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Abstract

Where the dust in a protoplanetary disk is as the disk evolves over time is essential to
know for further studies of the planet formation process. A new star is created alongside
a stellar nebula. The nebula contains rock, ice and gas which are not accreted to the star.
Our nebula is constructed using the Minimum Mass Solar Nebula model and the column
density is studied as the protoplanetary disk evolves over time. The Minimum Mass Solar
Nebula model takes the mass of dust from the planets we see today in our solar system and
spreads it out between the planets. To estimate the gas column density, simply multiply
by about a hundred.

The dust in a protoplanetary disk will feel a head wind from the more slowly orbiting
gas and start to drift towards the star. The ice particles sublime inside 2.7 AU as the
temperature rises. A computer model is used here to simulate the changes in the column
density over time. Micron-sized particles are simulated as they grow and drift towards the
star. The ice-line at 2.7 AU results in a slight buildup of dust inside this radius. When a
pebble grows it is due to how much dust it collides with and how much of it that sticks
to the pebble. If the disk is less turbulent the pebbles grow slower due to fewer collisions
and the column density changes more slowly. The same happens when the sticking factor
is lowered. But with low turbulence (α = 10−4) the disk becomes thinner and more dense,
which can increase the growth somewhat. When the pebbles grow slowly there is a tendency
for dust buildup when the drift speed decreases with orbital distance (for St < 1, St is a
measurement of how particles behave in fluids). When the pebble density is closely varied
around 2 g cm−3 no big difference in the column density is shown. One can only see that
the disk shrinks slightly faster with heavier pebbles.
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Populär sammanfattning

En nyfödd stjärna är omringad av stoft och gas. Efter hundratusentals år har stoftet
drivit mot stjärnan där vi idag finner v̊ara planeter i solsystemet. Den här processen kan
simuleras i en enkel datormodell.

När en stjärna skapas omringas den av gas och stoft. Under stjärnbildningsproccessen
tunnas gasen ut till en skiva för att bevara rörelsemängden, ungefär som när man kastar
runt en pizzadeg. Denna skiva kallas för en protoplanetär skiva.

Turbulens i skivan gör det möjligt för stoft eller gruskorn att kollidera med varandra och
växa sig större. Men när gruskornen växer sig större börjar de känna av en motvind fr̊an
gasen som roterar runt solen l̊angsammare än gruskornen p̊a grund av gastryck. Gruskornen
tappar fart och börjar falla mot stjärnan när de närmar sig centimeterstorlekar. Dessa
gruskorn är byggstenarna för att planeter ska kunna skapas. Det är därför av stor vikt att
veta hur grus och stoft utvecklas med tiden för att först̊a hur planeter bildas.

Datormodeller har gjorts för att simulera dessa processer. Men för att kunna göra detta
måste först information om den protoplanetära skivan samlas in. Saker som densiteten av
partiklar, temperaturen, tjockleken p̊a skivan och den s̊a kallade ljushastigheten är alla
viktiga egenskaper i skivan.

År 1981 kom den kände japanske astrofysikern Chushiro Hayashi med en modell med
samband mellan dessa egenskaper, Minimum Mass Solar Nebula modellen. Denna modell
används som grund för att först̊a den protoplanetära diskens egenskaper. Modellen och
n̊agra fysikresonemang är väsentligen allt som behövs för att komma ig̊ang med dator-
modellen. Resonemangen innefattar antaganden om turbulens i skivan, vilket är källan till
kollisioner mellan gruspartiklarna och stoftet.

Kanske den mest intressanta egenskapen av den ovan nämnda modellen är kolumnde-
siteten. Den säger hur mycket materia det finns i skivan per areaenhet om man ser p̊a
skrivan ovanför dess plan. Idag syns ingen fri gas i v̊art solsystem. Tanken är att all gas
antingen har absorberats av solen eller gasjättarna, eller dunstat bort p̊agrund av solvin-
dar. Stoftet som best̊ar av is och sten har däremot ganska effektivt skapat de planeter vi
ser idag. Vi uppskattar den ursprungliga mängden gas till att ha varit hundra g̊anger s̊a
stor som mängden stoft.

Datorsimuleringen utförs p̊a följande vis: en stoftpartikel börjar med en viss storlek
p̊a ett visst avst̊and till stjärnan vid tiden noll. Sedan l̊ater man partiklen ta ett litet
steg i tiden, vilket betyder att den kolliderar med andra partiklar, blir större och börjar
driva mot stjärnan. Nu har partiklen en ny position och ett nytt steg tas. Partiklens radie
och dess position räknas ut igen. Detta fortsätter man att göra över s̊a l̊ang tid man är
intresserad av att titta p̊a.

Vi har nu information om hur den protoplanetära skivan och farför allt kolumnden-
siteten, utvecklas med tiden. Gruskornen kommer sedan att koncentreras i gasflödet och
bilda kilometerstora planetesimaler. Dessa planetesimaler växer till storlekar där deras
dragningskraft drar till sig mer material i skenande takt p̊a sin väg att bli planeter.
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Chapter 1

Introduction

All planets in our solar system orbit the Sun in the same direction the Sun rotates about
its own axis. It is therefore very likely that all matter in the Solar system comes from a
primordial dust cloud, which later contracted. The contraction leads to very high densities
in the center, where fusion ignited the Sun. The cloud also started to rotate due to the
contraction, and the rotation flattened the cloud to a disk, a so called protoplanetary disk.
This theory explains why all planets rotate around the Sun the same direction the Sun
rotates around its own axis.

From the beginning there were no planets, just gas and dust around the Sun. The dust
collided to create bigger particles, called pebbles. More and more dust collided with the
pebbles; pebbles collided with pebbles, to create even bigger bodies. As the pebbles grew in
size they drifted towards the Sun. This material was later accreted to planetesimals which
are held together by self-gravity. As the planetesimals extend their gravitational range
they have a run-away growth towards becoming planets. In this step the planetesimals
grow more the larger they get. This is when even the gas cannot escape the path of the
protoplanets, and it gets accreted as well. When protoplanets are dominating in the disk,
they will perturb each others orbits, collide and eventually form a few planets.

The step from pebbles to km-sized objects is yet unknown in the planet formation
process whilst the step from km-sized objects to protoplanets is well understood today.
This is why the study of this report is focused on the drift and growth of pebbles.

A problem with pebble growth is that in some models the pebbles drift too rapidly to
give planets a chance to form. Some unknown or uncertain parameters of the protoplane-
tary disk can be changed in a computer model to see how it affects the disk over time as
the pebbles drift. One way to describe the disk profile is with the column density. It tells
us how much material there is per unit area in the disk. The pebble drift changes the dust
column density.

Dust and gas in other solar systems are very hard to study due to very faint protoplane-
tary disks. An easier way to study the development of the column density in protoplanetary
disks is to do a computer simulation of the drift and growth of the particles. As the dust
drifts towards the star, over time the dust distribution and the column density changes.
This eventually results in different conditions for planet formation at different distances
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CHAPTER 1. INTRODUCTION

to the star, at different times. With a computer simulation we can see how long the disk
survives to create and feed planets.

In chapter 2 we will go through all properties of a protoplanetary disk. We start off
with the Minimum Mass Solar Nebula in chapter 2.1, beginning with describing the column
density (Σ) for both the gas and for the dust particles consisting of rock and ice. Then
we derive the temperature (T ) of the protoplanetary disk, which gives us the sound speed
(cs). The scale height (H) of the disk depends on the Keplerian frequency (ΩK) and the
sound speed. We derive the density (ρ) and show the definition of the scale height. We
find the mid-plane density, which is of special interest for later simulations of growth in
the mid-plane. These are the properties of a protoplanetary disk.

In chapter 2.2 we take a closer look at the physics behind radial drift. It is explained
why the gas orbits the star with a sub-Keplerian speed. We define ∆v as the difference
between the Keplerian speed and the speed of the gas. We introduce the friction time
τf and construct the stokes number (St= ΩKτf) and write the radial drift speed vr as a
function of St and ∆v. It is also shown that the maximal drift speed depends both on the
radius of the pebble and its orbital distance.

Particle growth is examined in chapter 2.3 where we go through the physics behind it.
First we derive a growth formula for a pebble. The relative dust speed δv and turbulence
parameter α are introduced and it is shown how the dust scale height depends on the
turbulence in the disk. Not all the dust that collides with a pebble is likely to stick,
therefore a sticking factor ε is added to the pebble growth formula.

In chapter 3 we go through the method and how the computer model was constructed
for the simulations. How a column density can be constructed using the growth and drift
of pebbles is described in chapter 3.1. Every pebble represents a ring of dust, every ring
has the same mass and the column density is calculated by counting the number of rings
within a certain interval. In chapter 3.2 it is described how the simulation can be done
using Euler-steps. Finally we want to freeze the time at certain points to examine the
column density profile. A method to interpolate the positions of the pebbles at a certain
time is presented in chapter 3.3.

Simulations with different values of some parameters are done in chapter 4 to see how
these affect the evolution of the disk. A disk with or without an ice-evaporation line is
simulated. Different turbulence parameters, sticking factors, initial sizes of the pebbles
and pebble densities are also tested.

In chapter 5 we discuss the results and the problems with the Minimum Mass Solar
Nebula.
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Chapter 2

Theory

When a star is created, all the neighboring material does not go into the star. The leftovers
create a protoplanetary disk around the star, consisting of gas and dust made of rock and
ice. The amount of dust and gas in the disk is estimated by the Minimum Mass Solar
Nebula, first constructed by Hayashi (1981). It is constructed by considering the orbits of
the planets around the Sun today.

We assume that the dust in the solar nebula was efficiently incorporated into the planets,
whilst most of the gas was accreted by the Sun or photo-evaporated. A protoplanetary
disk has a mass of about 1 to 10 % of the stellar mass. The mass of the planets in our
solar system is known and therefore the dust mass is known. It turns out that we get the
primordial amount of gas in the solar nebula by multiplying the mass of the dust by about
100 to match current observations. When the mass of gas and dust is known, it is spread
out evenly between the positions of the planets.

This means that we now know the density of gas and dust in our protoplanetary disk.
From this, other properties of the protoplanetary disk can be derived, such as scale height,
sound speed and temperature.

2.1 Minimum Mass Solar Nebula

From the reasoning above we get the column density of all mass in the protoplanetary disk
if we know the disk mass and work backwards from (eq. 2.5) (Hayashi, 1981)

Σ(r) = 1700 g cm−2
( r

AU

)−3/2

. (2.1)

The column density describes how much matter there is per unit area, at a distance r from
the star, if the disk is looked at from above the plane of the protoplanetary disk.

A protoplanetary disk consists of rock, ice and gas. Close to the star the ice particles
sublime due to an increase in temperature. This happens at about 2.7 AU where the gas
temperature is about 170 K. The effects can be seen in the column density of the dust,
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2.1. MINIMUM MASS SOLAR NEBULA CHAPTER 2. THEORY

Figure 2.1: The plot to the left shows how the gas column density, in g cm−2, decreases
with the radius, in astronomical units (AU), from the star. The same can be seen with the
temperature, measured in Kelvin, which is at its highest closest to the star.

Σd(r) = Σrock(r) = 7 g cm−2
( r

AU

)−3/2

for r < 2.7 AU, (2.2)

Σd(r) = Σrock+ice(r) = 30 g cm−2
( r

AU

)−3/2

for r > 2.7 AU. (2.3)

These two equations will later be used as the column dust density Σd, depending on the
distance r to the star. The disk consists almost exclusively of gas, hence the gas column
density is

Σgas ≈ Σ(r). (2.4)

as in figure 2.1. Hayashi (1981) used a nebula mass of 0.013M� between 0.35 and 36 AU,
which you get from equation (2.5). The column density times the area 2πrdr gives the
mass at distance r. The total mass of the disk is therefore given by

Mdisk =

∫ r1

r0

2πrΣ(r)dr. (2.5)

In this study the nebula is extended to 100 AU, and the mass is changed accordingly, with
the same mass distribution in the inner region. After integrating the column density from
0.35 AU to 100 AU we get a disk-mass of 0.222M� which is later used to calculate the
developing dust column density.

The temperature in the disk is harder to infer. For the simplest case we have a optically
thin disk, so that every dust-particle is hit by the radiation directly from the star. The
amount of energy per unit time per area that the Sun radiates is the flux

F� =
L�

4πr2
(2.6)
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2.1. MINIMUM MASS SOLAR NEBULA CHAPTER 2. THEORY

Figure 2.2: To the left we see how the scale-height of the disk increases with radius. Both
the height and radius are given in AU. The density of dust and gas in the disk, given in g
cm−3, decreases when the radius to the star increases.

where r is the distance to the Sun and L� is the solar luminosity.
When the particles in the disk are in thermal equilibrium they radiate the same amount

of energy as they absorb. The dust radiates like a blackbody in all directions. The total
power radiated from a particle with radius R is therefore

Pout = 4πR2σSBT
4
eff (2.7)

where σSB is Stefan Boltzmann’s constant and Teff is the effective temperature of the
particle.

The same particle only gets hit by the rays from the Sun on one side, with the total
effective area of a circle with radius R. The total power that hits the particle is

Pin = πR2F�. (2.8)

There is equilibrium when the two powers are equal, Pin = Pout. After solving for Teff we
get

Teff =

(
F�

4σSB

)1/4

. (2.9)

Inserting equation 2.6 yields

Teff(r) =

(
L�

16πr2σSB

)1/4

. (2.10)

And finally, after inserting the values for the luminosity of the Sun and Boltzmann’s con-
stant, we get

T (r) = 280 K
( r

AU

)−1/2

. (2.11)
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2.1. MINIMUM MASS SOLAR NEBULA CHAPTER 2. THEORY

Figure 2.3: This is a sketch of a particle above the plane of the disk, feeling the gravitational
force of the star.

The sound speed depends on the temperature T the following way (Hayashi, 1981)

cs = 9.9× 104 cm s−1

(
2.34

µ

T

280 K

)−1/2

. (2.12)

and µ = 2.34 is the mean molecular weight of the matter in the disk. The temperature
T (r) can be seen in figure 2.1.

The scale height, which is a measure of the thickness of the disk at a certain distance,
is given by (Hayashi, 1981)

H(r) =
cs

ΩK

(2.13)

where ΩK =
√
GM/r3 is the Keplerian frequency at the given radius, G is the gravitational

constant and M is the mass of the star (Hayashi used the half-thickness which is a factor√
2 bigger than the scale height). See left figure 2.2 where the scale height is plotted as a

function of the semi-major axis r.
The density of dust and gas in the disk depends both on the radius to the sun and the

height above the mid-plane. It is proportional to the column density divided by the scale
height. The density has a Gaussian distribution about the mid-plane.

ρ(r) =
Σ(r)√
2πH(r)

exp

[
− z2

2H(r)2

]
. (2.14)

To show this, we begin with a hydrostatic equilibrium condition. As seen in figure 2.3
gz/g = z/d. This gives the acceleration due to gravity in the vertical direction

gz = g
z

d
= −GM

d2

z

d
≈ −GM

r3
z = −Ω2

Kz. (2.15)

The acceleration due to the gas pressure is given by

agas = −1

ρ

dP

dz
. (2.16)

For constant temperature T we can write P = nkT = (ρ/µ)kT = c2
sρ so that

agas = −c2
s

1

ρ

dρ

dz
= −c2

s

d ln ρ

dz
(2.17)
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2.1. MINIMUM MASS SOLAR NEBULA CHAPTER 2. THEORY

A gas-particle in equilibrium does not change its velocity vz in the vertical direction, hence
az = gz + agas = 0

dvz
dt

= −Ω2
Kz − c2

s

d ln ρ

dz
= 0 (2.18)

Recalling the scale height equation H(r) = cs/ΩK and insert the expression for H yields

d ln ρ

dz
= −Ω2

K

c2
s

z = − z

H2
. (2.19)

This is the derivation and definition of the scale height.
This ordinary differential equation (2.19) can be solved for ln ρ

ln ρ = ln ρ0 −
z2

2H2
. (2.20)

Which gives us the solution for ρ

ρ(z) = ρ0 exp

[
− z2

2H2

]
. (2.21)

We still do not know the density in the mid-plane. But we know the connection between
the column density and the density in form of an integral. If we integrate the density over
the height of the disk we should get the column density,

Σ =

∫ ∞
−∞

ρ(z)dz = ρ0

∫ ∞
−∞

exp

[
− z2

2H2

]
(z)dz. (2.22)

With a substitution of variables this can be identified as a standard integral,

Σ =
√

2Hρ0

∫ ∞
−∞

exp (ξ2)dξ =
√

2πHρ0. (2.23)

The mid-plane density therefore is

ρ0 =
Σ√
2πH

. (2.24)

This finally gives us equation (2.14). The mid-plane density increases with the column
density. When the scale height increases, on the other hand, the mid-plane density de-
creases.

As a last thing we also have the relation of the aspect ratio of the disk,

H/r =
cs
vK

= 0.033
( r

AU

)1/4

(2.25)

to calculate the scale height
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2.2. RADIAL DRIFT CHAPTER 2. THEORY

2.2 Radial drift

A protoplanetary disk consists mainly of three kinds of particles: gas, ice and rock. The
gas in the disk is radially pressure-supported, as a consequence of the high temperature
and density close to the star. This makes the gas orbit the star at a sub-Keplerian speed
vgas. The difference between the Keplerian speed vK =

√
GM/r and vgas (G being the

gravitational constant and M being the mass of the star), is vK − vgas = ∆v. In the
midplane (z = 0) the parameter ∆v is also (Nakagawa et al., 1986)

∆v = −1

2

(
H

r

)2
∂ lnP

∂ ln r
vK. (2.26)

The gas velocity is derived from the famous formula F = ma, where m is the mass of the
gas-particle. The centripetal force must be equal and opposite to the gravitational force
and the force from the gas pressure to have a stable orbit, 0 = Fc + Fg + FP . This gives

0 =
mv2

gas

r
−GmM

r2
−m1

ρ

∂P

∂r
. (2.27)

Solving for vgas yields

vgas =

√
v2

K +
r

ρ

∂P

∂r
=

√
1 +

H2

r2

r

P

∂P

∂r
vK (2.28)

where we have used that the pressure can be written as P = c2
sρ and the scale height

H = csr/vK. We get ∆v to be

∆v = vK − vgas =

(
1−

√
1 +

H2

r2

∂ lnP

∂ ln r

)
vK. (2.29)

A Taylor expansion of the expression in the parenthesis to the first order gives equation
(2.26).

To show that ∂ lnP/∂ ln r = −3.25 we use the ideal gas law

P = nkT =
ρ

µ
kT = ρ(r)T (r)

k

µ
(2.30)

and k/µ = constant. Note that from the mid-plane density in equation (2.14) we have

ρ(r) =
Σ(r)√
2πH(r)

∝ r−3/2

r5/4
∝ r−11/4 (2.31)

and equation (2.11) for the temperature

T (r) ∝ r−1/2. (2.32)

9



2.2. RADIAL DRIFT CHAPTER 2. THEORY

Inserting (2.31) and (2.32) into (2.30) we get

P ∝ r−13/4 = Ar−13/4 (2.33)

where A is just a constant. Taking the derivative of the pressure with respect to r yields

∂P

∂r
= (−13/4)Ar−13/4−1. (2.34)

This eventually leads to

∂ lnP

∂ ln r
=

r

P

∂P

∂r
=

r

A r−13/4
(−13/4)Ar−13/4−1 = (−13/4) = −3.25 (2.35)

This means that equation (2.26) can be rewritten as

∆v = −1

2

(
H

r

)2

(−3.25)vK. (2.36)

This speed difference between the Keplerian speed and the gas rotational speed is actually
constant at about 50 m/s, since (H/r)2 ∝ r1/2 and vK ∝ r−1/2. This difference in speed
results in a head-wind for the ice and rock-particles. They lose speed and start to fall
towards the star with a speed (Weidenshilling, 1977)

vr = − 2∆v

St + St−1 (2.37)

where St = ΩKτf and τf is the friction time. The friction time is

τf =
Rρ•
csρg

, (2.38)

where ρ• is the pebble mass-density, taken to be ρ• = 2 g cm−3, and ρg ≈ ρ is the gas
density. The friction time contains information about how the particle interacts with the
gas flow.

The Stokes number describes how particles behave in fluids. A small number means
that the particles couple to the flow of the fluid while a large number corresponds to
particles with larger momenta, continuing on their initial path.

In equation (2.37) and figure 2.4 we can note that for very large St, St−1 becomes
negligible and the drift speed vr approaches zero. The same is for very small St where St−1

becomes large and vr again approaches zero. The highest radial drift speed is achieved
at St= 1. As the radius of the dust increases, the Stokes number increases. The Stokes
number decreases as the semi-major axis r decreases.

To get maximum radial drift speed for the pebbles their Stokes number should be unity.
This occurs for different pebble sizes at different distances to the star. This can be seen
in figure 2.5. In this plot St is fixed at 1 and the pebble radius is drawn as a function of
the semi major axis. The closer to the star a pebble is the bigger it must be to maintain
its drift speed. This means that particles that do not grow can pile up simply due to their
new position which lowers their Stokes number and their drift speed.
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2.3. PARTICLE GROWTH CHAPTER 2. THEORY

Figure 2.4: This shows that the maximum radial drift speed in equation (2.37) is achieved
at St=1. Smaller particles (smaller St) go along with the gas and does not drift as much,
while bigger particles (bigger St) does not get affected as much by the head wind from the
gas.

2.3 Particle growth

To simulate the particle growth the following model is used. The growth depends on the
area of the pebble, the density of dust-particles colliding with it, and a turbulence factor
which measures how often it collides with other dust. The mass growth can be written as

ṁ = 4πR2ρdδv (2.39)

Here R is the pebble radius, ρd is the dust density and δv is the difference in speed between
the pebble and the dust. The mass of a single pebble depends on its volume and its density
ρ•. If we have spherical particles the mass is

m =
4πR3

3
ρ•. (2.40)

We can take the derivative with respect to time on equation (2.40) to get

ṁ = 4πṘR2ρ•. (2.41)

Combining equation (2.39) and (2.41) yields

Ṙ =
δvρd
ρ•

(2.42)

The relative speed δv of particles colliding in a turbulent gas is set to

δv =
√

St · α · cs (2.43)

11



2.3. PARTICLE GROWTH CHAPTER 2. THEORY

Figure 2.5: St=1 is kept fixed to see at which pebble radius we have maximum drift speed
at a certain orbital distance. The pebble radius is drawn as a function on the semi major
axis. For maximum drift speed the pebble radius increases as the semi major axis decreases.
This is due to a higher density closer to the star, which the pebbles try to decouple from.
For pebble radii either bigger or smaller the drift speed will be submaximal.

for St< 1 (Weidenschilling, 1984). The turbulence parameter α takes values between 10−2

and 10−4 (Johansen et al., 2014). For this report a value of α = 10−2 is primarily chosen.
The turbulent rms speed of the gas is vt =

√
α · cs, so δv =

√
St · vt is always smaller than

vt for St < 1. The equation is invalid for St > 1.
The dust in the disk will fall towards the mid-plane, while the gas will have a wider

spread or height. This will lead to a Gaussian dust distribution with scale height

Hd

Hg

=

√
α

St + α
. (2.44)

This is an equilibrium between the dust sedimentation and the turbulent diffusion, a battle
between the dust wanting to fall towards the mid-plane and the turbulence, mixing up the
dust again (Johansen et al., 2014).

For small particles we have a small Stokes number. Then the scale height of the dust
approaches the scale height of the gas. But for large Stokes numbers, the dust scale height
approaches zero; the particles end up in the mid plane of the disk. The particle density ρd

gets very high, since

ρd(r) =
Σd√
2πHd

(2.45)

where Σd(r) is the dust column density. ρd goes to infinity as Hd goes to zero.
All dust that collides with the pebble is not likely to stick to it. Sometimes all the

dust sticks, and sometimes a collision only leads to fragmentation. Most likely seems the
scenario when a dust particle collides with the pebble and transfers some of its mass upon

12



2.3. PARTICLE GROWTH CHAPTER 2. THEORY

impact. To account for this, a sticking factor ε is added to the Ṙ equation (2.42),

Ṙ = ε
δvρd

ρ•
. (2.46)

The value of ε is typically used to be 10 % in this study, but other values are examined as
well.
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Chapter 3

Method

3.1 The computer model

The physics behind dust accretion was covered in chapter 2. We can use this to construct a
computer model for the growth and position of a pebble in a protoplanetary disk. Pebbles
starting at different orbital distances are simulated and their positions and sizes are followed
as a function of time.

All pebbles that have the same initial size and are at the same orbital distance will grow
similarly. Therefore a simulation of a single pebble can be seen as a simulation of a ring of
pebbles, growing and drifting closer to the star. A simulation is done with several rings at
different initial orbital distances, equidistantly separated. We let these rings represent all
the dust in the nebula. The mass is evenly distributed between the rings, giving them the
same mass. To calculate the column density you simply count how many rings N you have
in a pre-determined interval, multiply by the mass m of a ring, and divide by the area of
the considered ring-segment, figure (3.1),

Σi =
[mass

area

]
=

mN

2πri∆r
. (3.1)

Figure 3.1: This is a sketch of a slice of the protoplanetary disk. The thin lines represents
the rings while the thicker lines just separates the different segments where the column
density is calculated, according to equation (3.1).

14



3.2. THE SIMULATION CHAPTER 3. METHOD

This is done for all i intervals of binned data, to get the column density at every distance
from the star.

3.2 The simulation

The simulations were done with MATLAB. At every location (distance from the star)
the column density, temperature, sound speed, scale height, density, Keplerian frequency,
friction time and Stokes number are calculated. From this information the drift speed
and accretion rate of the pebble is calculated. The new position r, the time t as it was
at that position and its radius R at that time, is calculated. This was done using simple
Euler-steps. The semi major axis r is changed as

r = r + vr · dt. (3.2)

Here, vr is the radial velocity and dt is length of the time-step.
The particle size R changes

R = R + Ṙ · dt (3.3)

where and Ṙ is the radial growth with respect to time. Finally the time changes as

t = t+ dt. (3.4)

The length of the time-step depends on how fast the pebble increases in size and how fast
it is drifting. The smallest of the following ratios determine the step-size

dt = f ·min

(
r

vr
,
R

Ṙ

)
. (3.5)

Here f is taken as a constant. As the pebble grows faster, or falls towards the star faster,
the time-step decreases. This procedure is used to minimize both the numbers of steps
taken (computation time) and minimize the error. It is accomplished by taking larger
time steps when barely any growth or drift occurs and taking smaller time steps when the
change in position or size happens more rapidly. Figure 3.2 shows how particles grow and
approach the star.

In Appendix B a 4th order Runge-Kutta method is tested against the Euler method to
see if there are any significant differences in the result.

3.3 Time interpolation

After the simulation of the particles is done we want to look at a specific point in time
to see what the disk looks like then. The main problem in doing so is that we do not
have information on the disk for all points in time. Each pebble has its position and size
defined at time ti which are not the same for each pebble. We therefore have to make an
interpolation.
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Figure 3.2: The box in the top-right corner tells the initial position of the pebbles in the
simulation. The pebbles start at the bottom of the plot and grow upwards as time and
their radius increase. The left plot shows the particle size as a function of orbital distance.
One can clearly see the ice line at 2.7 AU, where the pebble does not grow as rapidly as
before due to less dust. In the plot to the right time is plotted as a function of orbital
distance. Micron-sized particles drift towards the star as they grow in size and start to feel
the head wind from the gas.

An easy way to see how it can be done is the following. A line is drawn horizontally in
the right plot in 3.2 at the time of interest. Then the intersections for each pebble with the
horizontal line tell the position of the pebbles at that time. This is a linear interpolation
and is the simplest kind of interpolation.

To do the linear interpolation I look at the two points in time, one before (t1) and one
after (t2) the one of interest. I also look at their corresponding radius, r1 and r2, to the
star at these points in time. Then a line is drawn between the two points so that there
now is a linear correlation between the time and radius to the star. Now the radius to the
star is a linear function of time for this small interval. To extract the value at the wanted
time simply insert the time in the function of time, to get the value of the function at that
time.

In equation form we have the following equation system:{
r1 = a1t1 + a0

r2 = a1t2 + a0

(3.6)

valid between t1 < t < t2. This is solved for a1 and a0 and then insert in

r(t) = a1t+ a0 (3.7)

to get the semi major axis r of a certain pebble at time t.
This was done at different times to see the development of the disk, and in particular

the column density.
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3.4. A NEW COLUMN DENSITY CHAPTER 3. METHOD

3.4 A new column density

When all this data is collected a new column density can be calculated according to equa-
tion (3.1). This is done by examining where the rings are at the times of interest and
re-calculate the column density at the given times.

This new column density is not re-entered into the program, so the column density used
for the particle growth and drift is a static one which does not develop over time. Gas
accretion to the star and photo-evaporation of the gas are also effects not included in the
model. To get a more realistic model this should also be incorporated. But the current
model is a good and simple start to get a feel for how a protoplanetary disk could develop.
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Chapter 4

Results

A computer model based on all the things covered in chapter 2 and 3 was created, and
can be viewed in its whole in the Appendix A. Now we can see how particles grow and
drift in the protoplanetary disk. We can also see how the drift of the pebbles (figure 3.2b)
would affect the column density (figure 4.1). When the pebble radius increases and brings
St closer to unity the drift speed increases due to the head wind from the slower orbiting
gas. The effects of the drift can be seen in figure 3.2a where the pebble radius is drawn as
a function of the semi major axis r. First the particles grow very slowly, especially in the
outer regions where the dust density is low. It takes a long time for the pebbles to grow to
sizes when they start to decouple from the gas. When the pebbles get closer to the center
the dust density increases and the pebbles grow faster. As the pebbles reach the ice-line
at 2.7 AU the dust density decreases and one can see a small plateau in the growth.

The parameters used in the simulations are,

Parameter Value
ε 0.10
α 10−2

Rinitial 1 µm
Number of pebbles 5000
∆r 1 AU
ρ• 2 g cm −3

unless stated otherwise. A simulation of the dust column density with these parameters
can be seen in figure 4.1. We can always return to this figure later when we compare the
effects of changing the value of a parameter. We are interested to see what differences in
the evolution of the dust column density the changes lead to.

At the start we have 50 rings per interval. When the pebbles start to drift we will
see some fluctuations in the column density due to this low amount of rings per interval.
When a ring from a neighboring interval i gets inside interval i− 1 before the ring at the
other edge has left interval i − 1 and before a new ring from interval i + 1 has reached
interval i, we get a slightly higher column density in interval i − 1 and a slightly lower
column density in interval i.
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4.1. ICE SUBLIMATION CHAPTER 4. RESULTS

Figure 4.1: Here we can see how the dust column density develops over time. The blue line
represents the density at the start, when no drift has occurred. The particles closest to the
star grow faster due to a higher density of dust and start to fall towards the star, causing
a lower column density where they used to be. Over time we can see how the particles
further out also grow and start to fall towards the star, causing the column density to drop
there as well.

Figure 4.2: The box in the top-right corner tells the initial position of the pebbles in the
simulation. The figure to the left shows a simulation with no ice in the dust inside 2.7 AU.
This lowers the number of particles for the pebbles to collide with, and the growth slows
down. In the figure to the right there is ice dust all the way through the protoplanetary
disk and the pebble radius continue to increase as a power law inside 2.7 AU.

4.1 Ice sublimation

Comparing simulations with ice-particles in the entire solar nebula, to simulations with an
ice-sublimation line clearly shows a difference. The pebbles grow slower when there are
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fewer particles to collide with (figure 4.2), and they do not fall as fast towards the star
as they would have with the ice present. In figure 4.3 we see how this affects the column
density. As expected we no longer see the buildup of dust inside 2.7 AU when the ice line
is removed.

The ice particles in the dust disappear inside 2.7 AU for the pebbles to collide with.
But the ice already stuck to the pebbles still stay on the pebbles after they have breached
the ice-line. Subtracting the mass of the ice from the pebbles would be an improvement
for further studies, especially if the central part of a solar system is the area of interest. I
did not have time to incorporate this into the program.

Since the dust column density consist of about 3/4 ice and 1/4 rock the pebbles would
lose most of their mass. This would lower the column density a lot if all ice would be
removed from the pebbles and the ring mass. But then the Stokes number would fall as
well and we might see an even bigger buildup of dust, compensating the lower pebble mass.

Figure 4.3: A comparison between simulations with or without ice-sublimation within 2.7
AU is shown. The plot to the left shows the original simulation where there is no ice inside
2.7 AU to collide with the dust. The plot to the right shows how the column density
develops when there is ice all the way through the disk. The pebbles grow slower where
there are no ice particles in the dust. It appears as if the slower growth, in the simulation
with an ice-line, accumulates particles. This increases the dust column density, compared
to the simulation without an ice-line.

4.2 Turbulence parameter

The turbulence parameter α determines how often the pebbles will collide with the dust. It
does this in two ways. A higher alpha increases the collision speed δv, but it also increases
the dust scale height, resulting in a lower dust density in the mid-plane. The original
simulation (figure 4.1) had an α = 10−2. In figure 4.4 we can see two simulations, first
with α = 10−3 and the second with α = 10−4.
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One can see a tendency to a buildup of dust with low turbulence e.g. α = 10−4 at
some orbital distances and times e.g. about 5 AU at 2·105 years. With low turbulence
the pebbles grow slower due to fewer collisions. The drift speed vr depends on ∆v and St
which depends on the semi major axis r. This leads to a decrease in drift speed as the
particles drift towards the star, if they do not simultaneously grow, as discussed in figure
2.5.

The smaller St slightly closer to the star in combination with slow growth at the start
leads to the bumps in the column density. Around a bump the pebbles a bit closer to
the star will not drift because their Stokes number is low, whilst just outside St is slightly
higher and the particles drift a bit just to lower their St and start to build up. The bump
in the column density stays until the particles reach higher speeds and start to spread out
again. It can be compared with a group of cyclists in a peloton. When it goes fast the
cyclists are more spread out compared to when it goes more slowly.

The growth speed seem to differ more between positions r of the pebbles when the
turbulence is low, at least around a bump.

Figure 4.4: Simulations are done here with different turbulence parameter α. The left plot
has α = 10−3, while the plot to the right has α = 10−4. The lower turbulence the more we
can see a tendency for dust buildup as discussed in figure 2.5, the pebbles slow down as
they approach the star when they do not grow.

4.3 Sticking factor

The sticking factor ε affects how much dust attaches to the pebble when a collision occurs.
The original simulation (figure 4.1) had ε = 10 % In figure 4.5 simulations with sticking
factors of 100 % and 1 % are compared. With a high sticking factor the pebbles grow very
rapidly and fall fast towards the star, as they start to feel the head wind from the gas.
With a sticking factor of 100% all the pebbles have fallen into the star after a million years.
With a low sticking factor it takes longer time before a change can be seen in the column
density profile. The particles in the outer regions beyond 30 AU barely move, while the
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inner pebbles grow faster due to a higher density closer to the star. This gives a lower
density in the inner regions as the pebbles fall towards the star, compared with the initial
column density. But in the outer regions the pebbles falls slower the closer to the star they
are, resulting in a buildup at the edge of the disk. The buildup lasts until the pebbles
grow to bigger sizes to get closer to the line in figure 2.5 where the drift speed is at its
maximum.

Figure 4.5: Two different sticking factors are tested in these two simulations. To the left all
the dust that collides with the pebble sticks, ε = 1. To the right only 1 % sticks, ε = 0.01.
This clearly affects how fast the pebbles grow and their drift speed. After one million years
no dust is left in the protoplanetary disk where ε = 1, whilst the column density after two
million years with ε = 0.01 resembles the column density at 0.1 million years with ε = 1,
except for the buildup of dust in the outer regions of the protoplanetary disk with ε = 0.01.

4.4 Initial size

In the original simulation (figure 4.1) the pebbles had the size 1 µm. Initial sizes of 0.1 and
5 µm are here compared in figure 4.6. With smaller particles the evolution of the disk looks
practically the same as in figure 4.1. But with bigger pebbles the pebbles in the outer part
of the protoplanetary disk accumulates and actually rises the column density temporarily
as the edge protoplanetary disk moves closer to the star. It takes a lower pebble radius to
achieve a high drift speed in the outer regions of the protoplanetary disk as discussed in
figure 2.5. This leads to a buildup of dust when the pebbles do not grow fast enough to
maintain their Stokes number and drift speed. This is seen especially in the outer regions
where the dust density is low and the pebbles grow slower than in the inner regions.

4.5 Pebble density

The pebble density does not seem to affect the column density much when changed around
2 g cm−3, which was the original density used (figure 4.1). It affects the friction time which
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Figure 4.6: Here are two simulations with two different initial sizes for all the pebbles. To
the left the pebbles start with a radius of 0.1 µm. To the right the radius is 5 µm. The plot
with the smaller dust to the left very much resembles the original simulation (figure 4.1).
In the simulation with the bigger pebbles a more rapid drift is seen in the outer regions of
the protoplanetary disk. The disk shrinks much more rapidly. The pebbles drift rapidly
until the they do not grow enough to maintain their drift speed, then a buildup of dust
starts to show in a locally higher column density, as seen at the edge of the disk.

affects the drift speed, but the column density profile looks almost the same in figure 4.7
where densities of 1 g cm−3 and 3 g cm−3 are tested. One difference is that the edge of the
protoplanetary disk has moved closer to the star after two million years with the heavier
pebbles compared with the lighter ones.

Figure 4.7: Here are two simulations with different pebble densities. To the left we have a
density of 1 g cm−3 and the density is 3 g cm−3 to the right. The effects shows only in the
long run where the edge of the protoplanetary disk moves closer to the star fast when the
pebble density is higher.
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4.6 Runge-Kutta

In Appendix B a 4th order Runge-Kutta method is tested against the Euler method to see
if there are any significant differences in the result.
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Chapter 5

Discussion

5.1 The true column density

If we were to follow the column density from the Minimum Mass Solar Nebula model
(Hayashi, 1981), the dust column density should be ∝ r−3/2 and not ∝ r−1 as we see in
equation (3.1) and figure 4.1 at the initial time (slope = −1). But we can still study how
a protoplanetary disk develops over time. Figure 4.1 would still look about the same, the
dust column density would just have a steeper slope, a slope of −3/2 instead of -1.

The idea behind how planets form in a protoplanetary disk revolves around the fact that
dust from the outer regions drift inwards. Some of the dust gets accreted by larger bodies
that later can form planets. The Minimum Mass Solar Nebula model is constructed by
spreading out the dust from the planets where we see them today and construct a density
from that. But we do not think that the dust at a certain radius created the planets there,
so this assumption of the initial density is likely to be wrong. This means that the column
density in the Minimum Mass Solar Nebula can be wrong, and we should not despair just
because our column density examined in this model does not have the same profile.

5.2 Choices of parameters

In doing a model of a protoplanetary disk some freedom is given in parameters which is
not fully determined yet, or can vary in different solar nebulas.

In this simulation there was the following ”free” parameters α = 10−2, ρ• = 2 g cm−3,
sticking factor ε, initial sizes R of the pebbles and the dust mass in the protoplanetary disk
Mdisk = 0.222M�. The mass of the protoplanetary disk just shows up as a scaling factor,
and does not affect the profile of the disk. All the other parameters and a simulation with
or without an ice-line at 2.7 where covered in the results.

The model was somewhat simplified by only simulating dust in the mid-plane of the
disk. One could also try simulations with initial positions with the height z 6= 0 for future
studies. This will require some additional computing power since e.g. the density now
depends on the orbital distance r as well as the height z above the midplane, and the same
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is for all simulated particles. But since the density is the highest in the midplane it seems
more likely that planets would form in this region. This can be seen in our solar system
today.

There are objects like Pluto and other trans-Neptunian objects, which do not orbit the
sun in this plane. To know how these objects formed one might have to study particle
growth above the mid-plane as well. Even though one thought is that Neptune perturbed
Pluto’s orbit a long time ago to give Pluto its highly elliptical orbit we see today.

5.3 Conclusions

The rise in the column density inside 2.7 AU in figure 4.1 is related to the lack of ice
particles in the surrounding dust, which results in a slower growth of dust particles. After
comparing simulations with or without an ice-line (figure 4.3) one can see that this is the
case, since there is no buildup of dust inside 2.7 when there is no ice-evaporation line.

The thing that seems to have the greatest impact on how fast the protoplanetary disk
evolves is how much dust sticks to a pebble when a collision occurs. The entire disk can
be accreted into the star within a million years with maximum sticking efficiency, while it
takes several million years with a sticking factor of 10 %. It seems very important to know
the details in pebble growth to be able to predict the evolution of a protoplanetary disk.
To get a complete picture of it one must consider fragmentation as well when two equal
sizes pebbles collide.

Different pebble densities between that of water and rock do not seem to affect the
drift of the pebbles and the column density much. Only a slightly faster decrease in the
protoplanetary disk radius can be seen, as the outer pebbles drift a little bit faster when
they are heavier.

When a pebble drifts a lot compared to its growth we see tendencies to dust buildup.
This happen most clearly in the simulation with large initial pebble-sizes at the outer
regions of the protoplanetary disk. It is also seen at some distances when the turbulence
in the disk is low and the collision rate goes down.
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Appendix A

The Code

This is the simulation of the pebbles in the protoplanetary disk. In this case the nr of
particle x is set to 5000 particles equidistantly separated up to 100 AU. When all particles
are inside 0.1 AU the simulation stops. Three text documents are created to store the time
t, orbital distance r and pebble radius R.

A.1 Particle drift

clear;

AU=1.5*10^13;

year=31536000;

x=5000; %nr of particles

for j=1:x

R(j)=0.0001; %cm

r(j)=100*j/x; %AU

tid(j)=0;

end

f=100000; %stepsize-related

ff=100000; %stepsize-related

epsilon=0.10; % Sticking factor

s=50000; %nr of steps

w=2; %step-counter

for i=1:1:s
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%Calculating vr and Rdot in function MMSN

[vr,Rdot,Rdotr]=MMSN( r(i,:),R(i,:));

dt=min(-ff*r(i,:)./vr/(1.5*10^13)*year,f*R(i,:)./Rdot/(AU)*year); %time step in seconds)

k1=vr;

k_1=Rdot;

rSteg=dt.*k1;

RSteg=dt.*k_1;

RRSteg=0.23333*RSteg;

%Ice-sublimation line

for k=1:1:x

if r(i,k)>2.7

R(i+1,k)=R(i,k)+epsilon*RSteg(k);

elseif r(i,k)<=2.7

R(i+1,k)=R(i,k)+epsilon* RRSteg(k);

end

end

%R(i+1,:)=R(i,:)+epsilon*RSteg;

r(i+1,:)=r(i,:)+rSteg;

%R(i+1,:)=R(i,:)+epsilon*RSteg;

tid(i+1,:)=tid(i,:)+dt;

%Radius=R(i+1,:);

time=max(tid)/(year); %converts to years)

%if the outer ring fall onto the star, stop

if r(i,x)<.1

break

end

w=w+1;

end

time; %time of simulation in years%

radius=min(r); %Radius from the sun at the end of our simulation

tid=tid./(year);%the time
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%Creating text documents for time (years), radius (AU) and Radius (cm) for later plots and analysis

format = ’’;

for n=1:x

format=[format,’%6.5f ’];

end

format = [format,’\n’];

cat = [tid];

fid = fopen(’tid01100.txt’,’w’);

fprintf(fid,format ,cat(:,1:x).’);

fclose(fid);

dog = [r];

fed = fopen(’radius01100.txt’,’w’);

fprintf(fed,format,dog(:,1:x).’);

fclose(fed);

wolf = [R];

fad = fopen(’Rad01100.txt’,’w’);

fprintf(fad,format,wolf(:,1:x).’);

fclose(fad);

Timefinder(w,x);

The new radial drift and pebble radius is calculated in the function MMSN.

function [ vr,Rdot,Rdotr ] = MMSN(r,R)

pr=1; %pebble density

AU=1.5*10^13;

rG=2.5834*10^(-4);%sqrt of gravitational constant

rMs=4.46*10^16;%sqrt of sun mass

alpha=1e-2;%turbulence parameter

T=280*r.^(-.5);%temperature

c=9.9*10^(4)*(T/280).^(0.5);%gas sound speed

H=0.033*AU*r.^(1.25);%Scale height
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S=1700*r.^(-1.5);%column density

Sp=S*0.0176;%dust column density

vk=rG*rMs/sqrt(AU).*r.^(-.5);%keplerian speed

dv=-0.5*(H./r).^2/(AU)^2*(-3.25).*vk;%headwind

p=S./H/sqrt(2*pi);%gas density

tf=R.*pr./c./p; %friction time

kF=vk./r; %keplerian frequency

St=tf.*kF/1.5e13;%Stokes number

Hp=H.*sqrt(alpha./(St+alpha));%dust scale height

pp=Sp/sqrt(2*pi)./Hp; %dust density in midplane

%"random motion"

delv=sqrt(St.*alpha).*c;

%pebble radial growth

Rdot=0.0176*delv.*pp/pr;

Rdotr=0.00412*delv.*pp/pr;

vr=-2*dv./(1./St+St)/(AU); %radial drift

end

A.2 Time interpolation

The following function takes in two values: the number of particles y and the number of
steps w the simulation took. It creates a new text document which tells the position of
the pebbles at the times of interest. This information is later used in the function Bin to
calculate the dust column density.

function [ ] = Timefinder(w,y)

%finding radius and R at time ’time’

x=y; %number of particles/rings from Dust.m

s=w; %number of steps taken (w from Dust.m)

load tid01100.txt;

load radius01100.txt;
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A.2. TIME INTERPOLATION APPENDIX A. THE CODE

load Rad01100.txt;

X=[1, 0 ; 1, 0];

y=[0 0]’;

z=[0 0]’;

%finds Radius and radius at time ’time’ via linear interpolation

%and puts it in a text file. radius(AU) on top and Radius(cm) below.

time=1;

for k=1:x

M(k)=0;

end

for i=1:x

for j=1:s

if tid01100(j,i)>=time;

X(2,2)=tid01100(j,i);

y(2,1)=radius01100(j,i);

z(2,1)=Rad01100(j,i);

X(1,2)=tid01100(j-1,i);

y(1,1)=radius01100(j-1,i);

z(1,1)=Rad01100(j-1,i);

a=X\y;

radius1=time*a(2)+a(1);

M(1,i)=radius1;

b=X\z;

Rad1=time*b(2)+b(1);

M(2,i)=Rad1;

break

end

end

end

.

.
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.

.

.

.

.

M=0;

X=[1, 0 ; 1, 0];

y=[0 0]’;

z=[0 0]’;

time=2000000;

for k=1:x

M(k)=0;

end

for i=1:x

for j=1:s

if tid01100(j,i)>=time;

X(2,2)=tid01100(j,i);

y(2,1)=radius01100(j,i);

z(2,1)=Rad01100(j,i);

X(1,2)=tid01100(j-1,i);

y(1,1)=radius01100(j-1,i);

z(1,1)=Rad01100(j-1,i);

a=X\y;

radius1=time*a(2)+a(1);

M(1,i)=radius1;

b=X\z;

Rad1=time*b(2)+b(1);

M(2,i)=Rad1;

break

end

end

end

M; % 2 times x matrix with the interpolated data

%Creating text document (radius;Radius).

33



A.3. BINNING THE DATA AND COLUMN DENSITY APPENDIX A. THE CODE

cat = [M];

fid = fopen(’t2e6alph4.txt’,’w’);

fprintf(fid,format ,cat(:,1:x).’);

fclose(fid);

%Plots the Column Density

Bin(x); %Plots the column density in function Bin

A.3 Binning the data and Column Density

Here all text files created in the previous simulation are imported. The resolution dr
determines how big the bin will be when we bin the data to construct our new column
density. See figure (3.1). Here the mass of the disk is determined as well. The function
takes in the number of particles x and plots the dust column density at different times
determined in function Timefinder.

function [ ] = Bin(x)

%bin stuff

s=x;

dr=1; %must be on the form 1/n, n integer)

k=100/dr;

mS=1.9891e33; %in grams

AU=1.5*10^13; % in cm

m=0.0222*mS; %mass of the disk (between 10% and 0.01%)

fdust=30/1700; %ratio dust to gas

mRing=fdust*m/s; % in grams

%the radius for each interval

for j=1:k

rbin(j)=0.5*dr+(j-1)*dr;

end

load t1alph4.txt;

load t1e5alph4.txt;

load t2e5alph4.txt

load t5e5alph4.txt;
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load t1e6alph4.txt;

load t15e5alph4.txt;

load t2e6alph4.txt;

bin1(k+1)=0;

bin2(k+1)=0;

bin3(k+1)=0;

bin4(k+1)=0;

bin5(k+1)=0;

bin6(k+1)=0;

bin7(k+1)=0;

for j=1:s

if t1alph4(1,j)<0.001

bin1(k+1)=bin1(k+1)+1;

else

nr=floor(1+k*(t1alph4(1,j)/100));

bin1(nr)=bin1(nr)+1;

end

end

.

.

.

.

.

for j=1:s

if t2e6alph4(1,j)<0.001

bin7(k+1)=bin7(k+1)+1;

else

nr=floor(1+k*(t2e6alph4(1,j)/100));

bin7(nr)=bin7(nr)+1;

end

end

bin1=bin1(1:k);

bin2=bin2(1:k);

bin3=bin3(1:k);

bin4=bin4(1:k);

bin5=bin5(1:k);

bin6=bin6(1:k);

bin7=bin7(1:k);
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for m=1:k

hej(m)=(m-0.5)*dr;

end

xdat=hej;

%column density

% 2pi*r*dr=A=sigma

mbin1=mRing*bin1;

cdbin1=mbin1./(2*pi*dr.*rbin*AU*AU);

mbin2=mRing*bin2;

cdbin2=mbin2./(2*pi*dr.*rbin*AU*AU);

mbin3=mRing*bin3;

cdbin3=mbin3./(2*pi*dr.*rbin*AU*AU);

mbin4=mRing*bin4;

cdbin4=mbin4./(2*pi*dr.*rbin*AU*AU);

mbin5=mRing*bin5;

cdbin5=mbin5./(2*pi*dr.*rbin*AU*AU);

mbin6=mRing*bin6;

cdbin6=mbin6./(2*pi*dr.*rbin*AU*AU);

mbin7=mRing*bin7;

cdbin7=mbin7./(2*pi*dr.*rbin*AU*AU);

%nr rings/area

loglog(xdat,cdbin1,xdat,cdbin2,xdat,cdbin3,xdat,cdbin4,xdat,cdbin5,xdat,cdbin6,

xdat,cdbin7,’LineWidth’,1.5)

%adding ice-sublimation line

hx = graph2d.constantline(2.7, ’LineStyle’,’:’, ’Color’,[.7 .7 .7]);

changedependvar(hx,’x’);

xlabel(’Distance to Star (AU)’)

ylabel(’Column Density (g/cm^2)’)

title(’Column Density over time’)

axis([ 1 100 .06 4])

legend(’1 year’,’1e5 years’,’2e5 years’,’5e5 years’,’1e6 years’,’1.5e6 years’,

’2e6 years’,’ice line’)
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Appendix B

Runge-Kutta 4th Order

B.1 The Code

To examine how well suited the Euler method was it this case the same program was tested
with a different stepping method, Runge-Kutta of the 4th order. The code here is the same
as the one in appendix A except for the changes in the loop where the steps are taken.
The time interpolation and binning was done the same way as before.

clear;

.

.

.

for i=1:1:s

%Calculating vr and Rdot in function MMSN

[vr,Rdot,Rdotr]=MMSN( r(i,:),R(i,:));

dt=min(-ff*r(i,:)./vr/(1.5*10^13)*year,f*R(i,:)./Rdot/(AU)*year); %time step in seconds)

%Runge-Kutta 4th order

k1=vr;

k_1=Rdot;

[vr,Rdot,Rdotr]=MMSN( r(i,:)+k1.*dt/2,R(i,:)+k_1.*dt/2);

k2=vr;

k_2=Rdot;

[vr,Rdot,Rdotr]=MMSN( r(i,:)+k2.*dt/2,R(i,:)+k_2.*dt/2);

k3=vr;

k_3=Rdot;

[vr,Rdot,Rdotr]=MMSN( r(i,:)+k3.*dt,R(i,:)+k_3.*dt);

k4=vr;
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k_4=Rdot;

rSteg=dt.*(k1+2*k2+2*k3+k4)/6;

RSteg=dt.*(k_1+2*k_2+2*k_3+k_4)/6;

RRSteg=0.23333*RSteg;

%Ice-sublimation line

for k=1:1:x

if r(i,k)>2.7

R(i+1,k)=R(i,k)+epsilon*RSteg(k);

elseif r(i,k)<=2.7

R(i+1,k)=R(i,k)+epsilon* RRSteg(k);

end

end

r(i+1,:)=r(i,:)+rSteg;

tid(i+1,:)=tid(i,:)+dt;

time=max(tid)/(year); %converts to years)

%if the outer ring fall onto the star, stop

if r(i,x)<.1

break

end

w=w+1;

end

.

.

.

Timefinder(w,x);
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B.2 Plots

Here will follow four camparisons between Euler plots and Runge-Kutta plots.

Figure B.1: The dust column density. The plot to the right is with the 4th order Runge-
Kutta method. The plot to the left is the result of the original Euler method.

Figure B.2: Low turbulence (α = 10−4) and the bump at 50 AU after 2 · 105 years still
remains. The plot to the right is with the Runge-Kutta 4th order method.

The conclusion I draw from this is that the conclusions from using the Euler method
are still valid since it did not differ much between the Euler method and the 4th order
Runge-Kutta in this case.
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Figure B.3: Pebble growth. The plot to the right is with the Runge-Kutta 4th order
method.

Figure B.4: Pebble drift. The plot to the right is with the Runge-Kutta 4th order method.
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