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Abstract

In tomorrow’s vehicle industry vehicles will have the ability to communicate and
cooperate with each other in order to avoid collisions and provide useful informa-
tion to each other. However, for this cooperation to be possible all vehicles will
have to be equipped with compatible wireless 802.11p modules that implement the
ITS-G5 standard. During the implementation phase of the system there will be
plenty of older vehicles without such equipment.

This thesis addresses this problem by developing the hardware and software for a
road side unit called Drive ITS. It consists of a universal medium range radar that
detects older vehicles, a 802.11p modem that forwards their position and speed
vectors to newer vehicles and an embedded system that utilizes and integrates
those two parts.

The hardware for the embedded system is divided in two main parts; a microcon-
troller board and a single-board microcomputer. The software is written in two
programming languages; C++ for the microcontroller and Java for the microcom-
puter.

Tests have been performed by comparing Drive ITS results to results from other
vehicles that already implement the ITS-G5 standard and it has been confirmed
that the system works as it was intended to.

This solution will prevent potential accidents of newer ITS-G5 vehicles with older
ordinary vehicles thus saving human lives.
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Chapter1
Introduction

1.1 Background

Intelligent Transportation Systems (ITS) can be defined as a group of technological
solutions in telematics designed to improve the security of terrestrial transporta-
tion. Using the IEEE 802.11p standard, which adds vehicle wireless capability,
possibilities of improving cooperative traffic safety are almost unlimited. One of
these possibilities is to broadcast the position, speed and size of each individual
vehicle so other nearby vehicles can collect this information and use it for safety
purposes.

The problem that this technology will face comes during the implementation phase,
as just a few of the vehicles in circulation will actually be equipped with onboard
devices. This project focuses on addressing this problem by implementing a static
device, called Drive ITS, that scans for vehicles and emulates them as if they had
their own 802.11p onboard transmitter modules. This has been done using another
802.11p wireless module in conjunction with a radar.

In the example portrayed in Figure 1.1, the intelligent car (grey in the example)
reaches an intersection where there is known risk of colliding with other vehicles
due to the low visibility of the cars that approach from the east.
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Figure 1.1: Example of the Drive ITS system.

If all the cars in the example had a car-to-car (C2X) communication system, they
would broadcast their position and speed and therefore the vehicle that tries to
access the main road would be aware of the risk of impact. Nevertheless, a more
realistic scenario would be that where the majority of the vehicles are not equipped
with this system.

Drive ITS, the device that was developed in the present master’s thesis, can be
placed in the intersection, monitoring all the vehicles that approach from the east
and broadcasting their position and speed as if they had their own onboard devices.

In the example, the blue car is not equipped with a C2X system and is driving at
a high speed. The driver in the grey car, equipped with C2X, is not capable of
detecting it since there are some bushes blocking the line of sight. Since Drive ITS
is placed in the intersection, it will see the blue car (1) and will transmit instant
values of its position and speed to the grey car (2). The C2X vehicle will then be
notified about the approaching car and will alert the driver of the risk of collision
if he decides to enter the main road (3).
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1.2 State of the art

Intelligent Transportation Systems englobe a wide range of applications, such as
car navigation, traffic signal control systems, toll collection, container manage-
ment systems, variable message signs, automatic number plate recognition, effi-
cient evacuation systems, advanced speed limiting, weather information and coop-
erative vehicle communication.

Figure 1.2 depicts these applications.

Figure 1.2: Applications within the ITS framework1.

The last application is the one targeted in the present master’s thesis. The current
status of cooperative communication between vehicles is still a work in progress,
with protocol specifications and wireless technologies not completely defined. Nev-
ertheless, the wireless standard that is dominating this field for short-range com-
munications (less than 450 m) is accomplished using 802.11p/WAVE, which is
an approved amendment to the IEEE 802.11 standard to add wireless access in
vehicular environments (WAVE).

1Permission for use of image given by the European Telecommunications Standards In-
stitute (ETSI). Source: http://www.etsi.org/technologies-clusters/technologies/
intelligent-transport

http://www.etsi.org/technologies-clusters/ technologies/intelligent-transport
http://www.etsi.org/technologies-clusters/ technologies/intelligent-transport


4 Introduction

In Europe, 802.11p is used as a basis for the ITS-G5[1] standard, supporting the
Geonetworking protocol for vehicle to vehicle / vehicle to infrastructure commu-
nications. ITS-G5 and Geonetworking is being standardized by ETSI ITS2.

Cooperative systems on the road can include all possibilities between cars and
infrastructures. This is used to create a network where vehicles act as mobile
sensors, that transmit localized data such as weather conditions, speed or frequent
braking activities, among others, to central servers that process this information
and transmits it back to other vehicles, but also between the vehicles themselves,
where position and speed data of nearby objects can be decisive to prevent a
collision.

2http://www.etsi.org/index.php/technologies-clusters/technologies/
intelligent-transport

http://www.etsi.org/index.php/technologies-clusters/technologies/intelligent-transport
http://www.etsi.org/index.php/technologies-clusters/technologies/intelligent-transport


Chapter2
Objectives

2.1 Goal

The goal of this thesis is to address the problem described hereinabove by devel-
oping a device that is able to obtain data from a Universal Medium Range Radar,
process it regarding the standards of car-to-car communication and broadcast it
using a 802.11p modem.

The present master’s thesis will be divided into two main parts, hardware and
software.

The hardware must be able to communicate with both the UMRR radar and the
802.11p modem. Since the radar was designed to be an onboard unit for vehicles,
it provides a Controller Area Network (CAN) bus interface for communicating
with it. CAN is a vehicle bus standard (ISO 11898) designed to allow high-speed
communication between microcontrollers and devices within a vehicle without a
host computer. The modem on the other hand was designed to be used together
with personal computers, and therefore provides an Ethernet implementation over
the USB protocol.

The software must be able to receive the stream of information provided by the
UMRR radar, process it in such a way that it filters out irrelevant data and
transmit it to other nearby vehicles using the 802.11p modem. Since the radar
uses the CAN protocol a CAN library will have to be implemented. The software
also must be able to implement the most current version of the standard ITS-G5
to encode the vehicle information data. It must also be able to communicate with
the 802.11p modem using Ethernet over USB.

5
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Chapter3
Hardware

This chapter describes the hardware part of the present master’s thesis. The
device is divided into three modules, the CAN-bus interface, the microcontroller
to Raspberry Pi interface, and the Ethernet over USB interface, integrated in the
Raspberry Pi, which allows its connection to a 802.11p modem.

Figure 3.1 depicts these modules.

Drive ITS

Shield

Raspberry PiCAN-bus Interpreter

UMRR Radar Unit

CAN

802.11p Modem

CDC
ECM

 SERIAL 5V SERIAL 3.3V
Level 
Shifter

Figure 3.1: Block diagram of the system.

7



8 Hardware

3.1 CAN-bus interpreter

In order to interface with the CAN-bus connection of the radar, a hardware
shield for the Raspberry Pi (see Section 3.3) was designed, implemented and pro-
duced. This shield consists of a CAN transceiver (PCA82C251 or MCP2551), a
CAN controller (MCP2515) and a microcontroller (AVR ATMEGA328P-PU) for
programmability and serial communications with the Raspberry Pi, featuring a
transceiver that acts as a voltage level shifter.

Figure 3.2 portrays the disposition of the elements in the shield, which includes
the CAN-bus Interpreter, subject of this section.

5
3L

6KLHOG&$1�EXV�,QWHUSUHWHU

8055�5DGDU�8QLW

6(5,$/����9

&$1�
7UDQVFHLYHU

&$1�&RQWUROOHU

&$1

0LFUR�
&RQWUROOHU

�6(5,$/��9 /HYHO�
6KLIWHU63,

Figure 3.2: Block diagram of the shield.

3.1.1 The CAN architecture

The CAN bus is a serial communication protocol with bus topology, initially in-
tended for vehicle environments, as a means to connect the different sensors with
the ECU. In CAN networks there is no addressing, master or slaves. Each node
sends messages to the rest of the nodes and, based on the identifier attached to
the message, each node decides to process the message or not.

Even if the initial scope of CAN was the automotive sector, it has gained popularity
in other applications such as domotics, industrial networks, automation, etc.
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The scope of ISO 11898 specifies the data link layer and physical layer of the
communication link, along with their own sublayers. This CAN bus interface
implements both layers, as shown in Figure 3.3, and adds an application layer
embedded in a microcontroller.

Figure 3.3: Architecture of CAN [2].

The bus topology is portrayed in Figure 3.4, with an example of a possible Drive
ITS setup.

5DGDU 5DGDU&$1�EXV�
,QWHUSUHWHU

&$1�EXV�
,QWHUSUHWHU

������S�
0RGHP

������S�
0RGHP

���ȍ ���ȍ

1RGHV

%86

Figure 3.4: Drive ITS CAN bus topology.
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3.1.2 The CAN transceiver

The PCA82C251 transceiver provides an interface between the physical transmis-
sion line and a protocol controller. It is capable of transmitting and receiving data
with a bit rate of up to 1Mbit/s over a two-wire differential voltage bus line. A
dominant bit will occur when the CAN_H wire takes 3.5V and CAN_L takes
1.5V. A recessive bit will be read if both wires take 2.5V.

3.1.2.1 Operating modes

This transceiver can operate in three modes:

High-Speed Mode is suitable to achieve a maximum bit rate and/or bus length.

Slope Control Mode provides compatibility with unshielded bus cables by de-
creasing the slew rate of the bus signal in order to reduce electromagnetic
emission.

Stand-By Mode drastically reduces the system’s power consumption.

The transceiver operating mode is selected via the Rs pin, using an external resistor
connected either to ground or a pin in the microcontroller. Only in this last case
it will be possible to select the stand-by mode. See figure 3.5.

3&$��&���
&$1�7UDQVFHLYHU

5V

$70(*$���3�38

5H[W

9S

*1'

Figure 3.5: Possible connections of the Rs pin [2].

The values of Rext, together with the state of the microcontroller pin determine
the selected mode.
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For VP = VCC , stand-by mode is selected no matter what value Rext assumes. For
VP = 0V , high-speed mode is selected if Rext ∈ (0, 1.8)kΩ while the transceiver
will operate in slope control mode if Rext ∈ (16.5, 140)kΩ .

In this setup, a conservative value of Rext was selected by connecting a 4.7kΩ
resistor from Rs to ground, somewhere in between the high-speed mode and the
slope control mode. The drawback is the loss of the stand-by functionality, which
will be considered in future implementations, as described in section 7.2.

3.1.2.2 Limitations

The maximum bus length in a CAN bus is determined by three physical effects
[2]:

• Loop delays of the connected bus nodes, such as the CAN transceiver and
the CAN controller and the delay of the bus line.

• The differences in bit time quanta length due to the relative oscillator tol-
erance between nodes.

• The signal amplitude drop due to the series resistance of the bus cable and
the input resistance of bus nodes.

For the selected bit rate (250kbaud), the maximum bus length that can be achieved
with the CAN transceiver is 250m, as depicted in the Bit Rate/Bus Length Rela-
tion table of the application note [2].

The maximum number of nodes per bus that the PCA82C251 is capable of driving
is as much as 100 [2]. Therefore, being such a big figure, it can be concluded that
the CAN transceiver does not limit the number of radars connected to the solution
targeted in this report.

3.1.3 The CAN controller

The MCP2515 CAN controller implements the CAN specification as in figure 3.3.
It is capable of transmitting and receiving both standard and extended data, as
well as remote frames.

It has two acceptance masks and six acceptance filters, which are used to filter out
unwanted messages from the nodes in the bus, thus reducing the host microcon-
troller overhead.

The CAN controller interfaces with the microcontroller unit via Serial Peripheral
Interface (SPI).
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The device is divided in three main blocks; the CAN module handles all functions
for receiving and transmitting messages on the CAN bus (CAN protocol engine,
masks, filters and TX-RX buffers), the control logic which configures the device
and its operation, and the SPI port which interfaces with the microcontroller unit.

3.1.3.1 Operating modes

The MCP2515 has five modes of operation:

Configuration mode which is used to initialize the device and modify the con-
figuration registers and the filter and mask registers.

Sleep mode which minimizes current consumption of the device, providing au-
tomatic wake-up upon detecting activity on the bus, and in 8µs (128 times
the oscillation period) the communication is resumed in listen-only mode.

Listen-only mode which provides means for the MCP2515 to receive all mes-
sages transmitted in the bus, including messages with errors. It features
auto-baud detection, thus making a perfect operating mode for a CAN bus
eavesdropper. No messages are transmitted in this state, not even acknowl-
edge signals or error flags.

Loopback mode which allows internal transmission of messages from the trans-
mit buffers to the receive buffers. It is used for testing purposes.

Normal mode which the standard operating mode, where the MCP2515 mon-
itors all bus messages generating acknowledge bits and error frames and
enables transmission capabilities.

The operation mode is selected by writing to the CAN control register (CANCTRL),
which will be further described later in this document.

3.1.3.2 Bit timing settings

The documentation of the UMRR Traffic Management Sensor [15], specifies the
data communication settings regarding the CAN bit timing and baud rate.

• CAN bit rate: 250 kBaud

• Phase Segment 1: 8 TQ

• Phase Segment 2: 7 TQ

• Synchronization Jump Width: 4 TQ
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Each of the segments that make up a bit time are divided in integer units called
Time Quanta (TQ), which is based on the oscillator period (TOSC) and the Baud
Rate Prescaler (BRP ) which is programmable from 1 to 64 to satisfy the demanded
baud rate.

TQ = 2 ·BRP · TOSC (3.1)

The Nominal Bit Rate (NBR) is defined as the number of bits per second trans-
mitted by an ideal transmitter with no resynchronization, as seen in equation 3.2.

NBR = fbit =
1

Tbit
(3.2)

Being Tbit the nominal bit time, defined as the summation of the following seg-
ments:

Tbit = TSyncSeg + TPropSeg + TPhaseSeg1 + TPhaseSeg2 (3.3)

The synchronization segment (TSyncSeg) is used to synchronize the nodes on the
bus. It is fixed to 1 TQ.

Propagation segment compensates for physical delays between nodes, as twice the
sum of the signal’s propagation time on the bus line and the delay in the bus
driver. It is programmable from 1 to 8 TQ. In this case the minimum quantity of
1 TQ has been selected, since the bus is quite short and there are no significant
delays expected.

Substituting equations 3.1 and 3.2 in equation 3.3 and factoring:

1

250 · 103
= (1 + 1 + 8 + 7) · (2 ·BRP · TOSC) (3.4)

The design features a 16 MHz crystal oscillator giving the following expression of
TOSC :

TOSC =
1

16 · 106
(3.5)

When substituting TOSC in equation 3.4 and solving for BRP, the following value
is obtained: BRP = 1.882

As this is an impossible value, given that BRP is in the domain of the integers,
it can be concluded that achieving 250kbps with the specified phase segments is
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impossible. It was opted to lower the second phase segment by one unit, thus
being TPhaseSeg2 = 6 TQ and equation 3.4 now changes to:

1

250 · 103
= (1 + 1 + 8 + 6) · (2 ·BRP · TOSC) (3.6)

Solving equation 3.6 for BRP, a valid value was found: BRP = 2

The bit timing diagram is thus as shown in figure 3.6

Figure 3.6: Bit timing diagram [4].

Having fixed this parameters, now the associated programmable registers have to
be written to reflect the desired bit timing configuration.

These registers are CNF1, CNF2 and CNF3, accessible through their respective
addresses; 0x2A, 0x29 and 0x28.

The next section will describe these configuration registers and their values.

3.1.3.3 Configuration and control registers

The MCP2515 provides multiple operation modes, bit timing possibilities and
other configuration parameters that have to be set within some registers. In this
section the most critical configuration registers will be described in order to set
their values for the final product.

• CNF1 (address 0x2A)

• CNF2 (address 0x29)

• CNF3 (address 0x28)

• CANCTRL

• TXRTSCTRL

CNF1, CNF2 and CNF3 store the bit time settings as well as other miscellaneous
parameters.

In section 3.1.3.2 the following parameters were determined:
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• BRPREAL = 2

• PHSEG1REAL = 8

• PHSEG2REAL = 6

• PROPSEGREAL = 1

• SJWREAL = 4

Note that for BRP, SJW, Phase and Propagation Segments the following rule
applies:

V alueREG = V alueREAL − 1 (3.7)

Where V alueREG is the value stored in the register (in binary) and V alueREAL

is the real value of the segment.

Tables 3.1, 3.2 and 3.3 show the configuration registers CNF1, CNF2 and CNF3
respectively.

Table 3.1: Register CNF1 overview.

Element SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Value 1 1 0 0 0 0 0 1

Table 3.2: Register CNF2 overview.

Element BTL
MODE SAM PHSEG12 PHSEG11 PHSEG10 PRSEG2 PRSEG1 PRSEG0

Value 1 0 1 1 1 0 0 0

Table 3.3: Register CNF3 overview.

Element SOF WAKFIL - - - PHSEG22 PHSEG21 PHSEG20
Value 0 0 0 0 0 1 0 1

As well as fixing these parameters to these values, the configuration registers set
four other parameters:

BTLMODE phase segment 2 bit time length mode.

• 1 = Length of PhSeg2 determined by PHSEG22:PHSEG20 bits of
CNF3.

• 0 = Length of PhSeg2 is the greater of PhSeg1 and 2 TQ.

SAM Sample Point Configuration. The sample point takes place in the end of
the phase segment 1 and is the point in the bit time where the logic level is
read and interpreted.
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• 1 = Bus line sampled three times at the sample point, determining the
value of the bit by a majority decision.

• 0 = Bus line sampled once at the sample point.

SOF Start-of-Frame signal. It depends on the CANCNTRL.CLKEN bit. If this
bit is set to 0, the CLKOUT/SOF pin is in a high-impedance state. If it is
set to 1, then the SOF bit determines the operation of the CLKOUT/SOF
pin.

• 1 = SOF signal is generated on the CLKOUT/SOF pin at the begin-
ning of each CAN message detected on the RXCAN pin.

• 0 = the CLKOUT/SOF pin transmits the system clock, allowing sub-
sequent devices to get this signal from the MCP2515.

WAKFIL The MCP2515 can be programmed to apply a low-pass filter function
to the RXCAN pin while in sleep mode, preventing the device to wake up
due to short glitches in the bus. CNF3.WAKFIL enables or disables this
filter.

• 1 = Filter enabled

• 0 = Filter disabled

The CANCTRL register (with address 0xXF) controls the basic functionality of
the MCP2515. Table 3.4 depicts the register’s elements, which are defined as
following:

REQOP request operation mode.

• 000 = Normal operation mode

• 001 = Sleep mode

• 010 = Loopback mode

• 011 = Listen only mode

• 100 = Configuration mode

• 111 = Power-up default value, which has to be changed in order to
operate the device.

ABAT Abort All Pending Transmissions

• 1 = Request abort of all pending TX buffers.

• 0 = Terminate request to abort all transmissions.

OSM One-Shot mode.

• 1 = The message will only be sent once.

• 0 = If requested, the message will be transmitted again.

CLKEN CLKOUT Pin enable.
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• 1 = Pin enabled for CLKOUT/SOF functionality, as defined by the
CNF3.SOF bit.

• 0 = Pin set to high-impedance state.

CLKPRE CLKOUT Pin Prescaler

• 00 = System clock / 1

• 01 = System clock / 2

• 10 = System clock / 4

• 11 = System clock / 8

Table 3.4: Register CANCTRL overview.

Element REQOP2 REQOP1 REQOP0 ABAT OSM CLKEN CLKPRE1 CLKPRE0
Value 0 0 0 0 0 0 0 0

TXRTSCTRL, with address 0x0D, serves both as a control register and as a con-
figuration register for the TXRTS pins. A detailed overview can be found in table
3.5.

Table 3.5: Register TXRTSCTRL overview.

Element - - B2RTS B1RTS B0RTS B2RSTM B1RTSM B0RTSM
Value 0 0 0 0 0 0 0 0

The bits corresponding to BxRTS are read-only and provide the state of the
TXRTS pins when enabled as digital inputs.

The writable bits BxRTSM configure the TXRTS pins to work either as request-
to-send inputs (1), providing an alternative means of initiating the transmission
of a message, or as standard digital inputs (0).

3.1.3.4 SPI interface

The MCP2515 features Serial Peripheral Interface, a very common port featured
in a wide range of microcontrollers, such as the one included in the ATMEGA328
that this system incorporates.

The commands and data are sent to the MCP2515 via the MOSI pin, being the
data clocked on the falling edge of the system clock, while all the information that
is requested from the MCP2515 (typically messages on the CAN bus) is driven out
via the MISO pin, on the falling edge of the system clock. Every time an operation
is performed, the Chip Select pin must be held low.

The SPI commands used in the software are described in Table 3.6
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Table 3.6: Description of SPI commands [3].

Instruction Name (BIN) (HEX) Description

RESET 1100 0000 0xC0 Resets internal registers to default
state and sets configuration mode.

READ 0000 0011 0x03 Reads data from register beginning
at the selected address.

WRITE 0000 0010 0x02 Writes data to register beginning at
selected address.

READ_RXBUF0_ID 1001 0000 0x90 Reads the state of the RX buffer 0.
READ_RXBUF1_ID 1001 0100 0x94 Reads the state of the RX buffer 1.
READ_RXBUF0_DATA 1001 0010 0x92 Reads the data from the RX buffer 0
READ_RXBUF1_DATA 1001 0110 0x96 Reads the data from the RX buffer 1
LOAD_TXBUF0_ID 0100 0000 0x40 Loads the state into the TX buffer 0.
LOAD_TXBUF1_ID 0100 0010 0x42 Loads the state into the TX buffer 1.
LOAD_TXBUF2_ID 0100 0100 0x44 Loads the state into the TX buffer 2.
LOAD_TXBUF0_DATA 0100 0001 0x41 Loads the data into the TX buffer 0.
LOAD_TXBUF1_DATA 0100 0011 0x43 Loads the data into the TX buffer 1.
LOAD_TXBUF2_DATA 0100 0101 0x45 Loads the data into the TX buffer 2.

RTS_TXBUF_ 1000 0xyz 0x8_

SPI Commands to send the content
in buffers 0, 1 and 2. If x, y or z take
the value 1, the data in the corre-
sponding buffer will be transmitted.
Only one buffer can be transmitted
at a time.

READ_STATUS 1010 0000 0xA0
Quick polling command that reads
several status bits for transmit and
receive functions.

RX_STATUS 1011 0000 0xB0

Quick polling command that indi-
cates filter match and message type
(standard, extended and/or remote)
of received message.

BIT_MODIFY 0000 0101 0x05 Allows the user to set or clear indi-
vidual bits in a particular register.
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3.1.4 The Microcontroller Unit (MCU)

As a first approach, the first prototypes were based on the Arduino platform, more
specifically Arduino UNO R3, which provided a simple way to get started without
worrying about difficult setups or faulty connections.

This board features an AVR ATMEGA328P-PU microcontroller unit, which was
kept until the final version of the system.

3.2 Microcontroller to Raspberry Pi interface

The communication between the AVR microcontroller and the Raspberry Pi is
achieved with the serial port included on both devices. In a normal setup, this
would require to connect the TX of the AVR with the RX in the Raspberry Pi
and vice versa, while in this case a transceiver is needed.

Since the shield’s components are powered with 5V while the Raspberry Pi’s use
just 3.3V, the logic levels in the serial communication are also different. Therefore,
there is a need for an intermediate device that acts as an interpreter between the
AVR and the Raspberry Pi, avoiding possible malfunctioning because of overpow-
ering the Raspberry Pi with 5V, which could harm the device.

This simple transceiver is based on a voltage divider for the AVR → Raspberry Pi
line and a N-channel MOSFET level shifter circuit for the Raspberry Pi → AVR
line, as depicted in Figure 3.7.
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Figure 3.7: Block diagram of the level shifter.
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The N-channel MOSFET circuit can be found in Figure 3.8, which is obtained
from Herman Shutte’s work on Bi-Directional Level Shifters [8]. It allows the
3.3V TX pin from the Raspberry Pi to raise its level to the AVR RX pin’s 5V.

Figure 3.8: N-FET 3.3V → 5V circuit.

In the hereinabove mentioned document, Shutte explains the three states that can
be considered, which are adapted to this particular solution:

State 1 The TX line of the Raspberry Pi is pulled up by its pull-up resistors Rp
to 3.3 V. The gate and the source of the MOS-FET are both at 3.3 V, so
its VGS is below the threshold voltage and the MOS-FET is not conducting.
This allows that the RX line at the AVR side is pulled up by its pull-up
resistor Rp to 5V. So the lines of both sides are HIGH, but at a different
voltage level.

State 2 A 3.3 V device pulls down the Raspberry Pi TX line to a LOW level. The
source of the MOS-FET becomes also LOW, while the gate stays at 3.3 V.
The VGS rises above the threshold and the MOS-FET becomes conducting.
Now the bus line of the AVR RX side is also pulled down to a LOW level by
the 3.3 V device via the conducting MOS-FET. So the lines of both sections
become LOW at the same voltage level.

State 3 (Not applicable) A 5 V device pulls down the AVR TX line to a LOW
level. Via the drain-substrate diode of the MOSFET the lower voltage sec-
tion is in first instance pulled down until VGS passes the threshold and
the MOS-FET becomes conducting. Now the TX line of the Raspberry Pi
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section is further pulled down to a LOW level by the 5 V device via the
conducting MOS-FET. So the lines of both sections become LOW at the
same voltage level. Since it is not operating on a bi-directional line, typical
from bus topologies (such as I2C or SPI), the circuit will never be in this
third state.

The other line, AVR → Raspberry Pi is much easier since it is based on lowering
the voltage. This can be easily achieved via a voltage divider, as depicted in Figure
3.9.

Figure 3.9: Voltage divider to perform the 5V → 3.3V conversion.

Resistor values are chosen from the voltage divider’s formula.

VRPiRX
= VAV RTX

· R2

R1 +R2
(3.8)

Substituting the values of VRPiRX
and VAV RTX

in HIGH level state and solving
for R1/R2:

R2

R1 +R2
=

3.3

5
= 0.66 (3.9)

Therefore, if the values of R1 = 10kΩ and R2 = 20kΩ are assigned, equation 3.9
is satisfied.
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3.3 Ethernet over USB interface

The specification of the present master’s thesis required the usage of a 802.11p
modem which was originally designed to be connected to a personal computer
without the needs of manufacturer’s drivers.

Therefore, the modem manufacturer decided to incorporate a Ethernet over USB
connectivity as the only interface in their device. This means that it uses the
physical layer of USB, with TCP/IP layers on top. If it is plugged to a Ethernet
over USB host, such as a personal computer, both devices will be connected and
ready to communicate.

Since there are no available solutions for Ethernet over USB hosting on AVR
microcontrollers, it was opted to use a Raspberry Pi, that is capable of running
this protocol out of the box.

3.4 Programmability

The embedded microcontroller, an AVR ATMEGA328P-PU, is programmed in
the Arduino Development Environment.

It features a program that receives, filters and forwards the data received from the
radar and sends it to the Raspberry Pi, which will be further described in Chapter
4.

To control the CAN-bus interpreter, this program uses a CAN library which is
based on the open-source CANduino project [7]. This library has been modified
to write the previously mentioned registers in Section 3.1.3 with the required
values. The program also uses the in-built SPI library from Arduino to access the
MCP2515 via this communication interface.

In order to communicate with the Raspberry Pi, the Arduino Development En-
vironment also features a serial communication library that simplified the task of
data forwarding.

3.5 Prototypes

Up to the completion of the present master’s thesis, three prototypes of the system
were built, each of them incorporating new functionalities.

The desire of the authors was to achieve a final prototype that was sturdy and
provide a neat feeling, all in a single package that could be easily assembled and
held without the danger of damaging its elements.
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3.5.1 Breadboard prototype

The first approach to this project was to use the Arduino platform to interface
between a CAN-bus interpreter and a Ethernet over USB communication module,
which could be part of the Arduino board itself, since it already features an USB
port onboard.

Therefore, the microcontroller would take the following tasks:

• SPI interface with CAN-bus interpreter

• Process all information received through CAN-bus

– Extract the position, speed and size of the tracked objects.

– Calculate the CAM parameters as specified by the ETSI ongoing stan-
dards.

– Build the CAM messages

• Encapsulate the CAM messages into Ethernet frames.

• Interface with the Ethernet over USB communication module.

Nevertheless, the Ethernet over USB interface was very difficult to achieve since
it would demand to develop the AVR driver for it. Since the protocol is quite
hermetic and given that this task would be very time-consuming, it was opted to
find a platform that natively supports Ethernet over USB. As a result of it, the
second prototype was developed to interface with a Raspberry Pi. The decision
was taken considering than the main task was developing a fully working product
at the end of the thesis, no matter which platform was used.

This left the breadboard prototype as a means to develop and test the CAN-bus
interface and to further expand the available drivers for similar CAN-bus solutions
already developed.1

Figure 3.10 depicts the first design of the CAN-bus interpreter connected to the
Arduino UNO R3 board.

1The CAN-bus interpreter was based on the models available in ModelRail[5],
SparkFun[6] and libraries available in the CANduino project[7].
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Figure 3.10: Breadboard prototype.

3.5.2 Perfboard prototype

Once the CAN-bus interpreter was fully developed on a breadboard, it was decided
to move it into a robuster platform which involved soldering the components into
a bakelite perfboard. It also provided a dock for the Arduino UNO R3 board, so
it could be easily mounted and extracted without the need of a cable harness.

This prototype features an interface between the Arduino board and a Raspberry
Pi via their serial port (RS-232). In order to get both devices to communicate, a
transceiver was developed to shift the 5V level of the Arduino into the 3.3V level
of the Raspberry Pi and vice versa.

This device was primarily used to test the communication with the Raspberry Pi
and to develop the filtering and formatting of the object information tracked by
the radar in order to avoid an overload of data in any point of the system.

Figure 3.11 depicts the perfboard prototype, the first featuring all the elements
that would be included in the final product.
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Figure 3.11: Perfboard prototype.

3.5.3 PCB prototype

Once all communication was achieved and all further development was only software-
based, the next step into a real-life solution was the production of a printed circuit
board (PCB) where the components could be soldered with no need for tin tracks
or cables.

The PCB, entirely designed in the CAD software EAGLE, focused on creating a
neat package out of the assembly of both the PCB and the Raspberry Pi. Hence,
it was decided to mount one on top of the other, by connecting them through a
26-pin header, which serves as the power supply for the PCB components, getting
powered via the Raspberry Pi, but also as the serial communication interface.

In this prototype, the Arduino platform was dismissed, stripping out all unneces-
sary components, just leaving the AVR microcontroller, the external oscillator, a
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protecting circuit and a programming port. In this way, the component cost was
notably reduced, while preserving all the functionality of the previous prototype.

The programming port allows an AVR dragon device to program the device just
by flipping a switch and dumping the code into the microcontroller.

An overview of the main elements of this PCB is depicted on Figure 3.12.

Figure 3.12: PCB elements.

At the moment of publishing the present master’s thesis this was the final version
of the Drive ITS system, and as such it can be found in Section 6.2, dedicated to
the final product.



Chapter4
Software

The software running on the product is divided in two main parts. The first part
is the code running on the AVR microcontroller, which is written in C++ taking
advantage of the Arduino SDK for SPI and Serial (RS-232) communications. The
second part is the software running on the Raspberry Pi. That part of the code is
written in Java and this is were the main algorithms are running.

In this chapter it will be explained further how each part of the code works and
how the system is put together as one following the flow of data from a software
point of view.

4.1 Reading data from the radar

In order for the radar to start scanning for vehicles and to provide the system
with data it has to be initiated with certain commands. After it has been initiated
the received data needs to be forwarded to the rest of the system. The CAN-bus
shield is responsible for these tasks. The Raspberry Pi is responsible for running
the rest of the system.

4.1.1 CAN-bus shield

4.1.1.1 RS-232 baud rate

When the system is powered up the initiation procedure has to take place. The
first thing to happen is setting the baud rate for the RS-232 port. It has been
observed that the radar never sends more than 170 CAN frames per second onto
the CAN bus. Also each CAN frame forwarded onto the serial port contains 22

27
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bytes (see section 4.1.1.4) but since serial packets have 1 + 1 = 2 bits for header
and trailer, 8 + 2 = 10 bits need to travel through serial for each byte from the
CAN bus in the worst case. From that the required speed for RS-232 has been
calculated as following:

170frames

s
· 22bytes

frame
· 8bits+ 2bits

byte
= 37400bits/s = 37400baud (4.1)

The closest RS-232 configuration to that baudrate is 38400 baud. However since
37400 baud is very close to 38400 baud and the serial port should not be overloaded
in case of incoming spikes, the baud rate selected is the next available one at 57600
baud. It is being set in code using Serial.begin(57600) in setup() function.

4.1.1.2 Bit timing settings

Next the CAN controller needs to be set to the correct bit timing settings as de-
scribed in section 3.1.3.2. That procedure is taking place in function CANClass::baudConfig()
of CAN.cpp1. The registers are getting set according to tables 3.1, 3.2 and 3.3 as
following:

setRegister(CNF0, 0xC1);
setRegister(CNF1, 0xB8);
setRegister(CNF2, 0x05);

4.1.1.3 Radar initiation

Now that there is a working CAN configuration, communication with the radar
is possible. First frames to be sent to the radar are initiation frames which set
the operation mode and the installation height of the radar. However, since this
information has to come from the configuration file on the Raspberry Pi, a byte
has to be read from serial port of the Raspberry Pi first. The byte that arrives is
being received using the following code:

byte data = Serial.read();
bool simulated = (bool) (data >> 4);
byte height = (byte) (((byte)(data << 4)) >> 4);

1Amodified version of the CANduino library. http://code.google.com/p/canduino/

http://code.google.com/p/canduino/
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By shifting the incoming byte 4 bits to the left, the operation mode is found. By
removing the 4 leftmost bits and keeping the 4 rightmost bits of the byte, the
installation height is found.

With this information given, according to the radar documentation [15] the fol-
lowing CAN commands need to be sent to the radar in order to set the operation
mode and installation height:

Table 4.1: CAN frame requesting real traffic.

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0xFF 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table 4.2: CAN frame requesting simulated traffic.

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0xFF 0x00 0x00 0x00 0x08 0x00 0x00 0x00

Table 4.3: CAN frame setting the installation height to 5 meters.

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0xFF 0x01 0x00 0xAC 0x05 0x00 0x00 0x00

In tables 4.1 and 4.2 it can be seen that byte 4 defines the operation mode, 0x00
defines normal operation mode and 0x08 defines simulated operation mode. In
table byte 4 defines the installation height. According to [15] installation height
can be 1m (0x01) minimum and 10m (0x0A) maximum.

Also byte 0 needs to be set to 0xFF for the receivers to be all the available radars
on the CAN bus and the CAN frame ID needs to be set to 0x3F2 so that the radar
recognizes the frame as a command [15]. Either one of those configurations can
be sent to any radar on the bus as following:

byte opmode_data[] = { 0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
byte height_data[] = { 0xFF,0x01,0x00,0xAC,height,0x00,0x00,0x00 };
if (simulated) opmode_data[4] = 0x08;
uint32_t frame_id = 0x3F2;
byte length = 8;
CAN.load_ff_0(length, &frame_id, opmode_data, false);
CAN.load_ff_0(length, &frame_id, height_data, false);
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4.1.1.4 Receiving, filtering and forwarding data

Once a stream of data from the radar has begun only the tracked object data
should be kept and forwarded to the rest of the system. In this subsection it is
explained how this is achieved.

Traffic coming from the CAN bus resides within the first or second RX buffer of
the CAN controller depending on whether the first RX buffer is full or not. Which
RX buffer the data resides on is determined as following:

bool buffer0 = CAN.buffer0DataWaiting();
bool buffer1 = CAN.buffer1DataWaiting();

And the frame data is read as following:

if (buffer0)
{

CAN.readDATA_ff_0(&length,frame_data,&frame_id,&extended,&filter);
}
else if (buffer1)
{

CAN.readDATA_ff_1(&length,frame_data,&frame_id,&extended,&filter);
}

Where length is the length of the CAN frame, frame_data is the CAN frame
data and frame_id is the CAN frame identifier. The identifier is what defines the
kind of a received CAN frame. For tracked objects the identifiers are defined as
following [15]:

Table 4.4: Frame identifiers for tracked objects.

Object 0 ID0 0x510 ID1 0x590 ID2 0x610 ID3 0x690
Object 1 ID0 0x511 ID1 0x591 ID2 0x611 ID3 0x691

...
...

...
...

...
Object 63 ID0 0x54F ID1 0x5CF ID2 0x64F ID3 0x6CF

Using table 4.4 it is possible to filter out relevant CAN frames by looking at the
value of frame_id. However, each CAN frame originating from the radar contains
8 bytes of encoded data. This data needs to be decoded and encoded again in a
way friendly to the serial port before forwarding it to the Raspberry Pi. Decoding
the data requires the use of some bit shifting and it is done the following way:
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byte object_id = frame_data[7] >> 2;
byte object_length = frame_data[7] << 14 >> 8 | frame_data[6] >> 2;
int16_t y_velocity = frame_data[6] << 14 >> 5 | frame_data[5] << 1

| frame_data[4] >> 7;
int16_t x_velocity = frame_data[4] << 9 >> 5 | frame_data[3] >> 4;
y_velocity = y_velocity < 0 ? -(1024 + y_velocity) : 1024 - y_velocity;
x_velocity = x_velocity < 0 ? -(1024 + x_velocity) : 1024 - x_velocity;
int16_t y_position = (frame_data[3] << 12 >> 2 | frame_data[2] << 2

| frame_data[1] >> 6) + 8192;
int16_t x_position = (frame_data[1] << 10 >> 2 | frame_data[0]) + 8192;

This data gets then re-encoded into an ASCII string representing hexadecimal
values in order to be sent onto the serial port. That string always starts with the
character G, it contains 20 bytes of payload characters ranging from 0 to F and
it ends with a character ranging from H to Z. The last character is a checksum
verifying that the payload has been transmitted correctly.

The following piece of code takes care of encoding and transmitting the serial
frame as well as computing its checksum:

#define FRAME_LENGTH_WITHOUT_CHS 21

char checksum(const char * str)
{

uint8_t sum = 0;
for (uint8_t i = 0; i < FRAME_LENGTH_WITHOUT_CHS; i++) {

sum += (uint8_t) str[i];
}
return ’H’ + sum % 16;

}

char frame[FRAME_LENGTH_WITHOUT_CHS];
sprintf(frame,"G%02X%02X%04X%04X%04X%04X",object_id,object_length,

x_position,y_position,x_velocity,y_velocity);
Serial.print(frame);
Serial.print(checksum(frame));

4.1.2 Raspberry Pi

The Raspberry Pi is a credit-card sized single-board computer. In this system it
runs the Raspbian2 GNU/Linux distribution. The serial port in Raspbian is by
default attached to a command console. In order to receive data the serial port

2http://www.raspbian.org

http://www.raspbian.org
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needs to be detached so that it can be used by another process. For that to happen
two files have to be edited.

From file /boot/cmdline.txt the following line needs to be removed:

console=ttyAMA0,115200 kgdboc=ttyAMA0,115200

Also the second line below, at the bottom of /etc/inittab, needs to be com-
mented out:

#Spawn a getty on Raspberry Pi serial line
#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

As mentioned earlier the Raspberry Pi software is written in Java. In order to
enable serial communications in Java the RXTX3 library has been used. Figure
A.4 depicts the UML diagram for the classes that use the RXTX library.

Information that arrives to the serial port is being read by the SerialReader
thread. The thread is responsible for validating the received payload by calcu-
lating its checksum and comparing with the received checksum. The checksum
computation algorithm is exactly the same as for the AVR and its implementation
in Java is the following:

Config.FRAME_LENGTH_WITHOUT_CHS = 21;

char checksum(byte[] frame) {
short sum = 0;
for (short i = 0; i < Config.FRAME_LENGTH_WITHOUT_CHS; i++) {

sum += (short) (frame[i] & 0xFF);
}
return (char) (’H’ + sum % 16);

}

After a valid frame has been received its data is being stored in a local syn-
chronized4 MessageBuffer<byte[]> (figure A.1) instance as an array of bytes for
further interpretation.

3http://rxtx.qbang.org/wiki/index.php/Main_Page
4Thread safe.

http://rxtx.qbang.org/wiki/index.php/Main_Page
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4.2 Creating a model

4.2.1 Radar interface and implementation

A basic Java interface, Radar, has been created to describe the required behaviour
of any radar attached to the system and its implementation. The only requirement
is for the implementation to contain a method called getMovingObject() that
returns an object of type MovingObject for every object that is being detected. If
there are no objects to be detected then this method should be blocking.

The current implementation of the Radar interface can be found in the AVRRadar
class. Inside the getMovingObject() method the object raw data is being fetched
from the local MessageBuffer<byte[]>. This data is then being parsed and a
MovingObject is being created and returned.

4.2.2 MovingObject model and kinematics

The basic model of a tracked vehicle or pedestrian is described by a MovingObject
instance. It contains the following attributes:

• The identification number of the object as provided by the radar which is a
number between 0 and 63.

• The length of the object.

• The position vector of the object, which is described by the Position class.

• The velocity vector of the object, which is described by the Velocity class.

• The kind of the object; pedestrian, car, etc, which is determined from the
length of the object and a definitions table that can be found in [15].

The Position and Velocity classes have more intelligent functionality than just
storing a position and a speed. A Position can be created either by giving the
absolute geographic coordinates of an object or by giving its x and y coordinates
in relation to the radar. A Velocity can return the speed of an object in m/s
or km/h and the direction of an object in degrees from the North Pole counting
clockwise.
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4.2.3 Usage of a global synchronized MessageBuffer<T>

The whole process of fetching data from the radar to creating a MovingObject<T>
is running within a thread of type RadarThread. In order to forward the created
MovingObjects to the rest of the system a global synchronized MessageBuffer<MovingObject>
is being used.

The MessageBuffer<T> implementation is made in such a way that it is gener-
alized. Just like an ArrayList<T>, a MessageBuffer<T> can contain any kind
of object and safely communicate it to other threads without having to worry
about deadlocks. That is why it can be used early communicating arrays of bytes
between two threads and later communicating MovingObjects.

4.3 Creating Cooperative Awareness Messages

Cooperative Awareness Messages are those messages that are responsible for trans-
mitting information about the size, speed, direction, origin and position of a mov-
ing object. The classes required for creating Cooperative Awareness Messages can
be found in figure A.2. From now on, Cooperate Awareness Messages will be called
CAM messages.

CAM messages belong to the last of the three layers required to transmit them.
The two layers below are the Basic Transport Protocol (BTP) layer defined in [10]
and the GeoNetworking (GN) layer defined in [9]. Also the CAM layer is defined
in [11].

Those definitions have been used during the development the protocol stack. How-
ever, since all three protocols are still under development and their specifications
have not yet been finalized, a reference from another user of the same technology
had to be used. The packet dump illustrated in figure 4.1 has been used for that
reason, it was opened in Wireshark using dissectors from AMB Consulting5.

5http://www.amb-consulting.com/en/#downloads

http://www.amb-consulting.com/en/#downloads
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Figure 4.1: An 802.11p packet dump as shown in Wireshark.

Based on figure 4.1 three classes were created; GN.java, BTP.java and CAM.java.
They were designed in such a way that all the required information can be pro-
vided from the already existent model. E.g. the CAM(byte messageID, long
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stationID, Position referencePosition) constructor gets a Position object
as parameter for the referencePosition part of the protocol. The GN(MovingObject.Kind
kind, byte[] macAddress, Position position, Velocity velocity) construc-
tor receives a MovingObject.Kind, a Position and a Velocity object for the
respective parts of the protocol where this information is required.

Each class is required to define a byte[] getBytes() method. This method is
responsible for taking the model data and returning a byte array with all the
required bytes for wireless transmission of a frame. In this method the main
technique used for setting the bytes is bit shifting. As an example, this is the
implementation of the getBytes() method for the BTP layer:

public byte[] getBytes() {
byte[] data = new byte[size];

data[0] = (byte) (destinationPort >> 8);
data[1] = (byte) destinationPort;
data[2] = (byte) (sourcePort >> 8);
data[3] = (byte) sourcePort;

return data;
}

4.4 Broadcasting Cooperative Awareness Messages

Before broadcasting CAM messages the network interface for the modem must be
configured. The following lines have to be appended to /etc/network/interfaces
of the Raspberry Pi:

allow-hotplug usb0
iface usb0 inet static
address 192.168.11.1
netmask 255.255.255.0
network 192.168.11.0
broadcast 192.168.11.255

The class responsible for broadcasting CAM messages is KapchModem which im-
plements the Modem interface. It runs within a ModemThread and it receives
MovingObjects from a global synchronized MessageBuffer<MovingObject> for
transmission (figure A.1).
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ModemThread is responsible for transmitting frames with the right frequency. Ac-
cording to [11] CAM messages should not be transmitted more often than 1 mes-
sage per 100 ms. The algorithm implementing this functionality in the run()
method of ModemThread is illustrated below:

modem.initiate();

MovingObject obj;
long[] movingObjectLastTransmitted = new long[64];
while ((obj = globalBuffer.fetch()) != null) {

// Get the current time
long currTime = System.currentTimeMillis();

// Check if at least 100 ms have passed
if (currTime > movingObjectLastTransmitted[obj.id] + 100) {

// If yes transmit it and set the new time
modem.transmitMovingObject(obj);
movingObjectLastTransmitted[obj.id] = currTime;

}
}

Any modem class implementing the Modem interface is required to implement two
methods; initiate() which is responsible for setting up a connection with the
802.11p modem and transmitMovingObject(MovingObject obj) which trans-
mits a triple of GN-BTP-CAM byte data for any given MovingObject.

The class KapchModem uses a Kapsch ETTE 5.9 802.11p modem [16] for implement-
ing the Modem interface. From the modem documentation and reverse engineering
a couple of provided example scripts in python6 the functionality of the modem
was implemented.

The modem uses Ethernet over USB which is a protocol for Ethernet commu-
nications on top of the USB protocol. In order to transmit a message it has to
be embedded within a UDP datagram first. Then this UDP datagram is being
sent to the modem’s IP address and finally the modem unpacks the datagram and
broadcasts the provided payload using the 802.11p protocol. To initiate a con-
nection with the modem a UDP message containing the string Hi there! must be
sent to the modem. If the modem replies with the string TS3306 is here! then
transmission of messages to the modem can begin.

They key feature here is that transmitMovingObject(MovingObject obj) uses
the previously described getBytes() method of the GN, BTP and CAM classes to

6http://www.python.org

http://www.python.org
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translate the MovingObject into a byte array for transmission.
transmitMovingObject(MovingObject obj) implements that as following:

void transmitMovingObject(MovingObject obj) {
byte[] data = new byte[GN.size + BTP.size + CAM.size];

GN gn = new GN(obj.kind, localModemMACAddress,
obj.position, obj.velocity);

BTP btp = new BTP((short) 2001, (short) 2001);
CAM cam = new CAM((byte) 0, (long) obj.id, obj.position);

// Add the GN layer to the datagram
byte[] gnData = gn.getBytes();
for (int i = 0; i < GN.size; i++)

data[i] = gnData[i];

// Add the BTP layer to the datagram
byte[] btpData = btp.getBytes();
for (int i = 0; i < BTP.size; i++)

data[GN.size + i] = btpData[i];

// Add the CAM layer to the datagram
byte[] camData = cam.getBytes();
for (int i = 0; i < CAM.size; i++)

data[GN.size + BTP.size + i] = camData[i];

sendPacket(data);
}



Chapter5
Case enclosure

This chapter describes the possibilities of a fully integrated casing for the hardware
solution, so it can be protected from impacts and weather exposure.

5.1 Design

The design was entirely made in SolidWorks 2013, which provided simplicity to
create the 3D model, assembly, dimensioned 2D drawings and STL files.

5.1.1 SolidWorks 2013

SolidWorks 2013 is a computer-assisted design (CAD) program for mechanical
modeling. It is developed by Dassault Systèmes SolidWorks Corp.1

It allows to model separate parts and assemblies beginning with sketches on a base
plane and extruding them (i.e. by adding or subtracting material) towards the final
shape. Once a final product has been achieved, the program automatically outputs
the 2D drawings and the STL files necessary for 3D printing or production.

Additionally, the program features a finite element analysis engine that can cal-
culate component displacements, strains and stresses under internal and external
loads. [12]

1http://www.solidworks.com
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5.1.2 Drawings and STL files

SolidWorks 2013 automatically draws any orthogonal view of the designed piece
or assembly, thus saving time for the designer. Nevertheless, there is still the need
of properly dimensioning the piece in order to allow a correct interpretation of the
design.

The STL file format, which stands for STereoLitography is widely supported in
rapid prototyping machines that describes the surface geometry of a 3D object.

Figure 5.1: 3D model of the case enclosure.

5.2 Production and materials

5.2.1 Rapid prototyping

A prototype can be defined as the limited representation of a system’s or product’s
design, which allows the human team involved in its creation to experiment their
usage, explore the design and present the product. The goal when creating a
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prototype is to validate the essential requirements of the product while accepting
any chance of modification. At the moment the prototype is sufficiently perfected,
the team can consider the industrial production of the final product.

Rapid prototyping consists of obtaining physical models out of a 3D CAD system
in a short time. Among the multiple advantages of rapid prototyping, the following
can be listed:

• It allows the validation of final geometry.

• It reduces the designing process time.

• It allows the verification of assemblies.

• Verification of the design during the development phase.

• Prototypes don’t require multiple machines to be produced, independently
of the geometry.

• Detection of design errors before production, decreasing the production
costs.

Nevertheless, rapid prototyping is limited to parts made out of plastic and their
resolution, though it can be high, it doesn’t allow the production of superfinished
surfaces or extremely accurate geometries.

In the past, the availability of these machines was limited to big industries due to
their size and price. However, in the last few years, the prices of 3D printers are
being reduced drastically as a result of the growing interest on home-made parts.

Technologies for rapid prototyping include polymerization techniques, such as
Stereolitography (SLA) and Solid Ground Curing (SGC), sintering techniques (i.e.
Selective Laser Sintering, SLS ) and the most common among the 3D printers,
Fused Deposition Modeling (FDM), where a thermoplastic material (typically ABS
or polyamides) is extruded through a hot nozzle. The material is deposited layer
by layer, with a typical resolution of 0.1mm.

For the prototypes that have been implemented during the thesis research, acry-
lonitrile butadiene styrene (ABS) plastic has been the chosen material. It is a
classic thermoplastic among FDM prototyping as its glass transition temperature
is high enough to reduce unwanted deformation and it is a good material for fin-
ished products, given its good mechanical properties, such as impact resistance,
toughness and heat resistance. ABS polymers are resistant to aqueous acids, which
is an important property when considering a direct exposition to rain in contami-
nated areas.
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5.2.2 Industrial production

If decided to produce the case in industrial quantities, 3D printing should be
dismissed as it is a time-demanding and expensive production process. Instead, a
less expensive, mass production oriented process should be selected.

Given the shape of the piece, after adapting the case design in order to simplify the
mould geometry, the selection of process should head to vacuum thermoforming
for a relatively low number of units or injection molding, only for a big number
of units given the high cost of the tooling and equipment and the high-production
rate [13].

Possible polymers for the final product include acrylonitrile butadiene styrene
(ABS), high impact polystyrene (HIPS) or rigid polyvinyl chloride (uPVC), given
their excellent properties against impacts, weather degradation and impermeabil-
ity.

A thorough study of water leakage into the case should also be considered, since
the current prototype only provides a small protection. Possibilities include the in-
troduction of rubber around the open-air elements in order to assure their isolation
against weather elements and avoid the degradation of the internal components.



Chapter6
Tests and results

6.1 Test session at Volvo Cars

Two different tests were performed at Volvo Cars in Gothenburg. The first test,
communication test, was to see whether the Kapsch Modem [16] could successfully
communicate with Drive C2X1 equipment or not. The second test, verification
test, was to see whether Drive ITS CAM implementation followed the CAM spec-
ification [11] by comparing packets from another CAM source, e.g. a Drive C2X
car, to packets generated by Drive ITS.

6.1.1 Communication test

Drive ITS was set to simulation mode according to Appendix C, it was powered
up and it started transmitting simulated traffic messages. The Drive C2X receiver
was configured, powered up and any received traffic was saved to a file. The file was
inspected in Wireshark2 and the acquired packets could successfully be interpreted
by the Wireshark dissectors3. That meant that Drive ITS was generating valid
Cooperative Awareness Messages with correct format and that the 802.11p Kapsch
modem was compatible with Drive C2X equipment.

1http://www.drive-c2x.eu/project
2Wireshark is a free and open-source packet analyzer. http://www.wireshark.org
3http://www.amb-consulting.com/en/#downloads
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6.1.2 Verification test

During this test there was a setup with 3 main components; Drive ITS, a Drive
C2X receiver and a Drive C2X Volvo car with capabilities of broadcasting its own
CAM messages.

Drive ITS was installed and configured next to a road according to Appendix C.
The Drive C2X receiver was also installed and configured in the same spot. The
Volvo car was driven on the road next to the radar a few times. The external
Drive C2X receiver was capturing packets during this whole time.

Once the test was completed the captured packets were analyzed and compared
side by side in Wireshark. As seen in figure 6.1 the packets were almost identical
which means that the test was a success. The only deviation was the car heading.
However, it was soon realized that the heading reported by Drive ITS was in
relation to the direction of the radar while the heading reported by the Drive C2X
car was in relation to the North.

(a) Drive ITS (b) Drive C2X Volvo Car

Figure 6.1: Captured packets from Drive ITS and Drive C2X sys-
tems.

The radar bearing was measured with a smartphone to 45◦ from the North ad-
vancing clockwise. However, the car was moving in the opposite direction which
means that the back side of the radar was facing 45◦+180◦ = 225◦ from the North
advancing clockwise. After compensating for the bad heading 225◦+5.4◦ = 230.4◦

heading for the car was calculated, which is much closer to 240◦ and within an
acceptable error margin for a smartphone. The algorithm was corrected and no
more deviations existed.

6.2 Final product

This section presents the final product, which is the result of combining the hard-
ware and software part of the master’s thesis. It is delivered as a neat package
that can be easily assembled and placed at any location, given its reduced size and
sturdy feel.

Figures 6.2 and 6.3 depict actual photographs of the Drive ITS product. Figure
6.4 depicts the case enclosure containing the Drive ITS prototype.
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Figure 6.2: General view of the Drive ITS prototype.

Figure 6.3: Lateral view of the Drive ITS prototype, featuring the
shield connector.
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Figure 6.4: Photography of a final assembly inside the case enclo-
sure, produced using FDM.



Chapter7
Discussion

7.1 Conclusions

Throughout the present master’s thesis, a device named Drive ITS has success-
fully been developed. It is able to emulate the car-to-car communication of non-
intelligent vehicles within the sight of the radar, thus providing a better integration
of ITS vehicle cooperation in the future.

The hardware part succeeds on connecting the radar and the 802.11p modem,
providing an intelligent device in the middle that is powerful enough to perform
all needed calculations.

The software part is tailored to successfully understand the radar’s frames and
translate them into messages that intelligent vehicles can process and use to im-
prove active safety on the roads.

With this technology, intelligent transportation will be realized even during the
early implementation phase, where just a small portion of the vehicles on public
roads will feature a cooperative communications system. It is also a long-term
solution, since older vehicles will keep driving on public roads for a long time.

By implementing the system in blind spots, intelligent vehicles will benefit from
extra active safety as they will be warned about surrounding vehicles.

47
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7.2 Future development

7.2.1 Web server

Given the availability of an Ethernet interface on the Raspberry Pi, it would be
possible to connect the Drive ITS device to Internet, creating a web server that
can provide traffic statistics (traffic congestion, real-time vehicle monitoring on a
map, etc...) and could also be means of remote configuration.

A solution involving an encrypted Virtual Private Network, such as OpenVPN1,
should be considered since the system should only be available to the operators of
the network and not the general public.

7.2.2 Communication with traffic lights

The radar needs to be placed somewhere high and with good visibility over the
road. Since traffic lights are already positioned in places like that they make the
perfect spot to install a radar.

The radar on the other hand can see the traffic and it is possible to collect statistics
about it. Having such statistics from all the radars all over a city each radar could
provide its individual traffic light with recommendations about when to turn green
and when to turn red.

Such a feature would require an extra connection for the traffic lights and further
development of software for collection of statistics and generation of recommenda-
tions.

7.2.3 Multiple radars and devices over CAN

The current system only allows for one Radar and one Drive ITS device on the
CAN bus, but it could be possible to access multiple radars with a single Drive
ITS device, or even plug more than one Drive ITS device that would allow to have
multiple 802.11p emitters.

1http://openvpn.net

http://openvpn.net
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7.2.4 User interface

Currently, all configuration of the device is done via an SD card that contains a
settings file, requiring to modify it with a visual text editor, either by connecting
a screen to the Drive ITS device or plugging the SD card to a personal computer.

It could be possible to develop a user interface via an LCD screen and a small
keypad, allowing easy and quick configuration of the device.

7.2.5 Beaglebone Black

A Beaglebone Black2 replacing the Raspberry Pi would eliminate the need for an
SD-card since there is 2GB flash memory on it. Also it features a smaller form,
which would be useful in reducing the overall device size. A major advantage
is that it features 5 UART Serial ports. That could open up new possibilities
such as adding an onboard GPS module to the system for positioning and time
synchronization.

It is also more inclined towards embeddedness and the hardware design is released
under an open source license making it the perfect platform to change and base
ones product on.

7.2.6 Ethernet over USB driver

One suggestion is to develop an Ethernet over USB driver for the AVR platform
in order to eliminate the need for a Raspberry Pi and provide a more embedded
solution.

Such an improvement would require an estimate of 6 months to develop, since it
consists of developing the hardware, an Ethernet over USB driver and porting the
software running on the Raspberry Pi to the AVR platform using a multitasking
solution.

7.2.7 Standby operation

For low-traffic situations, or in case of temporary closed roads, it could be inter-
esting to support a standby operation, with drastically lower energy consumption.
Both the CAN transceiver and the CAN controller support it, but the Drive ITS
device currently does not profit from this feature.

2http://beagleboard.org/Products/BeagleBone%20Black

http://beagleboard.org/Products/BeagleBone%20Black


50 Discussion



References

[1] European Telecommunications Standards Institute (2009), Final draft ETSI
ES 202 663 V1.1.0. ETSI, France.

[2] H. Eisele, E. Jöhnk (1996), PCA82C250 / 251 CAN Transceiver Application
Note. Philips Semiconductors - Product Concept & Application Laboratory
Hamburg, Germany (Currently NXP).

[3] Microchip Technology Inc. (2007), Stand-Alone CAN Controller With SPI
Interface (MCP2515 Datasheet). Chandler, Arizona, USA.

[4] Intrepid Control Systems Inc., Microchip Controller Area Network (CAN)
Bit Timing Calculator. http://www.intrepidcs.com/support/mbtime.htm
- Last visit 25-05-2013

[5] Modelrail.Otenko, Arduino + Controller Area Net-
work (CAN). http://modelrail.otenko.com/arduino/
arduino-controller-area-network-can - Last visit 25-05-2013

[6] Sparkfun Electronics, CAN-BUS Shield https://www.sparkfun.com/
products/10039 - Last visit 25-05-2013

[7] Crockett Engineering, CANduino - Controller Area Network shield for Ar-
duino compliant devices, https://code.google.com/p/canduino/ - Last
visit 14-04-2013.

[8] H. Schutte (1997), Application Note. Bi-directional level shifter for I2C-bus
and other systems. Philips Semiconductors Systems Laboratory Eindhoven,
The Netherlands (Currently NXP).

[9] European Telecommunications Standards Institute (2011), ETSI TS 102 636-
4-1 V1.1.1 ETSI, France.

[10] European Telecommunications Standards Institute (2011), ETSI TS 102 636-
5-1 V1.1.1 ETSI, France.

51

http://www.intrepidcs.com/support/mbtime.htm
http://modelrail.otenko.com/arduino/arduino-controller-area-network-can
http://modelrail.otenko.com/arduino/arduino-controller-area-network-can
https://www.sparkfun.com/products/10039
https://www.sparkfun.com/products/10039
https://code.google.com/p/canduino/


52 References

[11] European Telecommunications Standards Institute (2011), ETSI TS 102 637-
2 V1.2.1 ETSI, France.

[12] Dassault Systèmes SolidWorks Corp. Finite Element Analysis
(FEA) Overview, http://solidworks.com/sw/products/simulation/
finite-element-analysis.htm - Last visit 03-04-2013.

[13] S. Kalpakjian, S.R. Schmid (2009) Manufacturing Engineering and Technol-
ogy. (6th ed.) Pearson Education

[14] Sveriges Ingenjörer, Ingångslöner, http://www.sverigesingenjorer.se/
Om-forbundet/Sa-tycker-vi/ingangslon/. Last visit 02-04-2013.

[15] Smart Microwave Sensors GmbH (2012), UMRR Traffic Management Sensor
Full Documentation

[16] Kapsch TrafficCom AB (2012), Product Specification, ETTE 5.9 model, Doc
No. ETTE-00-001, Version A6

[17] International Telecommunication Union (2001), List of Mobile Country or
Geographical Area Codes (Complement to ITU-T Recommendation E.212
(11/98))

http://solidworks.com/sw/products/simulation/finite-element-analysis.htm
http://solidworks.com/sw/products/simulation/finite-element-analysis.htm
http://www.sverigesingenjorer.se/Om-forbundet/Sa-tycker-vi/ingangslon/
http://www.sverigesingenjorer.se/Om-forbundet/Sa-tycker-vi/ingangslon/


53



54 UML diagrams

AppendixA
UML diagrams

Figure A.1: UML diagram for the radarp package.
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Figure A.2: UML diagram for the radarp.its package.
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Figure A.3: UML diagram for the radarp.kinematics package.

Figure A.4: UML diagram for the radarp.serial package.



AppendixB
Programming manual

B.1 AVR microcontroller

The AVR microcontroller can be programmed in two different ways. The first
way involves an Arduino1 platform while the second way uses an external AVR
programmer. Using an Arduino has the advantage that an expensive external
programmer is not required. However, in order for that to work the microcontroller
must be preloaded the Arduino bootloader2. Using an external AVR programmer,
in this case the AVR Dragon3, has the advantage that the chip doesn’t have to be
removed and it doesn’t have to contain a bootloader thus all of its flash memory
can be used for programming it.

B.1.1 Arduino platform

Since the microcontroller used here is an AVR ATMEGA328, an Arduino UNO or
an Arduino Duemilanove platform needs to be utilized. The following steps must
be followed:

1. Detach the ATMEGA328 from the system.

2. Attach the ATMEGA328 to the Arduino UNO or Arduino Duemilanove w/
ATmega328 platform.

1http://arduino.cc
2http://arduino.cc/en/Hacking/Bootloader
3http://www.atmel.com/tools/AVRDRAGON.aspx
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3. Start the Arduino programming environment by double clicking on the
can2obj.ino file.

4. Make sure the Arduino UNO or Arduino Duemilanove w/ ATmega328 board
is selected from the Tools menu.

5. Make sure the correct Serial Port is selected from the Tools menu.

6. Hit the Upload button and wait until the process has completed.

7. Detach the ATMEGA328 from the Arduino UNO or Arduino Duemilanove
platform and attach it back to the system.
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B.1.2 AVR Dragon programmer

Before the AVR Dragon programmer can be used the Arduino programming en-
vironment needs to be tweaked in such a way that it can utilize the programmer.

Find and edit the hardware/arduino/programmers.txt file by appending the
following lines to the end of the file:

dragon_isp.name=AVR Dragon ISP
dragon_isp.communication=usb
dragon_isp.protocol=dragon_isp

1. Attach the SPI port of the programmer to the SPI port of the system using
a ribbon cable. Also attach VCC and GND to the system accordingly.
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2. Start the Arduino programming environment by double clicking on the
can2obj.ino file.

3. Make sure the Arduino UNO or Arduino Duemilanove w/ ATmega328 board
is selected from the Tools menu.

4. Make sure the AVR Dragon ISP programmer is selected from the Tools
menu.

5. Hit Upload Using Programmer from the File menu and wait until the process
has completed.
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6. Detach the system from the programmer.

Keep in mind that programming an AVR microcontroller with an external pro-
grammer will wipe out the Arduino bootloader, thus removing the possibility of
ever programming it again using an Arduino platform unless the bootloader gets
flashed to the chip again.

B.2 Raspberry Pi

The Raspberry Pi is a computer, there is no need for direct programming to be
made on it. The daemon is written in Java therefore a Jar file is constructed and
copied to the Raspberry Pi. To accomplish that one must follow the following
steps:

1. Open the RadarP project in Eclipse4.

2. Go to File → Export → Java → Runnable JAR file and click Next.

3. Select RadarP - RadarP from the Launch configuration, select an Export
destination, make sure Extract required libraries into generated JAR is se-
lected and click Finish. Click OK if a warning window pops up.

4. Copy the generated Jar file to the Raspberry Pi using WinSCP5 or the
following command for a Unix system. When asked for the password type
thesis:

scp radarp.jar pi@10.123.123.1:/home/pi/

4http://www.eclipse.org
5http://winscp.net

http://www.eclipse.org
http://winscp.net
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5. Connect to the Raspberry Pi through SSH and and type the following com-
mands. For Windows, Putty6 can be used. The username is pi and the
password thesis:

ssh -l pi 10.123.123.1 #Skip this step in Windows
cd /home/pi
chmod +x radarp.jar

6http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
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Installation manual

Before installing the radar and the rest of the system one must first consider if
there is good visibility of the road from the installation point. It is advisable that
the radar should not have any walls in its close proximity and that trees and other
structures should not block its line of sight.

C.1 Placement and configuration

Figure C.1 illustrates the placement of the radar. Pay attention to that it should
be facing 90◦ relative to center of the earth and not the road. This can be measured
using a spirit level.
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Figure C.1: Placement of the radar.
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After the radar has been installed it has to be configured. This can be done by
removing the SD card and connecting it to a computer. In the root directory of
the SD card there is a file called radarp.conf to be found, this is the configuration
file. Open the file and the following variables will be found inside:

# North or South (N, S)
radarLatitudeDirection = N

# East or West (E, W)
radarLongitudeDirection = E

# Latitude
radarLatitude = 55.711646

# Longitude
radarLongitude = 13.211060

# Altitude
radarAltitude = 66.43

# Facing direction of the radar in degrees. 0 degrees is north,
# advancing clockwise.
radarBearing = -73.0

# Whether the radar should simulate traffic or not
radarSimulation = false

# Installation height of the radar in meters. Min 1m max 10m.
radarInstallationHeight = 4

# Slope of the road in degrees. Positive is uphill and negative
# is downhill. 0 is flat.
roadSlope = 3.5

# Sweden according to COMPLEMENT TO ITU-T RECOMMENDATION E.212 (11/98)
countryCode = 240

Most of the variables are self-explanatory. However, radarAltitude is the alti-
tude from the sea level at the bottom of the post, not at the installation point.
radarInstallationHeight is the height of the post, 1m at least and 10m at most.
The correct countryCode can be found in [17].

Edit the variables according to your wishes and save the configuration file. Place
the SD card back in to the system and connect the power unit. In order to start
the daemon follow the following procedure:
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1. Connect the Raspberry Pi to a computer using an Ethernet cable.

2. Manually set the IP of the computer address to 10.123.123.2.

3. Use Putty1 (Windows) or ssh (Unix) to connect to the ssh server of the
Raspberry Pi. The IP is 10.123.123.1, the username is pi and the pass-
word is thesis.

4. Push the Reset button onboard the system shield.

5. Execute the following command: java -var /home/pi/radarp.jar &

The daemon should now be running, detecting vehicles and transmitting CAM
messages.

1http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
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