
Optimizing motion paths with respect to the

needs of the application

Jakob Pettersson Peeker

May 9th, 2014

1 Summary

A method for optimizing motion path definitions for servo unit motors of Tetra
Pak’s packaging machines using optimal control is chosen, described and tested.

Tetra Pak’s packaging machines are characterized by the use of servo motors
to control repetitive actions that are repeated in cycles. When developing new
packaging machines the motion path of the servo motor is always optimized in
some way, usually to complete a cycle of actions as fast as possible. While there
is usually a need to maintain a specific position, velocity or acceleration at a few
points along the cycle, there is often flexibility in where these points are located
in time and in how the motion path is defined in-between these points. Finding
an optimal path is time consuming with current methods employed by Tetra
Pak and this thesis will focus on a way of using optimal control theory to find a
motion path that is optimized according to the specific needs and limitations of
the application. A common need is to perform a cycle as fast as possible, while
adhering to a servo motor’s limitations on torque.

The optimization method needs to optimize the path with respect to the
needs of the application as well as the limitations of the mechanical system
and the servo motor, and as such a significant part of the thesis concerns the
problem definition and modelling of the mechanical system. As well as providing
a method for optimizing motion paths, this thesis will in detail describe an
example where a mechanical system will move a mass up and down as fast as
possible, while adhering to a servo motor’s limits on torque and speed. The
optimization method is implemented for the specific example outlined in this
thesis to show that this is a viable way for Tetra Pak to design motion paths.

The final result of this thesis is the definition of the optimization method used
and the results of this method when optimizing the motion path for the described
example. The goal of the method is to be able to be used in a wide variety of
different scenarios within Tetra Pak’s research and development, and as such it is
constructed to be a generic method that can handle different mechanical systems
as well as different aspects to be optimized. While the method is constructed
to be generic, designing a workflow for using this method for other scenarios
than the example outlined as well as integrating this method into Tetra Pak’s
current workflow is left for future research.

1

2 Introduction

In 1995 Björn Bachman and Joakim Lubeck did a master thesis on ”Curve Gen-
eration by variational optimization for controlling machine movement”, also led
by my mentor Anders Sundberg at Tetra Pak and Gustaf Söderlind at LTH.
They developed a method for defining motion paths using finite differences.
The main difference between their their method and the one suggested in this
thesis is that their method didn’t optimize the time taken to reach a destina-
tion, but was rather used to find a smooth path given that we already know
the time needed for the motion path to reach its final destination. It obtained
a smooth path by minimizing the area that is defined by the integral over the
speed, acceleration, and jerk(with a possibility to weigh them in accordance
with their importance), while still maintaining the positions and speed and ac-
celeration given for specific points in time. It was a very flexible method for
doing this, as you could define the speed and acceleration for the path at specific
points in time and you would usually get a very smooth curve with less user
input need than Tetra Pak’s currently used SCCA methods (see Section 4.4 for
further details). This method has sadly not been developed further at Tetra Pak.

In comparison to both the current system of using SCCA methods and the
method developed by Bachman and Lubeck, the method presented in this thesis
takes into account the mechanics of the machine and the torque and speed
limitations of the servo motor to obtain an optimized motion path.

3 Tetra Pak

Tetra Pak has a wide range of packaging machines that typically produce thou-
sands of packages per hour. These machines shape a material into a container,
fill the container and then seal it. This cycle is then repeated continuously.
Improving existing packaging machines and developing new ones that produce
packages with more functionality is an important part of Tetra Pak’s research
and there is always a need to produce packages as efficiently as possible, both
in terms of production rate and package quality. A common goal is usually to
produce as many packages an hour as possible, which means that the mechanical
systems moving the packages around need to move as fast as possible.

One important aspect when developing a machine is defining the motion
paths for the servo unit motors that are driving the machine. These paths will
make sure that the different parts of the mechanical system are in the right
place at the right time, and the definition of a motion path for a servo motor is
crucial to the effectiveness of the machine. At Tetra Pak there is an opportunity
to develop better ways to optimize this motion path based on the true needs
of the application, as well as the limitations of the selected servo motor. Tetra
Pak usually wants to minimize the time required to complete one cycle of an
operation, the cycle time, while making sure that the machine operates within
a servo motor’s limitations on torque. Historically this has meant that the
designers need to go through several iterations of a machine’s design stages
before they reach a satisfactory motion path. The goal of this thesis is to help
develop a way to optimize these motion paths with respects to the needs and
restrictions of the application. The needs will vary between different machines

2

and different parts of each machine, but the most common optimization criteria
is a need for as fast of a movement as possible.

The structure of the method to solve the optimization problem is defined as
follows:

1. Defining the mechanical system

2. Defining the torque of the mechanical system

3. Defining the optimal control problem

4. Discretizing the optimal control problem

5. Solving the discretised problem

The definition of the mechanical system consists of defining how the servo
motor can move and how it is connected to other moving parts of the system.
Subsequently the next step is defining the torque at the servo motor, as a func-
tion of the current position, velocity and acceleration. The torque is calculated
because one of the major limiting factors will be the servo motor’s limitations
on torque, and the optimization method needs to take this into account. The
torque is dependant on the changes in kinetic and potential energy and as such
it is written as a differential equation, which needs to be solved.

Steps 1 and 2 will be solved analytically for the specific example of a me-
chanical system that is described in this thesis. For other mechanical systems
it might be more efficient to solve these steps numerically, but this should not
impact the use of the optimization method.

After the torque is correctly defined this thesis goes on to define the optimal
control problem. Here we define what it is that we want to optimize and what the
constraints on the problem are. The optimal control problem is then discretised
and transcribed into a Nonlinear Programming problem (NLP), and later as a
Quadratic Programming problem. After this the problem can finally be solved
in MATLAB using Sequential Quadratic Programming and the Quasi-Newton
BFGS method.

4 Tetra Pak machines

Tetra Pak has had a lot of different packaging machines, but they all serve a
similar purpose: to shape a material into a container, fill the container with a
liquid and then seal the container. There is usually some additional treatment
of the container as well, e.g. sterilization. The packaging machines are char-
acterized by highly coordinated repetitive actions and typical cycle times are
between 500 milliseconds and 1.5 seconds.

4.1 A6 machine

An example of a modern packaging system is the Tetra Pak machine (see Figure
1). The Tetra Pak A6 is their latest machine platform and it has approximately
50 servo axes, nearly all of them performing synchronized motion paths. The
cycle time is 1.44 seconds and the production rate is 10000 aseptic packages per

3

hour.

Figure 1: Tetra Pak A6 Machine

The A6 machine has been developed to be cost efficient and takes up 50%
less space than its predecessor. It has a lower investment cost and uses half
the electricity of other aseptic bottling lines. It uses injection moulding to fuse
the top, carton sleeve and capped neck into a ready-to-fill package. Using ”gas
phase technology”, it sterilizes the package in three steps: first the package is
pre-heated, then it is treated with hydrogen gas, and finally it is ventilated with
sterile air to eliminate all the gas in preparation for product filling. After it has
been sterilized, the package is filled in four steps to minimize foaming.

As the description above hints, Tetra Pak packaging machines can be very
complex and there is a need to optimize the functions involved in package pro-
duction. It is not just the number of packages produced per hour that is im-
portant; Tetra Pak is also interested in lowering the costs to produce and run
their machines. This is important to take into consideration when designing
packaging machines and there is often a need for choosing more cost efficient
drive solutions that can fulfil the specified needs.

4.2 Servo Motors

Cam wheel systems and indexing gears have previously been common solutions
to generate repetitive motion patterns (see Figure 2).

4

Figure 2: Cam wheel systems and indexing gears

The cam wheel systems and indexing gears were mechanically linked in order
to achieve synchronized motion.

In modern machine designs they use electric servo motors instead of me-
chanical solutions for motion control. Each electric servo motor unit follows a
motion path that has been defined during the development of the actual pack-
aging machine. This motion path is then repeated every machine cycle. Each
servo unit thus has a motion path defined that has been in some way optimized
during development of the machine.

Figure 3: One servo axis gets its motion path from a Motion Slave

The motion paths for the individual servo axes are coordinated by a Motion
Master, thus creating a synchronized system (see Figure 4).

5

Figure 4: The individual Servo Axes are synchronized by the Motion Master

Choosing which servo motors to use and defining their motion paths is a
complex process and there is a need for developing a method which further
optimizes the motion paths of a specific servo motor while also being able to
easily check how a different servo motor would affect the design. When finding
the fastest motion path the torque-speed envelope of the servo motor is usually
the main limiting factor. This envelope defines the speed and torque with which
a servo motor may operate without degradation of performance.

A typical envelope limit as well as the speed and torque of an actually used
motion path can look like Figure 5.

6

Figure 5: Red curve = Envelope limit, Green curve = Actual utilization

The shown motion path is not utilizing the servo motor to full capacity and
could most likely be better defined to make a faster motion; however, design-
ing an optimal motion ”by hand” quickly gets very complex and thus better
optimization tools are needed.

In many cases it is not an option to select a larger servo motor since this
will introduce a larger moving mass into the system. This increase of moving
mass often consumes the larger torque capacity of the motor.

4.3 Motion Path Background

While the needs and restrictions that constrain the optimization of a motion
path are unique to each application, there is almost always the need for the
fastest possible motion in order to increase machine productivity. The task
of optimizing a servo motor application for short cycle times involves many
interacting variables and component choices, where some of them like the motion
path are by themselves complex.

In many cases it is only necessary from a process point of view to maintain
a specific position, velocity or acceleration at a few points along a motion pro-
file. The definition of the motion profile is left open and it is this part that
can be subjected to optimization by the method described in this thesis. This
optimization is very difficult to manage ”by hand” and a tool that encourages
iterations and presents results in a clear and relevant format is essential.

4.4 Current Motion Path development

To improve the design and optimization of Tetra Pak’s machines it is neces-
sary to understand how the procedure for defining their motion paths currently
works. Basically, the current design procedure looks like this:

1. Definition of coordinated multi axis motion at load side (the final motion
of, for example, a package being moved)

7

2. Definition of mechanical system

3. Mechanical load calculation for each motor separately

4. Motion path definition for each servo unit motor

5. Load and control simulation of single axis servo unit with mechanical
system

6. Simulation of multi axis motion with mechanical system

7. Physical test and verification of actual performance

However, the process is not as structured as this list suggests. Steps 4 − 5
are repeated until a satisfactory motion path definition is obtained, which can
take many iterations. Many applications have high demands which means these
calculations quickly become very complex.

The main improvement on the design process that this project will focus
on is having the motion path definition take into account the simulation of the
whole mechanical system, and optimize the motion path based on the needs of
the application and the restriction of the motor. This will make item 4 on the
list, Motion path definition for each servo unit motor, take the simulations of
item 5 in account as well.

Currently Tetra Pak designs their motion paths with custom-built programs
using SCCA functions. SCCA stands for Sine-Constant-Cosine-Acceleration.
The motion paths are usually first defined using a combination of these SCCA
functions; this requires a large amount of manual input and ”trial and error”
before a satisfactory motion path is obtained. Usually Tetra Pak knows the
start and end conditions of a motion, and maybe the acceleration and speed at
some points along the way, and then try and piece together a combination of
SCCA segments that fulfil these conditions. When a motion path is obtained it
is converted into polynomials before it can be used in the actual applications.
The main issue with this way of working is that to optimize the motion path
you need to go through many different iterations of this process, and it is very
hard to evaluate how much you can improve your motion path.

4.5 Improving Development

The previous sections have outlined the basic background information and pro-
cess needed for the development of motion paths for Tetra Pak’s packaging
machines. There are many aspects that need to be taken into consideration
when designing a motion path and Tetra Pak wants to develop a new way of
optimizing motion paths.

The main goal of this thesis is to define one method to simulate and optimize
the motion paths that are typically applied for functions in Tetra Pak machines
for packaging. There is a need for a method that defines such motion paths
based on the true needs and limitations of the application. Typically the goal
is to maximise production rate while still adhering to the limits on torque and
speed imposed by the motor used to perform the motion. The method needs
to be flexible enough to deal with many different configurations and require-
ments, to be as automated as possible to keep the manual testing and design

8

iterations to a minimum and to consistently give good, optimal results based
on the requirements and needs of the specific application. This will be done by
simulating the torque as a function of the motion path and then using optimal
control theory to optimize the time taken for the motion, with respect to the
limitations. The input that should be needed for this method should ideally
just be for the user to define the mechanical system that is being controlled and
then define the different start and end conditions.

In this thesis I present a suggestion for an optimization method that could
help Tetra Pak fulfil these requirements. The method will be designed around
a specific example model of one Tetra Pak’s actual machine parts, but it will be
flexible enough that it could work with any machine configuration as long as it
is accurately described.

5 Model

5.1 Definition

The model we study is based on one of Tetra Pak’s current machine parts and
consists of a mechanical system that will move a mass up and down, typically to
perform a function when the mass is at the highest position. The execution time
for moving the mass up and down shall be minimized since in many cases the
packaging function can not start before the motion path has reached the end;
this thesis is about finding a method for defining a motion path that does this.
A schematic of model is depicted below in Figure 6, as well as my simplification
of the model to the right of the schematic.

Figure 6: Schematic of the mechanical system to the left, simplification of the
model to the right

A servo motor at point D will apply a torque to point D, this will affect the
system in a way that moves the mass attached to point B in a vertical direction.
Point B is constrained to vertical motion and point E is fixed to the machine
frame.

The points A, B, C, D, are interconnected by mechanical links. Point C is
rotated around D by the motor.

9

5.2 Problem Definition

This theses will attempt to find a method to optimize the motion path for the
servo motor at point D in Figure 4 so that point C rotates 180 degrees around
point D as fast as possible, given the limitations of the servo motor at point D.
The method should be flexible enough that it could theoretically be applied to
mechanical systems with different configurations as well.

5.3 Calculations of Torque

The first step to solving this problem is to calculate the torque at point D. Point
D is situated at the known points x0 and y0 on an horizontal and vertical axis
respectively, with Point E having the position (0, 0). We can find the exact
angles A2, A3 and A4 using geometry (the x- and y-positions of a specific point
are defined with the indexes x and y in this section):

Point B :

Bx = 0

By = 2 · l2 · sin(A2) = 2 · y2

Point C :

Cx = l1 · cos(A1) + x0
Cy = l1 · sin(A1) + y0

PointA :

Ax = l2 · cos(A2)

Ay = l2 · sin(A2)

Point C :

Cx = l2 · cos(A2) + l3 · cos(A3)

Cx = l2 · sin(A2) + l2 · sin(A3)

These conditions lead to derivations of the angles A3 and A2:

10

Angles :

l2 · cos(A2) + l3 · cos(A3) = x0 + l1 · cos(A1)

l2 · sin(A2) + l3 · sin(A3) = y0 + l1 · sin(A1)

⇒

A2 = tan−1(
y0 + l1 · sin(A1)

x0 + l1 · cos(A1)
)+

cos−1(
l22 + (x0 + l1 · cos(A1))2 + (y0 + l1 · sin(A1))2 − l23
(2 · l2 ·

√
(x0 + l1 · cos(A1))2 + (y0 + l1 · sin(A1))2

A3 = tan−1(
y0 + l1 · sin(A1)− l2 · sin(A2)

x0 + l1 · cos(A1)− l2 · cos(A2)
)

The derivatives of these expressions quickly become cumbersome, which is
why instead we’re going to focus on the relationships between the derivatives of
A2 and A3 and the derivatives of A1:

l2 · sin(A2) · Ȧ2 + l3 · sin(A3) · Ȧ3 = l1 · sin(A1) · Ȧ1

l2 · cos(A2) · Ȧ2 + l3 · cos(A3) · Ȧ3 = l1 · cos(A1) · Ȧ1

⇒
(

l2 · sin(A2) l3 · sin(A3)
l3 · cos(A2) l3 · cos(A3)

)
·
(
Ȧ2
Ȧ3

)
=

(
l1 · sin(A1)
l1 · cos(A1)

)
· Ȧ1

(
Ȧ2
Ȧ3

)
=

 l1 sin(A1−A3)
l2 sin(A2−A3)
l1 sin(A1−A2)
l3 sin(A2−A3)

 · Ȧ1 =

(
S1
S2

)
· Ȧ1

These expressions for the derivatives will be used when calculating the actual
torque.

The total kinetic energy is defined

T =

n∑
j=1

mj

ċ2x,j + ċy, j2

2
+

n∑
j=1

Ij

Ȧ2
j

2
, (1)

where cx,j and cx,j are the centre of masses for a specific bar lj in the x-

and y-axis respectively.
In this example we are most interested in the torque at point D, which

needs to be within the servo motor’s limitations. This torque depends on the
change rate of the kinetic energy of the different parts of the system. The total

11

kinetic energy is composed of the sum of the rotational kinetic energy and the
translational kinetic energy. To get the translational kinetic energy we need
the moment of inertia of rotation around the center of the bars for the different
parts of the system:

I =
m · l2

12
(2)

I2 =
m2 · l22

12
(3)

I3 =
m3 · l23

12
(4)

I4 =
m4 · l24

12
(5)

With these we can calculate the rotational kinetic energies:

Tkr1
=

1

2
· I1 · Ȧ

2
1 (6)

Tkr2
=

1

2
· I2 · Ȧ

2
2 (7)

Tkr3
=

1

2
· I3 · Ȧ

2
3 (8)

Tkr4
=

1

2
· I4 · Ȧ

2
4 (9)

(10)

Bar 1 and bar 2 are fixed and don’t have any translational kinetic energies.
However, bar 3 and 4 are moving and we need to calculate their translational
kinetic energies as well:

Tkv3
=

1

2
·m3 · v

2
3 (11)

Tkv4
=

1

2
·m4 · v

2
4 (12)

(13)

When we have the kinetic energies we need to calculate the torque around
our point D. To do this we need to write the kinetic energy T as a function of
the angular rotation and angular acceleration around D. Then we can use the
Lagrange equations to calculate the kinetic energy T:

T =

n∑
j=1

mj

ẋ2
j + ẏ2

j

2
+

n∑
j=1

Ij

Ȧ2
j

2
(14)

And the potential energy U:

12

U =

4∑
j=1

a · yj,m (15)

Where yj,m is the vertical position of the centre of mass of bar j and a is

the gravity of earth. Now we define the Lagrangian

L = T − U (16)

(17)

Finally we can get the torque from

Mθ =
d

dt
(
dL

dȦ1
)− dL

dA1
(18)

(19)

See the last Section of this paper, ”Notes on calculations”, for more specific
calculations.

6 Optimization

6.1 Optimization criteria

The optimization criteria for our specific example are as follows:

1. Making sure the torque and speed of the motor are in accordance with the
motor’s characteristics

2. Moving as fast as possible from our desired start point to our desired end
point

7 Optimal Control Problem

The optimal control problem is a free final time state constrained problem. We
first define the state variables of the optimal control problem as y. We then
want to find the control functions u(t) and the final time tF to minimize

φ[y(tF), tF] (20)

subject to the state equations:

ẏ(t) = f[y(t),u(t)] (21)

the boundary conditions:

gi[y(tF),u(tF), tF] = 0, i = 1, ...,me (22)

13

and the inequality constraints

gi[y(t),u(t), t] ≤ 0, i = me + 1, ...,m (23)

where the initial conditions y(tI) = yI are given at the fixed initial time tI
and the final time tF is free. We will also call the inequality constraints gineq.

With our problem we define y = (x1, x2), where x1 is the angle A1 and x2
is the angular velocity of A1. The control variable u is defined as the angular
acceleration of A1. We define n = 2 as the number of state variables. The
state equations define the derivatives of state variables as a function of the state
variables and the control variable; in our case the derivative of x1 is the second
state variable x2, while the derivative of the second state variable x2 is just our
control variable u. The state and control variables are set up this way because
we are currently not interested in the the jerk of A1, which we would need to
define in a state equation if we set up the acceleration of A1 as a state variable.
Our optimal control problem is now defined as:

Initial definitions:

φ(tF) = tF
y = (x1, x2)

x1(t) = A1(t)

x2(t) = Ȧ1(t)

u(t) = Ä1(t)

x1 definitions:

ẋ1(t) = f1(t, x(t),u(t)) = x2(t)

x1(0) = 0

x1(tF) = xF
x2 definitions:

ẋ2(t) = f2(t, x(t),u(t)) = u(t)

x2(0) = 0

x2(tF) = 0

Control variable constraints:

uL ≤ u(t) ≤ uU
Inequality constraints:

torque(t, x1, x2,u)− q(t, x1, x2,u) ≤ 0

This optimal control problem will later be transcribed as a Non-linear Pro-
gramming (NLP) problem in section 8.2 when we try to find a solution to it,
but it is important to first define the optimal control problem.

In our case, the inequality constraints gineq (see equation (23)) becomes

torque(t, x1, x2, u) - q(t, x1, x2, u) ≤ 0

14

where q(x2) is the limit of the torque as a function mainly of the angular
velocity, but also of the sign of the torque (which is why it is a function of
t, x1, x2,u as well). An example of this limit is illustrated in Figure 7 below.

Figure 7: Speed / Torque envelope limit of servo motor

8 Optimization Method

8.1 Introduction

The general procedure in constrained optimization is to transform the problem
into easier sub problems that can then be solved in an iterative process. One
method for doing this is to replace the constraints with penalty functions and
then solving this unconstrained problem. The initial constrained problem is then
solved using multiple unconstrained optimizations that are solved in an iterative
sequence, which then converge to the solution of the constrained problem. For
larger-scale problem these methods can be inefficient and one alternative is to
look at methods that solve the Karush-Kuhn-Tucker (KKT) equations, which
are necessary for optimality for a constrained optimization problem. This is
the method we choose to use and to do this we will first transcribe our optimal
control problem into a nonlinear programming problem.

8.2 Transcription to Non-linear Programming problem

We want to transcribe the Optimal Control Problem (OCP) to a Non-linear
Programming Problem (NLP). We start by discretizing the time according to

tI = t1 < t2 < ... < ti < ... < tN = tF

Where tI is the initial time and tF is the final time. The individual time
points are called grid points, the state value at a grid point tk is x1,k = x1(tk)

15

and x2,k = x2(tk) and the control vector at tk is uk = u(tk).

We treat the state values and the controls at the nodes, as well as the final
time tF, as a set of NLP variables. We denote these as the parameters Y:

Y = (u(t1), ...,u(tN), x1(t1), ..., x1(tN), x2(t1), ..., x2(tN), tF) ∈ RN(3)+1

We use an equidistant grid and can get tn using

h(tF) =
tF − tI

N
tn = tI + h · (n− 1)

Where N is the number of grid points. This number is supplied by the user
and will have a large impact on the time needed for the calculations.

Between two grid points we approximate the controls as piecewise linear
interpolating functions between u(tj) and u(tj+1) for tj ≤ t < tj+1:

uapp(t) = u(tj) +
t− tj

tj+1 − tj
(u(tj+1 − u(tj)) for tj ≤ t < tj+1

The state values are chosen as continuously differentiable functions. They
are piecewise defined as cubic polynomials between x(tj) and x(tj + 1), with

ẋapp(s) := f(x(s), u(s), s) at s = tj , tj+1 according to the following formula:

xapp(t) =

3∑
k=0

c
j
k

(
t− tj
hj

)k for tj ≤ t < tj+1, j = 1, ..., N − 1 (24)

c
j
0 = x(tj), (25)

c
j
1 = hjfj, (26)

c
j
2 = −3x(tj)− 2hjfj + 3x(tj+1)− hjfj+1 (27)

c
j
3 = 2x(tj) + hjfj − 2x(tj+1) + hjfj+1 (28)

where fj := f(x(tj), u(tj), tj), hj := tj+1 − tj

The approximating functions of the states have to satisfy the differential
equations (21) at the grid points tj , j = 1, ..., N , as well as at the centres

tc,j := tj+1/2 := (tj + tj+1)/2, j = 1, ..., N of the discretization intervals.

This method is known as a cubic collocation at Lobatto points. Since the
chosen approximation (24) already fulfils these constraints at the grid points tj ,

we end up with the following remaining constraints (the index ”app” stands for
our chosen approximation):

16

• the collocation constraints at tc,j

f(xapp(tc,j), xapp(tc,j), tc,j)− ẋapp(tc,j) = 0, j = 1, ..., N − 1 (29)

• the inequality constraints at the grid points tj

gineq(xapp(tj), uapp(tj), tj) ≥ 0, j = 1, ..., N

• and we combine the end point constraints with with the initial conditions
y(tI) = yI to form

ri(xapp(t1), xapp(tN), tN) = 0, i = 1, ..., 2 · n

The objective function we want to minimize is the same as in the optimal
control definition

φ(tF) = tF (30)

8.3 Necessary optimality conditions

To form the necessary conditions for the discretised NLP problem we first need
to state the Lagrangian, our cost function:

L(Y, λ) = Φ(xN , tn) +

m∑
j=1

λjg(xj, uj, tj)

The necessary conditions for optimality are then

∇Φ(xN , tn) +

m∑
j=1

λj∇g(xj, uj, tj) = 0

λigi(x
∗) = 0, i = 1, ...,me

λi ≥ 0, i = me + 1, ...,m

These are called the Karush–Kuhn–Tucker (KKT) conditions. λi are La-
grange multipliers and are needed to balance the difference in magnitude be-
tween the gradients of the objective function and the constraint gradients. One
result of the KKT equations is that the constraints that are not active have their
Lagrange multipliers set to zero. To solve our optimization problem we will solve
these KKT equations using Sequential Quadratic Programming (SQP).

17

8.4 Quadratic Programming problem

To solve the NLP problem we will be setting up a Quadratic Programming (QP)
problem which will be solved using an active set method. With the Lagrangian
defined we obtain the Quadratic Programming (QP) sub problem by linearising
the nonlinear constraints to get

min
d∈Rn

1

2
dTHkd+∇Φ(Yk)d

∇gi(Yk)T d+ gi(Yk) = 0, i = 1, ...,me

∇gi(Yk)T d+ gi(Yk) = 0, i = me + 1, ...,m

where H = ∇2L

The solution to this subproblem is then used to get a new iteration

Yk+1 = Yk + akdk

This sequence is repeated until we find a solution which is deemed satisfac-
tory, which in our case means that the the constraints are fulfilled and objective
function has changed less than our function tolerance. The matrix H is a pos-
itive definite approximation of the Hessian matrix of the Lagrangian function;
this approximation will be updated using the quasi-Newton BFGS method after
every iteration, according to the formula

Hk+1 = Hk +
qkqTk

qT
k

sk

−
HksksTk HTk

sT
k

Hksk

where

sk = xk,

qk = ∇φ(xk+1)

This method needs a starting guess which the user will need to provide.

9 Implementation

9.1 Collocation constraints

To solve the optimal control problem we first need to define the collocation
constraints (see (29)) at the points between the grid points, tc,j . This means

we also need to x1,j+1 and x2,j+1 given that we know x1,j and x2,j as well

as uj and uj+1. We do this by using the collocation constraints at tc,j :

18

f1(x1,app(tc,j), x2,app(tc,j), tc,j)− ẋ1,app(tc,j) = 0, j = 1, ..., N − 1

f2(x1,app(tc,j), x2,app(tc,j), tc,j)− ẋ2,app(tc,j) = 0, j = 1, ..., N − 1

So, first we use the definition of xapp(t) from (24):

x2,app(t) = x2, j + hjuj(
t− tj
hj

)

+ (−3x2,j − 2hjfj + 3x2,j+1 − hjuj+1)(
t− tj
hj

)2

+ (2x2,j + hjuj − 2x2,j+1 + hjuj+1)(
t− tj
hj

)3

where hj := tj+1 − tj =
tF − tI

N

Which leads to

x1,app(t) =

3∑
k=0

c
j
k

(
t− tj

hj
)k, tj ≤ t < tj+1, j = 1, ..., N − 1

⇒ x1,app(t) = c
j
0 + c

j
1(

t− tj

hj
)1 + c

j
2(

t− tj

hj
)2 + c

j
3(

t− tj

hj
)3

⇒ ẋ1,app(t) =
1

hj
c
j
1 +

2

hj
c
j
k

(
t− tj

hj
)1 +

3

hj
c
j
k

(
t− tj

hj
)2

• the collocation constraints at tc,j then lead to

f2(x1,app(tc,j),uapp(tc,j), tc,j)− ẋ2app(tc,j) = 0, j = 1, ..., N − 1

⇒ uapp(tc,j) = ẋ2,app(tc,j), j = 1, ..., N − 1

For x2 this can be written

f2(uapp(tc,j), tc,j) = ẋ2,app(tc,j) (31)

This leads to:

19

uj+1 + uj

2
= uj + 2

1

2
(
−3x2,j

h
− 2uj +

3x2,j+1

h
− uj+1)

+ 3
1

4
(
2x2,j

h
+ uj −

2x2,j+1

h
+ uj+1)

= uj + (
−3x2,j

h
− 2uj +

3x2,j+1

h
− uj+1)

+
3

4
(
2x2,j

h
+ uj −

2x2,j+1

h
+ uj+1)

= uj +
1

4
(
−12x2,j

h
− 8uj +

12x2,j+1

h
− 4uj+1)

+
1

4
(
6x2,j

h
+ 3uj −

6x2,j+1

h
+ 3uj+1)

= uj +
1

4
(
−6x2,j

h
− 5uj +

6x2,j+1

h
− 1uj+1)

=
uj+1 + uj

2
+
uj

2
−
uj+1

2
+

1

4
(
−6x2,j

h
− 5uj +

6x2,j+1

h
− 1uj+1)

=
uj+1 + uj

2
+

2uj

4
−

2uj+1

4
+

1

4
(
−6x2,j

h
− 5uj +

6x2,j+1

h
− 1uj+1)

=
uj+1 + uj

2
+

1

4
(
−6x2,j

h
− 3uj +

6x2,j+1

h
− 3uj+1)

⇒ x2,j+1 =
1

6
(6x2,j + 3huj + 3huj+1)

⇒ x2,j+1 = x2,j + h
uj + uj+1

2

And thus we have obtained and expression for x2,j+1 given that we know

h, uj and uj+1. For x1 the collocation constraints lead to

f1(x2,app(tc,j),uapp(tc,j), tc,j) = ẋ1,app(tc,j) (32)

x2,app(tc, j) = x2,j +
1

4
(
−6x1,j

h
− 5x2,j +

6x1,j+1

h
− 1x2,j+1) (33)

⇒ x1,j+1 =
2h

3
(x2,app(tc)− x2,j) + x1,j + h(

5

6
x2,j −

1

6
x2,j+1)

Since we already have an expression for x2,j+1, we also know x2,app(tc).

20

9.2 MATLAB implementation

This section will detail the MATLAB implementation of the optimization method.
First we define our variables as

y = (u1, x1,1, x2,1, u1, x1,2, x2,2, ..., uN, x1,N , x2,N , tF) (34)

This leads to a total of 3 ·N + 1 variables. In MATLAB I use the function
fmincon to implement the optimization method outlined in section 8 . It is
defined to

min
x
f(x) such that

c(x) ≤ 0 (35)

ceq(x) = 0 (36)

A · x ≤ b (37)

Aeq · x ≤ beq (38)

lb ≤ x ≤ ub (39)

In the following subsections I go through these constraints one by one to
show how they relate to our problem. Note that we do not use equations (37)
and (38) in our formulation.

Minimization f(x)

We want to minimize

f(x) = tf = y(3 ·N + 1) (40)

Equation (35): c(x) ≤ 0

Here, c(x) is the function limiting the torque and speed that is defined by which
motor we use. An example is shown as follows:

21

Figure 8: Maximum operational limits for servo motor

We can define this graph by choosing ”turning points” in the MATLAB
program.

If needed, this function can also be used to limit the jerk by limiting

abs(
ui+1 − ui

h
) ≤ Jerk Limit (41)

Equation (36): ceq(x) = 0

The most obvious constraints here are the beginning and end constraints

xi,0 = xi,start , i = 1...2 (42)

xi,N = xi,end , i = 1...2 (43)

(44)

i.e. a total of 4 equations. However, we also use the collocation constraints
(see further calculations in section 9.1):

f2(i, app(tc,j), tc,j) = ẋi,app(tc,j) , i = 1...2 (45)

which leads to

x1,j+1 =
2h

3
(x2,app(tc)− x2,j) + x1,j + h(

5

6
x2,j −

1

6
x2,j+1), j = 1, ..., N − 1

(46)

x2,j+1 = x2, j + h
uj + uj+1

2
j = 1, ..., N − 1 (47)

These equations can be written as part of the ceq(x) = 0 term as

x1,j+1 − (
2h

3
(x2,app(tc)− x2,j) + x1,j + h(

5

6
x2,j −

1

6
x2,j+1)) = 0, j = 1, ..., N − 1

(48)

x2,j+1 − (x2, j + h
uj + uj+1

2
) = 0, j = 1, ..., N − 1 (49)

22

which gives us 2 · (N − 1) = 2N − 2 more equations, for a total of 2N + 2
equations.

Equation (39): lb ≤ x ≤ ub

These are the lower and upper bounds for our problem. If we have constant
limitations on position, speed or acceleration, this is where we put them.

Choice of search algorithm

To get Matlab’s fmincon function to use the active-set method described in this
paper we use the options:

’Algorithm’ = ’active-set’
’Hessian’ = ’bfgs’

We also need to set an initial guess which the search algorithm will start
from.

10 Numerical Experiments

10.1 Introduction

The main purpose of the experiments is to test the method of optimization on
the model previously described in section 5 to show that motion path definition
by way of optimization is a viable path for Tetra Pak to explore. The experiment
will simulate the torque on the described model and then find a motion path
optimized to move as fast as possible from the start position to the end position
within the restrictions of the selected motor.

10.2 Experiment Definition

The model that is simulated is the one described in section 4 and pictured in
Figure 6 and with the specifications outlined below in Figure 9.

23

Figure 9: Experiment model

The geometry of the model was used to define a function that takes as input
the angle A1 and in return gives us angles A2 and A4 (angle A2 is the same as
angle A4). With the help of the derivations of the torque from section 5.3 and
this function I built a function that simulates the torque at point D from an input
consisting of the current angle A1, angular speed Ȧ1 and angular acceleration

Ä1. Our method of optimization is then used to obtain a motion path that
moves as fast as possible from our start conditions to our end conditions, given
the limitations of the servo motor. The angle A1 will start at A1,start = 0 and

end at A1,end = π, with the angular velocities Ȧ1,start = 0 and Ȧ1,end = 0.

The main goal for the project is to develop a method where the user just
specifies the definitions of the model, the start and end conditions and the
maximum operational limits for the servo motor as described by the model, and
then the method should give us a path that is optimized to go as fast as possible
from the start position to the end position.

10.3 Experiment Set-up

We use the following values for the properties seen in Figure 9

24

l1 = 0.2m (50)

l2 = 0.8m (51)

l3 = 1.2m (52)

l4 = 0.8m (53)

m1 = 8.1kg (54)

m2 = 32.4kg (55)

m3 = 48kg (56)

m4 = 32.4kg (57)

This was the initial guess provided for the method:

Figure 10: Initial guess

10.4 Verification of Model

Since we did not have any real-life data of the performance of our model we
opted to test the model by simulating it in the Multibody Dynamics Simulation
Software Adams and comparing the torque on the servo motor obtained for
a specific motion path with the one obtained with the Matlab program. The
motion path was defined as A1 having a constant speed of π rad/s. The results
were as follows:

25

Figure 11: Red curve: Adams, Blue curve: Matlab

There is a slight difference, most visible at the low and high peaks of the
curve. These can be explained by rounding errors in our method; when some
of the derivatives get very large or very small then small then a tiny rounding
error will impact the torque greatly. These results were deemed as satisfactory
proof that our function for obtaining the torque was behaving properly.

11 Results

11.1 Experiment Results

The model described in Section 7.2 and the optimization parameters defined in
Run A in Section 7.3 are pictured below in Figure 12.

Figure 12: Results

26

11.2 Analysis

The current method however still needs a fair number of user input in regards
to how the optimization method should be used, for example the number of grid
points and the different tolerances of the model (see 8.2). The appropriate values
for these will differ depending on a number of different factors like the definition
of the model that we want to optimize, how long we want the optimization to
take, etc. This all means that there is still a fair amount of ”trial and error”
when finding an optimal motion path.

If we first analyse the motion path for the angle A1 (see Figure 13 below) we
find a motion path that looks pretty smooth and about what you’d expect from
an optimized path. There’s bit of acceleration in the beginning as the motion
finds its max speed, then it is moving forward at a fairly constant speed that is
limited by the restrictions on torque defined by the servo motor before it slows
down at the end to reach the end position at the specified zero velocity.

Figure 13: Angle of A˙1

However, just ”looking good” is not enough to show that a path is optimal.
We need to analyse other aspects of the results as well, like what the speed
and acceleration of the path looks like and how the torque and speed fits in the
envelope limit defined by the servo motor.

First, let us look at the angular speed of the A1 angle, i.e. Ȧ1 (see Figure
14 below).

27

Figure 14: Speed of A˙1

The blue circles represent the grid points where the torque hit the envelope
limits imposed by the servo motor (to within a 1% difference), while the red
circles represent grid points that don’t hit torque limits imposed by the servo
motor. However, as we will see later when we plot the speed and torque along
with the envelope limit, a lot of the red circles are points where the max speed
of the servo motor is reached instead. The speed and torque are never reaching
beyond the limits of the servo motor, since these are fixed inequality constraints
and an inability to stay within them would not result in a solution.

Despite having a number of places where the torque and speed don’t reach
the limits imposed by the servo motor, the general layout of the angular speed
looks about what you’d expect from an optimal solution: there is a large accel-
eration in the beginning of the motion path where it is mostly the acceleration’s
contribution to the torque, and not the speed’s contribution, that makes the
torque hit the limitations of the servo motor. After this initial part the speed is
more stable and here the speed obviously makes the major contribution to the
torque. The speed does not hit the maximum speed limit of the torque/speed
envelope; this is explained by the acceleration contributing too much to the
torque for the speed to hit its maximum limit.

We also look the angular acceleration of the A1 angle, i.e. Ä1 (see Figure
15 below).

28

Figure 15: Acceleration of A1

Again the blue circles represent the grid points where the torque and speed
hit the envelope limits imposed by the servo motor, while the red circles repre-
sent grid points that don’t hit the envelope limits imposed by the servo motor.
The acceleration follows a smooth curve when it passes through the blue circles,
but it strays from this curve at a few of the red points, where the torque doesn’t
hit envelope limit (however, at the majority of these red points the curve hits
the speed limit instead of the torque limit). The fact that we stray from the
envelope limits at these points could be caused by a few different reasons:

The deviations could possibly be explained by the motion needing to make
adjustments quickly so as not to go past the envelope limits on the succeeding
grid points. If curve had not strayed from the limit at these points, it might
have hit later points in the motion profile with a larger speed or acceleration,
so it might be more optimized to stray from the points at a few places so that
the angle can rotate faster later.

There is also a possibility that we are finding a suboptimal solution that we
are converging on. If this is the problem then a possible solution is to change
the obtained curve a little by hand and then run the optimization again with
that as an initial guess. There is also the possibility of just changing the initial
guesses, adding more grid points or lowering the tolerance level for convergence,
though this has not resulted in a better result in these numerical experiments.

One possible improvement to the method is adding constraints saying that
the difference between the envelope limit and the curve can not be above a
certain number. However, in this experiment this has not helped obtain a better

29

solution, and has either led to a suboptimal solution or not converging at all
depending on the model parameters , tolerance level and number of grid points
used.

One solution to this problem could be to add a penalty function near the
limits of the envelope, which could lead to a smoother curve. One negative
aspect of this is that it could result in a less predictable Hessian and lead to an
inability to find an optimal solution.

To explain why we don’t hit the envelope limits at all grid points we also
analyse the torque as a function of time (see Figure 16, with the grid points
color-coded like the previous graphs in this section).

Figure 16: Torque

Here the higher and lower torque limits imposed by the servo motor are
drawn as red lines. The graph doesn’t tell us too much about the deviations
from the envelope limit, except to say that a few of the deviations occur when
the torque switches quickly between the maximum and minimum limit.

Finally we study how the the torque and speed fits inside the envelope limit
of the servo motor(see Figure 17):

30

Figure 17: Envelope limit

Here we find that the vast majority of our grid points are within 1% of
the envelope limit. It is unclear if the deviations from the torque limit can be
explained by the reasons outlined in this section, or if it could be possible to
obtain a faster motion-path, making the one we have currently obtained sub-
optimal. However, most of the deviations still follow the envelope limits pretty
closely and there are just a few major deviations. As such, the motion path
that has been obtained can be described as very efficient and it would be very
time consuming to achieve a better one using the current iterative process of
defining motion paths.

The initial guess, and especially the guess for the end time, was very impor-
tant in that a bad guess could result in an inability to find a solution, however
when a solution was found it always converged to the current solution.

11.3 Comments and comparison to other literature

There are various properties of the model that can be changed: lengths and
weights of the components, as well as different limitations on torque imposed by
the motor. Variations in these usually leads to similar results as the presented
model, though very unrealistic

I have also tried the Adapted Forward-Backward Sweep method described
in Optimal Control Applied to Biological Models [4], but I have failed to get
the method to converge to a solution with any reasonable tolerance level. This
book also mentions the difficulty in finding solutions to minimum time problems
with a combination of fixed and constrained states.

31

The method described in this theses is largely based on ”Numerical Solution
of Optimal Control Problem” by Oskar Von Stryk [3] as well as theory described
in Practical Methods for Optimal Control and Estimation Using Non-linear
Programming [1].

I have also looked at the software packages SNOPT [7] and DYNOPT [8] for
inspiration on how to solve the optimal control problem.

12 Conclusions

12.1 Work Accomplished

The optimization method described in this thesis can be summarized in these
steps:

1. Define the mechanical system where we want to optimize a motion path

2. Define the torque of the mechanical system

3. Verify that the mechanical system and torque are set up correctly

4. Define the Optimal Control Problem, i.e. what we want to optimize and
what our restrictions are

5. Discretizing the Optimal Control Problem and transcribing it to a Non-
linear Programming problem

6. State the necessary KKT conditions for optimality

7. Linearising the nonlinear constraints and setting up a Quadratic sub-
problem

8. Solving the quadratic sub-problem with a Sequential Quadratic Program-
ming method in MATLAB

This method of optimization finds a path that follows the edges of the servo
motor’s envelope limit for the majority of grid points. While the method in its
current implementation is not yet perfect, it finds a faster and better optimized
path than could reasonably be obtained by current methods of defining motion
paths used by Tetra Pak.

12.2 Unsolved Problems

The main unsolved problem of the method described in this thesis is that we get
certain deviations from the torque/speed envelope defined by the servo motor
that are not easily explained. These deviations suggest that there is possibility
for a better optimization of the motion paths. There is however a possibility
that these deviations are needed for the optimal path, for reasons outlined in
section 11.2. Possible solutions to these deviations are also explained in section
13.1.

One probable cause to this is that our method converges to suboptimal
solution. Possible solutions to this are again outlined in section 11.2.

Another unsolved problem is making the method more generic so that it
can easily allow for optimization of motion paths for other mechanical systems,

32

as well as optimizing certain parts of the mechanical systems as well. These
problems could hopefully be solved by spending more time on the project, and
will as such be discussed in the next section, ”Future Research”.

13 Future Research

If Tetra Pak wants to continue research on this method these are the main areas
that need to be further explored:

• Solving deviations

• Making the method more generic

• Optimizing machine design

• Interfacing to other design tools

They will be discussed individually in the following three sections.

13.1 Solving Deviations

One possible solution to the problem of motion paths deviating from following
the servo motor envelope limits making a function that takes a solution given by
the optimization method and makes a better starting guess, that is then used to
obtain a new solution. For example, one better starting guess could be to either
decrease or increase the final time a little bit but keep the general curves of the
angle, velocity and acceleration looking similar, to see if this guess returns a
better solution.

It could also be possible to define that the motion path can’t deviate from
the torque/speed envelope too much as part of the optimization limitations;
however, in the numerical experiments I have run this has led to the solution
converging to a sub-optimal motion path and more research on the subject is
needed.

13.2 Generic Method

The optimization method as implemented in this thesis is tailored to fit the
model described, but it is of course possible to use the same method for other
models and configurations as well. At the moment changing the model to an-
other means the user having to derive and define new functions for the mechanics
of the new model, as well as define the torque at the motor.

This can all be done in a fairly straightforward manner, but if Tetra Pak
wants to move forward with this optimization method there is probably a need
for streamlining this process. One possible solution could be just having the
user define one function that describes the mechanics of the new system in
a specified way, and one function that defines the torque on the motor. For
the model described in this model there are a lot of derivatives defined from
manual computation, however these could also be derived numerically which
would lessen the need for user input and make it easier to implement the method
on new models.

33

Implementing a way for a user to add the different specific components of a
model in a graphical environment in MATLAB as well as decide where the motor
should be and defining the motor’s limitations on torque and speed, and then
having the program derive the necessary equations from this would certainly be
possible. The scope of creating this interface would however be significant and
further research is needed to know the work needed to implement this.

13.3 Machine Design

One area which this thesis has not delved into is the actual design and definition
of the machine that is to be used and simulated. One way to use this optimiza-
tion method to help design the machine that is detailed in this thesis could be
to set, for example, the lengths of the bars L1,L2, L3 and L4 (see Figure 9) as
variables to be optimized as well. There would have to be restrictions on the
lengths of the bars as well as a requirement for point B in Figure 9 to have a
specific distance between its maximum and minimum positions. Including the
machine parameters in the variables that need to be optimized could be help
shave off the time needed for the motion path, but it would be at the cost of
added complexity on the user input as well as making the optimization take
longer.

13.4 Interfacing to other design tools

This area is very important for effective use within Tetra Pak and should inform
most decisions on future research. The end goal for Tetra Pak is something that
outputs data that can easily be used when actually defining the motion path for
the real servo motors, as well as having a method that can be used easily with
current hardware. One goal here can be to greatly simplify the derivations of
the mechanical system and the torque on the motor, possibly with the help of
a visual interface, which obviously ties in deeply with making the method more
generic.

Integrating the method with a CAD model would be a good next step, but
there is a lot of research needed to integrate this in a convenient way. MATLAB
does have the functionality of importing CAD models into its SimMechanics
environment, and exporting this model into the the MATLAB workspace and
importing would be a possible solution.

13.5 Future at Tetra Pak

The possible future research described in this chapter are all worthwhile en-
deavors which could benefit Tetra Pak if they choose to continue research in
this area. While there aren’t any concrete plans on how to continue with this
method at the moment, Tetra Pak does have a joint project with Chalmer’s
University of Technology about optimizing the different operations performed
by packaging machines already in production and it is possible that someone
there could move this research forward.

34

14 Appendices

References

[1] John T Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. The Boeing Company, Seattle, Washington, 2001.

[2] Björn Bachman, Joakim Lubeck Kurvgenerering med variationsformulerad
optimering för styrning av maskinrörelser. Institutionen för Datalogi och
Numerisk Analys (DNA) LTH, Tetra Pak R&D, Motion Control, Machine
Automation, 1995.

[3] Oskar Von Stryk, Numerical Solution of Optimal Control Problems by Direct
Collocation. International Series of Numerical Mathematics 111, 1993.

[4] Suzanne Lenhart, John T. Workman Optimal Control Applied to Biological
Methods. Chapman & Hall, Taylor & Francis Group, LLC, 2007.

[5] MATLAB Mathworks Optimization Toolbox User’s Guide. The MathWorks,
Inc., 1990-2013.

[6] Kevin Eric Witzberger Application of Direct Method Transcription for a
Human-Class Translunar Injection Trajectory Optimization. Master thesis,
Department of Aerospace Engineering, The University of Alabama, 2011.

[7] Philip E. Gill, Walter Murray, Michael A. Saunders SNOPT: An SQP Al-
gorithm for Large-Scale Constrained Optimization. SIAM Journal on Opti-
mization, Society for Industrial and Applied Mathematics Vol. 12, No. 4,
pp. 979–1006, 2002.

[8] M. Cizniar, D. Salhi, M. Fikar, M.A. Latifi
DYNOPT - Dynmic Optimization Code for MATLAB.
http://www.kirp.chtf.stuba.sk/∼fikar/research/dynopt/dynopt.htm, De-
partment of Information Engineering and Process Control, FCFT-STU,
Laboratoire des Sciences du Genie Chimique, CNRS-ENSIC.

14.1 Appendix - Derivatives

Below are the calculations used for calculating the torque, Mθ = d
dt

(dL
dȦ1

) −

dL
dA1

, that is contributed by the angular kinetic energy and translational kinetic

energy of bar 2. The torque contributed from the gravity and the rest of the
model are calculated in the same way.

I2 =
m2 · l22

12

J2 =
1

2
(m2l2c2 + I2)

35

[
Ȧ2
Ȧ3

]
=

l1(sin(A1−A3)
l2sin(A2−A3

l1(sin(A1−A2)
l3sin(A2−A3

 · Ȧ1 =

[
S1
S2

]
· Ȧ1

L = J2S
2
1Ȧ

2
1

dL

dȦ1
= 2J2S

2
1Ȧ1

d

dt
(
dL

dȦ1
) = 2J2S

2
1Ä1 + 2J2S2(

dS1
dA1

+
dS1
dA2

·
dA2
dA1

)Ȧ2
1 = 2J2S

2
1Ä1 + 2J2S2(

dS1
dA1

+
dS1
dA2

· S1)A2
1

dS1
dA1

=
l1(cos(A1 −A3)

l2 sin(A2 −A3)

dS1
dA2

= −
l1 sin(A1−A3) cos(A2−A3))

l2sin(A2 −A3)2

dS1
dA3

= −
l1cos(A1−A3)

L2 sin(A2 −A3)
+
L1 sin(A1−A3) cos(A2−A3)

L2 sin(A2−A3)2

dL

dA1
= [2J2S1(

dS1
dA1

+
dS1
dA2

·
dA2
dA1

+
dS1
dA3

·
dA3
dA1

)] · Ȧ2
1 = [2J2S1(

dS1
dA1

+
dS1
dA2

· S1 +
dS1
dA3

· S2)] · Ȧ2
1

36

14.2 Appendix - Variable names

l1, l2, l3, l4, : lengths of bars

m :

l1, l2, l3, l4 : Angles of model

A1,A2,A3,A4 : Angles of model

s1, s2 : relationships between angles and their derivatives, according to: l1 sin(A1−A3)
l2 sin(A2−A3)
l1 sin(A1−A2)
l3 sin(A2−A3)

 · Ȧ1 =

(
S1
S2

)
· Ȧ1

I : Moment of Inertia

f : Collocation constraints

t : Time

tc,j : /varTc,j := /varTj+1/2 := (/varTj + /varTj+1)/2, j = 1, ..., N

f :

h(tF) : time interval between points, h(tF) =
tF − tI

N
m : Mass

Mθ : Torque

N : Number of grid points

L : Lagrangian (Classical Mechanics),L = T − U

L(Y, λ) : Lagrangian (cost function), L(Y, λ) = Φ(xN , tn) +

m∑
j=1

λjg(xj, uj, tj)

T : Kinetic energy

U : Potential energy

g : Boundary conditions (gi[y(tF),u(tF), tF] = 0 when i = 1, ...,me) and

Inequality constraints (gi[y(t),u(t), t] ≤ 0 when me + 1, ...,m)

tI : The initial time (0 in our case)

tF : The final time

φ[y(tF), tF] : The functional we want to minimize, φ = tF in our case

37

q(t, x1, x2, u) : Limit on torque imposed by the motor

x1(tj) : Angle A1(t)

x2(tj) : Ȧ1(t)

u(tj) : control variable,u(t) = Ä1(t)

uapp(t) : Approximation of u at t

x1,app(t) : Approximation of x1 at t

x2,app(t) : Approximation of x2 at t

y : State variables, y = [x1, x1]

38

