

Portal for test automation

- Developed for the test department at IKEA IT Helsingborg

LTH School of Engineering at Campus Helsingborg

Department of Computer Science

Bachelor thesis:
Irfan Agovic
Faruk El-Zoubi

 Copyright Irfan Agovic, Faruk El-Zoubi

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Lunds universitet
Lund 2014

Abstract

Environments with a high number of systems that are dependent on each other create

complexity in the testing of each system. For a test to perform correctly, every dependency

has to be fully functional. If this condition is not met, the test will fail and measures need to

be taken into the systems that are causing the problem before it can be repeated again. This

is a problem that the test department at IKEA IT in Helsingborg are experiencing.

This bachelor thesis examines the needs of IKEA IT:s existing test environment through a

qualitative research and a phenomenological data analysis. Seven interviews were

conducted where a wireframe prototype of the portal was presented together with a

questionnaire. A small-scale quantitative study based on the questionnaires was also

conducted, from which it was decided what test tool used in IKEA IT the portal should be

formed for. From the analysis, a system requirement specification and final wireframe

prototype were created and used as a guideline for the implementation.

Using a process tool from the Agile family, modified to fit the needs of the developers, the

implementation was carried out according to a “Scrumish” development method. In order to

work with the process tool in the most effective way, the functional requirements of the

product were created as user stories that were broken down into tasks for the developers to

work with in parallel during the implementation. The implementation was done in a

completely open source based development environment, using the Durandal framework on

the client side and Node on the server side. Results of the implementation are presented in a

demonstration of the product with descriptions and motivations to each functionality.

The portal serves as a solution to their problem by offering the possibility to monitor all

systems in their test environment. In this way, testers can make sure that all dependencies

of a system are fully functional before entering a test phase, saving the company both time

and resources. In addition to this, it supports test automation with the test results presented

on the portal, making it simple for testers to evaluate their work and keep it gathered in one

place. The portal is integrated with ALM (Application Lifecycle Management), the most

commonly used test tool in IKEA IT, and was implemented using JavaScript, HTML and

CSS.

Keywords: test automation, IKEA IT, dependencies, open source, phenomenological,

Durandal

Sammanfattning

Miljöer med ett högt antal system som är beroende av varandra skapar komplexitet i

testandet av varje enskilt system. För att ett test ska utföras korrekt måste varje beroende

vara fullt funktionellt. Om inte detta villkor uppnås kommer testet att misslyckas och

åtgärder behöver vidtas i de system som orsakar problemet innan det kan köras om på nytt.

Detta är ett problem som testavdelningen på IKEA IT i Helsingborg upplever.

Detta examensarbete utforskar behoven av IKEA IT:s nuvarande testmiljö genom en

kvalitativ undersökning och en fenomenologisk data analys. Sju intervjuer genomfördes där

en wireframe prototyp av portalen presenterades tillsammans med ett frågeformulär. En

småskalig kvantitativ studie baserad på frågeformulären genomfördes även, från vilken det

beslutades utifrån vilket testverktyg som används i IKEA IT som portalen skulle utformas.

Utifrån analysen skapades en kravspecifikation för systemet samt en slutgiltig wireframe

prototyp, vilka användes som en riktlinje för implementationen.

Med hjälp av ett processverktyg från Agile-familjen, modifierat för att passa behoven hos

utvecklarna, utfördes implementationen enligt en ”Scrumish” utvecklingsmetodik. För att

arbeta med processverktyget på det mest effektiva sättet skapades de funktionella kraven på

produkten som user stories, vilka delades upp i tasks för utvecklarna att arbeta med

parallellt under implementationen. Implementationen utfördes i en fullständigt öppen

källkod-baserad utvecklingsmiljö, genom att använda Durandal frameworket på klientsidan

och Node på serversidan. Resultaten av implementationen presenteras i en demonstration

av produkten med beskrivningar och motiveringar till varje funktionalitet.

Portalen fungerar som en lösning på deras problem genom att möjliggöra övervakning av

alla system i deras testmiljö. På så sätt kan testarna säkerställa att alla beroenden för ett

system är fullt funktionella innan en testfas påbörjas, vilket sparar företaget både tid och

resurser. Utöver detta stödjer den testautomation där testresultaten presenteras i portalen,

vilket gör det enkelt för testare att utvärdera sitt arbete samt hålla det samlat på en plats.

Portalen är integrerad med ALM (Application Lifecycle Management), det mest använda

testverktyget inom IKEA IT, och implementerades med JavaScript, HTML och CSS.

Nyckelord: testautomation, IKEA IT, beroenden, öppen källkod, fenomenologisk, Durandal

Foreword

First of all we would like to thank IKEA IT for providing us the opportunity to conduct this

thesis. Special thanks go out to the owner of this thesis, Anna Gamalielsson - Infrastructure

Manager of IKEA IT:s test department of Helsingborg, and our supervisor Olof Ernstsson -

Product Specialist of IKEA IT:s test department of Helsingborg. They have both been

inspiring, extremely helpful and available during the whole thesis.

A further thanks goes out to the supervisor and examiner from LTH, Campus Helsingborg

who have been giving out helpful feedback regarding the academic structure and know-how

in during the thesis.

This thesis has been a fun and educational experience at the same time. We have had the

chance to work with professionals in the business community and get a feel of how it is to

be in a real working environment, and at the same time apply our theoretical knowledge to

practical use. What was most educational was to perform an analysis from a research

methodology which has been a whole new experience and also to learn a completely new

development environment with multiple programming languages we have never worked

with earlier.

We hope that our solution to the needs of IKEA IT will be further developed to include

even more benefits for the end users and that the user base for the product will grow with

time.

Irfan Agovic & Faruk El-Zoubi

List of contents

1 Introduction .. 1
1.1 Background ... 1
1.2 Scope ... 1
1.3 Limitations ... 2
1.4 More about IKEA IT ... 2

2 Technical background ... 4
2.1 JavaScript .. 4
2.2 Client .. 4

2.2.1 HTML5/CSS3 ... 4
2.2.2 Durandal .. 5

2.2.2.1 RequireJS, jQuery & Knockout ... 5
2.2.2.2 MVVM and Knockout .. 5

2.3 Server ... 6
2.3.1 Node .. 6
2.3.2 MongoDB ... 6

2.4 Git ... 6
2.5 ALM .. 6
2.6 WebEx .. 7

3 Method ... 8
3.1 Analysis ... 8

3.1.1 Research method ... 8
3.1.2 Approach .. 9
3.1.3 Selection of stakeholders ... 10
3.1.4 Data collection and analysis ... 10
3.1.5 Ethical consideration .. 11
3.1.6 Discussion of research method .. 11

3.2 Implementation .. 12
3.2.1 Kanban versus Scrum .. 12
3.2.2 Choosing a Scrumish process tool ... 13
3.2.3 Approach .. 13
3.2.4 Discussion of process tool ... 16

3.3 Sources .. 17
3.3.1 Literature .. 17
3.3.2 Internet sources ... 17
3.3.3 Supervisor and test department at IKEA IT, Helsingborg 18

4 Analysis results .. 19
4.1 Fundamental functionalities ... 19

4.1.1 Overview .. 19
4.1.2 Test History .. 20
4.1.3 Scheduler ... 21
4.1.4 Dependency ... 21
4.1.5 Login & Home screen ... 22

4.2 Report on interviews ... 22
4.2.1 General information .. 22
4.2.2 Overview .. 23
4.2.3 Test History .. 23
4.2.4 Scheduler ... 24

4.2.5 Dependency ... 24
4.2.6 New functionalities ... 25

4.3 Chronological order of the wireframe ... 26
4.3.1 New features of version 3.0.. 26
4.3.2 New features of version 4.0.. 31
4.3.3 New features of version 4.1.. 34

4.4 System requirement specification ... 36

5 Implementation results .. 37
5.1 What was achieved? ... 37
5.2 What was not achieved? ... 38
5.3 How is the product implemented? ... 38
5.4 Demonstration of the product .. 42

6 Conclusion .. 52
6.1 Problem description .. 52
6.2 The scope... 52

7 Further work ... 53

8 Terminology .. 54

9 References .. 55

Appendix A – Wireframe 2.0 ... 57

Appendix B – Wireframe 4.1 ... 69

Appendix C – System requirement specification ... 94

Appendix D – Questionnaire .. 108

1

1 Introduction

Testing of computer systems is becoming more complex due to the fact that computer

systems are growing more complex with time. In environments consisting of multiple

systems, consideration has to be taken into systems that have dependencies. When it comes

to testing, this can be critical since the health of dependent systems can affect the testing.

This chapter presents the background, scope and limitations of this thesis and furthermore

the company behind the thesis.

1.1 Background

In order to test a system within IKEA IT, a time slot in the test environment is reserved for

testing. It is critical that the dependencies of the system to be tested are fully functional

during this period of time, since a consequence of a failure in one or more dependencies is

that the test becomes invalid. Hence the test has to be ran once again without any dependent

systems having any failures. This is a problem that costs the company both time and

money. Therefore there is a need for a test environment with an overall monitoring of the

systems installed in it, which will serve as a solution to the problem. Additionally, the client

wants the test environment to support scheduling of automated tests of which the test

results are presented in a simple and comprehendible way.

1.2 Scope

Thus, the scope of this bachelor thesis is to:

1. Identify the needs of the existing test environment through an analysis.

2. Develop a portal which will complement the needs of the existing test environment

and also be based on following main requirements.

a. Visualize dependencies for each system in the portal.

b. Support test automation for each system in the portal.

At first the problem description of the thesis was:

1. What tools are today used in IKEA IT regarding test automation?

2. Where are the test results and test scripts stored and in which way are the test results

used for evaluation?

3. Does the portal contain advantages for the end users in comparison to the currently

available tools?

4. Which advantages does the portal offer in comparison to the currently available

tools?

During the analysis phase of the thesis, multiple questions to the stakeholders were thought

of during a number of brainstorming meetings. The first and second problem description

together with these new questions was used as a questionnaire. Therefore they were no

2

longer seen as problem descriptions but rather as survey questions. Due to these

circumstances the problem description is decreased to the following:

1. Does the portal contain advantages for the end users in comparison to the currently

available tools?

2. Which advantages does the portal offer in comparison to the currently available

tools?

1.3 Limitations

In the original scope of this thesis, it was thought by the client that the implementation

would consist of three parts; a shell for the portal (graphical interface as well as server

calls), a scheduler which would schedule test scripts for automated execution and a

machine that would perform the actual testing. Due to a limited time frame for this thesis

and more specifically the implementation phase, the scope was narrowed down to only the

first part after discussions with the client. Furthermore, the second scheduler was dependent

on the machine, which was not implemented. Therefore the other parts could not be

implemented unless everything was done, which there was not enough time for.

The implementation was done in a framework and several programming languages which

the authors of this thesis had little or no knowledge about. This affected the implementation

in the way that there was less time dedicated to implementing the system, since time had to

be spent on learning how to work in the development environment. Additionally,

information about the framework was limited comparing to a widely used programming

language such as Java since the chosen framework is fairly new, which increased the cost in

time for adapting to the development environment.

1.4 More about IKEA IT

IKEA is a Swedish furniture company that was founded in 1943 by Ingvar Kamprad and

have since then grown into one of the largest home furnishing companies in the global

market with 303 stores in 26 countries and 135,000 employees (year 2013). Since 1982,

IKEA is owned by a foundation in the Netherlands, which means that profits are reinvested,

used for charitable purposes or saved as a financial reserve. In this way, IKEA is a non-

profit organization. IKEA is further divided into several different companies, including

IKEA Industry, Stichting IKEA Foundation and IKEA IT. (Företagsinformation - IKEA

n.d.)

This thesis has been conducted within the IKEA IT company that provides support,

maintenance and development in both new and existing applications in the entire IKEA

corporation. IKEA does no longer develop their own applications; instead the development

has been outsourced to external consultants. These consultants are yet dependent on IKEA

IT to deliver a test platform before releasing it to the public. It is in this part where the

testing department within IKEA IT comes in to the picture. They maintain and provide the

test environment in which the developers can test their product. This thesis has been

dedicated to the test department within IKEA IT. (This section has been validated by the

supervisor from IKEA IT)

3

4

2 Technical background

This chapter is devoted to giving a background of the languages and framework in which

the implementation of this thesis’ work is done. The product that was developed is a client-

server application meaning that it is capable of providing a service and handling a client

request. This chapter explains the technical background to the implementation of the portal

separately in two parts, client side and server side, as well as other software relevant to

thesis.

2.1 JavaScript

JavaScript is an object scripting programming language originally developed by Netscape.

The scripting is performed dynamically where some of the abilities include runtime object

construction, function variables and source code recovery. Objects in JavaScript are created

at run time by the use of empty objects, simply adding functions and properties to them.

Therefore they do not have to be predefined as classes. The use of JavaScript is dominated

in web browsers; in web pages and server applications. It is also commonly used for

developing web servers that handle HTTP request and response objects. In combination

with a client side developed in JavaScript, this type of objects can be used for generating

web pages dynamically. (Mozilla Developer Network and individual contributors 2013)

That is how JavaScript has been used in this thesis work. All functionality in both the client

and server side is fully developed in JavaScript, using the Durandal framework which is

explained in chapter 2.2.2.

2.2 Client

The client side of the portal handles user interaction. It has been implemented using several

tools for different purposes which will be presented in this sub-chapter.

2.2.1 HTML5/CSS3
HTML is short for HyperText Markup Language and is a standard in creating web pages

today (Web Education Community Group 2013). HTML5 was and is still being developed

to replace HTML4.01 which dates back to 1999. In HTML5 the main focus was to give

“rich content without the need for additional plugins” - (HTML5 Introduction n.d.).The

group working with the development of HTML5 includes AOL, Apple, Google, IBM,

Microsoft, Mozilla, Nokia, Opera and many others. (HTML5 Introduction n.d.)

This new version gives multiple new features such as New Elements, New Attributes and

Full CSS3 Support. New elements include nav, video, audio and others. The purpose of nav

is to identify a navigation part of the HTML document, while video and audio have been

developed to handle multimedia content on the HTML document. (Pieters 2013)

HTML is used to define parts of a document, for example a title with the title tag

(<title>This is a title</title>). It is not meant to be dedicated to formatting the document

such as color and margins. The reason is simple; it would mean that a developer must

specify the format in every page it creates. The solution was to instead use CSS which is

short for Cascading Style Sheets and have been the solution since HTML4. CSS lets the

5

developer set a format for all of it pages, when needed to change one only needs to change

the CSS file instead of every HTML document. (CSS Introduction n.d.). The latest version

of CSS is CSS3 which is still under development but also in use. CSS3 has split its

attributes into modules and is backwards-compatible. Some modules contain the attributes

of the earlier CSS versions while new ones are being added. Some of the new models are

Selectors, Box Model, Backgrounds, Borders and others. (CSS3 Introduction n.d.)

2.2.2 Durandal
Durandal is a framework that has been developed by Blue Spire. It combines a collection of

different JavaScript libraries such as RequireJS, jQuery and Knockout, creating a tool for

developing Single Page Application web pages (Home | Durandal n.d.). Durandal itself is a

JavaScript library that has support for a variety of ways to design front ends such as MVP

(Model-View-Presenter), MVC (Model-View-Controller) and MVVM (Model-View-

ViewModel) (Get Started | Durandal n.d.). In this thesis, the portal is developed according

to MVVM.

2.2.2.1 RequireJS, jQuery & Knockout
RequireJS serves as a JavaScript module as well as file loader (RequireJS n.d.) and is used

on both the client and server side of the portal. jQuery is used to simplify several web

programming features like Ajax calls, finding in and altering HTML documents and event

handling as well as animation in HTML documents (jQuery n.d.). Knockout is used when

developing a user interface that needs to be updated dynamically. It is built on the MVVM

architecture and binds data from the model to the view, making the user interface update as

data is modified (Knockout: Introduction n.d.). These are all open source JavaScript

libraries.

2.2.2.2 MVVM and Knockout
MVVM is a method of constructing user interfaces and is built on three components:

1. Model

2. View model

3. View

Model
A model consists of stored data that is used in the application and is not affiliated with the

user interface. This data is kept externally, such as in a database. With Knockout, the model

can be reached by server calls to be used in the user interface, which is the usual way of

getting stored data.

View model
A view model comprises code of all functionality and data that is used in the user interface.

However, it does not contain any graphical components. The view models are entirely

written in JavaScript when using Knockout.

6

View
A view is a graphical user interface which can be interacted with by the user. When in the

use of Knockout, the view consists of a HTML document that is linked to the view model

through bindings. It is updating the user interface as attributes in the view model are

modified, presenting data from the view model and signaling the view model to execute

operations. (Knockout: Observables n.d.)

The interaction of these components is done by creating data and functionality for each

page in the view model, in which the stored data is retrieved from and saved to a model,

creating the graphical interface in the view and connecting them with an attribute in

Knockout called “data-bind”. A demonstration of this is seen in chapter 5.3.

2.3 Server

All the information in the portal is stored in a database called MongoDB. The server side is

written in Node, and database calls are made with a plugin called Mongoose.

2.3.1 Node
Node is built on Chrome’s JavaScript runtime and is a platform that is designed for creating

fast and expandable networks. It rarely performs any I/O operations and does not allocate

any memory for threads per user that connects to the server, making it fast and flexible.

(node.js n.d.)

2.3.2 MongoDB
MongoDB is an open source based database. Opposed to relation databases such as

MySQL, Mongo is document oriented, meaning that the information which the database

handles is in the form of objects. These objects are called JSON (JavaScript Object

Notation) documents. (MongoDB n.d.)

2.4 Git

Git is an open source project and is a tool used by developers working in teams. Its purpose

is to handle versions of systems that are under development. There are tools similar to Git,

but what makes Git outstanding is a property called branching. The concept of branching is

that a developer creates a copy of the system which is completely independent. No

modifications in the branch affect the system until the branch is merged with the rest of the

project. (About - Git n.d.)

2.5 ALM

ALM or Application Lifecycle Management is a multifunctional tool that has been created

for the purpose of making it easier for a development team to keep control of the lifecycle

for an application that is being developed, as well as speeding up the development

(Application Lifecycle Management (ALM) n.d.). HP (Hewlett-Packard) is the developer of

this software, which is used by testers at IKEA IT for testing application functionalities

(among other things).

7

2.6 WebEx

WebEx is a program that is used for online meetings, developed by Cisco. It is used at

IKEA IT for virtual conferences and has been used by the authors of this thesis in some of

the interviews that were conducted.

8

3 Method

This chapter addresses how this thesis was conducted and is split into two main parts, the

analysis and the implementation. Furthermore, the chapters are presented in chronological

order, with the first part being the analysis and the second part being the implementation.

3.1 Analysis

There was no given system requirement specification, desired architecture nor any other

kind of document or knowledge on which functions should be included, how the navigation

should work or how the graphical user interface should look like at the beginning of this

thesis. Therefore there was a need of conducting an analysis with the aim of gathering

information regarding functionality, navigation and the graphical user interface.

This chapter presents the research methodology applied in this study. The chosen method

chapter raises the type of research method applied in the analysis part. Furthermore, the

chapter highlights the approach to the chosen method, selection of stakeholders, data

collection, ethical considerations and methodology discussion of the study.

3.1.1 Research method
In order to choose a method which responds to the needs of a study to be conducted, one

must first understand the difference between the available methods. In this thesis, the

choice was between a quantitative research method and a qualitative research method.

Qualitative research is not fit for general studies as these examine a limited target group,

i.e. it has a strictly limited participant base. The study is done with open questions and

provides more space for the participants to express themselves. This means that the study is

done with a small number of participants, but each participant is explored deeper and hence

the data becomes more abundant. In a qualitative research, it is up to the researcher to

interpret the findings. (Justesen & Mik-Meyer 2012) Quantitative research aims to

investigate a market or portion of society by providing a study of a broad participatory

base. The study's contents are usually closed questions to collect numerical data and

quantify these. The results are then to be explained statistically. The goal is to give a

description of social conditions or explanation of the conditions in relation to each other. It

gives a general idea of the investigated phenomenon. (Justesen & Mik-Meyer 2012)

In order to make a choice of the available methods some fundamentals were laid.
The product to be developed was not going to be published for an open market; instead it

was exclusively going to be produced for internal usage within the company. Therefore the

participants of the study were limited to employees of the company. Furthermore, there was

a need of understanding the needs of the stakeholders, which means that experience,

feelings and thoughts are the main data to be taken into consideration and studied.

The fundamentals described above are best suited with the qualitative research method.

Since the qualitative method gives room for deeper research of each participant, it meets the

need of exploring the stakeholders experience, feelings and thoughts. Additionally, the

system to be developed was not a market product and thus it would not be feasible to use a

quantitative study. Hence the choice of the qualitative research method. It did not

necessarily mean that the qualitative research was used exclusively. In one moment of the

9

analysis there was an instance of quantitative research used, which is explained in chapter

3.1.4.

3.1.2 Approach
An investigation of different types of survey methods was conducted in order to decide

which one was the most fitting to meet the needs of the thesis analysis. To do that, the

purpose of the study was taken into consideration. As mentioned in chapter 3.1.1, the

purpose of the study was to gain greater understanding of the stakeholders’ needs and

thoughts of the product to be produced. For this reason, interviews with stakeholders were

the best choice for the study. (Robson 2011)

The qualitative methodology offers the possibility of several different methods of

interviews, including unstructured and semi-structured interviews. In order to give the

participants the opportunity to give as much feedback as they wanted and at the same time

be able to ask direct questions and follow up questions, it was decided that the most fitting

kind of interview was the semi-structured interview. (Robson 2011) Furthermore, it was

decided that the interviews would also be of the respondent interview type. Meaning that

participants were guided by the interviewers, although room for stakeholders to freely

express their thoughts and ideas was given. (Robson 2011) The motivation behind having a

respondent interview was that the participant might need guidance since the portal would be

an unknown phenomenon requiring some explanation.

It was not possible to interview the participants all at once or in groups due to the fact of

participants working in different cities and in one case another country. A group interview

was not possible because of this. Instead, every participant was interviewed separately. In

total seven interviews were conducted, in which two were performed over a WebEx

meeting (see chapter 2.6 regarding WebEx) and the remaining five were performed with

both parties physically present in the same room.

In order to conduct the interviews some preparations were needed to be made. Some

questions had already been formed and could be put in a questionnaire which can be seen in

appendix D. Furthermore there was a need to visualize the already existing ideas regarding

functions and navigation of the portal. After some research on the internet the prototyping

term wireframe was found. This was chosen since it would display the navigation and

results of functionalities within the portal and therefore be easier to explain then with just

plain words and without visualization.

During every interview, one of the authors had the role as the interviewer and the other as

the secretary. These roles were switched between every interview in order to divide the

workload fairly. Each interview began with the interviewer introducing himself and the

secretary and then explaining that the interview regarded a bachelor thesis and what the

thesis was about. After the introduction the participant was asked to fill out a questionnaire

(see Appendix D) consisting of seven questions regarding their current profession. When

this was completed the interviewer began going through and explaining the wireframe

prototype (see Appendix A). The presentation of the wireframe prototype was focused on

the structure, navigation and functionality. The participant was free to ask questions and

make statements during and after the explanation of the wireframe prototype. The

interviewer could then reply with a follow up question or explanation. If the participant did

not react to certain vital parts of the wireframe prototype, the interviewer brought this part

10

to the participant’s attention. This is in accordance with the chosen research method,

qualitative semi-structured respondent interview.

The vital parts consisted of the following questions:

● Should you be able to be invisible to other systems in the portal?

● Is it interesting to show others that you are dependent on their system?

● Should you be able to see the secondary dependencies of a project?

● Do you want to be able to see which systems / projects that are dependent on your

system / project?

3.1.3 Selection of stakeholders
The stakeholders that were chosen for interviews were handpicked by the client who has a

deep insight into the test department at IKEA IT. Therefore, he could decide which

stakeholders were most appropriate for the analysis. For that reason, the responsibility of

selecting the stakeholders was completely on the client. Furthermore, his knowledge and

insight in the company made it a natural choice to let him choose the people to be

interviewed. The result was a broad selection of stakeholders with different professions at

different parts of the test department.

The different stakeholders were following (in chronological order):

1. IT Solution Analyst

2. Global Quality and Test Manager Group HR

3. Test Architect

4. Test Manager

5. Product Specialist

6. Service Owner

7. Oracle Database Administrator

8. Did not respond

One of the stakeholders invited by the client to participate did not respond within the time

frame to be a part of the study. Therefore seven out of eight invited people participated in

the study.

3.1.4 Data collection and analysis
At the beginning of every interview, the participant was asked for permission to audio

record as well as writing down digital notes during the interview. Every stakeholder agreed

to this. The audio recording was done with two smart phones since those were the only

tools available for audio recording. When the last interview was done, all the audio

recordings were transcribed. The transcriptions were then gathered with the notes from the

interviews respectively so that all data was kept at the same place.

The goal of the analysis was to gather information about how the stakeholders felt or

thought about certain functions of the portal that were shown to them. Also to collect their

own thoughts and ideas for how the portal should be implemented based on their own

experiences with testing. The data was therefore primarily collected and analyzed according

to a phenomenological data analysis and not a quantitative data collection (although that

was also performed in a small manner). The data regarding thoughts and feelings about

11

diverse functions of the portal was collected respectively from every transcription. It was

then categorized based on thoughts of the same function or functions very similar to each

other, for the reason to keep statistics regarding how many stakeholders mentioned a certain

functionality. This lead to also having a quantitative data collection, although it was not the

main goal of the analysis. The reason why a quantitative data collection was also made was

to be able to see the need for certain functionalities in a concrete manner. This made it

easier to decide on what was to be implemented and also which parts of the portal were the

most important ones.

3.1.5 Ethical consideration
In order to protect the participants’ privacy and make them feel more comfortable doing the

interviews, no personal information was provided about them except for their professions

and workplaces. Instead of representing the different stakeholders by their names, it was

done by an identification number. The participants were informed about this at the

beginning of every meeting so that they were aware of it.

3.1.6 Discussion of research method
In retrospect, the research method used during the analysis phase was one that gave many

needed results which can be seen in more detail in chapter 4. The results were also

validated through the client who gave a verbal approvement, meaning that the client

thought the results were resourceful and relevant.

However, the study is limited to the stakeholders that have been interviewed which are a

slim number of seven people. This gives a small representation to rely on and a quantitative

research would instead give a much bigger representation. However, the product is (as

mentioned in chapter 3.1.1) not focused on a massive user group, but is instead created for

internal usage which is why a quantitative research is not as well suited as a qualitative.

Also, as mentioned in chapter 3.1.3, the stakeholders were chosen by the client, who did not

have the chance to gather more than seven participants. Although more participants would

have been beneficial if there was an opportunity for it.

One must consider that neither one of the stakeholders had the same profession, which

gives a broad spectrum. But it misses the opportunity to compare the thoughts of multiple

stakeholders with the same profession, or in other words the similar experience and

knowledge.

During the study there was no consideration to relations of different thoughts or

expressions. Meaning that there was no study on which part of the system was most

important in relation to another part of the system. This is a lack of information which

could or could not change the course of implementation, but it is not possible to know since

it was never conducted.

12

3.2 Implementation

From the analysis phase of the thesis the basic fundamentals for implementation was laid.

These being a finalized requirement specification (see Appendix C) and wireframe (see

Appendix B) from which an implementation could be based upon.

This chapter presents the development process tool applied in this study. Chapter 3.2.2

raises the type of process tool used during the implementation part of the thesis.

Furthermore, the chapter highlights the approach to the chosen process tool and discussion

of process tool.

3.2.1 Kanban versus Scrum
Before any implementation was made a development process tool was to be selected. The

choices were between Kanban and Scrum, which were derived from the authors’ experience

of the course EDT 655 - Project grade 3, in LTH, Campus Helsingborg. In order to pick one

of the mentioned process tools, a study of them was conducted and later on, a discussion

was made resulting in the selection of Scrum.

There are multiple common attributes of Kanban and Scrum since both are Lean and Agile

(Kniberg & Skarin 2010). The following list gives a perspective of the common attributes

(Kniberg & Skarin 2010).

• Pull scheduling instead of push scheduling.

• Limit of the current work in progress.

• Transparency to drive process improvement.

• Focus on delivering releasable software early and often.

• Based on self-organizing teams.

• Require breaking the work into pieces.

• The release plan is continuously optimized based on empirical data (velocity/lead time).

Both process tools are adaptive, meaning they have few rules or processes compared to

other more traditional process tools. Although when comparing Scrum and Kanban, Scrum

is more prescriptive, meaning it has more rules than Kanban (Kniberg & Skarin 2010). The

main differences are the boards, the sprint in Scrum and the roles (Kniberg & Skarin 2010).

The boards are different in the way that Scrum resets the board after every sprint and

Kanban’s board is persistent. In this way a board in Scrum belongs to the sprint in which

the board has been setup, while in Kanban the same board is used through the whole project

(Kniberg & Skarin 2010).Another difference in the boards is that Kanban limits the items

that can be in a certain state. For example, if WIP (work in progress) limit is set to 2 in

“ongoing”, then there can only be 2 items in the ongoing column. The Scrum board does

not limit how many items can be in a certain state, instead it limits how many items can be

in the board during a period.

“So in Scrum WIP is limited per unit of time. In Kanban WIP is limited per workflow

state.” (Kniberg & Skarin 2010, s32).

In Kanban there is no fixed time frame where a certain work is to be done. Instead, the team

will continuously drag items when it feels it can do so. However, a main part of Scrum is

the sprint. A sprint is a fixed time frame containing a certain amount of User stories. The

13

amount fitted in a sprint is based on the how many items can be done within the time frame,

which is estimated by the developing team (Kniberg & Skarin 2010).

Roles are not prescribed within Kanban, although it does not mean it is wrong to use roles.

In Scrum, roles are prescribed to include a product owner, team and a scrum master.
The product owner is the client of the product who will decide the goal of the project and

the priorities of the backlog.
The team is the whole group of individuals which will implement the product.
The scrum master is kind of a project manager who clears any obstacles and provides

process leadership (Kniberg & Skarin 2010).

3.2.2 Choosing a Scrumish process tool
Before going in to the implementation of the project, a request was made by the client. The

client wanted to have periodic reports of what was implemented and be able to view the

results of the implementation. The client also wanted insight of what was completed and

next in line for implementation. This leaned at establishing a prioritized backlog, product

owner role and fixed time for release events, which paved the way for choosing Scrum. An

important note is that not every attribute within Scrum was used, which means that a

“Scrumish” process tool was used and not Scrum. This is further explained in chapter 3.2.3.

Another contributing factor to choosing Scrum as a process tool had to do with the authors’

earlier experience with process tools. Both authors had gained experience within Scrum

from the course EDT 655 - Project grade 3, in LTH, Campus Helsingborg. Therefore, both

were in agreement that it would be easier and faster to work with Scrum instead of Kanban.

Before deciding to go ahead with Scrum a meeting was set with the client. During the

meeting the client was informed in which way the team would work and how the client as a

product owner would be able to participate. When the client agreed to the process tool the

decision was finalized.

3.2.3 Approach
Before the implementation phase was initiated, a ground was laid for it. In the system

requirement specification (see Appendix C) the main part of the functional requirements

was made into user stories. This was a deliberate tactic since the choice of the process tool

was known in beforehand.

The majority of the guidelines within Scrum were used with some exceptions. The

exceptions were story points, burndown charts and cross-functional teams. In Scrum and

other Agile process tools it is not necessary to use every prescribed part. One is rather to

experiment and use that which benefits the users and project. It goes so far that different

process tools can be mixed with each other. But it is important that the term Scrumish

replaces Scrum in such a situation (Kniberg & Skarin 2010).This thesis used a Scrumish

process tool as a guideline during the development of the product.

The story points were excluded due to the team not finding it beneficial to use. Instead an

estimation of how many user stories were to be fitted in one sprint was estimated by its

complexity directly. The story points were excluded since the whole team consisted of only

two members and a direct dialog could handle the estimation without the story points and it

14

would be unnecessary to rationalize in form of a numeric value. Since story points were

going to be used, burndown charts were directly excluded since they depend on an

estimation of time (Kniberg & Skarin 2010).

Meanwhile cross-functional teams were excluded simply because there were only the two

authors who were working with the project except from the product owner. It was therefore

not possible to have cross-functional teams.

The client was given the role as the product owner while the authors gave themselves the

role as the team. There was no official Scrum master since there was nobody in the project

available to carry out that role, instead the team also took on the responsibilities of the

Scrum master.

Fig 3.1: Screenshot of the backlog in a certain moment of the thesis

The client being the product owner had the privilege and responsibility to prioritize the

product backlog. The product backlog seen in figure 3.1 consisted of a Google docs Excel

document with the columns “Priority”, “Todo”, “In progress”, “Done”, “Completion date”

and “Notes”. The columns were made to easily monitor the state of the user stories and if

necessary any extra comments regarding a user story. The rows consisted of the user stories

derived from the system requirement specification. The backlog was shared between the

product owner and the team.

The start phase of each sprint began with dragging items in the backlog from todo to

ongoing and then placing the same user stories in the teams sprint board. The number of

user stories taken into a sprint was based on estimation by the team. The team’s estimation

was based on how complex a user story was in their experience. When both members of the

team were in agreement, the amount was final. In later sprints, experience from the former

sprints was also used to assess the amount of user stories that would fit in a sprint.

15

Fig 3.2: Screenshot of the sprint board in sprint 4 under development

The sprint board consisted of the columns “User story”, “Todo”, “In progress”, “To verify”

and “Done”. Each user story was broken down to tasks which could be started by either one

of the team members. This way of working gave the team the opportunity to work with

different tasks simultaneously. Figure 3.2 is an example of how one of the sprint boards

looked like during the implementation. The client did not have access to the sprint board

and the user stories on the board could not be cancelled, as well as no more user stories

could be put into the board during the sprint. This was done according to one of the Scrum

principles to protect the team from external disturbances (Kniberg & Skarin 2010).

One abnormality in the sprint was the length of each sprint, which was set to one week.

While not being a violation (Kniberg & Skarin 2010) it is a quite small period. This had to

do with the period left for implementation which was roughly about a month. Therefore a

week was chosen to give both a fast feedback loop to the product owner and at the same

time give the opportunity to have maximum amount of sprints.

On every occasion the team met up to begin a work day, a daily Scrum meeting was held in

accordance to one of the principles of Scrum(Kniberg & Skarin 2010).The meetings

summarized what was done on the previous work day and what the objective for the current

day was. This gave clarity to how the sprint was going for each day.

16

When a user story was considered to be done, its state was updated in the backlog with

additional comments if there were any. At the end of every sprint a notification was sent to

the product owner, either by mail or by physical contact. This was in accordance to one of

the principles of Scrum (Kniberg & Skarin 2010).The notification consisted of a push onto

the Git server provided by the client and a message. The message was to give the product

owner an idea of what was done, if there were any obstacles and a heads up that the team

will drag user stories from the backlog so the prioritization should be complete for the next

sprint. The product owner could then review the last push onto the Git server since the

product owner was using the same development environment and capable of understanding

the changes without the consultancy of the team. The product owner always gave a

response to the team telling them if everything was fine or reporting any found

abnormalities. After the response from the product owner the team could go into a new

sprint and create a new sprint board with the user stories pulled from the backlog.

3.2.4 Discussion of process tool
In retrospect, Scrum was a powerful process tool as it gave both the team and the product

owner many benefits such as:

● An overview of how the product was being developed and what would be next in

line. (See chapter 3.2.1)

● An effective way of implementing with more than one task being worked with at the

same time. (See chapter 3.2.1)

● Protection from disturbance from the team during sprints. (See chapter 3.2.1)

● Included the product owner in the development of the product by showing the

progress at the end of each sprint. (See chapter 3.2.1)

Although both the team and client was happy with the results of the thesis (see chapter 6), it

does not necessarily mean that Scrum was the only process tool that could be used. The

way of working during the implementation phase could be done in a similar way with

Kanban as a process tool.

With Kanban the team could have a board in which they would be able to pull tasks and

have a backlog which the product owner would be able to prioritize by putting the tasks in

the Kanban board’s “Todo” column.

However, the team consisted only of two members dragging a task through the whole

pipeline of columns. Therefore the Kanban board would not be utilized as it is thought to

be, with teams working in different thresholds or columns and helping each other in

bottleneck situations (Kniberg & Skarin 2010).Instead, a sprint board is more appropriate.

Also, as mentioned in chapter 3.2.2, the product owner wanted periodic reports of the

implementation, which is not available in Kanban since it does not use any periods at all.

From this argument, Scrum is still considered to have been a better choice than Kanban.

Although more research could have been given to other alternative process tool within the

Agile family.

17

3.3 Sources

3.3.1 Literature
Following literature was used in the thesis (see chapter 9 for more details on the literature):

1. Kanban and scrum making the most of both - Henrik Kniberg & Mattias Skarin

2. Kvalitativa Metoder, Från vetenskapsteori till praktik - Lise Justesen, Nanna Mik-

Meyer

3. Real world research - Colin Robson

The first literature in the list is derived from the course EDT 655 - Project grade 3, in LTH,

Campus Helsingborg and is considered by the authors to be a trustful source since it is

being used in a course included in a higher form of education.

The second literature in the list was found by a search in the LTH, Campus Helsingborg

library with the help of a librarian. This literature is focused on the subject of qualitative

research methodology and might not be the most appropriate regarding comparison of

qualitative against quantitative. However it was rather used for the purpose of using

qualitative then comparing it towards quantitative.

The third literature in the list was recommended by Christin Lindholm whose title is

“Education Program Leader for the Bachelor programme on Computer Science and

Electrical Engineering with Automation” in LTH, Campus Helsingborg, and is by the

authors seen as a legitimate and trusted proxy to give such a recommendation.

3.3.2 Internet sources
When developing with open source tools there can be less literature available, especially

when using a framework which is relatively new. Therefore all sources regarding the

technologies used during this thesis are websites and not articles nor literature.

However almost every website has been a direct official website for each technology and is

therefore in a high matter a trusted source. The list includes developer.mozilla.org,

durandaljs.com, requirejs.org, jquery.com, knockoutjs.com, nodejs.org, git-scm.com,

hp.com, webex.com and w3.org.

The only website which is not an official is w3schools.com. This website is a web

developer information website and is not free from external criticism. However this website

is only used at chapter 2.2.1 and the information that refers to the w3schools page has been

verified by the authors, by checking the information towards w3c.org. The reason for using

w3schools is due to the information being simply and user friendly.

Ikea.com is also an official website but is the only website that is not used in chapter 2 and

is a highly trusted source of information regarding IKEA. Furthermore the information used

in this thesis from the official webpages have not been able to be bias since the authors only

used technical facts and in one case regarding the IKEA.com website used general

information. The authors did not use information that would consider the tool or company

to be a preferable choice against a competitive.

18

3.3.3 Supervisor and test department at IKEA IT, Helsingborg
The feelings and experience of the supervisor and the rest of the test department team have

been used in this thesis to a certain degree. It has been used in the purpose of validating the

fulfillment of the goals (see chapter 6) and also in drawing out information about the

company(see chapter 1.4). The supervisor and the team are considered by the authors to be

the most reliable source of information regarding validation of the goals in this thesis. The

supervisor is also the client to receive the product and the team is considered as end users of

the system, therefore their feelings can best explain how far the authors have fulfilled their

commitment.

19

4 Analysis results

A wireframe prototype showing the functionalities that had been thought of before the

interviews was presented to the participants (see Appendix A). The interviews resulted in a

broad perspective of how the portal should be designed because of the input from various

stakeholders. The data from the transcriptions and surveys (see chapter 3.1.4) was analyzed

and composed into a report that was given to IKEA IT so that they could take part of the

interview results, a final version of the wireframe and a system requirement specification.

This chapter presents the fundamental functionalities of the portal, the report on the

interview results, the different versions of the wireframe and the system requirement

specification for the portal.

4.1 Fundamental functionalities

The wireframe version 2.0 (see Appendix A) that was presented at the interviews contained

functionalities that were thought out by the authors and client at several brainstorming

occasions. Navigation in the portal was decided between a number of pages (in that version

of the prototype) which are explained in this sub-chapter; Overview, Test History,

Scheduler, Dependency, Home, Login. All functionality related to each page is presented

and explained respectively in the sub-chapter for the page. For the final prototype

containing all existing pages and functionality in the portal, see Appendix B.

4.1.1 Overview
List of latest smoke tests
On the overview page for every system there shall be a list containing information about the

latest smoke tests ran for the specific system. A smoke test is a functional test, meaning that

it tests certain functionalities of a system. What differs a smoke test from any other

functional test, is that the smoke test is set to determine the health of the system it’s ran

within. When referring to a smoke test in this thesis it refers to the test that inflicts the

system’s status in the way that it is set according to the result of the test. The amount of

presented smoke tests are set to three for no specific reason, but could be changed in a

future version of the portal. This function is thought for a simple history of the system

checks for the selected system.

Redirection to test reports
In every entry in the latest smoke tests list, there is a link to the report for the specific test.

The link redirects the user to a report page where the results of the test are presented in

detail. This function is thought to simplify the access to test results in comparison to ALM

and was one of the main requirements for this thesis.

System state
An alert function that sets the state of a system, depending on the result of the latest smoke

test ran for the system. There are three states:

● Down (test failed)

● Attention (test passed with comments or did not run)

● Good (test passed)

20

The purpose of this function is simple signaling of the well-being of a system. A user can

see how a system is doing by just opening the overview page and not having to view any

test results.

Dependent system failure notification
Also an alert function meant for easier debugging of a system failure. For every smoke test

that failed, this function creates a notification by every entry in the list for the latest smoke

tests if there was a dependent system whose state was “Down” at the time the smoke test

was ran. As there was a dependent system that was not functional, the problem might be

there and not only in the system that was checked.

Public URL
The public URL function is meant for simple monitoring of a system. It creates a link that

can be sent to anybody connected to IKEA:s network which shows a replica of the

“Overview” page for the system from which the link is created. The user of this link does

not have to log in to the portal in order to view the page that the link redirects to. This

public “Overview” page however is read-only, so it is only the information on the

“Overview page” that is presented here, no buttons or links.

Visible/invisible
An option for making a system either visible or invisible to the rest of the portal users. This

function is thought for system owners to be able to hide their systems in cases where the

system for example is under development or maintenance, and the owner of the system

does not want the test results or status of the system to be available for others to see.

4.1.2 Test History
“Test History” is the page where all results of tests that have been ran (through the portal)

for a system are available in a list.

Categorization
In order to make it easier for users to evaluate their testing and access their test results,

categorization of tests was thought of. This makes it easier to find test results as a user does

not have to look through the whole test history. In this version of the wireframe, two

categories existed; smoke tests and non-smoke tests.

Redirection to test reports
This function works the same as for the “Overview page” only that it applies to the entries

in the list of tests on the “Test History” page. See chapter 4.1.1 for an explanation of this

function.

Dependent system failure notification
This function works the same as for the “Overview page” only that it applies to the entries

in the list of tests on the “Test History” page. See chapter 4.1.1 for an explanation of this

function.

21

4.1.3 Scheduler
In this version of the wireframe there is no “Scheduler” page presented. Simply for the fact

that the authors did not know how it would look or what functionalities would exists for the

scheduler at the time the wireframe was made. It was not possible to know as it was not yet

decided which test tool(s) the portal would be formed for. There is only a picture of a cloud

presented in the wireframe.

4.1.4 Dependency
“Dependency” is the page where everything regarding dependencies is handled.

Categorization
As for the “Test History” page, a categorization function was thought of for the purpose of

making it simple to view and evaluate the different types of dependencies of a system. The

categories presented in this wireframe are as follows:
● Internal dependencies

● External dependencies

● Secondary internal dependencies

Internal dependencies
Internal dependencies are those systems that a system in question is dependent on. This is

one of the main requirements for this thesis and the need for this function can be read about

in chapter 1.1.

External dependencies
This type of dependencies is those systems that are dependent on the system in question.

The idea of monitoring external dependencies is meant for signaling other system owners in

the portal in cases where the system in question is about to go into further development or

maintenance, by example. By informing other system owners about this, it could prepare

them for the system in question not going to function as it should. External dependencies

cannot be set by the user but are automatically set by the portal.

Secondary internal dependencies
Secondary internal dependencies are those systems that the internal dependencies for the

system in question depend on. Example:

A is dependent on B.
B is dependent on C.
C is a secondary internal dependency for A.

This function is meant for the user to have a better overview of test environment by seeing

an extended view (compared to only internal dependencies) of which systems are

dependent on each other. Secondary internal dependencies cannot be set by the user but are

automatically set by the portal.

New dependency
This function is meant for users to set systems in the portal as internal dependencies. The

user picks a system from a list containing every system installed in the portal and simply

adds it as an internal dependency.

22

Redirection to the report of latest smoke test for a dependent system
This function creates a link to a report of the latest smoke test ran for all internal and

external dependencies. It is meant for users to be able to access information regarding the

latest system check ran on a specific dependency. It is thought that the service owner for

each dependent system should decide whether the report is available for others to view or

not, for integrity issues.

4.1.5 Login & Home screen
Login
The login page is simple as the only thing needed is a username and password to login to

the page. It was explained to the participants of the interviews that the accounts used for the

portal were thought to be connected to the accounts used for the testing tool(s) that would

come to serve as guideline(s) for the portal in a further stage of development. For the reason

of making all the data in the test tool(s) available for the users in the portal.

Home
Users are redirected to the “Home” page after logging in to the portal. This page presents a

list of every system that the user has a role in. Clicking on an entry in this list redirects the

user to the “Overview” page of the selected system. Beside every system in the list, there is

also a status text, showing the result of the latest smoke test and the date on which it was

ran. This function is meant for a quick overview of the systems that are relevant to the user.

4.2 Report on interviews

Through this report, the authors have taken feelings and experiences into account with

some exceptions where quantitative data has been used, presented in the form of “X of N

participants had a certain feeling or thought”. It is important to keep in mind that the

authors have specified how many people verbally expressed a sentence of the same opinion

or feeling. However, this does not automatically mean that the remaining participants were

in contrast, it only means that they did not utter it in a sentence.

A detailed explanation of all functionalities presented at the interviews can be seen in

chapter 4.1.

4.2.1 General information
All stakeholders agreed on the portal being a good and favorable idea in different ways

depending on the stakeholders’ perspective. Many new ideas came about during the

analysis, of which most regarded the existing functionality in the wireframe, but also some

completely new functionalities. One important thing in the analysis was to find out what

test tool was mostly used by the employees at IKEA IT. This information was critical

because it had to be decided on which tool the portal should be initially formed for. From

the interviews, the authors found out that six of seven stakeholders were working with

ALM. Therefore it was decided that the portal was to be implemented with support for

ALM, meaning that tests should be scheduled to run with that test tool and the test results in

the portal should be presented in the same way as in ALM.

23

4.2.2 Overview
Public URL
An URL to a publicly accessible page of a system’s overview was considered a useful

feature since the status of a system could be shared without the viewer having to provide

any credentials. 3 of 7 users felt that this function would be beneficial. The mutual thoughts

were that it allows an easy overview where you can simply see if the system in question is

functional or not. A single reflection was if the link was static, i.e. not changing. This gave

rise to a thought of being able to utilize this public URL to a single monitor that

summarizes multiple systems’ health.

Visible/invisible
The possibility of making a system visible or not visible for the rest of the systems in the

portal was a function that aroused both positive emotions and hesitant thoughts. What was

thought to be positive was that no unnecessary reporting should be made to others in case

of the system being considered in a certain state. The hesitant thought was never clarified

but still had a positive attitude towards the function. In addition, there were two specific

questions about the function:

● "Can I specify a particular group to" - ID 2, Global Quality and Test Manager

● "Say you have four users for that button, who is in charge then - ID 4, Test Manager

Other comments

3 of 7 participants considered a function that flags a smoke test, indicating that a dependent

system was not fully functional at the time of the test being executed, can be beneficial.

Mostly because it makes it possible to see that there was not only a failure in one's own

system, therefore the failure may be linked to another system. This flag is seen before even

looking into the report of the smoke test in question.

Each smoke test shall be represented by the status passed, passed with comments and failed

with respective colors green, yellow and red as well as a number (numeric) for amount of

subtests passed in the smoke test.

Signaling by a failed smoke test was mentioned by 3 of 7 participants. The idea was that an

alarm should be triggered when a smoke test fails. This is because it should be noticed by

someone other than just a limited number of people who occasionally look up the status.

The signal may be in the form of e-mail, SMS, or iDesk.

"I want an automatic action, when I call and ask how long it will take for you, then they

should already be running and working on the problem " - ID3 , Test Architect.

4.2.3 Test History
All comments on the test history can be collected in two specific points: categorization and

statistics. 2 of 7 participants believed that the visualization of test results would be

favorable.

For categorization, one participant considered “Smoke test” and “Non smoke test” an

enough amount of categories, while another one wanted more categories for the purpose of

avoiding having to look through all the tests that exist on the test history page when

24

working with a certain test category. After this, a thought on making the categories

adjustable by the users came about. This could also be heard around the scheduler.

Regarding statistics, a few participants expressed the need of additional information

presented about test results on the test history page, in comparison to the information

presented in the wireframe prototype (see Appendix A). This means that each test listed on

the test history page shall be represented by the status passed, passed with comments and

failed with respective colors green, yellow and red as well as a number (numeric) for

amount of subtests in the smoke test with the respective status.

“I would probably want this page to show a number out of each category, rather than

“passed” for smoke tests. How many green, how many yellow, how many red?” - ID 6,

Service Owner

This is similar to what was mentioned regarding statistics in the “Other comments” section

of chapter 4.1.2.

4.2.4 Scheduler
Feedback about the scheduler has been varied among the participants. There were positive

thoughts about having a scheduler in the portal, meaning that it is handy to keep

visualization of test results and scheduling of tests at the same place. It simplifies the work

as the user avoids having to use multiple tools for executing a test and accessing the results

of it.

One question that arose is whether it is possible to look at the results from tests not

executed through the scheduler, but performed manually. However, only 1 of 7 participants

mentioned that he/she worked mainly with manual testing.

3 of 7 participants thought that the portal should be made universal. This means that it

should support various test scripts or test tools. Other feedback has been ideas about the

scheduler which have touched different areas:

● The portal should support non-automated tests so that they also result in a report in

Test history.

● Smoke tests for a system shall first run smoke tests that belong to its dependent

systems, before performing its own smoke test.

● Pause/play function to make it possible for a system to have deviations of recursive

runs for a fixed period.

● Categorization of tests to be scheduled.

4.2.5 Dependency
Feelings and thoughts on dependencies were both positive and critical. Some found it could

be very beneficial because it gives an insight into the big picture of all systems connected to

each other. While some were critical of how beneficial it can be, and how possible it is to

implement. Out of the critical there was a common thought that the dependency

functionality was less important in comparison to the overview and statistics. At a whole, 3

25

of 7 participants thought that dependency is favorable while 3 of 7 participants were

critical.

Two specific points stood out beyond what is mentioned above:

● Narrow down the levels of secondary dependencies, otherwise there is a risk of it

becoming redundant.

● In ALM, there is the ability to link tests to each other. A way to make them

dependent on each other. If system B is dependent on system A, system B shall link

the smoke test of system A to its own. Hence system A’s smoke test is ran first, and

then the smoke test of system B. The participant who said this however mentioned

that this way of setting smoke tests as dependent on each other was not used as

much as it should.

An own thought from authors also came about; how will the dependency part of the portal

be affected by a system being set as invisible respectively visible?

4.2.6 New functionalities
Statistics
Several of total participants, 5 of 7, expressed interest in some sort of statistics on systems

installed in the portal. Thoughts were to keep statistics on when a system is considered to

be down as well as up and running. Also, various versions of statistics were brought up by

different participants. For example, how many subtests in a smoke test have performed well

or poorly, how many of the total smoke tests have performed well or poorly (per year,

month, and week).

The ideas that emerged regarding statistics were as follows:

● Statistics on the number of subtests in a whole test that passed respectively failed.

● Keep statistics on all smoke tests to show an overview of how many passed

respectively failed. One axis for time and one for tests. Axis for time could be a

week, month or year.

● A report on statistics kept on all smoke tests shall be sent weekly or monthly to the

owner of the system.

● Statistics should not be kept when a system is not visible.

● Statistics should not be kept at planned down time.

● Statistics that are kept at maintainence or further development of a system should be

noted, for example “Ongoing development”.

● The “Make visible/invisible” button should not turn off the keeping of statistics.

● The statistics should be adjusted after less technically proficient personnel. This in

order for them to be able to have a perception of a system’s well-being over time.

● If a system that the main system in question is dependent on failed its smoke test,

statistics should not be kept for the main system.

● Statistics should also be presented in percentage.

● Statistics should be presented in the form of graphs.

● Statistics should always be available even when the system is invisible.

26

● When a smoke test for system A is ran by system B, the smoke test for system A

should be reported into the statistics for system A (B has set A as a dependency).

Monitor
The idea of the monitor is to be able to collect the state out of multiple systems in a single

view. In this way you can get an overview on the health of various systems which can be

useful in several user perspectives. For example, for a particular department or a particular

service owner with the need to easily be able to oversee multiple systems. 3 of 7

participants mentioned that a monitor can be beneficial.

4.3 Chronological order of the wireframe

On the basis of the report (see chapter 4.2) the wireframe version 2.0 was updated to a new

version 3.0. There were multiple changes to the newer version which is presented in chapter

4.3.1. Afterwards there was an acceptance meeting held between the authors and the client

for the purpose of validation. The updated wireframe was presented to the client together

with the report of the interview results. The client gave some valuable feedback which the

authors took in consideration and updated version 3.0 to 4.0. The 4.0 version was then

again sent for validation to the client and based on the response some smaller updates were

made and the final version of the wireframe was version 4.1. This chapter highlights the

new features for each version of the wireframe from 2.0 to 4.1.

For the full version of wireframe 2.0 see appendix A and for the full version of wireframe

4.1 see appendix B.

4.3.1 New features of version 3.0
This chapter highlights the new features included in the wireframe version 3.0 when

comparing it to the previous wireframe version 2.0. In the comparisons of this chapter, the

left-hand side of the image is always taken from wireframe version 2.0, while the right-

hand side of the image is always taken from wireframe 3.0.

27

Figure 4.1: Differences in “Overview” page

Figure 4.1 shows the difference made in the “Overview” page. What can be seen here is

that an e-mail function has been added at the bottom. This was added to give the end users

the ability to get smoke tests reports by e-mail, either if the test failed or always. The reason

for the new function is derived from the report in chapter 4.2.2.

Figure 4.2: “Public Overview” page

28

Figure 4.2 shows a page which is not a new function, but was not included in version 2.0. It

was added to the 3.0 version to give a clearer view of the “Public Overview” function. The

function is derived from the report (see chapter 4.2.2).

Figure 4.3: Differences in “Test History” page

Figure 4.3 shows the difference made in the “Test History” page. What can be seen here is

the numbers at the side of each test set in the test history table. These numbers represent

how many tests in the test set that have passed (green number), passed with comments

(yellow number) or failed (red number). The reason for the new function is derived from

the report in chapter 4.2.3. Additionally, the menu for the different categories of test sets

has been moved from the left side to the top side of the test history table. There was no

basis for this change other than that the authors thought that it would be more user friendly.

29

Figure 4.4: Differences in “Scheduler” page

Figure 4.4 shows that the “Scheduler” page went through a total change, since the scheduler

in version 2.0 was just a cloud symbol illustrating that there was nothing to display at the

moment. In version 3.0 we can see a calendar, test set choice and time function. This is to

be able to schedule a certain test set for some specific date(s) and time(s).

30

Figure 4.5: Differences in “Dependency” page

Figure 4.5 shows the changes made to the “Dependency” page, which is simply that the

menu for the different categories of dependencies has been moved from the left side to the

top side of the dependency table. There was no basis for this change rather than that the

authors thought that it would be more user-friendly.

Figure 4.6: “Statistics” page

Figure 4.1 shows a new page called “Statistics” which is available through the navigation

menu at the top-left corner. The ideas and specifications within this page were derived from

31

the report in chapter 4.2.6. The principle for the page is to display statistics for the system

which the user is viewing. The statistics is based upon the smoke test(s) of the system and

not any other test(s). The reason for this is to give a view of the system’s health, which in

this portal is defined by the smoke tests.

Within the page the user will be able to view the statistics in a graph which will display

how many tests have been run and the ratio of how many failed/passed. This should be

shown for every unit in the X-axis which is based on the choice, week, month or year.

Furthermore, statistics should be kept for the whole time that the project has been active in

the portal.

Another function in the “Statistics” page is to send reports by e-mail which can be seen in

figure 4.6 bottom. The function is to send reports consisting of the same statistics available

in the portal, but for a certain time frame which is dependent on the user’s choice. The

choices being weekly, monthly or/and year wise. An example is if the user picks weekly

and monthly, then a report would be sent at the end of the every week containing only the

recent week’s statistics. Also it would send a report on the end of the month containing the

statistics for the recent month.

4.3.2 New features of version 4.0
This chapter highlights the new features included in the wireframe version 4.0, when

comparing it the previous wireframe version 3.0. In the comparisons of this chapter, the

left-hand side of the image is always taken from wireframe version 3.0, while the right-

hand side of the image is always taken from wireframe 4.0.

Figure 4.7: Differences in “Overview” page

32

Figure 4.7 shows the difference made in the “Overview” page. There are two new functions

introduced to the newer version. The first one is the hovering text of the “dependency

down” function, which can be seen on the right side of figure 4.7, where the “hand” symbol

is over the “x within a circle” symbol. This was to give the users an understanding of the

symbol’s meaning. The symbol was also changed from an exclamation mark to an X due to

the second new function being inserted; so that it would not be misinterpreted which

symbol represents a function.

The second new function in figure 4.7 was the extra status field, which has replaced the

visible/invisible function. This can be seen within the green square in version 4.0.
The text field is writeable and enables the user to change the status of the system when

pushing the button. This was thought to be an extra signal so the user can signal others,

independently of test scheduling. For example, the user could have a message saying “The

system is currently going through maintenance, disregard any failed tests”.

These changes were based on the feedback given to the authors by the client during the

acceptance meeting (See chapter 4.3).

Figure 4.8: Differences in “Scheduler” page

33

Figure 4.9: Differences in “Scheduler” page

Figure 4.8 and figure 4.9 shows the changes made to the “Scheduler page”. There are

multiple changes introduced which can be categorized as following:

● Categories of tests

● Recursive time

● Current scheduled tests

Test categories can be seen in line with the label “Category” in figure 4.8. This function

would enable the user to specify which category the test to be scheduled should be placed

in. Furthermore, the user would be able create its own categories which will give the user

the flexibility to schedule any type of test. The idea was derived from the report (see

chapter 4.2.3) and on the feedback given to the authors by the client during the acceptance

meeting (see chapter 4.3).

Recursive time can be fully seen in figure 4.8 from the checkbox “Add multiple time”

down to the label “Frequency (min)”. This function would give the user the possibility to

add multiple times more efficiently. For example, if the user would like to put multiple

times with 30 minute intervals, in the 2.0 version the user would have to do many inputs.

With the new function the user would instead check the checkbox “Add multiple time”, set

the “Start time” to 00:00, leave the “End time” as blank (as it is default 00:00), set the

“Frequency (min)” to 30 and finally push the add button. These changes were based on the

feedback given to the authors by the client during the acceptance meeting (see chapter 4.3).

34

Current scheduled tests can be seen in figure 4.9 in the message box above the label “Start

time”. The message box appears when a user has selected a date in the calendar and a time

from the “Run at time” list box. The message is only shown if there is a time in the list box,

which will only be filled with objects if there is a scheduled test for that date. The reason

for the new function was to give the users the possibility to view already scheduled times

for different tests. The example given in figure 4.9 is one with the recursive times

(indicated with the “(r)”) and would only include the time and category.

These changes were based on the feedback given to the authors by the client during the

acceptance meeting (See chapter 4.3).

Figure 4.10: Differences in “Dependency” page

The difference presented in figure X is a notification symbol beside an entry in the external

dependencies list. This mark indicates that the system in question has set a custom status. If

a user hovers over the mark, an explaining text is seen, saying that the system is marked as

the custom status that has been set. The purpose of this function is to inform users of the

portal about the system’s status in order to give more insight into how the system is doing.

This change was based on the feedback given to the authors by the client during the

acceptance meeting (See chapter 4.3).

4.3.3 New features of version 4.1
This chapter highlights the new features the wireframe version 4.1 includes when

comparing it the previous wireframe version 4.0. In the comparisons of this chapter, the

left-hand side of the image is always taken from wireframe version 4.0, while the right-

hand side of the image is always taken from wireframe 4.1.

35

Figure 4.11: Differences in “Public Overview” page

Figure 4.11 displays the changes made to the “Public Overview” page. The new feature is

to show the status of the system in the public overview, which is further explained in

chapter 4.3.2. This is to give the user viewing the “Public Overview” page, the information

of the current status of the system. This change was made on the basis of the feedback from

the client, after version 4.0 was sent to the client for validation.

36

Figure 4.12: Differences in “Scheduler” page

In figure 4.12, a difference can be seen in the box in the middle of the screen containing

information about a test that has been selected from the box on the left side of the screen,

labeled “Run at time”. A detailed explanation of this function can be seen in chapter 4.3.2.

What is different in this version of the wireframe is that additional information is presented

in the box, consisting of the name of the test that has been scheduled. In this example, the

test is named “Smoketest123.file”. This was added to make it easier for users to keep track

of the scheduled tests, by knowing exactly which test has been scheduled at a certain date

and time.

4.4 System requirement specification

A requirement specification (see Appendix C) for the portal was made for several reasons.

Firstly, it was needed for a guideline of how the portal should be implemented for the

authors to follow. Secondly, to make validation possible and finally for a guideline for

developers who will further develop the portal.

The specification came about after an acceptance meeting was held between the client and

the authors (see chapter 4.3) and is based on the report (see chapter 4.2) as well as the

acceptance meeting. It is also based on the wireframe (version 4.1, see Appendix B),

although some ideas and functions have been modified from the wireframe. The changes

were put directly in the specification and have been validated by the client.
The most specific document and main guideline for the implementation in this thesis has

been the system requirement specification.

37

5 Implementation results

This chapter is meant to give a view of what was and what was not implemented during this

thesis. As mentioned in chapter 3.2 the implementation was based upon the results of the

analysis being the system requirement specification (see Appendix C) and the wireframe

version 4.1 (see Appendix B). Furthermore, this chapter displays a demonstration of the

product.

5.1 What was achieved?

Following user stories from chapter 4.3 in the SRS were implemented.

● User story 1 As a user I want to be able to navigate to home, test history, scheduler,

dependency and statistics after I have logged in and chosen a system.

● User story 4 As a user I want to be able to see a list of all systems I am a part of, and

see the status of every system.

● User story 5 As a user I want to be able to access a specific system in the list of

systems. Then be redirected to the overview page of the chosen system.

● User story 6 As a user I want to be able to see the status of the system

● User story 7 As a user I want to be able to see a list of the latest system checks and

be able to access the report of all system checks in the list.

● User story 3 As a user I want to be able to access the portal with a given username

and password, and then be redirected to my home page.

● User story 2 As a user I want to be able to log out at every page after I have logged

in.

● User story 8 As a user I want to be able to create a link that is directed to the

overview page of the system I am currently viewing. User story 14 As a user I want

to be able to see and adjust my internal dependencies.

● User story 14 As a user I want to be able to see and adjust my internal

dependencies.

● User story 11 As a user I want to be able to see all my runned tests in a list and to be

able to filter the tests by choosing a category.

● User story 12 As a user I want to be able to schedule a test.

In total 11 out of 19 user stories were completed. The reasons for not completing every user

story can be read at chapter 1.3.

Besides the user stories there were multiple other requirements in the SRS that were

fulfilled: 4.1.1, 4.1.2, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6, 4.4.1, 4.4.2, 4.4.3, 5.1.1, 5.2.1, 5.2.2,

5.2.3, 5.2.4, 5.2.5, 5.2.6, 5.2.7, 5.2.8 and 5.2.10. In total 20 out of 22 requirements, which

are not within chapter 4.3 and 6.1 in the SRS, were fulfilled.

The requirements 6.1.1, 6.1.2 and 6.1.3 of the SRS is neither fulfilled nor unfulfilled, due to

these being requirements on the machine that will use the product. Therefore not the

responsibility of the authors.

38

5.2 What was not achieved?

At the implementation phase of this thesis not every requirement was fulfilled in the system

requirement specification, SRS (see appendix C). Following user stories from chapter 4.3

in the SRS was not implemented.

● User story 13 As a user I want to be able to see and change scheduled tests.

● User story 18 As a user I want to be able to see statistics of the system’s status.

● User story 15 As a user I want to be able to see my external dependencies.

● User story 19 As a user I want to be able to receive a report on statistics by e-mail.

● User story 9 As a user I want to be able to create or edit a public status text of the

system I am currently viewing.

● User story 10 As a user I want to be able to have an e-mail sent to me containing the

report of the latest system check every time it is performed, or every time the latest

system check has failed.

● User story 16 As a user I want to be able to see my internal secondary dependencies.

● User story 17 As a user I want to be able to see a systems state.

In total 8 out of 19 user stories was not completed. The reasons for not completing every

user story can be read at chapter 1.3.

Besides the user stories there some other requirements in the SRS that was not fulfilled:

4.2.1 and 5.2.9. In total 2 out of 22 requirements, which are not within chapter 4.3 and 6.1

in the SRS, was not fulfilled. Requirement 4.2.1 was fulfilled in some of the functions of

the portal, but was missing in the “scheduler” page. Requirement 5.2.9 was not fulfilled due

to the time limit in the thesis, since the completion of sprints was of higher priority.

5.3 How is the product implemented?

The development environment (see chapter 2) was requested by the supervisor (who was

also the client) since he had experience from working in it and is the one who will further

develop the product after this thesis. Therefore he wanted the authors to develop in an

environment that he was familiar with already.

Testing of code was done in Google Chrome, although the portal was required to be

compatible with Internet Explorer 9. The reason for testing in Chrome is explained later in

this sub-chapter. Durandal is a JavaScript library and the framework that was used for the

implementation, so most of the code is written in JavaScript. The graphical interface of the

portal is written in HTML/CSS.

By the use of Durandal and the plugins that are explained in chapter 2.2.2.1, the portal is

implemented according to the MVVM architecture (see chapter 2.2.2.2). All functionality is

made in JavaScript files. The attributes and functions in the JavaScript files are then used in

the HTML files for the graphical interface as well as binding functions to objects such as

buttons through the Knockout plugin, by a property called data-bind. An example is shown

in figure 5.1 and 5.2.

39

Figure 5.1: Snippet of the view model for the “Home” page

Figure 5.2: View for the “Home” page

It can be seen at the top of figure 5.1 that there is a declaration of the object vm. This is the

view model, and all attributes and functions that will be used on the “Home” page are

added as attributes to the view model, in other words the object vm. In the line of code next

to the declaration of vm, there is a declaration of an attribute username. This is added to the

view model, therefore it is called vm.username.

Vm.username is declared as an observable. Observables are JavaScript objects that can be

watched, and alerts the watchers whenever it is modified (Knockout: Observables n.d.)
In this way, a HTML component can keep track of an observable and update its state as the

observable is changed. This is done through data-binding. It is critical that the observables

40

are added in the view model, otherwise they cannot be binded to a view (Knockout:

Observables n.d.)

As seen in the div class in figure 5.2 called “page-header”, there is a span tag with a data-

bind on text for username. This means that the data of an object username in the view

model is binded to this span, by the text attribute. The HTML page will generate a span

with the text of the object vm.username, which in this case will be the username of the user

who is logged in to the portal. Anytime the object is modified, the page will generate the

change.

At the bottom of figure 5.2, there is a button class called “btn btn-large btn-primary” with

a data-bind on $root.logout by the click attribute. Logout is a function in the view model

which can be seen in figure 5.1, called vm.logout. When a user clicks on the button

generated on the HTML page, the function vm.logout() will be called, since the button is

binded to that function.

Figure 5.3: Snippet of REST API for the portal

Figure 5.4: Startup of portal through Node

41

The product is implemented as a client-server oriented application, in which the client

makes requests to the server through a REST API. Figure 5.3 shows a snippet of the REST

API. A documented REST API is one of the requirements in the SRS. The server is handled

with Node, a demonstration of the portal startup is seen in figure 5.4.

In order to troubleshoot the code, a plugin for Google Chrome called “KnockoutJS Context

Debugger” was used. This plugin was needed since the development tool did not offer any

debugging. Internet Explorer also offers a debugging environment but the authors felt that

Knockout’s debugger was a better choice, since it is easier to work with. Internet Explorer

by example closes the debugger every single time a page has been loaded, while Chrome

keeps the debugger open all the time.

Figure 5.5: Debugging with KnockoutJS Context Debugger

Figure 5.5 displays a screenshot taken during the implementation and shows the

KnockoutJS Context Debugger in action. The user (one of the authors) has navigated to the

“Test History” page and is stopped due to a break point which can be seen in line 14 and 15

(blue highlight). Furthermore the tool allows the user to examine JSON (JavaScript Object

42

Notation) objects which can be seen within the “watch expressions” box in the bottom-right

of the figure. This is useful and needed since during the development there was a need of

following the flow of execution when navigating in the portal. Also, it was important to

investigate the JSON objects to verify that the server calls were returning correct data in a

given situation. The plugin offers more abilities to be used but the main usage during this

thesis was as described above.

5.4 Demonstration of the product

This sub-chapter presents how the product looks and how it works. Everything is not

implemented, such as the “Statistics” page. For details about what was implemented, see

chapter 5.1, and for what was not implemented, see chapter 5.2. Note that the test sets

presented in this demonstration are not real test sets. They are examples with test results

that have been modified by the authors when implementing the functionality, for testing

purposes (of the portal’s functionality). Therefore some test sets have inconsequent results,

such as a “Failed” status when there is no subtest that has failed.

Figure 5.6: “Login” page

Figure 5.6 shows the layout of the “Login” page. The portal requires the user to enter a

correct username and password in order for the user to log in to the page.

Figure 5.7: “Home” page

When a user has logged in to the portal, the user is redirected to the “Home” page, which is

presented in figure 5.7. A list of all the systems that the user faruk is a part of is presented

43

on this page. Beside the systems there is a status text, showing the result of the latest smoke

test and when it was ran. The status text is colored based on the test result:

● Green color: Test passed

● Yellow color: Test passed with comments or test did not run

● Red color: Test failed

The user can then navigate further into the “Overview” page of any system by clicking on

one of the bars that represent the systems by their names respectively. The user can also

choose to log out by clicking the blue button labeled as “Log out”. It will then be redirected

back to the login screen.

Figure 5.8: “Login” page

Figure 5.8 shows the “Overview” page for the selected system SQL Server. At the top of

this page a navigation bar is seen. This is used for navigating through the portal. The

navigation bar is available on all pages except for “Home”.

This page contains general information about the selected system. At the label “System

state”, the status of the system is presented. This status is determined based on the result of

the latest smoke test ran for the system. It is also colored depending on the status:

● Green color: “Good” - latest smoke test passed

● Yellow color: “Attention” - latest smoke test passed with comments or did not run

● Red color: “Down” - latest smoke test failed

This function serves as an easy monitor of the system’s health and does not require the user

to spend any time looking into the result of the latest smoke test. The user can simply see

how the system is doing by looking at its current state.

44

In the middle of the page, there is a list of smoke tests ran for the system. The list contains

three of the latest smoke tests, with information regarding when it was ran, the result of the

test set, how many subtests passed and a link to a detailed report of the test (figure 5.10).

The status and number of passed subtests text is colored under the same conditions as the

system’s state function. The list of smoke tests is made for users to have easy access to the

results of relevant smoke tests, since it is the latest ones that were ran.

A notification symbol can be seen beside the second entry in the list which is the test that

failed. The symbol indicates that there has been at least one dependent system that has not

been functional at the time the smoke test in question was ran. Hovering the symbol

displays an informative text as can be seen in figure 5.8. The purpose of this function is to

simplify debugging since it lets the user know that there might be a problem in a dependent

system that is causing the test to fail, and not only in the system that has been tested.

Figure 5.9: “Overview” page

Under the list of smoke tests, there is a label “Public URL” and a link. The link redirects

the user to a copy of the “Overview” page for the system in question, but with read-only

rights. That meaning there are no links or buttons on the “Public Overview” page. An

example of this can be seen in figure 5.9, which presents the “Public Overview” page for

the system SQL Server.
Additionally, viewing this page does not require the user to be logged in to the portal.

Therefore it can be shared to anybody connected to IKEA:s intranet. There are several

purposes to this function, the first being easy monitoring of a system since the “Public

Overview” page presents the same information as the “Overview” page and requires no

credentials. The second one is that it can be shared.

45

Figure 5.10: “Overview” page

Figure 5.10 shows how a report of any test in the portal is presented. In this example, the

test TestSeveralInstances is viewed, and is one of the smoke tests for the system SQL

Server. The report is presented in two tables, one for the test set and one for the subtests.

The test set is presented in green columns, and the subtests in the blue columns. These are

functional tests as can be seen in the name “TestSameName”, SameName being a function

in this case. One thing to notice is the “View report” links in the table for tests. This is a

report that is generated by ALM and has nothing to do with the implementation of this

thesis. The link simply redirects the user to a HTML page containing detailed information

about the specific subtest. The data in the report is taken directly from ALM, which can be

seen on the date format by example.

Figure 5.11: “Test History” page

Figure 5.11 shows the “Test History” page, where all results from tests that have been ran

through the portal are stored. What can be seen is a list of different test sets and information

about them. The name of the test set, date of execution, status of the test, the result of the

subtests and a link to the report on each test set is presented in each entry.
The status text and results of subtests respectively are colored by the following conditions:

● Green color: Test set passed and number of subtests that passed

● Yellow color: Test set passed with comments or did not run and number of subtests

that either passed with comments or did not run

● Red color: Test set failed and number of subtests that failed

46

The result column in the list shows the number of subtests in the test set that passed, passed

with comments/did not run, respectively failed. This function is meant for showing some

statistics of the test sets without the user having to view the report on the test set.

The list of test sets is contained in different tabs, each representing a certain category of the

test sets. Figure 5.11 shows the tab “All”, which presents the results of all test sets

available. Categorization is made to simplify the evaluation of a user’s testing since the user

does not have to look through all test sets in order to find the result of a test set that the user

is searching for. If the user only wants to look at functional tests, it can do so by clicking

into the “Functional test” tab. One important thing to note is that there are only two default

test categories:

● Smoke test

● Non-smoke test

Other test categories are added manually in the “Scheduler” page, which is presented later

in this sub-chapter.

Figure 5.12: “Test History” page, showing two different tabs

As seen in figure 5.11, all test results that are available for the system Test are presented in

that list. Figure 5.12 shows the difference between the tabs. On the upper half of figure

5.12, the user is viewing the “Functional test” tab. There is only one test set that has been

categorized as a functional test, which can be seen in the list. On the bottom half of figure

5.12, the user is viewing all smoke tests for the system.

47

Figure 5.13: Scheduling a test set

The “Scheduler” page is presented in figure 5.13. This is where the test automation is being

performed from the portal. The “Scheduler page” consists of two tabs, “Scheduler” and

“Scheduled tests”. The latter was not implemented due to lack of time, and will therefore

not be presented in this demonstration. One important thing to keep in mind is that the

scheduler is completely based on ALM. The client, who has insight in how ALM works,

specified the needs of the scheduler and how it was to be implemented.

What can be seen in figure 5.13 is that there are many attributes that are required to be

specified, such as what category the test to be scheduled is of, which test set to be

scheduled, on what host the test is to be scheduled for execution and which e-mail should

be used for alerting.

Selecting a category for the test set is done by clicking the dropdown list by the label

“Category”. This list contains test categories that have been added by the testers working

with the specific system. There are two default categories, “Smoke test” and “Non-smoke

test”. This function is based on results of the analysis, which can be read about in chapter

4.2.4.

48

The user has the option to add and remove test categories. This is done by clicking the

green plus symbol respectively the red trash symbol (at the side of the category dropdown

list), which opens up a small window on the screen.

Figure 5.14: Adding and removing test categories

When adding a new category, the user simply specifies the name of it and presses the

button “Add”, which can be seen on the left-side of figure 5.14. When removing a category,

the user selects one of the existing categories in a dropdown list, as can be seen on the

right-side of figure 5.14. The user then presses the “Remove” button to remove the

category. One thing to notice here is that the categories “Smoke test” and “Non-smoke test”

are not possible to remove as they are default categories and are therefore not available in

the dropdown list.

49

Figure 5.15: Scheduling a test set for repetition

There are different ways to schedule a test. The scheduler is implemented in a way that

offers flexibility, since a test can be scheduled for multiple times at a day. The user can also

choose to use the same schedule for multiple dates. Additionally, a test can be scheduled to

run every day at the selected time(s), starting from the date it is scheduled for. This can be

seen in figure 5.15 at the right side of the page.
The test TestLogin is set to be scheduled at the 18th and 19th of June 2014, at 10:00 and

12:00. What can be seen at the times is that at 12:00, the test is to be repeated every 15

minutes. This is a function that was requested by the client. The option to schedule a test for

repetition is selected by checking the “Repetitive” checkbox. The user then has to specify

how often the test should be repeated, in minutes as can be seen in figure 5.15.

The conditions for the alerting function can be seen at the bottom of the page, right above

the “Schedule” button. An e-mail can be sent to the user upon a failed test, a test passed

with comments or a passed test, with the option of having the report included in the mail.

50

There is also a time-out function, which is activated by checking the checkbox “Timeout”

that can be seen in figure 5.13 and 5.15. This function sets a fix for how long a test is

allowed to run. By example, time-out can be set to one minute for a test set. For each

subtest in the test set, the subtest is cancelled when one minute of execution has passed and

then the next subtest in the sequence starts to execute. This function exists for breaking

infinite execution of tests in cases where by example a pop-up window interferes with the

testing and does not let the execution proceed until the window is closed.

Figure 5.16: Adding an internal dependency

Figure 5.16 presents the ”Dependency” page for the system SQL Server. Internal

dependencies (see chapter 4.1.4) for the system are presented in a list on this page. As

figure 5.16 shows, information about each dependency can be seen in the list. An entry in

the list consists of the name of the dependent system, its current status and a link to the

report on the latest smoke test ran for the dependent system. For every system that is

presented in the list, it is the manager of the system that decides whether the report should

be available for other users or not. The purpose of that function is to protect the integrity of

the system in question.

Removing an internal dependency is done by clicking the red trash symbol that is seen on

the right-side of figure 5.16. This symbol exists in every entry in the list so that the user can

easily handle dependencies, avoiding having to search through a list of internal

dependencies in order to remove one.

Setting a system as an internal dependency is done by selecting a system from the

dropdown list that can be seen on the down-left corner of figure 5.16, by the label “Create a

new dependency”. The user then simply clicks the green plus symbol next to the dropdown

list and the chosen system is set as an internal dependency. All systems that are installed in

the portal are available in this dropdown list in order to make it possible for managers of

newly installed systems to setup the dependencies of the system, but also for other

managers to handle dependencies in a flexible way.

51

The “Dependency” page makes it possible for testers and managers to see an overview of

the test environment, the health of it and more specifically the well-being of critical

systems, which are the internal dependencies of the system in question. Having an insight

into this makes it easier for testers to plan a test period with no failures due to external

factors.

52

6 Conclusion

6.1 Problem description

Both problem descriptions of the thesis (see chapter 1.2) were answered at the end of the

thesis during the final presentation for the test department of IKEA IT, Helsingborg. The

presentation was held at the IKEA test centers in Älmhult, Helsingborg and gave insight

into how the project was implemented and the last results, the portal. The participants

consisted of the full team from the test department of IKEA IT, Helsingborg and totaled in

17 participants. Included in the participants were also the owner of project Anna

Gamalielson and the supervisor Olof Ernstsson. These were given the room to ask

questions and give feedback to the authors.

Through the meeting the authors could confirm that the end users verbally expressed that

the portal would be beneficial, thus answering the first problem description.

Regarding the second problem description the participants including the supervisor gave

some concrete feedback which answered the problem description. The feedback was the

following:

“Previously there was no good way for a project to know before their test phase if any

depending project was running as expected. With the test dashboard they now will have a

tool that allows them to setup test automation of depending systems to early get an

indication if something is not working as expected in systems they are depending on. The

dashboard will also give a better overview of test status for test automation. Before users

had to open several test sets and look at their status individually, now instead they can login

to one place and see the overall status of all test sets.” - Olof Ernstsson, Product Specialist.

6.2 The scope

The scope of the thesis (see chapter 1.2) consisted of two goals which is partially fulfilled.

The first goal “Identify the needs of the existing test environment through an analysis” is

considered by the authors and both the owner and supervisor of the project to be achieved.

This is based on the fact that an analysis to identify the needs was conducted (see chapter

3.1) and the results of the analysis (see chapter 4) which reflects a broad spectrum of

stakeholders (see chapter 3.1.3). There is still however some room for discussion of how

the analysis was performed (see chapter 3.1.6)

While the second goal is partially achieved since the system requirement specification (see

appendix C) was not entirely fulfilled (see chapter 5). However the two subsections of the

goal was achieved since there is visualization for dependencies and support for test

automation in the portal. The reason for not fulfilling is due to the limits the authors were

confined to (see chapter 1.3).

53

7 Further work

There are multiple areas within the portal that needs further development.

As mentioned in chapter 1.3 the machine that would perform the actual testing has not been

within the scope of this thesis. This should be the main target for further work since the

portal itself is dependent on this machine to run its test automation.

It is also mentioned in chapter 5.2 that not all user stories from the system requirement

specification (See appendix C) were implemented. Therefore they are a secondary

recommendation to be included in further implementation.

Furthermore it is possible that the analysis which was performed during this thesis might

have excluded some stakeholders or missed some ideas. Therefore a further evaluation

based on a live version is recommended.

The client has already received a further development plan specialized for him regarding

code improvements and non-existing functionality. This is according to requirement 5.2.3

in the system requirement specification.

54

8 Terminology

User story Describes a user’s need of performing something in the system in one

or multiple sentences. Rather than having to specify each part of a

need or function in traditional requirements.

Portal Also called the product and the system, the portal is the concept and

result of the implementation of the thesis. A web platform that allows

users to get information from multiple sources at one location.

Client The person(s) which the thesis is conducted for. The client consists of

two people from the test department of IKEA IT, Helsingborg.

Anna Gamalielsson - Infrastructure Manager

Olof Ernstsson - Product Specialist

Supervisor The person(s) who has watched over the thesis and have been giving

feedback about different subjects, such as report writing and

programming code validation.

The supervisor from IKEA IT was Olof Ernstsson - Product Specialist

The supervisor from the Lund Institute of Technology was Christian

Nyberg - Docent in Communication Systems

Test set Contains several different sub tests. Is used to include multiple sub

tests rather than to select one by one.

Subtest One of the tests contained within a test set

Smoke test Standard functional test for a certain system that can determines if the

system is functional or not.

REST API Describes the functions GET, POST, PUT and DELETE of methods

contained in a class.

Process tool A tool which provides recommended guidelines for how a project can

be processed.

Test automation When testing is done in an automated matter, meaning that it only

needs a start and will then continue to perform the tasks without any

human interference.

SRS Is short for system requirement specification. This declares the

requirements of the product to be developed for the client.

Phenomenological

data analysis

When studying data, the focus is to draw out the experience regarding

a certain phenomenon, in order to understand the feelings, thoughts

and point of view of the subject of the research.

55

9 References

About - Git. (n.d.). About. Retrieved 29 05, 2014 from
http://git-scm.com/about

Application Lifecycle Management (ALM). (n.d.) Application Lifecycle Management

(ALM). Retrieved 29 05, 2014, from http://www8.hp.com/us/en/software-

solutions/application-lifecycle-management.html

CSS Introduction. (n.d.). CSS Introduction. Retrieved 29 05, 2014, from
http://www.w3schools.com/css/css_intro.asp

CSS3 Introduction. (n.d.). CSS3 Introduction. Retrieved 29 05, 2014, from
http://www.w3schools.com/css/css3_intro.asp

Företagsinformation - IKEA. (n.d.). IKEA Gruppens struktur. Retrieved 04 06, 2014 from
http://www.ikea.com/ms/sv_SE/about-the-ikea-group/company-information/

Get Started | Durandal. (n.d.). Getting Started. Retrieved 26 05, 2014, from

http://durandaljs.com/get-started.html

HTML5 Introduction. (n.d.) HTML5 Introduction. Retrieved 29 05, 2014, from
http://www.w3schools.com/html/html5_intro.asp

Home | Durandal. (n.d.). Meet Durandal. Retrieved 26 05, 2014, from

http://durandaljs.com/

Justesen, L. & Mik-Meyer, N. (2012). Kvalitativa Metoder, Från vetenskapsteori till

praktik. 1st ed., Studentlitteratur AB

jQuery (n.d.). What is jQuery? Retrieved 26 05, 2014, from http://jquery.com/

Kniberg, H. & Skarin, M. (2010). Kanban and scrum making the most of both. 1st ed.,

C4Media

Knockout: Observables. (n.d.). Observables. Retrieved 05 06, 2014, from

http://knockoutjs.com/documentation/observables.html

Knockout: Introduction. (n.d.). Introduction. Retrieved 26 05, 2014, from

http://knockoutjs.com/documentation/introduction.html

MongoDB. (n.d.) Agile and Scalable. Retrieved 27 05, 2014, from

http://www.mongodb.org/

Mozilla Developer Network and individual contributors. (2013, 09 17). About JavaScript.

Retrieved 26 05, 2014, from https://developer.mozilla.org/en-

US/docs/Web/JavaScript/About_JavaScript

56

node.js. (n.d.). Node’s goal is to provide an easy way to build scalable networks. Retrieved

26 05, 2014, from http://nodejs.org/about/

Pieters, S. (2013, 05 28). Differences from HTML4. Retrieved 29 05, 2014, from

http://www.w3.org/TR/html5-diff/#new-elements

RequireJS. (n.d.). Retrieved 26 05, 2014, from http://requirejs.org/

Robson, C. (2011). Real world research. 3rd ed., John Wiley Sons Ltd

Web Education Community Group. (2013, 03 02). HTML/Training/What is HTML.

Retrieved 29 05, 2014 from

http://www.w3.org/community/webed/wiki/HTML/Training/What_is_HTML%3F

http://www.adlibris.com/se/sok?filter=publisher%3AJohn%20Wiley%20Sons%20Ltd

57

Appendix A – Wireframe 2.0

58

59

60

61

62

63

64

65

66

67

68

69

Appendix B – Wireframe 4.1

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Appendix C – System requirement specification

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Appendix D – Questionnaire

109

110

