizing the transmission function

For simplicity, the energy levels in the sketches presented so far have been drawn
as plane lines. The lines do however, posses a linewidth that depends on their
coupling strength. Looking at Eq. (8), it is evident that, to get a good heat
to current performance, the thermopower should be high. To acquire a QD
with a high thermopower, the con�guration should enable a large current in
one direction. In Ref. [22], the author found that the optimal transmission
function for maximum thermoelectric e�ciency is one that enables tunneling
in a certain energy span, but none outside, i.e., one that behaves like a boxcar
function. (This is suggested to be implemented by putting several QDs in a
row, producing a total transmission function in a boxcar form.) The natural
linewidth of QD energy levels, however, is not similar to a boxshape.

To get a large current through a single level with a Lorentzian shape, the
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broadening of the level should be su�ciently large to enable tunneling at many
energies, i.e., a broad transmission function. Furthermore, the transmission
function should be centered su�ciently close to the chemical potential where
the di�erence between the Fermi distribution functions is the highest, i.e., the
tunneling rate is the highest. These two arguments together give a poor perfor-
mance due to the e�ect illustrated in Fig. 7. When the broadening of a level is
wide enough to spread over the Fermi level, this enables tunneling in the other
direction. If the center of the transmission function is at the Fermi level, then
two equal currents would go in the right and left direction. If the center is just
above the Fermi level, the largest current would go to the right but still a large
current would go to the left. To maximize the thermopower, a balance between
the width and position of the level needs to be found.

ul L ul R

Figure 7: Transmission function for a single level QD. The tail of the trans-
mission function goes over the chemical potential of the leads. This enables
tunneling in the left direction as well as in the right direction.

In Ref. [23], the authors have made a trick to overcome the problem with
counteracting currents. The goal was to increase the net current by getting rid
of the current running in the left direction in Fig. 7. The authors have come up
with a quantum system which achieves a transmission function that essentially
only gives current in one direction. The main things about this system is that
it is a two level system where the two levels have di�erent parity. The tunneling
amplitudes are chosen as: tL1 = t tR1 = t tL2 = −at tR2 = at where a is a real
constant. The parity di�erence manifests itself in that sign di�erence between
the tunneling amplitudes. The tunneling amplitudes are given by the overlap
of the QD and lead wave functions. The eigenfunction to E1 should have even
parity, then the function will have the same sign at the overlap to the left lead
as to the right lead. The eigenfunction to E2 should have odd parity, to achieve
di�erent signs of the function at the overlap to the left lead and the right lead.
The speci�ed tunneling amplitudes result in the following coupling strengths:
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ΓL1 = ΓR1 = Γ and ΓL2 = ΓR2 = a2Γ. Furthermore, the energy levels, E1

and E2, should always be situated on the same side of EF . If both levels are
above the Fermi level, that means that no level is occupied and then Coulomb
repulsion will not play any role for transport. Therefore, transmission function
formalisms, as discussed in Sec. 5.3, can be used. For a system with two energy
levels, E1 and E2, the Breit-Wigner formula reads:

T (E) = Γ2

∣∣∣∣ 1

E − E1 + iΓ
− a2

E − E2 + ia²Γ

∣∣∣∣2 (11)

The minus sign between the two terms in Eq. (11) comes from the sign
di�erence of the tunneling amplitudes. This means that there is destructive
interference between the two levels. Interference between energy levels can be
used to 'taylor' the transmission function. If E2 = a2E1, then T (0) = 0 at the
Fermi energy EF = 0, so with that level con�guration there will be no transport
at the Fermi energy. Furthermore, depending on which side E1 and E2 are of
EF , the transmission function will be lower on the opposite side of EF . By
optimizing the power factor, S2σ, by means of changing a, Γ, E1 and E2, the
authors obtained the transmission function in Fig. 8. The transmission function
is cut o� at EF resulting in that almost all current will go in one direction, giving
a high thermopower.

Figure 8: Figure taken from Ref. [23] Figure 3. Transmission function of two
level QD optimized for high power factor.
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5.5 Canyon of current suppression

When electrons tunnels through a QD with more than one energy level there
can be interference. The simplest system to investigate this is a two level spin-
less system, that is, with both levels having equal spin and accordingly only
one electron at a time can occupy each level. In Ref. [6], the authors give an
account for the �ndings of a non intuitive conductance plot of such a system
coupled to two leads. What is expected is high conductance when the con�g-
uration allows for sequential tunneling, and lower conductance in the Coulomb
blockade region. However, in Ref. [5], the authors found a suppression of con-
ductance in the Coulomb blockade region in this system. Furthermore, in Ref.
[6], it is found that the conductance is suppressed at level degeneracy both in
the Coulomb blockade region and in the sequential tunneling region. They re-
fer to this phenomenon as the canyon of current suppression which is further
investigated in Ref. [24].

In Ref. [6], a two level spinless system was realized in a InSb nanowire QD.
Thanks to large g-factors, they were able to get two degenerate levels of the
same spin at the single particle states 4 and 5 by applying a magnetic �eld,
as depicted in Fig. 9 at point 'S'. At this con�guration, the QD is a spinless
system, that is, both levels have equal spin and accordingly only one electron
at a time can occupy each level.

Figure 9: Figure taken from Ref. [6] Figure 1c. Schematic illustration of the
evolution of two single particle energy levels in a magnetic �eld. Coulomb
interaction is neglected. At point S, there is a level crossing of two energy levels
with the same spin.

What is causing the suppression of current is a parity di�erence between
the two energy levels. If the parity of the QD state is odd, the sign of the
wavefunction will be di�erent at the overlap to the left lead than to the right
lead. If the parity is even, it will have the same sign. Therefore, if the parity of
a QD state is odd, tL and tR will have di�erent signs. If state E1 is even and
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state E2 is odd, the tunneling amplitudes are: tL1 = t, tR1 = t, tL2 = −at and
tR2 = at where a is a real constant.

The conductance G is de�ned as

G =
I

V

∣∣∣∣
∆T=0

(12)

A simulation of the system in Ref. [6] is shown in Fig. 10. Here G is plotted
as a function of gate voltage Vg and magnetic �eld B and the canyon of current
suppression is present.

Figure 10: Conduction plot showing the canyon of current suppression. The
parameters used are kBT = 0.2Γ, U = 5Γ, t1L = −

√
0.3, t1R =

√
0.1, t2R =√

0.4, t2L = 1 and Vbias = 0.5Γ. The energy levels are given by E1 = −6.5 −
Vg + 2B and E2 = 2.5− Vg − 2.5B and are thus degenerate at B = 2Γ.

The black lines of high conductance is due to sequential tunneling, arising
when an energy level is in the bias window. The line starting at the top left
corner is at the con�guration when E1 is occupied and E2 + U is in the bias
window. This line is cut o� at around B = 2Γ when the energy levels are
degenerate. The interrupted line continues up to the top right corner where
instead E2 is occupied and E1 + U is in the bias window. There is higher
conductance when E2 + U is in the bias window since E2 has higher coupling
strength. In the same manner, the high conductance lines in the bottom of the
�gure emerge when either E1 or E2 is in the bias window.

Outside the Coulomb blockade region, the current can be approximated by
neglecting Coulomb interaction. Here, transmission function formalism can be
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used, see Eq. (9) and Eq. (11). The sign di�erence between the tunneling
amplitudes results in a minus sign between the two terms, representing each
QD state, in Eq. (11). With the level con�guration E2 = a2E1, the two terms
totally cancel and T (0) = 0. That is why the sequential tunneling lines in Fig.
10 are suppressed close to degeneracy, B ≈ 2, where the energy levels experience
a lot of destructive interference.

The area in between these lines is the Coulomb blockade region. The canyon
of current suppression, that cuts o� the sequential tunneling lines, continues also
throughout this region. Here, the current is carried by higher order tunneling.
The electron hole symmetry point is at Vg = 0. At this point, second order
tunneling currents completely cancels and there is a complete suppression of
the current. The complete suppression will hold in the limit of zero bias and
kBT , when it is only electrons close to the Fermi energy that are involved in
tunneling. These electrons require equal amount of energy to tunnel via E1/E2

and E1 + U/E2 + U . In the other parts of the Coulomb blockade region, the
current is not zero but only partly suppressed.

5.6 Thermopower with 2vN

The code simulating the thermopower in this thesis is constructed as follows.
A temperature di�erence between the two leads ∆T = TL − TR is set. The
chemical potentials is initially set to µL = µR = 0. The current I is calculated
using the 2vN approach described in Sec. 4. The temperature di�erence ∆T
will generate a current I 6= 0. To obtain the thermopower, the voltage at which
the current becomes zero needs to be found. This is done with an iterative
procedure. A voltage is applied so that a current runs in the opposite direction
to the thermoelectrically induced current. The voltage is applied symmetrically,
i.e., µL = x and µR = −µL. After a �rst guess of x, the current is evaluated
with the 2vN program. After that, x is changed with a smaller and smaller step
size, the closer I is to zero. When the voltage di�erence is such that the net
current becomes zero, the thermopower can be acquired by dividing the voltage
with the temperature di�erence, see Eq. (7).
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Figure 11: Thermopower S as a function of level detuning calculated with sec-
ond order von Neumann method (2vN) and with transmission function, T(E),
approach. The parameters used are Γ = 1 and a = 0.5, kBT = 1.00Γ and
4kBT = 0.10Γ, with E1 = −0.5 + ∆E

2 E2 = −0.5 − ∆E
2 . Arbitrary units are

used.

Thermopower for a two level QD without Coulomb interaction, calculated
with the Landauer-Büttiker formula, Eq. (11), and the 2vN method is shown
in Fig. 11 for benchmarking purposes.
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Part III

Results

6 The model

The system under investigation in this project is a two level spinless quantum
dot coupled to two leads. The energy levels of the dot in the Hamiltonian, Eq.
(5), are modeled as

E1 = E01 − Vg + g1B

E2 = E02 − Vg + g2B

where a gate voltage Vg steers the dot's energy levels position while a mag-
netic �eld B controls the level detuning, i.e., E1 −E2. The bias over the QD is
applied symmetrically over the Fermi level so that µL = V/2 and µR = −V/2.
The coupling strengths are given by Γ = 2πt²ρ0, where the density of states ρ0

is chosen to be constant, ρ0 =
∑
k δ (Ek − E).

7 Results

7.1 Overview

In Sec. 7.2, I show the conductance G and thermopower S from simulations of a
two level spinless QD. The two levels have equal coupling strengths but di�erent
parities. This leads to a canyon of full current suppression, as described in Sec.
5.5.

In the subsequent Sec. 7.3, I turn to the case of di�erent coupling strengths,
again simulating conductance and thermopower. While equal coupling strengths
make it straight forward to predict the e�ect of varying the Coulomb repulsion U,
di�erent coupling strengths complicate it. When this was studied, an interesting
change was found in the thermopower simulations when U was varied.

In Sec. 7.4, I investigate if the pattern in Sec. 7.3 can be repeated for
another set of parameters. The parameters chosen for this purpose were taken
to reproduce the canyon of current suppression that is experimentally veri�ed
in Ref. [6].

The thermopower in the parameter space of the canyon of current suppres-
sion was investigated. I wanted to �nd out how the thermopower simulations
would compare to the conductance simulations. All simulations were carried
out with the 2vN method. The reason I plotted the square root of the absolute
value of the thermopower in the following plots is to make sign shifts clearly
visible.
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7.2 Symmetric coupling strengths

One goal of this project was to investigate the thermopower for the QD described
in Ref. [6]. To start o�, a similar but simpler simulation was run, where the
coupling strength of both levels was put to equal. This was done to get a result
that would be easier to interpret. In this simulation, the tunneling amplitudes t
are the same for both levels on both sides except for a minus sign. The minus sign
is a detail that is crucial, as it brings about the canyon of current suppression.
This simulation is seen in Fig. 12 where the square root of the absolute values
of thermopower is plotted along with the corresponding conductance plot.

(a) (b) (c)

Figure 12: Simulation of a two level QD. The tunneling amplitudes were t1L =
t1R = t2R =0.7, t2L = −0.7 , E01/02 = 0 , g1/2 = ±1 and the Coulomb repulsion
was U = 5Γ. a) The square root of the absolute value of thermopower at a
temperature di�erence between the leads of 4kBT = 0.10Γ and kBT = 1Γ . b)
A cut of the thermopower with signs to clarify where S is positive and negative.
c) Conductance at a bias V = 0.5Γ and kBT = 1Γ .

The regions with highest conductance in Fig. 12c are sequential tunneling
lines and in between them is the Coulomb blockade region. Both regions are cut
o� around zero detuning, where E1 = a2E2 since a = 1, by a canyon of current
suppression.

Both �gures are full of symmetry. The thermopower plot in Fig. 12a is
symmetric around the middle horizontal line at Vg = 2.5Γ where S = 0. Here
the gate voltage is exactly half of the Coulomb repulsion U = 5Γ. Therefore the
singly and doubly occupied states are symmetrically placed around the Fermi
level EF = 0Γ.

Sequential tunneling can occur for electrons in the leads which resonate with
an energy level. As there are more electrons at energy E = 2.5Γ in the hot lead
than in the cold, there is a current from the hot to the cold lead. In the same
way, there is an over�ow of electrons in the cold lead at E = −2.5Γ, leading to
a current in the opposite direction. The tunneling amplitudes are of equal size,
so these currents are of equal size and cancel each other out so that there is no
resulting current. Contributions from second order tunneling also cancel out at
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the electron hole symmetry point.
There is another zero thermopower line, extending vertically at zero detun-

ing. At zero detuning the energy levels are degenerate. At degeneracy, the
parity di�erence between the levels means that no current will �ow through
the QD, as can be seen in the conductance plot Fig. 12c. Coherence e�ects
entails that there can be no �rst or second order tunneling, as explained in Sec.
5.5. Thermopower is a measure of the average energy of tunneling electrons. If
there can not be any transport then the thermopower is unde�ned. The line
does not indicate that the thermopower goes down to zero and there is no sign
shift between left and right half of the plot. In contrast, in the three horizontal
lines, the thermopower goes down to zero and the sign of the thermopower is
altered. When S is negative, most electrons tunnel from the hot to the cold lead.
For positive S, most electrons tunnel from the cold to the hot lead. In other
words, electrons dominate the tunneling for negative S while holes dominate for
positive.

Both remaining zero thermopower lines, placed symmetrically over and be-
low the line at Vg = 2.5Γ arise at the same con�gurations as the sequential tun-
neling lines in the conductance plot, Fig. 12c. While the conductance reaches
maximum at these points, the thermopower experiences a sign shift. This is
because, when there is a level crossing, there will be equal amount of tunneling
going in both directions, and so the average energy of the tunneling electrons
will be zero.

The distance between the outer lines is approximately the magnitude of the
Coulomb repulsion U. That distance would grow for increasing U and shrink for
decreasing U .

7.3 Asymmetric coupling strengths

Much of the symmetry in the simulations is lost when changing the asymmetry
parameter from a = 1 to a = 0.5. I start to investigate this case for U = 10Γ,
see Fig. 13.
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(a) (b)

Figure 13: The parameters used were U = 10Γ, t1L = t1R = 1, t2R = 0.5,
t2L = −0.5 , E01/02 = 0 and g1/2 = ±1. a) The square root of the absolute
value of thermopower at 4kBT = 0.10Γ and kBT = 1.00Γ. Thermopower
shifts sign three times; at the white zero-lines. b) Conductance at V = 0.5Γ
and kBT = 1.05Γ.

In the conductance simulation in Fig. 13b, we now see a tilted canyon in
contrast to the straight one in Fig. 12c. Another distinction is that the current
suppression is not complete away from electron hole symmetry. Furthermore,
the sequential tunneling lines have di�erent conductance for positive and neg-
ative detuning. These changes arise due to the switch to di�erent coupling
strengths. The conductance in the sequential tunneling areas is higher at the
detuning where the stronger coupled level crosses the Fermi level.

In the preceding simulation, Fig. 12, with equal coupling strengths, i.e.,
a = 1, the sequential tunneling areas are suppressed at level degeneracy where
E2 = a2E1. The condition that E2 = a2E1 to get T (E) = 0, I interpret as
that the energy states should be, not degenerate, but evenly populated to get
zero transmission. In Fig. 12, both levels have a �fty percent chance of being
populated at level degeneracy. In Fig. 13b, at Vg ≈ 0 and level degeneracy, the
fact that Γ1 > Γ2, means that E1 has a broadening that reaches further down
to lower energies and with that, have a larger probability to be populated. The
levels are more evenly populated at a small positive detuning where the weaker
coupled level E2 is lower in energy. Thereby, the sequential tunneling area is
suppressed, although not fully, at a small positive detuning. At the sequential
tunneling suppression at Vg ≈ 10 , the weaker coupled level is lower for negative
detuning. Hence, we end up with a tilted canyon.

Turning to the changes in thermopower, one can see that the unde�ned
line at zero detuning found in Fig. 12a is not present in Fig. 13a. Because
of the di�erence in coupling strengths, the more strongly coupled level can
contribute more to transport then the other and current is no longer blocked at
level degeneracy. The con�gurations at which one will �nd the canyon in the
conductance also manifests itself in the thermopower �gure. One can see that
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the thermopower is changing faster in that area.
The three horizontal zero thermopower lines in Fig. 12a are again found

here in Fig. 13a. Again, the middle horizontal line indicating electron hole
symmetry and the others an energy level crossing the Fermi level. Because
of the di�erence in coupling strengths, the three zero thermopower lines have
bumps around zero detuning. Which levels are carrying the current alternates
for positive and negative detuning, therefore there is a bump when they are tied
together.

The lower zero thermopower line indicates the level crossing of the singly
occupied QD while the upper the doubly occupied. By lowering U, the upper
and middle line should come closer to the lower. This is evident from Fig. 14a
where U = 7Γ.

(a) (b)

Figure 14: The parameters used were U = 7Γ, t1L = t1R = 1, t2R = 0.5,
t2L = −0.5 , E01/02 = 0 and g1/2 = ±1. a) The square root of the absolute
value of thermopower at kBT = 1.00Γ and 4kBT = 0.10Γ. b) Conductance at
V = 0.5Γ and kBT = 1.05Γ.
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(a) (b)

Figure 15: The parameters used were U = 5Γ, t1L = t1R = 1, t2R = 0.5,
t2L = −0.5 , E01/02 = 0 and g1/2 = ±1. a) The square root of the absolute
value of thermopower at kBT = 1.00Γ and 4kBT = 0.10Γ . b) Conductance at
V = 0.5Γ and kBT = 1.05Γ.

With decreasing U the lines at Vg = U and Vg = U
2 come closer to the line

at Vg = 0. In Fig. 15a with U = 5Γ, the line at Vg = U
2 has merged with

Vg = U for negative detuning and with Vg = 0 for positive detuning. What
remains is only one united zero-thermopower line in an 'S-shape'. Around zero
detuning this line follows the canyon of suppression. In these plots, the signal
for the canyon of conductance suppression is stronger in the thermopower plot
than in the conductance plot. In Fig. 16a and Fig. 16c, one can see that the
'S-shape' �attens out with decreasing U .

With decreasing U , the more strongly coupled level dominates the tunneling
more and more. For low enough U , S only changes sign when the more strongly
coupled level crosses the Fermi energy. When the weaker coupled level crosses
the Fermi energy, the more strongly is closer to the Fermi energy than before
and the largest part of tunneling occurs around that energy. In Fig. 15a, the
more strongly coupled level always dominates the tunneling except for very low
detuning. In Fig. 16a with U = 2Γ, the weaker coupled level never dominates
transport. This is also evident from the conductance plot Fig.16b where there
is only one sequiental tunneling area instead of two seperated.
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(a) (b)

(c) (d)

Figure 16: The parameters used were t1L = t1R = 1, t2R = 0.5, t2L = −0.5,
E01/02 = 0 and g1/2 = ±1. a) The square root of the absolute value of ther-
mopower at U = 2Γ, kBT = 1.00Γ and 4kBT = 0.10Γ b) Conductance at
U = 2Γ, V = 0.5Γ and kBT = 1.05Γ. c) The square root of thermopower
at U = 0Γ, kBT = 1.00Γ and 4kBT = 0.10Γ d) Conductance at U = 0Γ,
V = 0.5Γ and kBT = 1.05Γ.
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7.4 Highly asymmetric coupling strengths

In the following simulations, the parameters where chosen to perfectly reproduce
the conductance results in Ref. [6], along with additional thermopower plots.
Here, the energy levels have di�erent magnitudes of the coupling strengths to the
right and left lead. In these plots, the energy levels are degenerate at B = 2Γ.

In the conductance simulations in Fig. 17b and Fig. 17d, one can see from
the sequential tunneling lines and the reversed tilting of the canyon, that in
contrast to in Sec. 7.3, Γ2 > Γ1 instead of the opposite. This can also be seen
in the thermopower simulations. In Fig. 17a, the weaker coupled part of the
outer line is closer to the middle line than the more strongly coupled part. In
Fig. 17c, it is only the more strongly coupled level crossings that remains. As
Fig. 17a can be compared to the appearance in Fig. 14a and Fig. 17c can be
compared to Fig. 16a one can conclude that in a simulation somewhere between
U = 5Γ and U = 2Γ, one would �nd the S-shape from Fig. 15a, only mirrored.
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(a) (b)

(c) (d)

Figure 17: The parameters used were t1L = −
√

0.3, t1R =
√

0.1, t2R =
√

0.4
and t2L = 1, E01 = −6.5 , E02 = 2.5, g1 = 2 and g2 = −2.5. a) The square
root of the absolute value of thermopower at kBT = 1.00Γ , 4kBT = 0.10Γ and
U = 5Γ. b) Conductance at V = 0.5Γ, kBT = 0.2Γ and U = 5Γ c) The square
root of the absolute value of thermopower at kBT = 1.00Γ , 4kBT = 0.10Γ and
U = 2Γ d) Conductance at V = 0.5Γ, kBT = 0.2Γ and U = 2Γ .
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8 Discussion and outlook

By measuring the two quantities conductance and thermopower of a QD, you
use two di�erent ways to probe the system. For G you apply a bias and for S you
apply a ∆T . The di�erence is in the Fermi functions of the leads. In the case of
G, the left and right Fermi function have the same shape but di�erent µ. For S,
they have the same µ but di�erent shapes. For G, fL−fR will only be non-zero
around EF , with maximum at EF . In the other case, fL − fR is zero at EF
and non-zero away from EF . Therefore, with conductance, you will probe the
possibilities for transport at and around the Fermi level. With thermopower
you will probe the transport at all energies, where there are electrons in the
leads, at the same time.

The sign of the thermopower will tell you if the majority of transport is
carried by electrons or holes. If it is carried by electrons it means that it tunnels
at energies over EF , where electrons go from the hot to the cold lead. If it is
carried by holes, it goes below EF and in the opposite direction. In these
simulations, S is negative when transport is carried by electrons and positive
for holes.

In Sec. 7.2, there is a zero thermopower line around Vg = U
2 . The corre-

sponding line should appear for all values of U . In Sec. 7.3, there is also a zero
thermopower line around Vg = U

2 that disappears for values of U ≤ 5.5. The

corresponding line at Vg = U
2 in Sec. 7.4, disappears between 2 < U < 5. This

line indicates at what point the singly occupied and doubly occupied state give
the same amount of transport. For equal tunneling amplitudes, this line will
always be at Vg = U

2 but for non equal it is more unpredictable.
In Fig. 15, the thermopower shows a prominent zero-thermopower line in a

'S-shape'. It follows the two strongest sequential tunneling lines in the conduc-
tance plot. Where these lines string together it follows the canyon of current
suppression. When the zero thermopower line follows the canyon of current
suppression, it gives a stronger signal than the conductance.

This prominent signal should not be seen as a coincidence due to the choice
of parameters but something generic. The simulations in Sec. 7.4 show that
this shape, but mirrored, should appear for some value of U also with those
parameters. The shape is mirrored since Γ2 > Γ1 instead of the opposite. The
S-shape in the thermopower remains to be further studied in a more systematic
way. It is still to be veri�ed that the S-shape should appear in all thermopower
measurement where the corresponding conductance shows a canyon of current
suppression if a 6= 1.
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