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Abstract

Return models and covariance matrices of return series have been studied. In
particular, Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
and Stochastic Volatility (SV) models are compared with respect to their fore-
casting accuracy when applied to intraday return series. SV models are found to
be considerably more accurate and more consistent in accuracy in forecasting.

Covariance matrices formed from Gaussian and GARCH return series, and in
particular, return series auto-correlated as an AR(1) process, have been studied.
In the case of Gaussian returns, the largest eigenvalue is found to approximately
follow a gamma distribution also when the returns are auto-correlated. Expres-
sions relating the mean and the variance of the asymptotic Gaussian distribution
of the matrix elements are derived. In the case of GARCH returns, both the
largest and the smallest eigenvalues of the covariance matrix are seen to increase
with increasing auto-correlation. The matrix elements are found to follow Lévy
distributions with different Lévy indices for the diagonal and the non-diagonal
elements.

Localization of eigenvectors of covariance matrices of returns from GARCH
processes has been investigated. It is found that the localization is reduced
as the auto-correlation is increased. Quantitatively, the number of localized
eigenvectors decreases approximately as a quadratic function with the auto-
correlation strength, i.e. the autoregressive coefficient of the AR(1) process.
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Chapter 1

Introduction

The mathematics of the financial market has always been a topic that arouses
interest and imagination, and with no doubt, has been studied from many as-
pects and in many different ways.

Central to all these studies are the concepts of probability distributions and
correlations. The values of stocks, futures, options, etc. are stochastic in nature
and are governed by the laws of stochastic processes, which are expressed in
terms of probability distributions and correlations.

Meanwhile, the observables of the market are prices, volumes, turn-over
(the amount of money paid in a trade), names of the brokers, and time of the
trades. These quantities don’t make much sense by themselves but do reveal
the probabilistic dynamics of the market when put together and turned into
statistics.

The dynamics of an asset is affected by its own history as well as by the
histories and current values of other assets in the market. The influence from
the asset’s own history is termed autocorrelations, i.e. correlations in time,
while the influence from other assets are termed cross correlations.

Quite often, instead of an asset’s price, the relative price change, i.e. the
return, is studied. Analytically solvable models often assume Gaussian return
distribution, although data suggest fatter tails 1. By numerical methods, sta-
tistical features of historical returns data, such as fat tails, can be reproduced.

Statistical models built on historical data describe the time evolution of the
aforementioned observables in terms of probability distributions, autocorrela-
tions and cross correlations. They have been used to forecast future volatilities
and help determine a pair price of a contingent claim, e.g. an option. Here the
term “volatility” refers to the standard deviation of the distribution of returns,
and measures how volatile the returns are. The volatility of an asset constitutes
a major risk of investments on the asset and hence is very important.

1 While the exact nature of the tails of the distribution of historical returns r is debatable,

it is agreed P (|r| > x) > ae−bx
2
, for any positive constants a and b. Here P (·) denotes

probability. We adopt this as the definition of “fat” tails.
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In addition to the model of a single asset, the correlation between a group
of assets is also of great interest. For example, in principle component analysis,
one wishes to identify a number of factors that “drive” the price evolution of
a group of assets in the sense that each of the assets’ returns can be expressed
as a linear combination of the factors’ returns. In this scenario, the eigenvalues
of the covariance matrix are the variances of the factors’ returns and their
corresponding orthogonalized eigenvectors give the composition of the factors,
i.e. the coefficients with which the factors are contructed as a linear combination
of the assets.

Therefore, in this thesis we also study the elements and the eigenvalues
distribution, as well as the eigenvectors composition of the covariance matrix.
When the matrix is constructed from returns with simple Gaussian distribution,
the matrix is termed a Wishart matrix and has been studied extensively in the
literature. If the returns have Lévy distributions, the matrix is termed Wishart-
Lévy and has been studied to some extent, particularly regarding its eigenvalue
distribution [1].

However, it is understood that real stock/index returns are much more com-
plicated than a straight-forward Gaussian or Lévy distribution can describe —
instead, one needs structured models. For this reason, we are particularly in-
terested in a covariance matrix obtained for realistic return models. The so
called GARCH(1,1) model is a realistic return model proven to have regularly
varying tails [2]. So we study properties of eigenvalues and eigenvectors of such
covariance matrices. Moreover, we also study how auto-correlations in the re-
turns influence the aforementioned properties. Such auto-correlations, known as
second-order auto-correlations decay exponentially but may still leave footprints
in the covariance matrix.

This report is organized as follows: Chapter 2 reviews some of the most
influential return model. Parameters of the models are fitted to a few intraday
return series and the predictive power of the models is compared. A calcula-
tion of the unconditional distribution functions of SV models, especially in the
case where the residual of the log-volatility and the innovation of the return
are correlated normal variates, is also presented. In chapter 3 we investigate
distributions of eigenvalues of the Wishart matrix, and study the influence of
auto-correlated returns. In chapter 4 distributions of elements and eigenvalues
of the covariance matrix of identically specified GARCH(1,1) series are studied.
Finally, chapter 5 summarizes the results. Supplementary material is provided
in the appendices.
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Chapter 2

Return Models

In this chapter we review some of the discrete-time return models and fit them
to intraday returns. The intention is to compare these models in terms of fore-
cast accuracy and to understand their statistical properties. In the following we
first describe these models briefly, then in section 2.1, section 2.2 and appendix
A we describe how the GARCH and the SV models are fitted to intraday re-
turns and compare their forecasts. In section 2.3 we calculate the unconditional
distribution functions of the SV model.

1. Gaussian Distribution

The justification of modeling return series as independent, identically dis-
tributed normal variates comes from imagining the price process St as
a stochastic process with independent and normally distributed relative
increments dSt/St = σdwt, where wt represents the path of a geomet-
ric Brownian motion and dwt is normally distributed with mean 0 and
variance dt.

By adding a drift term µdt to allow a deterministic trend in the rela-
tive price change, one can express the price St as a stochastic differential
equation:

dSt
St

= µdt+ σdwt

By Itô’s lemma, a stochastic differential equation for the logarithmic price
lnSt can be obtained

d(lnSt) = (µ− 1

2
σ2)dt+ σdwt

Solving this equation gives

lnSt − lnS0 = (µ− 1

2
σ2)dt+ σwt

7



It follows from this equation that lnS(t)− lnS0, where S0 is the price at
time 0, has Gaussian distribution with mean (µ−σ2/2)t and variance σ2t
[3]. Therefore, in a discrete-time model, where the length of each time
step ∆t is fixed, the return rt = lnS(t) − lnS(t − ∆t) is assumed to be
Gaussian distributed and have mean and variance that are functions of
∆t.

The picture depicted above is of course overly simplified, and the distri-
bution of returns is not really Gaussian. Nevertheless, the assumption of
Gaussian distributed returns underlies such important theories as Black
and Scholes theory of option pricing. Thus, albeit inaccurate in describ-
ing very large returns, the Gaussian distribution as a return model shall
not be forgotten. In the next few sections, we discuss some more realistic
return models.

2. GARCH models

“GARCH” is the acronym for “Generalized Autoregressive Conditional
Heteroscedasticity”. A GARCH(p, q) model is defined by the following
equation system [4]:

rt = µt + εt (2.1)

where rt is the return as mentioned earlier; p and q are constant integers; µt
is the mean process and considered a small constant for intraday returns.
εt is called the innovation of the return and is a variate whose conditional
distribution 1is Gaussian and has variance σ2

t :

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

The quantity σt introduced here is termed the volatility, and its meaning
and significance has been discussed in the introduction 1. In the model
of geometric Brownian motion it is assumed constant and hence simply
denoted σ.

It can be shown that the autocorrelation function %n = corr(εt, εt−n) for
n > max(p, q) of ε2t is given by [5]:

%n =

p∨q∑
i=1

(αi + βi)%n−i for n > p

where αi with i > q and βi with i > p are taken as zeros. p ∨ q denotes
the maximum of p and q. From these equations, it is clear that the partial
autocorrelation function cuts off at max(p, q).

Here we note that, in the GARCH model, the volatility σt is Ft−1 mea-
surable: given the history up to time t− 1, σt is a deterministic quantity.

1 By conditional distribution we mean the distribution conditional on the variate’s history:
The conditional distribution at time t means the distribution conditional on the history up to
time t− 1 in the discrete-time setting.
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In contrast, SV models, which we discuss shortly, treat σt as a random
variable even given the same history.

3. Stochastic Volatility Models

For the purpose of intraday returns, we specify the SV model as

rt,t−h = lnSt − lnSt−h

rt,t−h = µ+ σt,t−hbt (2.2)

where St is the price of the asset at time t; bt ∼ N(0, 1); rt,t−h is the return
over the time interval [t − h, t]. For simplicity, in the rest of this chapter
we shall just write t for the subscript “t, t-h”, since the time interval h is
fixed for each time series and is a known constant.

Andersen et al proved the following in [6] (theorem 2):

rt|Ft−h ∼ N(

∫ h

0

µt−h+sds,

∫ h

0

σ2
t−h+sds) (2.3)

In plain words, conditional on the information up to time t − h, the dis-
tribution of rt is Gaussian with integrated mean and variance. The vari-

ance of this conditional distribution,
∫ h

0
σ2
t−h+sds, can be approximated

by [7, 6]:∫ h

0

σ2
t−h+sds =

n∑
k=1

(
lnSt−h+kh/n − lnSt−h+(k−1)h/n

)2
(2.4)

where n is a chosen constant. The square root of the right hand side of
equation 2.4 is the realized volatility, call it σ̂t.

With the availability of transaction data, estimating conditional volatil-
ity using returns sampled at a higher frequency (realized volatility) gives
superior accuracy and reliability. However, at which frequency the time
series should be sampled (the choice of n) in order to give an unbiased and
consistent estimate of the volatility is not a trivial question. Naively one
would believe that the often the series is sampled, the better the estimate,
but in fact, due to noise introduced by market micro-structure, there is
an optimal sampling frequency, depending on h. While the method to
determine this optimal frequency is a subject of debate (see for example
[8]), it is not difficult to find a fairly satisfactory frequency in practice:

Keeping equation 2.3 in mind, one can simply try a few frequencies and
compare the distribution of (rt − E(rt))/σ̂t with the standard Gaussian.
If the two match, σ̂t is a good approximation of

σt =

(∫ h

0

σ2
t−h+sds

)1/2
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Once a good approximation of σt has been found, it is convenient to model
lnσt so that the positivity of σt is implied by construction [9]. As is seen
in later sections, Integrated Autoregressive Moving Average (ARIMA)
models often serve well for this purpose. An ARIMA(p, d, q) model,
where p, d, q are integers, is defined as [10]

(1−
p∑
i=1

φiB
i)(1−B)d lnσt = (1−

q∑
i=1

θiB
i)yt

where B is the back-shift operator such that Bxt = xt−1 for any time series
xt. yt are termed the residuals of the model, d is the order of integration,
and p, q are orders of autoregression and moving average, respectively. φi
and θi are constant parameters.

Quite often, the auto-correlation function of the time series in question
manifests periodic patterns, thus seasonal components are added to the
above model to account for the seasonality:

(1−
P∑
i=1

ΦiB
is)(1−

p∑
i=1

φiB
i)(1−Bs)D(1−B)d lnσt

= (1−
Q∑
i=1

ΘiB
is)(1−

q∑
i=1

θiB
i)yt

where D, analogous to d in the non-seasonal model, is the order of sea-
sonal integration; P,Q are orders of seasonal autoregression and moving
average, respectively. Φi and Θi are constant parameters. In the most
general situations, the seasonal and the non-seasonal components do not
necessarily combine in the above multiplicative fashion, so the following
model is also of interest:

(1−
p+P∑
i=1

φiB
i)(1−Bs)D(1−B)d lnσt = (1−

q+Q∑
i=1

θiB
i)yt

In all the above cases, if d = 0 and D = 0, the model does not in-
volve integration and hence is called an Autoregressive Moving Average
(ARMA)(p,q) model. An even simpler case is where q = 0 and Q = 0 in
addition to d = 0 and D = 0. These conditions make the model a pure
Autoregressive (AR) process, denoted AR(p).

To compare GARCH and SV models at the face of intraday returns, we study
the Nordea Bank 15-minute returns during the period 2012/01/16 - 2012/04/20
in section 2.1, and Volvo B 30-minute returns during 2013/10/10 - 2014/04/04 in
section 2.2. Another 4 intraday series are also studied and collected in appendix
A. We have chosen these particular stocks because they have the largest trading
volumes in the Swedish market and hence provide the largest amount of data
for analysis. The time intervals of 15 and 30 minutes are chosen because they
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are relatively short and hence give a large amount of data and yet they are not
too short for noise of market micro-structure2to become a concern.

2.1 Case Study: Nordea 15-minute Returns

In this section we investigate the Nordea 15-minute returns sampled during the
period 2012/01/16 - 2012/04/20. In total, these amount to 2022 returns. We
use the first 80% (1617) for model estimation and the remaining 20% (405)
for comparing with model forcasts. In section 2.1.1 we study the series with a
GARCH model and in section 2.1.2 we study it with a SV model.

2.1.1 GARCH Model

When volatilities are auto-correlated or squared returns and volatilities are cor-
related, a GARCH(p, q) model may be appropriate for the return series under
investigation. To find out whehter this is true in our case, we plot the Auto-
correlation Function (ACF) of the squared returns. This is shown in figure
2.1(a). If the aforementioned features are absent from the series, the auto-
correlations are expected to be Gaussian distributed with mean 0 and variance
1/T, and hence mostly reside within the confidence bounds set by ±2/

√
T [4, 5].

Clearly this is not the case in figure 2.1(a) — the first 5 auto-correlations
are rather significant. Moreover, figure 2.1(b) shows even more clearly that the
conditional variances of the series are correlated. These observations suggest a
GARCH(p, q) model can be appropriate.
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Figure 2.1: 2.1(a): Auto-correlations (ACF) of the squared returns; 2.1(b): Auto-
correlations (ACF) of squared realized volatilities (σ̂2

t ). The blue lines are confident
bounds set at ±2/

√
T . T is the length of the time series.

2 Noise of market micro-structure is due to, most importantly, the difference between the
bid and asked prices (bid-ask spread), and the discreteness of price changes.

11



Starting with a GARCH(1,1) model and taking advantage of the knowledge
that the log-volatility lnσt has seasonality s = 33 (see figure 2.4(a)), we fit to
the return series a GARCH(33, 33) model, limiting to lags 1 and 33 for both
ARCH and GARCH parameters.

rt = µ+ εt

εt = σtzt

σ2
t = α0 + α1ε

2
t−1 + αsε

2
t−s + β1σ

2
t−1 + βsσ

2
t−s

where the mean process of rt, denoted µt earlier, is simplified to a mere constant
µ owing to its smallness. by Maximum Likelihood Estimate (MLE), parameter
values listed in table 2.1 are obtained.

Parameter α0 α1 αs β1 βs
Value 4.7833× 10−7 0.1600 0.0667 0.6846 0.0342

Table 2.1: GARCH model parameters

2.1.2 Stochastic Volatility Model

For the Nordea Bank 15-minute returns under consideration, it can be verified
that the square root of the sum of squared 30-second returns makes a good
proxy for the volatility. This can be seen from the probability plot of zt =
(rt − E(rt))/σ̂t (figure 2.2), i.e. the quotient of the 15-minute returns over the
volatility proxy.
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Figure 2.2: Probability plot of zt = (rt − E(rt))/σt. εt are derived from Nordea Bank
15min returns while σt are realized volatilities calculated using 30s returns within each
15min interval. Horizontal axis: zt; Vertical axis: CDF of zt, arranged on such a scale
that the CDF of the standard Gaussian is a straight line.

Andersen and Bollerslev et al reported that, for the exchange rates between
Deutch mark, yen and dollar, lnσt is Gaussian distributed [6]. This is, how-
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ever, not the case for our modestly sized series. In fact, in our case, lnσt is
right skewed (skewness 0.3342) and leptokurtic (kurtosis 6.1006). See figure 2.3
Moreover, the series of lnσt shows long-lasting and periodic autocorrelations
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Figure 2.3: Probability plot of Nordea 15min log-volatility lnσt unconditional distri-
bution

with an apparent period of 33 (see figure 2.4(a)). This suggests the series may
be described by a seasonal ARIMA model. Thus we first simplify the series by
differencing [10]:

wt = (1−B)(1−Bs) lnσt (2.5)

where B is the back-shift operator3 and s = 33 is the seasonality.
The autocorrelation function of the differenced process wt, as shown in figure

2.4(b), clearly points to a seasonal moving-average model: There are only 4
non-zero autocorrelations in the plot, located at lags 1, 32, 33, 34, respectively;
furthermore, the two at 32 and 34 are approximately equal. Thus we can write
down the model as

wt = (1− θB)(1−ΘBs)yt (2.6)

where θ and Θ are parameters to be determined and yt is a noise process with
constant variance σ2

y and mean 0. yt is often refered to as the residuals.
The above seasonal moving average model has the following autocovariance

3For example, B xt = xt−1
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Figure 2.4: Auto-correlations of Nordea 15min log-volatility (lnσt) and differenced
log-volatility (wt).

structure [10]:

γ0 = σ2
y(1 + θ2)(1 + Θ2)

γ1 = −σ2
yθ(1 + Θ2)

γs = −σ2
yΘ(1 + θ2)

γs+1 = γs−1 = σ2
yθΘ

These equations together with the measured autocorrelations make possible an
initial estimate of the parameters θ and Θ:

%s+1/%s = γs+1/γs = − θ

1 + θ2

%s+1/%1 = γs+1/γ1 = − Θ

1 + Θ2

Substituting in the measured values shown in table 2.2, we get

%1 %s−1 %s %s+1

-0.4703 0.2053 -0.4564 0.2212

Table 2.2: autocorrelations of differenced log-volatility (wt)

θ = 0.6890

Θ = 0.6378

Among the two roots of each of the 2nd order equations in the above, we have
chosen the one in the range (−1, 1) so as to ensure invertibility of the model
[10].
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With an estimate of θ and Θ, one can then infer the noise process i.e. the
residuals yt:

yt = wt + θyt−1 + Θyt−s − θΘyt−s−1 (2.7)

where we substitute yt (t ≤ 0) with their unconditional expectation 0.
In order to forecast the wt process, and hence the return process itself,

we must also know the distribution of yt. Moreover, to properly estimate the
parameters of the model in the sense of maximum likelihood, we are also in need
of the distribution of yt.

Figure 2.5 shows the normal probability plot of yt. It is evident from this
figure that yt has fat tails. In addition, a simple calculation reveals that the
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Figure 2.5: Normal probability plot of residuals of log-volatility (yt)

distribution of yt has skewness 0.2988 (shown in table 2.3). Based on this

mean variance skewness kurtosis
0.0012 0.0935 0.2988 6.8691

Table 2.3: Moments of log-volatility residuals (yt)

information, we find that yt can be well described by a Johnson Su distribution.
This is a flexible distribution that features fat tails and positive skewness. It is
defined by the following transformation [11]:

yt = ξ + λ sinh
zt − γ
δ

where γ, δ, λ, ξ are parameters to be determined and zt ∼ N(0, 1). The goodness
of fitting is demonstrated in figure 2.6 by the empirical cummulative distribution
function in comparison to the theoretical one.
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Figure 2.6: Log-volatility residuals yt fitted to a Johnson Su distribution. Horizontal:
values of yt, denoted x; Vertical: ln (P (yt < x)).

The first 4 moments of the Johnson Su distribution are expressible in closed
form in γ, δ, λ, ξ [11]. By matching the theoretical expressions of the moments
with their measured values, and taking help from published tables [12], one can
solve for the parameters γ, δ, λ, ξ.

Under the assumption of i.i.d Johnson Su distributed residuals, the log-
likelihood function of the parameters θ,Θ conditional on the sample wt can be
written as

L(θ,Θ) = −1

2

n∑
t=1

z2
t + n ln

δ

λ
√

2π
− 1

2

n∑
t=1

ln

[
1 +

(
yt − ξ
λ

)2
]

where yt are inferred from wt using eq.2.7 and zt from yt using

zt = δ sinh−1 y − ξ
λ

+ γ

Note that γ, δ, λ, ξ are not really free parameters but rather are implied by θ
and Θ: Once the latter have been chosen and the corresponding yt inferred, the
former are determined by the moments of yt.

2.1.3 Comparison of the Forecasts

In this section we compare the one-step-ahead forecasts from the GARCH model
and from the SV model. For this purpose, we compute the difference between
a forecast lnσFt and its measured counterpart, i.e. the realized volatility of
the same period ln σ̂t. As a reference, we also consider the results obtained by
taking the mean of the realized volatilities of the first 80% of the data set as
forecast for the volatilities of the remaining 20%. We call this naive forecast the
“sample mean”.
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First of all, we look at the means and standard deviations of lnσFt − ln σ̂t,
which are listed in table 2.4. It is seen from table 2.4 that, on average, the SV

SV GARCH Sample mean
E(lnσFt − ln σ̂t) 0.0040 -0.0008 -0.2210

std(lnσFt − ln σ̂t) 0.2659 0.3011 0.2893

Table 2.4: Mean and standard Deviation of the forecasts’ distribution

model over-estimates while GARCH under-estimates. In terms of the standard
deviation of lnσFt − ln σ̂t, the SV model wins with a small margin. In contrast,
the sample mean forecast clearly under-estimates the log-volatilities to a large
extent. So the efforts of building models have indeed led to more accurate
forecasts.

Figure 2.7 compares the 3 kinds of forecasts by plotting the distribution
function and the complementary distribution function of lnσFt − ln σ̂t. Here one
can see that the SV model yields a better quality of forecasts than does GARCH
with respect to both under-estimates and over-estimates.
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Figure 2.7: Blue: SV forecasts; Green: GARCH forecasts; Red: sample mean fore-
casts. Left: P (lnσFt − ln σ̂t < x); Right: P (lnσFt − ln σ̂t > x). Horizontal: x.

Another measure of the forecasts’ quality can be the percentage of good fore-
casts, where the criterion of “good” is defined, respectively, as the forecast de-
viating less than 1%, 5%, or 10% from the corresponding realized log-volatility.
Table 2.5 shows the respective percentage of the 3 kinds of forecasts. Again in
this table it is seen that the SV model gives more accurate forecasts than does
GARCH. For example, defining a “good” forecast as one that deviates less than
5% from the realized volatility, the probability of obtaining such a good forecast
is 75% using the SV model, 71% using the GARCH model, and only 53% using
the sample mean.
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| lnσFt −ln σ̂t|
| ln σ̂t| SV GARCH sample mean

1% 22% 14% 11%
5% 75% 71% 53%
10% 97% 94% 89%

Table 2.5: The percentage of “good” forecasts when the criterion of being good is
deviating no more than 1%, 5% or 10%.

2.2 Case study: Volvo 30-minute Returns

In this section we model the log-volatility of Volvo B 30-minute returns during
the period 2013/10/10 - 2014/04/04. This series contains 1884 log-volatilities
computed using 2-minute returns in each 30-minute interval. Among them we
use the first 1507 for model estimation and the last 377 for forecast and model
verification.

The left plot of figure 2.8 shows the distribution of (rt − E(rt))/σt. We
observe in the figure a nice Gaussian variate, so we can be sure that the sum
of squared 2-minute returns makes a good approximation to the variance of
30-minute returns in this particular case.

−3 −2 −1 0 1 2 3

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

Figure 2.8: Left: probability plot of (rt − E(rt))/σt; Right: auto-correlations of lnσt

Guided by the auto-correlations of lnσt shown in the right plot of figure 2.8
we find the following model:

(1−B)(1−Bs) lnσt

= (1− θ1B − θ2B
2 − θ3B

3 − θ4B
4)(1−ΘBs)yt (2.8)

where s = 16 is the seasonality and is apparent from the auto-correlations of
lnσt. Fitting this model to the measured realized volatilities yields the parame-
ter values listed in table 2.6. Forecasting using the estimated model parameters
gives the forecast series lnσSV

t . To access the quality of the forecast, we also
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Parameter θ1 θ2 θ3 θ4 Θ residual variance
Value 0.7305 0.0575 0.0574 0.0346 0.8324 0.1340

Table 2.6: Volvo B log-volatility parameters

estimate a GARCH model using the returns. The result is a GARCH(1, 1)
model, whose parameter values are listed in table 2.7.

Parameter α0 α1 β1

Value 3.125× 10−7 0.05 0.90

Table 2.7: GARCH(1, 1) model of Volvo B 30-minute returns

The forecasts from SV, GARCH, and the sample mean are compared using
the difference lnσFt −ln σ̂t, where lnσFt stands for the forecast. The distributions
of this difference is plotted in figure 2.9; the mean and the standard deviation
of the distributions are listed in table 2.8.

SV GARCH Sample mean
E(lnσFt − ln σ̂t) -0.0123 0.0242 -0.1055

std(lnσFt − ln σ̂t) 0.3261 0.4250 0.3708

Table 2.8: Standard deviation of lnσFt − ln σ̂t
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Figure 2.9: Blue: SV forecasts; Green: GARCH forecasts; Red: sample mean fore-
casts. Left: P (lnσFt − ln σ̂t < x); Right: P (lnσFt − ln σ̂t > x). Horizontal: x.

Figure 2.9 shows, as in the previous case of Nordea Bank 15-minute returns,
the SV model performs the best, GARCH the second, and the sample mean the
worst. However, when it comes to over-estimates, the sample mean appears to
be the best estimator, while SV excels over GARCH. But a check of E(lnσt) over
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the sample for estimation (1507 data points) and over the sample for comparison
(377 data points) reveals that the first sample has mean -6.3127 while the second
has -6.2072. This increment explains the low probability of over-estimation when
using the first sample mean as forecast.

Table 2.9 compares the fraction of “good” estimates as measured by
| lnσFt −ln σ̂t|
| ln σ̂t|

being less than 1%, 5% and 10%. We see from the table that the SV model con-

| lnσFt −ln σ̂t|
| ln σ̂t| SV GARCH Sample Mean

1% 22% 12% 14%
5% 72% 62% 66%
10% 92% 88% 90%

Table 2.9: Fraction of “good” forecasts as defined by
| lnσFt −ln σ̂t|
| ln σ̂t| being less than 1%,

5% and 10%.

sistently excels over the other two alternatives. In addition, it is also noted that
the GARCH forecast is even worse than the sample mean. This is surprising but
not totally unexpected — with only 3 parameters, the GARCH(1,1) model can
only describe the most prominent auto-correlations in the volatility. When the
volatility is influenced by relatively weak auto-correlations at several different
time lags, the GARCH forecast cannot be expected to have good accuracy.

In this particular case, we see that the ARIMA model has 3 relatively small
moving average coefficients, located at lags 2, 3, and 4 and evaluated to 0.06,
0.06, 0.03, suggesting a scattered auto-correlation structure, so the GARCH
model cannot be expected to perform very well. In contrast, the Volvo 15-
minute returns studied in section A.2 has more concentrated auto-correlations
— 0.12 and 0.06 at lags 2 and 3 — thus the GARCH(1,1) model is also found
to perform better and even marginally better than the SV model for the same
series.

2.3 Unconditional Distribution Functions of SV
Models

In this section we study the unconditional distribution function of the SV model
specified as equation 2.2. As is discussed at the beginning of this chapter, lnσt
can be described by an ARMA or ARIMA model, possibly with seasonal compo-
nents. Here we note that all these models can be re-written as a moving average
model, which is infinite in extent if autoregressive components are present:

lnσt = yt +

∞∑
n=1

cnyt−n + Const.
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Since the yt are independent and identically distributed,

yt +

∞∑
n=1

cnyt−n

has Gaussian distribution by the central limit theorem, on condition that yt for
all t have finite second moment — this is what we assume in the rest of this
section. It follows that the unconditional distribution of lnσt is the same as the
distribution of v̄ + v where v ∼ N(0, σ) and v̄, σ are constants. Now we can
state that the unconditional distribution of the returns rt

rt = µ+ σtbt

= µ+ bt exp

(
yt +

∞∑
n=1

cnyt−n + Const.

)

is the same as
r = µ+ ev̄+vb (2.9)

where b ∼ N(0, 1). For convenience, let r′ = evb
In section 2.3.1 we first study the model in the relatively simple case when v

and b are uncorrelated and µ = 0. If this simplified version proves inadequate,
one may resort to the general model studied in section 2.3.2.

2.3.1 The Simplified model

In the following we derive the unconditional Probability Density Function (PDF)
of r′, the de-meaned4 and rescaled return. Denote this PDF fr′(x). Then the
PDF of r is e−v̄fr′(e

−v̄x). First we consider

P (r′ < x) = P (b < xe−v)

fr′(x) = fb(xe
−v)e−v

Averaging over all v, we get

fr′(x) =

∫ ∞
−∞

dv(2πσ2)−1/2e−v
2/2σ2

(2π)−1/2 exp(−x2e−2v/2)e−v

=
1

2πσ

∫ ∞
−∞

dv exp

(
− 1

2σ2
v2 − v − 1

2
x2e−2v

) (2.10)

The last part of the integrand, e−x
2e−2v/2, is plotted in figure 2.10. We see

from the figure that the landscape defined by this function, roughly speaking,
consists of two levels, the lower one lying at height 0 and the higher one at
height 1. The slope connecting the two levels is rather steep. It changes as a
double exponential along lines of constant x and as e−x

2

along lines of constant
v. Therefore we approximate this function as a 2-dimensional step function:

4By “de-mean” we mean subtracting from a random variable its expectation value.
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Figure 2.10: Plot of exp(− 1
2
x2e−2v)

exp

(
−1

2
x2e−2v

)
≈
{

0 if v < ln |x| − 1
2 ln(2 ln 2)

1 otherwise

Here we note that exp
(
− 1

2x
2e−2v

)
= 1/2 at v = ln |x| − 1

2 ln(2 ln 2).
With this approximation we have

fr′(x) =
1

C

1

2πσ

∫ ∞
ln(|x|/

√
ln 4)

dv exp

(
− 1

2σ2
v2 − v

)
=

1

C

eσ
2/2

√
8π

erfc

(
1√
2σ

ln
|x|√
ln 4

+
σ√
2

)
where 1/C has been added for the purpose of normalization.

At large x, we may use the asymptotic expansion of erfc to write

Cfr′(x) =
eσ

2/2

√
8π

erfc(ξ)

=
eσ

2/2

√
8π

e−ξ
2

ξ
√
π

[
1 +

N∑
n=1

(−1)n
(2n− 1)!!

(2ξ2)n

]
+O(ξ−2N−1e−ξ

2

)

where ξ = 1√
2σ

ln |x|√
ln 4

+ σ√
2
. The slowest-decaying term is

fr,0(x) =
eσ

2/2

√
8π

e−ξ
2

ξ
√
π

Let ζ = |x|√
ln 4

. With a bit manipulation one obtains

fr,0(x) =
1

π
√

8

1(
ln ζ/σ

√
2 + σ/

√
2
)
ζζ ln ζ/2σ2
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From the last equation one can see that, at any neighborhood of large x, fr′(x)
may be approximated by C/|x|α, i.e. a power law. The normalization constant

C is calculated in appendix B to be C =
√

2 ln 4
π . So, in summary, we can write:

fr(x) = e−v̄fr′(e
−v̄x)

=
e−v̄

C

eσ
2/2

√
8π

erfc

(
1√
2σ

ln
|e−v̄x|√

ln 4
+

σ√
2

)
Using the same technique for integration as for normalization, the cummulative
distribution function of r is found to be F (x), which is the following:

1. if x < 0

F (x) =

√
ln 4

C

eσ
2/2

√
8π

[
e−v̄x√

ln 4
erfc

(
1

σ
√

2
ln
−e−v̄x√

ln 4
+

σ√
2

)
+e−σ

2/2erfc

(
1

σ
√

2
ln
−e−v̄x√

ln 4

)]
2. if x ≥ 0

F (x) =
1

2
+

√
ln 4

C

eσ
2/2

√
8π

[
e−v̄x√

ln 4
erfc

(
1

σ
√

2
ln
e−v̄x√

ln 4
+

σ√
2

)
+e−σ

2/2erfc

(
− 1

σ
√

2
ln
e−v̄x√

ln 4

)]
To verify the validity of the model, we fit the above probability density

function to the de-meaned 30min returns of Volvo B 5 by means of MLE using
the MATLAB function “mle”. Then for the parameters σ and v̄ we get

σ = 0.6355

v̄ = −6.0308

Then we plot P (r′ > x) of the model against its empirical counterpart on a
log-log scale, as shown in figure 2.11.

In general figure 2.11 shows a good fit, but a closer look reveals that de-
viations are significant in the regions r ∈ (0, σr) and r ∈ (2σr, 3σr), where σr
stands for the empirical standard deviation of the de-meaned returns. These
observations are shown in greater details in figure 2.12.

Moreover, the inefficiency of the model is also manifest in the skewness of
the data. For the Volvo 30min returns, the data has a skewness of 0.2419, but
our model is strictly symmetric, since the return x appears in equation 2.10
only as x2. Hence the above model needs to be improved to accommodate the
non-zero skewness as well as to account for the discrepancies shown in figure
2.12. This is the subject of the next section.

5By “de-meaned returns” we mean the quantity rt−〈rt〉, where rt are the measured returns
and 〈rt〉 is the sample mean. The data set covers the transaction records of Volvo B on the
OMX market (Stockholm) between 2013-10-10 and 2014-03-12. The returns are computed
using 1-minute mean prices.
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Figure 2.11: P (r′ > x) for x > 0. Blue: empirical probabilities. Red: probabilities
predicted by the model.
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Figure 2.12: Surviving probabilities. Blue: empirical values of ln(P (r > x)). Red:
Predicted values of ln(P (r > x)).

2.3.2 The General model

It has long been hypothesized in the liturature that skewness is the result of
price-volatility correlation (for example [13]). Therefore, the most apparent
modification is to allow v, the zero-mean Gaussian variate in the log-volatility,
and b, the zero-mean Gaussian variate in the innovation of the return, to be
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correlated. For convenience we decompose v ∼ N(0, σ) as v = σa and assume(
a
b

)
∼ N(0,Σ)

with a covariance matrix

Σ =

(
1 ψ
ψ 1

)
where |ψ| < 1. Then we rewrite equation 2.9 as

r = µ+ ev̄r′

r′ = eσab
(2.11)

We then get

P (r′ < x)

= P (b < e−aσx)

=
1

2π|det(Σ)|1/2

∫ ∞
−∞

da

∫ e−aσx

−∞
db exp

[
−1

2
(a, b)Σ−1

(
a
b

)]

After some manipulations we get

P (r′ < x)

=
1

2π
√

1− ψ2

∫ ∞
−∞

dae−a
2/2

∫ e−aσx

−∞
db exp

[
− (b− aψ)2

2(1− ψ2)

]
=

1

2
√

2π

∫ ∞
−∞

e−a
2/2erfc

aψ − e−aσx√
2(1− ψ2)

da

(2.12)

Differentiating with respect to x yields the PDF

fr′(x) =
1

2π
√

1− ψ2
×∫ ∞

−∞
da exp

[
−a

2 + 2σ(1− ψ2)a− 2aψe−aσx+ e−2aσx2

2(1− ψ2)

]
(2.13)

fr(x) =
dr′

dr
fr′ [e

−v̄(x− µ)]

= e−v̄fr′ [e
−v̄(x− µ)] (2.14)

Unlike 2.10 where a relatively simple approximation can be found and thus leads
to an analytic result of the integral, no such approximation has been found by
the author for the integral 2.13. However, the Moment Generating Function
(MGF) of PDF 2.13 and 2.14 are easy enough to find and give the moments
about the origin in closed form. Then by matching the analytic expressions of
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the moments with their statistical values from the sample, the parameters σ, ψ
and v̄ corresponding to the sample can be obtained.

The MGF of 2.14 can be found as follows:

Mr(t)

= E(etr)

=
1

2π
√

1− ψ2

∫ ∞
−∞

da exp

(
−a

2

2
− σa

)∫ ∞
−∞

dx exp

[
t(ev̄x+ µ)− (aψ − e−aσx)2

2(1− ψ2)

]
=

1√
2π

∫ ∞
−∞

da exp

[
−a

2

2
+

1

2
e2aσ+2v̄(1− ψ2)t2 + aψeaσ+v̄t+ µt

]
With the MGF, the first 4 moments of r can be computed:

E(r) = µ+ ev̄+σ2

2 σψ

E(r2) = µ2 + 2ev̄+σ2

2 µσψ + e2(v̄+σ2) (1 + 4σ2ψ2
)

E(r3) = µ3 + 3ev̄+σ2

2 µ2σψ + 9e3v̄+ 9σ2

2 σψ
(
1 + 3σ2ψ2

)
+ 3e2(v̄+σ2)µ

(
1 + 4σ2ψ2

)
E(r4) = µ4 + 4ev̄+σ2

2 µ3σψ + 36e3v̄+ 9σ2

2 µσψ
(
1 + 3σ2ψ2

)
+ 6e2(v̄+σ2)µ2

(
1 + 4σ2ψ2

)
+ e4v̄+8σ2 (

3 + 96σ2ψ2 + 256σ4ψ4
)

(2.15)
These equations are rather complicated and directly solving them to obtain the
parameters µ, σ, ψ and v̄ is infeasible. However, in practice, E(r) is often very
small — so, to get a rough estimate of the parameters, we may set µ = 0 in the
above equations and, with a bit of manipulation, find the following equation for
ψσ:

E(r3)E(r4)−3/8

E(r2)3/4
=

9σψ(1 + 3σ2ψ2)

(1 + 4σ2ψ2)3/4

1

(3 + 96σ2ψ2 + 256σ4ψ4)3/8
(2.16)

This equation can be solved numerically for a given sample to yield an estimate
for σψ, which in turn can be substituted in equations 2.15, where µ has been set
to 0, to give estimates for all the 4 parameters. These estimates then serve as
initial values in a numerical solution to 2.15 where µ is kept as a free variable.
This full solution can now be used as the initial estimate in an MLE procedure.

It is particularly important in our situation to have a good initial estimate,
because, as has been shown earlier, the PDF and the Cummulative Distribution
Function (CDF) cannot be obtained in closed forms and consequently have
to be evaluated by numerical integration. This is a rather costly procedure
especially in the context of MLE. So the computation of the moments under the
assumption of µ = 0 is worthwhile.

Following the aforementioned procedure, i.e. computing the initial estimate
by matching the moments and then refining the estimate by MLE, we obtain the
parameter values for a number of return series, including the Volvo B 30-minute
returns described in section 2.3.1. Table 2.10 and 2.11 present the obtained
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parameter values and the resulting moments, respectively. Figure 2.13, 2.14, and
2.15 compare the empirical distribution functions with the analytic distribution
functions evaluated at these parameters.
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Figure 2.13: Volvo B 30min returns’ unconditional distribution fit to the SV model.
The time series runs from 2013/10/10 to 2014/03/12. Left: P (r < x) with x < 0;
Right: P (r > x) with x > 0. Blue: empirical CDF obtained from data; Green: model
CDF computed using equation 2.12 with x replaced by (x − µ)e−v̄. Both plots are on
log-log scale.

ψ σ v̄ µ
Volvo B -1.6×10−2 4.7×10−1 -6.2 -5.3×10−5

Nordea Bank 1.7×10−2 4.3×10−1 -6.4 7.5×10−5

Ericsson B 1.8×10−2 4.5×10−1 -6.3 -9.3×10−5

Table 2.10: Parameter Values of Selected Assets’ returns. The time series are 30-
minute returns and run from 2013/10/10 to 2014/03/12.

Clearly these figures show a fairly good match of the empirical and the
analytic distribution functions. However, we also see that the skewness of the
returns of Volvo B and Ericsson B have rather different values when computed
from the sample and from the model. This could be the consequence of the
limited sample size or deficiencies in the estimation procedure described above.
We leave these issues to future studies.
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Figure 2.14: Nordea Bank 30min returns’ unconditional distribution fit to the SV
model. The time series runs from 2013/10/10 to 2014/03/12. Left: P (r < x) with
x < 0; Right: P (r > x) with x > 0. Blue: empirical CDF obtained from data; Green:
model CDF computed using equation 2.12 with x replaced by (x − µ)e−v̄. Both plots
are on log-log scale.

mean std skewness kurtosis

Volvo B
-8.7×10−5 2.5×10−3 -2.7×10−2 7.3
-6.9×10−5 2.5×10−3 -7.3×10−2 7.2

Nordea Bank
7.5×10−5 2.0×10−3 6.9×10−2 6.7
8.9×10−5 2.0×10−3 6.7×10−2 6.2

Ericsson B
-8.3×10−5 2.3×10−3 2.7×10−1 7.7
-7.6×10−5 2.3×10−3 7.9×10−2 6.7

Table 2.11: Moments of Selected Assets’ returns. For each return series, the 1st
row contains the sample moments, while the 2nd constains those computed with MLE
parameters. The time series are 30-minute returns and run from 2013/10/10 to
2014/03/12.

2.3.3 Relation to Conditional Distribution Functions

In the last section we have shown that the unconditional distribution of the
returns are skewed, which implies the zero-mean Gaussian variate a in the log-
volatility is correlated to the zero-mean Gaussian variate b in the return (c.f.
equation 2.9).

In the context of conditional distributions and forecast, this correlation
translates to the correlation between the residual of the log-volatility, denoted yt
in section 2.1 and section A.2, and bt. Now let us consider the forecast function
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Figure 2.15: Ericsson B 30min returns’ unconditional distribution fit to the SV model.
The time series runs from 2013/10/10 to 2014/03/12. Left: P (r < x) with x < 0;
Right: P (r > x) with x > 0. Blue: empirical CDF obtained from data; Green: model
CDF computed using equation 2.12 with x replaced by (x − µ)e−v̄. Both plots are on
log-log scale.

of an ARIMA model:

lnσt = yt +

P∑
i=1

φi lnσt−i −
Q∑
i=1

θiyt−i

where φi < 2 if the model involves integration, and φi < 1 otherwise. Comparing
this equation with equation 2.11, one immediately realizes that the conditional
PDF of rt

rt = µ+ σtbt

= µ+ exp

(
yt +

P∑
i=1

φi lnσt−i −
Q∑
i=1

θiyt−i

)
bt

is given by equation 2.14 and its moments given by the equations 2.15 if one
makes the following substitutions:

σ → std(yt)

v̄ →
P∑
i=1

φi lnσt−i −
Q∑
i=1

θiyt−i

ψ → corr(yt, bt)
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For the Nordea series considered in section 2.1, corr(yt, bt) is found to be
3.56 × 10−2; while for the Volvo series considered in section A.2, corr(yt, bt) is
found to be −7.3 × 10−3. These values are comparable to those in table 2.10,
where ψ is 1.7×10−2 for the Nordea series and −1.6×10−2 for the Volvo series.
The similarity in these values provides some evidence about the validity of the
model.
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Chapter 3

Covariance Matrix of
Gaussian Returns

In chapter 2 we have studied GARCH and SV models and seen their power of
forecasting future volatilities. However, we have not considered the important
fact that a financial market comprises many assets and the volatilities of these
assets are correlated to each other in a complicated manner. Practically useful
volatility forecasts require good understanding of these correlations.

In the literature, covariance matrices of Gaussian and Lévy distributed re-
turns have been studied (see e.g. [1, 14, 15]). However, as is seen in chapter 2,
real-world returns are not described by any particular distribution but rather
by stochastic processes that account for auto-correlations in the returns and the
volatilities.

Therefore, the focus of this and the next chapter is on covariance matrices
of realistic return series, and especially covariance matrices in the case when
the return series have considerable auto-correlations. In particular, we study
covariance matrices of GARCH (1,1) return series in chapter 4 and show the
influence of auto-correlations on these matrices. But before that, it is useful
to first understand the influence of auto-correlations on covariance matrices
of Gaussian return series. When auto-correlations are absent, these matrices
are called Wishart matrices and have been studied extensively. The results we
obtain in this chapter will provide a reference to the studies in chapter 4.

In section 3.1 we discuss how the distributions of the matrix elements are
affected by autocorrelations, and in section 3.2 we investigate the distribution
of the eigenvalues.
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3.1 Distribution of the Matrix Elements

In this section we study the distribution of the elements of a covariance matrix
C = RR′/T , where

R =


r11 r12 · · · r1T

r21 r22 · · · r2T

...
...

. . .
...

rN1 rN22 · · · rNT


and R′ denotes the transpose of R. In words, an element rit of R is the return
of asset i at time t, with i = 1, · · · , N and t = 1, · · · , T . If each column of R
follows a zero-mean Gaussian distribution, i.e. r1t

...
rNt

 ∼ N(0,Σ)

for all t = 1, · · · , T , and none of the return series is auto-correlated, i.e. corr(rit, ri,t′) =
0 for all i = 1, · · · , N and t 6= t′, then RR′ is a Wishart matrix whose probability
density function is well known [16].

When auto-correlations are indeed present in the returns, RR′ no longer fol-
lows the Wishart distribution. However, the joint distribution function of its ele-
ments can be expressed in terms of the Wishart PDF and the auto-correlations.
We show this in appendix C. Also, in appendix D we derive an approximate
expression for the asymptotic distribution of these matrix elements, assuming
rit is an AR(1) process 1, i.e. rit = φri,t−1 + ait, anda1t

...
aNt

 ∼ N(0,Σ)

where

Σ = σ2


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


1 It is straight forward to derive the auto-correlation function %k of an AR(1) process with

autoregressive coefficient φ:

%k = corr(rit, ri,t−k)

= φ%k−1

= φk

Let τ denote the time lag at which %τ = 1/2, then it follows τ = − ln 2/ lnφ.
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where −1 < ρ < 1 is a constant parameter describing the correlation between
ait and ajt — so, by construction, we assume such correlations are constant
across all asset pairs and over all time.

The elements Cij (i 6= j) of the covariance matrix, C = RR′/T , are found
to be normally distributed with mean

µ′X =
σ2

√
2π(1− φ2)(1− ρ2)1/4

[
P
−3/2
−1/2 (−ρ)− P−3/2

−1/2 (ρ)
]

(3.1)

and variance

σ′2X =
1

(1− φ2)2

[
T∑
t=1

t−1∑
k=1

2

(
φk

T

)2

σ6 +

T∑
t=1

σ4(1− ρ2)2

T 2
v2(ρ)

]

=
2σ6

T (1− φ2)2

[
φ2

1− φ2
− φ2(1− φ2T )

T (1− φ2)

]
+
σ4(1− ρ2)2v2(ρ)

T (1− φ2)2

≈ 2σ6φ2

T (1− φ2)3
+
σ4(1− ρ2)2v2(ρ)

T (1− φ2)2
(3.2)

where Pµν (·) is Ferrer’s function of the first kind. See appendix D. For the
definition of Ferrer’s function, see equation D.4.

Equation 3.1 tells that, if two return series i and j are not correlated, i.e. ρ =
0, auto-correlation in the returns does not introduce a bias into the estimation of
their covariance, i.e. µ′X , since the difference between the two Ferrer’s functions
evaluate to 0 in equation 3.1; if, however, the return series are indeed correlated,
auto-correlation in the returns rescales the covariance through a multiplicative
factor 1/(1− φ2).

In addition, equation 3.2 tells that auto-correlation in the returns always
makes the covariance estimation more noisy — auto-correlation not only rescales
the variance of the no-autocorrelation estimation by 1/(1− φ2)2 but even adds

an extra term 2σ6φ2

T (1−φ2)3 .

For the diagonal elements of the covariance matrix C we have

E(Cii) =
1

T

[
t−1∑
k=0

φ2kσ2

]

=
σ2

(1− φ2)T

[
T − φ2(1− φ2T )

1− φ2

]
≈ σ2

1− φ2

[
1− φ2

T (1− φ2)

]
(3.3)
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and

var(Cii) =

T∑
t=1

t−1∑
k=0

φ4kσ4

T 2
2 +

t−1∑
k,l=0

φ2(k+l)

T 2
σ6


=

T∑
t=1

[
2σ4

T 2

1− φ4t

1− φ4
+
σ6

T 2

(
1− φ2t

1− φ2

)2
]

=
2σ4

T (1− φ4)
− 2σ4φ4(1− φ4T )

T 2(1− φ4)2
+

σ6

T (1− φ2)2
− 2σ6φ2(1− φ2T )

T 2(1− φ2)3
+

σ6φ4(1− φ4T )

T 2(1− φ2)2(1− φ4)

≈ 2σ4

T (1− φ4)
+

σ6

T (1− φ2)2
(3.4)

From equation 3.3 we see that auto-correlation in the returns increases the
variance of the return series; and from equation 3.4 we see that the variance of
that variance estimation is also increased by auto-correlations. Moreover, we
note that var(Cii) scales with T approximately as 1/T , similar to the behavior
of var(Cij). This is to be compared with the case of GARCH returns discussed
in chapter 4.

3.2 Distribution of the Eigenvalues

For a Wishart matrix RR′, theoretical results are available for the eigenvalue
distribution, and we summarize them in appendix E. In short, the joint proba-
bility density function of the eigenvalues is given by equation E.1 when neither
auto-correlation nor cross-correlation is present in R. Moreover, the mariginal
distribution of the largest eigenvalue is approximated by a gamma distribution
[14].

However, as detailed in the derivation leading to equation C.2, the distri-
bution of RR′ is not Wishart when the columns of R are correlated (auto-
correlation). Deriving the eigenvalue distribution analytically in this case is
beyond the scope of this thesis. Instead, we resort to numerical methods.

As before we consider the AR(1) process:

rt = φrt−1 + at

where at ∼ N(0, I), i.e. the elements of at are independent Gaussian random
variable with zero mean and unit variance. Now we investigate how the eigen-
value distribution depends on the auto-correlation strength parameter φ. Figure
3.1 shows the results of the simulation. It is clear from the figure that the maxi-
mum eigenvalue moves consistently to the right as the value of φ increases, and,
as shown in figure 3.2, the minimum eigenvalue also increases with φ.

Chiani showed that the marginal distribution of the maximum eigenvalue
(λ1) is approximately gamma when neither cross-correlation nor auto-correlation
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Figure 3.1: Eigenvalue distribution with correlation time τ ranging from 0 to 3. The
1st blue line, which is shown as stairs, is the theoretical eigenvalue distribution ac-
cording to the Marcenko-Pastur law (see eq.E.2). In the simulation we have chosen
q = N/T = 50/1000 = 0.05 and the standard deviation of the returns σ = 1. For each
value of τ we generate 2000 instances of N × T random matrix R, and compute C as
C = RR′/T . Hence each curve in the figure is constructed from 2000 sets of eigen-
values. The correspondance between the correlation time τ and the auto-regressive
coefficient φ is τ = − ln 2/ lnφ.
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Figure 3.2: The minimum eigenvalue versus auto-correlation strength φ. For each
value of φ 2000 random matrices are generated and their eigenvalues are calculated.
The minimum eigenvalue of each random matrix is noted and the mean of the 2000
such minimum eigenvalues are plotted against the chosen value of φ. 20 values of φ
are included in the plot, ranging from 0 to 0.95 with step size 0.05.

is present[14]. So we compare in figure 3.3 the empirical cumulative distribu-
tion function (CDF) of the maximum eigenvalue with the CDF of a gamma
distribution. The cases where auto-correlations are present (φ > 0) have also
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Figure 3.3: Cummulative distribution function (CDF) of the maximum eigenvalue
(λ1) from numerical simulations (blue lines) are compared to the fitted gamma distri-
bution (red lines). Each pair of CDFs correspond to a fixed autocorrelation strength
(φ). The parameters k and θ of the gamma distribution are fit to data by matching
the 2nd and the 3rd moments of the gamma distribution to the corresponding moments
of the empirical distribution. Then the parameter α in equation E.3 is chosen to be

α = kθ − E
(
λ1−µNT
σNT

)
. The curves are plotted on log-log scale.

been included. It is seen in the figure that gamma distributions with different
parameters fit fairly well in all cases. So we conclude that a gamma distribution
not only approximates the maximum eigenvalue distribution at the absence of
autocorrelations but does so even at the presence of autocorrelations.

Since the maximum eigenvalue distribution is approximated by a gamma
distribution characterized by parameters k, θ, and α 2, the influence of the
autocorrelations can be characterized by the dependence of k, θ, and α on φ.
While these dependences are rather intricate, good support can be found in the
data for the following approximate relation:

kθ = a tan2 πφ

2
+ b tan

πφ

2
+ c (3.5)

Here we note that kθ is the mean of the gamma distribution. To verify this

2 The mean, variance and skewness of the gamma distribution are given by

mean = kθ

variance = kθ2

skewness = 2/
√
k
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relation, we first fit a 2nd order polynomial and obtain the coefficients a, b, c;
then for each data point knθn we solve the quadratic equation

a tan2 πφ
′
n

2
+ b tan

πφ′n
2

+ c− knθn = 0 (3.6)

for tan
πφ′n

2 . If relation 3.5 is a good approximation, a close match between

tan
πφ′n

2 and tan πφn
2 is expected. From figure 3.4 one can see this is indeed the

case.
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2
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. The fitted line has equation yn =
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2

+ 0.0146. Lower plot: Residuals of the linear fit, i.e. tan
πφ′n

2
− yn. 20

values of φ are included in the plot, ranging from 0 to 0.95 with step size 0.05.
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Chapter 4

Covariance Matrix of
GARCH(1,1) Returns

GARCH models and particularly GARCH(1,1) models are widely used to model
financial return series of various time scales, ranging from daily and monthly
returns that have been studied extensively in the literature to intraday returns
that we have selectively investigated in chapter 2. One particularly nice feature
of GARCH(1,1) models is that they have regularly varying tails (power-law
tails) [9, 2] even when the innovations (denoted zt in the following text) are
normally distributed — something not shared by other classes of models (e.g.
not by SV models, as shown in section 2.3) but well documented for realistic
returns data by empirical studies [17, 13, 18]. However, what this tail behavior
implies for the covariance matrix is much less understood, especially when the
return series of the covariance matrix are auto-correlated.

So in this chapter we consider the covariance matrix of N identically specified,
possibly auto-correlated GARCH(1, 1) processes:

rit = φri,t−1 + εit

εit = σitzit (4.1)

where i = 1, 2, ..., N ; t = 1, 2, ..., T ; zit is independent, identically distributed,
and

σ2
it = α0 + α1z

2
i,t−1 + β1σ

2
i,t−1

Mikosch and Starica showed in [2] that a GARCH(1,1) process satisfying

α0 > 0

E ln(α1Z
2 + β1) < 0
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and

E[(α1Z
2 + β1)p/2] ≥ 1

E|Z|p ln |Z| ≤ ∞

for some p > 0, is stationary and has regularly varying tails. The tail exponent
α is determined by:

E[(α1Z
2 + β1)α/2] = 1 (4.2)

Here Z is a random variable that has the same distribution as zit. In our
simulations described hereafter, zit and Z have standard Gaussian distribution.
In this section and the next, we first study situations where no auto-correlations
are present among the returns, i.e. φ = 0; then in section 4.2 we look at how
auto-correlations change the picture.

With regularly varying tails, the eigenvalue distribution of a covariance ma-
trix built from GARCH(1,1) returns is expected to differ from the Marcenko-
Pastur law discussed in section E. In figure 4.1 we simulate N=50 indepen-
dent GARCH(1,1) returns series, each with identical parameters, namely α0 =
2.3 × 10−6, α1 = 0.15, β1 = 0.84, φ = 0 and T=8 × 104 time steps, then we
build the covariance matrix as

C =
1

T 2/α
RR′

where R is an N × T matrix, whose elements rit are specified by equation 4.1
with φ = 0. The normalization factor 1

T 2/α has been chosen such that the
eigenvalue distribution is independent of T in the limit T →∞ [1, 19].

The PDF of the eigenvalue distribution of C is plotted in figure 4.1(a) and
CDF of the distribution is plotted on log-log scale in 4.1(b). Also plotted in
the same figure is the distribution of the diagonal elements of C. It is clear
from the figure that the two PDFs coincide, implying C is diagonal. This is
further confirmed by figure 4.2 which shows the distribution of the non-diagonal
elements of C. One can see the non-diagonal elements are distributed symmet-
rically around 0 with a very small width in comparison to the distribution of
the diagonal elements — in fact, 1 order of magnitude smaller (2.14× 10−5 v.s.
7.31× 10−4). Hence C is very close to a diagonal matrix.

Figure 4.1 also shows the two curves are well fitted by an α-stable distribu-
tion. An estimate of the Lévy index α of the stable distribution is also obtained
via fitting, α ≈ 1.38, as shown in figure 4.1. This is really an expected result
for the diagonal elements. Using α1 = 0.15, β1 = 0.84, which are the values
used for simulating the GARCH returns, one can obtain, by solving equation
4.2, α = 2.96. Then according to Mikosch and Starica [2]

P (|rt| > x) ∼ E(zα)c0
xα

P (|rt|2 > x) ∼ E(zα)c0
xα/2
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Figure 4.1: 4.1(a): Eigenvalues and Diagonal elements’ distribution of a covari-
ance matrix built from independent GARCH return series. Blue: PDF of eigenvalues;
Green: PDF of diagonal elements; Red: PDF of a α-stable distribution fitted to the
diagonal elements. 4.1(b): CDF of the same quantities in 10-based log-log scale.
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Figure 4.2: Distribution of the non-diagonal elements of the covariance matrix. Blue:
PDF of the non-diagonal elements; Green: α-stable distribution fitted to the non-
diagonal elements’ PDF.

for some constant c0. Now that P (|rt|2 > x) has power-law tail behavior with
power α/2 < 2, one can deduce

T∑
t=1

r2
t
d−→ S(α/2, 1, γ, µ) as T →∞ (4.3)
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where
d−→ denotes convergence in distribution, and S(α/2, 1, γ, µ) denotes an α-

stable distribution with parameters (α/2, 1, γ, µ). Here α/2 is the Lévy index,
1 is the asymmetry, γ is the scaling parameter and µ is the mean value of the
distribution. Asymmetry being 1 means a random variable so distributed only
takes positive values [20, 21].

The mean µ in equation 4.3 is given by

µ = TE(|rt|2)

= T
α0

1− α1 − β1

where we have used the result E(|rt|2) = α0/(1 − α1 − β1) [4]. The scaling
parameter γ in 4.3 is determined by the limit [20]

lim
T→∞

TE(zα/2)c0
γα/2

= Cα/2

where

Cα/2 =

(∫ ∞
0

sinx

xα/2
dx

)−1

≈ 1√
2π

Therefore

γα/2 =
√

2πTE
(
|z|α/2

)
c0

γ = (2π)1/αT 2/α
(
E|z|α/2

)2/α

c
2/α
0

Here we note that an α-stable distribution S(α, β, γ, µ) has characteristic func-
tion [18]

ϕ(k;α, β, γ, µ) = exp

[
iµk − γα|k|α

(
1− iβ k

|k|
tan

πα

2

)]
for α 6= 1

from which we see ϕ(ak;α, β, γ, µ) = ϕ(k;α, β, aγ, aµ), implying that, if x ∼
S(α, β, γ, µ), then ax ∼ S(α, β, aγ, aµ).

Now that

T∑
t=1

r2
t

d−→ S(α/2, 1, γ, µ) as T →∞

we have

Cii =
1

T 2/α

T∑
t=1

r2
it (4.4)

d−→ S(α/2, 1, γD, µD) as T →∞ (4.5)
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where

γD = (2π)1/αE
(
|z|α/2

)2/α

c
2/α
0 (4.6)

µD =
α0

1− α1 − β1
T 1−2/α

So the diagonal elements of the covariance matrix converge to an α-stable dis-
tribution with Lévy index α/2 ≈ 1.48. This is comparable to the index value
1.38 obtained by fitting. Considering the slow convergene of regularly varying
tails, this is a reasonably good match.

Now we look at the distribution of the non-diagonal elements. Figure 4.2
shows that an α-stable distribution fits rather well, and additionally, figure
4.3 shows that the distribution of these non-diagonal elements has fat tails,
supporting an α-stable distribution.
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Figure 4.3: Probability plot of the non-diagonal elements. Blue: The accumulative
probability function (CDF) of the non-diagonal elements. Black, dashed: CDF of the
Gaussian distribution that has the same mean and variance as the sample. The graph
is arranged on such a scale that the Gaussian CDF is a straight line.

The parameters of the fitted α-stable distribution S(α′, β′, γ′, µ′) are ob-
tained in the procedure of fitting. The results have been shown in the legend
of figure 4.2. In table 4.1 we list them with a higher precision. Since rit and
rjt are independent of each other, β′ and µ′ are expected to be 0 — but with a
finite T, some deviation from 0 is not surprising.

Now that the parameters’ values have been obtained, the way they scale
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α′ β′ γ′ µ′

1.9453 0.0018 2.1381× 10−5 2.0637× 10−9

Table 4.1: Parameters of the non-diagonal elements’ distribution

with T, i.e. the length of the return series, can be deduced. Consider

T 2/αCij =

T∑
t=1

ritrjt
d−→ S(α′, 0, γ′, 0) (4.7)

where the width γ′ is determined by [20],

lim
T→∞

TC

γ′α′
= Cα′

Cα′ =

(∫ ∞
0

sinx

xα′
dx

)−1

Here the constant C is such that

P (|ritrjt| > x) ∼ C

xα′
as x→∞

So we have

γ′ =

(
CT

Cα′

)1/α′

Divide throughout equation 4.7 by T 2/α then gives

Cij =
1

T 2/α

T∑
t=1

ritrjt
d−→ S(α′, 0, γN , 0) (4.8)

where

γN =

(
C

Cα′

)1/α′

T 1/α′−2/α

So we see that distribution of the non-diagonal elements has a width that scales
with T as T 1/α′−2/α ≈ T−1/6, while the width of the diagonal elements’ distri-
bution, as shown in equation 4.6, does not scale with T. This is to be compared
with the Wishart case where the return series have Gaussian distribution, and
hence the asymptotic distributions of both the diagonal and the non-diagonal
elements of the covariance matrix are Gaussian with a variance that scales as
1/T (c.f. 3.1).
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4.1 Implications of Finite Number of Observa-
tions

In the last section we have discussed the limiting situation where the return
series of the covariance matrix have an infinite number of observations (T →∞),
and in the simulation studies we have generated a large number of observations
for each return series, namely T = 8×104. However, in practice, one often does
not have such a large number of observations available. Therefore, it is useful
to investigate situations where T only has a modest size.

Figure 4.4 shows the distributions of the diagonal elements as well as the
eigenvalues when the number of return series (N) is fixed at 250 and the number
of observations in each series (T) is gradually increased from 3000 to 6000. It is
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Figure 4.4: The Diagonal elements’ and the eigenvalues’ distributions with modest T.
Blue: eigenvalues’ CDF; Green: Diagonal elements’ CDF; Red: CDF of the α-stable
distribution fitted to the diagonal elements. All the curves are drawn on 10-based log-log
scale.

seen from the figure that, compared to the earlier case where T = 8× 104, the
eigenvalue distribution and the diagonal elements’ distribution do not coincide
as well but differ rather siginificantly for small values. For large values of the
diagonal elements and the eigenvalues, the two do coincide and comply with the
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fitted α-stable distribution. Moreover, the difference between the eigenvalues’
distribution and the diagonal elements’ distribution, as well as that between the
diagonal elements’ distribution and the fitting α-stable distribution, is also seen
to diminish as T increases.

The convergence of the eigenvalues (λ) towards the diagonal elements Cii as
λ → ∞ is really an anticipated result. For convenience, we order the diagonal
elements so that

C11 < C22 < · · · < CNN

where, as before, N is the dimension of the covariance matrix C. Then, as
x→∞,

P (Cii > x) ∼ c

xα/2

f(Cii) ∼ c

xα/2+1

where f(·) denotes the PDF of the diagonal elements and c is some constant.
Thus, at the limit Cii → ∞, the distance between two adjacent diagonal ele-
ments Cii and Ci+1,i+1 can be expressed as

1

N(Ci+1,i+1 − Cii)
= f(Cii)

Ci+1,i+1 − Cii ∼
C
α/2+1
ii

cN

Thus as Cii → ∞, Ci+1,i+1 − Cii → ∞ while Cij → 0 (i 6= j). Now that
the spacing between adjacent diagonal elements become wider and the non-
diagonal elements become smaller, the eigenstates considered as a mixture of the
basis states, become more and more localized to a prominent basis state. This
localization can be measured by the size of the component in each eigenvector
that has the largest absolute value(|c|max), provided that the eigenvectors have
been normalized.

Figure 4.5(a) shows how |c|max changes in response to increasing λ. It is
seen that as T increases, localization of the eigenstates proceeds from those
with very large eigenvalues towards those with relatively smaller eigenvalues.
At the same time, the minimum of |c|max increases and so does the minimum of
the eigenvalues. The last point here is further illustrated in figure 4.5(b) where
the PDF of |c|max is plotted. We see in this figure that an increased value of T
leads to advancement of min(|c|max) to larger values as well as to an increased
proportion of large |c|max. The mean of |c|max has apparently been increased
too.

Another informative quantity that measures the localization is the “In-
verse Participation Ratio” (IPR). For a given normalized eigenvector ci =
(c1,i, c2,i, ..., cN,i), the Inverse Participation Ratio (IPR) is defined as [22]

IPR(ci) =

N∑
k=1

c4k,i (4.9)
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Figure 4.5: 4.5(a): Horizontal: eigenvalues (log λ); Vertical: log |c|max of the corre-
sponding eigenvector. From left to right and 1st to 2nd row, T has values 800, 1000,
1200, 80000. 4.5(b): PDF of the largest component (|c|max) of each eigenvector. In
both plots the number of returns (N) is 50.

Figure 4.6(a) shows 1
N ·IPR(ci)

in correspondence to the eigenvalues. This quan-

tity is sometimes termed the normalized Participation Ratio (PR) and measures
the proportion of basis vectors that contribute considerably to the eigenvector
in question. From this figure we see that, for all values of T, if an eigenvalue
is larger than 10−1.5 ≈ 0.03, its corresponding participation ratio is less than
10−1.6 = 2.5%, meaning less than 50 × 0.025 = 1.26 basis vectors contribute
— each of the corresponding eigenvectors is localized to a single basis vector
and hence the distribution of such large eigenvalues is the same as the diagonal
elements’ distribution.

Figure 4.6(b) shows the PDF of the normalized PR. We see that as T in-
creases, the distribution of PR is compressed towards 0, suggesting increased
localization of the eigenvectors. In conclusion, localization of the eigenvectors,
which implies coincident eigenvalue and diagonal elements’ distributions, begins
with those associated to large eigenvalues. Increased observation points lead to
increased localization and hence increased coincident sections of the eigenvalue
and diagonal elements’ distributions. However, this increment with T is slow,
because the diagonal elements mean µD increases only as a fractional power of
T , namely T 1−2/α, and the non-diagonal elements’ variance decreases only as a
fractional power too, namely T 1/α′−2/α. These have been detailed in equations
4.6 and 4.8.
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Figure 4.6: 4.6(a): Normalized participation ratio (PR) versus eigenvalue (λ). Hori-
zontal: log λ; Vertical: logPR of the corresponding eigenvector. From left to right and
1st to 2nd row, T has values 800, 1000, 1200, 80000. 4.6(b): PDF of the normalized
PR. In both plots, the number of returns (N) is 50.

4.2 Influence of auto-correlations

In the previous two sections we have studied situations where φ = 0 in the
specification 4.1, i.e. no auto-correlation is in the returns. In this section we
investigate how auto-correlations change the picture.

Figure 4.7(a) shows the eigenvalue as well as the diagonal elements’ dis-
tribution when φ = 0.95, i.e. τ = 13.51. The values of N and T are 50
and 8 × 104 as before. The GARCH(1,1) parameters are also unchanged,
namely α0 = 2.3 × 10−6, α1 = 0.15, and β1 = 0.84. Figure 4.7(b) shows
the non-diagonal elements’ distribution in the same setup. Included in these
plots are 50 × 2000 = 1 × 105 eigenvalues and diagonal elements, as well as(

50
2

)
× 2000 = 2, 450, 000 non-diagonal elements. These data come from 2000

simulated matrices.
From figure 4.7(a) we see that, as auto-correlations become significant, the

distribution of the eigenvalues no longer coincides with the diagonal elements’
distribution — instead it becomes wider and fatter on the tails. We also notice
that the widths of both the diagonal and the non-diagonal elements’ PDF’s have
increased. In figure 4.1 we see that, when no auto-correlation is present, the
PDF of the diagonal elements has width (γ) 7.31× 10−4, while in figure 4.7(a)
we see that the width has become 7.91 × 10−3 as τ becomes 13.51. Similarly
the non-diagonal elements’ PDF has width 2.14 × 10−5 when τ = 0, as shown
in figure 4.2, and this width becomes 9.60× 10−4 when τ = 13.51, as shown in
figure 4.7(b).

Figure 4.8 shows the eigenvalues’ distribution corresponding to a range of φ
values. The number of eigenvalues in each curve is the same as in figure 4.7(a).
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Figure 4.7: 4.7(a): Eigenvalues’ and diagonal elements’ distribution when φ = 0.95,
i.e. τ = 13.51; 4.7(b): Non-diagonal elements’ distribution in the same situation.

From this figure one can see that, as auto-correlation strengthens,
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Figure 4.8: Eigenvalue distribution of covariance matrix built from auto-correlated
GARCH processes. φ = 0, 0.5, 0.8, 0.955, 0.97 correspond to correlation time τ = 0,
1.00, 3.11, 15.05, 22.76.

• the PDF of the eigenvalue distribution flattens and widens;

• the minimum as well as the maximum eigenvalues increase.

To find out more about this series of deformation, we first look at how the
largest component and the normalized participation ratio of the eigenvectors
change as φ takes on larger values. Figure 4.9 shows the largest eigenvector
component |c|max in correspondence to the eigenvalue. Apparently, as auto-
correlation strengthens, the eigenvectors’ composition fractures, leading to a
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reduced degree of localization and even reduced certainty of localization —
for a fixed eigenvalue, |c|max now varies in a larger range than it does with
smaller φ. The same story of reduced localization is also evident from the plot

Figure 4.9: Eigenvectors’ largest component versus eigenvalue, for 4 auto-correlation
strengths φ = 0, 0.6, 0.9, and 0.99. The number of returns (N) is 50.

of the normalized PR, shown in figure 4.10(a), and from the PDF of |c|max

shown in figure 4.10(b). It is seen in 4.10(a) that the peak at the left of the
plot, representing the group of localized eigenvectors, falls with increased auto-
correlation, and essentially disappears when φ reaches the extreme value 0.99.
Figure 4.10(b) shows the proportion of large |c|max values is severely reduced
and the mean of |c|max is pushed to smaller values by increased auto-correlation.

It is also useful to look at how the fraction of localized eigenvectors changes
with the auto-correlation. For definiteness, we classify an eigenvector as being
localized when (1) its number of participating basis vectors is less than 2, or (2)
the largest of its components’ absolute values is larger than 0.9.

Figure 4.11(a) shows how the ratio of localized eigenvectors depends on the
auto-correlation strength φ. In either way of classification, the ratio falls with φ
in accordance with a power law, the power exponent lying a bit below 2. This
is further confirmed in plot 4.11(b), where the ratios are plotted versus φ on
log-log scale.
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Figure 4.10: 4.10(a): PDF of the normalized participation ratio (PR). 4.10(b): PDF
of the largest component of the eigenvectors. The number of returns (N) is 50. φ
values of 0, 0.6000, 0.9000, 0.9900 correspond to correlation time τ = 0, 1.3569,
6.5788, 68.9676
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Figure 4.11: 4.11(a): Ratio of localized eigenvectors versus the auto-correlation
strength φ. Black “+”: ratio of localized eigenvectors as measured by the number
of participating basis vectors being lower than 2; Black “x”: ratio of localized eigenvec-
tors as measured by the largest component being larger than 0.9. Blue curve: quadradic
function fitted to “+”. Green curve: quadratic function fitted to “x”. There are 27
data points in the plot, corresponding to 27 φ values: 0 to 0.8 with step size 0.05, and
0.9 to 0.99 with step size 0.01. The corresponding values of the correlation time τ
range from 0 to 69. 4.11(b): ln(fmax− f) is plotted versus lnφ, where f stands for the
ratio of localized eigenvectors. The fitted curves are linear.
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Chapter 5

Results

Realistic dynamic models for relative price changes (returns) of financial assets
have been studied. In particular, the GARCH and SV models have been utilized
and compared in their forecast accuracies by case studying of 15- and 30-minute
returns of Nordea, Volvo and Ericsson. The following are the conclusions from
this investigation:

• In all the 7 studied series, the log-volatility lnσt is well described by a
seasonally integrated moving average model. Long memory in these series
is accounted for by the compounded difference operator (1 − B)(1 − Bs)
where B denotes the back-shift operator. s stands for seasonality, which
is 33 in the cases of 15-minute returns and 16 in the cases of 30-minute
returns.

• An SV model generally yields more accurate forecasts than does the GARCH
model for the same series. This is certainly well expected, considering that
the SV model incorporates much more data than does GARCH. However,
it must be noted that the validity of the aforementioned comparison is
underlain by the accuracy of realized volatility as a proxy to the true
conditional volatility.

• SV models perform more consistently in terms of forecast accuracy than
does GARCH, as shown in appendix A.5.

Regarding the covariance matrix of Gaussian return series, we have arrived
at the following results:

• Auto-correlations in the returns rescale the covariance of two series by a
factor of 1/(1−φ2), where φ = corr(rt, rt−1). See eq. 3.1. Moreover, they

rescale the variance of each series by 1
(1−φ2)

[
1− φ2

T (1−φ2)

]
. See eq. 3.3.

• Auto-correlations in the returns increase the variance of the covariance
and also the variance of the variance. See eq. 3.2 and 3.4.
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• The largest eigenvalue obeys approximately a gamma distribution even
when the returns are auto-correlated. It was shown by Chiani in 2012
that the largest eigenvalue obeyed gamma distribution when the returns
were not auto-correlated [14]. In addition, we find that the mean of the
gamma distribution is approximately quadratic in tan πφ

2 .

For the covariance matrix of GARCH(1,1) series, our contributions are the
following:

• The diagonal and non-diagonal matrix elements both have Lévy distribu-
tions but with different Lévy indices.

• The power-law tails of GARCH(1,1) returns lead to a group of localized
eigenvectors that correspond to large eigenvalues.

• Auto-correlations in the returns reduce the localization of the eigenvec-
tors. The fraction of localized eigenvectors decreases approximately as a
quadratic function of φ = corr(rt, rt−1). See figure 4.11(a) and 4.11(b).

In summary, auto-correlations in the returns create illusory cross-correlations.
To assess the true cross-correlations among the assets in a market, one has to
adopt a model for each of the return series, infer the residuals and then assess
the cross-correlations among the residuals instead (c.f. chapter 2).

However, in an efficient market, auto-correlations in the returns are neces-
sarily as weak as indistinguishable from measurement errors so that exploitable
arbitrage opportunities do not exist. Hence auto-correlations cannot be com-
pletely eliminated by taking residuals of the returns. When estimating the co-
variance matrix and its eigenvalues and eigenvectors, the illusory effects caused
by auto-correlations must be considered as an inherent source of uncertainty.
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Chapter 6

Outlook

Continuing from the obtained results, areas of future research may include, first
of all, a covariance matrix formed from SV models with power-law tails, which
may be obtained by assuming, for example, Student’s t distribution or Normal
Inverse Gaussian distribution for the return’s innovation.

Another interesting area could be models that treat the conditional covari-
ance matrix as an inherent part of the model specification rather than treating
it as an inferred quantity, which is the approach taken by the current work.
Predecessors on this path are the multivariate GARCH and SV models [9]. To
have sufficient flexibility, many of these models involve a large number of pa-
rameters, which make it hard to fit them to data and increase the chances of
model mis-specification. A model that strikes a good balance between flexibil-
ity and complexity will be of great interest. These approaches may well lead to
more accurate volatility forecasts and improved estimation of the uncertainties
introduced by auto-correlations in the returns.

Analytically deriving the eigenvalue and eigenvector distributions of a co-
variance matrix formed from return series described by a realistic model will be
very challenging but interesting. It is also interesting to see whether the meth-
ods developed for Wishart matrices, for example the holonomic gradient method
[23], can be applied to the aforementioned covariance matrices. Advancement
in these areas will undoubtedly find applications in e.g. principle component
analysis and portfolio management.
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Chapter 7

Self-reflection

First of all, during the thesis project I learned a lot about models of time series
in finance, such as GARCH, and SV models, as well as traditional time series
analysis, for example, ARIMA models. In addition, a study of continuous-
time models gave me an opportunity to increase my knowledge of stochastic
differential equations, probability theory, and statistics. I am a beginner, but
nonetheless find it comfortable to read books and articles on these subjects after
the thesis project.

Moreover, I have introduced myself to the random matrix theory, multivari-
ate analysis, and extreme value theory. These became relevant when I worked
on the covariance matrix of returns described by Gaussian or GARCH models.
I am still a long way from being able to do serious proofs or derivations in these
areas, but I know what to read and can understand the basics.

In addition, I have become better at Matlab programming and dealing with
databases, and have grown more confident in numerical analysis.
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Appendix A

Case Study of Some
Intraday Series

A.1 Nordea 30-minute Returns

In this section we study the volatility of Nordea Bank 30-minute returns in
the period 2013/10/10 - 2014/04/04. The realized volatilities that approximate
the volatilities of these 30-minute returns are computed using 1-minute returns.
As in the previous cases, this choice of 1-minute returns is confirmed by the
normality of the quotient (rt − E(rt))/σt, which is shown in figure A.1. The
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Figure A.1: Normal probability plot of (rt − E(rt))/σt

auto-correlations of lnσt is shown in figure A.2(a), where we see an apparent
seasonality of 16. By differencing we get wt = (1 − B)(1 − Bs) lnσt where
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s = 16. Its auto-correlations are shown in figure A.2(b). Once again, this
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Figure A.2: A.2(a): Auto-correlations (ACF) of lnσt; A.2(b): Auto-correlations
(ACF) of wt = (1−B)(1−Bs) lnσt.

auto-correlation structure points to a seasonal moving average model:

wt = (1− θB)(1−ΘBs)yt

where yt is assumed to have Gaussian distribution, neglecting slight non-normality
as before. Maximum likelihood estimation gives the parameter values listed in
table A.1. To fit a GARCH model to the same series, we assume Gaussian inno-

Parameter θ Θ var(yt)
Value 0.7612 0.8036 0.0736

Table A.1: Parameter values of the Seasonal Moving Average model

vations (c.f. equation 2.1). The result is a GARCH(1,1) model. Its parameters
are listed in table A.2.

Parameter α0 α1 β1

Value 2.3× 10−7 0.05 0.9

Table A.2: Parameter values of GARCH(1,1) model fitted to Nordea 30-minute re-
turns.

As before, we compare the accuracies of the GARCH and the stochastic
volatility model by comparing their one-ste-ahead forecasts. We compute the
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difference between their forecasts and the realized volatilities and then look
at the statistics of these difference values. Firstly we show the mean and the
standard deviation of the differences in table A.3. It is seen in this table that the

SV GARCH Sample mean
E(lnσFt − ln σ̂t) -0.0047 0.0130 0.0584

std(lnσFt − ln σ̂t) 0.2602 0.3194 0.3093

Table A.3: Mean and standard deviation of the 3 kinds of forecasts

SV forecasts have a mean whose absolute value is just above 1/3 of that of the
GARCH forecasts. The standard deviation of the SV forecasts is also smaller
than that of GARCH. In addition, we check the distribution of lnσFt − ln σ̂t, and
the percentage of “good” forecasts with respect to different criteria of goodness.
These are shown in figure A.3 and table A.4, respectively. It is clear that the
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Figure A.3: Blue: SV forecasts; Green: GARCH forecasts; Red: sample mean fore-
casts. Left: P (lnσFt − ln σ̂t < x); Right: P (lnσFt − ln σ̂t > x). Horizontal: x.

| lnσFt −ln σ̂t|
| ln σ̂t| SV GARCH Sample Mean

1% 18% 18% 15%
5% 81% 71% 69%
10% 98% 93% 95%

Table A.4: Percentage of “good” forecasts as defined by deviating nore more than 1%,
5% and 10% from the measured realized volatility.

SV forecasts are considerably more accurate.
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A.2 Volvo 15-minute returns in 2013/14

In this section we study the volatility of Volvo B 15-minute returns during
the period 2013/10/10 - 2014/04/04. The subject of modeling is the realized
volatility computed as the square root of the sum of squared 1-minute returns.
The normal probability plot of the quotient (rt − E(rt))/σt is shown in figure
A.4, from which one can see it is normally distributed, confirming the choice of
1-minute returns for computing the realized volatility. The auto-correlations of
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Figure A.4: Normal probability plot of (rt − E(rt))/σt

lnσt and wt = (1−B)(1−Bs) lnσt are plotted in figure A.5(a) and A.5(b). The
former clearly shows the seasonality s = 33 in the auto-correlations of lnσt.
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Figure A.5: Left: auto-correlations of lnσt; Right: auto-correlations of wt = (1 −
B)(1−Bs) lnσt.

Based on the auto-correlations of wt, a seasonal moving average model is
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estimated:

(1−B)(1−Bs) lnσt = (1− θ1B − θ2B
2 − θ3B

3)(1−ΘBs)yt

By maximum likelihood estimation, the parameter values listed in table A.5 are
obtained.

Parameter θ1 θ2 θ3 Θ var(yt)
Value 0.7491 0.1170 0.0571 0.8646 0.1245

Table A.5: Parameter values of the stochastoc volatility (SV) model.

A GARCH model (c.f. equation 2.1) assuming Gaussian innovations is also
fitted to the same series. The parameter values are listed in table A.6:

Parameter α0 α1 β1

Value 6.54× 10−7 0.1565 0.6445

Table A.6: Parameter values of the GARCH model.

Performing one-step-ahead forecasts using both models gives the series lnσFt −
ln σ̂t, where ln σ̂t are the measured realized volatilities. The mean and standard
deviation of lnσFt − ln σ̂t are shown in table A.7. We see that both the SV and

SV GARCH Sample mean
E(lnσFt − ln σ̂t) 0.0035 0.0313 -0.1448

std(lnσFt − ln σ̂t) 0.3356 0.3894 0.3826

Table A.7: Mean and standard deviation of the 3 kinds of forecasts

the GARCH model give biased forecasts, but the SV forecasts are only 1/10
as biased as those of GARCH (0.0035 vs. 0.0313). In addition, the standard
deviation of the SV forecasts is smaller too. These results are confirmed by
the distribution of lnσFt − ln σ̂t and the fraction of “good” forecasts, which are
shown in figure A.6 and table A.8, respectively.

| lnσFt −ln σ̂t|
| ln σ̂t| SV GARCH Sample Mean

1% 58% 60% 39%
5% 84% 84% 66%
10% 97% 95% 91%

Table A.8: Percentage of “good” forecasts as defined by deviating nore more than 1%,
5% and 10% from the measured realized volatility.
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Figure A.6: Blue: SV forecasts; Green: GARCH forecasts; Red: sample mean fore-
casts. Left: P (lnσFt − ln σ̂t < x); Right: P (lnσFt − ln σ̂t > x). Horizontal: x.

A.3 Ericsson 15-minute Returns

In this section we model the volatility of Ericsson B 15-minute returns during
the period 2013/10/10 - 2014/04/04. Using the same method as with other
series, we first find the right higher-frequency returns that best approximate
the volatility of the 15-minute returns. These turn out to be 50-second returns,
as figure A.7 shows.
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Figure A.7: Normal probability plot of (rt − E(rt))/σt. σ2
t is computed as the sum of

squared 50-second returns.
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Following the procedure described in previous sections, an ARIMA model is
found for this series:

(1−B)(1−Bs) lnσt = (1− θ1B − θ2B
2 − θ3B

3)(1−ΘBs)yt

where the seasonality s is 33 and the other parameter values are estimated to
be those listed in table A.9.

Parameter θ1 θ2 θ3 Θ var(yt)
Value 0.8078 0.0454 0.0943 0.8798 0.1242

Table A.9: Ericsson B log-volatility parameters

Then a GARCH model is also found with parameter values listed in table
A.10:

Parameter α0 α1 αs βs
Value 2.4181× 10−7 0.1513 0.1409 0.6027

Table A.10: GARCH model of Volvo B 30-minute returns

The forecasts from both models are compared as follows: Table A.11 shows
the mean and standard deviation of the 3 kinds of forecasts: Consistent with

SV GARCH Sample mean
E(lnσFt − ln σ̂t) 0.0035 0.0600 0.1116

std(lnσFt − ln σ̂t) 0.3278 0.3667 0.3590

Table A.11: Standard deviation of lnσFt − ln σ̂t

previous results, the bias introduced by the SV model is significantly smaller
than that introduced by GARCH. Figure A.8 shows the distribution of the
difference between a forecast and its corresponding measured realized volatility,
i.e. lnσFt − ln σ̂t; table A.12 compares the percentage of “good” forecasts using
the 3 alternatives.

| lnσFt −ln σ̂t|
| ln σ̂t| SV GARCH Sample Mean

1% 17% 17% 16%
5% 73% 69% 69%
10% 96% 93% 94%

Table A.12: Fraction of “good” forecasts as defined by
| lnσFt −ln σ̂t|
| ln σ̂t| being less than

1%, 5% and 10%.

It is clear from figure A.8 and table A.12 that the SV model out-performs
GARCH. We see that the SV model yields considerably higher fractions of good
forecasts by all criteria, and in particular, gives much few under-estimates.
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Figure A.8: Blue: SV forecasts; Green: GARCH forecasts; Red: sample mean fore-
casts. Left: P (lnσFt − ln σ̂t < x); Right: P (lnσFt − ln σ̂t > x). Horizontal: x.

A.4 Ericsson 30-minute Returns

In this section we look at the 30-minute returns of Ericsson B during the period
2013/10/10 - 2014/04/04. Since the methods are the same as with other series,
we shall only present the results here.

First of all, the volatility of this series is found to be well approximated by
realized volatilities computed from 75-second returns. The normal probability
plot is shown in figure A.9. The following ARIMA model is found for the log-
volatility lnσt:

(1−B)(1−Bs) lnσt = (1− θ1B − θ2B
2)(1−ΘBs)yt

where the seasonality s = 16. The parameter values are estimated to be those
listed in table A.13: A GARCH model is also found with parameters listed in

Parameter θ1 θ2 Θ var(yt)
Value 0.6842 0.2470 0.8391 0.0918

Table A.13: Ericsson B log-volatility parameters

table A.14.

Parameter α0 α1 αs βs
Value 7.4856× 10−7 0.0532 0.1506 0.6778

Table A.14: GARCH(1, 1) model of Ericsson B 30-minute returns
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Figure A.9: Normal probability plot of (rt − E(rt))/σt. σ2
t is computed as the sum of

squared 75-second returns.

Table A.15 shows the mean and standard deviation of the difference series
lnσFt − ln σ̂t, where lnσFt is the forecast log-volatility and ln σ̂t is the measured
realized volatility. Apparently, the GARCH forecasts have a fairly large bias

SV GARCH Sample mean
E(lnσFt − ln σ̂t) 0.0004 0.0526 0.1039

std(lnσFt − ln σ̂t) 0.2519 0.3019 0.2963

Table A.15: Standard deviation of lnσFt − ln σ̂t

compared with those of the SV model. Turning to figure A.10 and table A.16,
we also see the SV model performs consistently better — a higher percentage
of “good” forecasts are delivered and, while it under-estimates to around the
same extent as does GARCH, it certainly over-estimates a lot less. These are
confirmative to what we have observed for the other series.

| lnσFt −ln σ̂t|
| ln σ̂t| SV GARCH Sample Mean

1% 22% 16% 16%
5% 78% 69% 69%
10% 98% 97% 96%

Table A.16: Fraction of “good” forecasts as defined by
| lnσFt −ln σ̂t|
| ln σ̂t| being less than

1%, 5% and 10%.
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Figure A.10: Blue: SV forecasts; Green: GARCH forecasts; Red: sample mean fore-
casts. Left: P (lnσFt − ln σ̂t < x); Right: P (lnσFt − ln σ̂t > x). Horizontal: x.

A.5 Volatility of Forecast accuracy

In this section we compare the volatility of the accuracy of GARCH and SV
models’ forecasts. Table A.17 lists the the percentage of forecasts that deviate
less than 5% from the corresponding realized volatilities, and also gives the
standard deviation of the 6 numbers. It is seen that the forecasts of SV models
have standard deviation 0.0432 while those of GARCH have 0.0722. Clearly
the accuracy of SV forecasts varies considerably less than does that of GARCH
forecasts. In other words, a SV model performs more consistently around a level
of accuracy.

Volvo 15m Volvo 30m Ericsson 15m Ericsson 30m
SV 84% 72% 73% 78%

GARCH 84% 62% 69% 69%

Nordea 1 15m Nordea 2 30m standard deviation
SV 75% 81% 0.0432

GARCH 71% 71% 0.0722

Table A.17: Comparison of the percentage of forecasts that lie within 5% of the cor-
responding realized volatilities. Nordea 1 refers to the Nordea data set of 2012/01/16
- 2012/04/20 (see section 2.1) and Nordea 2 refers to the data set of 2013/10/10 -
2014/04/04 (see section A.1).
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Appendix B

Normalization Constant in
the Unconditional PDF of
the Symmetric SV model

In the following we work out the normalization constant C used in section 2.3.1:∫ ∞
−∞

fr′(x)dx =
1

C

eσ
2/2

√
8π

∫ ∞
−∞

erfc

(
1√
2σ

ln
|x|√
ln 4

+
σ√
2

)
dx

=
2

C

eσ
2/2

√
8π

∫ ∞
0

erfc

(
1√
2σ

ln
x√
ln 4

+
σ√
2

)
dx

Let

a =
1

σ
√

2

b = − 1

2σ
√

2
ln ln 4 +

σ√
2

y = a ln |x|+ b
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Then∫ ∞
−∞

fr′(x)dx =
2

C

eσ
2/2

√
8π

∫ ∞
−∞

dy
e(y−b)/a

a
erfc(y)

=
2

C

eσ
2/2

√
8π

e(y−b)/aerfc(y)
∣∣∣∞
y=−∞

+
2

C

eσ
2/2

√
8π

∫ ∞
−∞

dy
2√
π
e(y−b)/ae−y

2

=
2

C

eσ
2/2

√
8π

2eln ln 4/2−σ2/2

C =

√
2 ln 4

π
≈ 0.9394
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Appendix C

PDF of the covariance
matrix of auto-correlated
Gaussian Returns

When autocorrelations exist among the columns of the Gaussian returns matrix
R, the distribution of the covariance matrix C = RR′ is no longer Wishart but
is nonethelss closely related to it. In the following we consider the situation
where ri,t can be represented as a vector auto-regressive process. Specifically,
suppose

rt =

p∑
k=1

φkrt−k + at

at = rt −
p∑
k=1

φkrt−k

where at = (a1,t, a2,t, · · · , aN,t)′ ∼ N(0,Σ) and comprise the columes of A; rt
are the columes of R. Here N(0,Σ) denotes the multivarate normal distribution
with covariance matrix Σ. The last equation can be written in matrix form

A = RM

For example, in the case of an AR(1) process

a1,1 a1,2 · · · a1,T

...
. . .

...
aN,1 aN,2 · · · aN,T

 =

r1,1 r1,2 · · · r1,T

...
. . .

...
rN,1 rN,2 · · · rN,T




1 −φ
1 −φ

. . .
. . .

1 −φ
1


Let QR = RM, then Q = RMR−1. Since the set of {rij} for which detR = 0
has probability zero, a matrix Q satisfying the above equation almost surely
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exists. Thus A = RM = QR and AA′ = QRR′Q′ Since the columns of A are
not auto-correlated, AA′ ∼ W (Σ, T ). Then RR′ ∼ W (Q−1ΣQ′−1, T ) follows
from [16], section 7.3.3. Now we observe the Wishart PDF

fW (X) =
|detX|(T−N−1)/2 exp

(
− 1

2 tr Σ−1X
)

2NT/2πN(N−1)/4|det Σ|T/2
∏N
i=1 Γ [(n+ 1− i)/2]

(C.1)

where, assuming X = UU′, Σ is the covariance matrix of the columns of U. we
notice in C.1 that Σ enters fW (·) through tr (Σ−1RR′) and det Σ. RR′ enters
through tr Σ−1RR′ and det RR′. Clearly

det Q−1ΣQ′−1 = det
Σ

(det Q)2

=
det Σ

(det M)2

= det Σ

As to tr Σ−1C, we have

tr
[
(Q−1ΣQ′−1)−1RR′

]
= tr

[
Q′Σ−1QRR′

]
= tr

[
R′−1M′R′Σ−1RMR−1RR′

]
= tr

[
Σ−1RM(RM)′

]
= tr

[
Σ−1AA′

]
Moreover, det RR′ = det AM−1M′−1A′ = det AA′. Thus if we use fR(·)

to denote the joint probability density of the entries of RR′ and fA(·) to denote
that of AA′, we can write

fR(RR′) = fA(RMM′R′) (C.2)

Substituting for fA the Wishart PDF C.1, we get the PDF of RR′.
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Appendix D

Asymptotic Distributions of
the Elements of a
Covariance Matrix of
Autocorrelated Gaussian
Returns

In this appendix we derive the approximate distributions of the elements of a
Covariance Matrix of autocorrelated Gaussian returns.

In the following we denote the diagonal elements as Cii and the non-diagonal
elements as Cij (i 6= j). We assume that var(ai,t) = σ2 for any i and t, and ai,t
are not autocorrelated, i.e. corr(ai,t, ai,t′) = 0 for any i, t and t′. Then we can
write

ri,trj,t = [φri,t−1 + ai,t] [φrj,t−1 + aj,t]

Cij =
1

T

T∑
t=1

ri,trj,t

= φ2 1

T

T∑
t=1

ri,t−1rj,t−1 + φ
1

T

T∑
t=1

(ri,t−1aj,t + rj,t−1ai,t) +
1

T

T∑
t=1

ai,taj,t

We note that the two sums
∑T
t=1 ri,trj,t and

∑T
t=1 ri,t−1rj,t−1 only differ by the

first and the last addend, which is negligible for sufficiently large T. Thus we
have

(1− φ2)Cij ≈ φ
1

T

T∑
t=1

(ri,t−1aj,t + rj,t−1ai,t) +
1

T

T∑
t=1

ai,taj,t (D.1)
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Now we write the AR(1) process ri,t as an infinite moving-average process:

ri,t = φri,t−1 + ai,t

(1− φB)ri,t = ai,t

where B is the back-shift operator. Then it follows from the above equation

ri,t =
1

1− φB
ai,t

=

∞∑
k=0

φkBkai,t

=

∞∑
k=0

φkai,t−k

where it is left implicit that ai,t with t ≤ 0 is zero (in words, this implies that
the ri,t process is not affected at all by events before t = 1).

Substituting this into eq.D.1 for ri,t−1 yields

(1− φ2)Cij ≈
1

T

T∑
t=1

∞∑
k=0

φk+1(ai,t−k−1aj,t + aj,t−k−1ai,t) +
1

T

T∑
t=1

ai,taj,t

=
1

T

T∑
t=1

t−1∑
k=1

φk(ai,t−kaj,t + aj,t−kai,t) +
1

T

T∑
t=1

ai,taj,t

(D.2)
Given two Gaussian random variables x and y with zero mean and covariance

matrix

Σ = σ2

(
1 ρ
ρ 1

)
The PDF of xy can be found by considering P (xy < z):

P (xy < z) =

(∫ ∞
0

dx

∫ z/x

−∞
dy +

∫ 0

−∞
dx

∫ ∞
z/x

dy

)
1

2πσ
√

1− ρ2

exp

[
−x

2 − 2ρxy + y2

2σ2(1− ρ2)

]
f(z;σ, ρ) =

d

dz
P (xy < z)

=
1

πσ
√

1− ρ2
exp

[
ρz

σ2(1− ρ2)

]
K0

[
|z|

σ2(1− ρ2)

]
where Kn(z′) is the modified Bessel function of the second kind. It is worth
taking note that, when ρ 6= 0, f(z;σ, ρ) is not symmetric with respect to z. As
a result, if ρ > 0, the mean of f(z;σ, ρ) is positive, and vice versa.
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Secondly, because |ρ| < 1 and

K0(z) ∼
√

π

2z
e−z

as z →∞ [24], all the moments of f(z;σ, ρ) are finite, implying the applicability
of the Lyapunov central limit theorem provided that T is large, which is very
often the case and what we assume here.

With this in mind, we observe that φ only affects the first sum in D.2. If
ai,t−k and aj,t are not correlated for non-zero k, φ will not affect the mean of
Cij . Furthermore, it is also clear from equation D.2 that the variance of Cij is
always increased by a non-zero φ, regardless of the sign of φ. We compute this
increment in the following.

In light of the above expression for f(z;σ, ρ), we rewrite equation D.2 as

(1− φ2)Cij ≈
1

T

T∑
t=1

t−1∑
k=1

φk(ai,t−kaj,t + aj,t−kai,t)

+
1

T

T∑
t=1

σ2(1− ρ2)
ai,t

σ
√

1− ρ2

aj,t

σ
√

1− ρ2

(D.3)

In addition, we assume

corr(ai,t−k, aj,t) =

 1 if i = j and k = 0
ρ −1 < ρ < 1. if i 6= j and k = 0
0 otherwise

Then, because ai,t−k and aj,t with i 6= j and k > 0 are not correlated, the mean
of ai,t−kaj,t is 0 (f(z;σ, 0) is symmetric), and the variance of it can be found to
be σ6 using formula (10.43.19) of [25]:∫ ∞

0

dtKν(t)tµ−1 = 2µ−2Γ

(
µ+ ν

2

)
Γ

(
µ− ν

2

)
On the other hand, ai,t/σ

√
1− ρ2 and aj,t/σ

√
1− ρ2 have variance 1/(1− ρ2)

and are correlated - corr(ai,t, aj,t) = ρ. The mean of ai,taj,t/σ
2(1− ρ2) can be

found using formula (10.43.22) of [25], given that −1 < ρ < 1:∫ ∞
0

tµ−1e−atKν(t)dt = (π/2)1/2Γ(µ+ ν)Γ(µ− ν)(1− a2)−µ/2+1/4 ×

P
−µ+1/2
ν−1/2 (a)

where Pµν (·) is Ferrers function of the first kind1. The result is

E
[

ai,taj,t
σ2(1− ρ2)

]
=

1√
2π(1− ρ2)5/4

[
P
−3/2
−1/2 (−ρ)− P−3/2

−1/2 (ρ)
]

1 Ferrers function of the first kind is defined through the hypergeometric functon F (a, b; c; z)
[25]:

Pµν (x) =

(
1 + x

1− x

)µ/2
F
(
ν + 1,−ν; 1− µ; 1

2
− 1

2
x
)
. (D.4)
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Similarly, the variance of ai,taj,t/σ
2(1− ρ2) is found to be

v2(ρ) =
4√

2π(1− ρ2)7/4

[
P
−5/2
−1/2 (ρ) + P

−5/2
−1/2 (−ρ)

]
−E2

[
ai,taj,t

σ2(1− ρ2)

]
Now we can apply the Lyapunov central limit theorem [26] to the sum in equa-
tion D.3 and write down the asymptotic Gaussian distribution of Cij :

Cij ∼ N(µ′X , σ
′
X)

where

µ′X =
σ2

√
2π(1− φ2)(1− ρ2)1/4

[
P
−3/2
−1/2 (−ρ)− P−3/2

−1/2 (ρ)
]

(D.5)

σ′2X =
1

(1− φ2)2

[
T∑
t=1

t−1∑
k=1

2

(
φk

T

)2

σ6 +

T∑
t=1

σ4(1− ρ2)2

T 2
v2(ρ)

]

=
2σ6

T (1− φ2)2

[
φ2

1− φ2
− φ2(1− φ2T )

T (1− φ2)

]
+
σ4(1− ρ2)2v2(ρ)

T (1− φ2)2

≈ 2σ6φ2

T (1− φ2)3
+
σ4(1− ρ2)2v2(ρ)

T (1− φ2)2
(D.6)

We may apply a similar treatment to the diagonal elements of the covariance
matrix, which we denote as Cii here:

Cii =
1

T

T∑
t=1

r2
it

=
1

T

T∑
t=1

t−1∑
l=0

φlai,t−l

t−1∑
k=0

φkai,t−k

=
1

T

T∑
t=1

t−1∑
k=0

φ2ka2
i,t−k +

t−1∑
k,l=0

φk+lai,t−kai,t−l


By the Lyapunov central limit theorem under the assumption of large T, the
asymptotic distribution of Cii is Gaussian, the mean and variance being

E(Cii) =
1

T

[
t−1∑
k=0

φ2kσ2

]

=
σ2

(1− φ2)T

[
T − φ2(1− φ2T )

1− φ2

]
≈ σ2

1− φ2

[
1− φ2

T

]
(D.7)
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and

var(Cii) =

T∑
t=1

t−1∑
k=0

φ4kσ4

T 2
2 +

t−1∑
k,l=0

φ2(k+l)

T 2
σ6


=

T∑
t=1

[
2σ4

T 2

1− φ4t

1− φ4
+
σ6

T 2

(
1− φ2t

1− φ2

)2
]

=
2σ4

T (1− φ4)
− 2σ4φ4(1− φ4T )

T 2(1− φ4)2
+

σ6

T (1− φ2)2
− 2σ6φ2(1− φ2T )

T 2(1− φ2)3
+

σ6φ4(1− φ4T )

T 2(1− φ2)2(1− φ4)

≈ 2σ4

T (1− φ4)
+

σ6

T (1− φ2)2
(D.8)
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Appendix E

Eigenvalues Distribution of
Wishart Matrix

In this section we summarize the analytic results regarding the eigenvalue dis-
tribution of a Wishart matrix RR′. In the simplest case where the elements
of R are all independent of each other, i.e. neither auto-correlation nor cross-
correlation exists, we have [14]

f(x1, · · · , xN ) = K

N∏
i=1

e−xi/2x
(T−N−1)/2
i

N∏
i<j

(xi − xj) (E.1)

where the eigenvalues have been indexed in descending order: x1 ≥ x2 ≥ · · · ≥
xN . The normalization constant K is given by

K =
πN

2/2

2NT/2ΓN (T/2)ΓN (N/2)

where the function Γm(a) is defined as

Γm(a) = πm(m−1)/4
m∏
k=1

Γ

(
a− k − 1

2

)
If the order of the eigenvalues is ignored, the PDF of their distribution is given
by the Marcenko-Pastur law [18]

f(x) =
1

2πσ2q

√
(x2 − x)(x− x1)

x
(E.2)
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where it is assumed rit ∼ N(0, σ2) and

q = lim
N,T→∞

N

T

x1 = σ2(1−√q)2

x2 = σ2(1 +
√
q)2

It is imposed that q = N/T < 1.
Moreover, K. Johnsson [27] and I. Johnstone [28] showed that, at the absence

of autocorrelations and in the asymptotic limit N,T →∞, N/T → q <∞, the
maximum eigenvalue λ1 follows the Tracy-Widom distribution (denote T W 1

here) when properly relocated and rescaled:

λ1 − µNT
σNT

∼ T W 1

where µNT and σNT are given by

µNT =
(√

N − 1/2 +
√
T − 1/2

)2

σNT =
√
µNT

(
1√

N − 1/2
+

1√
T − 1/2

)1/3

The T W 1 distribution has the following cummulative distribution function
(CDF) [14]

F1(x) = exp

[
−1

2

∫ ∞
x

dy
(
q(y) + (y − x)q2(y)

)]
where q(y) is defined as the solution to the Painlevé II differential equation

q′′(y) = yq(y) + 2q3(y)

which is unique when imposing the condition

q(y) ∼ Ai(y) as y →∞

Then Marco Chiani showed recently that the T W 1 distribution can be well
approximated by a gamma distribution based on his proof that the exact distri-
bution of the maximum eigenvalue is a mixture of gamma distributions. Specif-
ically,

λ1 − µNT
σNT

+ α ∼ G (k, θ) (E.3)

where G (k, θ) denotes the Gamma distribution with parameters k and θ [14].
The PDF of the gamma distribution is given by

fγ(x; k, θ) =
1

Γ(k)θk
xk−1e−x/θ
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Moreover, the first 3 moments of the distribution are simple:

mean = kθ

variance = kθ2

skewness = 2/
√
k
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