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Abstract 
 
Environments with a high number of systems that are dependent on each other create 

complexity in the testing of each system. For a test to perform correctly, every dependency 

has to be fully functional. If this condition is not met, the test will fail and measures need to 

be taken into the systems that are causing the problem before it can be repeated again. This 

is a problem that the test department at IKEA IT in Helsingborg are experiencing. 

 

This bachelor thesis examines the needs of IKEA IT:s existing test environment through a 

qualitative research and a phenomenological data analysis. Seven interviews were 

conducted where a wireframe prototype of the portal was presented together with a 

questionnaire. A small-scale quantitative study based on the questionnaires was also 

conducted, from which it was decided what test tool used in IKEA IT the portal should be 

formed for. From the analysis, a system requirement specification and final wireframe 

prototype were created and used as a guideline for the implementation. 

 

Using a process tool from the Agile family, modified to fit the needs of the developers, the 

implementation was carried out according to a “Scrumish” development method. In order to 

work with the process tool in the most effective way, the functional requirements of the 

product were created as user stories that were broken down into tasks for the developers to 

work with in parallel during the implementation. The implementation was done in a 

completely open source based development environment, using the Durandal framework on 

the client side and Node on the server side. Results of the implementation are presented in a 

demonstration of the product with descriptions and motivations to each functionality.  

 

The portal serves as a solution to their problem by offering the possibility to monitor all 

systems in their test environment. In this way, testers can make sure that all dependencies 

of a system are fully functional before entering a test phase, saving the company both time 

and resources. In addition to this, it supports test automation with the test results presented 

on the portal, making it simple for testers to evaluate their work and keep it gathered in one 

place. The portal is integrated with ALM (Application Lifecycle Management), the most 

commonly used test tool in IKEA IT, and was implemented using JavaScript, HTML and 

CSS. 
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Sammanfattning 
 

Miljöer med ett högt antal system som är beroende av varandra skapar komplexitet i 

testandet av varje enskilt system. För att ett test ska utföras korrekt måste varje beroende 

vara fullt funktionellt. Om inte detta villkor uppnås kommer testet att misslyckas och 

åtgärder behöver vidtas i de system som orsakar problemet innan det kan köras om på nytt. 

Detta är ett problem som testavdelningen på IKEA IT i Helsingborg upplever.  

 

Detta examensarbete utforskar behoven av IKEA IT:s nuvarande testmiljö genom en 

kvalitativ undersökning och en fenomenologisk data analys. Sju intervjuer genomfördes där 

en wireframe prototyp av portalen presenterades tillsammans med ett frågeformulär. En 

småskalig kvantitativ studie baserad på frågeformulären genomfördes även, från vilken det 

beslutades utifrån vilket testverktyg som används i IKEA IT som portalen skulle utformas. 

Utifrån analysen skapades en kravspecifikation för systemet samt en slutgiltig wireframe 

prototyp, vilka användes som en riktlinje för implementationen.  

 

Med hjälp av ett processverktyg från Agile-familjen, modifierat för att passa behoven hos 

utvecklarna, utfördes implementationen enligt en ”Scrumish” utvecklingsmetodik. För att 

arbeta med processverktyget på det mest effektiva sättet skapades de funktionella kraven på 

produkten som user stories, vilka delades upp i tasks för utvecklarna att arbeta med 

parallellt under implementationen. Implementationen utfördes i en fullständigt öppen 

källkod-baserad utvecklingsmiljö, genom att använda Durandal frameworket på klientsidan 

och Node på serversidan. Resultaten av implementationen presenteras i en demonstration 

av produkten med beskrivningar och motiveringar till varje funktionalitet.  

 

Portalen fungerar som en lösning på deras problem genom att möjliggöra övervakning av 

alla system i deras testmiljö. På så sätt kan testarna säkerställa att alla beroenden för ett 

system är fullt funktionella innan en testfas påbörjas, vilket sparar företaget både tid och 

resurser. Utöver detta stödjer den testautomation där testresultaten presenteras i portalen, 

vilket gör det enkelt för testare att utvärdera sitt arbete samt hålla det samlat på en plats. 

Portalen är integrerad med ALM (Application Lifecycle Management), det mest använda 

testverktyget inom IKEA IT, och implementerades med JavaScript, HTML och CSS. 
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1 Introduction 

Testing of computer systems is becoming more complex due to the fact that computer 

systems are growing more complex with time. In environments consisting of multiple 

systems, consideration has to be taken into systems that have dependencies. When it comes 

to testing, this can be critical since the health of dependent systems can affect the testing.  
 
This chapter presents the background, scope and limitations of this thesis and furthermore 

the company behind the thesis.  

 

1.1 Background 

In order to test a system within IKEA IT, a time slot in the test environment is reserved for 

testing. It is critical that the dependencies of the system to be tested are fully functional 

during this period of time, since a consequence of a failure in one or more dependencies is 

that the test becomes invalid. Hence the test has to be ran once again without any dependent 

systems having any failures. This is a problem that costs the company both time and 

money. Therefore there is a need for a test environment with an overall monitoring of the 

systems installed in it, which will serve as a solution to the problem. Additionally, the client 

wants the test environment to support scheduling of automated tests of which the test 

results are presented in a simple and comprehendible way. 

 

1.2 Scope 

Thus, the scope of this bachelor thesis is to: 

 
1. Identify the needs of the existing test environment through an analysis. 

2. Develop a portal which will complement the needs of the existing test environment 

and also be based on following main requirements. 

a. Visualize dependencies for each system in the portal. 

b. Support test automation for each system in the portal. 

 
At first the problem description of the thesis was: 
 

1. What tools are today used in IKEA IT regarding test automation? 

2. Where are the test results and test scripts stored and in which way are the test results 

used for evaluation? 

3. Does the portal contain advantages for the end users in comparison to the currently 

available tools?  

4. Which advantages does the portal offer in comparison to the currently available 

tools? 

 
During the analysis phase of the thesis, multiple questions to the stakeholders were thought 

of during a number of brainstorming meetings. The first and second problem description 

together with these new questions was used as a questionnaire. Therefore they were no 
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longer seen as problem descriptions but rather as survey questions. Due to these 

circumstances the problem description is decreased to the following:  
 

1. Does the portal contain advantages for the end users in comparison to the currently 

available tools? 

2. Which advantages does the portal offer in comparison to the currently available 

tools? 

 

1.3 Limitations 

In the original scope of this thesis, it was thought by the client that the implementation 

would consist of three parts; a shell for the portal (graphical interface as well as server 

calls), a scheduler which would schedule test scripts for automated execution and a 

machine that would perform the actual testing. Due to a limited time frame for this thesis 

and more specifically the implementation phase, the scope was narrowed down to only the 

first part after discussions with the client. Furthermore, the second scheduler was dependent 

on the machine, which was not implemented. Therefore the other parts could not be 

implemented unless everything was done, which there was not enough time for. 
 
The implementation was done in a framework and several programming languages which 

the authors of this thesis had little or no knowledge about. This affected the implementation 

in the way that there was less time dedicated to implementing the system, since time had to 

be spent on learning how to work in the development environment. Additionally, 

information about the framework was limited comparing to a widely used programming 

language such as Java since the chosen framework is fairly new, which increased the cost in 

time for adapting to the development environment. 
 

1.4 More about IKEA IT 

IKEA is a Swedish furniture company that was founded in 1943 by Ingvar Kamprad and 

have since then grown into one of the largest home furnishing companies in the global 

market with 303 stores in 26 countries and 135,000 employees (year 2013). Since 1982, 

IKEA is owned by a foundation in the Netherlands, which means that profits are reinvested, 

used for charitable purposes or saved as a financial reserve. In this way, IKEA is a non-

profit organization. IKEA is further divided into several different companies, including 

IKEA Industry, Stichting IKEA Foundation and IKEA IT. (Företagsinformation - IKEA 

n.d.) 
 
This thesis has been conducted within the IKEA IT company that provides support, 

maintenance and development in both new and existing applications in the entire IKEA 

corporation. IKEA does no longer develop their own applications; instead the development 

has been outsourced to external consultants. These consultants are yet dependent on IKEA 

IT to deliver a test platform before releasing it to the public. It is in this part where the 

testing department within IKEA IT comes in to the picture. They maintain and provide the 

test environment in which the developers can test their product. This thesis has been 

dedicated to the test department within IKEA IT. (This section has been validated by the 

supervisor from IKEA IT) 
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2 Technical background 

This chapter is devoted to giving a background of the languages and framework in which 

the implementation of this thesis’ work is done. The product that was developed is a client-

server application meaning that it is capable of providing a service and handling a client 

request. This chapter explains the technical background to the implementation of the portal 

separately in two parts, client side and server side, as well as other software relevant to 

thesis.  
 

2.1 JavaScript 

JavaScript is an object scripting programming language originally developed by Netscape. 

The scripting is performed dynamically where some of the abilities include runtime object 

construction, function variables and source code recovery. Objects in JavaScript are created 

at run time by the use of empty objects, simply adding functions and properties to them. 

Therefore they do not have to be predefined as classes. The use of JavaScript is dominated 

in web browsers; in web pages and server applications. It is also commonly used for 

developing web servers that handle HTTP request and response objects. In combination 

with a client side developed in JavaScript, this type of objects can be used for generating 

web pages dynamically. (Mozilla Developer Network and individual contributors 2013) 
 
That is how JavaScript has been used in this thesis work. All functionality in both the client 

and server side is fully developed in JavaScript, using the Durandal framework which is 

explained in chapter 2.2.2. 
 

2.2 Client 

The client side of the portal handles user interaction. It has been implemented using several 

tools for different purposes which will be presented in this sub-chapter. 
 

2.2.1 HTML5/CSS3 
HTML is short for HyperText Markup Language and is a standard in creating web pages 

today (Web Education Community Group 2013). HTML5 was and is still being developed 

to replace HTML4.01 which dates back to 1999. In HTML5 the main focus was to give 

“rich content without the need for additional plugins” - (HTML5 Introduction n.d.).The 

group working with the development of HTML5 includes AOL, Apple, Google, IBM, 

Microsoft, Mozilla, Nokia, Opera and many others. (HTML5 Introduction n.d.) 
 
This new version gives multiple new features such as New Elements, New Attributes and 

Full CSS3 Support. New elements include nav, video, audio and others. The purpose of nav 

is to identify a navigation part of the HTML document, while video and audio have been 

developed to handle multimedia content on the HTML document. (Pieters 2013) 
 

HTML is used to define parts of a document, for example a title with the title tag 

(<title>This is a title</title>). It is not meant to be dedicated to formatting the document 

such as color and margins. The reason is simple; it would mean that a developer must 

specify the format in every page it creates. The solution was to instead use CSS which is 

short for Cascading Style Sheets and have been the solution since HTML4. CSS lets the 
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developer set a format for all of it pages, when needed to change one only needs to change 

the CSS file instead of every HTML document. (CSS Introduction n.d.). The latest version 

of CSS is CSS3 which is still under development but also in use. CSS3 has split its 

attributes into modules and is backwards-compatible. Some modules contain the attributes 

of the earlier CSS versions while new ones are being added. Some of the new models are 

Selectors, Box Model, Backgrounds, Borders and others. (CSS3 Introduction n.d.) 
 

2.2.2 Durandal 
Durandal is a framework that has been developed by Blue Spire. It combines a collection of 

different JavaScript libraries such as RequireJS, jQuery and Knockout, creating a tool for 

developing Single Page Application web pages (Home | Durandal n.d.). Durandal itself is a 

JavaScript library that has support for a variety of ways to design front ends such as MVP 

(Model-View-Presenter), MVC (Model-View-Controller) and MVVM (Model-View-

ViewModel) (Get Started | Durandal n.d.). In this thesis, the portal is developed according 

to MVVM. 
 

2.2.2.1 RequireJS, jQuery & Knockout 
RequireJS serves as a JavaScript module as well as file loader (RequireJS n.d.) and is used 

on both the client and server side of the portal. jQuery is used to simplify several web 

programming features like Ajax calls, finding in and altering HTML documents and event 

handling as well as animation in HTML documents (jQuery n.d.). Knockout is used when 

developing a user interface that needs to be updated dynamically. It is built on the MVVM 

architecture and binds data from the model to the view, making the user interface update as 

data is modified (Knockout: Introduction n.d.). These are all open source JavaScript 

libraries.  
 

2.2.2.2 MVVM and Knockout 
MVVM is a method of constructing user interfaces and is built on three components: 
 

1. Model 

2. View model 

3. View 

 
Model 
A model consists of stored data that is used in the application and is not affiliated with the 

user interface. This data is kept externally, such as in a database. With Knockout, the model 

can be reached by server calls to be used in the user interface, which is the usual way of 

getting stored data.  
 
View model 
A view model comprises code of all functionality and data that is used in the user interface. 

However, it does not contain any graphical components. The view models are entirely 

written in JavaScript when using Knockout. 
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View 
A view is a graphical user interface which can be interacted with by the user. When in the 

use of Knockout, the view consists of a HTML document that is linked to the view model 

through bindings. It is updating the user interface as attributes in the view model are 

modified, presenting data from the view model and signaling the view model to execute 

operations. (Knockout: Observables n.d.) 
 
The interaction of these components is done by creating data and functionality for each 

page in the view model, in which the stored data is retrieved from and saved to a model, 

creating the graphical interface in the view and connecting them with an attribute in 

Knockout called “data-bind”. A demonstration of this is seen in chapter 5.3. 
 

2.3 Server 

All the information in the portal is stored in a database called MongoDB. The server side is 

written in Node, and database calls are made with a plugin called Mongoose. 
 

2.3.1 Node 
Node is built on Chrome’s JavaScript runtime and is a platform that is designed for creating 

fast and expandable networks. It rarely performs any I/O operations and does not allocate 

any memory for threads per user that connects to the server, making it fast and flexible. 

(node.js n.d.) 
 

2.3.2 MongoDB 
MongoDB is an open source based database. Opposed to relation databases such as 

MySQL, Mongo is document oriented, meaning that the information which the database 

handles is in the form of objects. These objects are called JSON (JavaScript Object 

Notation) documents. (MongoDB n.d.) 
 

2.4 Git 

Git is an open source project and is a tool used by developers working in teams. Its purpose 

is to handle versions of systems that are under development. There are tools similar to Git, 

but what makes Git outstanding is a property called branching. The concept of branching is 

that a developer creates a copy of the system which is completely independent. No 

modifications in the branch affect the system until the branch is merged with the rest of the 

project. (About - Git n.d.) 
 

2.5 ALM 

ALM or Application Lifecycle Management is a multifunctional tool that has been created 

for the purpose of making it easier for a development team to keep control of the lifecycle 

for an application that is being developed, as well as speeding up the development 

(Application Lifecycle Management (ALM) n.d.). HP (Hewlett-Packard) is the developer of 

this software, which is used by testers at IKEA IT for testing application functionalities 

(among other things).  
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2.6 WebEx 

WebEx is a program that is used for online meetings, developed by Cisco. It is used at 

IKEA IT for virtual conferences and has been used by the authors of this thesis in some of 

the interviews that were conducted. 
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3 Method 

This chapter addresses how this thesis was conducted and is split into two main parts, the 

analysis and the implementation. Furthermore, the chapters are presented in chronological 

order, with the first part being the analysis and the second part being the implementation.  

 

3.1 Analysis 

There was no given system requirement specification, desired architecture nor any other 

kind of document or knowledge on which functions should be included, how the navigation 

should work or how the graphical user interface should look like at the beginning of this 

thesis. Therefore there was a need of conducting an analysis with the aim of gathering 

information regarding functionality, navigation and the graphical user interface.  
 
This chapter presents the research methodology applied in this study. The chosen method 

chapter raises the type of research method applied in the analysis part. Furthermore, the 

chapter highlights the approach to the chosen method, selection of stakeholders, data 

collection, ethical considerations and methodology discussion of the study. 

 

3.1.1 Research method 
In order to choose a method which responds to the needs of a study to be conducted, one 

must first understand the difference between the available methods. In this thesis, the 

choice was between a quantitative research method and a qualitative research method.  
 
Qualitative research is not fit for general studies as these examine a limited target group, 

i.e. it has a strictly limited participant base. The study is done with open questions and 

provides more space for the participants to express themselves. This means that the study is 

done with a small number of participants, but each participant is explored deeper and hence 

the data becomes more abundant. In a qualitative research, it is up to the researcher to 

interpret the findings. (Justesen & Mik-Meyer 2012) Quantitative research aims to 

investigate a market or portion of society by providing a study of a broad participatory 

base. The study's contents are usually closed questions to collect numerical data and 

quantify these. The results are then to be explained statistically. The goal is to give a 

description of social conditions or explanation of the conditions in relation to each other. It 

gives a general idea of the investigated phenomenon. (Justesen & Mik-Meyer 2012) 
 
In order to make a choice of the available methods some fundamentals were laid.  
The product to be developed was not going to be published for an open market; instead it 

was exclusively going to be produced for internal usage within the company. Therefore the 

participants of the study were limited to employees of the company. Furthermore, there was 

a need of understanding the needs of the stakeholders, which means that experience, 

feelings and thoughts are the main data to be taken into consideration and studied.  
 
The fundamentals described above are best suited with the qualitative research method. 

Since the qualitative method gives room for deeper research of each participant, it meets the 

need of exploring the stakeholders experience, feelings and thoughts. Additionally, the 

system to be developed was not a market product and thus it would not be feasible to use a 

quantitative study. Hence the choice of the qualitative research method. It did not 

necessarily mean that the qualitative research was used exclusively. In one moment of the 
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analysis there was an instance of quantitative research used, which is explained in chapter 

3.1.4. 

 

3.1.2 Approach 
An investigation of different types of survey methods was conducted in order to decide 

which one was the most fitting to meet the needs of the thesis analysis. To do that, the 

purpose of the study was taken into consideration. As mentioned in chapter 3.1.1, the 

purpose of the study was to gain greater understanding of the stakeholders’ needs and 

thoughts of the product to be produced. For this reason, interviews with stakeholders were 

the best choice for the study. (Robson 2011) 
 
The qualitative methodology offers the possibility of several different methods of 

interviews, including unstructured and semi-structured interviews. In order to give the 

participants the opportunity to give as much feedback as they wanted and at the same time 

be able to ask direct questions and follow up questions, it was decided that the most fitting 

kind of interview was the semi-structured interview. (Robson 2011) Furthermore, it was 

decided that the interviews would also be of the respondent interview type. Meaning that 

participants were guided by the interviewers, although room for stakeholders to freely 

express their thoughts and ideas was given. (Robson 2011) The motivation behind having a 

respondent interview was that the participant might need guidance since the portal would be 

an unknown phenomenon requiring some explanation.  
 
It was not possible to interview the participants all at once or in groups due to the fact of 

participants working in different cities and in one case another country. A group interview 

was not possible because of this. Instead, every participant was interviewed separately. In 

total seven interviews were conducted, in which two were performed over a WebEx 

meeting (see chapter 2.6 regarding WebEx) and the remaining five were performed with 

both parties physically present in the same room. 
 
In order to conduct the interviews some preparations were needed to be made. Some 

questions had already been formed and could be put in a questionnaire which can be seen in 

appendix D. Furthermore there was a need to visualize the already existing ideas regarding 

functions and navigation of the portal. After some research on the internet the prototyping 

term wireframe was found. This was chosen since it would display the navigation and 

results of functionalities within the portal and therefore be easier to explain then with just 

plain words and without visualization.  
 
During every interview, one of the authors had the role as the interviewer and the other as 

the secretary. These roles were switched between every interview in order to divide the 

workload fairly. Each interview began with the interviewer introducing himself and the 

secretary and then explaining that the interview regarded a bachelor thesis and what the 

thesis was about. After the introduction the participant was asked to fill out a questionnaire 

(see Appendix D) consisting of seven questions regarding their current profession. When 

this was completed the interviewer began going through and explaining the wireframe 

prototype (see Appendix A). The presentation of the wireframe prototype was focused on 

the structure, navigation and functionality. The participant was free to ask questions and 

make statements during and after the explanation of the wireframe prototype. The 

interviewer could then reply with a follow up question or explanation. If the participant did 

not react to certain vital parts of the wireframe prototype, the interviewer brought this part 
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to the participant’s attention. This is in accordance with the chosen research method, 

qualitative semi-structured respondent interview.  
 
The vital parts consisted of the following questions:  

● Should you be able to be invisible to other systems in the portal? 

● Is it interesting to show others that you are dependent on their system? 

● Should you be able to see the secondary dependencies of a project? 

● Do you want to be able to see which systems / projects that are dependent on your 

system / project? 

 

3.1.3 Selection of stakeholders 
The stakeholders that were chosen for interviews were handpicked by the client who has a 

deep insight into the test department at IKEA IT. Therefore, he could decide which 

stakeholders were most appropriate for the analysis. For that reason, the responsibility of 

selecting the stakeholders was completely on the client. Furthermore, his knowledge and 

insight in the company made it a natural choice to let him choose the people to be 

interviewed. The result was a broad selection of stakeholders with different professions at 

different parts of the test department.  
 
The different stakeholders were following (in chronological order): 

1. IT Solution Analyst 

2. Global Quality and Test Manager Group HR  

3. Test Architect 

4. Test Manager 

5. Product Specialist 

6. Service Owner 

7. Oracle Database Administrator 

8. Did not respond 

 
One of the stakeholders invited by the client to participate did not respond within the time 

frame to be a part of the study. Therefore seven out of eight invited people participated in 

the study.  

 

3.1.4 Data collection and analysis 
At the beginning of every interview, the participant was asked for permission to audio 

record as well as writing down digital notes during the interview. Every stakeholder agreed 

to this. The audio recording was done with two smart phones since those were the only 

tools available for audio recording. When the last interview was done, all the audio 

recordings were transcribed. The transcriptions were then gathered with the notes from the 

interviews respectively so that all data was kept at the same place.  
 
The goal of the analysis was to gather information about how the stakeholders felt or 

thought about certain functions of the portal that were shown to them. Also to collect their 

own thoughts and ideas for how the portal should be implemented based on their own 

experiences with testing. The data was therefore primarily collected and analyzed according 

to a phenomenological data analysis and not a quantitative data collection (although that 

was also performed in a small manner). The data regarding thoughts and feelings about 
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diverse functions of the portal was collected respectively from every transcription. It was 

then categorized based on thoughts of the same function or functions very similar to each 

other, for the reason to keep statistics regarding how many stakeholders mentioned a certain 

functionality. This lead to also having a quantitative data collection, although it was not the 

main goal of the analysis. The reason why a quantitative data collection was also made was 

to be able to see the need for certain functionalities in a concrete manner. This made it 

easier to decide on what was to be implemented and also which parts of the portal were the 

most important ones. 

 

3.1.5 Ethical consideration 
In order to protect the participants’ privacy and make them feel more comfortable doing the 

interviews, no personal information was provided about them except for their professions 

and workplaces. Instead of representing the different stakeholders by their names, it was 

done by an identification number. The participants were informed about this at the 

beginning of every meeting so that they were aware of it. 

 

3.1.6 Discussion of research method 
In retrospect, the research method used during the analysis phase was one that gave many 

needed results which can be seen in more detail in chapter 4. The results were also 

validated through the client who gave a verbal approvement, meaning that the client 

thought the results were resourceful and relevant.  
 
However, the study is limited to the stakeholders that have been interviewed which are a 

slim number of seven people. This gives a small representation to rely on and a quantitative 

research would instead give a much bigger representation. However, the product is (as 

mentioned in chapter 3.1.1) not focused on a massive user group, but is instead created for 

internal usage which is why a quantitative research is not as well suited as a qualitative. 

Also, as mentioned in chapter 3.1.3, the stakeholders were chosen by the client, who did not 

have the chance to gather more than seven participants. Although more participants would 

have been beneficial if there was an opportunity for it.  
 
One must consider that neither one of the stakeholders had the same profession, which 

gives a broad spectrum. But it misses the opportunity to compare the thoughts of multiple 

stakeholders with the same profession, or in other words the similar experience and 

knowledge.  
 
During the study there was no consideration to relations of different thoughts or 

expressions. Meaning that there was no study on which part of the system was most 

important in relation to another part of the system. This is a lack of information which 

could or could not change the course of implementation, but it is not possible to know since 

it was never conducted.  
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3.2 Implementation 

From the analysis phase of the thesis the basic fundamentals for implementation was laid. 

These being a finalized requirement specification (see Appendix C) and wireframe (see 

Appendix B) from which an implementation could be based upon.  
 
This chapter presents the development process tool applied in this study. Chapter 3.2.2 

raises the type of process tool used during the implementation part of the thesis. 

Furthermore, the chapter highlights the approach to the chosen process tool and discussion 

of process tool.  
 

3.2.1 Kanban versus Scrum 
Before any implementation was made a development process tool was to be selected. The 

choices were between Kanban and Scrum, which were derived from the authors’ experience 

of the course EDT 655 - Project grade 3, in LTH, Campus Helsingborg. In order to pick one 

of the mentioned process tools, a study of them was conducted and later on, a discussion 

was made resulting in the selection of Scrum.  

 

There are multiple common attributes of Kanban and Scrum since both are Lean and Agile 

(Kniberg & Skarin 2010). The following list gives a perspective of the common attributes 

(Kniberg & Skarin 2010). 
 

• Pull scheduling instead of push scheduling.  

• Limit of the current work in progress.  

• Transparency to drive process improvement. 

• Focus on delivering releasable software early and often. 

• Based on self-organizing teams. 

• Require breaking the work into pieces. 

• The release plan is continuously optimized based on empirical data (velocity/lead time). 

 
Both process tools are adaptive, meaning they have few rules or processes compared to 

other more traditional process tools. Although when comparing Scrum and Kanban, Scrum 

is more prescriptive, meaning it has more rules than Kanban (Kniberg & Skarin 2010). The 

main differences are the boards, the sprint in Scrum and the roles (Kniberg & Skarin 2010). 
 
The boards are different in the way that Scrum resets the board after every sprint and 

Kanban’s board is persistent. In this way a board in Scrum belongs to the sprint in which 

the board has been setup, while in Kanban the same board is used through the whole project 

(Kniberg & Skarin 2010).Another difference in the boards is that Kanban limits the items 

that can be in a certain state. For example, if WIP (work in progress) limit is set to 2 in 

“ongoing”, then there can only be 2 items in the ongoing column. The Scrum board does 

not limit how many items can be in a certain state, instead it limits how many items can be 

in the board during a period. 

 

“So in Scrum WIP is limited per unit of time. In Kanban WIP is limited per workflow 

state.” (Kniberg & Skarin 2010, s32). 
 
In Kanban there is no fixed time frame where a certain work is to be done. Instead, the team 

will continuously drag items when it feels it can do so. However, a main part of Scrum is 

the sprint. A sprint is a fixed time frame containing a certain amount of User stories. The 
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amount fitted in a sprint is based on the how many items can be done within the time frame, 

which is estimated by the developing team (Kniberg & Skarin 2010). 

 
Roles are not prescribed within Kanban, although it does not mean it is wrong to use roles. 

In Scrum, roles are prescribed to include a product owner, team and a scrum master.  
The product owner is the client of the product who will decide the goal of the project and 

the priorities of the backlog.  
The team is the whole group of individuals which will implement the product.  
The scrum master is kind of a project manager who clears any obstacles and provides 

process leadership (Kniberg & Skarin 2010). 

 

3.2.2 Choosing a Scrumish process tool  
Before going in to the implementation of the project, a request was made by the client. The 

client wanted to have periodic reports of what was implemented and be able to view the 

results of the implementation. The client also wanted insight of what was completed and 

next in line for implementation. This leaned at establishing a prioritized backlog, product 

owner role and fixed time for release events, which paved the way for choosing Scrum. An 

important note is that not every attribute within Scrum was used, which means that a 

“Scrumish” process tool was used and not Scrum. This is further explained in chapter 3.2.3. 

 
Another contributing factor to choosing Scrum as a process tool had to do with the authors’ 

earlier experience with process tools. Both authors had gained experience within Scrum 

from the course EDT 655 - Project grade 3, in LTH, Campus Helsingborg. Therefore, both 

were in agreement that it would be easier and faster to work with Scrum instead of Kanban.  
 
Before deciding to go ahead with Scrum a meeting was set with the client. During the 

meeting the client was informed in which way the team would work and how the client as a 

product owner would be able to participate. When the client agreed to the process tool the 

decision was finalized.  
 

3.2.3 Approach 
Before the implementation phase was initiated, a ground was laid for it. In the system 

requirement specification (see Appendix C) the main part of the functional requirements 

was made into user stories. This was a deliberate tactic since the choice of the process tool 

was known in beforehand. 
 
The majority of the guidelines within Scrum were used with some exceptions. The 

exceptions were story points, burndown charts and cross-functional teams. In Scrum and 

other Agile process tools it is not necessary to use every prescribed part. One is rather to 

experiment and use that which benefits the users and project. It goes so far that different 

process tools can be mixed with each other. But it is important that the term Scrumish 

replaces Scrum in such a situation (Kniberg & Skarin 2010).This thesis used a Scrumish 

process tool as a guideline during the development of the product.  
 
The story points were excluded due to the team not finding it beneficial to use. Instead an 

estimation of how many user stories were to be fitted in one sprint was estimated by its 

complexity directly. The story points were excluded since the whole team consisted of only 

two members and a direct dialog could handle the estimation without the story points and it 
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would be unnecessary to rationalize in form of a numeric value. Since story points were 

going to be used, burndown charts were directly excluded since they depend on an 

estimation of time (Kniberg & Skarin 2010). 

 
Meanwhile cross-functional teams were excluded simply because there were only the two 

authors who were working with the project except from the product owner. It was therefore 

not possible to have cross-functional teams.  
 
The client was given the role as the product owner while the authors gave themselves the 

role as the team. There was no official Scrum master since there was nobody in the project 

available to carry out that role, instead the team also took on the responsibilities of the 

Scrum master.  
 

 
Fig 3.1: Screenshot of the backlog in a certain moment of the thesis 

 
The client being the product owner had the privilege and responsibility to prioritize the 

product backlog. The product backlog seen in figure 3.1 consisted of a Google docs Excel 

document with the columns “Priority”, “Todo”, “In progress”, “Done”, “Completion date” 

and “Notes”. The columns were made to easily monitor the state of the user stories and if 

necessary any extra comments regarding a user story. The rows consisted of the user stories 

derived from the system requirement specification. The backlog was shared between the 

product owner and the team.  
 
The start phase of each sprint began with dragging items in the backlog from todo to 

ongoing and then placing the same user stories in the teams sprint board. The number of 

user stories taken into a sprint was based on estimation by the team. The team’s estimation 

was based on how complex a user story was in their experience. When both members of the 

team were in agreement, the amount was final. In later sprints, experience from the former 

sprints was also used to assess the amount of user stories that would fit in a sprint.  
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Fig 3.2: Screenshot of the sprint board in sprint 4 under development 

 
The sprint board consisted of the columns “User story”, “Todo”, “In progress”, “To verify” 

and “Done”. Each user story was broken down to tasks which could be started by either one 

of the team members. This way of working gave the team the opportunity to work with 

different tasks simultaneously. Figure 3.2 is an example of how one of the sprint boards 

looked like during the implementation. The client did not have access to the sprint board 

and the user stories on the board could not be cancelled, as well as no more user stories 

could be put into the board during the sprint. This was done according to one of the Scrum 

principles to protect the team from external disturbances (Kniberg & Skarin 2010). 

 
One abnormality in the sprint was the length of each sprint, which was set to one week. 

While not being a violation (Kniberg & Skarin 2010) it is a quite small period. This had to 

do with the period left for implementation which was roughly about a month. Therefore a 

week was chosen to give both a fast feedback loop to the product owner and at the same 

time give the opportunity to have maximum amount of sprints. 
 
On every occasion the team met up to begin a work day, a daily Scrum meeting was held in 

accordance to one of the principles of Scrum(Kniberg & Skarin 2010).The meetings 

summarized what was done on the previous work day and what the objective for the current 

day was. This gave clarity to how the sprint was going for each day.  
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When a user story was considered to be done, its state was updated in the backlog with 

additional comments if there were any. At the end of every sprint a notification was sent to 

the product owner, either by mail or by physical contact. This was in accordance to one of 

the principles of Scrum (Kniberg & Skarin 2010).The notification consisted of a push onto 

the Git server provided by the client and a message. The message was to give the product 

owner an idea of what was done, if there were any obstacles and a heads up that the team 

will drag user stories from the backlog so the prioritization should be complete for the next 

sprint. The product owner could then review the last push onto the Git server since the 

product owner was using the same development environment and capable of understanding 

the changes without the consultancy of the team. The product owner always gave a 

response to the team telling them if everything was fine or reporting any found 

abnormalities. After the response from the product owner the team could go into a new 

sprint and create a new sprint board with the user stories pulled from the backlog.  

 

3.2.4 Discussion of process tool 
In retrospect, Scrum was a powerful process tool as it gave both the team and the product 

owner many benefits such as:  
 

● An overview of how the product was being developed and what would be next in 

line. (See chapter 3.2.1) 

● An effective way of implementing with more than one task being worked with at the 

same time. (See chapter 3.2.1) 

● Protection from disturbance from the team during sprints. (See chapter 3.2.1) 

● Included the product owner in the development of the product by showing the 

progress at the end of each sprint. (See chapter 3.2.1) 

 
Although both the team and client was happy with the results of the thesis (see chapter 6), it 

does not necessarily mean that Scrum was the only process tool that could be used. The 

way of working during the implementation phase could be done in a similar way with 

Kanban as a process tool. 
 
With Kanban the team could have a board in which they would be able to pull tasks and 

have a backlog which the product owner would be able to prioritize by putting the tasks in 

the Kanban board’s “Todo” column.  
 
However, the team consisted only of two members dragging a task through the whole 

pipeline of columns. Therefore the Kanban board would not be utilized as it is thought to 

be, with teams working in different thresholds or columns and helping each other in 

bottleneck situations (Kniberg & Skarin 2010).Instead, a sprint board is more appropriate. 

Also, as mentioned in chapter 3.2.2, the product owner wanted periodic reports of the 

implementation, which is not available in Kanban since it does not use any periods at all.  
 
From this argument, Scrum is still considered to have been a better choice than Kanban. 

Although more research could have been given to other alternative process tool within the 

Agile family.  
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3.3 Sources 

3.3.1 Literature 
Following literature was used in the thesis (see chapter 9 for more details on the literature): 
 

1. Kanban and scrum making the most of both - Henrik Kniberg & Mattias Skarin 

2. Kvalitativa Metoder, Från vetenskapsteori till praktik - Lise Justesen, Nanna Mik-

Meyer 

3. Real world research - Colin Robson  

 
The first literature in the list is derived from the course EDT 655 - Project grade 3, in LTH, 

Campus Helsingborg and is considered by the authors to be a trustful source since it is 

being used in a course included in a higher form of education. 
 
The second literature in the list was found by a search in the LTH, Campus Helsingborg 

library with the help of a librarian. This literature is focused on the subject of qualitative 

research methodology and might not be the most appropriate regarding comparison of 

qualitative against quantitative. However it was rather used for the purpose of using 

qualitative then comparing it towards quantitative. 
 
The third literature in the list was recommended by Christin Lindholm whose title is 

“Education Program Leader for the Bachelor programme on Computer Science and 

Electrical Engineering with Automation” in LTH, Campus Helsingborg, and is by the 

authors seen as a legitimate and trusted proxy to give such a recommendation. 

 

3.3.2 Internet sources 
When developing with open source tools there can be less literature available, especially 

when using a framework which is relatively new. Therefore all sources regarding the 

technologies used during this thesis are websites and not articles nor literature.  
 
However almost every website has been a direct official website for each technology and is 

therefore in a high matter a trusted source. The list includes developer.mozilla.org, 

durandaljs.com, requirejs.org, jquery.com, knockoutjs.com, nodejs.org, git-scm.com, 

hp.com, webex.com and w3.org.  
 
The only website which is not an official is w3schools.com. This website is a web 

developer information website and is not free from external criticism. However this website 

is only used at chapter 2.2.1 and the information that refers to the w3schools page has been 

verified by the authors, by checking the information towards w3c.org. The reason for using 

w3schools is due to the information being simply and user friendly.  
 
Ikea.com is also an official website but is the only website that is not used in chapter 2 and 

is a highly trusted source of information regarding IKEA. Furthermore the information used 

in this thesis from the official webpages have not been able to be bias since the authors only 

used technical facts and in one case regarding the IKEA.com website used general 

information. The authors did not use information that would consider the tool or company 

to be a preferable choice against a competitive. 
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3.3.3 Supervisor and test department at IKEA IT, Helsingborg 
The feelings and experience of the supervisor and the rest of the test department team have 

been used in this thesis to a certain degree. It has been used in the purpose of validating the 

fulfillment of the goals (see chapter 6) and also in drawing out information about the 

company(see chapter 1.4). The supervisor and the team are considered by the authors to be 

the most reliable source of information regarding validation of the goals in this thesis. The 

supervisor is also the client to receive the product and the team is considered as end users of 

the system, therefore their feelings can best explain how far the authors have fulfilled their 

commitment. 
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4 Analysis results 

A wireframe prototype showing the functionalities that had been thought of before the 

interviews was presented to the participants (see Appendix A). The interviews resulted in a 

broad perspective of how the portal should be designed because of the input from various 

stakeholders. The data from the transcriptions and surveys (see chapter 3.1.4) was analyzed 

and composed into a report that was given to IKEA IT so that they could take part of the 

interview results, a final version of the wireframe and a system requirement specification.  
 
This chapter presents the fundamental functionalities of the portal, the report on the 

interview results, the different versions of the wireframe and the system requirement 

specification for the portal. 
 

4.1 Fundamental functionalities 

The wireframe version 2.0 (see Appendix A) that was presented at the interviews contained 

functionalities that were thought out by the authors and client at several brainstorming 

occasions. Navigation in the portal was decided between a number of pages (in that version 

of the prototype) which are explained in this sub-chapter; Overview, Test History, 

Scheduler, Dependency, Home, Login. All functionality related to each page is presented 

and explained respectively in the sub-chapter for the page. For the final prototype 

containing all existing pages and functionality in the portal, see Appendix B. 
 

4.1.1 Overview 
List of latest smoke tests 
On the overview page for every system there shall be a list containing information about the 

latest smoke tests ran for the specific system. A smoke test is a functional test, meaning that 

it tests certain functionalities of a system. What differs a smoke test from any other 

functional test, is that the smoke test is set to determine the health of the system it’s ran 

within. When referring to a smoke test in this thesis it refers to the test that inflicts the 

system’s status in the way that it is set according to the result of the test. The amount of 

presented smoke tests are set to three for no specific reason, but could be changed in a 

future version of the portal. This function is thought for a simple history of the system 

checks for the selected system.  
 
Redirection to test reports 
In every entry in the latest smoke tests list, there is a link to the report for the specific test. 

The link redirects the user to a report page where the results of the test are presented in 

detail. This function is thought to simplify the access to test results in comparison to ALM 

and was one of the main requirements for this thesis. 
 
System state 
An alert function that sets the state of a system, depending on the result of the latest smoke 

test ran for the system. There are three states:  

 
● Down (test failed) 

● Attention (test passed with comments or did not run) 

● Good (test passed) 
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The purpose of this function is simple signaling of the well-being of a system. A user can 

see how a system is doing by just opening the overview page and not having to view any 

test results. 
 
Dependent system failure notification 
Also an alert function meant for easier debugging of a system failure. For every smoke test 

that failed, this function creates a notification by every entry in the list for the latest smoke 

tests if there was a dependent system whose state was “Down” at the time the smoke test 

was ran. As there was a dependent system that was not functional, the problem might be 

there and not only in the system that was checked. 
 
Public URL 
The public URL function is meant for simple monitoring of a system. It creates a link that 

can be sent to anybody connected to IKEA:s network which shows a replica of the 

“Overview” page for the system from which the link is created. The user of this link does 

not have to log in to the portal in order to view the page that the link redirects to. This 

public “Overview” page however is read-only, so it is only the information on the 

“Overview page” that is presented here, no buttons or links. 
 
Visible/invisible 
An option for making a system either visible or invisible to the rest of the portal users. This 

function is thought for system owners to be able to hide their systems in cases where the 

system for example is under development or maintenance, and the owner of the system 

does not want the test results or status of the system to be available for others to see. 
 

4.1.2 Test History 
“Test History” is the page where all results of tests that have been ran (through the portal) 

for a system are available in a list. 
 
Categorization 
In order to make it easier for users to evaluate their testing and access their test results, 

categorization of tests was thought of. This makes it easier to find test results as a user does 

not have to look through the whole test history. In this version of the wireframe, two 

categories existed; smoke tests and non-smoke tests. 
 
Redirection to test reports 
This function works the same as for the “Overview page” only that it applies to the entries 

in the list of tests on the “Test History” page. See chapter 4.1.1 for an explanation of this 

function. 
 
Dependent system failure notification 
This function works the same as for the “Overview page” only that it applies to the entries 

in the list of tests on the “Test History” page. See chapter 4.1.1 for an explanation of this 

function. 
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4.1.3 Scheduler 
In this version of the wireframe there is no “Scheduler” page presented. Simply for the fact 

that the authors did not know how it would look or what functionalities would exists for the 

scheduler at the time the wireframe was made. It was not possible to know as it was not yet 

decided which test tool(s) the portal would be formed for. There is only a picture of a cloud 

presented in the wireframe. 
 

4.1.4 Dependency 
“Dependency” is the page where everything regarding dependencies is handled. 
 
Categorization 
As for the “Test History” page, a categorization function was thought of for the purpose of 

making it simple to view and evaluate the different types of dependencies of a system. The 

categories presented in this wireframe are as follows: 
● Internal dependencies 

● External dependencies 

● Secondary internal dependencies 

 
Internal dependencies 
Internal dependencies are those systems that a system in question is dependent on. This is 

one of the main requirements for this thesis and the need for this function can be read about 

in chapter 1.1. 
 
External dependencies 
This type of dependencies is those systems that are dependent on the system in question. 

The idea of monitoring external dependencies is meant for signaling other system owners in 

the portal in cases where the system in question is about to go into further development or 

maintenance, by example. By informing other system owners about this, it could prepare 

them for the system in question not going to function as it should. External dependencies 

cannot be set by the user but are automatically set by the portal. 
 
Secondary internal dependencies 
Secondary internal dependencies are those systems that the internal dependencies for the 

system in question depend on. Example: 
 
A is dependent on B. 
B is dependent on C. 
C is a secondary internal dependency for A.  
 
This function is meant for the user to have a better overview of test environment by seeing 

an extended view (compared to only internal dependencies) of which systems are 

dependent on each other. Secondary internal dependencies cannot be set by the user but are 

automatically set by the portal. 
 
New dependency 
This function is meant for users to set systems in the portal as internal dependencies. The 

user picks a system from a list containing every system installed in the portal and simply 

adds it as an internal dependency. 
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Redirection to the report of latest smoke test for a dependent system 
This function creates a link to a report of the latest smoke test ran for all internal and 

external dependencies. It is meant for users to be able to access information regarding the 

latest system check ran on a specific dependency. It is thought that the service owner for 

each dependent system should decide whether the report is available for others to view or 

not, for integrity issues.  
 

4.1.5 Login & Home screen 
Login  
The login page is simple as the only thing needed is a username and password to login to 

the page. It was explained to the participants of the interviews that the accounts used for the 

portal were thought to be connected to the accounts used for the testing tool(s) that would 

come to serve as guideline(s) for the portal in a further stage of development. For the reason 

of making all the data in the test tool(s) available for the users in the portal. 
 
Home 
Users are redirected to the “Home” page after logging in to the portal. This page presents a 

list of every system that the user has a role in. Clicking on an entry in this list redirects the 

user to the “Overview” page of the selected system. Beside every system in the list, there is 

also a status text, showing the result of the latest smoke test and the date on which it was 

ran. This function is meant for a quick overview of the systems that are relevant to the user. 
 

4.2 Report on interviews 

Through this report, the authors have taken feelings and experiences into account with 

some exceptions where quantitative data has been used, presented in the form of “X of N 

participants had a certain feeling or thought”. It is important to keep in mind that the 

authors have specified how many people verbally expressed a sentence of the same opinion 

or feeling. However, this does not automatically mean that the remaining participants were 

in contrast, it only means that they did not utter it in a sentence.  
 
A detailed explanation of all functionalities presented at the interviews can be seen in 

chapter 4.1. 
 

4.2.1 General information 
All stakeholders agreed on the portal being a good and favorable idea in different ways 

depending on the stakeholders’ perspective. Many new ideas came about during the 

analysis, of which most regarded the existing functionality in the wireframe, but also some 

completely new functionalities. One important thing in the analysis was to find out what 

test tool was mostly used by the employees at IKEA IT. This information was critical 

because it had to be decided on which tool the portal should be initially formed for. From 

the interviews, the authors found out that six of seven stakeholders were working with 

ALM. Therefore it was decided that the portal was to be implemented with support for 

ALM, meaning that tests should be scheduled to run with that test tool and the test results in 

the portal should be presented in the same way as in ALM. 
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4.2.2 Overview 
Public URL 
An URL to a publicly accessible page of a system’s overview was considered a useful 

feature since the status of a system could be shared without the viewer having to provide 

any credentials. 3 of 7 users felt that this function would be beneficial. The mutual thoughts 

were that it allows an easy overview where you can simply see if the system in question is 

functional or not. A single reflection was if the link was static, i.e. not changing. This gave 

rise to a thought of being able to utilize this public URL to a single monitor that 

summarizes multiple systems’ health. 
 
Visible/invisible 
The possibility of making a system visible or not visible for the rest of the systems in the 

portal was a function that aroused both positive emotions and hesitant thoughts. What was 

thought to be positive was that no unnecessary reporting should be made to others in case 

of the system being considered in a certain state. The hesitant thought was never clarified 

but still had a positive attitude towards the function. In addition, there were two specific 

questions about the function: 
 

● "Can I specify a particular group to" - ID 2, Global Quality and Test Manager 

● "Say you have four users for that button, who is in charge then - ID 4, Test Manager 

 
Other comments 

3 of 7 participants considered a function that flags a smoke test, indicating that a dependent 

system was not fully functional at the time of the test being executed, can be beneficial. 

Mostly because it makes it possible to see that there was not only a failure in one's own 

system, therefore the failure may be linked to another system. This flag is seen before even 

looking into the report of the smoke test in question. 

Each smoke test shall be represented by the status passed, passed with comments and failed 

with respective colors green, yellow and red as well as a number (numeric) for amount of 

subtests passed in the smoke test. 

Signaling by a failed smoke test was mentioned by 3 of 7 participants. The idea was that an 

alarm should be triggered when a smoke test fails. This is because it should be noticed by 

someone other than just a limited number of people who occasionally look up the status. 

The signal may be in the form of e-mail, SMS, or iDesk.  

"I want an automatic action, when I call and ask how long it will take for you, then they 

should already be running and working on the problem " - ID3 , Test Architect. 

 

4.2.3 Test History 
All comments on the test history can be collected in two specific points: categorization and 

statistics. 2 of 7 participants believed that the visualization of test results would be  

favorable. 
 
For categorization, one participant considered “Smoke test” and “Non smoke test” an 

enough amount of categories, while another one wanted more categories for the purpose of 

avoiding having to look through all the tests that exist on the test history page when 
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working with a certain test category. After this, a thought on making the categories 

adjustable by the users came about. This could also be heard around the scheduler. 
 
Regarding statistics, a few participants expressed the need of additional information 

presented about test results on the test history page, in comparison to the information 

presented in the wireframe prototype (see Appendix A). This means that each test listed on 

the test history page shall be represented by the status passed, passed with comments and 

failed with respective colors green, yellow and red as well as a number (numeric) for 

amount of subtests in the smoke test with the respective status. 
 
“I would probably want this page to show a number out of each category, rather than 

“passed” for smoke tests. How many green, how many yellow, how many red?” - ID 6, 

Service Owner 
 
This is similar to what was mentioned regarding statistics in the “Other comments” section 

of chapter 4.1.2. 
 

4.2.4 Scheduler 
Feedback about the scheduler has been varied among the participants. There were positive 

thoughts about having a scheduler in the portal, meaning that it is handy to keep 

visualization of test results and scheduling of tests at the same place. It simplifies the work 

as the user avoids having to use multiple tools for executing a test and accessing the results 

of it. 
 
One question that arose is whether it is possible to look at the results from tests not 

executed through the scheduler, but performed manually. However, only 1 of 7 participants 

mentioned that he/she worked mainly with manual testing. 
 
3 of 7 participants thought that the portal should be made universal. This means that it 

should support various test scripts or test tools. Other feedback has been ideas about the 

scheduler which have touched different areas:  

 
● The portal should support non-automated tests so that they also result in a report in 

Test history. 

● Smoke tests for a system shall first run smoke tests that belong to its dependent 

systems, before performing its own smoke test. 

● Pause/play function to make it possible for a system to have deviations of recursive 

runs for a fixed period. 

● Categorization of tests to be scheduled. 

 

4.2.5 Dependency 
Feelings and thoughts on dependencies were both positive and critical. Some found it could 

be very beneficial because it gives an insight into the big picture of all systems connected to 

each other. While some were critical of how beneficial it can be, and how possible it is to 

implement. Out of the critical there was a common thought that the dependency 

functionality was less important in comparison to the overview and statistics. At a whole, 3 
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of 7 participants thought that dependency is favorable while 3 of 7 participants were 

critical. 
 
Two specific points stood out beyond what is mentioned above: 

● Narrow down the levels of secondary dependencies, otherwise there is a risk of it 

becoming redundant. 

● In ALM, there is the ability to link tests to each other. A way to make them 

dependent on each other. If system B is dependent on system A, system B shall link 

the smoke test of system A to its own. Hence system A’s smoke test is ran first, and 

then the smoke test of system B. The participant who said this however mentioned 

that this way of setting smoke tests as dependent on each other was not used as 

much as it should. 

 
An own thought from authors also came about; how will the dependency part of the portal 

be affected by a system being set as invisible respectively visible? 
 

4.2.6 New functionalities 
Statistics 
Several of total participants, 5 of 7, expressed interest in some sort of statistics on systems 

installed in the portal. Thoughts were to keep statistics on when a system is considered to 

be down as well as up and running. Also, various versions of statistics were brought up by 

different participants. For example, how many subtests in a smoke test have performed well 

or poorly, how many of the total smoke tests have performed well or poorly (per year, 

month, and week). 
 
The ideas that emerged regarding statistics were as follows:  
 

● Statistics on the number of subtests in a whole test that passed respectively failed. 

● Keep statistics on all smoke tests to show an overview of how many passed 

respectively failed. One axis for time and one for tests. Axis for time could be a 

week, month or year. 

● A report on statistics kept on all smoke tests shall be sent weekly or monthly to the 

owner of the system. 

● Statistics should not be kept when a system is not visible. 

● Statistics should not be kept at planned down time. 

● Statistics that are kept at maintainence or further development of a system should be 

noted, for example “Ongoing development”.  

● The “Make visible/invisible” button should not turn off the keeping of statistics. 

● The statistics should be adjusted after less technically proficient personnel. This in 

order for them to be able to have a perception of a system’s well-being over time. 

● If a system that the main system in question is dependent on failed its smoke test, 

statistics should not be kept for the main system. 

● Statistics should also be presented in percentage. 

● Statistics should be presented in the form of graphs. 

● Statistics should always be available even when the system is invisible. 
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● When a smoke test for system A is ran by system B, the smoke test for system A 

should be reported into the statistics for system A (B has set A as a dependency). 

 
Monitor 
The idea of the monitor is to be able to collect  the state out of multiple systems in a single 

view. In this way you can get an overview on the health of various systems which can be 

useful in several user perspectives. For example, for a particular department or a particular 

service owner with the need to easily be able to oversee multiple systems. 3 of 7 

participants mentioned that a monitor can be beneficial. 

 

4.3 Chronological order of the wireframe  

On the basis of the report (see chapter 4.2) the wireframe version 2.0 was updated to a new 

version 3.0. There were multiple changes to the newer version which is presented in chapter 

4.3.1. Afterwards there was an acceptance meeting held between the authors and the client 

for the purpose of validation. The updated wireframe was presented to the client together 

with the report of the interview results. The client gave some valuable feedback which the 

authors took in consideration and updated version 3.0 to 4.0. The 4.0 version was then 

again sent for validation to the client and based on the response some smaller updates were 

made and the final version of the wireframe was version 4.1. This chapter highlights the 

new features for each version of the wireframe from 2.0 to 4.1. 
 
For the full version of wireframe 2.0 see appendix A and for the full version of wireframe 

4.1 see appendix B.  
 

4.3.1 New features of version 3.0 
This chapter highlights the new features included in the wireframe version 3.0 when 

comparing it to the previous wireframe version 2.0. In the comparisons of this chapter, the 

left-hand side of the image is always taken from wireframe version 2.0, while the right-

hand side of the image is always taken from wireframe 3.0. 
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Figure 4.1: Differences in “Overview” page 

 
Figure 4.1 shows the difference made in the “Overview” page. What can be seen here is 

that an e-mail function has been added at the bottom. This was added to give the end users 

the ability to get smoke tests reports by e-mail, either if the test failed or always. The reason 

for the new function is derived from the report in chapter 4.2.2. 
 

 
Figure 4.2: “Public Overview” page 
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Figure 4.2 shows a page which is not a new function, but was not included in version 2.0. It 

was added to the 3.0 version to give a clearer view of the “Public Overview” function. The 

function is derived from the report (see chapter 4.2.2). 
 

 
Figure 4.3: Differences in “Test History” page 

 
Figure 4.3 shows the difference made in the “Test History” page. What can be seen here is 

the numbers at the side of each test set in the test history table. These numbers represent 

how many tests in the test set that have passed (green number), passed with comments 

(yellow number) or failed (red number). The reason for the new function is derived from 

the report in chapter 4.2.3. Additionally, the menu for the different categories of test sets 

has been moved from the left side to the top side of the test history table. There was no 

basis for this change other than that the authors thought that it would be more user friendly. 
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Figure 4.4: Differences in “Scheduler” page 

 
Figure 4.4 shows that the “Scheduler” page went through a total change, since the scheduler 

in version 2.0 was just a cloud symbol illustrating that there was nothing to display at the 

moment. In version 3.0 we can see a calendar, test set choice and time function. This is to 

be able to schedule a certain test set for some specific date(s) and time(s).  
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Figure 4.5: Differences in “Dependency” page 

 
Figure 4.5 shows the changes made to the “Dependency” page, which is simply that the 

menu for the different categories of dependencies has been moved from the left side to the 

top side of the dependency table. There was no basis for this change rather than that the 

authors thought that it would be more user-friendly. 
 

 
Figure 4.6: “Statistics” page 

 
Figure 4.1 shows a new page called “Statistics” which is available through the navigation 

menu at the top-left corner. The ideas and specifications within this page were derived from 
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the report in chapter 4.2.6. The principle for the page is to display statistics for the system 

which the user is viewing. The statistics is based upon the smoke test(s) of the system and 

not any other test(s). The reason for this is to give a view of the system’s health, which in 

this portal is defined by the smoke tests.  
 
Within the page the user will be able to view the statistics in a graph which will display 

how many tests have been run and the ratio of how many failed/passed. This should be 

shown for every unit in the X-axis which is based on the choice, week, month or year. 

Furthermore, statistics should be kept for the whole time that the project has been active in 

the portal. 
 
Another function in the “Statistics” page is to send reports by e-mail which can be seen in 

figure 4.6 bottom. The function is to send reports consisting of the same statistics available 

in the portal, but for a certain time frame which is dependent on the user’s choice. The 

choices being weekly, monthly or/and year wise. An example is if the user picks weekly 

and monthly, then a report would be sent at the end of the every week containing only the 

recent week’s statistics. Also it would send a report on the end of the month containing the 

statistics for the recent month.  
 

4.3.2 New features of version 4.0 
This chapter highlights the new features included in the wireframe version 4.0, when 

comparing it the previous wireframe version 3.0. In the comparisons of this chapter, the 

left-hand side of the image is always taken from wireframe version 3.0, while the right-

hand side of the image is always taken from wireframe 4.0. 
 

 
Figure 4.7: Differences in “Overview” page 
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Figure 4.7 shows the difference made in the “Overview” page. There are two new functions 

introduced to the newer version. The first one is the hovering text of the “dependency 

down” function, which can be seen on the right side of figure 4.7, where the “hand” symbol 

is over the “x within a circle” symbol. This was to give the users an understanding of the 

symbol’s meaning. The symbol was also changed from an exclamation mark to an X due to 

the second new function being inserted; so that it would not be misinterpreted which 

symbol represents a function. 
 
The second new function in figure 4.7 was the extra status field, which has replaced the 

visible/invisible function. This can be seen within the green square in version 4.0. 
The text field is writeable and enables the user to change the status of the system when 

pushing the button. This was thought to be an extra signal so the user can signal others, 

independently of test scheduling. For example, the user could have a message saying “The 

system is currently going through maintenance, disregard any failed tests”.  
 
These changes were based on the feedback given to the authors by the client during the 

acceptance meeting (See chapter 4.3).  
 

 
Figure 4.8: Differences in “Scheduler” page 
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Figure 4.9: Differences in “Scheduler” page 

 
Figure 4.8 and figure 4.9 shows the changes made to the “Scheduler page”. There are 

multiple changes introduced which can be categorized as following: 
 

● Categories of tests 

● Recursive time 

● Current scheduled tests 

 
Test categories can be seen in line with the label “Category” in figure 4.8. This function 

would enable the user to specify which category the test to be scheduled should be placed 

in. Furthermore, the user would be able create its own categories which will give the user 

the flexibility to schedule any type of test. The idea was derived from the report (see 

chapter 4.2.3) and on the feedback given to the authors by the client during the acceptance 

meeting (see chapter 4.3). 
 
Recursive time can be fully seen in figure 4.8 from the checkbox “Add multiple time” 

down to the label “Frequency (min)”. This function would give the user the possibility to 

add multiple times more efficiently. For example, if the user would like to put multiple 

times with 30 minute intervals, in the 2.0 version the user would have to do many inputs. 

With the new function the user would instead check the checkbox “Add multiple time”, set 

the “Start time” to 00:00, leave the “End time” as blank (as it is default 00:00), set the 

“Frequency (min)” to 30 and finally push the add button. These changes were based on the 

feedback given to the authors by the client during the acceptance meeting (see chapter 4.3).  
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Current scheduled tests can be seen in figure 4.9 in the message box above the label “Start 

time”. The message box appears when a user has selected a date in the calendar and a time 

from the “Run at time” list box. The message is only shown if there is a time in the list box, 

which will only be filled with objects if there is a scheduled test for that date. The reason 

for the new function was to give the users the possibility to view already scheduled times 

for different tests. The example given in figure 4.9 is one with the recursive times 

(indicated with the “(r)”) and would only include the time and category.  
 
These changes were based on the feedback given to the authors by the client during the 

acceptance meeting (See chapter 4.3).  
 

 

 
Figure 4.10: Differences in “Dependency” page 

 
The difference presented in figure X is a notification symbol beside an entry in the external 

dependencies list. This mark indicates that the system in question has set a custom status. If 

a user hovers over the mark, an explaining text is seen, saying that the system is marked as 

the custom status that has been set. The purpose of this function is to inform users of the 

portal about the system’s status in order to give more insight into how the system is doing. 
 
This change was based on the feedback given to the authors by the client during the 

acceptance meeting (See chapter 4.3).  
 

4.3.3 New features of version 4.1 
This chapter highlights the new features the wireframe version 4.1 includes when 

comparing it the previous wireframe version 4.0. In the comparisons of this chapter, the 

left-hand side of the image is always taken from wireframe version 4.0, while the right-

hand side of the image is always taken from wireframe 4.1. 
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Figure 4.11: Differences in “Public Overview” page 
 

Figure 4.11 displays the changes made to the “Public Overview” page. The new feature is 

to show the status of the system in the public overview, which is further explained in 

chapter 4.3.2. This is to give the user viewing the “Public Overview” page, the information 

of the current status of the system. This change was made on the basis of the feedback from 

the client, after version 4.0 was sent to the client for validation.  
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Figure 4.12: Differences in “Scheduler” page 

 
In figure 4.12, a difference can be seen in the box in the middle of the screen containing 

information about a test that has been selected from the box on the left side of the screen, 

labeled “Run at time”. A detailed explanation of this function can be seen in chapter 4.3.2. 

What is different in this version of the wireframe is that additional information is presented 

in the box, consisting of the name of the test that has been scheduled. In this example, the 

test is named “Smoketest123.file”. This was added to make it easier for users to keep track 

of the scheduled tests, by knowing exactly which test has been scheduled at a certain date 

and time. 
 

4.4 System requirement specification 

A requirement specification (see Appendix C) for the portal was made for several reasons. 

Firstly, it was needed for a guideline of how the portal should be implemented for the 

authors to follow. Secondly, to make validation possible and finally for a guideline for 

developers who will further develop the portal. 
 
The specification came about after an acceptance meeting was held between the client and 

the authors (see chapter 4.3) and is based on the report (see chapter 4.2) as well as the 

acceptance meeting. It is also based on the wireframe (version 4.1, see Appendix B), 

although some ideas and functions have been modified from the wireframe. The changes 

were put directly in the specification and have been validated by the client.  
The most specific document and main guideline for the implementation in this thesis has 

been the system requirement specification.  
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5 Implementation results 

This chapter is meant to give a view of what was and what was not implemented during this 

thesis. As mentioned in chapter 3.2 the implementation was based upon the results of the 

analysis being the system requirement specification (see Appendix C) and the wireframe 

version 4.1 (see Appendix B). Furthermore, this chapter displays a demonstration of the 

product.  
 

5.1 What was achieved? 

Following user stories from chapter 4.3 in the SRS were implemented.  
 

● User story 1 As a user I want to be able to navigate to home, test history, scheduler, 

dependency and statistics after I have logged in and chosen a system.  

● User story 4 As a user I want to be able to see a list of all systems I am a part of, and 

see the status of every system. 

● User story 5 As a user I want to be able to access a specific system in the list of 

systems. Then be redirected to the overview page of the chosen system.  

● User story 6 As a user I want to be able to see the status of the system 

● User story 7 As a user I want to be able to see a list of the latest system checks and 

be able to access the report of all system checks in the list. 

● User story 3 As a user I want to be able to access the portal with a given username 

and password, and then be redirected to my home page. 

● User story 2 As a user I want to be able to log out at every page after I have logged 

in.   

● User story 8 As a user I want to be able to create a link that is directed to the 

overview page of the system I am currently viewing. User story 14 As a user I want 

to be able to see and adjust my internal dependencies. 

● User story 14 As a user I want to be able to see and adjust my internal 

dependencies. 

● User story 11 As a user I want to be able to see all my runned tests in a list and to be 

able to filter the tests by choosing a category. 

● User story 12 As a user I want to be able to schedule a test. 

 
In total 11 out of 19 user stories were completed. The reasons for not completing every user 

story can be read at chapter 1.3.  
 
Besides the user stories there were multiple other requirements in the SRS that were 

fulfilled: 4.1.1, 4.1.2, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6, 4.4.1, 4.4.2, 4.4.3, 5.1.1, 5.2.1, 5.2.2, 

5.2.3, 5.2.4, 5.2.5, 5.2.6, 5.2.7, 5.2.8 and 5.2.10. In total 20 out of 22 requirements, which 

are not within chapter 4.3 and 6.1 in the SRS, were fulfilled.  
 
The requirements 6.1.1, 6.1.2 and 6.1.3 of the SRS is neither fulfilled nor unfulfilled, due to 

these being requirements on the machine that will use the product. Therefore not the 

responsibility of the authors.  
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5.2 What was not achieved? 

At the implementation phase of this thesis not every requirement was fulfilled in the system 

requirement specification, SRS (see appendix C). Following user stories from chapter 4.3 

in the SRS was not implemented.  
 

● User story 13 As a user I want to be able to see and change scheduled tests. 

● User story 18 As a user I want to be able to see statistics of the system’s status. 

● User story 15 As a user I want to be able to see my external dependencies. 

● User story 19 As a user I want to be able to receive a report on statistics by e-mail. 

● User story 9 As a user I want to be able to create or edit a public status text of the 

system I am currently viewing. 

● User story 10 As a user I want to be able to have an e-mail sent to me containing the 

report of the latest system check every time it is performed, or every time the latest 

system check has failed. 

● User story 16 As a user I want to be able to see my internal secondary dependencies. 

● User story 17 As a user I want to be able to see a systems state. 

 
In total 8 out of 19 user stories was not completed. The reasons for not completing every 

user story can be read at chapter 1.3.  

 
Besides the user stories there some other requirements in the SRS that was not fulfilled: 

4.2.1 and 5.2.9. In total 2 out of 22 requirements, which are not within chapter 4.3 and 6.1 

in the SRS, was not fulfilled.  Requirement 4.2.1 was fulfilled in some of the functions of 

the portal, but was missing in the “scheduler” page. Requirement 5.2.9 was not fulfilled due 

to the time limit in the thesis, since the completion of sprints was of higher priority. 
 

5.3 How is the product implemented? 

The development environment (see chapter 2) was requested by the supervisor (who was 

also the client) since he had experience from working in it and is the one who will further 

develop the product after this thesis. Therefore he wanted the authors to develop in an 

environment that he was familiar with already.  
 
Testing of code was done in Google Chrome, although the portal was required to be 

compatible with Internet Explorer 9. The reason for testing in Chrome is explained later in 

this sub-chapter. Durandal is a JavaScript library and the framework that was used for the 

implementation, so most of the code is written in JavaScript. The graphical interface of the 

portal is written in HTML/CSS.  
 
By the use of Durandal and the plugins that are explained in chapter 2.2.2.1, the portal is 

implemented according to the MVVM architecture (see chapter 2.2.2.2). All functionality is 

made in JavaScript files. The attributes and functions in the JavaScript files are then used in 

the HTML files for the graphical interface as well as binding functions to objects such as 

buttons through the Knockout plugin, by a property called data-bind. An example is shown 

in figure 5.1 and 5.2. 
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Figure 5.1: Snippet of the view model for the “Home” page 

 
Figure 5.2: View for the “Home” page 

 
It can be seen at the top of figure 5.1 that there is a declaration of the object vm. This is the 

view model, and all attributes and functions that will be used on the “Home” page are 

added as attributes to the view model, in other words the object vm. In the line of code next 

to the declaration of vm, there is a declaration of an attribute username. This is added to the 

view model, therefore it is called vm.username. 
 
Vm.username is declared as an observable. Observables are JavaScript objects that can be 

watched, and alerts the watchers whenever it is modified (Knockout: Observables n.d.) 
In this way, a HTML component can keep track of an observable and update its state as the 

observable is changed. This is done through data-binding. It is critical that the observables 
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are added in the view model, otherwise they cannot be binded to a view (Knockout: 

Observables n.d.) 
 
As seen in the div class in figure 5.2 called “page-header”, there is a span tag with a data-

bind on text for username. This means that the data of an object username in the view 

model is binded to this span, by the text attribute. The HTML page will generate a span 

with the text of the object vm.username, which in this case will be the username of the user 

who is logged in to the portal. Anytime the object is modified, the page will generate the 

change.  
 
At the bottom of figure 5.2, there is a button class called “btn btn-large btn-primary” with 

a data-bind on $root.logout by the click attribute. Logout is a function in the view model 

which can be seen in figure 5.1, called vm.logout. When a user clicks on the button 

generated on the HTML page, the function vm.logout() will be called, since the button is 

binded to that function.  
 

 
Figure 5.3: Snippet of REST API for the portal 

 

 
Figure 5.4: Startup of portal through Node 
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The product is implemented as a client-server oriented application, in which the client 

makes requests to the server through a REST API. Figure 5.3 shows a snippet of the REST 

API. A documented REST API is one of the requirements in the SRS. The server is handled 

with Node, a demonstration of the portal startup is seen in figure 5.4. 
 
In order to troubleshoot the code, a plugin for Google Chrome called “KnockoutJS Context 

Debugger” was used. This plugin was needed since the development tool did not offer any 

debugging. Internet Explorer also offers a debugging environment but the authors felt that 

Knockout’s debugger was a better choice, since it is easier to work with. Internet Explorer 

by example closes the debugger every single time a page has been loaded, while Chrome 

keeps the debugger open all the time.  

Figure 5.5: Debugging with KnockoutJS Context Debugger 
 
Figure 5.5 displays a screenshot taken during the implementation and shows the 

KnockoutJS Context Debugger in action. The user (one of the authors) has navigated to the 

“Test History” page and is stopped due to a break point which can be seen in line 14 and 15 

(blue highlight). Furthermore the tool allows the user to examine JSON (JavaScript Object 
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Notation) objects which can be seen within the “watch expressions” box in the bottom-right 

of the figure. This is useful and needed since during the development there was a need of 

following the flow of execution when navigating in the portal. Also, it was important to 

investigate the JSON objects to verify that the server calls were returning correct data in a 

given situation. The plugin offers more abilities to be used but the main usage during this 

thesis was as described above.  
 

5.4 Demonstration of the product 

This sub-chapter presents how the product looks and how it works. Everything is not 

implemented, such as the “Statistics” page. For details about what was implemented, see 

chapter 5.1, and for what was not implemented, see chapter 5.2. Note that the test sets 

presented in this demonstration are not real test sets. They are examples with test results 

that have been modified by the authors when implementing the functionality, for testing 

purposes (of the portal’s functionality). Therefore some test sets have inconsequent results, 

such as a “Failed” status when there is no subtest that has failed. 
 

 
Figure 5.6: “Login” page 

 
Figure 5.6 shows the layout of the “Login” page. The portal requires the user to enter a 

correct username and password in order for the user to log in to the page. 
 

 
Figure 5.7: “Home” page 

 
When a user has logged in to the portal, the user is redirected to the “Home” page, which is 

presented in figure 5.7. A list of all the systems that the user faruk is a part of is presented 
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on this page. Beside the systems there is a status text, showing the result of the latest smoke 

test and when it was ran. The status text is colored based on the test result: 
 

● Green color: Test passed 

● Yellow color: Test passed with comments or test did not run 

● Red color: Test failed 

 
The user can then navigate further into the “Overview” page of any system by clicking on 

one of the bars that represent the systems by their names respectively. The user can also 

choose to log out by clicking the blue button labeled as “Log out”. It will then be redirected 

back to the login screen. 
 

 
Figure 5.8: “Login” page 

 
Figure 5.8 shows the “Overview” page for the selected system SQL Server. At the top of 

this page a navigation bar is seen. This is used for navigating through the portal. The 

navigation bar is available on all pages except for “Home”.  
 
This page contains general information about the selected system. At the label “System 

state”, the status of the system is presented. This status is determined based on the result of 

the latest smoke test ran for the system. It is also colored depending on the status: 
 

● Green color: “Good” - latest smoke test passed 

● Yellow color: “Attention” - latest smoke test passed with comments or did not run 

● Red color: “Down” - latest smoke test failed 

 
This function serves as an easy monitor of the system’s health and does not require the user 

to spend any time looking into the result of the latest smoke test. The user can simply see 

how the system is doing by looking at its current state.  
 



 

 

44 

In the middle of the page, there is a list of smoke tests ran for the system. The list contains 

three of the latest smoke tests, with information regarding when it was ran, the result of the 

test set, how many subtests passed and a link to a detailed report of the test (figure 5.10). 

The status and number of passed subtests text is colored under the same conditions as the 

system’s state function. The list of smoke tests is made for users to have easy access to the 

results of relevant smoke tests, since it is the latest ones that were ran.  
  
A notification symbol can be seen beside the second entry in the list which is the test that 

failed. The symbol indicates that there has been at least one dependent system that has not 

been functional at the time the smoke test in question was ran. Hovering the symbol 

displays an informative text as can be seen in figure 5.8. The purpose of this function is to 

simplify debugging since it lets the user know that there might be a problem in a dependent 

system that is causing the test to fail, and not only in the system that has been tested.  
 

 
Figure 5.9: “Overview” page 

 
Under the list of smoke tests, there is a label “Public URL” and a link. The link redirects 

the user to a copy of the “Overview” page for the system in question, but with read-only 

rights. That meaning there are no links or buttons on the “Public Overview” page. An 

example of this can be seen in figure 5.9, which presents the “Public Overview” page for 

the system SQL Server. 
Additionally, viewing this page does not require the user to be logged in to the portal. 

Therefore it can be shared to anybody connected to IKEA:s intranet. There are several 

purposes to this function, the first being easy monitoring of a system since the “Public 

Overview” page presents the same information as the “Overview” page and requires no 

credentials. The second one is that it can be shared. 
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Figure 5.10: “Overview” page 

 
Figure 5.10 shows how a report of any test in the portal is presented. In this example, the 

test TestSeveralInstances is viewed, and is one of the smoke tests for the system SQL 

Server. The report is presented in two tables, one for the test set and one for the subtests. 

The test set is presented in green columns, and the subtests in the blue columns. These are 

functional tests as can be seen in the name “TestSameName”, SameName being a function 

in this case. One thing to notice is the “View report” links in the table for tests. This is a 

report that is generated by ALM and has nothing to do with the implementation of this 

thesis. The link simply redirects the user to a HTML page containing detailed information 

about the specific subtest. The data in the report is taken directly from ALM, which can be 

seen on the date format by example. 
 

 
Figure 5.11: “Test History” page 

 
Figure 5.11 shows the “Test History” page, where all results from tests that have been ran 

through the portal are stored. What can be seen is a list of different test sets and information 

about them. The name of the test set, date of execution, status of the test, the result of the 

subtests and a link to the report on each test set is presented in each entry.  
The status text and results of subtests respectively are colored by the following conditions: 
 

● Green color: Test set passed and number of subtests that passed 

● Yellow color: Test set passed with comments or did not run and number of subtests 

that either passed with comments or did not run 

● Red color: Test set failed and number of subtests that failed 
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The result column in the list shows the number of subtests in the test set that passed, passed 

with comments/did not run, respectively failed. This function is meant for showing some 

statistics of the test sets without the user having to view the report on the test set.  
 
The list of test sets is contained in different tabs, each representing a certain category of the 

test sets. Figure 5.11 shows the tab “All”, which presents the results of all test sets 

available. Categorization is made to simplify the evaluation of a user’s testing since the user 

does not have to look through all test sets in order to find the result of a test set that the user 

is searching for. If the user only wants to look at functional tests, it can do so by clicking 

into the “Functional test” tab. One important thing to note is that there are only two default 

test categories: 
 

● Smoke test 

● Non-smoke test 

 
Other test categories are added manually in the “Scheduler” page, which is presented later 

in this sub-chapter. 
 

 
Figure 5.12: “Test History” page, showing two different tabs 

 
As seen in figure 5.11, all test results that are available for the system Test are presented in 

that list. Figure 5.12 shows the difference between the tabs. On the upper half of figure 

5.12, the user is viewing the “Functional test” tab. There is only one test set that has been 

categorized as a functional test, which can be seen in the list. On the bottom half of figure 

5.12, the user is viewing all smoke tests for the system. 
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Figure 5.13: Scheduling a test set 

 
The “Scheduler” page is presented in figure 5.13. This is where the test automation is being 

performed from the portal. The “Scheduler page” consists of two tabs, “Scheduler” and 

“Scheduled tests”. The latter was not implemented due to lack of time, and will therefore 

not be presented in this demonstration. One important thing to keep in mind is that the 

scheduler is completely based on ALM. The client, who has insight in how ALM works, 

specified the needs of the scheduler and how it was to be implemented. 
 
What can be seen in figure 5.13 is that there are many attributes that are required to be 

specified, such as what category the test to be scheduled is of, which test set to be 

scheduled, on what host the test is to be scheduled for execution and which e-mail should 

be used for alerting.  
 
Selecting a category for the test set is done by clicking the dropdown list by the label 

“Category”. This list contains test categories that have been added by the testers working 

with the specific system. There are two default categories, “Smoke test” and “Non-smoke 

test”. This function is based on results of the analysis, which can be read about in chapter 

4.2.4.  
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The user has the option to add and remove test categories. This is done by clicking the 

green plus symbol respectively the red trash symbol (at the side of the category dropdown 

list), which opens up a small window on the screen.  
 

 
Figure 5.14: Adding and removing test categories 

 
When adding a new category, the user simply specifies the name of it and presses the 

button “Add”, which can be seen on the left-side of figure 5.14. When removing a category, 

the user selects one of the existing categories in a dropdown list, as can be seen on the 

right-side of figure 5.14. The user then presses the “Remove” button to remove the 

category. One thing to notice here is that the categories “Smoke test” and “Non-smoke test” 

are not possible to remove as they are default categories and are therefore not available in 

the dropdown list. 
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Figure 5.15: Scheduling a test set for repetition 

 
There are different ways to schedule a test. The scheduler is implemented in a way that 

offers flexibility, since a test can be scheduled for multiple times at a day. The user can also 

choose to use the same schedule for multiple dates. Additionally, a test can be scheduled to 

run every day at the selected time(s), starting from the date it is scheduled for. This can be 

seen in figure 5.15 at the right side of the page.  
The test TestLogin is set to be scheduled at the 18th and 19th of June 2014, at 10:00 and 

12:00. What can be seen at the times is that at 12:00, the test is to be repeated every 15 

minutes. This is a function that was requested by the client. The option to schedule a test for 

repetition is selected by checking the “Repetitive” checkbox. The user then has to specify 

how often the test should be repeated, in minutes as can be seen in figure 5.15. 
 
The conditions for the alerting function can be seen at the bottom of the page, right above 

the “Schedule” button. An e-mail can be sent to the user upon a failed test, a test passed 

with comments or a passed test, with the option of having the report included in the mail. 
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There is also a time-out function, which is activated by checking the checkbox “Timeout” 

that can be seen in figure 5.13 and 5.15. This function sets a fix for how long a test is 

allowed to run. By example, time-out can be set to one minute for a test set. For each 

subtest in the test set, the subtest is cancelled when one minute of execution has passed and 

then the next subtest in the sequence starts to execute. This function exists for breaking 

infinite execution of tests in cases where by example a pop-up window interferes with the 

testing and does not let the execution proceed until the window is closed. 
 

 
Figure 5.16: Adding an internal dependency 

  
Figure 5.16 presents the ”Dependency” page for the system SQL Server. Internal 

dependencies (see chapter 4.1.4) for the system are presented in a list on this page. As 

figure 5.16 shows, information about each dependency can be seen in the list. An entry in 

the list consists of the name of the dependent system, its current status and a link to the 

report on the latest smoke test ran for the dependent system. For every system that is 

presented in the list, it is the manager of the system that decides whether the report should 

be available for other users or not. The purpose of that function is to protect the integrity of 

the system in question. 
  
Removing an internal dependency is done by clicking the red trash symbol that is seen on 

the right-side of figure 5.16. This symbol exists in every entry in the list so that the user can 

easily handle dependencies, avoiding having to search through a list of internal 

dependencies in order to remove one. 
  
Setting a system as an internal dependency is done by selecting a system from the 

dropdown list that can be seen on the down-left corner of figure 5.16, by the label “Create a 

new dependency”. The user then simply clicks the green plus symbol next to the dropdown 

list and the chosen system is set as an internal dependency. All systems that are installed in 

the portal are available in this dropdown list in order to make it possible for managers of 

newly installed systems to setup the dependencies of the system, but also for other 

managers to handle dependencies in a flexible way. 
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The “Dependency” page makes it possible for testers and managers to see an overview of 

the test environment, the health of it and more specifically the well-being of critical 

systems, which are the internal dependencies of the system in question. Having an insight 

into this makes it easier for testers to plan a test period with no failures due to external 

factors. 
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6 Conclusion 

6.1 Problem description 

Both problem descriptions of the thesis (see chapter 1.2) were answered at the end of the 

thesis during the final presentation for the test department of IKEA IT, Helsingborg. The 

presentation was held at the IKEA test centers in Älmhult, Helsingborg and gave insight 

into how the project was implemented and the last results, the portal. The participants 

consisted of the full team from the test department of IKEA IT, Helsingborg and totaled in 

17 participants. Included in the participants were also the owner of project Anna 

Gamalielson and the supervisor Olof Ernstsson. These were given the room to ask 

questions and give feedback to the authors.  
 
Through the meeting the authors could confirm that the end users verbally expressed that 

the portal would be beneficial, thus answering the first problem description. 
 
Regarding the second problem description the participants including the supervisor gave 

some concrete feedback which answered the problem description. The feedback was the 

following: 
 
“Previously there was no good way for a project to know before their test phase if any 

depending project was running as expected. With the test dashboard they now will have a 

tool that allows them to setup test automation of depending systems to early get an 

indication if something is not working as expected in systems they are depending on. The 

dashboard will also give a better overview of test status for test automation. Before users 

had to open several test sets and look at their status individually, now instead they can login 

to one place and see the overall status of all test sets.” - Olof Ernstsson, Product Specialist. 
 

6.2 The scope 

The scope of the thesis (see chapter 1.2) consisted of two goals which is partially fulfilled. 
 
The first goal “Identify the needs of the existing test environment through an analysis” is 

considered by the authors and both the owner and supervisor of the project to be achieved. 

This is based on the fact that an analysis to identify the needs was conducted (see chapter 

3.1) and the results of the analysis (see chapter 4) which reflects a broad spectrum of 

stakeholders (see chapter 3.1.3). There is still however some room for discussion of how 

the analysis was performed (see chapter 3.1.6) 
 
While the second goal is partially achieved since the system requirement specification (see 

appendix C) was not entirely fulfilled (see chapter 5). However the two subsections of the 

goal was achieved since there is visualization for dependencies and support for test 

automation in the portal. The reason for not fulfilling is due to the limits the authors were 

confined to (see chapter 1.3).  
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7 Further work 

There are multiple areas within the portal that needs further development.  
 
As mentioned in chapter 1.3 the machine that would perform the actual testing has not been 

within the scope of this thesis. This should be the main target for further work since the 

portal itself is dependent on this machine to run its test automation.  
 
It is also mentioned in chapter 5.2 that not all user stories from the system requirement 

specification (See appendix C) were implemented. Therefore they are a secondary 

recommendation to be included in further implementation.  
 
Furthermore it is possible that the analysis which was performed during this thesis might 

have excluded some stakeholders or missed some ideas. Therefore a further evaluation 

based on a live version is recommended. 
 
The client has already received a further development plan specialized for him regarding 

code improvements and non-existing functionality. This is according to requirement 5.2.3 

in the system requirement specification.  
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8 Terminology 

User story Describes a user’s need of performing something in the system in one 

or multiple sentences. Rather than having to specify each part of a 

need or function in traditional requirements. 

Portal  Also called the product and the system, the portal is the concept and 

result of the implementation of the thesis. A web platform that allows 

users to get information from multiple sources at one location. 

Client  The person(s) which the thesis is conducted for. The client consists of 

two people from the test department of IKEA IT, Helsingborg. 

 

Anna Gamalielsson - Infrastructure Manager 

Olof Ernstsson - Product Specialist 

Supervisor The person(s) who has watched over the thesis and have been giving 

feedback about different subjects, such as report writing and 

programming code validation.  

 

The supervisor from IKEA IT was Olof Ernstsson - Product Specialist 

The supervisor from the Lund Institute of Technology was Christian 

Nyberg - Docent in Communication Systems 

Test set Contains several different sub tests. Is used to include multiple sub 

tests rather than to select one by one. 

Subtest One of the tests contained within a test set 

Smoke test Standard functional test for a certain system that can determines if the 

system is functional or not. 

REST API Describes the functions GET, POST, PUT and DELETE of methods 

contained in a class. 

Process tool A tool which provides recommended guidelines for how a project can 

be processed. 

Test automation When testing is done in an automated matter, meaning that it only 

needs a start and will then continue to perform the tasks without any 

human interference. 

SRS Is short for system requirement specification. This declares the 

requirements of the product to be developed for the client. 

Phenomenological 

data analysis 

When studying data, the focus is to draw out the experience regarding 

a certain phenomenon, in order to understand the feelings, thoughts 

and point of view of the subject of the research.  
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Appendix A – Wireframe 2.0  
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Appendix B – Wireframe 4.1 
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Appendix C – System requirement specification 
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Appendix D – Questionnaire 
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