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Abstract

We take a look at the properties of scalar fields in anti–de–Sitter space in five dimen-
sions. More specifically we define bulk–to–boundary and bulk–to–bulk propagators for a
five–dimensional scalar field and use these to calculate four–point functions. Finally we
take a look at two–point functions and three–point functions and numerically calculate
masses, residues and decay constants for the fourdimensional particles coming from the
five–dimensional scalar field.
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Populärvetenskaplig beskrivning

Är hela världen, hela universum, endast ett hologram? Sent förra året (2013) publicerade
en grupp fysiker sitt resultat fr̊an tv̊a simuleringar vilket kan vara början p̊a att svara p̊a
fr̊agan. Den första räknade ut observabler s̊a som det radiella avst̊andet till händelseho-
risonten, entropi med flera, baserat p̊a strängteori. Den andra simuleringen beräknar en
liknande sak fast i ett universum med lägre dimensioner, utan gravitation. Det visar sig
att simuleringarnas resultat överlappar, vilket pekar p̊a att de beskriver samma sak. Detta
är ett exempel p̊a den s̊a kallade holografiska principen: All information om ett rum i
n dimensioner kan helt beskrivas genom att kolla p̊a den (n − 1)–dimensionella ytan av
rummet där, enligt teorin, all information finns bevarad.

I slutet av år 1997 kom Juan Maldacena med det som nu kallas
”AdS/CFT–korrespondensen” eller ”Maldacena’s förmodan” (Eng. Maldacena’s conjec-
ture) som använder den holografiska principen och relaterar strängteori, en teori i elva di-
mensioner, till en med färre dimensioner, exempelvis den teori vi använder för att beskriva
kvarkar, vilken har endast fyra dimensioner. Detta betyder att man kan använda kor-
respondensen för att arbeta med samma teori som fysiker har arbetat med länge, och
översätta resultaten till strängteori, ett relativt nytt omr̊ade inom kvantfältteorin.

Korrespondensen ses därmed som en av de mest lyckade teorierna inom strängteori för
tillfället. Denna avhandling tar en titt p̊a grunderna i teorin, förklarar korrespondensen
och använder den för att beräkna observabler av ett skalärt fält och jämföra den fem–
dimensionella teorin med en liknande fyr–dimensionell teori.
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1 Introduction

In November 1997, J. Maldacena published a paper[1] proposing the anti–de–Sitter/ Con-
formal Field Theory correspondence in which he suggested the existence of a five-dimensional
space known as the bulk corresponding to a four–dimensional (space–time) boundary in
which all information is carried, analogous to how a three–dimensional hologram stores all
information on a two–dimensional surface. The goal of this thesis is to study the difference
between a five–dimensional theory, a theory which we will see have an infinite number of
bound states, i.e, particles with a given mass mn, and a four–dimensional theory for a
simple scalar interaction; That is, we want to check how well a sum over poles (resonances)
converges, or, in other words, we want to check if we can only use the first few bound
states in order to get a decent approximation of the five–dimensional physics.

Using this construction it might be possible to perform calculations in higher-dimensional
spaces and connect those with the observables (e.g., mass of mesons) in the four-dimensional
space producing results that otherwise could be difficult to obtain.

In section 2, the metric of anti–de–Sitter space (AdS) is defined and the AdS/CFT–
correspondence is explained. Using an action built on a five–dimensional scalar field we
derive equations of motion and four–point functions. Here we also define propagators in
the five–dimensional space. We also introduce Witten diagrams along with Witten rules
– closely related to Feynman diagrams – as a way to graphically represent and calculate
n–point correlation functions, also known as Green functions or propagators. In section
3 we derive the explicit expression for each propagator in terms of Bessel functions and
use these to extract physical constants such as masses and decay constants. In section 4
numerical results obtained from the simplest theory of a scalar field in five–dimensional
anti–de–Sitter space are presented in tables and depicted in plots.
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2 The Correspondence

2.1 Definitions

In order to start working with the model, a few definitions must first be introduced.
First of all we define the metric of the space that we will be working with. The metric of
AdS5 × S5 can be expressed via the invariant lengthd (ds)2 as follows[2]:

ds2 =
x2

5

L2

(
(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

)
− L2

x2
5

(dx5)2 − L2dΩ5. (2.1)

As usual x0 denotes the time coordinate, while xi denotes coordinates in space. The
coordinate labeled x5 denotes the added 5th dimension, and dΩ5 is the corresponding
solid angle of the five–dimensional hypersphere. The angular part is of no intrest in the
following calculation and it will thus be neglected. With a substitution, x5 = L2

z
, equation

(2.1) becomes

ds2 =
L2

z2

(
(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 − (dz)2

)
. (2.2)

Using the metric tensor, gMN , equation (2.2) can be expressed conveniently as before

ds2 = gMNdx
MdxN , (2.3)

with the metric tensor of AdS defined as

gMN =
L2

z2


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 . (2.4)

The coefficient L2

z2
= a2(z) is commonly referred to as the warp factor[3]. While at it, we

define the same tensor without the warp factor; this is useful when explicitly writing out
z–dependence:

ηMN =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 . (2.5)

The determinant of the metric tensor is commonly used throughout as well:

g = det(gMN) =
L10

z10
. (2.6)

From hereon the constant L will be set to 1 in order to simplify expressions.
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Finally, we introduce indicial conventions for various groupings of the dimensions, since
it is often convenient to treat the four normal space–time components separately from the
z–component:

• Capital Latin letters (M,N,. . . ) denote all five dimensions; i.e., (x0, x1, x2, x3, z)

• Lower case Greek letters (µ, ν, . . . ) denote the four normal spacetime
dimensions; i.e., (x0, x1, x2, x3)
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2.2 Formulation

As mentioned before, the goal is to make calculations of measurable observables easier
than in normal conformal field theory. One can express operators of the 4–D theory in
terms of fields in AdS space. From here, one can calculate the desired expectation value
(e.g., mass, decay rates, etc.) and then transform the solution back into the 4–D theory.

To continue, we must assume that there exists an operator, denoted O(xµ), which is
coupled to a field φ(xµ, z) living in the AdS space [2, 3, 4]. This field, known as the bulk
field, has an explicit relation at the boundary:

φ(xµ, 0) = z4−∆φ0(xµ), (2.7)

where ∆ denotes the conformal dimension of O(xµ) and φ0(xµ) is the source of the operator
O(xµ), as defined in (2.9). We define S[φ(xµ, z)] as the action of the field in all five
dimensions and then solve this model with the boundary condition given by equation
(2.7). Then we can define the generating functional

Z = exp(S[φ(xµ, z)]), (2.8)

and in turn write out the correspondence as[4]

Z =

〈
exp

(∫
φ0(xµ)O(xµ)d4x

)〉
Field Theory

. (2.9)

The expectation value of the operators can now be computed via the functional derivative
as

δnZ

δφ0(xµ1) . . . δφ0(xµn)
= 〈O(xµ1) . . .O(xµn)〉 . (2.10)

Equation (2.7) corresponds to the classical or tree level approximation in the AdS space,
corresponding to the large Nc limit of the conformal field theory [4]. We will not go beyond
this approximation.
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2.3 Free Theory and Two–point Function

So far, we only provided a lot of mathematical definitions. What follows will be an example
of how to perform calculations for a scalar field, so that the reader can better understand the
meaning of the correspondence. We focus on a five–dimensional scalar field in AdS space.
We assume it comes from an underlying operator of the type ψ̄ψ, which automatically
gives us ∆ = 3 in the field theory in four dimensions. The field, denoted φ(z, x), has an
action given as

S =

∫
d5x

√
g

2

[
gMN∂Mφ(xµ, z)∂Nφ(xµ, z)−m2φ2(xµ, z)

]
, (2.11)

where coupling constants and curvature of the AdS space have been normalized in such
a way that calculations become as compact as possible. The five–dimensional mass m2 is
also fixed by [4], e.g, m2 = ∆(∆ − 4). Writing out the z–dependence of the determinant
and the metric explicitly gives

S =

∫
d5x

1

2z3

[
ηMN∂Mφ(xµ, z)∂Nφ(xµ, z)− m2

z2
φ2(xµ, z)

]
. (2.12)

Using the Euler-Lagrange equation for fields, we can use the action integral to calculate
the equations of motion (abbreviated EOM) to be:

ηMN∂N

(
1

z3
∂Mφ(xµ, z)

)
+
m2

z5
φ(xµ, z) = 0. (2.13)

Note that, other than the dependence of the field itself, there are no explicit dependence
of the EOM on xµ. Thus it is convenient to split the five–dimensional derivatives into the
usual four dimensions plus the z–component. The resulting equation becomes[

∂µ∂
µφ(xµ, z)

z3
− ∂z

(
1

z3
∂zφ(xµ, z)

)]
+
m2

z5
φ(xµ, z) = 0. (2.14)

From here we can split the field into two parts, one dependent on z and one on xµ.
Then we can transform the equation to momentum space by using Fourier transformation
(abbreviated FT):

[
−k2φ0(xµ)fk(z)

z3
− ∂z

(
1

z3
∂z(φ0(xµ)fk(z))

)]
+
m2

z5
φ0(xµ)fk(z) = 0, (2.15)

where φ0(xµ) denotes the FT of the boundary field. Note that the EOM are satisfied for
any boundary fields φ0(xµ) and they can thus be factored out and discarded. The resulting
equation thus becomes:[

−k2fk(z)

z3
− ∂z

(
1

z3
∂zfk(z)

)]
+
m2

z5
fk(z) = 0. (2.16)
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After calculating the derivative (using the Leibniz rule), the final equation becomes

∂z∂zfk(z)− 3

z
∂zfk(z) +

[
k2 − m2

z2

]
fk(z) = 0. (2.17)

Let us now return to the action integral, equation (2.12), and Fourier transform the
integrand in the same way as in equation (2.15). The result is as follows:

S =
1

2

∫
d4x

∫
dz

∫
d4k

(2π)4

∫
d4k′

(2π)4

1

z3

[
−k · k′fk(z)fk′(z)−

−∂zfk(z)∂zfk′(z)− m2

z2
fk(z)fk′(z)

]
φ̃0(k)φ̃0(k′)e−ix·(k+k′). (2.18)

We can use the exponential combined with the integral over d4x to express the action
integral in terms of a delta function relating k and k′:

S =
1

2

L1∫
L0

dz

∫
d4k

(2π)4

∫
d4k′

(2π)4

1

z3

[
−k · k′fk(z)fk′(z)−

− ∂zfk(z)∂zfk′(z)− m2

z2
fk(z)fk′(z)

]
φ̃0(k)φ̃0(k′) (2π)4 δ(4)(k + k′).

(2.19)

The second term in the brackets can be integrated by parts with respect to z; i.e.:

L1∫
L0

dz

z3
∂zfk(z)∂z (fk′(z)) =

(
1

z3
∂zfk(z)fk′(z)

)∣∣∣L1

L0

−
L1∫
L0

fk′(z)∂z

(
1

z3
∂zfk(z)

)
dz. (2.20)

Inserting this into equation (2.19) to gives

S =
1

2

L1∫
L0

dz

∫
d4k

(2π)4

∫
d4k′

1

z3

[
fk′(z)∂z∂zfk(z)fk′(z)− 3

z
∂zfk(z) +

+k · k′fk(z)fk′(z)− m2

z2
fk(z)fk′(z)

]
φ̃0(k)φ̃0(k′)δ(4)(k + k′) +

+
1

2

∫
d4k

(2π)4

∫
d4k′φ̃0(k)φ̃0(k′)δ(4)(k + k′)

1

z3
∂zfk(z)fk′(z)

∣∣∣L1

L0

. (2.21)

Note that the expression inside the brackets is exactly the EOM. Since the EOM equals
0,the integrand, and thus the entire first term vanish. The final expression for the action
thus reduces to
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S =
1

2

∫
d4k

(2π)4

∫
d4k′φ̃0(k)φ̃0(k′)δ(4)(k + k′)

1

z3
∂zfk(z)fk′(z)

∣∣∣L1

L0

. (2.22)

Now that we have a final expression for the action, we can apply the correspondence
in order to obtain the expectation values of the observables. Since the EOM are expressed
in momentum space, we first need to find the FT of expression for the expectation value:

〈O(p)O(p′)〉 =

∫
d4x

∫
d4x′ 〈O(x)O(x′)〉 eipxeip′x′ . (2.23)

The correspondence states that we ought to take the functional derivative of Z, the expo-
nential of the action. Since the functional derivative acts similarly to a normal derivative
(more specifically, the chain rule works as with normal derivative) it will create an inner
derivative of the action with respect to φ0(x) and leave the exponent unchanged. By choos-
ing the evaluation point carefully,, we can set the exponent to 0 (e0 = 1) and thus ignore
that factor. Expressing the expectation value explicitly in terms of action, we obtain

〈O(p)O(p′)〉 =

∫
d4x

∫
d4x′

δ2S[φ0(x′′)]

δφ0(x)δφ0(x′)
eipxeip

′x′ . (2.24)

We can express the action as a functional of the field in momentum space, φ̃0(k), the FT
of φ0(x). Using this formulation, we can ultimately get an expression of the observables’
expectation values devoid of integrals[2]

〈O(p)O(p′)〉 = (2π)4 δ(4)(p+ p′)
∂zfp(z)fp′(z)

z3

∣∣∣L1

L0

. (2.25)

We note that, due to the boundary conditions of fp(z), we need the field to dissappear at
the IR boundary (z = L1). This corresponds to either that the fields vanishes at infinity,
i.e., L1 = ∞, or that L1 is a finite number but that we demand ∂zfp(L1) = 0 in order to
reduce interfarence of the boundary. Using this we can rewrite the equation as (2.26) with
all z evaluated at the UV cutoff, z = L0

〈O(p)O(p′)〉 = − (2π)4 δ(4)(p+ p′)
∂zfp(z)fp′(z)

z3

∣∣∣
L0

. (2.26)
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2.4 Interactions

Let us continue with a more difficult action, consider the same action as before, equation
(2.11), but with added terms corresponding to interactions: i.e., equation (2.27).

S =

∫
d5x
√
g

[
1

2
gMN∂Mφ∂Nφ−

m2

2
(φ)2 − b

6
(φ)3 − λ

24
(φ)4

]
. (2.27)

The equations in this section will become very long, thus it is convenient to introduce
shorthand notation; i.e., φ’s dependence on xµ and z will not be written if it is not a
special case such as a boundary limit.

As before we take the given action and use the Euler-Lagrange equations in order to
obtain the EOM:

1
√
g
∂M(gMN√g∂Nφ) +m2φ+

b

2
(φ)2 +

λ

6
(φ)3 = 0, (2.28)

where we impose the boundary condition, φ(xµ, L0) = L0φ0(xµ), following from equation
2.7, for later use as well as ∂zφ(xµ, L1) = 0 in order to make the theory as insensitive
as possible to the IR boundary. While equation (2.28) looks nasty, we can simplify by
recognizing 1√

g
∂M(gMN√g∂N) = ∇2. Substituting this the equation becomes(

∇2 +m2
)
φ = − b

2
φ2 − λ

6
φ3. (2.29)

Unfortunately, there exist no nontrivial solution to the equation above, but we can find
one by solving the equation iteratively.

2.4.1 Iterative Solution

Start by expanding φ(xµ, z) in terms of an unknown parameter ε, which will be quivalent
to powers of φ0:

φ = εϕ′ + ε2ϕ′′ + ε3ϕ′′′ + · · · =
∞∑
n=0

εnϕ(n). (2.30)

Put this expression into the equation (2.29) to obtain

(
∇2 +m2

) (
εϕ′ + ε2ϕ′′ + · · ·

)
= − b

2

(
εϕ′ + ε2ϕ′′ + · · ·

)2 − λ

6

(
εϕ′ + ε2ϕ′′ + · · ·

)3
. (2.31)

We can now recognize the terms on the left–hand side with the terms on the right–hand
side which contain the same power in ε. This give rise to a system with infinite amounts
of equations, but we will only consider the first few. Written out explicitly, the equations
to solve is
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(
∇2 +m2

)
ϕ′ = 0,(

∇2 +m2
)
ϕ′′ = − b

2
(ϕ′)

2
,(

∇2 +m2
)
ϕ′′′ = −bϕ′ϕ′′ − λ

6
(ϕ′)

3
, (2.32)

with the following boundary conditions:

ϕ′(xµ, L0) = L0φ0(xµ),

ϕ′′(xµ, L0) = 0,

ϕ′′′(xµ, L0) = 0, (2.33)

as well as

∂zϕ
′(xµ, L1) = 0,

∂zϕ
′′(xµ, L1) = 0,

∂zϕ
′′′(xµ, L1) = 0. (2.34)

Even though this is an infinite series of equations, we only need the action to order (φ0)4

so the equations above are sufficient. The first iteration is solved by introducing a Green’s
function, K(z, x, x′). This function is in this context known as a bulk–to–boundary prop-
agator and has the following properties:

(
∇2 +m2

)
K(z, x, x′) = 0,

K(L0, x, x
′) = L0δ

(4)(x− x′),
∂zK(L1, x, x

′) = 0. (2.35)

With this the solution to the first equation becomes

ϕ′ =

∫
d4x′K(z, x, x′)φ0(xµ

′
). (2.36)

It can easily be shown that this solution, together with the definitions of K, satisfies equa-
tion (2.32). For the second iteration, we use the result obtained in the previous equation
and put that into equation (2.32). The second iteration is then solved by introducing a
bulk–to–bulk propagator, G(z, z′, x, x′), defined such that

(
∇2 +m2

)
G(z, z′, x, x′) =

δ(z − z′)δ(4)(x− x′)
√
g

,

G(L0, z
′, x, x′) = 0,

∂zG(L1, z
′, x, x′) = 0. (2.37)
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With these definitions, along with the boundary condition, we can write the solution to
equation (2.32) as

ϕ′′ =

∫
d5x′
√
gG(z, z′, x, x′)(− b

2
(ϕ′)2) = − b

2

∫
d5x′
√
gG(z, z′, x, x′)∫

d4x′′K(z′, x′, x′′)φ0(xµ
′′
)

∫
d4x′′′K(z′, x′, x′′′)φ0(xµ

′′′
). (2.38)

Note that the second order solution contains two factors of φ0(xµ). It is therefore said to
be of order O(φ2

0). With the bulk–to–boundary propagator and bulk–to–bulk propagator
defined all other iterations can be solved given enough time. e.g. the third iteration got
the following solution:

ϕ′′′ =
b2

2

∫
d5x′
√
gG(z, z′, x, x′)

∫
d4x′′K(z′, x′, x′′)φ0(x′′)×

×
∫
d5x′′′

√
gG(z′, z′′′, x′, x′′′)

∫
d4x(4)K(z′′′, x′′′, x(4))φ0(x(4))×

×
∫
d4x(5)K(z′′′, x′′′, x(5))φ0(x(5))−

− λ

6

∫
d5x′
√
gG(z, z′, x, x′)

∫
d4x′′K(z′, x′, x′′)φ0(x′′)×

×
∫
d4x′′′K(z′, x′, x′′′)φ0(x′′′)

∫
d4x(4)K(z′, x′, x(4))φ0(x(4)). (2.39)

As consistent with previous equations, the third iteration is O(φ3
0). Even though we need

the action to O(φ4
0) to construct the desired four–point function, there is no need to

calculate the fourth iteration.

2.4.2 Relation Between G and K

What we do need though, is a connection between the two propagators, G and K. This
will allow us to simplify the so called boundary term as discussed later. Start by looking
at the following expression:

∫
d5x
√
g[G(z, z′, x, x′)

(
∇2 +m2

)
K(z, x, x′′)−K(z, x, x′′)

(
∇2 +m2

)
G(z, z′, x, x′)].

(2.40)

From here we can do two things. First we can use the definitions of G and K, expressing
the terms containing (∇2 +m2) in a different way. Doing this we arrive at

∫
d5x
√
g

[
G(z, z′, x, x′) (0)−K(z, x, x′′)

(
δ(z − z′)δ(4)(x− x′)

√
g

)]
. (2.41)
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We see that the first term vanish due to the definition of K. For the second term, we can
integrate away the delta functions, which in the end gives∫

d5x
−√g
√
g
K(z, x, x′′)δ(z − z′)δ(4)(x− x′) = −K(z′, x′, x′′). (2.42)

But we could just as well take equation (2.40) and rewrite it as∫
d5x
√
g

[
G(z, z′, x, x′)∇2K(z, x, x′′)−K(z, x, x′′)∇2G(z, z′, x, x′)

]
. (2.43)

From here we can use Green’s second identity in order to obtain∫
d4x
√
γ[nMG(z, z′, x, x′)∂MK(z, x, x′′)−K(z, x, x′′)nM∂MG(z, z′, x, x′)]

∣∣∣L1

L0

,

(2.44)

where n̂L denote the five–dimensional vector normal to the boundary and γ denote the
determinant of the metric of the boundary. By definition the derivatives of the fields
vanish in the limit as z tend to L1. For the limit as z tend to L0, we can use the boundary
conditions of K and G, defined in (2.35) and (2.37), and obtain∫

d4x
√
γnMδ(4)(x− x′′)∂MG(L0, z

′, x, x′) =
√
γnM∂MG(L0, z

′, x′′, x′).

(2.45)

Since both (2.42) and (2.44) originates from the same equation, (2.40), we can equate them
and finally obtain

−K(z′, x′, x′′) =
√
γnM∂MG(L0, z

′, x′′, x′).

(2.46)

2.5 Three–point Function

The three–point function was derived in detail in [2]. We can derive it using the same
techniques sas below for the four–point function, but for the sake of brevity we will only
quote the results of the derivation:

〈O(x1)O(x2)O(x3)〉 = −b
∫
d4x

∫
dz
√
gK(z, x, x1)K(z, x, x2)K(z, x, x3). (2.47)

And the same equation transformed to momentum space:

〈O(p1)O(p2)O(p3)〉 = −b(2π)4δ4(p1 + p2 + p3)

∫
dz
√
gKp1(z)Kp2(z)Kp3(z). (2.48)
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2.6 Four–point Function

With the scalar field found in terms of bulk–to–boundary and bulk–to–bulk propagators,
we are ready to calculate the Four–point function. Start integrating by parts the action
(equation (2.27)) which gives

S =

∫
d4x

√
γ

2
φnL∂Lφ

∣∣∣∣
z=L0

+

∫
d5x
√
g

(
− 1

2
φ(∇2 +m2)φ− b

6
φ3 − λ

4!
φ4

)
.(2.49)

Note that the expression above contains (∇2 +m2)φ which, using equation (2.29), can be
traded for − b

2
φ2 − λ

6
φ3; i.e.,

S =

∫
d4x

√
γ

2
φnL∂Lφ

∣∣∣∣
z=L0

+

∫
d5x
√
g

(
− b
[

1

4
− 1

6

]
φ3 − λ

[
1

12
− 1

24

]
φ4

)
.(2.50)

We can split the action in three different sectors, perform calculation on each part sepa-
rately and in the end add together the sectors; i.e.,

STotal = SBoundary + Sb + Sλ. (2.51)

Each sector of the action must be expanded to order O(φ4
0) in order to give meaningful

results. For SBoundary, this means that φ must be expanded to third order, ϕ′′′, (Recall that
φ(xµ, L0) = L0φ0(xµ) is given as boundary condition). Exchanging φ with equation (2.39)
and using equation (2.46) results in

SBoundary =
b2

4

∫
d4xφ0(x)

∫
d4x′

∫
dz′
√
gK(z′, x, x′)

∫
d4x′′K(z′, x′, x′′)φ0(x′′)×

×
∫
d5x′′′

√
gG(z′, z′′′, x′, x′′′)

∫
d4x(4)K(z′′′, x′′′, x(4))φ0(x(4))×

×
∫
d4x(5)K(z′′′, x′′′, x(5))φ0(x(5))

− λ

12

∫
d4xφ0(x)

∫
dz′
√
gK(z′, x, x′)

∫
d4x′′K(z′, x′, x′′)φ0(x′′)

×
∫
d4x′′′K(z′, x′, x′′′)φ0(x′′′)

∫
d4x(4)K(z′, x′, x(4))φ0(x(4)).

(2.52)

Apply exactly the same calculations on the remaining sectors; i.e., expand Sb to the second
order, ϕ′′, and Sλ to first order, ϕ′, to obtain
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Sb =
b2

8

∫
d4x

∫
dz
√
g

∫
d4x′

∫
d4x′′

∫
d5x′′′

√
g

∫
d4x(4)

∫
d4x(5) ×

× K(z, x, x′)K(z, x, x′′)G(z, z′′′, x, x′′′)K(z′′′, x′′′, x(4))K(z′′′, x′′′, x(5))×
× φ0(x′)φ0(x′′)φ0(x(4))φ0(x(5)) +O(φ5

0)

(2.53)

and

Sλ =
1

12

∫
d4x

∫
dz
√
g

∫
d4x′K(z, x, x′)φ0(x′)

∫
d4x′′K(z, x, x′′)φ0(x′′)×

×
∫
d4x′′′K(z, x, x′′′)φ0(x′′′)

∫
d4x(4)K(z, x, x(4))φ0(x(4)). (2.54)

Note that all terms in the action with O(φ4
0) have either a factor λ followed by four bulk–

to–boundary propagators, or a factor b2 followed by a bulk–to–bulk propagator and 2× 2
bulk–to–boundary propagators. Adding together all sectors and rearranging coefficients
gives the final action

S =
b2

8

∫
d4x

∫
dz
√
g

∫
d4x′

∫
d4x′′

∫
d5x′′′

√
g

∫
d4x(4)

∫
d4x(5)

K(z, x, x′)K(z, x, x′′)G(z, z′′′, x, x′′′)K(z′′′, x′′′, x(4))K(z′′′, x′′′, x(5))×
× φ0(x′)φ0(x′′)φ0(x(4))φ0(x(5))−

− λ

24

∫
d4x

∫
dz
√
g

∫
d4x′

∫
d4x′′

∫
d4x′′′

∫
d4x(4)

K(z, x, x′)K(z, x, x′′)K(z, x, x′′′)K(z, x, x(4))φ0(x′)φ0(x′′)φ0(x′′′)φ0(x(4)).(2.55)

Now that the action is expressed in terms of propagators and the boundary field, it is
possible to evaluate the four–point function using the correspondence, or more precisely,
equation (2.10) with four operators:

δ4Z

δφ0(x1)δφ0(x2)δφ0(x3)δφ0(x4)
= 〈O(x1)O(x2)O(x3)O(x4)〉 . (2.56)

For the part of the action containing λ the calculation is straightforward. There are four
different fields in the expression and thus there are 4! ways of combining x, x′, x′′′ and x(4)

with x1, . . . , x4. The exact calculation can be found in section A.1, but essentially the
factor 1

24
is canceled, all fields φ0 are derived away and what is left (from the second term

of equation (2.55)) becomes

〈O(x1)O(x2)O(x3)O(x4)〉 = −λ
∫
d4x

∫
dz
√
gK(z, x, x1)K(z, x, x2)K(z, x, x3)K(z, x, x4).

(2.57)

The equation above can be interpreted as a Witten diagram depicted below.
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Figure 1: Equation (2.57) as a Witten diagram. The circle denotes the four–dimensional
boundary. The wavy lines denote bulk–to–boundary propagators (K). The diamond-
shaped dot denote a vertex with coupling strength −λ.

The first term of equation (2.55), the one including b2, is more tricky since it contains
a bulk–to–bulk propagator G. Because of this, we can not just assume all 4! combinations
are equivalent to each other. Similar to the case with λ, the full derivation is listed in the
appendix. The result from the calculations is

〈O(x1)O(x2)O(x3)O(x4)〉 =

= b2

∫
d4x

∫
dz
√
g

∫
d4x′

∫
dz′
√
g ×

× K(z, x, x1)K(z, x, x2)G(z, z′, x, x′)K(z′, x, x4)K(z′, x, x5) +

+ b2

∫
d4x

∫
dz
√
g

∫
d4x′

∫
dz′
√
g ×

× K(z, x, x1)K(z, x, x4)G(z, z′, x, x′′′)K(z′, x, x2)K(z′, x, x5) +

+ b2

∫
d4x

∫
dz
√
g

∫
d4x′

∫
dz′
√
g ×

× K(z, x, x1)K(z, x, x5)G(z, z′, x, x′)K(z′, x, x2)K(z′, x, x4). (2.58)

Note that the (square roots of the) determinants of the metric, g, are functions of z, z′, · · ·
and therefore cannot be extracted from the integrals. Yet again the result can be depicted
via Witten diagrams (see below). Each of the three terms in the equation above correspond
to similar looking albeit different diagrams.
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Figure 2: Equation (2.58) as a Witten diagram. The cirlce denote the four–dimensional
boundary. The wavy lines denote bulk–to–boundary propagators (K) while the zigzag–
line denotes bulk–to–bulk propagator (G). The diamond-shaped dots denote vertices with
coupling strength −b.

In general we can extract Witten rules (analogous to Feynman rules for Feynman dia-
grams) as follows:

1. Propagators

(a) For each line with one end in bulk and one in boundary: multiply by a bulk–
to–boundary propagator (K)

(b) For each line with both ends in bulk: multiply by a bulk–to–bulk propagator
(G)

2. Vertecies

(a) For each vertex that connects three lines: multiply by a factor −b
(b) For each vertex that connects four lines: multiply by a factor −λ

3. Integrate over possible positions for vertices by adding a factor
∫
d4x

∫
dz
√
g for each

vertex

Consider equation (2.57) (and (2.58)) which gives us the four–point function in position
space. Due to conservation laws, physicists are often more interested in the momentum
space (in this case the fifth dimension will remain in position space while the other four
transform via FT to momentum space). Thus apply Fourier Transform and arrive at
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〈O(p1)O(p2)O(p3)O(p4)〉 =

∫
d4x1

∫
d4x2

∫
d4x3

∫
d4x4 ×

× eip1x1eip2x2eip3x3eip4x4 〈O(x1)O(x2)O(x3)O(x4)〉 =

= −λ
∫
d4x

∫
dz
√
g

∫
d4x1

∫
d4x2

∫
d4x3

∫
d4x4 ×

× eip1x1eip2x2eip3x3eip4x4K(z, x, x1)K(z, x, x2)K(z, x, x3)K(z, x, x4).

(2.59)

From here we can use the fact that the bulk–to–boundary propagator is a function of the
distance between the four–dimensional arguments,(xi − x) ; i.e.,

− λ

∫
d4x

∫
dz
√
g

∫
d4x1

∫
d4x2

∫
d4x3

∫
d4x4e

ip1x1eip2x2eip3x3eip4x4 ×

× K(z, x1 − x)K(z, x2 − x)K(z, x3 − x)K(z, x4 − x). (2.60)

Now we can perform a suitable change of variables, yi = xi − x, in order to obtain

− λ

∫
d4x

∫
dz
√
g

∫
d4y1

∫
d4y2

∫
d4y3

∫
d4y4e

ip1y1eip2y2eip3y3eip4y4 ×

× eix(p1+p2+p3+p4)K(z, y1)K(z, y2)K(z, y3)K(z, y4). (2.61)

By making the following definitions:

δ(n)(f(k)) =

∫
dnx

(2π)n
eixf(k) (2.62)

and

Kpi(z) =

∫
d4yie

ipiyiK(z, yi), (2.63)

we can rewrite equation (2.61) as

−λ
∫
dz
√
g(2π)4δ(4)(p1 + p2 + p3 + p4)Kp1(z)Kp2(z)Kp3(z)Kp4(z). (2.64)

In a similar way, we can rewrite equation (2.58) as
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〈O(p1)O(p2)O(p3)O(p4)〉 = b2(2π)4δ(4)(p1 + p2 + p4 + p5)

×
[∫

dz
√
g

∫
dz′
√
gKp1(z)Kp2(z)Gp3(z, z

′)Kp4(z
′)Kp5(z

′) +

+

∫
dz
√
g

∫
dz′
√
gKp1(z)Kp4(z)Gp3(z, z

′)Kp2(z
′)Kp5(z

′) +

+

∫
dz
√
g

∫
dz′
√
gKp1(z)Kp5(z)Gp3(z, z

′)Kp2(z
′)Kp4(z

′)

]
.

(2.65)

Considering the same Witten diagrams as before, we can construct Witten rules in
momentum space:

1. Propagators

(a) For each line with one end in bulk and one in boundary: multiply by a bulk–
to–boundary propagator in momentum space (Kp)

(b) For each line with both ends in bulk: multiply by a bulk–to–bulk propagator in
momentum space (Gp)

2. Vertices

(a) For each vertex that connects 3 lines: multiply by a factor −b
(b) For each vertex that connects 4 lines: multiply by a factor −λ

3. For each vertex: multiply by a factor of (2π)4δ(4)(Σipi) because of conservation of
momentum

4. Integrate over possible positions in z for vertices by adding a factor
∫
dz
√
g for each

vertex

1q

2.7 Equations of Motion

As a final step, we need to find what equations the bulk–to–boundary (and bulk–to–
bulk) propagators obey in momentum space. One way to do this is to solve equation
(2.35) (or equation (2.37) for bulk–to–bulk propagator) in position space and use FT to
convert result into momentum space. However, this is a long and tedious process and
while it in the end gives the correct result, so does a possible shortcut. It is easier to first
use FT on equation (2.35) in order to get the equation the bulk–to–boundary propagator
in momentum space satisfies and then solve the equation from there. Recall what the
Laplacian was replaced with in order to obtain
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(
1
√
g
∂M(gMN√g∂N) +m2

)
K(z, y) = 0. (2.66)

Split the derivative into one z-dependent and one xµ-dependent part and insert the z-
dependence from the metric explicitly to get

(
z2∂µ∂µ − z5∂z(

1

z3
∂z) +m2

)
K(z, y) = 0. (2.67)

Evaluate the second term in the parenthesis, which gives

(
z2∂µ∂µ − z2∂z∂z + 3z∂z +m2

)
K(z, y) = 0, (2.68)

and after the FT the equation becomes

(
−z2p2 − z2∂z∂z + 3z∂z +m2

)
Kp(z) = 0. (2.69)

Since the right hand side is nonzero for the bulk–to–bulk propagator, the calculation nat-
urally becomes a bit longer. FT of the right hand side gives

∫
d4yeipyz5δ(4)(y)δ(z − z′) = z5δ(z − z′)

∫
d4yδ(4)(y)eipy

= z5δ(z − z′). (2.70)

In the same way, the FT of the boundary conditions gives

Kp(z) = L0, (2.71)

Gp(z, z
′) = 0. (2.72)

Divide equation (2.69) and (2.70) through by z2 to obtain the equations

(
−∂z∂z +

3

z
∂z − p2 +

m2

z2

)
Kp(z) = 0, (2.73)(

−∂z∂z +
3

z
∂z − p2 +

m2

z2

)
Gp(z, z

′) = z3δ(z − z′). (2.74)
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3 Results

Let us gather together all the results we have derived so far. We note that Kp(z), Gp(z, z
′)

as well as φ̃p(z), the FT of φ(xµ, z), defined by

φ̃p(z) =

∫
d4xe−ipxφ(xµ, z), (3.1)

are all functions of z which obeys the same equation, equation (2.73) albeit different bound-
ary conditions. I.e., for φ̃p(z) we need

φ̃p(z) = 0 at z = L0,

∂zφ̃p(z) = 0 at z = L1, (3.2)

for the bulk–to–boundary propagator Kp(z) we need

Kp(z) = L0 at z = L0,

∂zKp(z) = 0 at z = L1, (3.3)

and for the bulk–to–bulk propagator Gp(z, z
′) we need

Gp(z, z
′) = 0 at z = L0,

∂zGp(z, z
′) = 0 at z = L1,

Gp(z+, z
′) = Gp(z−, z

′) at z = z′,

∂zGp(z+, z
′)− ∂zGp(z−, z

′) = −(z′)3 at z = z′. (3.4)

where we have made the following definitions:

z− = lim
z→z′
z<z′

z

z+ = lim
z→z′
z>z′

z (3.5)

The third condition from equation (3.4) comes from continuity at the point z = z′. The
fourth condition is a bit trickier. Starting from equation (2.74), we can integrate both sides
of the equation between z′ − ε and z′ + ε, i.e.,

z′+ε∫
z′−ε

(
−∂z∂z +

3

z
∂z − p2 +

m2

z2

)
Gp(z, z

′)dz =

z′+ε∫
z′−ε

z3δ(z − z′)dz. (3.6)
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Using a defining property of the delta function we can calculate the right side to be

z′+ε∫
z′−ε

z3δ(z − z′)dz = (z′)3. (3.7)

The left hand side is more complicated. We need to use partial integration on the first
term in order to obtain

z′+ε∫
z′−ε

(
−∂z∂z +

3

z
∂z − p2 +

m2

z2

)
Gp(z, z

′)dz = −∂zGp(z, z
′)

∣∣∣∣z=z+
z=z−

+ · · · (3.8)

where, after some calculation, the remaining terms will be of order ε and vanish. Equating
the left and right side gives

−∂zGp(z, z
′)

∣∣∣∣z=z+
z=z−

= (z′)3 (3.9)

which, when evaluated at boundaries, gives the fourth condition.
We see that both of the differential equations given in (2.73) and (2.74) closely resembles
the Bessel equation, but not quite. By a slight modification of respective propagator we
hope to rewrite the equations as Bessels equation,

(
z2∂2

z + z∂z + z2 − ν2
)
y(z) = 0. (3.10)

The equation is of second order in ∂z, and thus two independent solutions, defined as Jν(z)
and Yν(z) exists. We can write the full solution as a superposition of the independent
solutions, i.e.,

y(z) = AJν(z) +BYν(z), (3.11)

for some constants A and B. Back to (2.73), we try to make it look like (3.10) by rewriting
the propagator as Kp(z) = znfp(pz) for some n. The derivatives are now acting on the
product of z2 and fp(pz) and must be evaluated according to the Leibnitz rule. The
resulting differential equation becomes

zn−2

[
z2∂z∂z + (2n− 3)z∂z + p2z2 + (n(n− 1)− n−m2)

]
fp(pz). (3.12)

From here it is obvious that n = 2 which gives
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[
z2∂z∂z + z∂z + p2z2 − (m2 + 4)

]
fp(pz). (3.13)

Recall that the five–dimensional mass is given by the equation m2 = ∆(∆ − 4).Since in
this case ∆ = 3 we must set m2 + 4 = 1. This leads to the solution to (3.13) as

fp(pz) = AJ1(pz) +BY1(pz), (3.14)

where A and B are given by the boundary conditions set by equations ((3.2) – (3.4)) and
p =

√
p2.

Before we need to find the value of the constants we make a short note here. The
momentum p in equation (3.12) is actually short notation for four–momentum (recall the
four–dimensional FT made in equation (2.69)), which, using the metric of AdS space, may
be negative. A direct implication of this is that the four–momentum squared may be
negative. We can find those solutions by performing the substitution

√
p2 →

√
−p2, on

equation (3.13).This gives us the so called modified Bessel equation:

[
z2∂z∂z + z∂z − (pz)2 − (m2 + 4)

]
fp(pz). (3.15)

The solution of the differential equation above can once again be written in terms of two
linearly independent functions, most commonly known as the modified Bessel Functions.
m2 + 4 must still be equal to 1 since we are still dealing with the same object. Thus the
solution is given by

fp(pz) = CI1(pz) +DK1(pz). (3.16)

where C and D are constants given by boundary conditions. Returning to (3.14), we can
find the constants A and B by using the boundary conditions in order to obtain a system
of equations. In order to evaluate one of the boundaries we need to know the derivative of
J1(z), Y1(z) and so on. The derivatives of Bessel functions can be found in[5] to be

(
1

z

d

dz

)k(
zνJν(z)

)
= zν−kJν−k(z). (3.17)

The equation above holds for Yν(z) and Iν(z). In the case of Kν(z) the identity is similar,
but differ with a minus sign, i.e.

(−1)k
(

1

z

d

dz

)k(
zνKν(z)

)
= zν−kKν−k(z). (3.18)
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Set ν = 1 and k = 1 to obtain

1

z

d

dz

(
zJ1(z)

)
= J0(z). (3.19)

For us, the interesting case is given by equation (3.3). Expand the parenthesis, using the
Leibniz rule, e.g.,

∂z(z[zJ1(z)]) = [zJ1(z)] + z[zJ0(z)] (3.20)

Using this we can set up an expression for the coefficients A and B:

AL0
2J1(pL0) + BL0

2Y1(pL0) = L0,

A(L1J1(pL1) + pL2
1J0(pL1)) + B(L1Y1(pL1) + pL2

1Y0(pL1)) = 0. (3.21)

Using shorthand notation, ηJ = L2
0J1(pL0) and ξJ = (L1J1(pL1)+pL2

1J0(pL1)), where η and
ξ are functions of four–momentum, and similar definitions made for the terms containing
Bessel functions of second kind, i.e., ηY and ξY , we can write the expression as:

AηJ +BηY = 0 or L0,

AξJ +BξY = 0. (3.22)

3.1 Bound States

In order for a bound state to appear we must demand that equation (3.2) are linearly
dependent; Only then will we get an interesting, nonzero solution. If they are linearly
dependent can be checked using a determinant, i.e.,

∣∣∣∣ ηY ηJ
ξY ξJ

∣∣∣∣ = 0. (3.23)

The determinant evaluates to

ηY ξJ − ηJξY = 0. (3.24)

Whenever the above equation is satisfied there is a bound state.
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3.2 Bulk–to–boundary Propagator

We note that, solving for constants A and B, (3.22), belonging to the solution of the
bulk–to–boundary propagator, yields

A =
−ξY

ηY ξJ − ηJξY
, (3.25)

B =
ξJ

ηY ξJ − ηJξY
. (3.26)

Note that the poles correspond exactly to the bound states satisfying (3.24). These zeroes
can be found numerically, which we will come to later. Using the newly found constants
A and B, we can write the bulk–to–bulk propagator as

Kp(z) = z2 ξJY1(pz)− ξY J1(pz)

ηY ξJ − ηJξY
(3.27)

3.3 Two–point Function

We now wish to calculate the two–point–function of Kp(z) using the expression given by
(2.25), i.e.,

Π(p2) = 〈O(p)O(p′)〉 = −∂zKp(z)Kp′(z)

z3

∣∣∣
L0

. (3.28)

We see that for discrete values of p the denominator of Kp(z) tends to zero and the
propagator becomes infinite. This equates to the expression

Π(p2) =
∞∑
n=0

Res(Π(p2))n
p2 −m2

n

. (3.29)

Where Π(p2) is the two–point function and Res(Π(p2))n is the residue of the nth pole. I.e.,
every singularity of Kp(z) corresponds to a particle with mass mn. Equation (3.29) is
known as the not subtracted dispersion relation.

While at it, we introduce the so called once subtracted dispersion relation, given by
equation (3.30), as well as the twice subtracted dispersion relation, (3.31).

Π(p2) = Π(0) + p2
∑
n

Res(Π(m2
n))

m2
n(p2 −m2

n)
. (3.30)

´

Π(p2) = Π(0) + p2Π′(0) + p4
∑
n

Res(Π(m2
n))

m4
n(p2 −m2

n)
.
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How these formulas are derived can be found in detail in appendix (A.3). Take a closer
look at (3.27), more specifically, the denominator,

ηY ξJ − ηJξY = L0
2L1

[
Y1(pL0)[J1(pL1) + pL1J0(pL1)]−

− J1(pL0)[Y1(pL1) + pL1Y0(pL1)]

]
. (3.31)

The equation above becomes zero for discrete values of p. These zeroes equates to the
poles of Kp(z). Unfortunately, there exist no analytical solution, so in order to find the
masses; the equation must be solved numerically. We are luckier when it comes to the
residues – they can be found analytically. Looking at (3.29), we can multiply both sides
by the denominator and obtain

Res(Π(p2))n = lim
p2→m2

n

Π(p2)(p2 −m2
n). (3.32)

We know that Π(p2) is a function proportional to Kp(z) which in turn we can write as
fraction of functions, i.e.,

Res(Π(p2))n = lim
p2→m2

n

f(p2)

g(p2)
(p2 −m2

n). (3.33)

Where g(p2)
∣∣∣
p2=m2

n

= 0. We can Taylor expand g(p2) near the pole in order to obtain

Res(Π(p2))n = lim
p2→m2

n

f(p2)(p2 −m2
n)

g(m2
n) + (p2 −m2

n)g′(m2
n) + . . .

. (3.34)

But g(m2
n) = 0, so the expression simplifies, after truncating higher order terms, to

Res(Π(p2))n = lim
p2→m2

n

f(p2)

g′(m2
n)

=
f(m2

n)

g′(m2
n)
. (3.35)

Once we obtained the residues we can use them to easily find the decay constant, which in
standard field theories are defined by:

f = 〈0|O(pn)|φn〉 =
√

Res(Π(p2))n. (3.36)
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3.4 Three–point Function

We can play the same game with the three–point function as with the two–point function.
The difference being that there is much more calculation involved, including an integral
over z that must be evaluated (recall equation (2.48)). We can use the results, e.g., masses
and decay constants, found numerically by simulating the two–point function in order to
find new results, e.g., coupling constants λijk. From equation (2.48) we got

〈O(p1)O(p2)O(p3)〉 = −b(2π)4δ4(p1 + p2 + p3)

∫
dz
√
gKp1(z)Kp2(z)Kp3(z). (3.37)

where pn are momentum corresponding to the mass of the nth particle. Using the fact that
Kp(z) can be rewritten as a sum over all n, i.e.,

Kp(z) =
∞∑
n=0

Res(Kpn(z))

p2 −m2
n

, (3.38)

we can then write the z-dependence of the integral as

∫
dz

1

z5
Res (Kp1(z)) Res (Kp2(z)) Res (Kp3(z)). (3.39)

Just like in the case with the two–point function, we can rewrite the three–point function
as a sum over all poles. This time though, we must multiply by the coupling constant that
corresponds to the vertex in a Witten diagram. The resulting expression becomes

〈O(p1)O(p2)O(p3)〉 =
∞∑
i,j,k

λijk
fi

p2
1 −m2

i

fj
p2

2 −m2
j

fk
p2

3 −m2
k

, (3.40)

with f defined by equation (3.36). Using this we can get the value of the coupling con-
stant by calculating the integral (numerically) and divide by the appropriate decay factors,
mathematically written as:

λijk =
1

fifjfk

∫
dz

1

z5
Res (Kp1(z)) Res (Kp2(z)) Res (Kp3(z)). (3.41)

Finally we would like to use λijk in order to find the form factor, F (p2
3), which in

standard field theories are defined by

F (p2
3) = 〈φi|O(p3)|φj〉 =

∑
k

λijkfk
p2

3 −m2
k

(3.42)
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4 Numerical Results

The results are obtained by computing the derived equations using numerical values.
For the IR–cutoff, L1, we used the value L1 = 1

0.2
GeV−1, a cutoff in the same region of

energy as 1
ΛQCD

. For the UV–cutoff, L0, we used L0 = 1
10

GeV−1 as an upper bound.

Root nr. Mass [GeV ] Residue decay constant

1 0.54734 0.09140 0.30233
2 1.14022 0.87315 0.93442
3 1.75792 3.14881 1.77449
4 2.38336 7.58235 2.75361
5 3.01242 14.68070 3.83154
6 3.64366 24.81338 4.98130
7 4.27638 38.23924 6.18379
8 4.91024 55.13265 7.42514
9 5.54497 75.60575 8.69516
10 6.18042 99.72618 9.98630

Table 1: Table showing results gathered from simulating two–point function using a bulk–
to–boundary propagator.

Table 1 lists the first ten numerically found bound states together with their corresponding
decay constant. Making variations in L0 shows that the mass stays fairly constant while
the residues, and thus the decay constants, changes greatly for the bound states close to
1
L0

.

State i State j State k λijk

1 1 1 -0.2933
2 1 1 0.0100
2 2 1 -0.2535
2 2 2 -0.1650
3 1 1 0.0304
3 2 1 0.0348
3 2 2 -0.1945
3 3 1 -0.2445
3 3 2 -0.1534
3 3 3 -0.1578

Table 2: Table showing results gathered from simulating three–point function using bulk–
to–boundary propagators.

Table 2 lists the coupling constants of the first few bound states. Since λijk is symmetric,
all permutations of the three first bound states are found in the table.
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Figure 3: Plot showing the two–point function as well as the first dispersion relations
calculated using first three poles.

-100

-50

 0

 50

 100

-4 -3 -2 -1  0  1  2  3  4

p
2
 [GeV

2
]

Not subtracted

Once subtracted

Twice subtracted

Figure 4: Plot showing the difference between the two–point function and the first disper-
sion relations calculated using the first three poles.
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Figure 5: Plot showing the difference between the two–point function and the first disper-
sion relations calculated using the first ten poles.
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Figure 6: Plot showing the form factor F (p2
3) using equation (3.42) with i = 0 and j = 0.
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In figure 3, we see that the twice subtracted dispersion relation is, as predicted, a
better approximation to the two–point function compared to the once subtracted dispersion
relation. We see that if only the three first bound states are considered the once subtracted
dispersion relation is not a good approximation to use (too big error). The not subtracted
dispersion relation is not plotted because it is simply not visible with the given y–axis,
the not subtracted function’s value lies around y = 0. As expected, both approximations
fail to copy the two–point function shortly after the last pole is found. This is of course
because the numerically calculated sum, equation (3.29), which is finite, has run out of
terms.

In figure 4 the difference between a given approximation and the two–point function
are plotted. Here we can see how the not subtracted dispersion relation fails to even come
close to the two–point function. Yet again it is obvious that the twice subtracted disper-
sion relation is much better than the once subtracted. The failure of the not subtracted
dispersion relation comes from the fact that the contour integral, see equation (A.22), is
nonzero – in fact it contributes with an infinite constant since the integral diverges for
Π(k2).

Figure 5 describes the same scenario as the previous figure. However, the number of
bound states taken into consideration has grown, from 3, to 10. We note that while the
green line (corresponding to the not subtracted relation) lies closer to the other lines it is
still very far away. All lines in this plot are more flat compared to the corresponding lines
in figure 4, which is to be expected – using more bound states in the approximation gives
a better result.

Figure 6 shows the form factor as a function of momentum. We see that the not
subtracted dispersion relation follows the curve very well this time, albeit not as good as
neither the once subtracted nor the twice subtracted dispersion relation.
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5 Conclusions

We have successfully derived the four–point function for a simple interacting scalar field
in five–dimensional AdS space. We have also introduced Witten diagrams, a tool used to
graphically represent n–point functions.

From our results deriving the two–point function we have found an explicit expression
for a bulk–to–boundary propagator describing a scalar field in AdS space. Using this
expression we have numerically found bound states as well as their corresponding decay
factors.

From here we derived the not subtracted, once subtracted, and twice subtracted dis-
persion relations and used these to see how fast the sums to converge. These can be seen
as a test of so called meson dominance of the two–point function. We see that the not
subtracted dispersion relation does not fit the two–point function at all and the once sub-
tracted dispersion relation, while it is better, does not give satisfying results when only a
few bound states are considered.

We also took a look at the three-point function and derived the coupling constants for
the first few bound states. Finally we used some of the coupling constants to find a form
factor, F (p2

3). Here the not subtracted dispersion relation works very well, i.e., it follows
the curve given by the form factor very well.

5.1 Outlook

This thesis concentrates to only look at a scalar field, φ(xµ, z), living in five-dimensional
AdS space. As an obvious extension to this thesis one can derive the explicit expression
for the bulk–to–bulk propagator, G(x, x′, z, z′) and use this to numerically calculate the
four–point function in a similar way the numerical results of the three–point function are
obtained.

Another possible extension is that one can introduce vector fields, as done in [2, 3].
Using vector theory one may obtain theoretical results such as different meson masses,
e.g., pion, kaon, etc. as well as the pion form factor [3].
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A Appendices

A.1 Four–point Function; term containing λ

Start from second term in (2.55); I.e.,

S = − λ

24

∫
d4x

∫
dz
√
g

∫
d4x′

∫
d4x′′

∫
d4x′′′

∫
d4x(4)K(z, x, x′)×

× K(z, x, x′′)K(z, x, x′′′)K(z, x, x(4))φ0(x′)φ0(x′′)φ0(x′′′)φ0(x(4)).

(A.1)

Introduce the very short notation, K(z, x, x(n)) = Kn, φ0(x(n)) = φn, as well as δφ0(x(n)) =
δφn and omitting the integrals. Also define a new notation for derivation, i.e.;

δ(Kmφn)

δφn
= Kn (A.2)

With all definitions made we can start by writing out the action:

S = − λ

24
K1K2K3K4φ1φ2φ3φ4. (A.3)

For the first derivative, we got four choices of K. This leads to four different terms:

δZ

δφ1

= − λ

24

[
K1K

2K3K4φ2φ3φ4 +K1K1K
3K4φ1φ3φ4 +

+ K1K2K1K
4φ1φ2φ4 +K1K2K3K1φ

1φ2φ3

]
. (A.4)

For the second derivative, there are three choices left for each term generated by the first
derivative, increasing the amount of terms to twelve.

δ2Z

δφ1δφ2

= − λ

24

[
+K1K2K

3K4φ3φ4 +K1K
2K2K

4φ2φ4 +K1K
2K3K2φ

2φ3 +

+K2K1K
3K4φ3φ4 +K1K1K2K

4φ1φ4 +K1K1K
3K2φ

1φ3 +

+K2K
2K1K

4φ2φ4 +K1K2K1K
4φ1φ4 +K1K2K1K2φ

1φ2 +

+K2K
2K3K1φ

2φ3 +K1K2K
3K1φ

1φ3 +K1K2K3K1φ
1φ2

]
.

(A.5)
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The pattern continues for the third derivative, yielding

δ3Z

δφ1δφ2δφ3

= − λ

24

[
+K1K2K3K

4φ4 +K1K3K2K
4φ4 +K1K3K

3K2φ
3 +

+K1K2K
3K3φ

3 +K1K
2K2K3φ

2 +K1K
2K3K2φ

2 +

+K2K1K3K
4φ4 +K3K1K2K

4φ4 +K3K1K
3K2φ

3 +

+K2K1K
3K3φ

3 +K1K1K2K3φ
1 +K1K1K3K2φ

1 +

+K2K3K1K
4φ4 +K3K2K1K

4φ4 +K1K
2K1K2φ

2 +

+K2K
2K1K3φ

2 +K1K2K1K3φ
1 +K1K2K1K2φ

1 +

+K2K3K
3K1φ

3 +K3K2K
3K1φ

3 +K1K
2K3K1φ

2 +

+K2K
2K3K1φ

2 +K1K2K3K1φ
1 +K1K2K3K1φ

1

]
.

(A.6)

Finally, in order to obtain the four–point function, we take the fourth derivative with
respect to the last field left and thus obtain

δ4Z

δφ1δφ2δφ3δφ4

= − λ

24

[
+K1K2K3K4 +K1K3K2K4 +K1K3K4K2 +K1K2K4K3 +

+K1K4K2K3 +K1K4K3K2 +K2K1K3K4 +K3K1K2K4 +

+K3K1K4K2 +K2K1K4K3 +K4K1K2K3 +K4K1K3K2 +

+K2K3K1K4 +K3K2K1K4 +K1K4K3K2 +K2K4K1K3 +

+K4K2K1K3 +K4K3K1K2 +K2K3K4K1 +K3K2K4K1 +

+K2K4K3K1 +K2K4K3K1 +K4K2K3K1 +K4K2K3K1

]
.

(A.7)

We see that all possible permutations of K1K2K3K4 appear in the final expression. Since
the order of which the factors appear does not matter, there are effectively 4! = 24 identical
terms added together. Using this property, the factor 1

24
cancels, and what is left is

δ4Z

δφ1δφ2δφ3δφ4

= −λK1K2K3K4. (A.8)

Going back to full-length notation and recognizing the four–point function, the final result
becomes
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〈O(x1)O(x2)O(x3)O(x4)〉 = −λ
∫
d4x

∫
dz
√
gK(z, x, x1)K(z, x, x2K(z, x, x3)K(z, x, x4).

(A.9)

A.2 Four–point Function; term containing b2

Start from second term in (2.55); I.e.,

S =
b2

8

∫
d4x

∫
dz
√
g

∫
d4x′

∫
d4x′′

∫
d5x′′′

√
g

∫
d4x(4)

∫
d4x(5)K(z, x, x′)×

× K(z, x, x′′)G(z, z′′′, x, x′′′)K(z′′′, x′′′, x(4))K(z′′′, x′′′, x(5))

× φ0(x′)φ0(x′′)φ0(x(4))φ0(x(5)). (A.10)

Reintroduce the very short notation, K(z, x, x(n)) = Kn, G(z, z(n), x, x(n)) = Gn, φ0(x(n)) =
φn as well as δφ0(x(n)) = δφn and omitting the integrals. Rewrite the expression as

S =
b2

8
K1K2G3K4K5φ1φ2φ4φ5. (A.11)

Start by taking the first derivative

δZ

δφ1

=
b2

8

[
K1K

2G3K4K5φ2φ4φ5 +K1K1G
3K4K5φ1φ4φ5 +

+ K1K2G3K1K
5φ1φ2φ5 +K1K2G3K4K1φ

1φ2φ4

]
,

(A.12)

followed by the second derivative

δ2Z

δφ1δφ2

=
b2

8

[
K1K2G

3K4K5φ4φ5 +K1K
2G3K4K

5φ2φ5 +K1K
2G3K4K5φ

2φ4 +

+ K2K1G
3K4K5φ4φ5 +K1K1G

3K2K
5φ1φ5 +K1K1G

3K4K2φ
1φ4 +

+ K4K
2G3K1K

5φ2φ5 +K1K4G
3K1K

5φ1φ5 +K1K2G3K1K4φ
1φ2 +

+ K5K
2G3K4K1φ

2φ4 +K1K5G
3K4K1φ

1φ4 +K1K2G3K5K1φ
1φ2

]
.

(A.13)

After the third derivative we obtain
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δ3Z

δφ1δφ2δφ3

=
b2

8

[
K1K2G

3K4K
5φ5 +K1K4G

3K2K
5φ5 +K1K4G

3K4K2φ
4 +

+ K1K2G
3K4K4φ

4 +K1K
2G3K2K4φ

2 +K1K
2G3K4K2φ

2 +

+ K2K1G
3K4K

5φ5 +K4K1G
3K2K

5φ5 +K4K1G
3K4K2φ

4 +

+ K2K1G
3K4K4φ

4 +K1K1G
3K2K4φ

1 +K1K1G
3K4K2φ

1 +

+ K2K4G
3K1K

5φ5 +K4K2G
3K1K

5φ5 +K4K
2G3K1K2φ

2 +

+ K2K
2G3K1K4φ

2 +K1K2G
3K1K4φ

1 +K1K4G
3K1K2φ

1 +

+ K2K4G
3K4K1φ

4 +K4K2G
3K4K1φ

4 +K4K
2G3K2K1φ

2 +

+ K2K
2G3K4K1φ

2 +K1K2G
3K4K1φ

1 +K1K4G
3K2K1φ

1

]
.

(A.14)

Finally the fourth derivative gives us the expression

δ4Z

δφ1δφ2δφ3δφ4

=
b2

8

[
K1K2G

3K4K5 +K1K4G
3K2K5 +K1K4G

3K5K2 +

+ K1K2G
3K5K4 +K1K5G

3K2K4 +K1K5G
3K4K2 +

+ K2K1G
3K4K5 +K4K1G

3K2K5 +K4K1G
3K5K2 +

+ K2K1G
3K5K4 +K5K1G

3K2K4 +K1K1G
3K4K2 +

+ K2K4G
3K1K5 +K4K2G

3K1K5 +K4K5G
3K1K2 +

+ K2K5G
3K1K4 +K5K2G

3K1K4 +K5K4G
3K1K2 +

+ K2K4G
3K5K1 +K4K2G

3K5K1 +K4K5G
3K2K1 +

+ K2K5G
3K4K1 +K5K2G

3K4K1 +K5K4G
3K2K1

]
.

(A.15)

As expected, all different permutations of K1K2G
3K4K5, with G3 fixed, appears in the final

expression. Since the order in which the factors appear does matter when it comes to G
and K, but not between K and K, there are some symmetries that can be used. Essentially
there exists three main types of terms in the equation above and we can classify them,
looking at if K1 and K2, K1 and K4 or K1 and K5 are on the same side of G3. Looking at
the terms in the equation above, we see that there are eight cases when K1 and K2 are on
the same side of G3 (Note that it doesn’t matter if they are to the left or to the right, nor
does it matter if K1 is before or after K2). By symmetries, there exist 8 cases of the other
types as well. This in the end cancels the factor 1

8
in all cases and we are left with

δ4Z

δφ1δφ2δφ3δφ4

= b2[K1K2G
3K4K5 +K1K4G

3K2K5 +K1K5G
3K2K4].

(A.16)
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Going back to full length notation, recognizing the four–point function and relabel d5x′′′

as d5x′, the final result becomes

〈O(x1) . . .O(x4)〉 =

= b2

∫
d4x

∫
dz
√
g

∫
d5x′
√
g ×

× K(z, x, x1)K(z, x, x2)G(z, z′, x, x′)K(z′, x, x4)K(z′, x, x5) +

+ b2

∫
d4x

∫
dz
√
g

∫
d5x′
√
g ×

× K(z, x, x1)K(z, x, x4)G(z, z′, x, x′)K(z′, x, x2)K(z′, x, x5) +

+ b2

∫
d4x

∫
dz
√
g

∫
d5x′
√
g ×

× K(z, x, x1)K(z, x, x5)G(z, z′, x, x′)K(z′, x, x2)K(z′, x, x4).

(A.17)

A.3 Derivation of the Dispersion Relation for the Two–point
Function

First note that π(k2) can be plotted on the plane of complex k2 with poles along the real
axis. This means that we can use Cauchy’s integral theorem to calculate the value of π(k2)
in every point, excluding the poles. I.e.,

Π(k2) =
1

2πi

∮
C

ds
Π(s)

s− k2
. (A.18)

This formula is valid for any curve, evaluated counter–clockwise, enclosing the point k2

and not containing any of the singularities of Π(k2). Thus we can extend the border of
the curve to infinity in all directions, but we have to be careful along the real axis since
we can not pass through any poles. Recall that we are allowed to deform the curve in any
way we want, so we can choose a curve with a branch cut of thickness ε to form what is
called a keyhole contour. By letting ε tend to zero we get our original curve, now moved
to infinity, plus all poles we encountered, evaluated clockwise, i.e

Π(k2) =
1

2πi

∮
C∞

ds
Π(s)

s− k2
+
∑
n

−1

2πi

∮
Cn

ds
Π(s)

s− k2
. (A.19)

Where the minus sign comes from evaluating the contour integrals clockwise. The sum is
over all poles not enclosed by the original curve. We would like to express the integral
inside the sum in a different way if possible. Note that the integrand can be rewritten as
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Π(s)

s− k2
=

Res(Π(s)n)

(s−m2
n)(m2

n − k2)
+ . . . . (A.20)

Where Res(π(s)n) denotes the residue. Inserting this into equation (A.19) gives

Π(k2) =
1

2πi

∮
C∞

ds
Π(s)

s− k2
−
∑
n

1

2πi(m2
n − k2)

∮
Cn

ds
Res(Π(s)n)

(s−m2
n)

. (A.21)

We can use Cauchy’s theorem to identify the integral in the sum as 2πiRes(π(m2
n)) which

leads to

Π(k2) =
1

2πi

∮
C∞

ds
Π(s)

s− k2
−
∑
n

Res(Π(m2
n))

(m2
n − k2)

. (A.22)

Equation (A.22) is known as the unsubtracted dispersion relation. The first term, the
integral, is a constant whose value could be anything. The second term is a sum which
for a certain k2 converges proportional to 1

m2
n
. Since the sum is evaluated numerically we

can not have infinite amount of terms in it, even though there exist an infinite amount of
poles. Therefore we would like the sum to converge as fast as possible. Introduce a new
function, π̃(s), defined as

Π̃(s) =
Π(s)− Π(0)

s
. (A.23)

Note that there is no new pole in the limit as s tends to zero which can be easily verified,
e.g., using l’Hôpital’s rule. The corresponding residue for the new function is given by:

Res(Π̃(s))
∣∣∣
s=m2

n

=
Res(Π(s))

m2
n

. (A.24)

Replace Π(s) with Π̃(s) in (A.22) to obtain:

Π(k2)− Π(0)

k2
=

1

2πi

∮
C∞

ds
Π(s)− Π(0)

s(s− k2)
−
∑
n

Res(Π(m2
n))

m2
n(m2

n − k2)
. (A.25)

Which can be rewritten so that Π(k2) is alone on the left side, i.e.

Π(k2) = Π(0) + k2

[
1

2πi

∮
C∞

ds
Π(s)− Π(0)

s(s− k2)
−
∑
n

Res(Π(m2
n))

m2
n(m2

n − k2)

]
. (A.26)
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(A.26) is known as the once subtracted dispersion relation. Yet again we have an integral
which evaluates to some constant, but now the sum converges faster than before, pro-
portional to 1

m4 . We can play the same game by defining a new function, ˜̃π(s) defined
as

˜̃Π(s) =
Π̃(s)− Π′(0)

s
=

Π(s)− Π(0)− sΠ′(0)

s2
. (A.27)

Using l’Hôpital’s rule shows that no new pole has been added. Following the exact same
procedure as before leads to

Π(k2)− Π(0)− k2Π′(0)

k4
=

1

2πi

∮
C∞

ds
Π(s)− Π(0)− sΠ′(0)

s2(s− k2)
−
∑
n

Res(Π(m2
n))

m4
n(m2

n − k2)
.

(A.28)

Not surprisingly this is known as the twice subtracted dispersion relation.
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