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Abstract

The purpose of this thesis is to examine if, from a portfolio perspective, the Value at Risk decreases
when electricity is included as an asset to a portfolio of risk bearing assets and if this could have an
impact on risk hedging strategies. The portfolio standard deviation used to calculate the Value at
Risk is based on a Dynamic Conditional Correlation approach providing a time dependent corre-
lation. Three Nordic industrial companies make up reference objects for the quantitative analysis.
Findings show that electricity has a close to zero correlation, for all points in time, with all ad-
ditionally examined assets. Therefore, it has a significant diversification e�ect on the portfolio
variance and thereby reduces the Value at Risk. The portfolio weight allocated to electricity is
however very limited, thereby reducing the possible overall e�ect to hedging strategies.
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Chapter 1

Introduction

1.1 Background and Motivation

A company is generally exposed to a number of operational risks when performing its daily activ-
ities. If not encountered and hedged in best possible manner, these risks can have a large negative
e�ect on the company’s total profits. When specifically viewing a company within the production
industry, common risks are noted such as prices of commodities needed in the production, ex-
change rates, when having production and distribution in foreign countries, and interest rates for
loans financing their activities. These risks may not come as a surprise for the untrained eye,
but another risk that argues for a discussion is the volatility of the electricity price, which can be
studied on the spot market, both live and historically. The risk aspect of the electricity price is
especially interesting and necessary for companies in the electricity-intense production industries.
Many companies in these industries spend a considerable amount of money every year, when buy-
ing electricity needed for the production of their goods.

The general perception today is that each risk is encountered for and mitigated by each risk’s
associated division, e.g. the commodity price risk is handled within the purchasing department,
the foreign exchange risk (FX-risk) is allocated to the treasury department, as is the interest rate
risk (FI-risk). There is often no, or little, interaction between the di�erent divisions risk handling,
limiting the possibility of collaboration for risk management. A question is raised, and that is,
whether or not it is possible to manage these di�erent risks from a portfolio perspective. SEB,
the leading corporate and investment bank in the Nordic region, has highlighted this cause for
discussion with the curiosity of analyzing possible financial a�ects for a company to use a portfo-
lio approach when managing their risk exposures instead of the ’traditional’ approach being used
today. The problem, however, is the behavior of electricity prices when electricity is added as a
risk-bearing asset to a portfolio, being extremely volatile and having no correlation with other
goods. The spot market for electricity shows ’spikes’ in the prices, giving rise to an extreme
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volatility. As a consequence the correlation between electricity and other assets could possibly be
altered. This results in di�culties when accurately trying to calculate the variance of the portfolio
and the correlation between the di�erent risk bearing assets in the portfolio.
On the other hand, this particular behavior is one of the main reasons why it is interesting to add
electricity as an asset to the risk portfolio and to study the risk from the portfolio point of view.
With reference to Mats Forsell, Commodity Trader at SEB, the e�ects of adding electricity may
be particularly evident, as 25% of the commodity price risk is assessed to electricity. The text
below is written in the context of investing in di�erent assets, but the principles are the same for
this investigation - when analyzing how a company can decrease its total variance, hence the total
risk, when adding the electricity price to a company’s portfolio of risk bearing assets.

’The electricity market is volatile and o�ers therefore the opportunity to a high return- implying
a high risk. At the same time, the correlation with other assets, such as fixed income, foreign ex-
change and other forms of raw material, is low. This makes the investment in electricity attractive
seen as a complement to a well diversified portfolio or as a pure speculation product’[1].

The Global Financial Solutions department at SEB, GFS, is o�ering far-reaching risk financing
advisory to corporations and institutions within SEB Merchant Banking, with the aim to improve
a company’s financial outcome. They advise within all risk-related areas, such as financial market
risks, strategic risks and operational risks, as they are specialized in interest rate hedging, equity
hedging, commodity hedging and long-term foreign exchange hedging. In order to deliver top
services, GFS considers the stated approach, examining the risk of a portfolio when electricity is
added as a risk bearing asset, an interesting topic worthy looking into. This since SEB always
desires to provide the best possible solutions when it comes to a company’s risk management.

When GFS raised this cause for discussion, we saw a great opportunity to mathematically inves-
tigate the e�ects of adding electricity as an asset to a company’s portfolio of risk bearing assets.
In this way we were given the ability to test our numerical abilities based on a topic that we truly
found interesting with the hope of also providing value to GFS, SEB. With the help of electricity’s
rather special behavior, having low or none correlation with other risk bearing assets, it is inter-
esting to investigate how the total portfolio’s risk exposure for an energy intense company can be
altered when adding electricity as a risk bearing asset. A dynamic conditional correlation model
(DCC), taking time varying correlation into account, was chosen to get the best possible results.
This enables a time varying portfolio variance, both regarding the variance of the individual assets
as well as the covariance between assets, making it possible to study the e�ect for all points in time.
It also makes it possible to study the e�ect during specific time periods, such as financial crises, to
provide further noteworthy findings. With the motivation for SEB and for us, to provide top risk
management to their clients, we provide a study where electricity is added as a risk-bearing asset
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to a portfolio of traditional risky assets. This is done to examine, for di�erent points in time, how
the Value at Risk is a�ected.

1.2 Choice of Measurement
Value at Risk (VaR) is the choice of comparable measurement for this thesis. VaR is a statistical
technique to quantify the level of financial risk that a company or a portfolio is facing over a specific
period of time. VaR has been called the ’new science of risk management’[2] and since the technique
is focusing on potential losses, the approach is very suitable for this thesis. The VaR-statistic has
three components; a potential loss amount, a confidence level and a specific period of time. It is
a preferred market risk measurement according to the Basel II accord and a measure widely used
in the banking industry. The VaR will be based on a time varying portfolio variance to get as
realistic results as possible. Both the variance of individual risk bearing assets and the correlation
between them are subject to di�er for di�erent points in time. This will be solved by using a
Dynamic Conditional Correlation model (DCC). The DCC is a two-step estimation where the first
step is a univariate GARCH approach to obtain the individual conditional time varying variances
of each of the portfolios assets. The second step is the correlation estimation providing the time
varying correlation between all portfolio assets. DCC has the advantage of being a complex model
but following the two-step estimation approach greatly simplifying the computations by reducing
the number of parameters to be estimated. It entails that large correlation matrices easily can be
estimated hence allowing numerous assets. VaR, GARCH and DCC will be thoroughly explained
further on in the thesis.

1.3 Research Questions
In order to examine to what extent electricity is value adding in a Value at Risk perspective
and what is distinguishing for electricity as a risk bearing asset the following questions will be
answered. It will be the ones the thesis will be centered on with the aim to provide a solid and
fruitful conclusion.

• How are electricity prices behaving on the financial markets and with what other inputs of
risk bearing assets is it showing correlation or no correlation?

• Can the special properties and volatile nature of electricity price movements be seen as a
risk management complement?

• Using three di�erent energy intense industrial companies as inspiration, regarding their cur-
rent risk exposures, can electricity be added to the portfolio of risk bearing assets in order
to have a significant e�ect on the companies VaR?
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• If so- it is enough for the company to consider a di�erent risk hedging approach?

1.4 Purpose

The purpose of the thesis is to test, throughout quantitative analysis, what benefits an energy-
intense company gains by adding electricity to its’ portfolio of risk bearing assets. The results
and conclusion will be studied throughout the concept of Value at Risk (VaR) where the port-
folio variance input is time varying, both regarding the assets individual variance as well as the
correlation between assets. By comparing di�erent portfolio compositions for which we calculate
our VaR upon, we will then analyze the di�erence in the portfolios VaR to conclude the e�ect of
having electricity as a risk bearing asset in the portfolio. The diversification possibilities for the
portfolio are therefore tested, and a conclusion regarding how to construct the portfolio can be
drawn, having the electricity as an input variable or not. The test will be carried out on portfolios
with asset weights inspired by real companies, allowing us to stretch to a more flexible and allowing
framework. See Appendix A for portfolio weights.

1.5 Limitations

The thesis is subject to a number of limitations, which must be considered when reviewing the
both the mathematical outcome and the subsequent analysis and conclusion.

We have chosen to focus our investigation to the manufacturing industries due to their particular
high demand of energy in their production. After comparing di�erent industries, regarding the
energy and electricity consumption, we have come to the conclusion that the focus should lie on
the steel and metal industry and on the paper and pulp industry. They have, by far, the highest
energy consumption within their production, and therefore we consider these industries as the
most relevant ones to base the thesis upon[3]. SSAB, Sandvik and Stora Enso are the companies
relevant to the investigation when these limitations have been accounted for.

To further restrict the scope of the thesis, we have chosen to target the industries present in Sweden
and its surroundings. This limits the amount of data at hand and gives us the ability to maintain a
consistency throughout the analysis, leading to a more reliable analysis and conclusion. If desired,
the analysis is applicable to all of the Nordic region, since factors determining the electricity price,
demand and access to alternative energy sources are similar throughout the whole of the Nordic
region. The analysis and conclusion is however only applicable to this region since the factors are
subject to significant geographical di�erences.
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In order to model a credible portfolio variance the choice of risk bearing assets is of importance.
To limit the number of assets we only include the prominent risk bearing assets mentioned by the
investigated companies. After researching the chosen companies, there are a number of reoccurring
risk bearing assets mentioned as being of great importance. These assets are linked to three main
areas of risk, foreign exchange rate risk, interest rate risk and price risk of commodities. Electricity
price risk is part of the total price risk of commodities but will be handled separately in this thesis
since it is the di�erentiating asset.

To provide reliable results, we include as long a period of time as possible to account for seasonal
variations and di�erent economic business cycles. Also, since many of the mathematical models
are of a conditional nature, dependent on previous values produced by the model, long time series
are needed to get significant parameters. Ultimately deciding the period of time is the available
length of the data used. For the mathematical modeling the length of the data is 500 historical
weakly data points, approximately 10 years. This was less than desired but data points, further
back in time, for prices of commodities were non existing.

As mentioned in the paragraph above there was an issue finding relevant commodities with suf-
ficient price history lengths. The reason for this is that functional markets for commodities are
fairly new. The only commodity series with su�cient amounts of data was Nickel. This is a major
limitation which will have the biggest a�ect on the whole thesis. Nickel serves as a substitute for
all commodities used by the relevant companies, even when the commodities are entirely di�erent
from Nickel.

The data used will, to some extent, already be of a ’hedged approach’. This means that some of
the data series used will not be traded on a spot market, but rather on the derivatives market.
This applies to the electricity price, which is the 1 yr forwards price, and nickel price which is the
3 month future. The reason for this is to avoid to have to model electricity spot prices extreme
volatility, the same applies for nickel. The derivatives series used do have the spot prices as un-
derlying assets meaning price movements will follow the same pattern as the spot prices.

1.6 Sources of Information

The thesis has been based on research such as interviews, annual reports, sustainability reports
and historical price data for the di�erent risk exposed assets. With the appropriate and selected
data at hand, applicable mathematical models were chosen to model the time varying components
needed for the VaR-calculations.
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1.7 Outline
The theoretical background will be explained in Chapter 2 where both the current risk manage-
ment of the examined companies and the mathematical background for the quantitative analysis
is explained. First an overall explanation of di�erent risk management tools is outlined. Com-
mon financial instruments for risk management within commodities, FX, FI and electricity are
presented. Secondly the chapter will deal with the di�erent mathematical models and statistical
instruments being used for the mathematical estimation.

Chapter 3 will provide an explanation and introduction to the electricity price market. It explains
how the electricity price behaves on the market and answers questions, such as what factors deter-
mine the volatility. Also, trends and cyclicality are analyzed. It continues with an introduction to
the companies examined in the thesis. The di�erent companies will be presented and their relevant
risk bearing assets will be examined. Their general electricity consumption will be sorted out and
how they are mitigating the risk that is present throughout their activities.

In Chapter 4, the method adopted for this thesis is explained. The approach explains all di�erent
steps that guide us through the investigation. The data is then explained in detail, both the rea-
sons for the selection, the description for it and the modeling of it.

In Chapter 5 the results of the mathematical modeling is presented. Here it will be outlined in
what way electricity as a risk bearing asset has a�ected the VaR and the dynamics of the time
varying correlation presented.

Further on in Chapter 6, the results will be commented and analyzed. The portfolio approach
to risk mitigation will be discussed. Through a portfolio VaR perspective it will be analyzed if
electricity, as a risk bearing asset, is value adding or not.

The conclusion and findings are presented in Chapter 7 where the main conclusions are outlined.
Based on the conclusions, companies can choose to account for the findings or not.
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Chapter 2

Theoretical Background

The aim of the sections below is to explain the underlying theoretical background for the investigation-
both the current risk management of examined companies and the mathematical theory. The
companies, being investigated, will however be presented in the subsequent chapter.

2.1 Risk Management
The sections below will aim to account for the di�erent methods and strategies to mitigate the
financial risks that arise from the daily activities within the investigated companies, as well as the
background information for the implied risks. The risks, of interest and focus for the thesis, are the
ones that arise from fluctuations and uncertainty of prices for commodities, including electricity,
foreign exchange rates and interest rates. The financial hedging strategies are many, and therefore
the focus of this thesis will be on the ones applicable for the selected companies and the assets of
interest. For the same reason as there are two markets for the trade of electricity assets, there are
derivative markets for the other assets as well, in order to manage risk and avoid gambling.

2.1.1 Commodity Risk management

Many companies engaged in manufacturing activities use one or several commodities in their refine-
ment process. Electricity can be viewed as a commodity, but is handled separately in this thesis.
The price of commodities often account for a large portion of a company’s overall costs, especially
when using expensive raw materials. According to Oliver Whymans’s Energy practice, commodity
price swings are now considered the second-largest driver of earnings uncertainty at publicly traded
companies[5]. Managing this risk is becoming more important, and therefore moving up on many
companies’ agendas, increasing the roll of the procurement teams. The price for the commodities
used in the production process has a great impact on the total production cost of the produced
goods, and therefore have an impact on the profit made when selling the product. The selling price
of goods is often decided upon before production and changing prices is often a struggle especially
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when producing consumer goods. Therefore, managing costs is a very important factor in order
to avoid deteriorating margins. One issue, with commodity price risks, is the illiquidity of certain
commodities, which causes problems when trying to manage the risk.

The uncertainty implied by the above can however be managed by the help of risk management of
commodity price risks. The commodities in question, such as metals and fiber, and can be treated
in the same manner- by so called financial contracts, or derivatives. The contracts that are most
commonly reported in the annual reports of interest, are forward contracts and futures contracts.

Forward contracts are entered by two parties- the buying and the selling party- where the buying
party is guaranteed a specified quantity and quality at a pre agreed price at a future decided
date[6]. It is usually an over-the-counter traded product suitable for two parties having di�erent
point of views of what to expect of the future price of a certain commodity. The forward contracts
are specifying quantity, quality and delivery periods and if any of these parameters are not met,
the deviating party is usually obligated to compensate the counterpart and therefore it is di�cult
to extinguish the contract[6].

Another financial contract that is commonly used, and even further applicable for risk manage-
ment, is futures contracts. They include the same properties as forward contracts, but also the
ability of extinguishing the contract through an o�setting financial strategy. This is explained
in the next paragraph. Futures are traded on regulated exchange market places where traders
and brokers are meeting bids and o�ers, enabling them to establish the forecast prices before the
commodities are traded[6]. The main di�erence between a forward and a futures contract is that
the futures is marked-to-market daily, meaning that daily changes are settled for, day by day,
whilst the forward contracts are, only settled once at the end on the contract[7]. Another major
di�erence between the two contracts is that futures contracts are usually standardized and traded
on exchange markets whilst forwards are traded over the counter, OTC, in order to customize it.

O�set hedging allows the executing company to extinguish or liquidate the future position by
engaging in an opposite but equivalent position by which the net position for the company becomes
zero. By that, no further gains or losses can be made from that position and further associated
liabilities are removed[8] as well as any risk of price volatility[9]. This way of managing risk is
actually more commonly used than realizing the actual futures contract[8].
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2.1.2 FX Rate Risk Management

Companies have several components that are a�ected by a change exchange rates. The LSE- Risk
& Stochastic Group defines exchange rate risk as the variability of a firm’s value due to uncertain
changes in the rate of exchange[10]. Forecasting exchange rates, in a correct way, is extremely
di�cult, so the focus for companies is often to correctly measure their exposure to fluctuations in
the relevant exchange rates. There are three main areas of exchange rate risk- transaction risk,
translation risk and economic risk[10]. In addition, to the above stated, there are also several indi-
rect risks, such as overseas companies becoming more competitive due to movements in exchange
rates.

Transaction risk is the cash flow risk having an impact on receivables, payables and possible div-
idends to be received. If a change in the exchange rate occurs between the fixing of the contract
and the date of payment there is a possibility of receiving less, or paying more, than stated in the
contract. This occurs if the local currency value of a foreign currency receivable falls or if the local
value of a foreign currency payment rises.

Translation risk is the balance sheet risk having an impact on the value on assets and liabilities
with foreign origin. At the end of every accounting period the value of overseas assets and liabilities
must be translated into the accounting currency. This might have a negative e�ect on the value
of the assets and an increasing e�ect on the liabilities. Depending on the accounting regulations,
the translation exchange rate may be an average over the period or the end of the period value.

Economic risk is the market value risk having an impact on the core business compared to individ-
ual transactions as the previous explained risks. The present value of the firm’s future cash flow is
dependent on the exchange rate. A change in exchange rates will have an e�ect on revenues, sales
and exports, and operating expenses, inputs and imports.

Risk management is especially occurring when it comes to the foreign exchange market. After
investigating the di�erent companies, the FX rate risk is of major importance as the companies
have a high volume of cash flow in foreign currencies. If a foreign exchange pair is properly hedged,
a trader with a long position is protected against downside risk and a trader with a short position
is protected against upside risk. The first contract that appears on the FOREX market is the
short-term spot contract, which by implication is traded on the spot market. Two days are given
as the delivery period where the exchange rate is set to two days ahead. The short-term nature
of this contract is in fact the main reason why a hedge is needed, which leads us to the most
commonly traded contract- the currency forward.
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By foreign exchange forwards a company can be protected against fluctuations in the currency
rate, also, the exact future cash flow can be predicted and calculated in advance. The deal is
made by the specific company and a trader, for instance a bank, where the company is guaranteed
to buy or to sell a specific currency at today’s rate but with delivery at a future date. So, for
instance, if the company knows in advance that a large transaction in a foreign currency is going
to occur in 6 months time, the FX currency on that future date, in 6 months time, is going to be of
interest. The bank can then o�er the company to trade on today’s foreign exchange rate but to be
delivered in 6 months. The contract is binding[11]. The forward contract can also be converted to
a currency swap, whereby the currency market is making use of a ’two-legged’ approach ,with two
future dates, instead of the above ’one-legged’ approach, where only one future date is of interest.
The currency swap allows the company to ’roll out’ the position to another future date, as the
contract contains two di�erent dates, which is beneficial if the company is having uncertainties of
when the cash flow is needed. By swapping the currency it is also possible to roll just a part of
the cash flow to another date. When using forward contracts and currency swaps, the foreign ex-
change rates are subject to interest rate fluctuations, taking the time perspective into account. The
closer to the spot-date, the lower the change in basis points that the interest rate can come to vary.

Another form of contract that is commonly exercised on the foreign exchange market is foreign
exchange options, which serve in two di�erent ways. The fundamental function is still to protect the
company against foreign exchange rate fluctuations, but as an add-on, the options also enable the
company to increase its return by taking a speculative approach when the exchange rate varies[12].
So, at the same time as the company is protected against negative rate changes, it can benefit
from positive rate changes since the option gives the party the right, without being obligated, to
exercise the option[13].

2.1.3 FI Rate Risk Management

A company is subject to interest rate risk if it possesses any interest-bearing assets or liabilities, of
which loans and bonds are two common examples. Depending on the assets and their attributes
a change in the interest rate will have di�erent e�ects on the company. The attribute having one
of the largest e�ects is the length of the loan term, limiting the possibility to refinance or change
the exposure to the interest rate. According to Cima and their investigation of interest rate risk
management, the interest rate risk is probably one of the most important of all financial risks
a�ecting a company[14]. If a company has a liability linked to the market’s interest rate, a change
in the interest rate will have an impact on the cost of borrowing. Interest income on monetary
investments and the value of current bonds will also be a�ected by a change. Indirect e�ects might
include a decrease in buying power from costumers, which has an impact on the operating income.
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To encounter for the above, the companies are o�ered several methods that can mitigate the in-
terest rate risk. By entering a deal to hedge potential future interest rate increases, the company
can be guaranteed today’s rate even if the loan is to be taken tomorrow. This can be done up to
one year in advance[15]. Another option for the company is to engage in an interest swap, which is
a widely used contract today. It enables the company to be flexible in their liability management
with a possibility to adapt the interest rate risk for a loan to current market conditions. In practice
every interest rate agreement is customized, where two parties agree to change payment flows with
each other. For example an industrial company may prefer to have a pre-determined interest rate
to pay to the bank every month, in order to control the costs. In turn the bank agrees to pay the
di�erence between the real interest rate and the pre-determined interest rate back to the company.
This strategy allows the company to control the interest rate costs without a�ecting the balance
sheet nor the underlying liability[16].

Furthermore, the company can engage in a swaption, which elaborates the above mentioned inter-
est swap by allowing the company to have the above wanted features but at a future date. The
part taking the long position in the swaption therefore has the right, but not the obligation, to
exercise the swaption at the date of interest[17].

2.1.4 Electricity Risk Management

As mentioned below in section 3.1 the electricity price possesses rather di�cult features determin-
ing its price. The demand and supply factors implies the ’volume’ risk, where participants have
di�culties in predicting the correct volume and quantities of consumption or production. The
supply/demand matching is further complicated since storage of electricity is costly on the supply
side at the same time as the demand side shows low flexibility[18]. These aspects give rise for risk
exposures when a company faces volatile electricity prices as they are buying electricity for their
production.

The Nord Pool Spot is still the most common place for the Swedish electricity-labor[19], but looking
more into companies that demand a high quantity of electricity and where actual price risks arise,
companies today manage the risk more commonly via private bi-lateral power purchase agreements
in order to protect the company from volatility. As short-term contracts are not enough to en-
counter for the volatility, long term contracts are increasingly popular, allowing buyers to hedge
against price booms and sellers to hedge against price bursts[18]. To meet increasing demand for
futures, Nord Pool developed the futures market into a financial market and today Nasdaq OMX
Commodities is responsible for the trading with futures and forwards. These financial contracts
are used for price hedging and risk management with contracts containing time horizons up to six
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years. The price for the future is based on the spot price setting a reference point[20]. The fi-
nancial market for the contracts meets the increasing demand for information, availability, trading
and settlement mechanisms, providing high liquidity on the market. In the same way as above,
the futures and forward contracts di�er as to how settlements are carried out, but both contracts
give rise to the same profit and risk[21]. As well as the use of contracts, where a price is set to a
quantity to be delivered at a certain point in time, many companies engage in generating electricity
within the production processes. This enables them to totally control the consumption adapted
to their particular production and demand. Since 1999 the financial market also o�ers trade in
power options, which are standardized products with pre-determined contract specifications[21].

After further investigations, consisting of both telephone interviews as well as personal meetings
with industry representatives, a more thorough explanation of how the companies protect them-
selves against volatility in electricity prices was carried out. The general strategy is to use a
so-called ’layering hedging strategy’, whereby companies are refining exposures and layering in
hedges throughout the year instead of setting the hedging strategy for the entire year at the be-
ginning of the year. By doing so, the companies experience more flexibility through varying the
coverage and forming new forecasts as time goes by. Coverage mismatch due to uncertain expo-
sure forecast can also be avoided[22]. The securing of electricity purchases is carried out so that
the time horizon, and the predicted quantity needed, follows a downward sloping linear approach.
This extends the traditional layering hedge approach. First the company predicts the total energy-
demand for the specific year they want to hedge. The next step is to engage in financial contracts
so that a rather high percentage of the total electricity purchases are secured to a pre-determined
price coming into the first quarter of the fiscal year. Further into the year, the hedging quantity
decreases, allowing the company to adapt to new market conditions. The downward sloping model
is followed throughout the year and the goal is to keep to the plan, but still allowing the manager
to alter the rate of the hedged quantity, given that he returns to the plan when his risk mandate
is exercised. What should be mentioned is that layering hedging strategies are not just applicable
to electricity- today it is widely used throughout numerous types of assets.
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Figure 2.1: Electricity hedging approach
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2.2 Theoretical Models

To obtain the comparable measure, Value at Risk, the data is subject to several mathematical
models to deliver the desired output. The following sections will introduce the mathematical mod-
els used along with mathematical tests and theory to test and prove critical conditions. ARMA,
GARCH, DCC and finally V alueatRisk are the models used to first model the conditional time
varying portfolio variance and then computing the weekly value at risk. A thorough explanation
of all steps and explanations of input and output is explained in section 4.3, Estimation Method.

2.2.1 ARMA

Autoregressive moving average or ARMA process is a linear model used for describing a time series
over time. It is the sum of an autoregressive process of order p and a moving average process of
order q.
According to Brockwell and Davis [28], if the process {X
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} is stationary and if for every t,
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2.2.2 GARCH

Generalized autoregressive conditionally heteroskedastic (GARCH) models are used for expressing
conditional variance as a linear function depending of past variances and observations.
According to Jondeau [29], the GARCH(p, q) model is defines as
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< 1 ensures that the model is strictly stationary and has
finite variance.

In order to obtain the optimal parameters the GARCH model uses maximum likelihood estimation.
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Estimating a GARCH(p, q) with m = max(p, q) focuses on the conditional likelihood function:
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Solving for ˆ log(LT (◊))
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= 0 maximizes the likelihood equation.

In practice the solution is gained by computing the log-likelihood function, log(L
T

(◊(0))), for some
theta, ◊(0), and iterating for di�erent thetas, ◊(1), ..., ◊(p) until the log-likelihood converges to a
maximum value. The thetas are vectors containing the unknown parameters of the model, in the
GARCH(1, 1) case ◊ = [Ê, –, —].

It can be shown that when using the GARCH model Á2

t

belongs to an ARMA process which is a
nice feature since, in this thesis, an ARMA process is used to obtain the residuals.

For this thesis a GARCH(1, 1) model is su�cient. This implies that the variance at time t depends
on the previous squared residual and variance giving the following model:
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In terms of calculation power needed this is a pretty simple model since there are only three
parameters to calculate, Ê, – and —.

2.2.3 Stationarity

To use the GARCH estimation there exists a condition that the process being modeled, {X
t

}
, must be stationary. According to Francq and Zakoian [30] there are two types of stationarity,
Strict stationarity and Second ≠ order stationarity. The second definition being less demanding
than the first and the one of interest to this thesis since it is su�cient for the models used.

The process {X
t

} is said to be second-order stationary if:

23



E[X2

t

] < Œ ’t œ Z;
E[X

t

] = m ’t œ Z;
Cov(X

t

, X
t+h

) = “
x

(h) ’t, h œ Z;

meaning it has finite variance, constant mean which is not dependent on t and the covariance
function only depends on the time lag h.

A simpler example of the second ≠ order stationarity is called white noise. It is an important
process since it allows for more complex processes to be modeled.

The process {Á
t

} is said to be a weak white noise if, for some positive constant ‡2:
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2.2.4 DCC

To model the dynamic correlation between assets a Dynamic conditional corelation, DCC, model
is used. It is an alternative approach to the Constant conditional corelation, CCC model pro-
posed by Bollerslev in 1990. The di�erence is that the conditional correlation matrix is time
varying meaning that the conditional covariance matrix depends on the both the conditional vari-
ances and the conditional correlations.

According to Jondeau [31] the conditional covariance matrix is given by:
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24



D
t

=

Q

ccccccca

‡2

1,t

0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 ‡2

n,t

R

dddddddb

and �
t

, the conditional correlation matrix defined by:

�
t

= diag(Q
t

)≠1/2 ◊ Q
t

◊ diag(Q
t

)≠1/2

Q
t

= (1 ≠ – ≠ —)Q̄ + –(u
t≠1

uÕ
t≠1

) + —Q
t≠1

u
t

= D
≠1/2

t

Á
t

= {Á
i,t

/‡
i,t

}
i=1,··· ,n

Q̄ is the sample covariance matrix of u
t

. If – and — satisfy 0 Æ –, — Æ 1 and – + — Æ 1 the
conditional correlation matrix, �

t
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2.2.5 Portfolio Variance

When calculating the variance of a portfolio consisting of more than one risk bearing asset the
correlation between assets must be considered. The variance becomes a function of the variance
of the individual assets, the weight of each asset as well as the correlation between the assets.
Given that the correlation between assets is less than one the portfolio variance is lower than the
weighted average of the variance of the individual assets, this due to the diversification e�ect.

According to Bode, Marcus and Kane [32] the general formula for the portfolio variance, ‡2
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given by:

‡2

p

=
nÿ

i=1

nÿ

j=1

w
i

w
j

Cov(r
i

, r
j

)

in the case of a portfolio consisting of two assets the variance is given by:

‡2

p

= w2

i

‡2

i

+ w2

j

‡2

j

+ 2w
i

w
j

‡
i

‡
j

fl
i,j

‡
i

‡
j

fl
i,j

= Cov(r
i

, r
j

)

25



Where Cov(r
i

, r
j

) is the covariance and fl
i,j

is the correlation between the returns of asset i and
asset j.
Constraints on the weights are; q

n

i=1

w
i

= 1 where w
i

is the portfolio weight of asset i.

Diversification When considering a financial assets there are two types of risk, systematic risk,
also known as market risk and nonsystematic risk, also known as security-specific risk. According
to Bode, Marcus and Kane [32] the systematic risk will always be present but through diversifi-
cation all nonsystematic risk can be eliminated. The power of diversification to decrease risk can
be said to be limited by systematic risk. To gain advantage of the diversification e�ect one must
consider a portfolio perspective where the correlation between assets is the factor responsible for
decreasing the nonsystematic risk, hence reducing the overall portfolio risk.

Consider an equally weighed two asset example:
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Since the correlation is less than one putting the assets into a portfolio perspective would give:

E[r
p

] = w
a

E[r
a

] + w
b

E[r
b

] = 11%
‡2

p

= w2

a

‡2

a

+ w2

b

‡2

b

+ 2w
a

w
b

‡
a

‡
b

fl
a,b

= 1.72%
‡

p

=
Ò

‡2

p

= 13.1%

Through the diversification e�ect the portfolio has the same expected return as in the case of
individual assets but the standard deviation is approximately 3% less. If the correlation between
the assets would equal 1, fl = 1 then the standard deviation of the portfolio would be the same as
in the case of the individual assets.

2.2.6 AIC Criterion

There are several ways of deciding what order of the autoregressive and moving average process
to use in the ARMA(p, q) model, see section 2.2.1. Choosing the best suited order of p and q

is often a trade o� between estimation error and complexity. Choosing a higher-order model will
often result in a smaller estimation error but at the same time add complexity to the model, often
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resulting in several statistically non-significant model parameters.

As mentioned there are several approaches to deciding the optimal order of the model. This thesis
will introduce a popular and widely used method called Akaike’s information criterion (1974) or
AIC. The model aims at minimizing the information loss by combining maximum likelihood and
the Kullback-Leibler information (1951).

The AIC criterion, according to Mazrolle [33], can be written as:

AIC
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= 2k ≠ 2 log(L)

k is the number of parameters estimated and L the value of the maximum likelihood of the model.
Since the model used is the ARMA model where the estimated errors, Á
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, are normally distributed
the AIC criterion can be simplified to:
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One must however be careful when using AIC Õs criterion. The information criterion is most reliable
for small values on the order and large sample sizes. For larger values of p and q or sample sizes
close to the chosen order the parameters become unstable.

2.2.7 Ljung-Box Q-test

Ljung-box Q-test is a test used for testing independence. It is based on a Portmanteau test and
proposed by Box and Pierce in 1970. The modified test statistic was introduced in 1978 and
provides better finite-sample properties. Jondeau [34] states that the null hypothesis being tested
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2.2.8 Q-Q Plot

A Q≠Q plot, or quantile plot, is a graphical measure used to determine if two probability distribu-
tions are the same by plotting their quantiles. If the quantiles of a known probability distribution,
for example the quantiles from a simulated normal distribution, is plotted against the quantiles
of a series with unknown probability one can determine if they belong to the same distribution
or not. Essentially one compares the theoretical quantiles consistent with the desired distribution
and the empirical quantiles of interest. In the case of the two distribution being the same the plot
will be linear.

According to, Jondeau [35] , the Q ≠ Q plot is obtained by the following procedure:
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is the inverse to the normal CDF.

2.2.9 T-statistic

A t ≠ statistic is a way to test if an estimated regression variable is significant or not. It measures
how many standard deviations the estimated parameter is from zero. The test statistic is a
relatively simple measure only consisting of the estimated parameter, its standard deviation and
sometimes also the true mean or the mean given given by not rejecting the null hypothesis. It is a
similar measure to the z-score but relies on an estimated standard deviation instead of the known
standard deviation of the parameter.
According to Ash [36], the test statistic is given by:

t
ˆ

—

= —̂ ≠ —
0

‡
ˆ

—

where —̂ is the estimated parameter, —
0

is the true mean or mean according to the null hypothesis
and ‡

ˆ

—

the standard deviation of the estimated parameter.
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If —̂ is a consistent estimator and the sample size is larger then the distribution of the t will
approach the normal distribution meaning that the t ≠ statistic will asymptotically belong to a
standard normal distribution.

In the case of the t belonging to the normal distribution and assuming p-value is the significance
level of rejection then it is possible to derive an absolute value for the t ≠ statistic.

p ≠ value = 2„(≠|t|)

given a p-value of 0.05 and the null hypothesis being the rejection of the significance of the estimated
parameter

Reject H
0

if p < 0.05
equals

Reject H
0

if |t| > 1.96

This gives us that a t ≠ value above 1.96 will give us, at a 95% level, that the parameter is
significant given that the sample size is large enough.

2.2.10 Value at Risk

V alue at Risk, V aR, is a measure of the maximum amount of expected loss given a specified time
frame and level of confidence. To use the V aR calculation one must assume that the price of the
assets follow a normal distribution. There are three di�erent methods of calculating V alue at risk,
the variance/covariance model will be the model in this thesis. The other two are through histor-
ical simulation and monte carlo simulation.

According to Bissantz, Bissantz and Ziggel [37] the V aR is calculated by:

V aR
–

(P ) = E[r
p

] ≠ �≠1(–)‡
p

where E[r
p

] = q
n

i=1

w
i

E[r
i

] the expected return of the portfolio, ‡
p

the portfolio standard deviation
and �≠1(–) the quantile for the chosen confidence level.
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Chapter 3

Introduction to the Electricity Market
and Investigated Companies

3.1 Electricity Price Movement on the Market
The market for electricity is a fairly new market. Up until 1992, all European electricity markets
were regulated, meaning that the markets were state-owned. Norway was the first country to
deregulate the market with Sweden, Denmark and Finland all having followed suit by 1999. A
combined market called Nord Pool emerged consisting of all four countries electricity grids. Today
Latvia, Estonia and Lithuania are also included in the cooperation[4].

Currently electricity is traded on two separate markets, the spot market and the derivatives mar-
ket. The spot market is owned and operated by the grid companies and approximately 75%[4]
of the consumed electricity is traded through Nord Pool. The spot price is determined by tak-
ing the average price of each of the 24 hourly prices. In 2011 the annual turn over on the spot
market was approximately 130 billion SEK[4]. Due to the volatile nature of the spot price a
derivatives market emerged. The derivatives market is owned and operated by Nasdaq OMX trad-
ing forwards, futures and options with a delivery period of up to 5 years. The underlying asset
for these contracts is the price on the spot market. Annual turnover for the derivatives market is
substantially larger than for the spot market, in 2011 the turn over was roughly 900 billion SEK[4].

Electricity has a big di�erence compared to other commodities, its limited ability of being stored.
What ultimately has the most e�ect on the electricity price is however the weather. In the Nordic
region close to 60%[4] of the electricity production comes from hydropower. The amount of pre-
cipitation therefore determines the water level in the reservoirs and has a great e�ect on the spot
price. Below is a graph showing the spot price and water levels[4].
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Figure 3.1: Spot price and water levels

Demand is a second factor a�ecting the price levels, with prices showing distinct seasonal varia-
tions. During cold and harsh winters demand rises whilst the summer season and weekends show
a drop in demand. One explanatory factor being the decrease in use from the industry.

Weather is not the only factor influencing the price. Stoppages in nuclear power production and
power grid failures give rise to price spikes. Also what happens on the continent has an impact
on the price in the Nordic region. The interlinking between the Nordic power grids and the rest
of Europe adjusts for over production and thereby a�ects the Nordic price levels. In a long-term
perspective, there are several macro economic variables that have an impact. In recent years the
ban on nuclear power in Germany is a prominent and highly important example.

Taking all the above into account, it follows that electricity price movements are hard to model
and predict. This is one of the main reasons why electricity prices have a volatile behavior on the
market, which was mentioned in section 1.1.

3.2 The Energy Intense Companies
In accordance with ekonomifakta.se, the electricity consumption in Sweden has had a steady growth
since 1970. Di�erent sectors, such as the industry, the housing market and the service sector all
follow the same trend with an increase of 120% in the total electricity consumption[23]. The indus-
try in Sweden has an intense consumption of electricity and the increase from 1970 to 2012 adds
up to a total of 56%, from 33 TWh to 51, 5 TWh on a yearly basis[23]. The increase is greatly due
to the fact the oil consumption has been declining within the Swedish industries.
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Narrowing down the electricity consumption span, only investigating the industry sector, the most
energy intense companies are found within the steel and metal industry and the paper and pulp
industry[24].
For the thesis companies within these two industries will be analyzed, based on their significant
electricity consumption. These selected companies will stand as inspiration when deciding what
risk bearing assets to include in the portfolio and latter the portfolio weights assigned to each of
the assets.

In the sections below the examined companies are presented. The information is mostly retrieved
from the companies annual reports, where relevant information regarding their financial risk bear-
ing assets is of priority. The aim of studying the companies is to gain an understanding of what
risk bearing assets are the most prominent and how they are hedged today.

After reviewing the companies annual reports, the financial risks of greatest importance are foreign
exchange risk, commodity risk and interest rate risk. The electricity price risk will also be included
for previously stated reasons. This risk is not often subject to discussion in the annual reports,
therefore interviews have been held with the companies Energy Managers. Through the interviews
an understanding of how electricity is purchased and hedged has been obtained.

3.2.1 SSAB

SSAB is a world leading producer of high-tensile steel, with production both in Sweden and in
the United States. SSAB’s products are developed in close interaction with its clients, in order
to create a stronger, better and a more sustainable world. Their sales are spread all over the
world where their high-tensile steel is superior, as it contributes to a reduced weight, compared to
ordinary steel. Additional advantages include increased strength and life span of the steel.

SSAB is working actively to identify and analyze the risks that the company is exposed to and
how to mitigated these risks is an area of priority. The risk manager cooperates with the di�erent
divisions in order to identify the di�erent risks derived from the industrial processes and financial
activities.

In the sensitivity analysis, in the annual report, the risks SSAB are exposed to, and to what
extent they can a�ect the results, are presented. The conclusion, that the commodity price risk
is the one of largest importance, can be drawn. Secondly, after price changes in raw materials,
foreign exchange rate di�erences has the largest possible a�ect on the results. A third aspect, high-
lighted in the sensitivity analysis, is a change of the interest rate level. As a comparison, SSAB
considers the interest rate risk (FI-risk) to be a third of the foreign exchange rate risk (FX-risk)[25].
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The prices of raw materials, such as steel and ore, are strongly a�ected by cyclicality in the econ-
omy. Since the steel industry is an industry associated with high fixed costs, due to the large
investments needed, the cyclicality is a prominent risk factor for SSAB. This results in an in-
creased, and di�cult to hedge for, sensitivity to changes in the economy. SSAB’s solution to
this problem is investing in niche-products[25]. Regarding the prices of raw materials, the market
has been leaning towards more short-term agreements. This has contributed to a more volatile
market, adding risk to the cost of purchasing materials. This transition has forced SSAB to enter
short-term agreements with the sell side[25], on order to limit the risk.

The foreign exchange risk in SSAB’s activities is mainly derived from the translation risk and the
currency conversion risk, when accounting for the net assets in foreign subsidiaries. This issue
is handled by Equity Hedging, enabling SSAB to borrow in the specific currencies of interests
to cover for the accounted net assets. Hedging the majority of the currency flows, which mostly
consists of purchasing of coal and ore in USD and sales in EUR, mitigates the transaction risk.
Smaller short-term transaction flows in foreign currencies, appearing in connection to sales and
purchasing, are not hedged[25].

SSAB is fixating the interest rate level, on average, for around one year ahead. The duration is
possible to alter with help of interest swaps, meaning the fixation can come to be up to 2.5 years
ahead[25].

In reference to an interview with Thomas Hirsch, manager at SSAB’s Energy Department, the
company both buys electricity on the market and generates its own electricity. By generating
its own electricity the risk exposure towards volatility in electricity price movements is limited.
During 2013 SSAB consumed a total of 1.5 TWh electricity where 0.492 TWh electricity was
generated within their production. SSAB’s electricity purchases are managed completely by an
external portfolio manager. The managers task is to hedge 95 ≠ 100% of the predicted electricity
consumption, for the year, coming into Q1 and further in in Q1, the total hedge should stay at
the same level. They hedge in advance for 3 years predicted electricity consumption by a layered
hedging strategy. The strategy follows a downward sloping linear approach throughout the three
years. According to Thomas Hirsch the plan is to be followed, but the manager is allowed to
deviate from it to a certain extent, given that he returns to the plan when his risk mandate is
exercised.

33



3.2.2 Sandvik

Sandvik is a world-leading high-technology engineering group, o�ering advanced products in more
than 130 countries. Their unique expertise is within materials technology and the competence that
Sandvik possesses regarding processing systems. Within their five business areas, Sandvik Mining
and Sandvik Construction are two examples, each area have the responsibility for research and
development, production and sales of their products.

Sandviks financial risk management organization has the objective to create value by managing
the financial risk exposures that Sandvik face throughout their business and through their financial
strategies. According to the annual report, and a separate financial risk management report, Sand-
vik are exposed to the same risks as SSAB. Theses risks are however slightly di�erently ranked
sorted by possible a�ect on the results. According to Lars S Andersson, Category Manager at
Sandvik, foreign exchange rate risk is considered the most crucial risk to hedge. Unpredictable
currency fluctuations have the, by far, largest possible a�ect on the total operating profit for the
company.

The foreign exchange rate risks refers to the possible exchange rate movements that may a�ect the
result for the year. Sandvik are o�ering their customers to pay in their local currencies through
their global sales organization. Therefore the transaction exposure is related to global sales and
purchasing in a wide range of foreign currencies. Production is concentrated to a number of
countries making it possible, to some extent, to cancel out sales and production flows in foreign
currencies. Sandvik has the mandate to hedge transaction exposures and the average duration for
the hedged volume in 2012 was around 1.4 years[26].
Regarding the translation exposure, Sandvik’s subsidiaries’ receivables and liabilities are currency
hedged. This reduces the translation risk but the profits and losses, of the subsidiaries, are still
bearing a translation risk. This risk arises when the results are translated into SEK, by using
the average exchange rate for the period. The same applies to the net assets, which refers to the
subsidiaries’ shareholder equity. Additional currency risks, that arises internally, are managed by
using various derivatives[26]. A combination of the transaction risk and translation risk make up
for the combined exchange rate risk Sandvik are facing.

If changes occur in market interest rates, the company’s net interest items may be a�ected. The
impact is determined by the terms of the agreements. Both the investments and liabilities are
a�ected, the net e�ect is dependent on the size of the positions. For the investment items the in-
terest rate risk is considered to be low. This since surplus liquidity is placed in bank deposits and
in money-market instruments with a duration of less than 90 days. For the borrowings, liabilities,
the interest rate risk is of higher concern. To mitigate the risk interest rate swap agreements are
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entered. The financial risk manager is allowed to alter the debt portfolio and its average fixed-
interest terms, assuring that the duration does not exceed 48 months[26].

Sandvik is also experiencing risk exposure towards prices of raw materials, as they tend to vary
over time. Sandvik’s largest commodity price risks are primarily concentrated to nickel and elec-
tricity. Sandvik is one of few examined companies that illustrate the importance of electricity price
movements and how it is a major risk for the company. The price risk of raw materials is partially
hedged by the use of financial contracts. The metal price risk is for instance managed by an o�set
hedging strategy[26].

In reference to Sandvik’s annual report and an interview with Lars S Andersson, the electricity price
is continuously hedged via derivatives. The total consumption of electricity is bought on the market
and during 2012 the company used 900 GWh electricity. The hedging and the management of the
financial derivatives are coped by the external managers Statkraft, Vattenfall and Skelleftekraft.
All have a hedging horizon of 4 years. Layer hedging is used, with a downward sloping linear
curve, where the goal is to have 85% of the yearly predicted consumption hedged coming in into
Q1. Further into the year, the hedging level should have risen to 95% of the remaining yearly
predicted electricity consumption. The managers have a mandate to deviate from the plan to a
certain extent.

3.2.3 Stora Enso

Stora Enso is a Swedish-Finnish world-leading company within sustainable forest industry. They
serve in 35 di�erent countries spread out all over the world. Its main products are paper, bio-
materials, wooden products and packaging products. By focusing on renewable material, the
company meets the rising global challenges in terms of material and material handling. Their
products have therefore significant advantages for the planet and for the companies on it.

The risk management is of great importance for Stora Enso. The risky assets of importance for
this thesis are noted in the annual report, which Kaarlo Höysniemi the Vice President of Stora
Enso especially referred to. They are stated as the interest risk, currency risk and commodity
price risk, in particular for fiber and energy. By using di�erent financial instruments to hedge
for these risks, they aim to decrease earnings volatility and to have a cost-e�ective funding in the
company[27]. According to their sensitivity analysis, the risk exposures are ranked as the foreign
exchange risk to be the highest, followed by the prices for raw materials including electricity, and
then the interest rate risk.

The company is facing currency transaction risks when exchange rates fluctuate. This is extra
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evident for Euro as Euro is the company’s reporting currency. Stora Enso production facilities,
the sourcing of raw material and sales are spread out over the world and the major currency flows
occurs in SEK, USD and GBP. The group desires to hedge 50% of the predicted currency cash
flows up to 12 months in advance[27] via foreign exchange forward contracts and foreign exchange
options[27].

The risk exposures that appear in relation to commodity and energy price risk volatility can come
to a�ect the financial outcome to a great deal. The commodity risk is hedged to the extent that is
economically possible. In addition to traditional commodity contracts, Stora Enso has major joint
venture interests in forest companies in countries where the production occurs, such as in Finland,
Sweden, Brazil and Uruguay[27].

Energy risk management is of great importance and financial energy hedges and long-term deriva-
tives are a part of the energy price risk management. In addition to having physically fixed price
purchase agreements, the company also have a 14.8% holding in a privately owned group of com-
panies in the energy sector[27]. 35% of the electricity used is also generated internally, in order
to control the costs and supply[27]. Half the consumption is however relied on outside suppliers,
which makes the company exposed to market fluctuations in energy prices. This allows for hedging
strategies to be applicable[27].

If the interest rates were to fluctuate the interest expense of the company would be a�ected. By
the use of interest swaps the company is enabled to synchronize the interest costs with earnings
over the business cycle and by that mitigate the financial e�ects of interest rate fluctuations. Stora
Enso is aiming to hedge with the duration of 12 months but is allowed to deviate between 3 and
24 months[27].
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Chapter 4

Method

4.1 Approach

The thesis aims to evaluate how a company’s VaR is a�ected if electricity is added as a risk bearing
asset to the portfolio of risky assets, and if the di�erence is significant enough to suggest a change
in possible hedging strategies. Companies within the energy-intense sector have been examined,
where three di�erent companies ended up serving as inspiration for the thesis. External data has
been provided, enabling testing and evaluation of di�erent portfolio compositions and examining
which will benefit the VaR statistics the most. The exact mathematical procedure is explained in
section 4.3 but to understand the methodology used, the process in outlined below.

• Di�erent risk exposed assets will be identified as suitable for portfolio modeling. The three
selected companies will be the base for which assets to examine and how the di�erent input
variables are weighted

• Appropriate data is chosen, showing price history of commodities, foreign exchange rates as
well as historical interest rate levels

• The conditional time varying variance will be modeled separately for each asset and then
subject to a dynamic conditional correlation model to attain a time varying covariance matrix
for the assets. Combining the di�erent chosen asset weights with the covariance matrix will
result in comparable time varying portfolio variances.

• The VaR will then be calculated with the weights obtained from studying the chosen com-
panies. Two portfolios for each company is examined, one containing electricity as an asset
and one without electricity.

Hopefully conclusions can be drawn from the findings derived from the Value at Risk regarding
electricity as an input and a given auxiliary recommendation.
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4.2 Data

4.2.1 Data Selection

Investigating energy-intense industries is an extensive topic. Their business and production is a
material-intense industry, where many factors can contribute to risk exposures. To narrow the
investigation down to an approachable and solid thesis several limitations are to be made. Inspira-
tion was to be found in the annual reports where it was easy to spot the assets that contribute to
the largest proportion of risk. The following assets were selected; for the FX rates Dollar, Pound
and Euro were selected. Theses are the currencies having the largest total cash flow for the studied
companies, thus bearing the foreign exchange rate risk. The spot price data for the FX series is
used, since the exchange spot market is one of the most liquid and well functioning markets in the
world. The recurring commodities mentioned are nickel, iron and ore, all input materials for the
production of goods. Iron and ore do however have to short of a price history to provide su�cient
results for the mathematical modeling and are therefore omitted. As a consequence the commodity
risk is represented solely by nickel. With reference to Mats Forsell, Commodity Trader at SEB,
Nickel and other base metals follow the same standard. The most liquid contract is the 3 months
future. The future contract is updated everyday meaning that the future of tomorrow is another
than the one of today. This is unique for the commodity exchange market.

The electricity price data in this thesis is based on forward prices, meaning that it does not settle
everyday. This thesis is using the one-year forwards that is rolled throughout the year, meaning
that today the forward being used is the forward of YR15. This same forward is used until the
31st of December when it matures. The price will therefore settle as the mean of the spot prices
for all the days of 2015. Due to this special settling process the one-year forwards was selected in
order to get a series dependent on the whole year and not just a single, arbitrary, quarter. For the
interest rate data the Stibor 3-month series is used. SEB recommended a focus on this particular
interest rate, as it is the most common reference rate reflecting the actual interest rate the com-
panies is facing. Since the calculations are based on returns, the same result will be implied using
a reference rate as an actual rate.

All time-series selected are in compliance with SEB. The data is on a weekly basis, all extracted
on the same dates. Weekly data points are more than enough to spot trends without ending up
with to much data. Weekly data is also the most applicable in investigations of this nature and
this thesis has data points up to 10 years back in time. All the assets that were measured in other
currencies than SEK were converted to SEK, as SEK is the base currency for this investigation.
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4.2.2 Data Description

All data series used are, as mentioned, provided by SEB and extracted from Bloomberg. The
lengths of the series are dependent on the quality of the data series and the interval of the data
points is one week for all series. When the joint modeling begins, 500 values are extracted from
each series and denoted as week 0 - week 500. Week 0 is the date 2004 ≠ 07 ≠ 30 and week 500 is
the date 2014 ≠ 02 ≠ 28.

Foreign Exchange Rates

The currency series used for this thesis are US dollar, Pound sterling as well as Euro. These
three currencies are three of the most well known in the world and often used when trading
and exporting in the northern European region. The currency market is considered to be the
most e�cient market, at least regarding the main currencies, and is highly liquid. Traits present
on highly liquid markets are immediacy, small transaction costs and a great order depth. The
immediacy implies that a transaction is instantly carried out, small transaction costs means there
is a small bid/ask spread and great depth states that a change in supply and demand will not
change the price. The currencies are traded on a decentralized market where the main participants
are large international banks. There are two main markets for currencies, the spot market and the
futures market.

US Dollar is the o�cial currency in the United States and its territories. It is the number one
for international transactions and foreign exchange reserve. The series used in the thesis is the
spot price extracted on a weekly basis. Prices are extracted every Friday, when possible, and the
range of the series is from 2000≠01≠01 until 2014≠02≠28 giving a total of 739 observations. The
values are given as the price of one Dollar in terms of Swedish kronor. This means that an increase
in the spot price will make the Dollar appreciate against the Swedish krona, and a decrease in the
spot price will make the Dollar depreciate against the Swedish Krona.

Pound Sterling or simply Pound is the o�cial currency of Great Britain and some of its ter-
ritories. It is the fourth most traded currency, only surpassed by the Dollar, Euro and Yen. It is
also an important reserve currency, just like the US dollar. The series used in the thesis is the spot
price extracted on a weekly basis. Prices are extracted every Friday, when possible, and the range
of the series is from 2000 ≠ 01 ≠ 01 until 2014 ≠ 02 ≠ 28 giving a total of 739 observations. The
values are given as the price of one Pound in terms of Swedish kronor. This means that an increase
in the spot price will make the Pound appreciate against the Swedish krona and a decrease in the
spot price will make the Pound depreciate against the Swedish Krona.
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Euro is the o�cial currency in 18 of the European Unions membership states. It was introduced
as late as 2002 and is today the currency with the highest combined value of banknotes and coins
in the world. It holds the number two spot, after the US dollar, both in its position as reserve
currency as well as most traded currency. The series used in the thesis is the spot price extracted
on a weekly basis. Prices are extracted every Friday, when possible, and the range of the series
is from 2000 ≠ 01 ≠ 01 until 2014 ≠ 02 ≠ 28 giving a total of 739 observations. The values are
given as the price of one Euro in terms of Swedish kronor. This means that an increase in the spot
price will make the Euro appreciate against the Swedish krona and a decrease in the spot price
will make the Euro depreciate against the Swedish Krona.

Electricity

Section 3.1 describes the dynamics of the electricity price market. The series used in this thesis is
the 1 year forward price. Due to the relatively short existence of the current electricity market, the
series will not be as extensive as the currency series. The series used in the thesis is the one year
Nordic forwards closing price, extracted on a weekly basis. The price is quoted in Euro but will be
transformed into SEK using the concurring spot rate. The range of the series is from 2003≠01≠12
until 2014 ≠ 03 ≠ 02 giving a total of 582 observations.

Nickel

Nickel is a metal with atomic number 28, abbreviated as Ni. The primary use of Nickel is in
production of stainless steel, where Nickel is a main component. The series used in the thesis is a
3 month future traded on the London Metal Exchange. The price is quoted in Dollar but will be
transformed into SEK, using the concurring spot rate. The range of the series is from 2000≠01≠14
until 2014 ≠ 02 ≠ 28 giving a total of 738 observations.

Interest Rate

The Stibor 3 month rate is used for the deposit interest rate series. Stibor is the Stockholm Inter-
bank O�ered Rate, which is the average of the interest rates at which a number of Swedish banks,
all active on the Swedish money market, are willing to lend to one another without collateral[38].
The banks responsible for determining Stibor are Danske Bank, Handelsbanken, Länsförsäkringar
Bank, Nordea, Swedbank and SEB. The series used in this thesis is the 3 month Stibor rate. Rates
are extracted every Friday and the range of the series is from 2000 ≠ 01 ≠ 01 until 2014 ≠ 02 ≠ 28
giving a total of 739 observations.
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4.3 Estimation Method

All series are subject to the same procedure up until the joint modeling, beginning with the DCC

model. All significance tests are at a – = 5% level.

If series are to be comparable, one must look at a comparable measure. It would be of no interest
comparing prices of commodities to interest rates, where the first one is stated in the price of an
amount of the commodity whilst the latter is presented as a percentage. Even comparing price
levels of di�erent commodities could provide deviating results as the amounts have to conform. To
eliminate this problem of deviating measures it is suitable to look at returns of series and thereby
getting a comparable measure. This thesis uses the simple return as the measure of return. It is
the percentage di�erence from one point in time to another, giving a positive value if the price or
rate of an asset has increased and a negative value for a decrease.
The formula can be written as:

X
t

= P
t

≠ P
t≠1

P
t

where X
t

is the return at time t, P
t

is the price or return level at time t and P
t≠1

is the price or
return level at the previous observation.

To get a comparable measure it is also very important that the observations are from the same
points in time. If t

x1 ”= t
x2 then all comparison will be in vain. This also implies that no extremes

may be smoothened or removed. However, for the first part of this thesis, the series are not required
to be of the same length. A series containing more observations will often provide more realistic
and better models as the degrees of freedom have increased. The reason being that many statistical
models use an iterative scheme when modeling parameters. When proceeding with the parts where
several series will be interlinked they must be of the same length and then the most historic value
of the longer series will be removed. This will be the case when modeling the GARCH parameters.

Removing trends from series is often a good way to get a better fit when using econometric models.
The hope is to remove all correlation between the values at di�erent points in time, meaning the
series are all, by themselves, independent . This is a sought after feature since many models are
to provide output which is independent. Since the models used often are linear models, trends
present in the input will often be present in the output. Removing trends does have its drawbacks,
when a trend is removed the data series is altered. An altered series might as stated above provide
a better fit for the model but at the same time the model will not depict the original data series
but the altered one. Combining several altered series into a single model will then provide results
which could be quite far from reality. In order not to alter the series too much this thesis will only
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detrend the series by removing their mean. A zero mean is a nice feature since the output from the
next step is supposed to be of a zero mean character and the most apparent seasonal variations
will be eliminated.

Detrending is done by:

X
t

= X
t

≠ X̄ ’t = 1, ..., n

where X̄ =
q

n

t=1

X
t

n

An ARMA(p, q), see section 2.2.1, process is used for reducing the input, {X
t

}, to an iid noise by
using a parsimonious and linear model. An ideal model would reduce the input to a weak white
noise process, see section 2.2.3, meaning it has a zero mean, finite variance and no correlation.
This is done by combining a moving average process of order q and an auto regressive process of
order p. A moving average process models each of the series observations as a linear combination
of the observations current and previous white noise errors going back q lags. An autoregressive
process models each of the series observations as a linear combination of its own previous values
going back p lags. When combining these two models to the ARMA(p, q) process one receives a
model describing each observation of the time series as a mixture of the current and previous error
terms and previous observations.

Since the output of the ARMA(p, q) process is dependent on the order of lags, p and q, for the
moving average and autoregressive process it is of importance to choose appropriate values. One
popular way to decide the order is by using the Akaike’s information criterion, see section 2.2.6,
or AIC for short. The AIC test aims at minimizing the information loss by combining maximum
likelihood and the Kullback-Leibler information. This is done by calculating the AIC-value:

AIC
k

= 2k + N log(
Nÿ

i=1

Á2

i

/N)

for di�erent values on p and q where the Á
i

i = 1, ..., N is extracted from the tested order
ARMA(p, q) process. The order of p and q providing the best fit according to the AIC crite-
rion is the test providing the smallest value. As previously mentioned choosing the smallest AIC

value is not always the best solution to deciding the order p, q. It is often a trade-o� between the
best fit according to the AIC criterion and the complexity of the model and thus the significance
of the estimated parameters. The AIC test will give a hint of satisfactory values of p, q but it will
still be a matter of trial and error to obtain significant parameters.

When the order of p and q have been decided the ARMA(p, q) process can be modeled in order to
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extract the residuals, Á’s, necessary for the next step. The residuals are then obtained by taking:
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To validate that the parameters acquired from the ARMA(p, q) model are significant a t ≠ test,
see section 2.2.9, is used. It is an individual test, done for each parameter by itself. A confidence
level of 5% implies a t ≠ stat over 1.96 for the parameter tested to be significant. The test statistic
for „

1

would be:
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If a parameter is significant it is, with the probability of 1 minus the set confidence level, not equal
to zero and therefore helpful in describing the obtained value. A significance of all parameters
would be a nice feature since all estimated parameters are most likely not equal to 0 and therefore
provide a good model for explaining the values.

To achieve the goal of obtaining the time dependent correlation the next step of the procedure is to
estimate the time varying variance. Here a generalized autoregressive conditionally heterocedastic,
GARCH(1, 1), model is used, see section 2.2.2. The main concept is conditional variance meaning
the variance is conditioned on the past. Similar to the ARMA process it is a linear model where
the output at time t is dependent on the squared past conditional variance, ‡2

t≠1

, and residual, Á2

t≠1

.
The GARCH(1, 1) model is simple yet competent in capturing many of the main characteristics
of financial series. A few of these characteristics are fat-tailed distributions, volatility clustering
seasonality and autocorrelation of squared price returns. Using the GARCH(1, 1) model with one
lag on the squared residual and one lag on the conditional variance is not the best model but the
most common and su�cient for this thesis. The conditional variance at time t can then be written
as:

‡2

t

= Ê + –Á2

t≠1

+ —‡2

t≠1

As with the ARMA process it is important to check the t ≠ stat for the parameters, in this case
there are only three Ê, – and —. Once again this is done to determine the significance of the
parameters. One must also check the added constraints, –, — > 0 to ensure positive variance and
– + — < 1 to ensure stationarity and finite variance.

Part of the definition of the GARCH model states that:

Á
t

= ‡
t

z
t

z
t

≥ i.i.d N(0, 1)

43



rearranging the terms gives:

z
t

= Á
t

‡
t

z
t

≥ i.i.d N(0, 1)

which is the same as saying that the standardized residuals, Át
‡t

≥ i.i.d N(0, 1), are independent and
belong to a normal distribution. This is a two folded problem, one checking for independence of
the series and one checking the belonging to a normal distribution. An additional test to perform
is to check that the squared standardized residuals also are uncorrelated, this to make sure the
model properly explains the volatility clustering.

The best way of testing a time series for independence is by applying a hypothesis test, testing
the null of no correlation against the opposite, that correlation is present. Ljung-Box Q-test, see
section 2.2.7, is the method used in this thesis which tests the null, H

0

: fl
1

= ... = fl
m

= 0 against
H

0

: fl
i

”= 0 for some i œ 1, ..., m. If the null is not rejected one can say that with the chosen
confidence level the time series is not correlated. Testing for normality could also be done by
hypothesis testing but a second approach is doing it graphically. For this purpose a Q ≠ Q plot,
see section 2.2.8, is used to determine possible deviation from the normal distribution. Since no
extremes have been removed it is expected that some tail values will deviate from the normal
distribution.

Often when calculating the correlation between time series one uses the Pearson product-moment
correlation coe�cient. It is a linear measure providing a value between 1 and ≠1 to be the
correlation between two time series X and Y . 1 indicating that the two series are fully correlated,
0 indicating no correlation and ≠1 indicating total negative correlation. The correlation is attained
by calculating:

fl
X,Y

= Cov(X, Y )
‡

X

‡
Y

simply taking the covariance between the two time series and dividing by the product of the stan-
dard deviation of the separate series. One major drawback with this approach of calculating the
correlation is the lack of time dependence. The PearsonÕs rho will give a single value for the
correlation valid for all points in time which is not a realistic feature. The solution to this issue
is to use a Multivariate GARCH model. This approach gives a wide array or models to use and
the chosen model for this thesis, Dynamic conditional correlation, has the advantage of focusing
on the dynamics of the correlation opposed to the dynamics of the covariance.

The DCC model, see section 2.2.4, requires the conditional variances from the GARCH model as
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well as the residuals obtained in the ARMA model to derive the time varying correlation matrix:

�
t

=

Q

ccccccca

1 fl
t,12

· · · fl
t,1n

fl
t,12

1 . . . ...
... . . . . . . fl

t,n≠1,n

fl
t,1n

· · · fl
t,n≠1,n

1

R

dddddddb

combining this with the diagonal matrix of the obtained conditional variances:

D
t

=

Q

ccccccca

‡2

1,t

0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 ‡2

n,t

R

dddddddb

gives the time varying conditional covariance matrix:

ÿ
t

= D
1/2

t

�
t

D
1/2

t

The DCC model is a two step approach making for easier computation than the multivariate GARCH

models. The log-likelihood function[31] for the DCC can be written:
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since q
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t
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D
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t

and D
t

is diagonal it can be split into a sum of a correlation part and a
volatility part:
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This rewriting allows for rewriting of the log-likelihood function:

log(L
T

(◊
v

, ◊
c

)) = log(Lv

T
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v

)) + log(Lc

T

(◊
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, ◊
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where
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As one can see, the second equation is dependent on the ◊
v

parameters obtained through the first
log-likelihood equation where log(Lv

T

(◊
v

)) is the sum of log-likelihoods obtained in the GARCH

estimation described in the step prior to the DCC model.

The two-step model is a maximization estimation where the first step is the estimation of the
volatility, GARCH, parameters and the second step the estimation of the correlation parameters.

Firstly the volatility parameters were estimated, better described in the prior step:

◊̂
v

œ arg max
{◊v}

log(Lv

T

(◊
v

))

Step two is the one of interest in gaining the correlations. Similar to the GARCH estimation is is
a log-likelihood maximization problem:

◊̂
c

œ arg max
{◊c}

log(Lc

T

(◊̂
v

, ◊
c

))

When all parameters, ◊̂
v

, ◊̂
c

have been estimated one can easily obtain the time varying conditional
covariance matrix, q

t

.

Since the portfolio weights are set, there is a specified amount of each asset that will be needed or
received, Value at Risk, see section 2.2.10, is the comparable measure used in this thesis. Value at
Risk measures the maximum potential loss a portfolio of risk bearing assets can loose under the
determined time frame with a chosen confidence level:

�≠1(–)

for a 95% confidence level:

�≠1(–) = 1.645

for a single sided interval, applicable here since the upside is of no interest.

From the steps above the input to gain the time dependent standard deviation of the portfolio,
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see section 2.2.5, have been obtained, what remains is to do the calculations:
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where w =
1
w

1

· · · w
n

2
, w

i

the weight of asset i and E[r
i

] the expected return of asset i.

The Value at Risk for each point in time is then simply:

V aR
95%

= E[r
p

] ≠ 1.645 ◊ ‡
p
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Chapter 5

Results

5.1 USD
Calculating the AIC value for di�erent orders ARMA(p, q) gives

Table 5.1: AIC values USD
p/q 1 2 3 4 5 6
1 -8.1250 -8.1227 -8.1200 -8.1176 -8.1155 -8.1133
2 -8.1208 -8.1203 -8.1202 -8.1175 -8.1132 -8.1129
3 -8.1297 -8.1287 -8.1261 -8.1238 -8.1244 -8.1221
4 -8.1284 -8.1260 -8.1233 -8.1256 -8.1225 -8.1296
5 -8.1279 -8.1271 -8.1244 -8.1268 -8.1249 -8.1532
6 -8.1258 -8.1294 -8.1267 -8.1250 -8.1223 -8.1546

The smallest value is ≠8.1546 from the ARMA(6, 6) model and gives a significantly smaller AIC

value than most other orders of p, q. Since the di�erence is so noticeable the ARMA(6, 6) model
will be chosen even though it will add complexity to the model by incorporating more parameters.
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With the chosen optimal order for the ARMA(p, q) model the received parameters are

Table 5.2: ARMA(6,6) parameters USD
Parameter Value T-statistic

„
1

-0.8380 -507.6158
„

2

-0.3023 -9.9860
„

3

0.6590 4.4626
„

4

0.6090 12.3653
„

5

0.6369 18.5411
„

6

0.2943 10.2326
◊

1

0.8249 6.2100
◊

2

0.2627 32.9791
◊

3

-0.7171 -1.4497
◊

4

-0.6371 -1.6247
◊

5

-0.6146 -9.7395
◊

6

-0.3075 -24.9925

For the parameters to be significant the t-statistic for the parameter should have an absolute value
of above 2. Due to the complexity of the model,the high order of p, q, the two parameters ◊

3

and ◊
4

are not significant according to the t-statistic. However since 10 of the 12 parameters are
significant this will be a su�cient model for such a high order model.

With the received residuals from the ARMA(6, 6) model the GARCH(1, 1) model is estimate
providing the following parameters

Table 5.3: GARCH(1,1) parameters USD
Parameter Value T-statistic

Ê 0.0000 1.6208
– 0.0644 2.8757
— 0.9146 31.1214

Both the – and — have t-statistics above two meaning they are significant. The parameter value
for Ê is estimated to 0 meaning the t-statistic is of no importance since a parameter with the value
0 will not contribute to the output value. Checking the additional constraints one can see that
both – and — are greater than 0 and their sum less than 1 ensuring stationarity and finite variance.

49



Testing the standardized residuals for uncorrelation and normality and the squared standardized
residuals for uncorrelation

Table 5.4: Ljung-box test residuals USD
Type H P-value Test statistic Critical value

Á

‡

0 0.9763 9.5047 31.4104
{ Á

‡

}2 0 0.9529 10.7325 31.4104

The null of no correlation is not rejected implying that both the standardized residuals as well as
the squared standardized residuals are not correlated.

Examining the standardized residuals belonging to a normal distribution with the help of a q≠q plot

Figure 5.1: Q-Q plot of the USD standardized residuals

As expected the tails will not consist with the assumption of normality, this since no extremes
were removed or smoothened to get a better fit.
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5.2 EUR

Calculating the AIC value for di�erent orders ARMA(p, q) gives

Table 5.5: AIC values EUR
p/q 1 2 3 4 5 6
1 -9.2856 -9.2830 -9.2832 -9.2827 -9.2805 -9.2784
2 -9.2836 -9.3000 -9.2898 -9.2954 -9.2980 -9.2898
3 -9.2832 -9.3020 -9.2998 -9.2971 -9.3114 -9.2954
4 -9.2894 -9.2876 -9.2929 -9.2962 -9.2935 -9.2912
5 -9.2884 -9.2887 -9.2985 -9.2970 -9.3139 -9.2994
6 -9.2865 -9.3137 -9.3118 -9.3092 -9.3118 -9.3116

The smallest value is ≠9.3139 attained from the ARMA(5, 5) model. This AIC value is not that
much smaller than the value of the ARMA(2, 2) which is ≠9.3. Due to the small di�erence in
values and the great amount of complexity added by picking a much higher order of the ARMA

process a ARMA(2, 2) model will be picked to estimate the Euro residuals.

With the chosen optimal order for the ARMA(p, q) model the received parameters are

Table 5.6: ARMA(2,2) parameters EUR
Parameter Value T-statistic

„
1

-1.4819 -13.8472
„

2

-0.8668 -10.5130
◊

1

1.3970 10.9713
◊

2

0.7849 9.7380

All parameters have a t-statistic with an absolute value larger than 2 meaning they are all signifi-
cant and the model is a good fit for the purpose of this thesis.

With the received residuals from the ARMA(2, 2) model the GARCH(1, 1) model is estimate
providing the following parameters

Table 5.7: GARCH(1,1) parameters EUR
Parameter Value T-statistic

Ê 0.0000 1.7748
– 0.0904 2.6029
— 0.8952 28.2506

Once again the Ê parameter is equal to 0 and therefore adding no impact to the model. The –

and — parameters are both significant and also satisfies the additional constrains of – and — being
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greater than 0 and their sum less than 1 ensuring stationarity and finite variance.

Testing the standardized residuals for uncorrelation and normality and the squared standardized
residuals for uncorrelation

Table 5.8: Ljung-box test residuals EUR
Type H P-value Test statistic Critical value

Á

‡

0 0.3509 21.8099 31.4104
{ Á

‡

}2 0 0.4808 19.6383 31.4104

The null of no correlation is not rejected implying that both the standardized residuals as well as
the squared standardized residuals are not correlated.

Examining the standardized residuals belonging to a normal distribution with the help of a q ≠
q plot:

Figure 5.2: Q-Q plot of the EUR standardized residuals

Once again the extremes cause deviation from the normal distribution but the deviation can be
considered relatively small, especially for the negative values.
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5.3 GBP

Calculating the AIC value for di�erent orders ARMA(p, q) gives

Table 5.9: AIC values GBP
p/q 1 2 3 4 5 6
1 -8.5088 -8.5065 -8.5040 -8.5013 -8.4988 -8.4975
2 -8.5032 -8.5015 -8.4997 -8.5044 -8.5177 -8.5184
3 -8.5025 -8.5088 -8.5142 -8.5123 -8.5096 -8.5170
4 -8.5140 -8.5113 -8.5154 -8.5141 -8.5114 -8.5233
5 -8.5135 -8.5435 -8.5157 -8.5145 -8.5140 -8.5204
6 -8.5145 -8.5204 -8.5188 -8.5217 -8.5196 -8.5176

The smallest value is ≠8.5435 from the ARMA(5, 2) model and gives, once again, a signifi-
cantly smaller AIC value than most other orders of p, q. Since the di�erence is so noticeable
the ARMA(5, 2) model will be chosen even though it will add complexity to the model by incor-
porating more parameters.

With the chosen optimal order for the ARMA(p, q) model the received parameters are

Table 5.10: ARMA(5,2) parameters GBP
Parameter Value T-statistic

„
1

-0.9817 -7512611
„

2

-0.0219 -2220
„

3

-0.0962 -83312
„

4

-0.1136 -2682
„

5

-0.0621 -18488
◊

1

0.9026 3512000
◊

2

-0.1242 -227045

All parameters have a t-statistic with an absolute value greatly larger than 2 meaning they are all
significant and the model is a good fit for the purpose of this thesis.

With the received residuals from the ARMA(5, 2) model the GARCH(1, 1) model is estimate
providing the following parameters

Table 5.11: GARCH(1,1) parameters GBP
Parameter Value T-statistic

Ê 0.0000 1.8733
– 0.1020 2.5269
— 0.8665 18.7686
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Once again the Ê parameter is equal to 0 and therefore adding no impact to the model. The –

and — parameters are both significant and also satisfies the additional constrains of – and — being
greater than 0 and their sum less than 1 ensuring stationarity and finite variance.

Testing the standardized residuals for uncorrelation and normality and the squared standardized
residuals for uncorrelation

Table 5.12: Ljung-box test residuals GBP
Type H P-value Test statistic Critical value

Á

‡

0 0.3362 22.0790 31.4104
{ Á

‡

}2 0 0.8901 12.6943 31.4104

The null of no correlation is not rejected implying that both the standardized residuals as well as
the squared standardized residuals are not correlated.

Examining the standardized residuals belonging to a normal distribution with the help of a q≠q plot

Figure 5.3: Q-Q plot of the GBP standardized residuals

Here the standardized residuals are very close to belonging to a normal distribution even though
no extremes have been removed or smoothened.
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5.4 Electricity

Calculating the AIC value for di�erent orders ARMA(p, q) gives

Table 5.13: AIC values electricity
p/q 1 2 3 4 5 6
1 -6.8634 -6.8608 -6.8572 -6.8550 -6.8568 -6.8552
2 -6.8608 -6.8647 -6.8620 -6.8586 -6.8601 -6.8574
3 -6.8575 -6.9114 -6.8615 -6.8763 -6.8578 -6.8649
4 -6.8548 -6.8592 -6.8902 -6.8750 -6.8631 -6.9215
5 -6.8591 -6.8615 -6.8599 -6.8557 -6.9012 -6.9998
6 -6.8570 -6.8589 -6.9852 -6.8626 -6.8606 -6.9849

The smallest value is ≠6.9998 received from the ARMA(5, 6) model. For the same reason as for
the Euro series, the di�erence in AIC values are not that large, a lower order is chosen not to add
complexity. An ARMA(2, 2) model is chosen to represent the electricity return series.

With the chosen optimal order for the ARMA(p, q) model the received parameters are

Table 5.14: ARMA(2,2) parameters electricity
Parameter Value T-statistic

„
1

-1.2214 -10.6171
„

2

-0.7895 -13.1842
◊

1

1.2186 14.4634
◊

2

0.8353 11.5579

All parameters have a t-statistic with an absolute value greatly larger than 2 meaning they are all
significant and the model is a good fit for the purpose of this thesis.

With the received residuals from the ARMA(2, 2) model the GARCH(1, 1) model is estimate
providing the following parameters

Table 5.15: GARCH(1,1) parameters electricity
Parameter Value T-statistic

Ê 0.0001 1.8672
– 0.1100 3.0729
— 0.8494 18.2307

The Ê parameter is not zero and but has a t-statistic less than |2| meaning that for the electricity
GARCH(1, 1) model there are once again only two parameters describing the time series. – and
— are significant and satisfy the additional constrains of – and — being greater than 0 and their
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sum less than 1 ensuring stationarity and finite variance.

Testing the standardized residuals for uncorrelation and normality and the squared standardized
residuals for uncorrelation

Table 5.16: Ljung-box test residuals electricity
Type H P-value Test statistic Critical value

Á

‡

0 0.9914 8.0757 31.4104
{ Á

‡

}2 0 0.9999 4.0787 31.4104

The null of no correlation is not rejected implying that both the standardized residuals as well as
the squared standardized residuals are not correlated.

Examining the standardized residuals belonging to a normal distribution with the help of a q≠q plot

Figure 5.4: Q-Q plot of the electricity standardized residuals

Once again the tails are deviating from the assumption of normality with the negative values
having a tendency to deviate rather far for some values.
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5.5 Interest Rate
Calculating the AIC value for di�erent orders ARMA(p, q) gives

Table 5.17: AIC values Interest rate
p/q 1 2 3 4 5 6
1 -7.2437 -7.2475 -7.2448 -7.2430 -7.2403 -7.2415
2 -7.2466 -7.2479 -7.2473 -7.2462 -7.2435 -7.2450
3 -7.2498 -7.2515 -7.2489 -7.2432 -7.2437 -7.2559
4 -7.2469 -7.2497 -7.2538 -7.2500 -7.2486 -7.2635
5 -7.2431 -7.2452 -7.2425 -7.2420 -7.2613 -7.3654
6 -7.2496 -7.2498 -7.3590 -7.2680 -7.3740 -7.3723

The smallest value is ≠7.3740 received from the ARMA(6, 5) model. The large di�erence in AIC

values result in the picking of the ARMA(6, 5) model.

With the chosen optimal order for the ARMA(p, q) model the received parameters are

Table 5.18: ARMA(6,5) parameters IR
Parameter Value T-statistic

„
1

0.5726 107490103
„

2

0.1587 3229127
„

3

0.2986 30660069
„

4

0.5068 49845201
„

5

-0.7839 -8098127
„

6

0.1836 4251549
◊

1

-0.3555 -8789877
◊

2

-0.0868 -22190207
◊

3

-0.4051 -63454162
◊

4

-0.6197 -3955034
◊

5

0.7276 78850995

All parameters have a t-statistic with an absolute value greatly larger than 2 meaning they are all
significant and the model is a good fit for the purpose of this thesis.
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With the received residuals from the ARMA(6, 5) model the GARCH(1, 1) model is estimate
providing the following parameters

Table 5.19: GARCH(1,1) parameters IR
Parameter Value T-statistic

Ê 0.0000 0.7690
– 0.1273 3.6683
— 0.8725 21.1434

Once again the Ê parameter is equal to 0 and therefore adding no impact to the model. The –

and — parameters are both significant and also satisfies the additional constrains of – and — being
greater than 0 and their sum less than 1 ensuring stationarity and finite variance.

Testing the standardized residuals for uncorrelation and normality and the squared standardized
residuals for uncorrelation

Table 5.20: Ljung-box test residuals IR
Type H P-value Test statistic Critical value

Á

‡

0 0.1966 25.1285 31.4104
{ Á

‡

}2 1 0 77.8352 31.4104

The null of no correlation is not rejected for the standardized residuals but is rejected for the
squared standardized residuals. To better get a view of the correlation between the standardized
residuals a sample autocorrelation function with 100 lags is examined

Figure 5.5: Sample autocorrelation function, squared standardized residuals Interest rate

As can be seen for some lags the autocorrelation function has values outside the 95% confidence
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interval. There is no set lag interval for this, there is a tendency in the beginning towards a five
and ten lag correlation but the tendency weakens.
Examining the standardized residuals belonging to a normal distribution with the help of a q≠q plot

Figure 5.6: Q-Q plot of the Interest rates standardized residuals

The q-q plot can here be seen to deviate quite far from the assumed normal. For large amount of
the series there is a deviation from the normal distribution with a large discrepancy for the tails.
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5.6 Nickel
Calculating the AIC value for di�erent orders ARMA(p, q) gives

Table 5.21: AIC values Nickel
p/q 1 2 3 4 5 6
1 -5.9934 -5.9907 -5.9881 -5.9872 -5.9850 -5.9846
2 -5.9908 -5.9882 -5.9855 -5.9894 -5.9867 -5.9841
3 -5.9882 -5.9878 -5.9872 -5.9869 -5.9846 -5.9818
4 -5.9876 -5.9883 -5.9858 -5.9925 -5.9847 -6.0863
5 -5.9854 -5.9862 -5.9836 -5.9843 -5.9821 -5.9794
6 -5.9843 -5.9833 -5.9813 -5.9852 -5.9790 -6.0534

The smallest value is ≠6.0863 received from the ARMA(4, 6) model, the di�erence in AIC val-
ues are not that significant which leads to picking of a lower order not to add complexity. An
ARMA(2, 1) model is chosen to represent the Nickel return series.

With the chosen optimal order for the ARMA(p, q) model the received parameters are

Table 5.22: ARMA(2,1) parameters Nickel
Parameter Value T-statistic

„
1

0.6540 5.9054
„

2

-0.0037 -0.2396
◊

1

-0.6783 -6.4911

Two parameters are significant, having a t-statistic larger than |2|, and one parameter, „
2

is not
significant since the t-statistic is less than |2|.

With the received residuals from the ARMA(2, 1) model the GARCH(1, 1) model is estimate
providing the following parameters

Table 5.23: GARCH(1,1) parameters Nickel
Parameter Value T-statistic

Ê 0.0000 0.9089
– 0.0774 3.3091
— 0.9140 32.4251

The Ê parameter is equal to 0 and therefore adding no impact to the model. The – and — param-
eters are both significant and also satisfies the additional constrains of – and — being greater than
0 and their sum less than 1 ensuring stationarity and finite variance.
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Testing the standardized residuals for uncorrelation and normality and the squared standardized
residuals for uncorrelation

Table 5.24: Ljung-box test residuals Nickel
Type H P-value Test statistic Critical value

Á

‡

0 0.8252 14.1029 31.4104
{ Á

‡

}2 0 0.4630 19.9185 31.4104

The null of no correlation is not rejected implying that both the standardized residuals as well as
the squared standardized residuals are not correlated.

Examining the standardized residuals belonging to a normal distribution with the help of a q≠q plot

Figure 5.7: Q-Q plot of Nickels standardized residuals

Here the standardized residuals are quite close to belonging to a normal distribution, with some
discrepancy for the tails, even though no extremes have been removed or smoothened.

5.7 DCC

From the joint modeling of the DCC model the parameters obtained are

Table 5.25: DCC Parameters
Parameter Value T-statistic

– -0.0068 -2.0972
— 0.9279 34.3200
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Both – and — have a t-statistic above |2| implying significance of the parameters. The additional
constraints – Æ 0 and — Æ 1 as well as – + — Æ 1 are satisfied ensuring that the conditional
correlation matrix is positive definite.

With the parameters received in the prior step the conditional correlation matrix, �
t

, is obtained
and used to plot the time varying correlation between the electricity return series and all other
return series

Figure 5.8: Time varying correlation between electricity and other assets

and the time varying conditional variance for all return series

Figure 5.9: Time varying variance for all assets

The results of the time varying correlations are to be especially highlighted as they contribute a
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great deal to the analysis further below. The correlation-graph is revealing a lot of useful and
valuable information, enabling an interesting discussion to take form. As one can see, electricity
is having a rather continuously low correlation with all the other assets, for all points in time.
This behavior is of specific interest, as it will have an equal diversification e�ect on the VaR for
all points in time even during a financial crisis. The power of the e�ects is however discussed in
the analysis.
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5.8 Value at Risk

5.8.1 SSAB

Plot of one week Value at Risk showing one portfolio including electricity and one portfolio ex-
cluding electricity. VaR is shown as a percentage. For portfolio weights see Appendix A.

Figure 5.10: One Week VaR for SSAB (%)

Di�erence in Value at Risk between the two portfolios. The portfolio containing electricity as an
asset is subject do deduction of the value of the portfolio not including the electricity asset. A
positive number means there is a lower Value at Risk in the electricity portfolio.

Figure 5.11: Di�erence VaR for SSAB portfolios
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5.8.2 Sandvik

Plot of one week Value at Risk showing one portfolio including electricity and one portfolio ex-
cluding electricity. VaR is shown as a percentage. For portfolio weights see Appendix A.

Figure 5.12: One Week VaR for Sandvik (%)

Di�erence in Value at Risk between the two portfolios. The portfolio containing electricity as an
asset is subject do deduction of the value of the portfolio not including the electricity asset. A
positive number means there is a lower Value at Risk in the electricity portfolio.

Figure 5.13: Di�erence VaR for Sandvik portfolios
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5.8.3 Stora Enso

Plot of one week Value at Risk showing one portfolio including electricity and one portfolio ex-
cluding electricity. VaR is shown as a percentage. For portfolio weights see Appendix A.

Figure 5.14: One Week VaR for Stora Enso (%)

Di�erence in Value at Risk between the two portfolios. The portfolio containing electricity as an
asset is subject do deduction of the value of the portfolio not including the electricity asset. A
positive number means there is a lower Value at Risk in the electricity portfolio.

Figure 5.15: Di�erence VaR for Stora Enso portfolios
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5.8.4 All Companies

Value at Risk for all companies, portfolio including electricity, to measure di�erence in size.

Figure 5.16: One Week VaR for all companies, portfolio including electricity
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Chapter 6

Analysis

The investigation is subject to many and quite extensive limitations, which cause a great need for
further analysis and discussion. The main goal for this thesis has been to evaluate whether or not
it is favorable for an energy intense company to add electricity as an asset to their portfolio of risk
bearing assets. The results have been measured by the concept of VaR, examining if a decreased
VaR can be obtained if electricity is added to the portfolio. Firstly the analysis will account for
discussions regarding general assumptions and drawbacks. Secondly the mathematical drawbacks
will be accounted for and thirdly the correlation findings and results for the three companies will
be commented and further explained.

Due to the limitations and the assumptions that have been made, the results may di�er if the
test was to be carried out again under di�erent assumptions. An interesting aspect is the di�erent
view people are having regarding how large of a risk factor the electricity prices really is. The first
thought was that it was considered to be relatively small, especially after dialogue with Lars S
Andersson at Sandvik, who specifically supported that thought. After reviewing with Mats Forsell,
Commodity Trader at SEB, this thought was revised. He stated for instance that the electricity
risk is more likely to be 1

4

of the total materials price risk that a company within the steel industry
is subject to. Based on his perception, the electricity asset has been assigned quite a large portfolio
weight for the companies. Since this is a debatable matter, and an approach assigning a larger
weight to the electricity risk has been selected, the results presented in this thesis may show to
good of an VaR improvement. This thesis is therefore extra sensitive towards assumptions of this
nature.
The results are approving the reason for discussion and are actually showing a decreased VaR for
portfolios with increasing electricity asset weight. What should be noted is that even though elec-
tricity can be seen as a good risk managing complement, it is important to evaluate the behavior
that electricity show in relation to other, not investigated, assets. Electricity may show a totally
di�erent correlation outcome combined with other assets, under di�erent assumptions.
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Another simplification that is quite determining, if the test is to be carried out again, is that the
commodity input for all the companies is represented by nickel. This can be considered a major
error source, since nickel and fiber, for instance, have no similar features at all. The reason for
this is that no satisfactory data was to be found for other commodities than nickel, due to the fact
that there was no functioning exchange market for other commodities up until recently. The price
data for nickel was also given in the currency of USD. Since this thesis is having SEK as its base
currency, the nickel prices were converted with the corresponding FX-rate for every point in time.
What should be mentioned is therefore that the currency conversion may contribute to an extra
currency risk.
A third major generalization is that all the companies are assigned the same currencies of interests
for the investigation- USD, EUR and GBP. However, other currencies are being used and frankly,
even used to a greater extent. To take all the used currencies into account would greatly extend the
numerical analysis, and therefore the thesis was narrowed down to these three common currencies.

From the mathematical results one can see that the series do not fit equally well in the used
framework. For the USD and Nickel time series some parameters for the ARMA model are not
significant. This is not a major deal but might have had an impact on latter parameter estima-
tions. For the rest of the models, the GARCH and DCC, most parameters are significant at a
5% confidence level excluding the constants, which often are estimated to zero. What is more
worrying is the correlation of the squared standardized residuals for the IR series. This implies
that there is volatility clustering present meaning that large changes are likely followed by large
changes and vice versa for small changes. Examining figure 5.9 it can be seen that this is the case.
During most of the points in time the variance for IR is small with small or no changes but during
the weeks 200-300 the changes are suddenly very large. This will greatly increase the portfolio
variance, during specific points in time, for a portfolio that assigns a large weight to the IR asset.
Having the largest a�ect on the VaR measure is the deviation from normality of the standardized
residuals. For the VaR to show a true value, risk assets are assumed to follow conditional normal
distributions. This is equal to assuming that the standardized residuals, of individual assets, be-
long to a normal distribution. As can be seen in the Q-Q plots this is often not the case. Whilst
the GBP standardized residuals are quite close to belonging to the normal distribution the interest
rates standardized residuals deviate far from the normal. A deviation implies that fat tails are
present implying more weight is present in the tails. For the VaR this will cause problems, in this
case the calculated VaR will be less than in reality, since more than 5% of the values will lie on
the tail side of the boundary.
The time varying correlations are estimated using the DCC model but there are several, perhaps
better, models to estimate the correlations. As mentioned in the first chapter DCC has several
advantages but also some disadvantages. Other multivariate GARCH models can be used to gain
the time varying correlation but to examine this would extend the thesis too much.
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Two main areas from the presented results are of greatest interests for the analysis. Firstly the
results of the di�erent VaR calculations are, as expected, subject for discussion. Those are dis-
cussed below with reference to the corresponding company. The second area of interest is the time
varying correlation between electricity and the other risk bearing assets.
Figure 5.8 shows the time varying correlation between Electricity and the other assets. The finding
of interest is not that Electricity is showing a low, or close to no, correlation with the other assets
rather that the correlations are relatively constant during the whole period of time.
This could imply that electricity is worth having as a component in the risk portfolio due to the
constant diversification e�ect it may contribute to. Even during times of financial crises, data
points 230-270, the correlation remains low and constant. This is particularly notable since it is
commonly known that the correlation between financial assets is generally increased during peri-
ods of crises. If electricity is one of few asset that does not follow that pattern, it is potentially a
good hedging complement during financial crises. To get the best possible diversification e�ect a
negative correlation is a sought after feature. Electricity’s constant correlation does however posses
another advantage, there are no surprises in the correlation between assets. As risk management is
about eliminating uncertainties, a constant correlation vouches for consistency, which is a positive
feature. What should be mentioned in the context of financial crises and the drawn conclusions
is the limited period of time. This investigation only covers one financial crises, the one during
2008-2009. If a solid conclusion is to be drawn, a much greater amount of data points need to be
analyzed, covering more than only one period of financial crises.
One might wonder what it is that di�erentiates electricity, and why it shows low correlation with
other assets, during times of financial crises when one might expect an upturn. One possible
explanation, looking beyond variables of macroeconomics, can be that the underlying factors de-
termining the price is driven by factors that has no connection to economic cycles. For instance,
the price is largely driven by weather and wind, which is always independent of macroeconomic
variables.

SSAB is the company that supports the thesis to greatest extent, showing a considerably smaller
VaR for the risk portfolio including electricity. The di�erence in VaR between the portfolio with,
and without, electricity is constantly positive during the examined period of time. Electricity
is, at every point in time, value adding to the portfolio from a risk perspective. SSAB is also
the company assigning the highest weight to the electricity input, making it is easier to spot the
di�erence in VaR examining figure 5.11. What should be mentioned is the reason for why SSAB
assigns such a large weight to the electricity factor. It is not because SSAB values this partic-
ular risk asset to a greater extent than the other companies, rather because SSAB is showing
a greater number in their sensitivity analysis towards changes in material prices. The electricity
asset weight is higher since the electricity weight is a fixed percentage of the total materials weight.
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For Sandvik however, it is much more di�cult to spot graphically if the one week VaR is decreased
if the electricity asset is added or not. It is due to the relatively small weight that is assigned to
the materials asset and hence the smaller weight for the electricity asset. Figure 5.13 is therefore
of more use, where the trend is more easily spotted. The adding of electricity is both showing
a positive and a negative impact on the one week VaR of the portfolio. No absolute finding can
therefore be concluded, but one aspect of importance still remains. The di�erence is showing strong
positive numbers around the weekly points of 230 and 270, in other words during the financial
crises. This supports the fact that in times of financial crises it may be beneficial for Sandvik to add
the electricity risk asset into the portfolio allowing the diversification e�ect to cancel out some risk.

Stora Enso shows a small but still mention worthy improvement for its VaR when the electricity
asset is added. Figure 5.15 also goes in line with the analysis for Sandvik, it can be beneficial for
the company to add electricity as a risk-bearing asset into the portfolio in times of financial crises.

Figure 5.16 aims to conclude a comparable finding between the three companies. The one-week
VaR for all companies is plotted in a comparing graph where one can conclude that the company
that is subject to the highest VaR is SSAB. This is due to the fact that SSAB assigns larger
weights to the assets possessing the highest variance over time period. The high VaR is therefore
not a result of just the adding of the electricity asset, which one might believe when examining the
graph. The comparing figure 5.10 is still supporting the fact that electricity is value adding from
a portfolio perspective. The companies who assigns the largest weights on high-volatile assets are
therefore always going to be the companies with the highest VaR. Both Sandvik and Stora Enso
are assigning larger weights on the FX-variables, which are not as volatile as commodities and
electricity in general. This is concluded in figure 5.9, were one also can conclude that FI gener-
ally is a low-volatile asset. Exceptions for this is evident, a large increase in variance, during the
financial crises. If one examines the time varying correlation graph in (figure 5.8 ), one can spot
that electricity actually has the lowest correlation with FI, meaning that electricity may be extra
useful when interest rates are particularly volatile. The electricity is generally showing the highest
correlation to the FX-variables, especially to the Euro. This is however, partially, explained by the
fact that electricity prices are given in EUR and converted to SEK. This eliminates the currency
risk between the two assets but adds dependence, and therefore increases correlation. It must be
mentioned that VaR is not a hedge instrument, it is only a good measure to compare the size of
the risk for di�erent portfolios. In figure 5.16 the Value at Risk is shown to be as large as 12%
which is a very high number considering the large monetary value assigned to the portfolios. In
the sensitivity analyses of the companies the possible percentage change is often smaller than 5%
implying that an overall decrease of 12% would be devastating for a company.
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The values received for the VaR calculations must not be misinterpreted as the actual risks the
companies are exposed to. All calculations are based on data and weights that are not subject
to any hedging strategies. To calculate the actual portfolio risk for the companies one must take
into account all the hedging strategies in place, altering both asset weights and risk bearing assets.
Especially the assets weights will be altered since an asset which is completely hedged has no
risk and therefore no asset weight in the risk portfolio. This fact will further limit electricity’s
possibility to lower the portfolio VaR, since up to 90% of the yearly predicted electricity usage
is hedged in advance. With this said the electricity forward could still be used, if desired, for its
diversification benefits. Since this is a derivative, without any actual delivery of electricity, it could
be bought as a financial asset with no connection to the usage of electricity.

72



Chapter 7

Conclusion

This thesis has investigated how a company’s VaR is a�ected if the electricity asset is added to a
portfolio of risk bearing assets. The numerical analysis show that the VaR is decreased, if electricity
is included, particularly for the companies that assign the largest weight to the electricity asset.
One can conclude that electricity is an interesting asset, from a portfolio perspective, due to the low
and constant correlation with the other risk bearing assets. Due to the constantly low correlation
with the other assets the investigation show that electricity is, particularly, value adding during
times of financial crises. It is commonly known that correlations between financial assets tend
to increase during times of crises but this is not the case with the electricity asset. The positive
outcome in this thesis can be questioned since the actual asset weight assigned to electricity is too
small to have a significant e�ect. The used measure, Value at Risk, is also subject to discussion.
VaR is a measure showing a possible maximum amount that can be lost. It does not explain if
the given results are significant enough for a company to truly value and examine the e�ect that
electricity might have on the company’s risk management.
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Appendix A

Portfolio weight calculations

To be able to model a realistic portfolio, the di�erent weights of the input variables need to be
calculated so that the modeling of the VaR will be as truthful as possible. In accordance with
Mats Forsell at SEB (mail correspondence), industries within the steel-production value the risk
of electricity as 20 ≠ 30% of the total commodity price risk. Based on that we will assign 25% of
the other commodity-goods to as electricity price risk. He also stated that industries within the
paper and pulp-industry are showing a larger risk exposure to energy consumption and he estimate
that 50% of the other commodity- goods make up for how the company value the electricity- risk
exposure. This estimation was of great importance since neither company in this examination were
showing all digits needed to analyze the exact weights for our portfolio. So therefore we have, for
those companies revealing the amount for electricity price risk, calculated our way back to find out
the amount for their commodity goods. In the same way we have used the information to calculate
the electricity price risk based on their other commodity price risk exposure. Therefore the results
may come out as arbitrary and what must be mentioned is that the weights are only possible esti-
mates for a potential portfolio. Other companies may disagree on these numbers, but this course
of action was the only one that would give us a potential answer. What also should me mentioned
and considered as interesting is that all the three companies under investigation are all valuing the
risk exposures in di�erent ways. SSAB emphasizes the weight of commodity price risk, Sandvik is
more keen to highlight the FX-risk exposure, whilst Stora Enso values the FI-risk to a greater deal.

SSAB’s sensitivity analysis presented di�erent raw materials for which a 10% change in price would
a�ect the EBITDA. We choose only to focus on their steel-exposure since nickel is the commodity
that is representing our modeling and is the commodity that resembles nickel to greatest extent.
How an interest rate shift of 100 basis points (1%) a�ects the EBITDA is also presented as well
as how a foreign exchange rate- change of 5%. The percentages are added up to 100% to show a
comparable result. The numbers are in millions of SEK.

Total risk bearing amount excluding electricity: 47200
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Table A.1: Sensitivity analysis SSAB
Asset % Change Value Change Total Value
Metal 10% 3100 31000

FI 1% 100 10000
FX 5% 310 6200

Total 47200

Electricity price risk amount: 25% of 31000 = 7750
Total risk bearing amount including electricity: 54950

The weights are then calculated by dividing the value change by the grand total giving

Table A.2: Portfolio weights SSAB
Asset Weight Weight no electricity
Metal 0.5641 0.6568

Electricity 0.1410 0
FI 0.1819 0.2119
FX 0.1128 0.1313

Sandvik are more eager to highlight the risk exposure of FX. In the sensitivity analysis they are
expressing the same percentages of interest that could di�er the input variables as SSAB. The
annual report also provides us with this info:
’A change in the electricity price of SEK 0.10 per kWh is estimated to impact Sandvik’s operating
profit and other comprehensive income by plus or minus 90 million SEK on an annual basis, based
on the prevailing conditions at year-end 2012’.
We therefore converted the change of SEK 0.1 to SEK 1, as the other amounts are showed in
integers. Therefore the amount at risk is 900 millions SEK. Based on Mats Forsell’s opinion we
then divided 900 with 0.25 and ended up with the amount for the commodity-risk exposure (3600
million SEK).
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Table A.3: Sensitivity analysis Sandvik
Asset % Change Value Change Total Value
Metal 3600

FI 1% 335 33500
FX 5% 3000 60000

Total 97100

Total risk bearing amount excluding electricity: 97100
Electricity price risk amount: 25% of 3600 = 900
Total risk bearing amount including electricity: 98000

Giving the weights

Table A.4: Portfolio weights Sandvik
Asset Weight Weight no electricity
Metal 0.0367 .0371

Electricity 0.0092 0
FI 0.3418 0.3450
FX 0.6122 0.6179

Stora Enso is considering their greatest risk exposure to be the FI-risk. They are also showing the
same percentage- changes in their sensitivity analysis as the companies above. We use their number
for commodity price risk and multiply it with 50% to get the number for the electricity price risk
(in accordance with Mats Forsell). What should be mentioned is that the main commodity within
Stora Enso’s production is fiber, but unfortunately there is no data of fiber that is showing same
quality as the data of nickel. The series is too short, since trading with fiber has not a history that
is su�ciently long for our modeling. Therefore the numbers below are subject to reservation and
should be interpreted with caution.

Table A.5: Sensitivity analysis Stora Enso
Asset % Change Value Change Total Value
Metal 10% 260 2600

FI 1% 950 9500
FX 5% 142 2840

Total 14940

Total risk bearing amount excluding electricity: 14940
Electricity price risk amount: 50% of 2600 = 1300
Total risk bearing amount including electricity: 16240
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Giving the weights

Table A.6: Portfolio weights Stora Enso
Asset Weight Weight no electricity
Metal 0.1601 0.1740

Electricity 0.0800 0
FI 0.5850 0.6359
FX 0.1749 0.1901

The FX weight is in turn weighted di�erently since we are modeling with three di�erent currencies;
USD- with highest ratio (60%) followed by EUR (30%) and then GBP (10%) with the smallest
ratio. These numbers are based on annual reports where the currency flows are shown for the
investigated companies.

81


	Introduction
	Background and Motivation
	Choice of Measurement
	Research Questions
	Purpose
	Limitations
	Sources of Information
	Outline

	Theoretical Background
	Risk Management
	Commodity Risk management
	FX Rate Risk Management
	FI Rate Risk Management
	Electricity Risk Management

	Theoretical Models
	ARMA
	GARCH
	Stationarity
	DCC
	Portfolio Variance
	Diversification

	AIC Criterion
	Ljung-Box Q-test
	Q-Q Plot
	T-statistic
	Value at Risk


	Introduction to the Electricity Market and Investigated Companies
	Electricity Price Movement on the Market
	The Energy Intense Companies
	SSAB
	Sandvik
	Stora Enso


	Method
	Approach
	Data
	Data Selection
	Data Description
	Foreign Exchange Rates
	US Dollar
	Pound Sterling
	Euro

	Electricity
	Nickel
	Interest Rate


	Estimation Method

	Results
	USD
	EUR
	GBP
	Electricity
	Interest Rate
	Nickel
	DCC
	Value at Risk
	SSAB
	Sandvik
	Stora Enso
	All Companies


	Analysis
	Conclusion
	Bibliography
	Portfolio weight calculations

