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Abstract

Evaluation of the Galil DMC–4080 as a closed-loop controller of a stepper-motor
driven Stewart Platform with µm- and µrad- precision and resolution. The project
involves a full implementation and optimization of kinematic equations, implement-
ing modes of motion & controller structure, as well the use of MATLAB simula-
tions. The 4080 proves successful in static positioning but have limitations in time-
performances with the kinematics as well as smoothness of motion due to error
handling.
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1
Introduction

SOLEIL is a French synchrotron radiation facility situated just outside Paris in
France. For the better part of a year now, SOLEIL has been in the process of evalu-
ating which controller is to replace one of its most used ones; the facility has since
its inauguration in 2006 been using the Galil DMC-2182 for most of its controller
needs. The DMC-4080, the newest and best performing unit from Galil, is one of
the controllers being considered. The purpose of this thesis is to evaluate how well
the Galil DMC-4080 controls a hexapod robot design called Stewart Platform. This
platform can be used to position mirror systems (such as monochromators) with
many degrees of freedom and high precision.

Figure 1.1 Example of monochromator on Stewart Platform
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2
Background

2.1 Stewart Platform

The Stewart Platform is a six-degrees-of-freedom (DOF) platform that, by utilizing
prismatic actuators in various designs, is capable of moving in three linear directions
(x, y, z) and three angular directions (θ (roll), φ (pitch) and ψ (yaw))independently
or in any combination of these[1]. The design that will be used in this project is the
so called 3-6 Stewart Platform; this design connects the six actuators to each three
points on a base- and positional- plate[1] (see Figure 2.1). This system is of a parallel

Figure 2.1 Stewart Platform setup to the left. The image to the right illustrate the
6 possible degrees of freedom of the positional plate.

manipulator sort meaning that the movable platform is in direct contact (via joints)
to all of its leg actuators. This particular setup comes with certain advantages and
disadvantages that will be covered in this section.

Structural Rigidity, System Precision & Construction Size
The rigidity of a system is defined as its ability to resist flex during loads. Parallel
systems are known to have good rigidity compared to the number of actuators in
the system[2]. This comes from the mechanical setup; the flexibility of one actuator
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2.1 Stewart Platform

is limited by being braced against all other axes connected to the same joint of the
platform[2]. In the example of Stewart Platform, with a heavy load situated in the
center of the positional plate, the load will be evenly distributed on all axes which
results in a minimal amount of flex in the system[2][4]. The system precision is for
the same reason very good for parallel systems; positional errors in the joints are in
fact roughly averaged by the error in all actuators connected to the same joint[2][4].

The good structural rigidity that comes from parallel systems also makes for
comparatively small and lightweight constructions compared to a serial manipulator
system with similar rigidity and same amount of DOF[2][4].

Kinematic Equations
To control the hexapod we need to be able to convert virtual axes coordinates (see
Figure 2.1) to leg lengths. These kinematic conversions are called the Reverse Kine-
matics and are defined in Equation 2.1, where L denotes the non-linear virtual state-
to leg-length conversion.

[l1, l2, l3, l4, l5, l6]T = L(x,y,z,θ ,φ ,ψ) (2.1)

The Reverse Kinematics are essential in controlling the robot and one only needs
these kinematics when doing so in open loop. To run the robot in a closed-loop feed-
back is required. Feedback can be acquired by mounting sensors on the positional
plate (multiple interferometers for an example), or – if you have a good enough
model of the system – use the leg lengths to estimate the states of the virtual axes.
These calculations are called the Forward Kinematics and are defined in Equation
2.2, where F denotes a (in this project) numerical approximative conversion from
leg-lengths to virtual states.

[x̂, ŷ, ẑ, θ̂ , φ̂ , ψ̂]T = F(l1, l2, l3, l4, l5, l6) (2.2)

Note that even though Equations 2.1 and 2.2 seem relatively straightforward and
simple at first glance they are not. The Forward Kinematics of Stewart Platform are
especially known to be quite complicated and difficult to solve[2]. These equations
will be revisited later.

Singularities & Workspace
The mechanical setup that gives Stewart Platform such good rigidity and precision
also limits the workspace of the robot[2]. It is of interest to define a workspace
in which full controllability is possible due to the lack of singular points within.
These singularities can come from mechanical limitations (the leg actuators might
collide with each other for certain platform moves) or kinematic limitations[2][3];
for certain platform positions (xs, ys, zs, θs, φs ,ψs), where the index s denotes a
singular point, the system will loose its controllability due to kinematic limitations.
What this means from a mathematical point of view is that the Jacobian matrix
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Chapter 2. Background

defined by Equation 2.3 has either none or multiple solutions – which is true when
Equation 2.4 is true[3].

JL(x,y,z,θ ,φ ,ψ) =


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
(2.3)

|JL(xs,ys,zs,θs,φs,ψs)|= 0, where (xs,ys,zs,θs,φs,ψs) is a singular point (2.4)

It is therefore important to properly define the workspace of the system prior to
usage.

2.2 Stepper Motors

Steppers are electric motors designed to rotate in discrete steps. They consist of a
main rotor with jagged edges, which may be of simple iron or a permanent magnet,
that is slightly misaligned by surrounding electromagnets. By putting a charge to
one of the electromagnets the rotor will make sure to align itself accordingly. A
rotary step is then accomplished by switching the charge to the next coil and hence
force the rotor to turn[5]. Figure 2.2 shows how a two-phase stepper would take one
full step; current would first go into phase one, followed by two, and then back to
one again. Figure 2.3 shows the current over time for the two phases. This method
of rotation is called Wave Drive; note that there are better methods[5] (ex: Full Step-
drive, Microstepping).

The number of full steps the motor does per revolution is determined by its
mechanical construction and differs from product to product. In the case of this
project, 200 full steps are taken per revolution (see Table 7.1, Appendix 7.1) which
corresponds to 1.8◦. Microstepping will enable a better resolution.

Microstepping using Bipolar Signals
Microstepping is a drive method to get rotation steps smaller than a full step. This is
done by utilizing sinusoidal waves in the phases (instead of the rectangular signals
of the Wave drive) and have the signals in 90◦ out of phase with each other. Figure
2.4 shows the current over all two phases using microstepping (when taking one full
step). Note that the current sometimes changes direction (negative values); allowing
the current to change direction, the current is said to be bipolar, makes for a more
powerful motor than if only using current in one direction[5].
The smaller steps (aka microsteps) from using microstepping should in theory be-
come infinitely small if the current inputs are truly sinusoidal like in Figure 2.4. In
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2.2 Stepper Motors

Figure 2.2 Conceptual model of of the workings of a two-phase stepper with
wavedrive. Here one full step has been completed.

Figure 2.3 Current-Time plot for Wave Drive of a two-phase step. The dotted black
lines are zero.

reality this is not possible; mechanical drawbacks such as backlash will limit the
size of the microstep. It can also be hard to produce a smooth current curve for the
motor[6].

Figure 2.4 Current-Time plots for Microstepping (with bipolarity) of a two-phase
step. The dotted black lines are zero for respective phase.

Rotary Encoders
Steppers are usually equipped with rotary encoders that provides angular feedback.
Encoders are either absolute or incremental[7]. The absolute encoder maintains an-
gular positions on a power-reboot. The incremental encoder records only changes
in position and does not maintain angular positions on a power-reboot[7]. The incre-
mental encoders are therefore in need of a homing procedure on every reboot to find
an initial position.
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Chapter 2. Background

A common method to record angular changes (in incremental encoders) is the
quadrature method[7]; this method utilizes a disc connected to the driveshaft. The
disc generates, when the motor rotates, two sets of pulses that are in 90 degrees out
of phase which each other. By comparing the data between the two sets one can
extrapolate direction and magnitude of changes in angular position.

2.3 Hardware

This section will provide the reader with a quick overview of the hardware involved
in the project.

The FMB Oxford M3
The FMB Oxford M3 is a mirror positioning system designed for good precision,
resolution, and repeatibility[9]. The system utilizes the Stewart Platform for a com-
plete 6 DOF movement giving the user full control within the workspace of the
robot. The linear actuators used in the system are 2-phase, bipolar, parallel stepper
motors (Appendix 7.1, Table 7.1) which are positioned between two thick polymer
concrete blocks (base plate, positional plate). These motors produce linear move-
ment by converting rotational movements with a corkscrew. The steppers use in-
cremental encoders of quadrature types. Figure 2.1 depicts the same FMB Oxford
model as described here.
The resolutions and repeatabilities in all DOF are in the low µrad- and µm- range
as can be seen in Table 7.1 in Appendix 7.1. The workspace is relatively small;±2◦

in the rotary DOF and somewhere between ± 40 mm for the positional DOF.

Initial Control Layout, MCS-8 The FMB Oxford platform comes with its own
control system. This system, the MCS-8, consists of 3 main components; the Delta
Tau PMAC2 for motion control, Phyton ZMX+ stepper drivers to provide power
and current signals for the stepper motors, and an embedded Linux computer for
ethernet communications to and from the Delta Tau unit. Figure 2.6 shows how all
these components line up.

Figure 2.5 The MCS-8 – the control system that comes with the FMB Oxford
robot.
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2.3 Hardware

Figure 2.6 Control Layout of the MCS-8 with the FMB Oxford M3.

Galil DMC-4080 & Stepper Drivers
The DMC-4080 is Galils highest performing stand-alone controller[8]. Up to eight
axes can be controlled independently and it supports both servo- and stepper- mo-
tors. It is designed to solve complex motion problems and the unit comes with sev-
eral modes of motion and functions in solving these. A few interesting modes that
are relevant to the project are for an example: Point-to-Point positioning, PVT- mode
and Electronic CAM – what these functions do exactly will be explained in Section
2.4.
Stepper drivers are also needed to control the hexapod. As long as the drivers are
capable of producing a bi-directional current of up to approximately 2 A and also
of producing small enough microsteps as to not exceed the readhead resolution of
the encoder (see Table 7.1,7.1, Appendix 7.1) they should suffice.
The standard 4080- unit comes with built-in stepper drivers. We will in this project
only use the controller-board of the 4080 meaning that the stepper drivers are not
included; six separate stepper drivers have therefore been connected (Figure 2.7).

Control Layout, Galil DMC-4080 Exchanging the control system of MCS-8 with
the 4080 (and its own stepper drivers) would yield a similar control layout. The most
notable change would be the lack of an embedded computer as the 4080 comes with
its own ethernet handling system. Figure 2.8 depicts the control layout to be tested
in this project.

Stepper Control & Motion with the DMC-4080 The 4080 can control stepper
motors in a closed-loop; there are however some limitations – the 4080 does not
support (for steppers) the standard closed-loop controllers such as PID[8]. How the
4080 handles errors between feedback and reference values will be covered in Sec-
tion 3.1. The following two subsections explains two standard modes of motion that
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Chapter 2. Background

Figure 2.7 Left – standard 4080-unit with built-in stepper drivers. Right –
Controller-board of the 4080 connected to six stepper drivers (used in the project).

Figure 2.8 Possible control layout of the Galil DMC-4080 with the FMB Oxford
M3.

the 4080 will use for the stepper motors.

Point-to-Point Positioning When doing a standard point-to-point positioning all
steppers will follow either a triangular or trapezoidal velocity profile[8]. The shape
of the profile is defined by the allowed maximum velocity vmax, acceleration aa, and
deceleration ad of the motor. These values have to be defined before the move is
initiated. Figure 2.9 illustrates how the position-velocity-acceleration profiles would
look like.

Jogging Mode When jogging is initiated the motor will accelerate (with accelera-
tion aa) up to maximum allowed velocity vmax and hold this until stopped by a limit
switch or by command from the user[8]. Figure 2.10 shows the motion profile of the
mode.
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2.4 Working in the Microcode of the DMC-4080

Figure 2.9 Left – Trapezoidal motion profile with maximum velocity vmax and
final position p f . Right – Triangular motion profile with maximum velocity vt and
final position p f 2. Note that vt ≤ vmax and p f 2 ≤ p f .

Figure 2.10 Jogging mode; Very similar motion profile to the point-to-point posi-
tioning.

2.4 Working in the Microcode of the DMC-4080

A rough architecture diagram of the 4080 can be seen in Figure 2.11. The firmware
is here more low-level of the two and is also the fastest; code can be altered and/or
added to the firmware but this can only be done via Galil (the company that makes
the controller). The microcode, which is slower than the firmware, is however com-
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Chapter 2. Background

pletely open for the user to edit or add new code. We will in this project only be
working at the microcode level.

Figure 2.11 Architecture diagram of the DMC-4080.

Generic Microcode of the DMC-2182
SOLEIL Synchrotron has been using the DMC-2182, a predecessor of the 4080, for
several years and has during this time developed a Generic Microcode for handling
different modes of motion, error- and limit switches and communication with other
devices. The microcode does this by utilizing existing modes and functions in the
firmware. Some of the most useful and relevant functions (to this project) of the
generic microcode from the DMC-2182 will now be listed and briefly explained:

Stepper Closed-Loop This can roughly be explained as a loop (in the mi-
crocode level) with the microcode comparing encoder-feedback with reference val-
ues every iteration. The 2182 can only (like the 4080) do correctional moves when
the motor is at a stop. So rather than having the motor stop and handle every er-
ror, the system only do this when an error limit (defined by the user) is exceeded.
If an error limit is exceeded during a move, the system activates Dynamic Error
Handling. If an error limit is found to be exceeded directly after a move, the system
activates Static Error Handling.

Dynamic Error Handling Stops the motor and does a correctional move. If
error is within limit the motor continues towards the commanded position. If not;
the system tries again. If error diverges and still does so after a certain number of
tries, the system will abort and immediately stop the motor.

Static Error Handling Does a correctional move. If error is within limit the
positioning is flagged as complete. If not; the system tries again. If error diverges
and still does so after a certain number of tries, the system will abort and immedi-
ately stop the motor.
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2.4 Working in the Microcode of the DMC-4080

Limit Switch Handling Makes sure to stop the motor. If the motor is engaged
in a multiple-axis move all relevant motors are stopped.

Backlash Compensating Since no positional corrections can be made during
a move, backlash can not be dynamically compensated for. The generic microcode
has however implemented point-to-point backlash compensation; if the user knows
the magnitude of the backlash the positioning can overcompensate and hence make
sure the final position will be correct (and thus minimize the use of static error
handling).

Procedure for Finding Encoder Index This procedure jogs the motor (see
Section 2.3) at a speed and direction defined by the user while listening for a transi-
tion (low↔high) on the encoder index channel. If a transition is detected the motor
comes to an abrupt stop.
If the user still wants a higher precision (i.e position the axis closer to the edge of
the transition) the process can be repeated but in the reverse direction and with a
slower speed.

Homing Procedure Similar procedure as for finding encoder indexes; the
only difference is that the homing sequence listens for a transition on the home
input.

Multiple-Axis Modes of Motion The microcode enables synchronized moves
for multiple axes (up to four motors at a time) for point-to-point positioning or
jogging (see Section 2.3). The system also supports electronic gearing; a mode of
motion can move several slave axes with a gear ratio towards a common master
axis.
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3
Method

3.1 Microcode Migration & Advanced Functions
Implementation for the 4080

The generic microcode from the DMC-2182 was migrated to the 4080 and extended
to incorporate new and relevant functions[8].

Switch-Deceleration Command
The Switch-Deceleration (SD) command automatically changes the motor deceler-
ation value (to a value set by the user) when a limit switch is activated.

Figure 3.1 Effects of the SD- command when motor activates a forward limit
switch. Here it sets the deceleration to a value 10 times higher than the accelera-
tion.
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3.1 Microcode Migration & Advanced Functions Implementation for the 4080

Find-Index Command
The procedure for finding the encoder index described in Section 2.4 was com-
pletely exchanged with this more efficient and precise sequence:

The FI-command will start a sequence to find the edge of next index pulse of the
encoder. This sequence is a 2-step method: first the axis jogs in a direction defined
by the user while listening for an index pulse on the encoder index channel. When a
transition from low to high is detected, the system will record the axis position and
have the axis stopped. The second part of the sequence is that the axis is commanded
to reverse and reach the previously recorded position.

Figure 3.2 The workings of the FI- command. The procedure consists of a two-
stage method to find the edge of the encoder index pulse.

Stepper Position Maintenance Mode, Stepper Closed-Loop at
Firmware-Level
The generic microcode of the 2182 requires a software loop at the microcode level
for running the steppers in a closed loop (see Stepper Closed-Loop in Section 2.4).
This same loop already exists at the firmware level for the 4080; this means a faster
and more reliable updating interval between loop iterations and therefore a better
monitoring on the stepper errors. This mode is called the Stepper Position Mainte-
nance (SPM) Mode.

The microcode method of closing the loop has therefore been altered to instead
utilize the firmware SPM-mode. If error limits are exceeded the same microcode
Dynamic Error Handler- and Static Error Handler- methods descibed in Section
2.4 will be launched.

PVT-Mode
This mode of motion allows the user to create complex and arbitrary motion tra-
jectories for one or several axes. The user does so by defining a series of Position-
Velocity-Time coordinates they should traverse during their respective trajectories.
Up to 256 coordinates can be buffered per axis (and up to 8 axes can run simul-
taneously in PVT); these points are removed one by one from the buffer during
motion. Additional points can be added to the buffer during motion which allows
for essentially infinite trajectory lengths.
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Chapter 3. Method

The mode interpolates between points with a third degree polynomial:

P(t) = a · t3 +b · t2 + c · t +d (3.1)

where P(t) denotes the axis position at time t and where a, b, c and d are calcu-
lated from the boundary values (and initial axis position) of position-velocity-time
coordinates inputted by the user.

Figure 3.3 Example of PVT trajectory (1 axis) with 4 points. Red circles show
the point coordinates the user defined, the blue lines are the resulting third degree
interpolation between the points.

ECAM
ECAM (Electronic Cam) is a mode of motion that focuses on periodic synchroniza-
tion of multiple axes in motion. It does this by defining a master axis and slave axes.
All slaves are synchronized to the master through a table- based relationsship which
the user will have to build; this table will contain the positions of all slaves at cor-
responding master positions. Linear interpolation is done between tabular points.
Figure 2.7 illustrates how it works.

The slave motions in Figure 3.4 are entirely dictated by the motion of the master
(the user commands the master to move which in turn moves the slaves). Basically
any complex trajectory can be defined via the table-based relationsship. The ECAM
table can hold up to 256 segments per axis and can control up to eight axes. Data
can not be added to the table during motion which means that trajectories are finite
and limited within its 256 segments.

22



3.2 Extracting the Kinematic Equations & Homing Procedure

Figure 3.4 Example of ECAM trajectory with one master axis (top) and two slave
axes (bottom). Five points of synchronization have been defined (red circles); this
means that when the master axis reaches these points the slaves should be at their
respective positions.

3.2 Extracting the Kinematic Equations & Homing
Procedure

As was previously mentioned in Section 2.1; the reverse- and forward kinematics
are both needed to control the hexapod in a closed loop. SOLEIL Synchrotron have
these available but they are written in the coding format of the Delta Tau PMAC2.
They have therefore been extracted and will in this section be presented and ex-
plained.
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Reverse Kinematics
The reverse kinematics are given by the expression in Equation 3.2.

L = L(x,y,z,θ ,φ ,ψ) =
(
l1 l2 l3 l4 l5 l6

)T
=

=
(
|P1| |P2| |P3| |P4| |P5| |P6|

)T

where: Pi = T+R ·pi−bi =

 x
y

z+h

+R ·

xpi
ypi
zpi

−
xbi

ybi
zbi


R =

cosψ sinθ cosψ sinθ sinφ − sinψ cosφ cosψ sinθ cosφ + sinψ sinφ

sinψ cosθ sinψ sinθ sinφ + cosψ cosφ sinψ sinθ cosφ − cosψ sinφ

−sinθ cosθ sinφ cosθ cosφ


i = 1,2,3,4,5,6 – leg number

h– height of positional plate over base plate at home position
(l1, l2, l3, l4, l5, l6) – corresponding leglengths to input data

(xbi,ybi,zbi)– universal leg coordinates on base plate
(xpi,ypi,zpi)– local leg coordinates on positional plate (3.2)

Interpretation The reverse kinematics presented in Equation 3.2 can be broken
down into a series of coordinate transformations and vector geometry. Each leg
length is the norm of the vector Pi which in turn is calculated from vectors T, bi,
and multiplication between transformational-rotational matrix R and vector pi. Note
that the vector pi (positional joints for all legs) are the ones undergoing coordinate
transformations (see Figure 3.5).

Figure 3.5 Coordinate transformation and vector geometry gives leg lengths.
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3.2 Extracting the Kinematic Equations & Homing Procedure

Forward Kinematics
The forward kinematics are used to estimate the states of the virtual axes using only
the leg lengths of the robot. The kinematics extracted from the Delta Tau unit does
this iteratively; calculating estimates each iteration until errors are within limits.
We have the state estimations, x̂k =

(
x̂k ŷk ẑk θ̂k φ̂k ψ̂k

)T , where index k
represents the current number of iterations, for the corresponding actual leg lengths
L =

(
l1 l2 l3 l4 l5 l6

)T . The kinematics always start with an initial estimate
x̂0:

x̂0 =
(
x̂0 ŷ0 ẑ0 θ̂0 φ̂0 ψ̂0

)T (3.3)

From this we can utilize the expression used in Equation 3.2 to get a corresponding
leg length estimation L̂k and leg length error L̃k:

L̂k =
(
l̂k1 l̂k2 l̂k3 l̂k4 l̂k5 l̂k6

)T
= L(x̂k, ŷk, ẑk, θ̂k, φ̂k, ψ̂k) (3.4)

L̃k = L̂k−L, where L are the current leglengths (3.5)

If the expression in Equation 3.6 is true then no further calculations are needed and
the state estimations x̂k are within error limits. If not – the estimation is not good
enough and needs further adjusting.

|L̃k|< d, where d is a threshold value (3.6)

This is done by linear approximation; Equation 3.7 shows the relationship between
real leg lengths and its leg length- and state estimations.

L = L̂k + ĴL̂k
· (x− x̂k)+O(||x− x̂k||)≈ L̂k + ĴL̂k

· (x− x̂k) (3.7)

where: ĴL̂k
= JL̂k

(x̂k, ŷk, ẑk, θ̂k, φ̂k, ψ̂k) =
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δ ẑk

δ l̂k5
δ θ̂k

δ l̂k5
δ φ̂k

δ l̂k5
δψ̂k

δ l̂k6
δ x̂k

δ l̂k6
δ ŷk

δ l̂k6
δ ẑk

δ l̂k6
δ θ̂k

δ l̂k6
δ φ̂k

δ l̂k6
δψ̂k


(3.8)

Setting x̃k = x̂k−x and solving for it in Equation 3.7 gives:

L≈ L̂k + ĴL̂k
· (x− x̂k) = L̂k− ĴL̂k

· x̃k ⇐⇒

⇐⇒ x̃k ≈ Ĵ−1
L̂k
· (L̂k−L) = Ĵ−1

L̂k
· L̃k

(3.10)

The new state estimations are then given by:

x̂k+1 = x̂k− x̃k ≈ x̂k− Ĵ−1
L̂k
· L̃k (3.11)
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The result from Equation 3.11 is then tested by inputting it into Equation 3.4 and
calculating the resulting error. If error is still beyond the threshold d (Equation 3.5)
new estimates will be produced; Figure 3.6 gives the workflow of the process.

Figure 3.6 Flowchart of the forward kinematics process.

Initial Estimates & Threshold Value The forward kinematics require a quite large
amount of calculations especially when determining the Jacobian (see Equation 3.8)
and its inverse. These calculations are repeated every iteration when producing the
state estimates; for good efficiency it is therefore of interest to do this with the
minimal amount of iterations as possible.

Equation 3.11 shows how new state estimates x̂k are produced from initial es-
timate x̂0 by a series of linear approximations. These linear approximations will
contain errors as the Stewart Platform is a non-linear process; choosing a good ini-
tial estimate x̂0 will directly affect the number of iterations needed.

The choice of threshold d is a matter of weighing efficiency against precision:
the kinematics should be calculated fast but keep within the systems resolution.

Homing Procedure
As was previously mentioned in Section 2.3; the encoders of the linear actuators
are incremental. This means that the length of the legs are no longer known when
rebooting the electronics and we have to run a sequence to find the home posi-
tion. The system must be able to find the home position from any point inside the
workspace and should do so without violating the physical restraints or by exceed-
ing the workspace of the robot. The homing procedure extracted from the MCS-8 is
illustrated in Figure 3.7.

This procedure relies on three key aspects:
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Figure 3.7 Flowchart of the homing sequence.

1. Synchronized moves on all six legs.

The system must find the home position for all six legs simultaneously the
reason being the parallel nature of the process (all legs are connected to the
same plate).

2. Backward limit switches.

Stopping all axes at their respective backward limit switches ensures (if one
assumes all legs are built similarly) that they all have roughly the same dis-
tance to their individual encoder indexes.

3. Encoder indexes and offsets.

Once the encoder indexes have been found, the position of the axes are known
and they need only to move a certain distance towards their home positions.

3.3 Matlab Simulation

The kinematics and homing procedure in Section 3.2 were tested in a Matlab Sim-
Mechanics/Simulink environment (see Figure 3.8). The physical process was mod-
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eled using setup data from the FMB Oxford documentation (such as leg coordinates
on the base- and platform plates, leg lengths at the home positions, etc). All six
actuators were set to follow positional reference values (output from the reverse
kinematics) and feed their respective leg lengths into the forward kinematics. No
controller was used in this simulation (all actuators were simply set to their posi-
tions,velocities and accelerations), the system was run in open-loop and did so in a
continuous manner.
The point of this simulation was therefore only to test and observe that:

1. Reference values fed through the reverse kinematics would result in a correct
response from the physical model (Example: positive reference value for z
results in an upward direction of the positional plate).

2. The forward kinematics would, with a good enough threshold value (see
Equation 3.6), yield almost identical values as those fed into the reverse kine-
matics.

3. Confirm that the homing procedure is functional.

Figure 3.8 Simulation of the process using SimMechanics/Simulink. Image to the
upper right corner is a 3D model of the process.
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3.3 Matlab Simulation

Confirming the Kinematics
Figure 3.9 presents the results of a simulation where all virtual axes (x,y,z,θ ,φ ,ψ)
are headed one by one towards their range limits (see Appendix 7.1,Table 7.1). The
second graph in the figure presents the virtual axes errors with a threshold value of
d = 4.4721 ·10−9 m (see Equation 3.6). From this the data in Table 3.1 and 3.2 are
calculated.

x (m) y (m) z (m)
Standard Deviation, σ 3.22 ·10−10 2.82 ·10−10 5.19 ·10−11

Maximum Deviation, σm 2.67 ·10−9 3.00 ·10−9 5.76 ·10−10

Table 3.1 Standard- and maximum deviations of the forward kinematics with
(x,y,z) with threshold d = 4.4721 ·10−9 m.

θ (Degrees) φ (Degrees) ψ (Degrees)
Standard Deviation, σ 2.32 ·10−8 2.97 ·10−8 1.92 ·10−8

Maximum Deviation, σm 5.26 ·10−7 1.47 ·10−7 2.13 ·10−7

Table 3.2 Standard- and maximum deviations of the forward kinematics with
(θ ,φ ,ψ) with threshold d = 4.4721 ·10−9 m.

Comparing all deviations in Tables 3.1 and 3.2 with the required resolutions
found in Appendix 7.1, Table 7.1 we see that the precision of the forward kinematics
are well within limits (errors are ∼ 103− 104 times smaller). The response of the
model was also confirmed to be correct by observing the movements of the 3D
model (see Figure 3.8) during the simulation.

Additional simulations have been run; the results of these can be found in Ap-
pendix 7.2 and will be used a reference when implementing the controller on the
real process.

Confirming the Homing Procedure
Figure 3.10 shows a simulation of a slightly altered homing sequence from
the one defined in Figure 3.7; the encoder index was here assumed to be
in the backward limit switch and the 2mm move was therefore not needed.
The homing was initiated from an arbitrary initial position which in this case
was (x,y,y,θ ,φ ,ψ) = (10,5,0,0,0,0) and ended up at the home position of
(x,y,y,θ ,φ ,ψ) = (0,0,0,0,0,0).

The lower graph (when t < 60) in Figure 3.10 shows how the states
x,y,θ ,φ and ψ remain constant during the initial synchronized move downwards.
These states go towards zero during the second part of the homing; when all leg ac-
tuators reach their respective limit switches and stop individually. The final stage of
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Figure 3.9 Testing the kinematics in Matlab simulation; All virtual axes
(x,y,z,θ ,φ ,ψ) go towards their range limits.

the sequence, a synchronized move upwards for all actuators, sets the last non-zero
state z to zero.
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Figure 3.10 Confirming the homing sequence; All leg lengths decrease until they
hit their individual limit switches then go towards their home positions.

3.4 Implementing the Controller

Having prepared the microcode, extracted the kinematics, and extracted the homing
procedure the controller could now be implemented.

Kinematics into Microcode
The kinematics presented in Section 3.2 were implemented into the microcode
format and adjusted to be as efficient as possible without violating the state
(x,y,z,θ ,φ ,φ) resolutions defined in Appendix 7.1, Table 7.1. The following factors
had to be addressed in the implementation:

Matrix Calculations & Inverses The microcode format does not have any built-in
functions to handle matrix- or vector multiplication or to calculate matrix inverses.
A standard matrix-multiplication algorithm was therefore utilized. Equation 3.12
shows an example of a 2x2 matrix multiplication; the algorithm would simply cal-
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culate the elements of C directly as according to the equation.

C = A ·B, where A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
and C =

(
a11 ·b11 +a12 ·b21 a11 ·b12 +a12 ·b22
a21 ·b11 +a22 ·b21 a21 ·b12 +a22 ·b22

)
(3.12)

Matrix inverses were calculated using the Gauss-Jordan algorithm (a version of
Gauss-elimination). Equation 3.13 shows how the process would (with row opera-
tions on an augmented matrix) take place for arbitrary 3x3 matrices.

We have matrix D where D−1 is calculated from: d11 d12 d13 1 0 0
d21 d22 d23 0 1 0
d31 d32 d33 0 0 1

 Row operations
−−−−−−−−−−−→

 1 0 0 i11 i12 i13
0 1 0 i21 i22 i23
0 0 1 i31 i32 i33


where D−1 =

 i11 i12 i13
i21 i22 i23
i31 i32 i33


(3.13)

Fixed-Point Variables Microcode variables are fixed-point and use 6 bytes for
storage. They are stored in the Q31.16 format meaning 31 integer bits, 16 fractional
bits and one bit reserved for sign. This format is set and can not be changed. To

Figure 3.11 Illustration of the Q31.16 format. The image shows the maximum
value a microcode variable can hold and its decimal counterpart.

maximize both precision and range of the kinematic calculations it is important that
all variables utilize as much as possible of the 6 bytes available. This is done by
evaluating the variables range and (if need be) multiply its value with a scalar to
utilize as many integer and fractional bits as possible. To illustrate this, imagine the
following pseudo-program code:

a=100*b;

if in this case (−105 < b < 105) then (−107 < a < 107). A better way of utilizing
all the bits of the Q31.16 format would be to multiply the values of a with a factor.
A better way of storing the value a would then be:
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a=(100*b)*100;

the range of a is now: (−109 < a < 109) which would use up more available bits.

Implementing Custom Trigonometric Functions Table 7.1 in Appendix 7.1 state
that the ranges of the rotational states are within ±2◦ and that the resolutions are at
their smallest approximately 2.865 ·10−3 Degrees. The firmware does provide with
native sine- and cosine- functions that the microcode can use. These are however
very limited when it comes to resolution; the smallest angle increment that they use
are ∼ 0.5 · 10−3 Degrees which is more than 15 times worse than needed. Custom
sine- and cosine- functions were implemented with Taylor/Maclaurin series:

sin(α) =
∞

∑
k=1

(−1)k+1 ·α2k−1

(2k−1)!
= α− α3

3!
+Os(α

5)≈ α− α3

3!
(3.14)

cos(α) =
∞

∑
k=0

(−1)k ·α2k

(2k)!
= 1− α2

2
+

α4

4!
+Oc(α

6)≈ 1− α2

2
+

α4

4!
(3.15)

where α in this case is any angle in the range of ±2◦. To get an estimate of the
error we can calculate the average value of the ordo-notations over the angle range.
Estimates of the ordo- notations were calculated in MATLAB with the following
equations:

Os(α
5)≈

20

∑
k=3

(−1)k+1 ·α2k−1

(2k−1)!
, Oc(α

6)≈
20

∑
k=3

(−1)k ·α2k

(2k)!
(3.16)

where the mean values from ∼ 1.3 · 105 uniformly chosen values of α within ±2◦

were calculated to be:

Ōs =−1.052 ·10−15, Ōc =−3.589 ·10−13 (3.17)

Forward Kinematics – Initial Estimates & Thresholds At this point the kinemat-
ics were fairly functional and just needed tweaking to yield values with acceptable
precision and a good enough calculation time. The importance of choosing a good
initial estimate x̂0 and threshold value d was mentioned in Section 3.2.

INITIAL ESTIMATES: The MCS-8 (see Section 2.3), the unit from which the
kinematics were extracted from, sets the initial estimate x̂0 (current position) to the
state estimate used in the previous position. This choice makes sense if the forward
kinematics are calculated fast in relation to the process changes (this would mean
that the previous position would be fairly close to the current one). Running the for-
ward kinematics on the 4080 would however suggest a different approach. Initially
the calculation time to produce one set of acceptable state estimations (before any
major tweaking was done) landed on 1.5 seconds or more. The initial estimate was
therefore instead set to the state reference values; trusting that the good repeatability
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of the stepper motors would yield somewhat similar reference values to the actual
states.

THRESHOLD: 300 data-points consisting of all six leg-lengths during a posi-
tive z-move from the home position (x0,y0,z0,θ0,φ0,ψ0) were generated for testing
purposes. This set of data was fed through the implemented 4080 forward kine-
matics with a set threshold value d and compared with the reference values. This
process was repeated for 9 different threshold values. Figure 3.12 show the results

Figure 3.12 Evaluating different thresholds.

of running the forward kinematics with different thresholds. The top graph depicts
the standard deviation of the state errors and the middle shows the maximum de-
viation. Both graphs contain each 6 curves depicting the respective error of each
state (x,y,z,θ ,φ ,ψ). All curves in both graphs are normalized to their respective
resolutions (Table 7.1, Appendix 7.1); if any curve goes beyond the red dotted line
it means the error was greater than the required state resolution. The bottom graph
show the average calculation time (over 300 calculations) to produce one set of ac-
ceptable state estimates. The average calculation time can be very high (4 seconds
or more) for very low thresholds; at this level round-off errors are dominant and the
system has a hard time in finding good estimates. The kinematics should be cal-
culated as fast as possible but without errors that exceed the state resolutions. With
this in mind the threshold was set to d2 = 1.1 ·10−7 mm2⇒ d ≈ 1.0488 ·10−7 m; as
high as it can be without any maximum deviations or standard deviations exceeding
the state resolutions.

Hexadecimal- vs Decimal Format Microcode variables are normally displayed in
the decimal format. The system does however support hexadecimals as an alterna-
tive; this format offers several advantages over the decimal:

BINARY CONVERSIONS: All computerized systems use the binary format
which has a base of 2. The hexadecimal format uses a base of 16 which happen
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to be an even multiplier from the binary system. What this effectively means is that
the conversion between the two formats will be simpler and require less operations
than a binary-decimal conversion would. An example is given in Equation 3.19.

111100101101101111012 = 104857610 +26214410 +13107210 +6553610+

+819210 +204810 +102410 +25610 +12810 +3210 +810 +410 +110 = 99474910

111100101101101111012 = 1111 0010 1101 1011 11012 = F2DBD16

(3.19)

Equation 3.19 illustrates how the conversion to decimal (in this case) needs to map
13 binary numbers to decimal and then add them together. In the case of binary-
hexadecimal, 5 groups-of-four of binary numbers are directly mapped to hexadeci-
mals.

FRACTIONAL REPRESENTATION: Equation 3.19 presents an example of an or-
dinary integer conversion. If the variable also has a fractional component the binary-
decimal conversion can give off truncation errors; Equation 3.20 shows how the
truncation error would present itself when displaying the variable on the 4080. It
can only display decimal fractional numbers up to 4 digits.

0.01001001000000002 = 0.2851562510
trunc−−−→ 0.285110 (3.20)

No truncation error will be present in the hexadecimal format and all 16 fractional
bits will always be displayed:

0.01001001000000002 = 0.490016 (3.21)

Implementing the Controller of Virtual Axes
With kinematics implemented into the microcode the next step is constructing a con-
troller for moving the virtual axes x,y,z,θ ,φ , and ψ . Control will be accomplished
by combining point-to-point positioning and jogging (see Section 2.3), advanced
functions and modes of motion (see Section 3.1) and kinematic equations.

Backlash Eventhough point-to-point backlash compensating was available in the
Generic Microcode from the DMC-2182 (see Section 2.4) it was not implemented
for the Stewart Platform controller; the reason was that the trajectories produced
by the kinematics might be too complex (coupled with eventual error handling)
to estimate the final positional backlash compensation. Even so; the backlash of
all leg-motors were measured by running a synchronized move in one direction,
followed by a synhchronized move in the opposite direction. The difference between
the starting- and final- positions would be the backlash of the corresponding legs:

br =
[
0.00613 0.005073 0.005700 0.00444 0.00718 0.00622

]
mm
(3.22)
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Virtual Axes Setup It has been previously mentioned that the 4080 supports in-
dependent control of up to eight axes. The 4080 also includes two virtual motors;
these are controlled like any other real motor but differ in that they lack encoders.
The virtual states x,y,z,θ ,φ and ψ will utilize the virtual motors of the 4080. One
apparent limitation is the lack of virtual motors available on the 4080; we have
six virtual states and the 4080 only provides with two. The following method was
therefore used:

ONE VIRTUAL MOTOR −→ SIX VIRTUAL STATES: When making a
move from any initial position (xi,yi,zi,θi,φi,ψi) to an arbitrary position
(x f ,y f ,z f ,θ f ,φ f ,ψ f ) the virtual motor will be set to move the state that that
does the furthest positional move. The speed, acceleration and deceleration of the
virtual motor are then set to state-specific values and the motor is commanded to
do a point-to-point positioning. The positions of the other five virtual states will set
in linear proportion to the virtual motor position. Figure 3.13 shows an example

Figure 3.13 Example of two virtual states x and y driven by one virtual motor. Blue
solid line represents state x and the red dotted line y.

of two virtual states driven by one virtual motor. Here the states x and y start at
(xi,yi) = (0,0) and finish in (x f ,y f ). State x does the furthest positional move of
the two and is driven by the virtual motor in a point-to-point positioning (with
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vmax,x,aa,x and ad,x) from 0 to x f . During this move state y is defined as:

y = yi +
y f

x f
· x (3.23)

thus ensuring that both x and y reach their final positions at the same time. Figure
3.13 also show that the maximum velocity, acceleration and deceleration are lower
for state y than x; these values are in fact defined by:

vmax,y =

(
y f

x f

)
· vmax,x, aa,y =

(
y f

x f

)
·aa,x, ad,y =

(
y f

x f

)
·ad,x (3.24)

Reverse Kinematics – Connecting Virtual Axes to System Actuators ...
PRE-BUFFERING: All virtual axes will have the trapezoidal or triangular motion

profile as defined in Section 2.3; this effectively means that all virtual axis trajec-
tories can be calculated and buffered prior to any move (as long as initial and final
positions are known). PVT and ECAM, modes of motion available to the 4080, both
offer pre-buffering and interpolation between points.

PVT VS ECAM: The criterias for choosing mode of motion comes down to
how they handle the following points:

1. Buffering

2. Interpolation Between Points

3. Multi-Axis Synchronization

4. Error Handling

5. Ease of Use

ECAM turns out to be more suitable for the task, especially when it comes to points
3-5. The fact that one master axis controls six slaves fits well into the design method
mentioned in Section 3.4. This particular setup is also well suited for multi-axis
synchronization. The main feature that makes ECAM the preferable choice is its
ease of use compared to PVT; we only need the corresponding slave positions when
buffering with ECAM. PVT needs positions, velocity and time for all six slave axes
which is much harder to come by.

Forward Kinematics The forward kinematics will provide, by converting current
leg-lengths to virtual states, feedback to the system. The two main objectives with
the implementation of the forward kinematics is optimization (to get the calculation
time as low as possible) and precision.

37



Chapter 3. Method

Control Scheme
Figure 3.14 shows the control scheme used in the project where: x f =
(x f ,y f ,z f ,θ f ,φ f ,ψ f ) is any destinational point inputted by the user, xR =
(xR,yR,zR,θR,φR,ψR) are trajectory reference points generated from point-to-point
positioning (Section 2.3), LR = (lR1, lR2, lR2, lR4, lR5, lR6) being the reference points
for the legs, L = (l1, l2, l2, l4, l5, l6) the actual leg lengths, and x̂ = (x̂, ŷ, ẑ, θ̂ , φ̂ , ψ̂)
the estimated virtual axis positions.

Figure 3.14 Control Scheme

The scheme involves two feedback loops; the inner loop checks and corrects
that all individual leg lengths are within threshold limits (here portrayed by array
t2), the outermost loop checks that all virtual states are within threshold limits t1.
Arrays t1 and t2 each switches between two different sets of values depending on
how far along the trajectory the process is. If the trajectory has reached its final
position then Equation 3.26 is true otherwise Equation 3.28 is.

t1 =
(
1µm 1µm 1µm 28.63µDegrees 57.3µDegrees 28.63µDegrees

)
t2 =

(
0.1µm 0.1µm 0.1µm 0.1µm 0.1µm 0.1µm

)
(3.26)

t1 =
(
100µm 100µm 100µm 8mDegrees 8mDegrees 8mDegrees

)
t2 =

(
22µm 22µm 22µm 22µm 22µm 22µm

)
(3.28)

The dynamic error thresholds in Equation 3.28 are much larger than the sets in
Equation 3.26; fluidity and speed of motion (minimize the use of dynamic error
handling) was prioritized over precision during motion.

The virtual axis error handling is pretty straightforward; it will make a syn-
chronous stop for all legs, recalculate the trajectories from current position and then
restart the move. The individual error handling works exactly as dynamic error han-
dling as was described in Section 2.4; all legs will do a synchronous stop, the error
will be corrected, and the trajectory will be resumed.
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The control scheme in Figure 3.14 proved successful; the 4080 was able to perform
point-to-point positioning and could do so with one or multiple states simultane-
ously. Running the reverse kinematics took on average 24 ms per try and about
600-800 ms per forward-kinematic-conversion.

Forty-nine tests were executed and the leg-length data was post-processed
through the kinematics used in the MATLAB simulation in Section 3.3; Figure 4.1
shows the homing procedure and Figures 4.2–4.7 show some results when running
the virtual states one by one towards set values (while keeping all other virtual
states zero). Error handling is visible in some of the graphs; Figure 4.4 for an ex-
ample show individual leg error handling at t ≈ 3.1 · 104− 3.5 · 104 ms and virtual
axis error handling later at t ≈ 5.8 · 104 ms. Parasitic movements (moving states
affecting other states) were also observable; Figures 4.8 and 4.9 presents two oc-
curences where parasitic movements arose from z-moves, Figure 4.10 shows para-
sitic movements during a ψ-move. Table 4.1 shows how much the states deviated
from their commanded positions and reference trajectories during the actual moves.
Time comparisons were made using the 4080 vs MCS-8 in controlling the hexapod;
these results can be found in Table 4.2.
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Figure 4.1 Results from running the homing procedure from an arbitrary position.

Figure 4.2 Results from running state x from 0 to 4 mm whilst keeping all other
virtual states zero.
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Figure 4.3 Results from running state y from 0 to 4 mm whilst keeping all other
virtual states zero.

Figure 4.4 Results from running state z from 0 to 4 mm whilst keeping all other
virtual states zero.
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Figure 4.5 Results from running state θ from 0 to 1.5◦ whilst keeping all other
virtual states zero.

Figure 4.6 Results from running state φ from 0 to 1.5◦ whilst keeping all other
virtual states zero.
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Figure 4.7 Results from running state ψ from 0 to 1.5◦ whilst keeping all other
virtual states zero.

Figure 4.8 Parasitic movements of states x,y,θ ,φ ,ψ (they should be zero) whilst
z is moving. The dotted lines in the upper graph represents the reference values.
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Figure 4.9 Parasitic movements of states x,y,θ ,φ ,ψ (they should be zero) whilst
z is moving. The dotted lines in the upper graph represents the reference values.

Figure 4.10 Parasitic movements of states x,y,z,θ ,φ (they should be zero) whilst
ψ is moving. The dotted lines in the upper graph represents the reference values.
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St Dev, σ Max Dev, σm Norm σ Norm σm

x f 3.15 ·10−7 m 1.00 ·10−6 m 0.32 1.00
y f 2.41 ·10−7 m 9.00 ·10−7 m 0.24 0.90
z f 1.72 ·10−7 m 6.00 ·10−7 m 0.17 0.60
θ f 9.50 ·10−6 Degrees 2.38 ·10−5 Degrees 0.33 0.83
φ f 8.66 ·10−6 Degrees 2.38 ·10−5 Degrees 0.15 0.42
ψ f 1.53 ·10−5 Degrees 2.52 ·10−5 Degrees 0.53 0.88

xd 9.88 ·10−6 m 2.48 ·10−5 m 9.88 24.80
yd 1.29 ·10−5 m 3.38 ·10−5 m 12.90 33.80
zd 1.21 ·10−6 m 3.63 ·10−6 m 1.21 3.63
θd 2.71 ·10−4 Degrees 7.29 ·10−4 Degrees 9.46 25.45
φd 2.29 ·10−4 Degrees 7.71 ·10−4 Degrees 4.00 13.46
ψd 1.1 ·10−3 Degrees 3.90 ·10−3 Degrees 38.39 136.13

Table 4.1 Results – Commanded & Dynamic Positions Deviations.
(x f ,y f ,z f ,θ f ,φ f ,ψ f ) denotes the final positions while (xd ,yd ,zd ,θd ,φd ,ψd)
denotes dynamical positions (positions during a move). The last two columns
depicts the deviations normalized to the required state resolutions found in Table
7.1, Appendix 7.1.

Move Length DMC 4080 MCS-8
Small Moves ≤

√
3 ·0.1≈ 0.17 mm 16.2 s 2.1 s

Medium Moves & Ang displ ∼
√

3≈ 1.73 mm 40.0 s 16.2 s
Big Moves 4 mm 59.3 s 9.9 s

Table 4.2 Time Comparisons (average); DMC-4080 vs MCS-8. Time was mea-
sured from when move-command was issued until controller flagged the positioning
as complete.
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Discussion – Analyzing the
Results

The results confirm what the MATLAB simulations produced in Section 3.3 and
Appendix 7.2. Comparing the upper graphs in Figures 4.2–4.7 with the ones found
in Appendix 7.2 one can see a clear resemblance that only seem to differ when it
comes to three key factors:

1. Velocities and Accelerations

2. Error Handling

3. Parasitic Movements

The first of these points simply comes down to that leg velocities and accelerations
were chosen in the simulation to produce esthetically suitable curves, while max-
imum leg velocity in the real process had to be well within the limit presented in
Table 7.1, Appendix 7.1. Error handling and parasitic movements will be discussed
in the following subsections.

5.1 Static & Dynamic Behaviour

Table 4.1 presents the static and dynamic precisions of the system. We can see that
the static deviations (standard- or maximum deviation) never exceed the required
state resolutions presented in Table 7.1, Appendix 7.1, as the normalized deviations
never exceeded 1. The dynamic deviations are much larger; in some cases the max-
imum deviation were up to 136.13 times larger than the required state resolution.

Both static and dynamic precisions holds well within the virtual state error lim-
its presented in Equations 3.26-3.28, Section 3.4. As was previously mentioned in
Section 3.4 the dynamic error limits were set to greater values than the static er-
ror limits. The main reason for doing so was to uphold a certain level of fluidity
in motion and avoid (as much as possible) the stop-correct-resume method of the
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error handler. Also, since calculation time of the forward kinematics varies between
600-800 ms per conversion, the speed of virtual state error-checking will be lim-
ited to this conversion-time. It should be possible to run the system with a dynamic
precision equal to the static precision; this would require a change in error limits as
well as lower leg- velocities and accelerations; the process changes of the platform
would have to be slowed down to match the long-time lag of the virtual state error
checking.

5.2 Parasitic Movements

Figures 4.8–4.10 shows how some virtual states change during trajectories when
they should in fact stay still. These changes are caused by the movement of other
states, hence the name parasitic movements. One can observe three different sources
of errors occuring:

1. Error Drifts (Figures 4.8,4.10)

2. Error Offsets (Figures 4.8,4.10)

3. Errors of Periodical Nature (Figure 4.10)

The drifts could be explained by ratio round-off errors with the method explained
in Section 3.4; a faulty ratio would for an example in Equation 3.23 cause an error
of linear nature.
Figures 4.8 and 4.9 both show similar moves but with different levels of parasitic
errors. Figure 4.8 shows an error offset of magnitude ∼ 10−2, something which
Figure 4.9 does not portray. One can observe a delay between reference trajectories
and actual leg movements in both figures; this delay seems to be roughly the same
for all legs in Figure 4.9 but slightly different for the legs in Figure 4.8. It is this
mismatch of delays between the legs that cause a slight de-synchronization and
hence error offsets. Backlash is a viable source of these delays which is confirmed
by measuring the positional errors of the legs at the moment they start to move:

b1 =
[
0.001438 0.005052 0.001442 0.001495 0.005082 0.001496

]
mm
(5.1)

b2 =
[
0.00605 0.005673 0.005682 0.004724 0.006693 0.006122

]
mm
(5.2)

b1 is here the positional errors (at the moment of leg movement) measured in Figure
4.8 while b2 is from Figure 4.9. We see that these values are equal to or less than
the measured backlash in Equation 3.22, Section 3.4. Also one can see that the legs
from Figure 4.9 are similarily aligned to their respective backlash while the legs
from Figure 4.8 are not.
Virtual state x in Figure 4.10 presents an error of periodic nature. Being periodic
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would suggest that it stems from a rotational element and since the leg motors pro-
duce linear motion by converting rotational motion with a corkscrew it would be
feasible that this is the source of error (misaligned mechanical parts for an exam-
ple).

5.3 System Limitations

Closed-Loop Control Frequency Due to the calculation- speed limitation of the
forward kinematics the system is only able to handle low frequency closed-loop
control. The maximum frequency would be fmax =

1
Tmax
≈ 1

0.8 = 1.25Hz.

Load Weight, Movements & System Flexibility As was previously mentioned in
Section 2.1; the (x̂, ŷ, ẑ, θ̂ , φ̂ , ψ̂) estimations are acquired through kinematic con-
versions from the leg-lengths feedback (l1, l2, l3, l4, l5, l6). These estimations (see
Section 3.2) presume a non-flexible system and will thus yield estimation errors
(in function of the applied weight load and movement) and thus affecting overall
system precision. There are two possible types of weight loads to be considered:

1. Static Loads, Non-fluctuating load movements and weight

2. Dynamic Loads, Fluctuating load movements and/or weight

The error estimations could be decreased with an improved kinematic model of
the system; this would however require a much more detailed knowledge of the
system setup than is provided by the FMB Oxford documentation (in addition to
load weight and/or movements). The best way to avoid these errors would be get
(x,y,z,θ ,φ ,ψ)- feedback directly from the positional plate; this would eliminate
the need of forward kinematics and thus eliminate estimation errors.

5.4 Summary & Conclusion

The Galil DMC–4080 has successfully been used as a controller of a stepper-motor
driven Stewart Platform with µm- and µrad- static precision and resolution. Control
was done point-to-point, and could do so freely in the workspace of the virtual axes.
Closed-loop control was achievable but with certain limitations such as big time-
lags in some of the feedback (due to 600-800 ms calculations of forward kinemat-
ics). Another limitation is how the DMC-4080 makes error corrections with stepper-
motors; this results in a so called stop-correct-resume type of error-handler which
utilizes error-limits (to have some flow in movement). System precision might also
suffer due to system flexing due to loads; these errors arise from a kinematic model
that doesn’t take the flexing into account and sensors far from the positional plate.
It is possible to have as high dynamic precision as is used in static positioning but
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5.4 Summary & Conclusion

due to the nature of the error handler and the long time-lags in feedback the time-
costs of doing so would be very high. It is therefore preferable, if one can afford it, to
have a less strict demand for dynamic precision. In the context of the stepper-driven
Stewart Platform, the Galil DMC-4080 is a suitable closed-loop controller if time
efficiency and smoothness of motion are not the driving factors. What truly limits
the performance is calculation time of the kinematics (maximum closed-loop con-
trol frequency is approximately 1.25 Hz); the reader should bear in mind that these
were (in this project) written in the microcode-level – if these were instead imple-
mented into the firmware the controller should get a better time- performance since
the kinematics would be running faster. Smoothness of motion would of course still
be an issue since the controller would still utilize the stop-correct-resume method
of error handling.
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M3 Motion Parameter Specification
Pitch (X-Rotation) Drive Linear actuators w/ limit switches

& encoder
Range ± 2 ◦

Resolution 0.5 µrad ≈ 0.02865 milliDegrees
Repeatability 1.0 µrad ≈ 0.05730 milliDegrees

Roll (S-Rotation) Drive Linear actuators w/ limit switches
& encoder

Range ± 2 ◦

Resolution 1 µrad ≈ 0.05730 milliDegrees
Repeatability 2.5 µrad ≈ 0.14324 milliDegrees

Yaw (Z-Rotation) Drive Linear actuators w/ limit switches
& encoder

Range ± 2 ◦

Resolution 0.5 µrad ≈ 0.02865 milliDegrees
Repeatability 1.0 µrad ≈ 0.05730 milliDegrees

Vertical (Z Direction) Drive Linear actuators w/ limit switches
& encoder

Range ± 40 mm
Resolution <1.0 µm
Repeatability <2.0 µm

Lateral (X Direction) Drive Linear actuators w/ limit switches
& encoder

Range ± 10 mm
Resolution <1.0 µm
Repeatability <2.0 µm

Longitudinal (S Direction) Drive Linear actuators w/ limit switches
& encoder

Range ± 5 mm
Resolution <1.0 µm
Repeatability <2.5 µm

Table 7.1 Virtual Axes Motion

7.2 Matlab Simulation Results

The results presented in this section were produced in a Matlab SimMechan-
ics/Simulink environment. All six plots show the change in all leg lengths when
running the states x,y,z,θ ,φ and ψ to set values whilst keeping all other states at
zero. The variables ∆L f i where i = 1,2,3,4,5,6 denotes the total change in position
for leg i (in mm).
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7.2 Matlab Simulation Results

Figure 7.1 Changes in leg lengths when state x → 4 mm from
(x0,y0,z0,θ0,φ0,ψ0) = (0,0,0,0,0,0)

Figure 7.2 Changes in leg lengths when state y → 4 mm from
(x0,y0,z0,θ0,φ0,ψ0) = (0,0,0,0,0,0)
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Figure 7.3 Changes in leg lengths when state z → 4 mm from
(x0,y0,z0,θ0,φ0,ψ0) = (0,0,0,0,0,0)

Figure 7.4 Changes in leg lengths when state θ → 1.5◦ from
(x0,y0,z0,θ0,φ0,ψ0) = (0,0,0,0,0,0)
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7.2 Matlab Simulation Results

Figure 7.5 Changes in leg lengths when state φ → 1.5◦ from
(x0,y0,z0,θ0,φ0,ψ0) = (0,0,0,0,0,0)

Figure 7.6 Changes in leg lengths when state ψ → 1.5◦ from
(x0,y0,z0,θ0,φ0,ψ0) = (0,0,0,0,0,0)
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Motor Type McLennan Type 23HS 309 halfstep,
2-phase, bi-polar, parallel stepper motor

Holding torque 80 Ncm
Step angle (full step drive) 1.8◦ or 200 steps/rev
Driving current 2 A
No. of µsteps/rev 4000 (w/ MCS-8, 20 µsteps/step)
Maximum velocity 180000 µsteps/sec (20 µsteps/step)
Gear box ratio 25:1
Resolution per µstep 5 nm (w/ MCS-8, 20 µsteps/step)
Maximum movement per actuator 95 mm
Maximum holding load (power off) 200 kg
Connector 12-way Trim Trio

Table 7.2 Linear Actuators

Readhead type Renishaw - RGH24Y
Readhead resolution 0.1 µm
Scale type RGS20-S
Precision reference type RGM245S
Connector 15-way sub D

Table 7.3 Encoder Data

Switch type Type V4 Roller
Max supply voltage 250 VAC (28 VDC)
Max switching current 10A AC (non-inductive)(5A DC)
Switching funcion Normally closed
Connector 12-way Trim Trio

Table 7.4 Limit Switches

7.3 Kinematics in Microcode Format
'************************************************************************
'Kinematic Equations for FMB Oxfords Stewarts Platform (M3)
'By: Christer Engblom, 2013-01-17
'************************************************************************
' This file contains the forward and reverse kinematics for the FMB
' Oxford Stewarts Platform of type M3.
' Note that the file only contains the kinematics and nothing else.
'
' In this file:
'run=1 ==> Runs Reverse Kinematics once
'run=2 ==> Runs Forward Kinematics once
'
' The user sets the virtual axes coordinates with Vcoord[x]:
'X Axis - Vcoord[0], mm (Range: +/- 10mm)
'Y Axis - Vcoord[1], mm (Range: +/- 5mm)
'Z Axis - Vcoord[2], mm (Range: +/- 40mm)
'A Axis, Pitch - Vcoord[3], milliDegrees (Range: +/- 2000 milliDegrees)
'B Axis, Roll - Vcoord[4], milliDegrees (Range: +/- 2000 milliDegrees)
'C Axis, Yaw - Vcoord[5], milliDegrees (Range: +/- 2000 milliDegrees)
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'
' Running the reverse kinematics will use the values in Vcoord[x] to
' calculate the leg-length distance from the home position:
'delta_l1 - LegL[0], counts (10000 counts/mm)
'delta_l2 - LegL[1], counts (10000 counts/mm)
'delta_l3 - LegL[2], counts (10000 counts/mm)
'delta_l4 - LegL[3], counts (10000 counts/mm)
'delta_l5 - LegL[4], counts (10000 counts/mm)
'delta_l6 - LegL[5], counts (10000 counts/mm)
'
' Running the forward kinematics will use the values in LegL[x] to
' calculate the virtual axes coordinates:
'X Axis - xForO, mm (Precision: <10^-3 mm)
'Y Axis - yForO, mm (Precision: <10^-3 mm)
'Z Axis - zForO, mm (Precision: <10^-3 mm)
'A Axis, Pitch - aForO, milliDegrees (Precision: ~10^-2 mDegrees)
'B Axis, Roll - bForO, milliDegrees (Precision: ~10^-2 mDegrees)
'C Axis, Yaw - cForO, milliDegrees (Precision: ~10^-2 mDegrees)
' The variable 'thresh2' sets the precision of the forward kinematics. A
' lower number on this variable increases the precision (has to be positive).
'************************************************************************
#AUTO
DA*[];'
DM Vcoord[6];'
'0: X position (in millimeter)
'1: Y position (in millimeter)
'2: Z position (in millimeter)
'3: Yaw position (in millidegrees)
'4: Roll position (in millidegrees)
'5: Pitch position (in millidegrees)
DM LegL[6];' current commanded leg lengths in counts (relative home position)
DM LegL2[6];' current commanded leg lengths in counts (relative home position)
DM JointP[36];'
'0-17: base joints (mm)
'3*k+0, x coordinates
'3*k+1, y coordinates
'3*k+2, z coordinates
'18-35: plate joints (mm)
'3*k+18+0, x coordinates
'3*k+18+1, y coordinates
'3*k+18+2, z coordinates
'where k=0,1,2,3,4,5.
DM Rot[45];'
'0-8: Rotation matrix (3x3) for reverse kin - million times its real value
'9-17: Rotation matrix (3x3) for forward kin - million times its real value
'18-26: partial derivative (3x3) for forward kin - million times its real value
'27-35: partial derivative (3x3) for forward kin - million times its real value
'36-44: partial derivative (3x3) for forward kin - million times its real value
DM KinFv[72];' variables that forward kinematics will use
'0-2: Xs1, Ys1, Zs1 - 10000 times its real value
'3-5: Xs2, Ys2, Zs2 - 10000 times its real value
'6-8: Xs3, Ys3, Zs3 - 10000 times its real value
'9-11: Xs4, Ys4, Zs4 - 10000 times its real value
'12-14: Xs5, Ys5, Zs5 - 10000 times its real value
'15-17: Xs6, Ys6, Zs6 - 10000 times its real value
'18-23: l1,l2,l3,l4,l5,l6 - 10000 times its real value
'24-29: deltal1, deltal2, deltal3, deltal4, deltal5, deltal6 - 10000 times its real value
'30-65: Jacobian matrix - 10000 times its real value
'66-71: delta_a, delta_b, delta_c, delta_x, delta_y, delta_z - 1000000 times its real value
DM Trig[12];'
'0-2: sin(a), sin(b), sin(c) - REVERSE KINEMATICS
'3-5: cos(a), cos(b), cos(c) - REVERSE KINEMATICS
'6-8: sin(a), sin(b), sin(c) - FORWARD KINEMATICS
'9-11: cos(a), cos(b), cos(c) - FORWARD KINEMATICS
run=0;'
Vcoord[3]=0;Vcoord[4]=0;Vcoord[5]=0;'
Vcoord[0]=0;Vcoord[1]=0;Vcoord[2]=0;'
JS#INIT;'
'
#MLOOP
JS#KINR,run=1;'
JS#KINF,run=2;'
JP#MLOOP;'
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'
EN
'
#INIT
' Setting base joints (mm)
JointP[0]=63.95;JointP[1]=-301.93;JointP[2]=0;' Leg 1
JointP[3]=293.45;JointP[4]=95.58;JointP[5]=0;' Leg 2
JointP[6]=229.5;JointP[7]=206.34;JointP[8]=0;' Leg 3
JointP[9]=-229.5;JointP[10]=206.34;JointP[11]=0;' Leg 4
JointP[12]=-293.45;JointP[13]=95.58;JointP[14]=0;' Leg 5
JointP[15]=-63.95;JointP[16]=-301.93;JointP[17]=0;' Leg 6
'
' Setting plate joints (mm)
JointP[18]=270;JointP[19]=-225.17;JointP[20]=0;' Leg 1
JointP[21]=330;JointP[22]=-121.24;JointP[23]=0;' Leg 2
JointP[24]=60;JointP[25]=346.41;JointP[26]=0;' Leg 3
JointP[27]=-60;JointP[28]=346.41;JointP[29]=0;' Leg 4
JointP[30]=-330;JointP[31]=-121.24;JointP[32]=0;' Leg 5
JointP[33]=-270;JointP[34]=-225.17;JointP[35]=0;' Leg 6
'
lenZ=754;' Leg length (mm) at zero motor pos
height=721.226;' height of PCS over BCS (mm)
lgScal=10000;' amount of cnts per millimeter
thresh1=0.005;' for forward kinematics.
thresh2=1;' for forward kinematics: lower value increases precision.
'
' Setting variables to zero before use.
LegL[0]=0;LegL[1]=0;LegL[2]=0;'
LegL[3]=0;LegL[4]=0;LegL[5]=0;'
aForO=0;bForO=0;cForO=0;xForO=0;yForO=0;zForO=0;'
Rot[24]=0;Rot[25]=0;Rot[26]=0;'
Rot[36]=0;Rot[39]=0;Rot[42]=0;'
EN
'
' ============== Forward Kinematics ==============
#KINF
' Storing delta-leg length values and then calculating leg lengths.
LegL2[0]=LegL[0];LegL2[1]=LegL[1];LegL2[2]=LegL[2];'
LegL2[3]=LegL[3];LegL2[4]=LegL[4];LegL2[5]=LegL[5];'
l1=lgScal*lenZ+LegL2[0];l2=lgScal*lenZ+LegL2[1];l3=lgScal*lenZ+LegL2[2];'
l4=lgScal*lenZ+LegL2[3];l5=lgScal*lenZ+LegL2[4];l6=lgScal*lenZ+LegL2[5];'
'
' If average leg-length is below threshold value:
' set initial xFor,yFor,zFor,aFor,bFor,cFor coord to zero
' If not: set initial x,y,z,a,b,c coord to previous value
IF(@ABS[1-((l1+l2+l3+l4+l5+l6)/60000/lenZ)]*100000<thresh1);'
aFor=0;bFor=0;cFor=0;xFor=0;yFor=0;zFor=0;'
ELSE;aFor=aForO;bFor=bForO;cFor=cForO;xFor=xForO;yFor=yForO;zFor=zForO;ENDIF;'
notDone=1;iter=1;'
'
#KINFL
' Calculating cos(.), sin(.) and storing them.
JS#SINF(aFor);Trig[6]=_JS;' sin(a)
JS#SINF(bFor);Trig[7]=_JS;' sin(b)
JS#SINF(cFor);Trig[8]=_JS;' sin(c)
JS#COSF(aFor);Trig[9]=_JS;' cos(a)
JS#COSF(bFor);Trig[10]=_JS;' cos(b)
JS#COSF(cFor);Trig[11]=_JS;' cos(c)
'
' Building rotation matrix.
Rot[9]=Trig[9]*Trig[10];'
Rot[10]=(Trig[9]*Trig[7]*Trig[8]/1000)-(Trig[6]*Trig[11]);'
Rot[11]=(Trig[9]*Trig[7]*Trig[11]/1000)+(Trig[6]*Trig[8]);'
Rot[12]=Trig[6]*Trig[10];'
Rot[13]=(Trig[6]*Trig[7]*Trig[8]/1000)+(Trig[9]*Trig[11]);'
Rot[14]=(Trig[6]*Trig[7]*Trig[11]/1000)-(Trig[9]*Trig[8]);'
Rot[15]=-Trig[7]*1000;'
Rot[16]=Trig[10]*Trig[8];'
Rot[17]=Trig[10]*Trig[11];'
'
' This section does 3 things:
' 1. Calculate leg coordinates and leg lengths from variables xFor,yFor,zFor,aFor,bFor,cFor
' 2. Calculate differences between actual leg lengths and leg lengths calculated (1)
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' 3. Use values calculated from (2) in comparison to threshold (thres2) to decide if
' current values of xFor,yFor,zFor,aFor,bFor,cFor are precise enough.
iKf=0;tmpF2=0;'
#KINFL1
kKf=0;sKf=0;iKf18=iKf+18;iKf24=iKf+24;'
#KINFL2
mKf=0;tmpF=0;indxAf=9+(3*kKf);indxBf=18+(3*iKf);'
#KINFL3
tmpF=tmpF+(Rot[indxAf]*JointP[indxBf]);' Rotation matrix multiplied by plate-joint coord
indxAf=indxAf+1;indxBf=indxBf+1;'
mKf=mKf+1;'
JP#KINFL3,mKf<3;'
indxBf=(3*iKf)+kKf;'
IF(kKf=0);tmpF=(tmpF/100)+(10000*(xFor-JointP[indxBf]));ELSE;'x coordinate of leg
IF(kKf=1);tmpF=(tmpF/100)+(10000*(yFor-JointP[indxBf]));ELSE;' y coordinate of leg
tmpF=(tmpF/100)+(10000*(zFor-JointP[indxBf]+height));ENDIF;ENDIF;' z coordinate of leg
KinFv[indxBf]=tmpF;' Storing leg length coordinates
sKf=sKf+((tmpF/1000)*(tmpF/1000));' calculating: (x^2+y^2+z^2)
kKf=kKf+1;'
JP#KINFL2,kKf<3;'
KinFv[iKf18]=1000*@SQR[sKf];' leg lengths
KinFv[iKf24]=KinFv[iKf18]-LegL2[iKf]-(lenZ*10000);' Calculating difference in leg-lengths
IF(@ABS[KinFv[iKf24]]>=@SQR[thresh2]);tmpF2=thresh2;ENDIF;'
IF(tmpF2<thresh2);'
tmpF2=tmpF2+(KinFv[iKf24]*KinFv[iKf24]);' Calculating precision in this iteration.
ENDIF;'
iKf=iKf+1;'
JP#KINFL1,(iKf<6);'
'
' The following section runs if precision isnt good enough for this iteration.
IF(tmpF2<thresh2);notDone=0;ENDIF;'
IF(notDone=1);'
' Calculating partial derivatives of rotation matrix.
Rot[18]=-Trig[6]*Trig[10];'
Rot[19]=-(Trig[6]*Trig[7]*Trig[8]/1000)-(Trig[9]*Trig[11]);'
Rot[20]=-(Trig[6]*Trig[7]*Trig[11]/1000)+(Trig[9]*Trig[8]);'
Rot[21]=Trig[9]*Trig[10];'
Rot[22]=(Trig[9]*Trig[7]*Trig[8]/1000)-(Trig[6]*Trig[11]);'
Rot[23]=(Trig[9]*Trig[7]*Trig[11]/1000)+(Trig[6]*Trig[8]);'
'
Rot[27]=-Trig[9]*Trig[7];'
Rot[28]=Trig[9]*Trig[10]*Trig[8]/1000;'
Rot[29]=Trig[9]*Trig[10]*Trig[11]/1000;'
Rot[30]=-Trig[6]*Trig[7];'
Rot[31]=Trig[6]*Trig[10]*Trig[8]/1000;'
Rot[32]=Trig[6]*Trig[10]*Trig[11]/1000;'
Rot[33]=-Trig[10]*1000;'
Rot[34]=-Trig[7]*Trig[8];'
Rot[35]=-Trig[7]*Trig[11];'
'
Rot[37]=(Trig[9]*Trig[7]*Trig[11]/1000)+(Trig[6]*Trig[8]);'
Rot[38]=-(Trig[9]*Trig[7]*Trig[8]/1000)+(Trig[6]*Trig[11]);'
Rot[40]=(Trig[6]*Trig[7]*Trig[11]/1000)-(Trig[9]*Trig[8]);'
Rot[41]=-(Trig[6]*Trig[7]*Trig[8]/1000)-(Trig[9]*Trig[11]);'
Rot[43]=Trig[10]*Trig[11];'
Rot[44]=-Trig[10]*Trig[8];'
'
' Building Jacobian Matrix
iKf=0;'
#KINFL4
kKf=0;iKf18=iKf+18;iKfx3=iKf*3;'
#KINFL5
IF(kKf<3);'
indxAf=18+(9*kKf);indxBf=18+iKfx3;indxCf=iKfx3;'
tmpF=JointP[indxBf]*Rot[indxAf];'
indxAf=indxAf+1;indxBf=indxBf+1;'
tmpF=tmpF+(JointP[indxBf]*Rot[indxAf]);'
indxAf=indxAf+1;indxBf=indxBf+1;'
tmpF=tmpF+(JointP[indxBf]*Rot[indxAf]);'
'
tmpF2=(tmpF/1000)*(KinFv[indxCf]/10000);'
indxCf=indxCf+1;'
'
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indxAf=indxAf+1;indxBf=18+iKfx3;'
tmpF=JointP[indxBf]*Rot[indxAf];'
indxAf=indxAf+1;indxBf=indxBf+1;'
tmpF=tmpF+(JointP[indxBf]*Rot[indxAf]);'
indxAf=indxAf+1;indxBf=indxBf+1;'
tmpF=tmpF+(JointP[indxBf]*Rot[indxAf]);'
'
tmpF2=tmpF2+((tmpF/1000)*(KinFv[indxCf]/10000));'
indxCf=indxCf+1;'
'
indxAf=indxAf+1;indxBf=18+iKfx3;'
tmpF=JointP[indxBf]*Rot[indxAf];'
indxAf=indxAf+1;indxBf=indxBf+1;'
tmpF=tmpF+(JointP[indxBf]*Rot[indxAf]);'
indxAf=indxAf+1;indxBf=indxBf+1;'
tmpF=tmpF+(JointP[indxBf]*Rot[indxAf]);'
'
tmpF2=tmpF2+((tmpF/1000)*(KinFv[indxCf]/10000));'
'
indxAf=30+(6*iKf)+kKf;'
KinFv[indxAf]=(tmpF2/(KinFv[iKf18]/10000))*10;'
ELSE;'
indxAf=33+(6*iKf);indxBf=iKfx3;'
KinFv[indxAf]=(KinFv[indxBf]/KinFv[iKf18])*10000;'
indxAf=indxAf+1;indxBf=indxBf+1;'
KinFv[indxAf]=(KinFv[indxBf]/KinFv[iKf18])*10000;'
indxAf=indxAf+1;indxBf=indxBf+1;'
KinFv[indxAf]=(KinFv[indxBf]/KinFv[iKf18])*10000;'
ENDIF;'
kKf=kKf+1;'
JP#KINFL5,kKf<4;'
iKf=iKf+1;'
JP#KINFL4,iKf<6;'
'
' This subsection does two things:
' 1. Gaussian elimination on Jacobian Matrix
' 2. Using factors while computing (1) to further 'adjust' differences
' between actual leg-lengths and leg-lengths calculated from xFor,yFor,zFor,aFor,bFor,cFor.
iKf=1;'
#KINFL6
kKf=iKf+1;'
#KINFL7
indxAf=29+((kKf-1)*6)+iKf;'
indxBf=29+((iKf-1)*6)+iKf;'
tmpF=(KinFv[indxAf]/KinFv[indxBf])*10000;' Calculating factor used in (1) and (2).
KinFv[indxAf]=0;' set cell to zero.
mKf=iKf+1;'
#KINFL8
indxAf=29+((kKf-1)*6)+mKf;indxBf=29+((iKf-1)*6)+mKf;'
KinFv[indxAf]=KinFv[indxAf]-((tmpF/10000)*KinFv[indxBf]);' Gaussian elim.
mKf=mKf+1;'
JP#KINFL8,mKf<=6;'
indxAf=23+kKf;indxBf=23+iKf;'
KinFv[indxAf]=KinFv[indxAf]-((tmpF/10000)*KinFv[indxBf]);' adjusting delta-leg lengths
kKf=kKf+1;'
JP#KINFL7,kKf<=6;'
iKf=iKf+1;'
JP#KINFL6,iKf<6;'
'
' Calculating how much xFor,yFor,zFor,aFor,bFor,cFor should differ in next iteration.
iKf=6;'
#KINFL9
indxAf=23+iKf;'
tmpF=KinFv[indxAf];'
kKf=6;'
IF(kKf>iKf);'
#KINFL0
indxAf=29+((iKf-1)*6)+kKf;indxBf=65+kKf;'
tmpF=tmpF-(KinFv[indxAf]*(KinFv[indxBf]/1000000));'
kKf=kKf-1;'
JP#KINFL0,kKf>iKf;'
ENDIF;'
indxAf=29+((iKf-1)*6)+kKf;indxBf=65+iKf;'
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7.3 Kinematics in Microcode Format

KinFv[indxBf]=(tmpF*100)/(KinFv[indxAf]/10000);'
iKf=iKf-1;'
JP#KINFL9,iKf>0;'
'
' Calculating new values of xFor,yFor,zFor,aFor,bFor,cFor to be tried in next iteration
aFor=aFor-(KinFv[66]*57.2958/1000);'
bFor=bFor-(KinFv[67]*57.2958/1000);'
cFor=cFor-(KinFv[68]*57.2958/1000);'
xFor=xFor-(KinFv[69]/1000000);'
yFor=yFor-(KinFv[70]/1000000);'
zFor=zFor-(KinFv[71]/1000000);'
ENDIF;'
aForO=aFor;bForO=bFor;cForO=cFor;'
xForO=xFor;yForO=yFor;zForO=zFor;'
iter=iter+1;'
JP#KINFL,(notDone=1)&(iter<100);' cont until prec is good enough (up to max 100 iter)
run=0;'
CFA;MG "___FORWARD_CALC___";'
CFA;MG "Calculated with",iter," iterations.";'
CFA;MG "x=",xForO," ,y=",yForO," ,z=",zForO;'
CFA;MG "a=",aForO," ,b=",bForO," ,c=",cForO;'
EN
'
' ============== Reverse Kinematics ==============
#KINR
' Calculating cos(.) and sin(.) and storing them.
JS#SINR(Vcoord[3]);Trig[0]=_JS;' sin(a)
JS#SINR(Vcoord[4]);Trig[1]=_JS;' sin(b)
JS#SINR(Vcoord[5]);Trig[2]=_JS;' sin(c)
JS#COSR(Vcoord[3]);Trig[3]=_JS;' cos(a)
JS#COSR(Vcoord[4]);Trig[4]=_JS;' cos(b)
JS#COSR(Vcoord[5]);Trig[5]=_JS;' cos(c)
'
' Building rotation matrix.
Rot[0]=Trig[3]*Trig[4];'
Rot[1]=(Trig[3]*Trig[1]*Trig[2]/1000)-(Trig[0]*Trig[5]);'
Rot[2]=(Trig[3]*Trig[1]*Trig[5]/1000)+(Trig[0]*Trig[2]);'
Rot[3]=Trig[0]*Trig[4];'
Rot[4]=(Trig[0]*Trig[1]*Trig[2]/1000)+(Trig[3]*Trig[5]);'
Rot[5]=(Trig[0]*Trig[1]*Trig[5]/1000)-(Trig[3]*Trig[2]);'
Rot[6]=-Trig[1]*1000;'
Rot[7]=Trig[4]*Trig[2];'
Rot[8]=Trig[4]*Trig[5];'
'
' Function to calculate all 6 leg lengths.
' This is done by first calculating the leg coordinates
' and then the vector length they span up.
iKr=0;'
#KINRL;'
kKr=0;sKr=0;'
#KNRSL1
mKr=0;tmpR=0;indexA=3*kKr;indexB=18+(3*iKr);'
#KNRSL2
tmpR=tmpR+(Rot[indexA]*JointP[indexB]);' Rotation matrix multiplied by plate-joint coord
indexA=indexA+1;indexB=indexB+1;'
mKr=mKr+1;'
JP#KNRSL2,mKr<3;'
indexB=(3*iKr)+kKr;'
IF(kKr<2);tmpR=(tmpR/100)+(10000*(Vcoord[kKr]-JointP[indexB]));' x and y coordinate of leg
ELSE;tmpR=(tmpR/100)+(10000*(Vcoord[kKr]-JointP[indexB]+height));ENDIF;' z coordinate of leg
sKr=sKr+((tmpR/1000)*(tmpR/1000));' calculating: (x^2+y^2+z^2)
kKr=kKr+1;'
JP#KNRSL1,kKr<3;'
LegL[iKr]=((lgScal/10)*@SQR[sKr])-(lgScal*lenZ);' Calc leg-length (in counts) from home pos.
iKr=iKr+1;'
JP#KINRL,(iKr<6);'
run=0;'
CFA;MG "___INVERSE_CALC___";'
CFA;MG "dl1=",LegL[0],", dl2=",LegL[1],", dl3=",LegL[2];'
CFA;MG "dl4=",LegL[3],", dl5=",LegL[4],", dl6=",LegL[5];'
EN
'
' ========================================================
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Chapter 7. Appendix

' Subroutines called to calculate sin(.) and cos(.). This is done using Taylor Series.
' When angle is between +/- 2 degrees, max error is:
' sin(.) => ~10^-6 degrees, cos(.) => ~10^-10 degrees
'
' Called from Reverse Kinematics. Input: millidegrees, Output: 1000*sin(.) or 1000*cos(.)
#SINR
mradsr=^a*3141.5927/180000;'
^c=mradsr-(mradsr*mradsr*mradsr/6000000);'
EN,,^c
#COSR
mradcr=^a*3141.5927/180000;'
^c=1000-(mradcr*mradcr/2000)+(mradcr*mradcr/1000*mradcr*mradcr/24000000);'
EN,,^c
'
' Called from Forward Kinematics. Input: millidegrees, Output: 1000*sin(.) or 1000*cos(.)
#SINF
mradsf=^a*3141.5927/180000;'
^c=mradsf-(mradsf*mradsf*mradsf/6000000);'
EN,,^c
#COSF
mradcf=^a*3141.5927/180000;'
^c=1000-(mradcf*mradcf/2000)+(mradcf*mradcf/1000*mradcf*mradcf/24000000);'
EN,,^c
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