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SARA PÅLSSON

Master’s thesis
2014:E37

Faculty of Engineering
Centre for Mathematical Sciences
Numerical Analysis

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M



Master’s Thesis

Deflation of the Finite Pointset Method

June 2014

Author:
Sara P̊alsson

Supervisors:
Dr. Jörg Kuhnert

Prof. Gustaf Söderlind





Abstract

In this thesis a deflation method for the Finite Pointset Method (FPM) is presented.
FPM is a particle method based on Lagrangian coordinates to solve problems in fluid
dynamics. A strong formulation of the occuring differential equations is produced by
FPM, and the linear system of equations obtained by an implicit approach is solved
by an iterative method such as BiCGSTAB. To improve the convergence rate of
BiCGSTAB, the computational domain is divided into a number of deflation cells
and a projection between the deflated domain and the original domain is constructed
with the help of different ansatz functions, either constant, linear or quadratic. Also,
the Moore-Penrose pseudoinverse of the projection is computed. Applying the projec-
tion and restriction to the linear FPM system, a deflated system is obtained which can
easily be solved with a direct method. The deflated solution is then projected onto the
full domain.

The deflation is tested for a number of test cases in one and two dimensions. Con-
stant ansatz functions provide acceptable results for Dirichlet problems, but give big
errors when deflating problems with mixed boundary conditions. Linear ansatz func-
tions provide good approximations which converge to the exact solution as the number
of deflation cells increases. Quadratic ansatz functions provide deflated solutions as
good as the exact solutions for all test cases but are computationally expensive. The
BiCGSTAB convergence rate is improved when using a deflated solution as initial
guess, compared to using the zero-vector. The size of the improvement varies between
which ansatz functions are used.

Overall, the proposed method provides an increased convergence rate in the BiCGSTAB
algorithm for FPM. However, the computational effort in the deflation process should
also be taken into account.
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Populärvetenskaplig sammanfattning

Deflation av Finite Pointset
metoden

Sara P̊alsson
Handledare: Dr. Jörg Kuhnert1,

Prof. Gustaf Söderlind2

Introduktion

Att simulera olika sorters flöden är ett stort
omr̊ade som täcker allt fr̊an hur man kan
förutsäga väder till hur man förbättrar mo-
torer. Flödesberäkningar görs i tv̊a steg, det
första är att bygga matematiska modeller som
beskriver flödet man är intresserad av. Dessa
modeller best̊ar oftast av ett antal ekvationer
som beskriver hur flödesinformation s̊asom tryck
och hastighet ändras över tid beroende p̊a plac-
ering i tillämpningens geometri. Det andra
steget är att försöka lösa dessa ekvationer. Det
gör man oftast genom att diskretisera dem, det
vill säga placera ut punkter över geometrin där
man utför beräkningarna. Man f̊ar d̊a ett stort
system av ekvationer att lösa. För att göra detta
finns m̊anga effektiva algoritmer utvecklade. Ju
fler punkter man vill använda, d.v.s. ju högre
precision man vill att ens lösning ska ha, desto
längre tid tar det.

Ett exempel p̊a en metod för att beräkna flöden
är Finite Pointset Method (FPM). I FPM fyller
man sin geometri med punkter som beter sig
som flödespartiklar och förflyttar sig med flödet,
det vill säga lite som att följa vattendroppar i
en flod. Lösningen tas fram med en vederta-
gen metod vid namn BiCGSTAB. Denna metod
startas med en initialgissning, som här är noll.
I m̊anga fall är detta en effektiv metod, men för
vissa fall tar det väldigt l̊ang tid att komma fram
till ett bra resultat. Målet med det här examen-
sarbetet är därför att utveckla en snabb metod
för att f̊a fram en grov gissning av lösningen som

kan ersätta noll som initialgissning.

Metod

I ett första steg delas flödesgeometrin upp i
ett givet antal delar, s̊a kallade deflationsceller,
som man räknar p̊a istället för de ursprung-
liga punkterna. Man kan likna det vid att
man istället för att räkna p̊a varje vattendroppe
räknar p̊a en deciliter vatten i taget. Det ger
ett mycket mindre system att lösa än det man
började med och g̊ar snabbt att lösa med dagens
metoder. Utifr̊an lösningen av det mindre sys-
temet använder vi olika testfunktioner, s̊asom
konstanta och linjära, för att överföra den till
alla punkterna. I det konstanta fallet innebär
detta att alla punkter i en deflationscell f̊ar
samma värde. Att använda en linjär testfunk-
tion innebär att man i varje deflationscell ska-
par en rak linje utifr̊an lösningen av det mindre
systemet, som sedan används för att bestämma
värdet p̊a alla punkter i cellen. S̊aledes skapas
över hela geometrin en gissning p̊a vilka värden
punkterna borde ha. Denna gissning används
slutligen som initialgissning i BiCGSTAB. Detta
är s̊a kallad deflation.

Utvärdering

För att undersöka hur väl metoden fungerar har
den testats p̊a ett antal olika fall som kan upp-
komma i flödesberäkningar, i b̊ade en och tv̊a
dimensioner. Extra intresserant är att räkna
ut trycket i l̊anga utsträckta geometrier, som
t.ex. rör, eftersom det är där den ursprungliga
metoden med noll som initialgissning tar längst
tid. Det visar sig att det för konstanta testfunk-
tioner knappt lönar sig att använda deflations-
metoden, medan linjära testfunktioner i de flesta
fall förbättrar beräkningstiden rejält - fr̊an upp
till 10 000 beräkningar för att n̊a lösningen till
en eller tv̊a.

1Fraunhofer ITWM, Kaiserslautern, Tyskland
2Lunds Tekniska Högskola, LTH
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thank Dr. Elisa Röhrig for introducing me to Fraunhofer in the first place. Second, thank you to
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Abbreviations and Notations

Abbreviations

BiCGSTAB Biconjugate Gradient Stabilised Method

CG Conjugate Gradient Method

FDM Finite Difference Method

FEM Finite Element Method

FPM Finite Pointset Method

FVM Finite Volume Method

GMRES Generalised Minimal Residual Method

PDE Partial Differential Equation

SPH Smoothed Particle Hydrodynamics

SOR Successive Over-Relaxation Method

Notations

∆ Laplace operator

Ω Computational domain

δΩ Boundary of computational domain

δΩD Boundary with Dirichlet boundary condition

δΩN Boundary with Neumann boundary condition

N Number of particles / grid points

h Smoothing length

η Constant in FPM for the Gaussian weight function

A† Moore-Penrose pseudoinverse of A

A∗ Hermitian transpose of A

M Number of deflation subdomains
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Chapter 1

Introduction

The modelling of fluids and fluid flows is an immense area which covers everything from the simu-
lation of airbag deployment to the analysis of combustion engines. Computational fluid dynamics
consists of two main parts. The first is to model the flows, obtaining equations that describe the
physical phenomena. The second is to develop numerical algorithms that solve these equations.
Fast, robust algorithms are needed, solving the equations by discretising them and forming linear
systems. There are many different ways of discretising a partial differential equation (PDE), among
the most common are the finite difference (FDM), the finite volume (FVM) and the finite element
(FEM) methods. For fluid dynamics a number of particle methods have also been developed - one
of them being the Finite Pointset Method (FPM).

One might ask why the notion of particle methods is interesting, with FVM and FEM being
as well-developed as they are. For many problems, these two methods are all one needs but there
are situations where they prove to be inefficient. Both FVM and FEM use geometrical grids that
can be expensive to set up. For applications where the geometry does not change this is only
done once and the method is efficient. On the other hand, with flow problems where the domain
changes often, or where free-surface flows occur, the grid needs to be adapted on the fly - which
is computationally expensive. In such instances, a Lagrangian particle method may be preferable.
In a Lagrangian method the particles move within the fluid making the computational geometry
self-adapting to flow movements.

Different discretisations generate different linear systems to solve numerically. Depending on each
system’s properties, e.g. symmetry, positive definiteness, sparseness and size, different methods, ei-
ther direct or iterative, can be employed to find a solution. When solving a system, computational
effort and convergence rate should always be taken into account. To speed up an algorithm, and
to improve convergence, one can apply a number of different techniques such as preconditioners,
deflation or multigrid solvers. Generally, deflation is a method to decompose the approximation
space of a linear system into complementary subspaces. This gives a projected, or deflated, system
of a smaller dimension which is much easier to solve than the original problem [3]. In this thesis
the focus lies on improving the convergence rate and speed of FPM by deflation.

1.1 Aim of Thesis

The aim of this master’s thesis is to develop a method to deflate FPM with the help of a variety of
ansatz functions. The solution obtained should be able to serve as a good initial guess in the final
iteration of FPM, during which the obtained discretised linear system is solved with BiCGSTAB.

The method should work for solving the Poisson equation with different sources and boundary
conditions. Especially, it should be able to handle long and narrow geometries. Our method
should work in a MATLAB implementation in one and two dimensions. For certain problems,
e.g. the Poisson equation with mixed boundary conditions in narrow geometries, the convergence
of BiCGSTAB is slow. Therefore, the change in convergence rate will be investigated.

1



1.2. RELATED WORK CHAPTER 1. INTRODUCTION

1.2 Related Work

One of the first grid-free techniques proposed was the Smoothed Particle Hydrodynamics (SPH)
which was first used to solve problems without boundaries in astrophysics [5], [8]. It uses a La-
grangian description of a fluid flow, where the mass points are carriers of all information needed.
The approximation is based upon kernel estimation through an integral interpolant [10, p. 1709].
Lots of work on how this kernel should be decided has been done, and most of the resulting kernels
have compact support [10]. Any desired quantity can then be interpolated as a summation over all
particles’ quantities multiplied with the kernel [10, p. 1710]. As the kernel has compact support,
in practice this summation will only be performed over the neighbours of the particle, within a
selected distance. The derivatives are approximated by differentiating the interpolant [10, p. 1712].
Originally, SPH was developed for problems without boundary conditions. Later on, ideas on how
to properly add boundary conditions were explored [10, p. 1747]. Two of the more popular ideas
are to modify the kernel so that it is not defined outside of the boundary of the domain, or to use
boundary potentials that neutralise the errors at the boundary [7, p. 19-21].

Later, an extension of SPH was presented in [7], called General SPH. This method especially tries
to perform better approximations of the boundary elements. Instead of using symmetric smooth-
ing kernels as in SPH, this method uses (weighted) least squares approximations to obtain the
quantities on each particle. The boundary conditions are incorporated by the placing of boundary
particles which may move with the fluid along the boundary, considering the characteristic curves
of the equations. This method has been investigated as an iterative method approximating first
and second order derivatives, when solving compressible viscous flows [17]. Furthermore, it solves
the Poisson equation with weighted least squares iteratively in [19]. When extending Chorin’s pro-
jection method to this grid-free framework, we can solve incompressible flows by solving at least
one Poisson equation per time-step, which gives the FPM [18]. As can be seen in [20], it has also
been used to model two-phase flows. An overview of FPM can be found in Section 2.1.2. There,
we describe how the approximated operator stencils are obtained. Finally, the linear system set up
by FPM is solved by an appropriate solver. Which solver is used depends on the properties of the
approximated system, but usually the BiCGSTAB method, Gauss-Seidel or SOR are used [4], [20].

There are different approaches to speed up the convergence of FPM. One option is to consider the
stencils set up by the method. A finite difference approximation of an operator, e.g. the Laplace
operator, will always give a positive stencil (all neighbours will have positive weights). This is not
the case with FPM. In [15], a modified FPM is presented with only positive stencils. There, pos-
itivity of the stencils is enforced using a linear minimization. The resulting linear system matrices
will be sparser, thus increasing the computational speed for solving the system. This compensates
for the computational effort of setting up the matrix.

Another way of speeding up the computations is to use parallel computing. This is done in
[16], where the point cloud in FPM is distributed between processors. All processors are supposed
to have roughly the same number of points. This distribution is done by adaptive load balancing,
where each processor represents a subdomain of points. These are selected by recursive coordinate
bisection, with the aim of finding bisections that yield minimal interfaces between the processors.
The system is then solved using a parallel version of BiCGSTAB. It is observed that the division
of the particles into subdomains is fastest if the number of subdomains (thus processors) is a power
of two.

The solving of linear systems has been subject to extensive research, resulting in methods such as
the conjugate gradient (CG) algorithm, BiCGSTAB etc. Often, when trying to improve conver-
gence and speed this is the step that is altered, e.g. with preconditioners or deflating techniques.
Such techniques are specific to which system one wants to solve and which algorithm one chooses
to use. Most work has been done investigating the deflation of the CG algorithm. For this, the
general idea is to decrease the condition number as this directly affects the convergence rate of the
algorithm [14, p. 215].

2



CHAPTER 1. INTRODUCTION 1.3. OVERVIEW

An early example of how to improve the conjugate gradient algorithm with the help of deflation
can be seen in [12]. There, the deflation method can be used without additional preconditioning
and still generate an increase in efficiency. Moreover, it can be used together with standard pre-
conditioners for even better results. The main focus of this study is elliptic second order problems
and the deflation of slowly varying parts of the residual. Overall, this has proved to be a low cost
scheme. The deflation of iterative algorithms such as the conjugate gradient algorithm has mainly
been investigated for the linear systems originating from the finite element approximations. In [9]
the previously mentioned deflating technique has been studied for such systems and proved to be
very effective, both for the Stokes problem for incompressible fluid flows and bending of cantilever
beams.

Whether using a preconditioner is preferable to deflation is investigated in [11]. There, the deflat-
ing technique for the conjugate gradient algorithm is compared to balancing preconditioning. The
results show that deflating the system will generate faster results.

In [1], deflation of the BiCGSTAB algorithm is investigated. There, the authors alternate between
a minimal residual projection over the right eigenvectors and cycles of BiCGSTAB. The first step
is solved using GMRES-DR.

1.3 Overview

In this thesis, Chapter 2 starts with a theoretical background of numerical analysis and numerical
linear algebra. Also, an overview of FPM is presented. It continues with describing the method
developed for our deflation and how the different approximations are constructed. In Chapter 3
results of the deflation in 1D and 2D are presented for FPM systems with varying boundary
conditions. Finally, Chapter 4 contains a discussion on the results, presents an outline for future
work and concludes the thesis. In Appendix B results for the deflation of FDM are presented.

3





Chapter 2

Approach

In this chapter we describe the particle method used in this thesis (FPM), some mathematical
theory and our deflation method. The equation to solve is the Poisson equation

∆u = f in Ω ∈ Rk, k = 1, 2, 3, (2.1)

with either Dirichlet or mixed boundary conditions.

2.1 Theory

In this section we describe the main ideas for FDM and FPM with regard to the approximation of
the Laplace operator. An equation such as Eq. 2.1 appears in a multitude of problems, e.g. the
pressure Poisson equation that is used for solving the Navier-Stokes equations [4]. Moreover, we
mention some of the theory regarding pseudoinverses.

First of all, there are two approaches to regard flow problems. The first is the Eulerian way,
where one regards the flow from a global perspective and the coordinates remain fixed in that
frame of reference. The other is the Lagrangian way, where one regards the flow from “within”,
and the coordinates travel along with the fluid particles [13]. The FDM as presented in Section 2.1.1
is an example for Eulerian coordinates. There are also finite difference methods for Lagrangian
coordinates, though these are outside the scope of this thesis. FPM uses Lagrangian coordinates.

Second, the family of partial differential equations (PDEs) is vast and consists of many differ-
ent problems. Various ways of characterising them exist - e.g. elliptic, parabolic and hyperbolic
PDEs - and how to solve them varies between these groupings. In this thesis we are focusing on the
elliptic equation seen in Eq. 2.1. Here, ∆ stands for the Laplace operator, thus (in two dimensions)

∆u =
δ2u

δx2
+
δ2u

δy2
,

for (x, y) ∈ Ω ⊂ R2, where Ω is bounded and connected with a piecewise smooth boundary and
f ≡ f(x, y) is a known function. Together with this we have boundary conditions. In this thesis,
only Dirichlet boundary conditions, i.e.

u(x, y) = gD(x, y), ∀(x, y) ∈ δΩ,

and mixed boundary conditions

u(x, y) = gD(x, y), ∀(x, y) ∈ δΩD,
δu

δ~n
= gN (x, y), ∀(x, y) ∈ δΩN ,

are considered.

5



2.1. THEORY CHAPTER 2. APPROACH

2.1.1 Finite Difference Method

The main idea of the FDM is to replace every derivative with a linear combination of discrete
values from the grid. A good introduction to FDM is given in [6]. Here, we only give the most
important results.

In one dimension, Ω = [x0, xL] ∈ R, second order derivatives are usually approximated by central
differences, thus at an inner grid point j we have

δ2u

δx2
≈ uj+1 − 2uj + uj−1

dx2
at xj ∈ Ω \ δΩ,

where dx denotes the distance between two adjacent points. On a uniform grid, all distances
between neighbouring points are the same. For N inner grid points, this gives the approximated
system matrix A of size N ×N ;

A =
1

dx2



−2 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −2 1 0
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2


. (2.2)

Dirichlet boundary conditions can be incorporated on the right hand side of the equation, thus

b =


f1 − 1

dx2u0
f2
...

fN−1
fN − 1

dx2uN

 , (2.3)

where u(x0) = u0 and u(xL) = uN . This gives us a sparse, positive definite and symmetric system
Aũ = b to compute ũ = [u1 u2 . . . uN ]T , which are the values of our function u at the grid points.
If we instead have a Neumann boundary condition, it will be approximated either by a forward
difference,

δu

δx
≈ uj+1 − uj

dx
, xj ∈ δΩN ,

or by a backward difference
δu

δx
≈ uj − uj−1

dx
, xj ∈ δΩN ,

and incorporated into Eq. 2.2 and Eq. 2.3.

In two dimensions, the common five-point stencil to approximate the Laplace operator at point
(i, j) is

∆ui,j ≈
ui−1,j + ui+1,j − 4ui,j + ui,j−1 + ui,j+1

dx2
at (x, y) ∈ Ω \ δΩ,

for a uniform grid, i.e. dx = dy. The boundary conditions are treated in a similar fashion to the
one dimensional case.

2.1.2 Finite Pointset Method

FPM uses a point cloud on which the computations are performed. The points serve as the nu-
merical “grid” of the method, are treated as carriers of information (pressure, velocity etc.) and
can move with time over the flow geometry. The method has been described in many papers, see
e.g. [4], [7], [18], [20]. Here only a short overview is given. The general idea of FPM is to model a

6



CHAPTER 2. APPROACH 2.1. THEORY

differential equation by direct approximations of the operators, based on each of the particles and
its neighbours. This gives us a strong formulation of our equations.

First, the domain is filled with N particles. Particle k has access to its position, ~xk, as well
as, in the case of a non-stationary problem, initial values for all fluid information such as density,
velocity and pressure. Additionally, a smoothing length h is defined. The neighbours of a particle
~xk are defined as all particles within the ball B(~xk, h).

Second, consider the set of N particles. On each of the particles, the differential operator is
constructed. For this, the particle itself and its neighbours are used. In order for the particles
closer to the selected particle ~xk to influence its properties more, a weight function is defined as

wk = w(~xk, h) =

 exp

(
−η ‖~xk − ~x‖

2

h2

)
, if
‖~xk − ~x‖

h
≤ 1,

0, else,

(2.4)

where h is the smoothing length as already mentioned and η a positive constant, with an optimal
value between 2 and 6. Then, shape functions φi are constructed such that

∆u ≈
m∑
i=1

φiui =: ∆̃u, (2.5)

where m is the number of neighbours for particle k. A Taylor series expansion of u(~xk) around an
arbitrary neighbouring particle ~x then gives an approximation of the Laplace operator

∆u =

m∑
i=1

φiui +O(‖d~xi‖3) = ∆̃u+O(‖d~xi‖3),

with the constraints

m∑
i=1

φidxi = 0,

m∑
i=1

φidyi = 0,

m∑
i=1

φidzi = 0,

m∑
i=1

φidxidyi = 0,

m∑
i=1

φidxidzi = 0,

m∑
i=1

φidyidzi = 0,

as well as
m∑
i=1

φi = 0,

m∑
i=1

φidx
2
i = 2,

m∑
i=1

φidy
2
i = 2 and

m∑
i=1

φidz
2
i = 2.

(2.6)

The constraints are denoted by G1 to G10. The distance between particle ~xk and neighbouring
particle ~xi is defined as

[dxi dyi dzi]
T = ~xk − ~xi.

To decide the Laplace stencil with φi for each particle ~xk the functional

J =

m∑
i=1

φ2i
wi

(2.7)

is minimized with respect to the constraints in Eq. 2.6. This is equivalent to

δJ

δφi
+

10∑
j=1

λj
δGj
δφi

= 0, i = 1, . . . ,m,

7
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where λj are the Lagrange multipliers. The weighted least squares minimization then gives

ā = (MTWM)−1(MTW )b̄, (2.8)

where
ā =

(
λ1 λ2 . . . λ10

)T
, W = diag[w1, . . . , wm],

M =

1 dx1 dy1 dz1 dx21 dx1dy1 dx1dz1 dy21 dy1dz1 dz21
...

...
...

...
...

...
...

...
...

...
1 dxm dym dzm dx2m dxmdym dxmdzm dy2m dymdzm dz2m

 ,

and

b = −2
(
φ1

w1

φ2

w2
. . . φm

wm

)T
.

Now, the stencil can be obtained by Eq. 2.9,

φi =− wi
2

(λ1 + dxiλ2 + dyiλ3 + dziλ4 + dx2iλ5 + dxidyiλ6+

+ dxidziλ7 + dy2i λ8 + dyidziλ9 + dz2i λ10).
(2.9)

Inserting all functions φi for all particles k in a matrix, Ψ, gives the discretised system

Ψu = f. (2.10)

In Eq. 2.10, Ψ is the matrix representing the discretised operator. It covers all particles in the
domain, also those on the boundary, thus the boundary conditions are incorporated directly. This
gives us a system that is not symmetric, nor necessarily positive definite.

This method works for uniformly as well as randomly distributed particles. The bandwidth of
the matrix Ψ depends on the choice of the smoothing length h. For uniformly distributed par-
ticles, and h < 2dx, this system will be close to the system obtained for a five-point stencil in
FDM.

2.1.3 Pseudoinverses

There are many matrices for which we cannot calculate inverses. These might be singular matrices,
or simply matrices that are not square. One might still want to calculate a more generalised inverse,
called a pseudoinverse. Here follows an overview of pseudoinverses. For more detailed information,
see [2]. A generalised inverse of a matrix is defined as follows.

Definition 1. Let m, n ∈ N and A ∈ Cm×n. A matrix B ∈ Cn×m is said to be a generalised
inverse, or a pseudoinverse, of A if it satisfies the conditions

• ABA = A,

• BAB = B.

It is worth noting that if A is non-singular and square, then A−1 will satisfy the properties of
Def. 1. This definition is quite wide and will cover many options for pseudoinverses. Therefore, a
more specific pseudoinverse is introduced, the Moore-Penrose pseudoinverse.

Definition 2. Let m, n ∈ N and A ∈ Cm×n. A matrix A† ∈ Cn×m is said to be a Moore-Penrose
pseudoinverse of A if it satisfies the following conditions:

• AA†A = A,

• A†AA† = A†,

• AA† ∈ Cm×m and A†A ∈ Cn×n are self-adjoint.

8
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Both uniqueness and existence of the Moore-Penrose pseudoinverse can be shown [2, p. 4-5]. The
Moore-Penrose pseudoinverse is useful when trying to solve the linear equation

Ax = y, A ∈ Cm×n, x ∈ Cn. (2.11)

If A is singular, or not square, the simple solution x = A−1y does not exist. In that case there might
be no solution at all, or it is not unique. The Moore-Penrose pseudoinverse can be used to find the
x′ ∈ Cn that minimizes ‖Ax′−y‖2. These vectors x′ make out what is called the minimizing set of
the linear problem in Eq. 2.11. This set of vectors is provided by the Moore-Penrose pseudoinverse
as can be seen in Thm. 1.

Theorem 1. Let A ∈ Cm×n and y ∈ Cm be given. Then, the set of all vectors in Cn for which
the map Cn 3 x 7→ ‖Ax− y‖2 ∈ [0, inf) assumes a minimum coincides with the set

A†y + ker(A) = {A†y + (1n −A†A)z, z ∈ Cn}.

A proof of Thm. 1 can be found in [2]. The Moore-Penrose pseudoinverse can be written as

A† = A∗ (AA∗)
−1
,

if AA∗ is invertible, or alternatively

A† = (A∗A)
−1
A∗,

if A∗A is invertible, where A∗ is the Hermitian transpose of A.

2.2 Method

Our deflation method consists of a number of steps. First, the differential operator as in Eq. 2.1 is
discretised either by FDM or FPM. This gives us the linear system

Au = b, (2.12)

where b represents the right hand side of our differential equation (i.e. the sources), u the desired
quantity on each particle and A the stencil for the differential operator. We note that depending
on how our discretisation is made, and which boundary conditions are imposed, our matrix A will
have different properties. In general, we cannot assume either symmetry or positive definiteness.

Investigating the condition number of the system matrices shows that it can be vastly improved.
Therefore, as a second step, we scale our system to try to decrease it. Different techniques for this
are mentioned in Section 2.2.2.

Third, we decompose our domain into a given number, M , of subdomains or deflation cells. On
each of these subdomains we project our solution given different ansatz functions. How this decom-
position is done may vary. In one and two dimensions, the domain is simply divided into M equally
large subdomains, independent of how the particles are spread out. For three dimensions, the idea
would be to perform a recursive coordinate bisection, as described in [16]. In either dimension, no
special thought is spent on the boundary particles.

The next step is to deflate our system to something much smaller, preferably on which the so-
lution can be obtained by a direct method. This is done by restricting the particles on a given
subdomain to a predetermined number of “new” particles. How these are placed - and how many
there are - is decided by which sort of ansatz function we want to use. This is done by

ū = P †u⇔ u = Pū.

We define the operator P † as a the Moore-Penrose pseudoinverse of P .

9
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Now, the construction of our deflated system is done by using the projection P on the deflated
vector ū and restricting our full system matrix and right-hand side by P †. Thus, we obtain the
following system

P †APū = P †b⇔ Āū = b̄. (2.13)

The system in Eq. 2.13 has a smaller dimension than the original system. How big the change
in size is will depend on which approximations are used for constructing P . From Eq. 2.13, we
obtain the deflated solution ū by using a direct method. Finally, the approximated solution

...
u is

produced by
...
u = Pū.

All in all, the algorithm can be summarised as in Alg. 1.

Data: Boundary conditions, domain information and RHS f
Result: Deflated solution ū and approximated solution

...
u

Decompose domain into M subdomains;
Discretise operator either by FDM or FPM, to obtain system matrix A;
Scale A to decrease condition number;
Construct P , either by constant, linear or quadratic approximations;

Construct P † as the Moore-Penrose pseudoinverse of P ;

Deflate system by P †APū = P †b;
Solve deflated system with respect to ū;
Approximate solution

...
u = Pū;

Algorithm 1: Deflation Algorithm

2.2.1 Construction of P and P †

We construct P according to which ansatz functions we are interested in using. The idea is to
take the information in each subdomain of the deflation and map that information to the particles
in the original full domain. By construction, P will map our deflated values to an approximated
solution,

...
u = Pū.

Then, P † is constructed as the Moore-Penrose pseudoinverse of P .

Constant Approximations

In one as well as two dimensions, when approximating constant functions on the subdomains of
the deflation each subdomain needs only one computational point. The value of ū at this point
is then mapped to all particles in said subdomain. For each deflation cell, we choose to place the
computational point, c, in the middle of our subdomain.

An example in one dimension for N = 10 particles and M = 3 deflation cells would be

P =

1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1

T

, (2.14)

where the first and last subdomains contain three particles each, and the middle subdomain con-
tains four. The corresponding pseudoinverse P † is then

P † =

 1
3

1
3

1
3 0 0 0 0 0 0 0

0 0 0 1
4

1
4

1
4

1
4 0 0 0

0 0 0 0 0 0 0 1
3

1
3

1
3

 . (2.15)

10
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Linear Approximations

For one dimension, the linear deflation will need two computational points per subdomain. The
idea is to interpolate a linear function from these computational points, onto which the particles
will be mapped. Then, P will have the size N×2M . The one dimensional formula for constructing
P is as follows: For particle ~xi in cell k we have

Pi,2k−1 =
−xi + c2
c2 − c1

and Pi,2k =
xi − c1
c2 − c1

. (2.16)

The computational points of each subdomain are denoted by c1 and c2. They are placed uniformly
on the subdomains, as

c1 = M1 +
1

3
dM and c2 = M1 +

2

3
dM,

where dM is the size of the subdomain and M1 its leftmost boundary.

In two dimensions, our linear approximation consists of approximating a plane on each subdo-
main. For this, three computational points per subdomain are needed. The projection P will have
the size N × 3M , where N = NxNy is the total number of particles, and M = MxMy the total
number of deflation cells. Thus, for particle ~xl = (xi, yj) in cell k we have

Pl,3k−2 =
(−1)(xi −mx) + (1 + c1,x −mx)

(c3,x − c3,y)(c1,y − c2,y)− (c1,y − c2,x)
+

+
(yi −my)(c3,x − c1,x)− (c3,x − c2,x)(c1,y −my)

(c1,y − c2,y)(c3,x − c2,1)− (c3,y − c2,y)(c1,x − c2,x)
,

Pl,3k−1 =
(xi −mx)(1− c1,y + c2,y) + (1− c1,y + c2,y)(c1,x −mx)

(c3,x − c3,y)(c1,y − c2,y)− (c1,y − c2,x)
+

+
(yi −my)(c1,x − c3,x)− (c3,x − c2,x)(c1,y −my)

(c1,y − c2,y)(c3,x − c2,1)− (c3,y − c2,y)(c1,x − c2,x)
,

Pl,3k =
(xi −mx)(c1,y − c2,y) + (c1,y − c2,y)(c1,x −mx)

(c3,x − c3,y)(c1,y − c2,y)− (c1,y − c2,x)
+

+
(yi −my)(c3,xc1,x)− (c3,x − c1,x)(c1,y −my)

(c1,y − c2,y)(c3,x − c2,1)− (c3,y − c2,y)(c1,x − c2,x)
.

(2.17)

Here, m = (mx,my) is defined as the mid point of the subdomain and c1, c2 and c3 are three
computational points placed according to a reference subdomain, as seen in Fig. 2.1. The compu-
tational points lie with 120 degrees spacing between each other on a circle with radius r = 1

2dMx.
We choose to define our deflation subdomains such that dMx = dMy. As before, P † is the Moore-
Penrose pseudoinverse of P .

Quadratic Approximations

A quadratic approximation is constructed by interpolating a quadratic function on each subdo-
main from its computational points. In one dimension, a quadratic approximation requires three
computational points per subdomain.

11
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Figure 2.1: Example of deflation cell and placement of computational points in 2D for linear
approximations.

For problems in one dimension P will have the size N × 3M and is constructed by

Pi,3k−2 = x2i ·
c1c2 − c1c3 + c2c3 − c23

(c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23)(c1 + c3)
+

+ xi ·
−c22 + c23

c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23
+

+
c1c

2
2c3 − c1c2c23 + c22c

2
3 − c2c23

(c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23)(c1 + c3)
,

Pi,3k−1 = x2i ·
−c21 + c23

(c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23)(c1 + c3)
+

+ xi ·
c21 − c23

c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23
+

+
−c31c3 + c1c

3
3

(c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23)(c1 + c3)
,

Pi,3k = x2i ·
−c21 − c1c2 + c1c3 + 2c22 − c2c3

(c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23)(c1 + c3)
+

+ xi ·
−c21 + c22

c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23
+

+
2c41 + c31c2 − 3c31c2 − 3c21c

2
2 + c21c2c3 − c1c22c3

(c21c2 − c21c3 − c1c22 + c1c23 + c22c3 − c2c23)(c1 + c3)
,

(2.18)

for particle ~xi in subdomain k. The computational points of the deflated system are c1, c2 and c3,
placed by the formula

c1 = M1 +
1

4
dM, c2 = M1 +

1

2
dM and c3 = M1 +

3

4
dM,

where dM is the size of the deflation subdomain and M1 its leftmost coordinate.

12
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2.2.2 Varieties

Our method can be varied in a number of ways. First, when decomposing our domain, we can
choose to do it either geometrically or by number of particles. Using different decompositions
should not affect our approximations a great deal, since the particles, despite not necessarily being
uniformly distributed, should still cover the domain somewhat evenly. Also, the domain decompo-
sition could be done taking the boundary particles into particular consideration. By placing them
in subdomains of their own, the boundary conditions can be explicitly enforced. In one, and maybe
two, dimensions this is a possible approach, but as soon as we start looking at three dimensions it
will not be practically possible.

Second, the computational points used in the approximations could be placed in a number of
different ways. Here we choose to place them uniformly over our domain in 1D. In 2D they are
placed as in Fig. 2.1. More random placings could be considered, as well as other structures.

Third, the matrix A from Eq. 2.12 will be scaled. Here, this is done by scaling the entire matrix
and the vector b such that

Aii = 1, ∀i ∈ [1, N ].

Other approaches to scaling exist. One could, for example, weight the rows ofA and b corresponding
to the boundary particles - to ensure the boundary conditions are fulfilled.

2.2.3 Evaluation

We evaluate our results by investigating the approximated solution
...
u . This is done both by

comparing it to an already known solution, i.e.

e = u− ...
u , (2.19)

as well as computing the residual
r = b−A...

u , (2.20)

in the two-norm, ‖ · ‖2.

Additionally, the computational effort is taken into consideration. We investigate the improve-
ment of convergence in the BiCGSTAB algorithm in MATLAB when

...
u is used as initial guess

compared to using the zero-vector. For these tests we use the standard tolerance of the algorithm,
tol = 10−6, and no preconditioners.
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Chapter 3

Results

In this chapter we present our deflation results for FPM. Results for the deflation of FDM on
two test cases can be found in Appendix B. As mentioned in Section 2.2.3 we investigate the
deviation from the correct solution as well as the residuals. Also, the convergence of BiCGSTAB
is examined. All implementations are made in MATLAB. All tests are performed on uniform
particle distributions.

3.1 Results in 1D

We test our deflation in the domain Ω = [0, 1] ∈ R. The boundary value problems to investigate
are

−∆u = 1 in Ω, u = 0 on δΩ, (3.1)

∆u = 0 in Ω, u(0) = 1, u(1) = 0, (3.2)

∆u = 0 in Ω,
δu

δ~n
(0) = −1, u(1) = 0, and (3.3)

−∆u = 1 in Ω,
δu

δ~n
(0) = −1, u(1) = 0. (3.4)

For all these test cases we test how the approximated solution changes with an increasing number
of deflation cells, M . This is done for N = 200 particles. The error and residual changes are
investigated on a particle distribution of 2050 particles, as are the BiCGSTAB convergence tests.
The increase in N is to ensure that larger values of M can be tested. Constants used for FPM
are the smoothing length h = 2.1dx and η = 4.5. In Appendix B the solution and deflation of the
FDM system for Eq. 3.3 can be found.

3.1.1 Constant Approximations

By using the constant approximations as seen in Section 2.2.1 we obtain the following results
for the deflation of FPM. For each deflation subdomain one computational point is needed, here
chosen to be the midpoint of each subdomain.

Dirichlet Boundary Conditions

The test cases with Dirichlet boundary conditions are Eq. 3.1 and Eq. 3.2. The results shown are
obtained on the normalised system, where all elements on the diagonal of A are 1 as described in
Section 2.2.2. For N = 200 the linear systems before and after deflation, M = 3, of Eq. 3.1 and
Eq. 3.2 have the following condition numbers

cond(AEq.3.1,Eq.3.2) = 1.54 · 104, cond(ĀEq.3.1,Eq.3.2) = 3.99.

We see that the deflation vastly reduces the condition numbers of the system. As the number of
deflation cells increases the condition number of Ā does too, while it stays approximately the same
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as N increases. This can be seen in Appendix A.

How the approximated solutions look like can be seen in Fig. 3.1 and Fig. 3.2. These figures
portray how an increasing number of deflation cells M changes the approximated result. One
can see that for Eq. 3.2 the approximated solution converges faster than for Eq. 3.1. For both
equations, the Dirichlet boundary conditions are fulfilled. Increasing the number of deflation cells
changes the error evaluated as in Section 2.2.3. This can be seen in Fig. 3.3 and Fig. 3.4 where we
investigate the deflation for M = 2i, i = 1 . . . 11, deflation cells with N = 2050 particles. Clearly,
an increasing number of deflation cells improves the approximated solution in both cases. Again,
we see a much faster convergence rate for Eq. 3.2 than Eq. 3.1. The residual, evaluated as in
Section 2.2.3, will stay small for Eq. 3.1 although slightly fluctuating. For Eq. 3.2 it decreases
rapidly with increasing M . Both residuals can be found in Appendix A, in Fig. A.25 and Fig. A.26
respectively.

Figure 3.1: Exact and approximated solu-
tions of Eq. 3.1 using constant ansatz func-
tions, N = 200, with increasing number of
deflation cells M = 2i, i = 1, . . . , 7.

Figure 3.2: Exact and approximated solu-
tions of Eq. 3.2 using constant ansatz func-
tions, N = 200, with increasing number of
deflation cells M = 2i, i = 1, . . . , 7.

Figure 3.3: Change in error between exact
and approximated solutions of Eq. 3.1 using
constant ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 11.

Figure 3.4: Change in error between exact
and approximated solutions of Eq. 3.2 using
constant ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 11.

Mixed Boundary Conditions

Both Eq. 3.3 and Eq. 3.4 have mixed boundary conditions, with a Neumann condition on the x = 0
side and a Dirichlet condition at x = 1. For N = 200, the condition numbers of the normalised
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linear systems for Eq. 3.3 and Eq. 3.4 given by FPM and the deflated systems for M = 3 are

cond(AEq.3.3,Eq.3.4) = 7.04 · 104, cond(ĀEq.3.3,Eq.3.4) = 13.93.

Also for these test cases a constant deflation reduces the condition number significantly. How the
condition numbers change as M and N increase can be seen in Appendix A.

The constant approximations of these two equations can be seen in Fig. 3.5 and Fig. 3.6. The
approximated solutions are obtained using M = 2i, i = 1, . . . , 7, deflation cells. One can see that
an increasing number of deflation cells does not lead to a better approximation of u. Instead, the
largest M seems to give the biggest deviation from the exact solution on the Neumann boundary.
For both deflations, the Dirichlet boundary condition is fulfilled. That the method does not con-
verge is also shown by the increasing error in Fig. 3.7 and Fig. 3.8, where we use N = 2050 particles
and M = 2i, i = 1, . . . , 11, deflation cells. Although the error reaches a minimum in both cases at
around M ≈ 1000 deflation cells, it is still undesirably big at ‖e‖2 > 10 for Eq. 3.1 and ‖e‖2 > 20 for
Eq. 3.2. For both equations the residuals stay small, which can be seen in Fig. A.27 and Fig. A.28.

Figure 3.5: Exact and approximated solu-
tions of Eq. 3.3 using constant ansatz func-
tions, N = 200, with increasing number of
deflation cells M = 2i, i = 1, . . . , 7.

Figure 3.6: Exact and approximated solu-
tions of Eq. 3.4 using constant ansatz func-
tions, N = 200, with increasing number of
deflation cells M = 2i, i = 1, . . . , 7.

Figure 3.7: Change in error for Eq. 3.3 using
constant ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 11.

Figure 3.8: Change in error for Eq. 3.4 using
constant ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 11.
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The convergence of the BiCGSTAB algorithm in MATLAB is investigated. We compare the
number of iterations needed for convergence with the initial guess uinit = 0 to the number of itera-
tions needed when using our approximated solution as initial guess, uinit =

...
u . The approximation

...
u is obtained for M = 2i, i = 1, . . . , 11, deflation cells. How the convergence behaves for Eq. 3.1,
Eq. 3.2, Eq. 3.3 and Eq. 3.4 can be seen in Fig. 3.9, Fig. 3.10, Fig. 3.11 and Fig. 3.12 respectively.
For these tests, we use N = 2050 particles. We see that for all equations, BiCGSTAB performs
better with a zero initial guess than our deflated approximation and that a larger number of de-
flation cells not necessarily improves the convergence rate. In some cases, Eq. 3.1 and Eq. 3.4, a
larger M will even worsen the convergence rate. Our approximation performs better for Dirichlet
problems than for problems with mixed boundary conditions.

Figure 3.9: Change in convergence
rate for Eq. 3.1 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 11,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.10: Change in convergence
rate for Eq. 3.2 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 11,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.11: Change in convergence
rate for Eq. 3.3 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 11,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.12: Change in convergence
rate for Eq. 3.4 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 11,
N = 2050. Compared to convergence rate
for uinit = 0.

As a final investigation of our constant deflation in one dimension we examine how the convergence
rate of the BiCGSTAB algorithm changes as the number of particles, N , changes. Here, we test
for

N = [200 400 800 1600 3200 4000]
T

(3.5)
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particles. The number of deflation cells M is selected as the M with the smallest number of
iterations in Fig. 3.9, Fig. 3.10, Fig. 3.11 and Fig. 3.12 respectively, thus

MEq.3.1 = 16, MEq.3.2 = 64, MEq.3.3 = 32 and MEq.3.4 = 128.

The results can be seen in Fig. 3.13, Fig. 3.14, Fig. 3.15 and Fig. 3.16. Worth noting is that for
Eq. 3.2 the BiCGSTAB algorithm performs exceptionally well with uinit = 0 and the deflation
will only give worse results, see Fig. 3.14. For all other test cases the deflation yields slightly faster
convergence, especially when N becomes very large.

Figure 3.13: Change in convergence
rate for Eq. 3.1 and BiCGSTAB with
uinit = uapprox for M = 16. The number of
particles N changes as in Eq. 3.5. Compared
to convergence rate for uinit = 0.

Figure 3.14: Change in convergence
rate for Eq. 3.2 and BiCGSTAB with
uinit = uapprox for M = 64. The number of
particles N changes as in Eq. 3.5. Compared
to convergence rate for uinit = 0.

Figure 3.15: Change in convergence
rate for Eq. 3.3 and BiCGSTAB with
uinit = uapprox for M = 32. The number of
particles N changes as in Eq. 3.5. Compared
to convergence rate for uinit = 0.

Figure 3.16: Change in convergence
rate for Eq. 3.4 and BiCGSTAB with
uinit = uapprox for M = 128. The number
of particles N changes as in Eq. 3.5. Com-
pared to convergence rate for uinit = 0.

3.1.2 Linear Approximations

In the same way as for constant approximations, we investigate the results generated by linear
approximations in our deflation. How the linear approximation is constructed is described in
Section 2.2.1.
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Dirichlet Boundary Conditions

The results of the linear deflation for Eq. 3.1 and Eq. 3.2 can be seen in Fig. 3.17 and Fig. 3.18
for M = 2i, i = 1, . . . , 6, deflation cells and N = 200 particles. For this N and M = 3 the deflated
systems of Eq. 3.1 and Eq. 3.2 have the condition number

cond(ĀEq.3.1,Eq.3.2) = 638.48.

More results regarding the condition numbers of the deflated systems can be found in Appendix A.

For Eq. 3.2 the deflation gives a solution very close to the exact one and the error is very small,
see Fig. 3.20. The deflated solution for Eq. 3.1 converges rapidly, which also can be seen for the
error in Fig. 3.19. After a certain number of deflation cells, increasing M will no longer improve
the deflated solution notably. For Eq. 3.1 this is the case after approximately M = 16 deflation
cells. In comparison, M = 2 deflation cells is enough for Eq. 3.2. The change in residuals can be
seen in Fig. A.29 and Fig. A.30. For both equations these are very small and decreasing with an
increasing M .

Figure 3.17: Exact and approximated solu-
tions of Eq. 3.1 using linear ansatz functions,
N = 200, with increasing number of defla-
tion cells M = 2i, i = 1, . . . , 6.

Figure 3.18: Exact and approximated solu-
tions of Eq. 3.2 using linear ansatz functions,
N = 200, with increasing number of defla-
tion cells M = 2i, i = 1, . . . , 6.

Figure 3.19: Change in error for Eq. 3.1 us-
ing linear ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 10.

Figure 3.20: Change in error for Eq. 3.2 us-
ing linear ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 10.
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Mixed Boundary Conditions

The results for the test cases with mixed boundary conditions, Eq. 3.3 and Eq. 3.4, can be seen in
Fig. 3.21 and Fig. 3.22. For N = 200 and M = 3 the condition number of the deflated systems is

cond(ĀEq.3.3,Eq.3.4) = 2.42 · 103.

More results regarding the condition numbers can be found in Appendix A.

In Fig. 3.21 we see that the approximation is very close to the exact solution for all M . As
seen in Fig. 3.22, for Eq. 3.4 the linear approximation converges quickly to the exact solution.
Fig. 3.23 and Fig. 3.24 show how the error changes with an increased number of deflation cells,
M = 2i, i = 1, . . . , 10. For both test cases the error is relatively small for all M , although much
smaller for Eq. 3.3. Also the residuals are very small, especially for Eq. 3.3, which is shown in
Fig. A.31 and Fig. A.32.

Figure 3.21: Exact and approximated solu-
tions of Eq. 3.3 using linear ansatz functions,
N = 200, with increasing number of defla-
tion cells M = 2i, i = 1, . . . , 6.

Figure 3.22: Exact and approximated solu-
tions of Eq. 3.4 using linear ansatz functions,
N = 200, with increasing number of defla-
tion cells M = 2i, i = 1, . . . , 6.

Figure 3.23: Change in error for Eq. 3.3 us-
ing linear ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 10.

Figure 3.24: Change in error for Eq. 3.4 us-
ing linear ansatz functions, N = 2050, with
increasing number of deflation cells M = 2i,
i = 1, . . . , 10.

The change in convergence rate for BiCGSTAB can be seen in Fig. 3.25, Fig. 3.26, Fig. 3.27
and Fig. 3.28. As can be expected, for the two test cases with linear exact solutions, Eq. 3.2 and
Eq. 3.3, the deflated solution in BiCGSTAB gives instant convergence whilst uinit = 0 needs
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approximately 2 and 500 iterations, respectively, for convergence. For Eq. 3.1 it is initially slower
to use the deflated solution, but for M ≈ 500 deflation cells an improvement compared to uinit = 0
can be observed. Regarding Eq. 3.4, using uinit =

...
u will always give slower convergence than

uinit = 0. In that case, the convergence rate stays more or less constant for changing M .

Figure 3.25: Change in convergence
rate for Eq. 3.1 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 10,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.26: Change in convergence
rate for Eq. 3.2 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 10,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.27: Change in convergence
rate for Eq. 3.3 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 10,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.28: Change in convergence
rate for Eq. 3.4 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 10,
N = 2050. Compared to convergence rate
for uinit = 0.

Investigating how the BiCGSTAB convergence rate changes with an increasing number of par-
ticles N , the results in Fig. 3.29, Fig. 3.30, Fig. 3.31 and Fig. 3.32 are obtained. The tests are
performed on N chosen as in Eq. 3.5. For Eq. 3.1 and Eq. 3.4, M is the number of deflation cells
that yields the best convergence as seen in Fig. 3.25 and Fig. 3.28, but smaller than 100 so as to
have 2M < N for the smallest N . This gives us

MEq.3.1 = 32, and MEq.3.4 = 16.

Since Eq. 3.2 and Eq. 3.3 converges directly with the deflated solution, for those two test cases
we set M = 3 in our tests. As before, the convergence for uinit =

...
u is instant in Fig. 3.30 and

22



CHAPTER 3. RESULTS 3.1. RESULTS IN 1D

Fig. 3.31. For Eq. 3.2, also convergence for uinit = 0 is fast. In contrast, the number of iterations
needed for convergence for Eq. 3.3 grows by a factor of two for uinit = 0. For Eq. 3.1 in Fig. 3.29
our deflated solution proves slightly worse, and for Eq. 3.4 in Fig. 3.32 slightly better, than the
zero-vector.

Figure 3.29: Change in convergence
rate for Eq. 3.1 and BiCGSTAB with
uinit = uapprox for M = 32. The number of
particles N changes as in Eq. 3.5. Compared
to convergence rate for uinit = 0.

Figure 3.30: Change in convergence
rate for Eq. 3.2 and BiCGSTAB with
uinit = uapprox for M = 3. The number
of particles N changes as in Eq. 3.5. Com-
pared to convergence rate for uinit = 0.

Figure 3.31: Change in convergence
rate for Eq. 3.3 and BiCGSTAB with
uinit = uapprox for M = 3. The number
of particles N changes as in Eq. 3.5. Com-
pared to convergence rate for uinit = 0.

Figure 3.32: Change in convergence
rate for Eq. 3.4 and BiCGSTAB with
uinit = uapprox for M = 16. The number of
particles N changes as in Eq. 3.5. Compared
to convergence rate for uinit = 0.

3.1.3 Quadratic Approximations

The quadratic deflation requires three computational points per cell, which means that the max-
imum number of deflation cells M one can use with N = 200 particles is 66. The approximation
is described in Section 2.2.1. We show the deflation first for N = 200 particles with an increasing
number of deflation cells, M = 2i, i = 2, . . . , 6. Then the error, the residuals and the convergence
rate of BiCGSTAB are investigated using N = 2050 particles.

Dirichlet Boundary Conditions

For Eq. 3.1 and Eq. 3.2 the approximated solutions are as seen in Fig. 3.33 and Fig. 3.34. Increasing
the number of deflation cells hardly changes the approximated solution, at least not visibly in our
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results. For N = 200, M = 3, the condition number of the deflated system will be

cond(ĀEq.3.1,Eq.3.2) = 1.30 · 107.

More information can be found in Appendix A.

As is shown by the plots of the error in Fig. 3.35 and Fig. 3.36 the error is always small, but
increases slightly for larger M . Also the residuals are very small, as can be seen in Fig. A.33 and
Fig. A.34. For M larger than M = 25, N = 2050, the deflated solutions yield big errors. This is
because our system Āū = b̄ then becomes ill-conditioned. For example, for Eq. 3.1 with N = 2050
and M = 26 the condition number of Ā is cond(Ā) = 2.1 · 1017. Thus, we need to limit M such
that Āū = b̄ remains easily solvable.

Figure 3.33: Exact and approximated solu-
tion of Eq. 3.1 using quadratic ansatz func-
tions, N = 200, M = 2i, i = 2, . . . , 6.

Figure 3.34: Exact and approximated solu-
tion of Eq. 3.2 using quadratic ansatz func-
tions, N = 200, M = 2i, i = 2, . . . , 6.

Figure 3.35: Change in error for Eq. 3.1 us-
ing quadratic ansatz functions, N = 2050,
with increasing number of deflation cells
M = 2i, i = 1, . . . , 5.

Figure 3.36: Change in error for Eq. 3.2 us-
ing quadratic ansatz functions, N = 2050,
with increasing number of deflation cells
M = 2i, i = 1, . . . , 5.
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Mixed Boundary Conditions

For Eq. 3.3 and Eq. 3.4 with M = 2i, i = 2, . . . , 5, deflation cells the approximated solutions
are as seen in Fig. 3.37 and Fig. 3.38 respectively. The condition number grows large quickly, for
N = 200, M = 3 we have

cond(ĀEq.3.3,Eq.3.4) = 2.10 · 107,

and it increases with changing M and N as seen in Appendix A.

As for the Dirichlet problems, the quadratic deflation for mixed boundary value problems gives
results very close to the exact solution. Increasing the number of deflation cells does not affect the
approximated solution much, although the error will increase slightly, as is shown in Fig. 3.39 and
Fig. 3.40, albeit it will still be small. The residuals in Fig. A.35 and Fig. A.36 stay small but grow
a little with an increase in M .

Figure 3.37: Exact and approximated solu-
tion of Eq. 3.3 using quadratic ansatz func-
tions, N = 200, M = 3.

Figure 3.38: Exact and approximated solu-
tion of Eq. 3.4 using quadratic ansatz func-
tions, N = 200, M = 3.

Figure 3.39: Change in error for Eq. 3.3 us-
ing quadratic ansatz functions, N = 2050,
with increasing number of deflation cells
M = 2i, i = 1, . . . , 9.

Figure 3.40: Change in error for Eq. 3.4 us-
ing quadratic ansatz functions, N = 2050,
with increasing number of deflation cells
M = 2i, i = 1, . . . , 9.

We investigate the convergence rate of BiCGSTAB with N = 2050 particles, and an increas-
ing number of deflation cells M = 2i, i = 1, . . . , 5. In Fig. 3.41, Fig. 3.42, Fig. 3.43 and Fig. 3.44
we see that uinit =

...
u gives a much faster convergence for all test cases when M is small but

performs much worse for large M . Investigating convergence for M = 3 and N as in Eq. 3.5, we
see that the number of iterations needed for convergence for uinit = 0 grows steadily, whilst for
uinit =

...
u convergence is instant. This is shown in Fig. 3.45, Fig. 3.46, Fig. 3.47 and Fig. 3.48.
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Figure 3.41: Change in convergence
rate for Eq. 3.1 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 9,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.42: Change in convergence
rate for Eq. 3.2 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 9,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.43: Change in convergence
rate for Eq. 3.3 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 9,
N = 2050. Compared to convergence rate
for uinit = 0.

Figure 3.44: Change in convergence
rate for Eq. 3.4 and BiCGSTAB with
uinit = uapprox when the number of defla-
tion cells changes as M = 2i, i = 1, . . . , 9,
N = 2050. Compared to convergence rate
for uinit = 0.
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Figure 3.45: Change in convergence
rate for Eq. 3.1 and BiCGSTAB with
uinit = uapprox for M = 3 deflation cells
as N changes as in Eq. 3.5. Compared to
convergence rate for uinit = 0.

Figure 3.46: Change in convergence
rate for Eq. 3.2 and BiCGSTAB with
uinit = uapprox for M = 3 deflation cells
as N changes as in Eq. 3.5. Compared to
convergence rate for uinit = 0.

Figure 3.47: Change in convergence
rate for Eq. 3.3 and BiCGSTAB with
uinit = uapprox for M = 3 deflation cells
as N changes as in Eq. 3.5. Compared to
convergence rate for uinit = 0.

Figure 3.48: Change in convergence
rate for Eq. 3.4 and BiCGSTAB with
uinit = uapprox for M = 3 deflation cells
as N changes as in Eq. 3.5. Compared to
convergence rate for uinit = 0.
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3.2 Results in 2D

To test our method in two dimensions, we investigate three different settings;

−∆u = 2 in Ω, u = 0 on δΩ, and (3.6)

−∆u = 2 in Ω, u = 0 on δΩD and
δu

δ~n
= 0 on δΩN , (3.7)

where we define Ω = [0, 1]× [0, 1], the boundary δΩD as the boundary where x = 0 and y = 0, and
δΩN as the boundary where x = 1 and y = 1. The third setting to investigate is

∆u = 0 in Ω, (3.8)

with boundary condition δu
δ~n = −1 on the leftmost boundary, δu

δ~n = 0 on the upper and lower
boundaries and u = 0 on the rightmost boundary. We investigate our deflation method for Eq. 3.8
in a long and narrow tube-like domain, especially interested in how BiCGSTAB converges as the
tube grows longer. Additionally, we investigate how the deflation behaves for Eq. 3.8 in a domain
where we have inserted rectangular obstacles. These obstacles are defined as holes in the domain,
here of size 22dx× 6dy with a homogeneous Neumann boundary.

As before, the constants used in FPM are η = 4.5 and h = 2.1dx. We use a uniform particle
distribution of Nx = 40 and Ny = 40 particles for visualising the deflation and for convergence
tests.

3.2.1 Constant Approximations

As for the results in one dimension, the constant approximation used is the one described in Sec-
tion 2.2.1. As before, only one computational point per subdomain is needed. For Eq. 3.6, the
solution given by FPM without deflation is seen in Fig. 3.49. Deflating the system with constant

Figure 3.49: Exact solution of Eq. 3.6,
Nx = 40, Ny = 40.

Figure 3.50: Approximated solution of
Eq. 3.6, Nx = 40, Ny = 40, with constant
ansatz functions and Mx = 4, My = 4.

ansatz functions gives us the approximated solution that can be seen in Fig. 3.50 using Mx = 4
and My = 4 deflation cells. Clearly, the deflation does not fulfill all Dirichlet boundary conditions
and the approximated solution has very low values. When increasing the number of deflation cells,
the change in error can be seen in Fig. 3.53. In general, the bigger M we use the better the
approximation for Eq. 3.6 becomes. How the condition numbers for A and Ā change as M and
N increase can be seen in Appendix A. In general, the constant deflation provides a system with
much lower condition number than the original system. However, as the number of deflation cells
increases the condition number also grows. The residuals of the two test cases behave in the same
way as in the one dimensional case.
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Figure 3.51: Exact solution of Eq. 3.7,
Nx = 40, Ny = 40.

Figure 3.52: Approximated solution of
Eq. 3.7, Nx = 40, Ny = 40, with constant
ansatz functions and Mx = 4, My = 4.

The solution for Eq. 3.7 given by FPM can be seen in Fig. 3.51. Using Mx = My = 4 defla-
tion cells, the approximated solution is as in Fig. 3.52. Worth noting is that the constant deflation
seems to handle the homogeneous Neumann boundary conditions well. Also the Dirichlet bound-
ary conditions are close to fulfilled. The change in error with an increasing number of deflation

Figure 3.53: Change in error between ex-
act and approximated solution of Eq. 3.6,
Nx = 40, Ny = 40, with constant ansatz
functions and Mx = My = 3, 4, 5, 8, 16, 32.

Figure 3.54: Change in error between ex-
act and approximated solution of Eq. 3.7,
Nx = 40, Ny = 40, with constant ansatz
functions and Mx = My = 3, 4, 5, 8, 16, 32.

cells can be seen in Fig. 3.53. For Eq. 3.7 the error is significantly bigger than for Eq. 3.6, but it
decreases faster for Eq. 3.7.

The convergence of the BiCGSTAB algorithm in MATLAB is investigated for Nx = Ny = 40
particles. In Fig. 3.55 and Fig. 3.56 the number of iterations needed for convergence for uinit =

...
u

where

Mx = My = 3, 4, 5, 8, 16, 32,

is shown and compared to the number of iterations needed for uinit = 0. For Eq. 3.7 the deflation
performs better than the zero-vector for very small and large M . In comparison, the deflation for
Eq. 3.6 needs larger M to outperfom uinit = 0. Furthermore, we investigate how the convergence
changes when the number of particles N increases. The results can be seen in Fig. 3.57 and
Fig. 3.58. For this we compare the solution for the deflation uinit =

...
u for Mx = My = 4 deflation

cells with uinit = 0 on the following particle distributions

Nx = Ny = 20, 40, 60 , 80 , 100. (3.9)
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Figure 3.55: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.6,
Nx = 40, Ny = 40, with con-
stant ansatz functions, uinit =

...
u and

Mx = My = 3, 4, 5, 8, 16, 32. Compared
to convergence for uinit = 0.

Figure 3.56: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.7,
Nx = 40, Ny = 40, with con-
stant ansatz functions, uinit =

...
u and

Mx = My = 3, 4, 5, 8, 16, 32. Compared
to convergence for uinit = 0.

Figure 3.57: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.6,
uinit =

...
u , with constant ansatz functions,

Mx = My = 4 and Nx, Ny as in Eq. 3.9.
Compared to convergence for uinit = 0.

Figure 3.58: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.7,
uinit =

...
u , with constant ansatz functions,

Mx = My = 4 and Nx, Ny as in Eq. 3.9.
Compared to convergence for uinit = 0.

Moreover, we investigate how our deflation behaves in more tube-like domains. Here, we solve
Eq. 3.8 in the domain

Ω = [x0, xL]× [y0, yL] = [0, 5]× [0, 0.1], (3.10)

with Ny = 6 and dy = dx. This gives us Nx = 51 and N = NxNy = 306. The exact solution can
be found in Fig. 3.59 and the constant approximation is found in Fig. 3.60. How the error and
BiCGSTAB convergence change with an increase in Mx can be seen in Fig. 3.61 and Fig. 3.62.
The change in convergence and error when My changes is similar, which can be seen in Appendix A,
in Fig. A.45 and Fig. A.46.

The BiCGSTAB convergence rate is investigated when increasing the length of the domain, as

xL = i, i = 1, . . . , 15, (3.11)

while dy = dx is kept constant. How the deflated solution uinit =
...
u behaves in comparison to

uinit = 0 can be seen in Fig. 3.63. Here, we have chosen Mx = 4 and My = 1 as these settings
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Figure 3.59: Exact solution for Eq. 3.8 in the
tube-like domain Ω as in Eq. 3.10.

Figure 3.60: Deflated solution with constant
approximations for Eq. 3.8 in the tube-like
domain Ω as in Eq. 3.10, Mx = 10 and
My = 1.

Figure 3.61: Change in error for Eq. 3.8 in
the tube-like domain Ω as in Eq. 3.10 when
Mx = 2, 4, 6, 8, 10, 12, 14 and My = 1.

Figure 3.62: Change in convergence with
constant approximations for Eq. 3.8 in the
tube-like domain Ω as in Eq. 3.10, Mx =
2, 4, 6, 8, 10, 12, 14, and My = 1.

provided fast convergence for Eq. 3.8 in the domain Ω as in Eq. 3.10. It shows that the constant
deflation provides an initial guess better than the zero vector for almost all N . At the same time,
convergence is still slow.

Figure 3.63: Convergence of BiCGSTAB for Eq. 3.8 in the tube-like domain Ω as in Eq. 3.10 with
constant approximations, Mx = 4, My = 1.
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As a final step, we investigate the results of Eq. 3.8 on the domain in Eq. 3.10 with added obstacles.
There are three added obstacles, or holes in the domain, with boundary condition

δu

δ~n
= 0.

How the solution to this test case will look like can be seen in Fig. 3.64. The constant approxima-
tion, using My = 1 deflation cells in the y-direction and Mx = 5 in the x-direction, can be found
in Fig. 3.65. There, we see that although the deflation performs well on the Dirichlet boundary, it
struggles with the Neumann boundary. Additionally, it seems to have no problems handling the
obstacles in the domain. The BiCGSTAB convergence for uinit = 0 compared to uinit =

...
u can

be seen in Fig. 3.66. We see that the deflated solution performs better for small N but this does
not hold true as N grows.

Figure 3.64: Solution to Eq. 3.8 in the tube-
like domain Ω in Eq. 3.10 with added obsta-
cles.

Figure 3.65: Approxoimated solution to
Eq. 3.8 in the tube-like domain Ω in Eq. 3.10
with added obstacles, with constant approx-
imations My = 1, Mx = 5.

Figure 3.66: Change in convergence of Eq. 3.8 in the tube-like domain Ω in Eq. 3.10 with added
obstacles, Mx = 5, My = 1 as N changes.

3.2.2 Linear Approximations

The linear approximation is described in Section 2.2.1. For Eq. 3.6 the approximated solution
obtained with linear ansatz functions can be seen in Fig. 3.67 with Mx = My = 4. Already with
few deflation cells it is very close to the exact solution in Fig. 3.49. As expected, the error decreases
quickly and is small even for low values of M . How the error changes with an increasing number
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Figure 3.67: Approximated solution of
Eq. 3.6, Nx = 40, Ny = 40, with linear
ansatz functions and Mx = 4, My = 4.

Figure 3.68: Change in error between ex-
act and approximated solution of Eq. 3.6,
Nx = 40, Ny = 40, with linear ansatz func-
tions and Mx = My = 3, 4, 5, 8, 16.

of deflation cells can be seen in Fig. 3.68. The residuals perform as in the one dimensional case.
The condition number of Ā grows rapidly and is in many cases bigger than the condition number
for A, as can be seen in Appendix A.

For Eq. 3.7, the approximated solution for Mx = My = 4 deflation cells with linear ansatz functions
is shown in Fig. 3.69. Again, the linear deflation performs well even for small M . When increasing
the number of deflation cells the error changes as seen in Fig. 3.70. It decreases as M increases,
but is slightly larger than for Eq. 3.6.

Figure 3.69: Approximated solution of
Eq. 3.7, Nx = 40, Ny = 40, with linear
ansatz functions and Mx = 4, My = 4.

Figure 3.70: Change in error between ex-
act and approximated solution of Eq. 3.7,
Nx = 40, Ny = 40, with linear ansatz func-
tions and Mx = My = 3, 4, 5, 8, 16.

The convergence of the BiCGSTAB algorithm in MATLAB is investigated for Nx = Ny = 40
particles. In Fig. 3.71 and Fig. 3.72 the number of iterations needed for convergence for uinit =

...
u

where

Mx = My = 3 , 4 , 5 , 8 , 16, 32,

is shown and compared to the number of iterations needed for uinit = 0. For Eq. 3.6 uinit = uapprox
performs slightly worse than uinit = 0 for small M . For Eq. 3.7 the deflation always performs bet-
ter. Furthermore, we investigate how the convergence changes when the number of particles used
increases. For this we compare the deflation uinit =

...
u for Mx = My = 4 deflation cells with
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uinit = 0 on the particle distributions as in Eq. 3.9. The results can be seen in Fig. 3.73 and
Fig. 3.74. Generally, the deflation is an improvement to uinit = 0.

Figure 3.71: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.6,
Nx = 40, Ny = 40, with lin-
ear ansatz functions, uinit =

...
u and

Mx = My = 3, 4, 5, 8, 16. Compared to
convergence for uinit = 0.

Figure 3.72: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.7,
Nx = 40, Ny = 40, with lin-
ear ansatz functions, uinit =

...
u and

Mx = My = 3, 4, 5, 8, 16. Compared to
convergence for uinit = 0.

Figure 3.73: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.6,
uinit =

...
u , with linear ansatz functions,

Mx = My = 4 and Nx, Ny as in Eq. 3.9.
Compared to convergence for uinit = 0.

Figure 3.74: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.7,
uinit =

...
u , with linear ansatz functions,

Mx = My = 4 and Nx, Ny as in Eq. 3.9.
Compared to convergence for uinit = 0.

Also, we investigate how our deflation behaves in more tube-like domains. Here, we solve Eq. 3.8
in the domain given by Eq. 3.10 with Ny = 6 and dy = dx. The exact solution can be found in
Fig. 3.59 and the linear approximation is found in Fig. 3.75. When M changes as Mx = 2, 4, 8, 10,
and My = 1 the error for the linear approximation stays constant at ‖e‖2 = 13.4112. The con-
vergence changes as in Fig. 3.77. When changing My and keeping Mx constant, the error and
convergence rate change as in Fig. A.47 and Fig. A.48 in Appendix A.

The BiCGSTAB convergence rate is then investigated when increasing the length of the domain,
as

xL = i, i = 1, . . . , 15, (3.12)

while dy = dx is kept constant. How the deflated solution uinit =
...
u behaves in comparison to

uinit = 0 can be seen in Fig. 3.78. It shows that the constant deflation provides an initial guess

34



CHAPTER 3. RESULTS 3.2. RESULTS IN 2D

Figure 3.75: Deflated solution with linear
approximations for Eq. 3.8 in the tube-like
domain as in Eq. 3.10, Mx = 10 and My = 1.

Figure 3.76: How the error between the ex-
act and the linear deflated solutions changes
for Eq. 3.7 in the tube-like domain Ω as in
Eq. 3.10, Mx = 2, 4, 8, 10, My = 1 and Nx,
Ny as in Eq. 3.10.

Figure 3.77: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.7
in the tube-like domain Ω as in Eq. 3.10,
uinit =

...
u , with linear ansatz functions,

Mx = 2, 4, 8, 10, My = 1 and Nx, Ny as
in Eq. 3.9. Compared to convergence for
uinit = 0.

Figure 3.78: Convergence of BiCGSTAB
for Eq. 3.8 in the tube-like domain Ω as
in Eq. 3.10 with linear approximations for
changing N , Mx = 2, My = 1.

better than the zero vector for all N . The deflation provides a vast improvement in convergence
rate, as it gives instant convergence in BiCGSTAB whereas uinit = 0 needs a rapidly growing
number of iterations.

Finally, we investigate how the linear approximations behave in the tube-like domain Ω with
added obstacles. The deflated solution can be found in Fig. 3.79 for Mx = 5, My = 1, deflation
cells. We see that it looks very close to the exact solution. The improvement in convergence can
be seen in Fig. 3.80.
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Figure 3.79: Deflated solution with linear
approximations for Eq. 3.8 in the tube-like
domain as in Eq. 3.10 with added obstacles,
Mx = 5 and My = 1.

Figure 3.80: Number of iterations needed
for convergence in BiCGSTAB for Eq. 3.7
in the tube-like domain Ω as in Eq. 3.10
with added obstacles, uinit =

...
u , with linear

ansatz functions, Mx = 2, 4, 8, 10, My = 1
and Nx, Ny as in Eq. 3.9. Compared to con-
vergence for uinit = 0.
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Chapter 4

Discussion and Conclusions

In this chapter we discuss the results shown in Chapter 3, as well as give suggestions for further
work. Then we conclude with some final remarks regarding the deflation of FPM.

4.1 Discussion

We divide the discussion of our results into three main parts for the different ansatz functions used
before comparing the three.

4.1.1 Constant Approximations

The deflation with constant ansatz functions works well in some cases, and not so well in others.
Mainly, deflating problems with Dirichlet boundary conditions works better than deflating those
with mixed boundary conditions since the deflation struggles on the Neumann boundaries. How
to approximate Neumann boundaries with constant approximations is a problem both in one and
two dimensions. As can be seen in Fig. 3.5 and Fig. 3.6, increasing the number of deflation cells M
will not necessarily take the approximated solution nearer to the exact solution. Given the nature
of the Neumann boundary conditions, this is not surprising. By performing a constant approxima-
tion on such a boundary, all information about the slope will be lost. A constant approximation
will act as if the Neumann condition is homogeneous, thus with slope zero. That is why, in two
dimensions, the constant approximation performs better for the Neumann boundaries for Eq. 3.7
than for either Eq. 3.3 or Eq. 3.4, see Fig. 3.2 compared to Fig. 3.5 and Fig. 3.6.

When deflating the system for problems such as Eq. 3.1 and Eq. 3.6 with homogeneous Dirichlet
boundary conditions, the only problem with the approximated solution is the scale. The change
in value between the cells is often not very big, and by normalising our system we have put ex-
tra emphasis on the boundary particles and their conditions. Contrary to the case for Neumann
boundary conditions, for Dirichlet boundary conditions an increase in the number of deflation cells
leads to a better approximated solution.

The convergence in BiCGSTAB is not affected significantly by the use of deflation in these cases,
but rather worsened than improved. This leads us to the conclusion that constant approximations
will not be worthwhile their computational effort for improving the FPM algorithm.

When deflating Eq. 3.8 in a long, narrow domain with constant approximations, again we struggle
with the non-homogeneous Neumann boundary. Still, for small N our deflation gives an improve-
ment on the BiCGSTAB convergence. As N grows, however, this improvement decreases.

The addition of obstacles to the tube-like domain does not change the constant approximations
drastically. The improvement in convergence stays more or less the same, thus not always signifi-
cantly better. The deflation has no issues dealing with the obstacles in the domain.
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4.1.2 Linear Approximation

Obviously, a linear approximation of a linear function, such as the solution to Eq. 3.2, is equal
to the exact solution independently of the number of deflation cells used, see e.g. Fig. 3.18. This
result holds for both Dirichlet and Neumann boundary conditions. Additionally, using the exact
solution as initial guess will of course lead to immediate convergence of the BiCGSTAB algorithm,
see Fig. 3.26 and Fig. 3.27.

Although not as good, the linear ansatz functions also provide a good deflated solution to sys-
tems where the solution is not linear, e.g. to Eq. 3.1 and Eq. 3.4. Also, the more deflation cells
used, the better the solution becomes. For these two test cases, the deflated solution does not
provide a better initial guess to the BiCGSTAB algorithm than the zero-vector. We can therefore
conclude that for linear deflation, the boundary conditions play a much lesser role in deciding the
quality of the approximation than in the constant case. Instead, the source term will affect the
behaviour of our deflation to a much greater extent.

In two dimensions, the linear approximation provides good results for both homogeneous Dirichlet
and mixed boundary conditions. Even for only Mx ×My = 4× 4 deflation cells the deflated solu-
tion comes close to the true solution. As the number of deflation cells increases the error decreases
rapidly. For both Eq. 3.6 and Eq. 3.7 our deflation gives a slight improvement in convergence rate,
although not very significant.

The solution in the narrow domain in Eq. 3.8 is approximated well by our linear deflation. With
only a few deflation cells it gives very accurate results. As initial guess to BiCGSTAB it gives
a great improvement on the convergence rate, with instant convergence in comparison to the
thousands of iterations needed for uinit = 0. The computational effort to obtain the deflation is
therefore more than made up for in improved convergence rate.

When adding obstacles to the domain the linear deflation still gives an approximated solution
very close to the exact solution. It also improves the convergence rate greatly. While the conver-
gence rate with the deflated solution as intial guess stays more or less the same at approximately
1000 iterations, the convergence rate with uinit = 0 grows as N increases.

4.1.3 Quadratic Approximation

The quadratic approximation provides good deflated solutions for all our test cases as long as M
is chosen small enough. The convergence of the BiCGSTAB algorithm is instantaneous for all
cases.

Worth noting is that although the convergence of our iterative method improves drastically with
the use of quadratic approximations, the computational effort needed to compute these approxi-
mations also increases. In one dimension, the cost is hardly noticable, but in higher dimensions
this might not be the case.

4.1.4 Comparisons

Comparing the three different approximations, one can easily conclude that simply regarding the
convergence rate of BiCGSTAB, the approximation of choice should be the quadratic ansatz func-
tions. At the same time, the linear approximation performs well for all test cases in one and two
dimensions for both kinds of boundary conditions. For linear solutions the convergence is even
instant. Worst does the constant approximation perform, but it might still be useful for Dirichlet
problems. Weighting computational cost against accuracy, the linear approximation seems to be
the better choice.

In general, for all approximations the residuals are always relatively small even when the error
is not, which shows they are not a preferable way of evaluating our system. The condition number
for the deflated system is the smallest for constant approximations. Better approximations give
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a higher condition number that also increases faster for larger numbers of deflation cells. This is
also something that should be taken into consideration when choosing a deflation.

Comparing the results for FPM with those for FDM in two of our test cases, we see that they are
very similar. Thus, the deflation is not affected much by which system we are deflating. This is
hardly surprising, since we have used uniform particle distributions in both cases.

4.1.5 Future Work

This deflation could be investigated further, especially by considering more complex geometries.
Also geometries in three dimensions should be looked at. Additionally, to improve the deflation one
could consider other approximations than the three considered here. Different ways of obtaining
the deflated solution could also be investigated.

4.2 Conclusions

In this master’s thesis different ways of deflating FPM have been constructed and investigated. A
method has been constructed where the domain is divided into a given number of deflation cells
on which different ansatz functions are defined. Constant, linear and quadratic test functions have
been used. The particles of FPM in each deflation cell are restricted to a number of computational
points per cell, resulting in a much smaller linear system to solve. The result from this system is
then mapped to the particles within the deflation cells. The deflated solution should be used as
an initial guess to the BiCGSTAB algorithm.

Using constant approximations works well for Dirichlet problems without source terms, but strug-
gles otherwise. Linear approximations handle all test cases well and show convergence as the
number of deflation cells increases. A linear deflated solution as initial guess to BiCGSTAB im-
proves the convergence rates for a suitable number of deflation cells. Also, to obtain the deflated
solution is computationally cheap. The quadratic approximations prove very exact for all test cases
and a few deflation cells. As the number of deflation cells increases, however, the deflated system
becomes problematic to solve. For both constant and linear approximations we see an advantage
in using deflation in the convergence of BiCGSTAB for problems in long and narrow domains.
Especially for linear approximations this is true, since they yield instant convergence.
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Appendix A

Further Results for FPM

Results 1D

Here, further results for the four test cases Eq. 3.1, Eq. 3.2, Eq. 3.3 and Eq. 3.4 are presented.
First we investigate the condition numbers of the original FPM and the deflated systems further.
Second, the residuals of the different deflations are presented.

Condition Numbers

We investigate how the condition numbers of the linear systems generated by FPM, A, and that
of the deflated system, Ā, change as the number of particles N changes. Moreover, we examine
how the condition number of the deflated system changes as M grows, where N = 2050.

Constant Approximations

The constant approximations are as described in Section 2.2.1.

Figure A.1: Change in condition num-
ber of the original FPM system for
Eq. 3.1 and for the constant deflated
solution as N grows, M = 3.

Figure A.2: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.1 using
constant ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 11.
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Figure A.3: Change in condition num-
ber of the original FPM system for
Eq. 3.2 and for the constant deflated
solution as N grows, M = 3.

Figure A.4: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.2 using
constant ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 11.

Figure A.5: Change in condition num-
ber of the original FPM system for
Eq. 3.3 and for the constant deflated
solution as N grows, M = 3.

Figure A.6: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.3 using
constant ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 11.

Figure A.7: Change in condition num-
ber of the original FPM system for
Eq. 3.4 and for the constant deflated
solution as N grows, M = 3.

Figure A.8: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.4 using
constant ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 11.
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Linear Approximations

The linear approximations are constructed as in Section 2.2.1.

Figure A.9: Change in condition num-
ber of the original FPM system for
Eq. 3.1 and for the linear deflated so-
lution as N grows, M = 3.

Figure A.10: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.1 using
linear ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 10.

Figure A.11: Change in condition num-
ber of the original FPM system for
Eq. 3.2 and for the linear deflated so-
lution as N grows, M = 3.

Figure A.12: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.2 using
linear ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 10.
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Figure A.13: Change in condition num-
ber of the original FPM system for
Eq. 3.3 and for the linear deflated so-
lution as N grows, M = 3.

Figure A.14: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.3 using
linear ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 10.

Figure A.15: Change in condition num-
ber of the original FPM system for
Eq. 3.4 and for the linear deflated so-
lution as N grows, M = 3.

Figure A.16: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.4 using
linear ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 10.
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Quadratic Approximations

The quadratic approximations are made as in Section 2.2.1.

Figure A.17: Change in condition num-
ber of the original FPM system for
Eq. 3.1 and for the quadratic deflated
solution as N grows, M = 3.

Figure A.18: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.1 using
quadratic ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 9.

Figure A.19: Change in condition num-
ber of the original FPM system for
Eq. 3.2 and for the quadratic deflated
solution as N grows, M = 3.

Figure A.20: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.2 using
quadratic ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 9.
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Figure A.21: Change in condition num-
ber of the original FPM system for
Eq. 3.3 and for the quadratic deflated
solution as N grows, M = 3.

Figure A.22: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.3 using
quadratic ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 9.

Figure A.23: Change in condition num-
ber of the original FPM system for
Eq. 3.4 and for the quadratic deflated
solution as N grows, M = 3.

Figure A.24: Change in condition num-
ber for Ā, cond(Ā), of Eq. 3.4 using
quadratic ansatz functions, N = 2050,
with increasing number of deflation
cells M = 2i, i = 1, . . . , 9.
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Residual Plots

We investigate the residuals as mentioned in Section 2.2.3.

Constant Approximations

Figure A.25: Change in residual be-
tween exact and approximated solu-
tions of Eq. 3.1 using constant ansatz
functions, N = 2050, with increas-
ing number of deflation cells M = 2i,
i = 1, . . . , 11.

Figure A.26: Change in residual be-
tween exact and approximated solu-
tions of Eq. 3.2 using constant ansatz
functions, N = 2050, with increas-
ing number of deflation cells M = 2i,
i = 1, . . . , 11.

Figure A.27: Change in residual for
Eq. 3.3 using constant ansatz functions,
N = 2050, with increasing number of
deflation cells M = 2i, i = 1, . . . , 11.

Figure A.28: Change in residual for
Eq. 3.4 using constant ansatz functions,
N = 2050, with increasing number of
deflation cells M = 2i, i = 1, . . . , 11.
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Linear Approximations

Figure A.29: Change in residuals for
Eq. 3.1 using linear ansatz functions,
N = 2050, with increasing number of
deflation cells M = 2i, i = 1, . . . , 10.

Figure A.30: Change in residuals for
Eq. 3.2 using linear ansatz functions,
N = 2050, with increasing number of
deflation cells M = 2i, i = 1, . . . , 10.

Figure A.31: Change in residuals for
Eq. 3.3 using linear ansatz functions,
N = 2050, with increasing number of
deflation cells M = 2i, i = 1, . . . , 10.

Figure A.32: Change in residuals for
Eq. 3.4 using linear ansatz functions,
N = 2050, with increasing number of
deflation cells M = 2i, i = 1, . . . , 10.
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Quadratic Approximations

Figure A.33: Change in residuals for
Eq. 3.1 using quadratic ansatz func-
tions, N = 2050, with increasing
number of deflation cells M = 2i,
i = 1, . . . , 5.

Figure A.34: Change in residuals for
Eq. 3.2 using quadratic ansatz func-
tions, N = 2050, with increasing
number of deflation cells M = 2i,
i = 1, . . . , 5.

Figure A.35: Change in residuals for
Eq. 3.3 using quadratic ansatz func-
tions, N = 2050, with increasing
number of deflation cells M = 2i,
i = 1, . . . , 9.

Figure A.36: Change in residuals for
Eq. 3.4 using quadratic ansatz func-
tions, N = 2050, with increasing
number of deflation cells M = 2i,
i = 1, . . . , 9.
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Results 2D

Condition Numbers

We investigate the condition numbers of A and Ā, both as N and M increases.

Constant Approximations

Figure A.37: Change in condition num-
ber of the original FPM system for
Eq. 3.6 and for the constant deflated
solution as N grows, Mx = My = 4.

Figure A.38: Change in condition num-
ber of the original FPM system for
Eq. 3.6 and for the constant deflated so-
lution as M grows, Nx = 40, Ny = 40.

Figure A.39: Change in condition num-
ber of the original FPM system for
Eq. 3.7 and for the constant deflated
solution as N grows, Mx = My = 4.

Figure A.40: Change in condition num-
ber of the original FPM system for
Eq. 3.7 and for the constant deflated so-
lution as M grows, Nx = 40, Ny = 40.
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Linear Approximations

Figure A.41: Change in condition num-
ber of the original FPM system for
Eq. 3.6 and for the linear deflated so-
lution as N grows, Mx = My = 4.

Figure A.42: Change in condition num-
ber of the original FPM system for
Eq. 3.6 and for the linear deflated so-
lution as M grows, Nx = 40, Ny = 40.

Figure A.43: Change in condition num-
ber of the original FPM system for
Eq. 3.7 and for the linear deflated so-
lution as N grows, Mx = My = 4.

Figure A.44: Change in condition num-
ber of the original FPM system for
Eq. 3.7 and for the linear deflated so-
lution as M grows, Nx = 40, Ny = 40.

53



APPENDIX A. FURTHER RESULTS FOR FPM

Convergence Rates and Errors

We investigate the error as evaluated in Section 2.2.3 and the rate of convergence in BiCGSTAB
as My changes.

Figure A.45: Change in error for Eq. 3.8 in
the tube-like domain Ω as in Eq. 3.10 when
My = 1, 2, 3 and Mx = 4, for constant ap-
proximations.

Figure A.46: Change in convergence with
constant approximations for Eq. 3.8 in
the tube-like domain Ω as in Eq. 3.10,
My = 1, 2, 3 and Mx = 4.

Figure A.47: Change in error for Eq. 3.8 in
the tube-like domain Ω as in Eq. 3.10 when
My = 1, 2, 3 and Mx = 4, for linear ap-
proximations.

Figure A.48: Change in convergence
with linear approximations for Eq. 3.8 in
the tube-like domain Ω as in Eq. 3.10,
My = 1, 2, 3 and Mx = 4.
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Results for FDM

The FDM systems are constructed as in Section 2.1.1. We test constant and linear approximations
for the test case Eq. 3.3 in one dimension and Eq. 3.7 in two dimensions.

Results 1D

The test case in one dimension is Eq. 3.3. It has a Neumann boundary at x = 0 and a Dirichlet
boundary at x = 1.

Constant Approximations

The exact solution and the deflated solution for an increasing number of deflation cells

M = 2i, i = 1, . . . , 11,

where N = 2050 shows that the deflation does not converge to the exact solution as M increases.
This can also be seen for the error, which does not decrease with increasing M . The residual stays
small throughout. Using the deflated solution as initial guess to BiCGSTAB will increase the
number of iterations needed for convergence compared to uinit = 0.

Figure B.1: Exact and deflated solution with constant approximations of Eq. 3.3 with FDM,
N = 2050, M = 2i, i = 1, . . . , 11.
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Figure B.2: Change in error for con-
stant approximations of Eq. 3.3 with
FDM.

Figure B.3: Change in residual for con-
stant approximations of Eq. 3.3 with
FDM.

Figure B.4: Change in BiCGSTAB
convergence rate for constant approx-
imations of Eq. 3.3 with FDM as M
changes as M = 2i, i = 1, . . . , 11,
N = 2050, compared to uinit = 0.

Figure B.5: Change in BiCGSTAB
convergence rate for constant approx-
imations of Eq. 3.3 with FDM as N
changes as in Eq. 3.5, M = 3, compared
to uinit = 0.

Linear Approximations

The linear deflation is close to the exact solution, independent of the choice of M . Also the error
and residual are both very small. The deflated solution gives instant convergence in BiCGSTAB.

Figure B.6: Exact and deflated solution with linear approximations of Eq. 3.3 with FDM,
N = 2050, M = 2i, i = 1, . . . , 10.
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Figure B.7: Change in error for linear
approximations of Eq. 3.3 with FDM.

Figure B.8: Change in residual for
linear approximations of Eq. 3.3 with
FDM.

Figure B.9: Change in BiCGSTAB
convergence rate for linear approxi-
mations of Eq. 3.3 with FDM as M
changes as M = 2i, i = 1, . . . , 10,
N = 2050, compared to uinit = 0.

Figure B.10: Change in BiCGSTAB
convergence rate for constant approx-
imations of Eq. 3.3 with FDM as N
changes as in Eq. 3.5, M = 3, compared
to uinit = 0.
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Results 2D

Constant Approximations

For the test case Eq. 3.7, the constant approximations give a solution with the same shape but
smaller values than the exact solution. As the number of deflation cells increases the error will
decrease. The deflation gives a slightly faster convergence rate than uinit = 0.

Figure B.11: Exact solution for Eq. 3.7
with FDM for Nx = Ny = 40.

Figure B.12: Approximated solution
with constant ansatz functions for
Eq. 3.7, Nx = Ny = 40 and Mx =
My = 4.

Figure B.13: Error of deflated solu-
tion with constant approximations for
Eq. 3.7 as Mx = My = 3, 4, 5, 8, 16,
Nx = Ny = 40.

Figure B.14: How the conver-
gence of BiCGSTAB changes
with constant ansatz functions
for Eq. 3.7, Nx = Ny = 40 and
Mx = My = 3, 4, 5, 8, 16.
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Figure B.15: How the convergence of BiCGSTAB changes with constant ansatz functions for
Eq. 3.7, Mx = My = 4 and Nx = Ny = 20, 40, 60, 80.

Linear Approximations

The linear approximation gives a solution close to the exact solution. The error decreases rapidly
as M increases. For most N the deflation gives a slightly faster convergence rate.

Figure B.16: Approximated solution
with linear ansatz functions for Eq. 3.7,
Nx = Ny = 40 and Mx = My = 4.

Figure B.17: Error of deflated solution
with linear approximations for Eq. 3.7
as Mx = My = 3, 4, 5, 8, 16, Nx =
Ny = 40.

Figure B.18: How the convergence of
BiCGSTAB changes with linear ansatz
functions for Eq. 3.7, Nx = Ny = 40
and Mx = My = 3, 4, 5, 8, 16.

Figure B.19: How the convergence of
BiCGSTAB changes with linear ansatz
functions for Eq. 3.7, Mx = My = 4 and
Nx = Ny = 20, 40, 60, 80.

59



Master’s Theses in Mathematical Sciences 2014:E37

ISSN 1404-6342

LUTFNA-3029-2014

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


