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ABSTRACT

Option valuation is typically done under the unrealistic assumption of perfect knowl-
edge about model parameters. This thesis shows that risk-neutral valuation, while
still adressing the parameter uncertainty, can be computed for a variety of mod-
els within the Fourier framework. This results in a computationally inexpensive
method for valuating options. A study of S&P500 index option data shows that the
method improves the predictive performances of the Black&Scholes, Merton and
Heston models.

Keywords: Option valuation, parameter uncertainty, Fourier methods, risk neutral
valuation formula.
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NOTATION AND ACRONYMS

| · | the Euclidean norm
Ω sample space
F collection of events
ϕ characteristic function
<[·] the real part
I(·) the indicator function
E(·) the expectation
V(·) the variance
FX(x), F (x) distribution function of X
X ∼ F,X ∈ F X has distribution (function) F
X := Y X denotes Y

B&S Black & Scholes
i.i.d. independent and identically distributed
LS least squares
PDF probability density function
RMSE root mean square error
RNVF risk-neutral valuation formula
SDE stochastic differential equation
UKF unscented Kalman filter
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Chapter 1

INTRODUCTION

Options are financial contracts which are common tools for risk reduction and spec-
ulation. However, valuation of options is typically done under the assumption of
perfect knowledge. For example, the widely used Risk Neutral Valuation formula
(RNVF) for pricing financial contracts assumes that the history of the underlying as-
set is perfectly known, something that is rather unlikely. When market participants
value options they usually fit a model to empirical data which requires estimation of
the model parameters. Different investors will obtain different parameters estimate
depending on the data, from which we can argue for the existence of parameter
uncertainty in the market, something that the RNVF does not take into account.
The theory behind valuation under the risk-neutral measure, while still addressing
the parameter uncertainty in statistical models, was discussed in [11] and [12].
Adding parameter uncertainty into the framework of known models, resulted in new
models which we modified or corrected models in this thesis. In the former paper,
the modified Black&Scholes and Merton models were found to out-perform their
non-corrected counterparts. The main weakness however was the computational
aspects, as Monte Carlo methods were used in the paper.
The purpose of this thesis is to derive the parameter corrections within the Fourier
framework, since Fourier methods are computationally fast, accurate and applicable
to a wide range of models. We show that this can be readily done for models where
the characteristic function is on an exponentially affine form. A simulation study
and an empirical study are then made, where we price options in the modified
Black&Scholes, Merton, Heston and Bates models in comparison with their standard
counterparts.

1.1 Overview of the thesis

Chapter 2 is a collection of the theoretical background used in this thesis. We
state some relevant results from probability theory and introduce the basics of
financial modeling and valuation theory. We then describe the concept of parameter
uncertainty in detail and derive how options are valued using Fourier methods.
Chapter 3 describes the method developed in this thesis. We show that risk-neutral
valuation under parameter uncertainty can be applied with the Fourier method, re-
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2 Introduction Chapter 1

stricted for models having well-defined and exponentially affine characteristic func-
tions. The derived technique is then applied to four common stock price models
in contemporary literature, namely the Black&Scholes, Merton, Heston and Bates
models.
Chapter 4 is a simulation study where we price European call options for different
strikes and maturities. The implied volatility is then computed. The results show
that the corrected models will generate a volatility smile which is consistent with
empirical observations.
Chapter 5 is an empirical study where S&P 500 option values has been collected.
The weighted least-squares with penalty and the unscented Kalman filter are used
to estimate model parameters in sample and to predict out of sample. The Root
Mean Square Error (RMSE) is computed in order to compare model performances.
The thesis is concluded in Chapter 6.



Chapter 2

THEORETICAL
BACKGROUND

2.1 Probability theory

The characteristic function is an important ingredient in the Fourier method. We
therefore define it and state some useful theorems. In addition, we state a result
known as the Fubini-Tonelli theorem which will be used in the proof of Proposition
1 in Chapter 3. A more detailed treatment on probability and measure theory can
be found in e.g. [8] and [14].

Definition 1. (Characteristic function) The characteristic function of a ran-
dom variable X is a function ϕX : R→ C such that

ϕX(u) = E(eiuX) =
∫
R
eiuxfX(x) dx, u ∈ R, (2.1.1)

where fX(x) is the probability density function of X.

The characteristic function is the expectation of eiux and defines the probability
distribution of a random variable. Note also that the characteristic function, apart
from a factor 1/

√
2π, corresponds to the Fourier transform in the continuous case.

Moreover, it follows by

|E(eiuX)| ≤ E|eiuX | = E(1) = 1, (2.1.2)

that the characteristic function exists for all u and for all random variables, see [8].

Theorem 1. Let X be a random variable. Then

(a) |ϕX(u)| ≤ ϕX(0) = 1; (2.1.3)
(b) ϕX(u) = ϕX(−u), where ϕX(u) is the conjugate; (2.1.4)
(c) ϕX(u) is (uniformly) continuous. (2.1.5)

3



4 Theoretical background Chapter 2

Theorem 2. Let X be a Gaussian random variable with expectation µ and standard
deviation σ. Then the characteristic function for X is given by

ϕX(u) = eiµu−
1
2σ

2u2
. (2.1.6)

Theorem 3. Let Xi, i = 1, 2, .., n, be independent random variables and set Sn =
X1 + ...+Xn. Then the characteristic function for the sum Sn is given by

ϕSn(u) =
n∏
k=1

ϕXk(u). (2.1.7)

Theorem 4 (Fubini-Tonelli). Let X and Y be σ-finite measurable spaces. If f is
a measurable function such that any one of the three integrals∫

X

(∫
Y

|f(x, y)| dy
)
dx,

∫
Y

(∫
X

|f(x, y)| dx
)
dy,

∫∫
X×Y

|f(x, y)| d(x, y)

is finite, then they are all finite and∫
X

(∫
Y

f(x, y) dy
)
dx =

∫
Y

(∫
X

f(x, y) dx
)
dy =

∫∫
X×Y

f(x, y) d(x, y).

2.2 Basics in financial modeling

The theory behind finance enables us to study asset pricing on financial markets in
continuous time. The purpose is to model assets as continuous stochastic processes
using diffusion processes, stochastic differential equations and Martingale theory.
The mathematical background can be heavy and we only introduce a small part
of it. The purpose of this section is to give the reader an intuition about financial
modeling. A more formal treatment can be found in [3].

A derivative is a financial contract whose value commonly depends on the price
Xt at time t of an underlying asset. Our aim is to model the stochastic process
{Xt}t≥0 in order to price the financial contract. We say that X is a diffusion if its
local dynamics can be approximated by a stochastic difference equation (SDE) of
the type

Xt+∆t −Xt = µ(t,Xt)∆t+ σ(t,Xt)Zt, (2.2.1)

where µ and σ are deterministic functions and Zt is a normally distributed noise-
term independent of every event up to time t. We can think that the asset price over
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the time interval [t, t+ ∆t] is driven by two separate terms; one which is dependent
on µ and determines the level of X, and one which is a Gaussian disturbance
amplified by the factor σ(t,Xt). We call functions µ and σ the (local) drift term
and the diffusion term, respectively. The way we model the noise-term Z(t) is by a
Wiener process which is also known as a standard Brownian motion.

Definition 2. (Wiener process) A stochastic process W is called a Wiener pro-
cess if the following holds.

i) W (0) = 0.
ii) The process has independent increments, i.e. W (t2)−W (t1)

and W (s2)−W (s1), 0 < s1 < s2 < t1 < t2, are independent
random variables.

iii) W (t)−W (s), 0 < s < t, has the Gaussian distribution N(0, t− s).
iv) W has continuous trajectories.

Since the Wiener process is unbiased, has zero expectation and has independent
increments, it is suitable for modeling the noise-term Zt which is the random driving
force in financial modeling and we can replace Zt with ∆Wt = W (t+ ∆t)−W (t),
see [3]. By letting ∆t tend to zero, i.e. making the expression in (2.2.1) more
precise, we obtain the following stochastic differential equation (SDE)

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2.2.2)
X0 = x0,

which is actually shorthand for the integral equation

Xt = x0 +
∫ t

0
µ(s,Xs)ds+

∫
σ(s,Xs)dWs. (2.2.3)

The dynamics of the price process {X} is determined by the SDE in equation (2.2.2),
by which we define different asset price models, e.g. the ones in Chapter 4.

2.3 Valuation theory

Consider again a derivate which is dependent of the stochastic process {Xt}t≥0. In
valuation theory we let (Ω,FX ,FX

t ,P) be a filtered probability space on which
{Xt} is defined. We are then able to price derivatives using a well known-formula
for asset pricing called the Risk Neutral Valuation Formula (RNVF).

Theorem 5. (Risk Neutral Valuation Formula) The arbitrage free price of a
contingent claim maturing at time T with contract function Φ(·) is given by

π(Xt) = p(t, T )EQ[Φ(XT )|Ft], (2.3.1)

where the Q-dynamics of X are those of equation (2.2.2).
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Here Ft is a mathematical representation of the history of X. If X were to be
discrete, the history up to time t would simply be the set

{Xi, i = 1, ..., t− 1},

making the conditional expectation in the RNVF well-defined (see p. 71-72 of [1]).
For continuous processes however, greater care is required due to an infinite number
of random variables and we therefore represent the history using a filtration.

Definition 3. (Filtration) Consider a continuous stochastic process X on the
time interval [0, T ]. The filtration of X at time t is

FX
t = σ(Xk : k ≤ t), (2.3.2)

where σ(•) denotes the smallest sigma-algebra generated by the set in •.

An introduction to sigma algebras can be found in [14]. For the purpose of this
thesis, it is enough to intuitively think of FX

t as the historical information generated
by X up to time t. We will from here-on refer to Ft as the market filtration.

2.4 The concept of parameter uncertainty

One flaw with the RNVF is the conditioning on the market filtration Ft. In [11] the
author argues that the model filtration is not available in real-life since the market
suffers from imperfect information. The information which is actually observed by
participants is the information generated by {Xt} observed at discrete time points
t1, t2, ..., tn. We call it the observed filtration and it is defined by the following.

Definition 4. (Observed filtration) The observed filtration of a stochastic pro-
cess X at time t is

FObs
t = σ(Xtk ,∀tk ≤ t), (2.4.1)

where σ is the smallest sigma algebra generated by the set {Xtk ,∀tk ≤ t}.

We note that since the set {Xtk ,∀tk ≤ t} is contained in the continuous set
{Xk,∀k ≤ t}, this implies

FObs ⊆ FMarket
t ,

which we will use later on with the following theorem.

Theorem 6. (Tower property) Let X be a r.v. and suppose F1 ⊆ F2 is a
sub-σ-algebra. Then

E[X|F1] = E[E[X|F2]|F1]. (2.4.2)

For now, let us exemplify the claim of imperfect information with an example:
Investors form trading strategies based on different models. Since different partici-
pants have access to different data sets, they are likely to fit their model parameters
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differently and in return obtain different theoretical option values. Some investors
may therefore find a particular option expensive, while other investors find the op-
posite. An investor will typically buy when prices are low and sell when prices
are high. The investors will therefore trade until they no longer consider the op-
tions mispriced, i.e. when the prices have stabilized somewhere in between their
calibrated valuations.
In [2] it was shown that any valuation formula can be represented by a conditional
expectation. This was later on used in [11] to show that the risk-neutral value of
an option under the observed filtration can be written as

π̃(Xt) = p(t, T )EQ [Φ(XT )|FObs
t

]
= p(t, T )EQ [EQ [Φ(XT )|Ft] |FObs

t

]
= EQ[π(Xt)|FObs

t ], (2.4.3)

which is the projection of the Ft-measurable value onto the set of FObs
t -measurable

values. Intuitively we may think of it as an average over different option values.
The second equality followed from the tower property in (2.4.2).
It is also shown in [2] that parametric models generate risk-neutral distribution
conditional on a filtration and fixed parameters θ0. This distribution is used in
all parametric valuation and we denote the obtained value by π(t,Xt|θ0). The
problem we experienced in the above example is that parameters are not known
without errors and one should therefore take parameter uncertainty into account.
This was done in [11] by interpreting parameters as a random vector θ. In the end,
we arrive at

π̃(Xt) = EQ[π(Xt|θ)|FObs
t ], (2.4.4)

which is the risk-neutral valuation formula under parameter uncertainty. It was
found in [11] that the empirical performance of (2.4.4) is generally superior to the
classic RNVF in (2.3.1).

2.5 Valuation using Fourier methods

Fourier methods hold nice properties such as being fast, accurate and applicable to
a wide range of models, see [9]. We present the general idea behind option valuation
using Fourier transforms. A more detailed review can be found in e.g. [5] and [15].

Let {St}t≥0 be the stochastic price process of a stock. Furthermore, let C(T,K)
denote a European call option maturing at time T with strike priceK. By definition
this means that the holder of the European call has the option to buy the stock for
the predefined price K at the predefined time T . From this we see that the payoff
is a function given by

max(0, ST −K) =
{
ST −K, if ST > K,

0, otherwise.
(2.5.1)
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It is often convenient to consider the logarithm of prices and therefore we introduce
the notation st = log(St) and k = log(K). The payoff is then given by

(es − ek)I[s > k],

where I denotes the indicator function. Let ft = f(st|s0) denote the risk-neutral
density of st. Then, by definition, the characteristic function for st is given by

ϕt(u) = EQ[eiust ] =
∫ ∞
−∞

eiusft(s) ds. (2.5.2)

According to the RNVF, the desired value C(T, k) of the European call option is
given by

C(T, k) = e−rT
∫ ∞
k

(es − ek)fT (s) ds,

where we note that C(T, k) is a non-square-integrable function since

C(T, k)→ s0, k → −∞.

However, square-integrability is required by Parseval’s theorem and we therefore
consider the modified call price

c(T, k) = eαkC(T, k), α > 0,

seeing as the function is square-integrable on the real line R.
Now let F be the Fourier transform of the modified call price, i.e.

F(u) =
∫ ∞
−∞

eiukc(T, k) dk. (2.5.3)

It can then be shown that the option value can be computed numerically by

C(T, k) = e−αk

2π <
[∫ ∞
−∞

e−iukF(u) du
]

(2.5.4)

= e−αk

π

∫ ∞
0
<[e−iukF(u)] du, (2.5.5)

where <[·] denotes the real part and

F(u) = e−rTϕT (u− (α+ 1)i)
α2 + α− u2 + iu(2α+ 1) . (2.5.6)

The second equality follows from the fact that C(T, k) is real, implying that F(u)
is odd in its imaginary part and even in its real part (a full derivation can be found
in [5]). Thus, by inserting (2.5.6) into (2.5.5) and performing the integration, we
are able to price C(T, k) using Fourier transforms. This technique, which we will
call the Fourier method, is applicable to a variety of models and is computationally
inexpensive, since efficient quadrature methods or fast Fourier transforms (FFT)
can be used to compute the integral.
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Remark 1. It is not obvious that the domain of a characteristic function may be
extended from the real line to the complex plane. We can however assume this if the
moment generating function exists, which will be the case for the models considered
in this thesis (see [7]).



Chapter 3

FAST VALUATION UNDER
PARAMETER UNCERTAINTY

The concept of parameter uncertainty was introduced in Chapter 2, along with a
description of the Fourier method for option valuation. The two are now combined,
resulting in a fast method for option valuation under parameter uncertainty. The
method is then applied on four stock price models, i.e. the Black&Scholes, Merton,
Heston and Bates models.

3.1 Fourier methods under parameter uncertainty

Let C(T, k) be he value of a European call option maturing at time T with strike
price k = log(K). Recall from equation (2.4.4) that the value of C(T, k) under
parameter uncertainty is given by

C̃(T, k) = EQ[C(T, k|θ)|FObs
t ]. (3.1.1)

Our aim is to value C̃(T, k) using the Fourier method since it is computationally
inexpensive. If the characteristic function for st = log(St) was well-defined, then
from (2.5.5) we found that the option value could be computed by

C(T, k) = e−αk

π

∫ ∞
0
<[e−iukF(u)] du, (3.1.2)

where

F(u) = e−rTϕT (u− (α+ 1)i)
α2 + α− u2 + iu(2α+ 1) . (3.1.3)

Combining the two above results gives us the following:

C̃(T, k) = E[C(T, k)|F obs] =
∫ ∞
θ=−∞

C(T, k|θ)f(θ) dθ

= e−αk

π

∫ ∞
θ=−∞

∫ ∞
u=0
<[g(u) · ϕT (u− (α+ 1)i) · f(θ)] du dθ, (3.1.4)

10
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where

g(u) = e−rT e−iuk

α2 + α− u2 + iu(2α+ 1) . (3.1.5)

In order to compute C̃(T, k) we need to change the order of integration in (3.1.4),
something that is not given from a mathematical point of view. However, as the
following proposition will show, we may actually do so.

Proposition 1. Let k denote the logarithm of the strike price and let r, T and α > 0
be constants. Let h denote the integrand

h(u, θ) = g(u) · ϕT (u− (α+ 1)i) · f(θ),

where ϕT is a characteristic function, f(θ) a probability density function and g :
R→ C is a function defined by

g(u) = e−rT e−iuk

α2 + α− u2 + iu(2α+ 1) . (3.1.6)

Then ∫ ∞
θ=−∞

(∫ ∞
u=0

h(u, θ) du
)
dθ =

∫ ∞
u=0

(∫ ∞
θ=−∞

h(u, θ) dθ
)
du. (3.1.7)

Proof. We recall that the characteristic function is bounded by 1, and therefore

|ϕT (u− (α+ 1)i)| = |eα+1ϕT (u)| ≤ eα+1. (3.1.8)

Since f is a PDF i.e. a positive function it follows that

|h(u, θ)| ≤ eα+1|f(θ)| · |g(u)| ≤ eα+1f(θ)|g(u)|. (3.1.9)

Furthermore

|g(u)| = |e−rT e−iuk|
|α2 + α− u2 + iu(2α+ 1)| ≤

e−rT

|(iu+ α+ 1)(iu+ α)|

= e−rT√
(u2 + [α+ 1]2)(u2 + α2)

≤ e−rT√
(u2 + α2)(u2 + α2)

= e−rT

u2 + α2 . (3.1.10)

We note that
u2 + α2 ≥ α2 > 0

since we assume α > 0. Most importantly, we note that |g| behaves like 1/u2 for
large u and is bounded, from which it follows that |g| is integrable on R.
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Since both f and g are integrable in the variables θ and u, respectively, it follows
from the estimate (3.1.9) that∫ ∞

θ=−∞

∫ ∞
u=0
|h(u, θ)| du dθ < ∞,

and we can apply the Fubini-Tonelli theorem in Theorem 4. Thus∫ ∞
θ=−∞

(∫ ∞
u=0

h(u, θ) du
)
dθ =

∫ ∞
u=0

(∫ ∞
θ=−∞

h(u, θ) dθ
)
du (3.1.11)

It follows from Proposition 1 that the desired option value under parameter correc-
tion can be computed with the Fourier method by

C̃(T, k) = e−αk

π

∫ ∞
u=0

g(u)
(∫ ∞

θ=−∞
ϕT (u− (α+ 1)i) · f(θ) dθ

)
du, (3.1.12)

giving us a fast method for valuation under parameter uncertainty. However, there
are two restrictions to the method. First of all, we require the characteristic function
ϕ to be well-defined in the applied model. Secondly, we also need to ensure that
the integral

ϕ̃θ(u) :=
∫ ∞
θ=−∞

ϕT (u− (α+ 1)i) · f(θ) dθ (3.1.13)

is in itself a characteristic function, which we will call the modified characteristic
function. A formal proof that ϕ̃ is a characteristic function is not available at the
moment, but we can motivate this for exponentially affine characteristic functions.
We show this explicitly for the stock price models in the next section.

3.2 Application on stock price models

The method described in Section 3.1 is applied on four common stock price models
in contemporary literature, i.e the Black&Scholes (1973), Merton (1976), Heston
(1993) and Bates (1996) models. In order to use equation (3.1.12) we need to
ensure that the expression in (3.1.13) can be seen as a new characteristic function.
We motivate that this should hold for exponentially affine characteristic functions.

3.2.1 The Black&Scholes model

In 1973 Black and Scholes published a paper on option pricing under the assumption
of no arbitrage opportunities. Under the risk-neutral measure Q the stochastic price
process St is modelled by

dSt = rStdt+ σStdWt, S0 = s, (3.2.1)
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where r is the short risk-free rate and σ is the (constant) diffusion term. S0 = s is
the initial price. The Ito formula provides us with a solution to (3.2.1) given by

St = S0 exp[(r − σ2

2 )t+ σWt], (3.2.2)

where Wt is a Wiener process with Gaussian distribution N(0, t). Then the distri-
bution of st = log(St) is given by

N(s0 + [r − σ2

2 ]t, σ2t).

By Theorem 2 the characteristic function for st is given by

ϕ(u) = exp[i(us0 + (r − σ2

2 )t)u− 1
2σ

2tu2]. (3.2.3)

We note that the characteristic function is exponentially affine 1 in θ = σ2, making
it easy to compute the modified characteristic function ϕ̃. By inserting (3.2.3) into
(3.1.13) we obtain

ϕ̃θ(u) = eiu(s0+rT )
∫ ∞
θ=−∞

eiθ
T
2 (−u+iu2) · f(θ) dθ, (3.2.4)

which is the modified characteristic function for the parameter θ = σ2 in the Black-
Scholes model. We note that the form of ϕ̃θ is the same as of a characteristic
function evaluated in the point T

2 (−u + iu2), apart from a factor eiu(s0+rT ). We
should therefore be able to regard ϕ̃ as a characteristic function. We are then able
to value options with uncertainty in σ2.

3.2.2 The Merton model

The Merton model extends the Black-Scholes model by adding a simple jump pro-
cess, called a Poisson process, to the stock price dynamics. This enables us to
model sudden and unexpected price jumps. But first, we introduce some definitions
from [8].

Definition 5. (Poisson process) A Poisson process is a nonnegative, integer-
valued stochastic process {N(t), t ≥ 0} such that

(a) N(0) = 0;
(b) the increments {N(tk)−N(tk−1), 1 ≤ k ≤ n} are independent random

variables for all 0 ≤ t0 ≤ t1 ≤ ... ≤ tn−1 ≤ tn and all n;
(c) there exists a λ > 0, called the intensity, such that

N(t)−N(t′) ∈ Po(λ(t− t′)), 0 ≤ t′ ≤ t.

1i.e. can be written as a function f(x1, x2, ...) = exp{a1x1 + a2x2... + b}
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Definition 6. (Compound Poisson process) A compound Poisson process is
defined as

Z(t) =
N(t)∑
n=0

Yn, (3.2.5)

where N(t) is a Poisson process and {Yn, n ∈ N} are i.i.d. random variables inde-
pendent of N .

The compound Poisson process contains two sources of randomness: one originating
from N(t) which causes the asset price to jump randomly and one originating from
the random variables Yn, determining the jump sizes. In order to model sudden
and unexpected jumps, all random parts are assumed to be independent of each
other. The only difference between the BS and Merton model is the addition of the
compound Poisson process.
The stock price dynamics are modelled by

dSt = µStdt+ σStdWt + StdZt, S0 = s, (3.2.6)

where Zt is a compound Poisson process with jump intensity λ and log-normally
distributed jumps, Yn ∼ LN(µ, δ2). The exact solution to (3.2.6) is given by

St = s exp

µ̃t+ σWt +
N(t)∑
n=0

Yn

 , (3.2.7)

where µ̃ = r − σ2

2 − λ(exp[µ + δ2

2 ] − 1). Since the exponent is a sum of random
variables we can use Theorem 3 to find the characteristic function for st, which is
given by

ϕ(u) = exp
[
i(s0 + r̃T )u− σ2u2T

2 + λT (eiµu− δ
2u2
2 − 1)

]
, (3.2.8)

r̃ = r − σ2

2 − λ(exp[µ+ δ2

2 ]− 1). (3.2.9)

As with the Black-Scholes model, we can insert the characteristic function in (3.2.8)
into (3.1.13) in order to find the modified characteristic function ϕ̃. It is found to be
exponentially affine in the jump intensity λ and the variance σ2. We therefore only
add correction into those parameters. Doing so, and then breaking out all factors
that do not depend on the uncertain parameter, we obtain the following modified
characteristic functions:

ϕ̃λ = eiu(s0+(r−σ2
2 )T )−σ2u2T

2

∫ ∞
λ=−∞

eiλg(u) · q(λ) dλ, (3.2.10)

ϕ̃σ2 = eh1(u)
∫ ∞
σ2=−∞

eiσ
2h(u) · q(σ2) dσ2, (3.2.11)
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where

g(u) = −T [u(eµ+ δ2
2 − 1) + i(eiµu− δ

2u2
2 − 1)], (3.2.12)

h1(u) = iu(s0 + (r − λ[eµ+ δ2
2 − 1])T ) + λT (eiµu− δ

2u2
2 − 1), (3.2.13)

h2(u) = −T (iu+ u2)/2. (3.2.14)

3.2.3 The Heston model

The Black-Scholes and Merton models assumes the volatility is given by a deter-
ministic function. Modeling the volatility as a stochastic process {vt}, on the other
hand, has shown to be more true to real-life observations. In 1996 Heston mod-
elled the dynamics of St as a Wiener process with stochastic variance. Under the
risk-neutral measure Q, the dynamics are given by

dSt = rStdt+
√
vtStdW

S
t ,

dvt = κ(Θ− vt)dt+ η
√
vtdW

v
t ,

where v0 is the initial variance, η is the volatility of volatility and θ is the long
variance, meaning that the expected value of vt will tend to θ as t tends to infinity.
κ is called the speed of mean reversion and measures the rate at which vt reverts
to θ. The diffusion terms WS

t ,W
v
t are Brownian motions with with correlation

ρ. Typically, ρ is negative which means that the volatility tends to increase when
returns are negative, known as the leverage effect. Moreover, if the Feller condition

2κθ > η2

holds, then the process {vt}t>0 is strictly positive.
In the Heston model, the characteristic function for st can be shown to follow (see
Schoutens et al., 2004 or Heston, 1993)

ϕ(u) = exp[A(u) + ΘB(u) + V0C(u)],

where

A(u) = iu(s0 + rT ), (3.2.15)

B(u) = κ
η2

[
(κ− ρηiu− d)T − 2 ln

(
(κ−iρηu)(1−e−dT )+d(e−dT+1)

2d

)]
, (3.2.16)

C(u) = (1− e−dT )(−iu− u2)
(κ− iρηu)(1− e−dT ) + d(e−dT + 1) , (3.2.17)

d =
√

(ρηiu− κ)2 + η2(iu+ u2). (3.2.18)

We notw that ϕ(u) is exponentially affine in the initial variance v0 and long variance
Θ. Inserting ϕ(u) into (3.1.13) we obtain the modified characteristic functions

ϕ̃V0 = eA(u)+B(u)
∫ ∞
V0=−∞

eV0C(u) · q(V0) dV0, (3.2.19)

ϕ̃Θ = eA(u)+C(u)
∫ ∞

Θ=−∞
eΘB(u) · q(Θ) dΘ, (3.2.20)
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from which we see that we may break ut an imaginary unit i in the exponent of the
integrand in order to obtain the usual appearance of a characteristic function.

3.2.4 The Bates model

The Bates model combines the Merton and Heston models, adding jumps to the
stock price dynamics of Heston. The dynamics under Q are given by

dSt = rStdt+
√
vtStdW

S
t + dZt,

dvt = κ(θ − vt)dt+ η
√
vtdW

v
t ,

where ρ is the covariance of WS
t ,W

V
t . Here Zt is a compound Poisson process with

jump intensity λ and independent jumps {Jt}t≥0 such that

ln(1 + Jt) ∈ N
(

ln[1 + µJ ]− σ2
J

2 , σ
2
J

)
,

with parameters µJ and σ2
J . Furthermore, the Poisson process is assumed to be

independent of the Wiener processes.
It can be shown that the characteristic function for st is given by

ϕ(u) = exp[A(u) + ΘB(u) + V0C(u) + λD(u)],

where the coefficients A(u), B(u), C(u) are identical to the those in the Heston
model, see equations (3.2.15) to (3.2.17). The term D(u) is given by

D(u) = T
[
−µJ iu+ (1 + µJ)iu exp

(
σ2
J (−u2−iu)

2

)
− 1
]
. (3.2.21)

The characteristic function is affine in parameters v0, Θ and λ and thus we obtain
the following modified characteristic functions:

ϕ̃V0 = eA(u)+B(u)+D(u)
∫
eV0C(u) · q(V0) dV0, (3.2.22)

ϕ̃Θ = eA(u)+C(u)+D(u)
∫
eΘB(u) · q(Θ) dΘ, (3.2.23)

ϕ̃λ = eA(u)+B(u)+C(u)
∫
eλD(u) · q(λ) dλ. (3.2.24)

As in the Heston model, we can break out the imaginary unit to obtain the usual
appearance of a characteristic function.

We have thus shown that parameter uncertainty (or parameter corrections) can be
derived within the Fourier framework, for some parameters in the above models.
The requirement is that the parameter of interest is exponantially affine in the
characteristic function. The models having a correction in a parameter (within the
Fourier framework) will from here-on be referred to as corrected or modified models.



Chapter 4

SIMULATION STUDY

The valuation formula derived in Section 3.1 is used to simulate call options for
different strikes and maturities. This makes it possible for us to study if the cor-
rected models in Section 3.2 are able to capture tendencies perceived from empirical
observations. The volatility implied by the market, called implied volatility, will be
considered here since it is a more useful measure of an options relative value than
the actual option price.
The theorethical value of an option is typically a function of the volatility. Given
an option value, the implied volatility can be extracted by inverting the function.
The function considered here is the B&S pricing formula given by

C(τ,K) = N(d1)S −N(d2)Ke−rτ ,

d1 = 1
σ
√
τ

[ln(S/K) + τ(r + σ2/2)],

d2 = 1
σ
√
τ

[ln(S/K) + τ(r − σ2/2)],

where N(·) is the cumulative distribution function of the standard Gaussian dis-
tribution, S is the spot price, K is the strike, τ is time to maturity and r is the
interest rate. Since the price is a monotone increasing function of the volatility, the
Bisection method was implemented with tolerance level 10−7 (see chapter 2 in [4])
in order to obtain the implied volatilities.
The non-corrected B&S model assumes constant volatility, i.e the implied volatility
does not depend on the strike level or time to maturity and we should expect the
implied volatility surface to be flat. On most markets however, we can depict a skew
in the surface called volatility smile. This makes the B&S model incompatible with
market data and one will usually have to turn to more complex models in order
to obtain the smile. In the simulation study we will see that adding a correction
in the volatility will give rise to a volatility smile even for the B&S model. A
comparison with [11], where Monte-Carlo methods were used rather than Fourier
methods, shows consistent results for the B&S and Merton models. We keep in
mind that the computational complexity using the Fourier method is O(n) which
is an improvement over the Monte Carlo technique used in the paper which has
a computational complexity of O(nK), where K is the number of Monte Carlo

17
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samples. Another disadvantage with the Monte Carlo technique is its inability to
sample from more advanced models such as the Heston and Bates models.

4.1 Implementation of the Fourier method

The modified characteristic functions ϕ̃ were solved analytically in Chapter 3.2.
Options were then valued in MATLAB using fast Fourier transforms for different
strikes and maturities on equally spaced grids. We consider only the real part since
any price is a real number.
In order to avoid using different grids for different strikes and maturities, a Gauss-
Laguerre quadrature impementation was used for the inverse Fourier transforma-
tions. The Gauss-Laguerre quadrature formula approximates an exponentially
weighted integral from zero to infinity as∫ ∞

x=0
e−xf(x) dx ≈

n∑
i=1

wif(xi), (4.1.1)

where xi is the i-th root of the Laguerre polynomial. This thesis uses n = 500. The
integration was improved by optimizing over the α-parameter needed to make the
option values square-integrable. The α-parameter was chosen in order to reduce
unwanted oscillations in the characteristic function, see [13].

The market is simulated with inital stock price s0 = 100, strike levelsK = 80, ..., 120
in steps of ∆K = 2 and time to maturity τ = 0.1, ..., 2 in steps of ∆τ = 0.1. The
interest-free rate is r = 0.04. For simplicity, all uncertain parameters were assumed
to be uniformly distributed in the interval [a, b], a < b. The a- and b-parameters
were chosen such that the expectation is 0.2 for volatilities and 2 for jump intensities.

Remark 2. The uniform distribution was chosen for simplistic reason and for
the advantage of dealing with a compact support (for the density function). For the
volatility, the log-ormal or χ2 would be more reasonable distributions. One may even
suggest the Gaussian distribution if the variance is small, seeing as the asymptotic
distribution for most estimates is Gaussian by the Central Limit theorem (CLT).

4.2 Black & Scholes

We add uncertainty to the variance i.e. we let θ = σ2. The variance is assumed to
follow the uniform distribution U(a, b) and we are thus able to finish the analytical
comuptation of the modified characterstic function in (3.2.4) by the following.

ϕ̃σ2 = eiu(s0+rT )

b− a

∫ b

θ=a
e−θ

T
2 (iu+u2) dθ

= eiu(s0+rT )

b− a
· (ecb − eca)

c
, (4.2.1)
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Figure 4.1: (Black-Scholes) Implied volatility in the corrected
model for increasing level of parameter uncertainty, i.e. wider
interval [a, b] in the uniform distribution.

where c = −T2 (iu+ u2) and u = v − (α+ 1)i. The modified characteristic function
is then used in the implementation of the Fourier method.
The resulting implied volatilities using

[a, b] = [0.03, 0.05], [0.02, 0.06], [0.01, 0.07], [0.001, 0.079]

are shown in Figure 4.1. It can be seen that large parameter uncertainty generates
a significant volatility smile which is consistent with empirical observations.

Remark 3. An additional study, where σ2 is assumed to follow the triangular
distribution Tri(a, b, c), is shown Appendix B. The resulting implied volatilities were
similar to those in Figure 4.1. We find that it is the variance rather than the shape
of the uncertainty that seems to matter.

4.3 Merton

In Section 3.2.2 the variance σ2 and jump intensity λ were found to be exponentially
affine in the modified characterstic function and we are therefore to add uncertainty
in these parameters. Uncertainty is added to one parameter at a time where we
let remaining parameters have values: volatility σ = 0.2, jump intensity λ = 2,
expected jump size µJ = −0.1 and jump size volatility σJ = 0.1.
Completing the integrations in (3.2.10) and (3.2.11) the modified characteristic
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functions for σ and λ are given by

ϕ̃λ = eiu(s0+(r−σ2
2 )T )−σ2u2T

2

c1(b− a) · (ec1b − ec1a), (4.3.1)

c1 = T (−iu(eµ+ δ2
2 − 1) + eiµu−

δ2u2
2 − 1) (4.3.2)

and

ϕ̃σ2 = eiu(s0+(r−λ[eµ+ δ2
2 −1])T )+λT (eiµu− δ2u2T

2 −1)

c2(b− a) · (ec2b − ec2a), (4.3.3)

c2 = −T (iu+ u2)
2 , (4.3.4)

respectively. The resulting implied volatilities using

σ2 ∼ U(a, b), [a, b] = [0.19, 0.21], [0.15, 0.25], [0.1, 0.3], [0.01, 0.39],
λ ∼ U(a, b), [a, b] = [1.99, 2.01], [1.9, 2.1], [1, 3], [0.8, 3.2],

are shown in Figure 4.2. The surface differences are shown in Figure 4.3. We see
that large uncertainty in σ2 generates a volatility smile similar to the one in the B&S
model, while it does not seem to generate a noticeable difference with uncertainty
in λ. This is consistent with the findings in [11]. We may need to assign even larger
uncertainty to λ in order to obtain a noticeable volatility skew.
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Figure 4.2: (Merton) Implied volatility in the corrected model
for increasing level of parameter uncertainty, i.e. wider interval
[a, b] in the uniform distribution.
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Figure 4.3: (Merton) Difference in implied volaility, cf. Figure
4.2.
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4.4 Heston

The Heston model is parametrized by ρ = −0.02, η = 0.2, κ = 2,Θ = 0.04, V0 =
0.04. which is similar to parameters calibrated to S & P 500 index options. From
(3.2.19) and (3.2.20) we obtain the modified characteristic functions

ϕ̃v0 = eA(u)+B(u)

C(u)(b− a) (eC(u)b − eC(u)a), (4.4.1)

ϕ̃Θ = eA(u)+C(u)

B(u)(b− a) (eB(u)b − eB(u)a), (4.4.2)

for initial variance v0 and long variance Θ, respectively, with koefficients A,B,C
defined in equations (3.2.15) to (3.2.17).
The implied volatilities, assuming the uniform distribution U(a, b) where

[a, b] = [0.03, 0.05], [0.02, 0.06], [0.01, 0.07], [0.001, 0.079],

are shown in Figure 4.4. The general pattern is similar to the B&S and Merton
models, seeing as the correction accentuates the short term volatility smile.
The difference in implied volatilities is shown in Figure 4.5, where we see a (weak)
long term smile when applying correction to Θ. This is interesting as the implied
volatility flattens out for most models due to a Central Limit Theorem type con-
vergence in the transition kernel. The correction is therefore particularly useful if
there is some long time volatility smile.
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Figure 4.4: (Heston) Implied volatility in the corrected model
for increasing level of parameter uncertainty, i.e. wider interval
[a, b] in the uniform distribution.
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Figure 4.5: (Heston) Difference in implied volaility, cf. Figure
4.4.



26 Simulation study Chapter 4

4.5 Bates

The parameters of the Bates model were assigned the same values as in the Heston
model with an added jump intensity of λ = 2, expected jump size µJ = −0.1 and
jump size volatility σJ = 0.1. From equations (3.2.22), (3.2.23) and (3.2.24) we
obtain the following modified characteristic functions:

ϕ̃V0 = eA(u)+B(u)+D(u)

C(u)(b− a) (eC(u)b − eC(u)a), (4.5.1)

ϕ̃Θ = eA(u)+C(u)+D(u)

B(u)(b− a) (eB(u)b − eB(u)a), (4.5.2)

ϕ̃λ = eA(u)+B(u)+C(u)+

D(u)(b− a) (eD(u)b − eD(u)a), (4.5.3)

for initial variance v0, long variance Θ and jump intensity λ. The resulting implied
volatilities, using

V0, Θ ∼ U(a, b), [a, b] = [0.03, 0.05], [0.02, 0.06], [0.01, 0.07], [0.001, 0.079],
λ ∼ U(a, b), [a, b] = [1.99, 2.01], [1.9, 2.1], [1, 3], [0.8, 3.2],

are shown in Figure 4.6 and Figure 4.7. Compared to the Heston model we can
depict an even weaker volatilty smile with uncertainty in long term Θ. As in the
Merton case, it seems as if we will have to add larger uncertainty to be able to
depict a significant difference for the jump intensity.
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Figure 4.6: (Bates) Implied volatility in the corrected model for
increasing level of parameter uncertainty, i.e. wider interval [a, b]
in the uniform distribution.
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Figure 4.7: (Bates) Difference in implied volaility, cf. Figure 4.6.



Chapter 5

EMPIRICAL STUDY

The data set consists of daily S&P 500 index options from November 5th 2001
to May 5th 2003, excluding data containing short-term effect following Septem-
ber 11th. The raw data was processed by excluding outliers and ill-liquid quotes
(details can be found in [13]). A total of 28394 unique quotes remained after the
process which were allocated over 242 trading days. All quoted put options were
for convenient reasons transformed into call options using the Put-Call parity. The
continuously compounded short rate r was replaced by a zero-coupon bond yield as
described in [13].
We compare the performance of corrected models and their standard counterparts
using the Root-Mean-Square Error (RMSE). The RMSE measures the difference
between the predicted values and the observed values, and is defined by

RMSE(θ̂) =

√√√√ 1
n

N∑
i=1

(yi − ŷi)2, (5.0.1)

where yi are the observed option prices and ŷi is the estimated price under θ̂. The
uncertain parameter is specified within brackets [θ] for each model. As in the sim-
ulation study, uncertain parameters are assumed to follow a Uniform distribution.
The parameters are first estimated in sample, meaning that they are fitted to the
observations. We then make predictions by the following procedure:
1. Fit the parameters to the observed quotes at the ith day.
2. Use the estimated parameters to predict prices for the next day, i.e day i+ 1.
3. Compute RMSE to measure the performance of prediction for each day.

5.1 Least Squares method

Model parameters are estimated using nonlinear least squares (LS) which minimizes
the sum of squared differences between values predicted by the model and observed
values:

θ̂t = arg min
θ

N∑
i=1

[Ct(Ki, τi)− CModel
t (Ki, τi; θ)]2. (5.1.1)

29
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LS methods can be shown to give the best parameter fit in sample although they
may suffer from numerical difficulty in the minimization problem, as discussed in [6].
The numerical difficulties can be reduced by adding the penalty

P (θ) = ξ(θ − θt−1)TQ−1(θ − θt−1), (5.1.2)

where Q is the estimated covariance matrix of the parameters. For sufficiently large
ξ, the LS estimator should be globally convex and prevents the parameter vector
from getting caught in a local minimum.
The nonlinear LS minimization with added penalty function P (θ) was implemented
using the MATLAB routine ’lsqnonlin’. For each model, the parameters were es-
timated for the first 50 trading days using ξ = 0.01, 0.1, 1, 10, 100, 1000. We then
chose to fit the remaining quotes using the ξ-value that gave the lowest RMSE for
that particular model. If several values gave rise to the same RMSE, ξ was chosen
based on computation time.

5.1.1 Results

Black & Scholes

The estimated volatility σ in the B&S model is shown in Figure 5.1. The results for
the corrected model is shown in 5.2. We see that a correction in σ is preferred since
the estimated a- and b-parameters are far apart from each other in a majority of the
trading days. We should therefore expect the corrected B&S to have lower RMSE
than the standard B&S model. This is indeed the case in Figure 5.3. Returning to
Figure 5.2, we note that the mean is conserved at approximately 0.2 and does not
contradict the estimations in Figure 5.1.
The mean and median RMSE measuring predictive performance can be seen in
Table 5.1. We can depict an improvement in both, particularly in the median
which does not take outliers into account.
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Figure 5.1: (Black-Scholes) Estimated volatility in sample.
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Figure 5.2: (Black-Scholes [σ]) Parameters a and b estimated
in sample, where σ ∈ U(a, b).
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In-sample
Model Mean RMSE Median RMSE
BS 3.2616 3.0392
BS [σ] 3.1051 2.9074

Out-of-sample
Model Mean RMSE Median RMSE
BS 3.5653 3.2406
BS [σ] 3.4301 3.0771

Table 5.1: Mean and median of RMSE for in-sample fit and pre-
dictions out of sample (day 50 to 246).
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Merton

Estimated parameters in the Merton model is shown in Figure 5.4. The results with
uncertainty in volatility σ and jump intensity λ can be seen in Figure 5.5 and Figure
5.6, respectively. Up to approximately day 120 the estimates support a correction
in σ. Afterwhich, the model seems to struggle with keeping the parameters apart
or even letting a > b. In the three mentioned figures, we also see a shift between
σ and λ. The σ-parameter is close to zero (which is highly unlikely), something
that the model seems to compensate by a large λ-parameter. A jump intensity of
20 jumps per unit is very odd and the Merton model does not seem able to capture
the dynamics of the data. We can however depict some improvement in RMSE for
Merton model with a correction in λ, see Figure 5.7. This suggests that the model
is better at capturing the market change beginning at approximately day 120 by
adding large uncertainty to λ.
The predictive performance in Table 5.2 shows that the corrected models are more
accurate than the standard model.
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Figure 5.4: (Merton) Model parameters estimated in sample.
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Figure 5.7: RMSE (in sample).

In sample
Model Mean RMSE Median RMSE
Merton 1.9109 1.4152
Merton [σ] 1.9043 1.4097
Merton [λ] 1.6680 1.1391

Out of sample
Model Mean RMSE Median RMSE
Merton 2.4305 2.2103
Merton [σ] 2.4138 2.0964
Merton [λ] 2.2085 1.9061

Table 5.2: Mean and median of RMSE for in-sample fit and pre-
dictions out of sample (day 50 to 246).
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Heston

Estimated parameters in the Heston model is shown in Figure 5.8. The results with
uncertainty in initial variance v0 and long term Θ are illustrated in Figure 5.9 and
Figure 5.10, respectively. We note that the level of uncertainty in Heston is smaller
than in the BS and Merton models, suggesting that the standard Heston model may
be good enough to capture the dynamics in the data set. Secondly, similar to what
we could depict in the Merton models, the market seems to change starting from
day 120 and the corrected models are capturing this by adding larger uncertainty.
Even here, in-sample RMSE has a lower value for the modified models, although its
improvement is much less evident than for the Black-Scholes and Merton models.
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Figure 5.8: (Heston) Model parameters estimated in sample.
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Figure 5.9: (Heston [Θ]) Model parameters estimated in sample.
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In sample
Model Mean RMSE Median RMSE
Heston 0.3519 0.2853
Heston [Θ] 0.3360 0.2729
Heston [v0] 0.3388 0.2733

Out of sample
Model Mean RMSE Median RMSE
Heston 1.4058 1.0318
Heston [Θ] 1.3975 1.0193
Heston [v0] 1.4022 1.0059

Table 5.3: Mean and median of RMSE for in-sample fit and pre-
dictions out of sample (day 50 to 246).
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Bates

Estimated parameters in the Bates model is shown in Figure 5.11. Results with
uncertainty in the initial variance v0, long term Θ and jump intensity λ are shown in
Figures 5.12, 5.13 and 5.14, respectively. The Bates estimates look more stable than
in the Merton and Heston models, although a shift in parameters can be depicted
at approximately day 150. Furthermore, a minor correction seems to be acquired
for the first 100 days. In fact, only a correction in λ seem to yield better estimates.
This is also seen in Table 5.4. Since a more complex model (i.e. more parameters)
typically gives rise to better results in sample, we would expect the corrected Bates
models to yield lower RMSE than the uncorrected Bates model. Since this is not
the case for corrections in Θ and v0, we believe there may be difficulties with the
convergence. We also make note that the Bates model can suffer from unstable
estimates, see [13], due to the large number of model parameters.
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Figure 5.11: (Bates) Model parameters estimated in sample.
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Figure 5.12: (Bates [Θ]) Parameters estimated in sample.
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Figure 5.13: (Bates [v0]) Parameters estimated in sample.
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Figure 5.14: (Bates [λ]) In-sample estimation of model parame-
ters.
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In sample
Model Mean RMSE Median RMSE
Bates 0.2690 0.2429
Bates [Θ] 0.3146 0.2672
Bates [v0] 0.2915 0.2565
Bates [λ] 0.2580 0.2297

Out of sample
Model Mean RMSE Median RMSE
Bates 1.3512 0.9962
Bates [Θ] 1.4100 1.0170
Bates [v0] 1.3565 1.0012
Bates [λ] 1.3497 0.9881

Table 5.4: Mean and median of RMSE for in-sample fit and pre-
dictions (day 50 to 246).
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Out of sample
Model Mean RMSE Median RMSE
BS 3.5653 3.2406
BS [σ] 3.4301 3.0771
Merton 2.4305 2.2103
Merton [σ] 2.4138 2.0964
Merton [λ] 2.2085 1.9061
Heston 1.4058 1.0318
Heston [Θ] 1.3975 1.0193
Heston [v0] 1.4022 1.0059
Bates 1.3512 0.9962
Bates [Θ] 1.4100 1.0170
Bates [v0] 1.3565 1.0012
Bates [λ] 1.3497 0.9881

Table 5.5: Summary of the mean and median of RMSE, measuring
predictive performance (day 50 to 246).

Summary

Adding uncertainty to the volatility in the Bates and Merton models, and to the
jump intensity in the Merton model, was found to generate lower RMSE values than
their standard counterparts. In the Merton model, both standard and corrected
models were found to suffer instability in a large part of the data set. The corrected
Heston models seemed able to capture some of the change in market data by adding
uncertainty. A minor difference in forecasting performance was found between the
standard and corrected Heston models. An even smaller difference was found in the
Bates model. Bates in however likely to generate unstable estimates due to the large
number of parameters. Although a correction in parameter uncertainty improves
the B&S and Merton models, they do not outperform the Heston and Bates models,
see Table 5.5. However, adding uncertainty in the Heston model seems to improve
predicitive performance to the level of the standard Bates model.

5.2 Unscented Kalman Filter

Although LS methods are known for giving the best fit in sample, the Extended
Kalman filter (EKF) has become a common technique for nonlinear estimation.
The filter operates recursively and is a clear improvement from a computation-time
point of view. In addition, the filter was found to perform better out of sample
in [13]. The basic framework for the EKF involves estimation of the state of a
nonlinear dynamic system, in our case looking like

θt+1 = θt + n1
t (5.2.1)

yt = f(θt) + n2
t , (5.2.2)
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where θt represents the unobserved parameter state of the system and yt is the
observed signal. The noise process n1 drives the system and n2 is the measurement
noise for the observations, see [16]. The measurement function f will be the pricing
formula for each method. The EKF is a heavily used for recursive maximum-
likelihood estimation of the state θt. As discussed in [10], the EKF can have poor
performance for a highly nonlinear function f which is why this thesis uses the
unscented kalman filter (UKF). The idea is to produce several sampling points
(using a sampling technique called the unscented transform) around the current
state estimate based on its covariance. Propagating these points (called sigma
points) through the nonlinear map will then result in more accurate estimation of the
mean and covariance. The Matlab-function ’ukf’ was used for the implementation.
For each model, the parameters were estimated for the first 100 trading days using
different state and measurement covariance matrices. The variance giving the lowest
RMSE was chosen to re-fit the model. In general, volatilities were assigned variances
of size 0.0001 to 0.001, and jump intensities of size 0.001 to 0.1. There is a reason
to why we start the estimation at day 50 and not day 100. The data set seems to
differ in behaviour depending on whether we are looking before or after day 120.
We therefore begin at day 50, attempting to capture the performance in both parts.

5.2.1 Results

Black&Scholes

The result for the B&S models are similar to the ones using LS with penalty in the
previous section. The filter gives rise to smoother estimates, but RMSE in general
is larger than when using the LS method.
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Figure 5.16: (Black-Scholes) Estimated volatility in sample.
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Figure 5.17: (Black-Scholes [σ]) Parameters a and b estimated
in sample, where σ ∈ U(a, b).
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Figure 5.18: RMSE (in sample).

In-sample
Model Mean RMSE Median RMSE
BS 3.2594 3.0364
BS [σ] 3.2199 2.9968

Out-of-sample
Model Mean RMSE Median RMSE
BS 3.5626 3.2286
BS [σ] 3.5186 3.1446

Table 5.6: Mean and median of RMSE for in-sample fit and pre-
dictions out of sample (day 50 to 246).
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Merton

We recall the difficulties in previous section, where the Merton models with LS-
estimates suffered from instability. With the UKF, the λ-parameter is given more
realistic values in Figure 5.20 and Figure 5.20. A shift in the parameters is still
occurring around the 120-th day. From Table 5.7 we see that the forecasting perfor-
mance has been significantly improved for the model with a correction in the jump
intensity, compared to the results using the LS-estimate.
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Figure 5.19: (Merton) Parameters estimated in sample.
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Figure 5.20: (Merton [σ]) Parameters estimated in sample.
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Figure 5.21: (Merton [λ]) Parameters estimated in sample.
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Figure 5.22: RMSE (in sample)

In sample
Model Mean RMSE Median RMSE
Merton 2.2338 1.7609
Merton [σ] 2.5552 1.9826
Merton [λ] 1.8520 1.4098

Out of sample
Model Mean RMSE Median RMSE
Merton 2.6401 2.2777
Merton [σ] 2.9540 2.5555
Merton [λ] 2.3284 1.8867

Table 5.7: Mean and median of RMSE for in-sample fit and out-
of-sample predictions (day 50 to 246).
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Heston

The Heston models with UKF seems to be more sensitive to the market change then
the corresponding models with penalized LS. Performance in predictions is worse
than with the LS method.
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Figure 5.23: (Heston) Parameters estimated in sample.
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Figure 5.24: (Heston [Θ]) Parameters estimated in sample.
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Figure 5.25: (Heston [v0]) Parameters estimated in sample.
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In sample
Model Mean RMSE Median RMSE
Heston 1.9011 1.6631
Heston [σ] 1.7691 1.4294
Heston [v0] 0.9773 0.7862

Out of sample
Model Mean RMSE Median RMSE
Heston 2.3047 2.0374
Heston [σ] 2.2142 1.9041
Heston [v0] 1.6465 1.3686

Table 5.8: Mean and median of RMSE for in-sample fit and out-
of-sample predictions (day 50 to 246).
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Bates

Difficulties in estimating the Bates model arose when the LS method was used. The
similar can be found when using the UKF.
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Figure 5.27: (Bates) In-sample estimation of model parameters.
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Figure 5.28: (Bates [Θ]) In-sample estimation of model parame-
ters.
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Figure 5.29: (Bates [v0]) In-sample estimation of model param-
eters.
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Figure 5.30: (Bates [λ]) In-sample estimation of model parame-
ters.
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In sample
Model Mean RMSE Median RMSE
Bates 0.5191 0.4259
Bates [Θ] 7.9783 3.2938
Bates [v0] 0.8753 0.8295
Bates [λ] 0.7093 0.4232

Out of sample
Model Mean RMSE Median RMSE
Bates 1.3998 1.0204
Bates [Θ] 8.3500 4.0071
Bates [v0] 1.6294 1.2243
Bates [λ] 1.5714 1.1397

Table 5.9: Mean and median of RMSE for in-sample fit and out-
of-sample predictions (day 50 to 246).
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UKF LS
Model Mean RMSE Median RMSE Mean RMSE Median RMSE
BS 3.5626 3.2286 3.5653 3.2406
BS [σ] 3.5186 3.1446 3.4301 3.0771
Merton 2.6401 2.2777 2.4305 2.2103
Merton [σ] 2.9540 2.5555 2.4138 2.0964
Merton [λ] 2.3284 1.8867 2.2085 1.9061
Heston 2.3047 2.0374 1.4058 1.0318
Heston [σ] 2.2142 1.9041 1.3975 1.0193
Heston [v0] 1.6465 1.3686 1.4022 1.0059
Bates 1.3998 1.0204 1.3512 0.9962
Bates [Θ] 8.3500 4.0071 1.4100 1.0170
Bates [v0] 1.6294 1.2243 1.3565 1.0012
Bates [λ] 1.5714 1.1397 1.3497 0.9881

Table 5.10: Summary of the mean and median of RMSE, measur-
ing predictive performance for day 50 to 246.

Summary

Using the UKF resulted in smoother estimates and an overall deterioration for
in-sample as well as out-of-sample performance. However, one clear improvement
(based on RMSE) was found with the Merton model with correction in λ. One could
try to improve the filter further by transforming the states, e.g. using θ = ln(θ).
This will prevent undesired estimates such as negative volatilities. Moreover, greater
effort can be made to find better covariance matrices for the filter. Seeing as the
UKF has a clear advantage in computational time, an attempt to improve it would
probably be worth while. A summary of predictive performance can be found in
Table 5.10. The corrected models will in general out-perform the standard models.
This is particularly noticeable for the B&S and Merton models. A less significant
improvement was found in Heston. The Bates model was not found to be improved
by a correction in the parameter uncertainty. However, it is not unusual to receive
unstable estimates since there is a large number of parameters in the Bates model.
Still, the Bates model is typically better at modeling stock prices. The clear winners
are the Heston and Bates models estimated with the penalized LS method. We note
that adding uncertainty into the standard Heston model will improve the prediction
performance, lowering RMSE to the level of the Bates model. This suggests that
the corrected Heston model is to prefer since it has fewer parameters than the Bates
model.
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CONCLUSIONS

This thesis has shown that a correction in parameter uncertainty can be computed
for some parameters for a large variety of models within the Fourier framework.
Our only requirement is of the characteristic function to be well-defined and expo-
nentially affine in the parameter of interest.
Adding uncertainty to different types of volatilities (volatility, initial volatility and
long term volatility) was found to generate a volatility smile in a simulation study.
The result is beneficial since it is consistent with empirical observations. A correc-
tions in the jump intensity was found to generate minor gains, suggesting that the
Merton and Bates models are robust against misspecifiation of the jump intensity.
However, since the empirical study showed that a correction in the jump intensity
would improve the Merton and Bates models, this suggests that we should have
allowed the jump intensity to vary more in the uniform distribution, i.e. we should
have considered a wider interval (a, b) in the uniform distribution.
The empirical study showed that a correction in the Black&Scholes and Merton
models improves the performance in sample and out of sample significantly. A
correction in the initial volatility in the Heston model was found to improve the
performance to the level of the standard Bates model. The corrected Heston model
is therefore preferrable since it has fewer parameters. The Bates model was not
found to benefit from a correction in the investigated parameters, suggesting that
any gain generated by a correction may be over-shadowed by the drawbacks of
adding parameters to the model.

6.1 Further work

Generalizing the uncertainty to several parameters at the same time should be an
easy task. The main concern may lie in obtaining a suitable multivariate distribution
function. If we can assume the parameters to be independent of each other, the
joint distribution would simply be the product of marginal distributions. Seeing as
it is a rather unrealistic assumption, one could try to use the theory of Copulas.
Furthermore, it would be interesting to apply the method derived in this thesis to
Lévy-processes. For example, the Normal Inverse Gaussian process seems to have
a characteristic function which is exponentially affine in at least one parameter.
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Appendix A

TRIANGULAR
DISTRIBUTION IN THE B&S

MODEL

Uncertainty was added in the volaility σ2 in the B&S model, see Section 4.2. The
result where σ2 is assumed to follow a triangular distribution is shown in Figure A.1.
We see that the result is similar to the findings in Section 4.2 and that the shape of
the uncertainty seems to be of minor importance. The variance of the uncertainty,
rather than the specific distribution seems to matter. This is consistent with some
of the findings in non-parametric regression, arguing that it is the bandwidth and
not the type of kernel that is of most importance.
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Figure A.1: (Black-Scholes) Implied volatility in the corrected
model for increasing level of parameter uncertainty, i.e. wider
interval [a, b] in the triangular distribution using c = 0.04.
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