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Abstract 

In the current research, agricultural droughts were analyzed over the territory of Southern Ukraine for 

the period 2000-2012. Since agricultural drought is “insufficient soil moisture to meet the needs of a 

particular crop” according to a definition provided by the Food and Agricultural Organization of the 

United Nations (FAO), the conditions of crop vegetation along with surface soil moisture 

conditions were analyzed in this research. Analysis was performed using indices calculated from time 

series of remote sensing data acquired by the Moderate Resolution Imaging Spectroradiometer 

(MODIS). The Normalized Difference Vegetation Index (NDVI) was used as a proxy of agricultural 

vegetation conditions. Time series NDVI data used in the current research was acquired from the 

MODIS vegetation indices collection. Temperature-Vegetation Dryness Index (TVDI) was used to 

reflect surface moisture conditions. TVDI was calculated from surface temperature and MODIS-

NDVI datasets using software developed during the present research. In order to have pixels 

representing signal from agricultural areas only, agricultural fields were classified and masked before 

the analysis. Winter and summer crops were classified and analyzed separately in the research, due to 

their different growing seasons and cultivation schedules. Analysis of vegetation and moisture 

conditions was performed on an annual basis. For this purpose, maximum NDVI values and integral 

NDVI values were calculated from NDVI profiles of the growing season for each year of the 

analysis. Since winter and summer crops are not often planted in the same fields in different years, 

and in order to have continues time series of winter and summer crop parameters, analysis in the 

present research was conducted based on 10 kilometer grid, cells which were coded with the Morton 

key index. In order to reflect changes between various years’ standard deviation, inter-annual trends 

were calculated for each parameter in this research. Dependence of vegetation conditions on surface 

moisture was objectively assessed by Pearson’s correlation coefficient. Standardized values were 

calculated for vegetation and moisture parameters and compared in order to subjectively investigate 

impacts of droughts on crops in particular years of the analysis.  

As a result of the research, it was found that amount of green vegetation for winter and summer crops 

has generally decreased over the Southern Ukraine between the years 2000-2012. Parameters of 

vegetation performance strongly varied in space and in time. Trends of surface moisture were also 

found to be negative during that period. Correlation between vegetation and moisture was statistically 

significant over the majority of the study area. In many locations correlation between NDVI and 

TVDI metrics was particularly strong ranging, from -0.7 to -0.94. Five years with unusually dry 

surface moisture conditions were found during the study period – 2000, 2003, 2007, 2009 and 2012. 

Winter and summer crops were differently impacted in these years. Both crop types were largely 

damaged by droughts in years 2007 and 2012. In year 2003, winter crops survived in small areas 

only, according to crop classification results, and had unusually poor amount of green biomass over a 

vast area. In years 2000 and 2009 effects from dry conditions were not as strong and widespread.  

Finally, it can be concluded that during the study period (2000-2012), strong agricultural drought 

occurred three times: in years 2003, 2007 and 2012. These droughts were characterized by unusually 

dry surface moisture and low phenologic performance of agricultural vegetation. In year 2012, both 

winter and summer crops were equally impacted, while in year 2003 summer crops were not 

influenced by drought and in year 2007 summer crops were damaged more than winter crops. 
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1. Introduction  

Ukraine is a young country situated in central Europe and was created after the collapse of the 

Soviet Union in year 1991. Ukraine has unique climatic and land resources, which are suitable for 

agriculture. Generally, the Ukrainian agriculture sector can be characterized by a strong focus on 

plant production, while meat is imported to certain extant (van Leeuwen et al., 2012). Before the 

year 1991, Ukraine played a role of the ―breadbasket‖ of the Soviet Union (FAO, 2005). After the 

collapse of the USSR, Ukrainian territory was one of the most arable in Europe. In those times, 70% 

of all land was used for agriculture, 81 percent of which was cultivated (Saiko, 1995). In 

comparison, only 37% of the area of the former Soviet Union was used for agriculture, while 48% 

of land was used for agriculture in France and Germany. At the beginning of the new century, the 

share of agricultural land has increased to 75% (Martynenko, 2001). According to Saiko (1995), 

such abundance of cultivated area provides favorable conditions for crop production.  

After the collapse of the Soviet Union, GDP of the agricultural sector declined by 51% till the year 

1999. The reason for this was the end of government support and the transition from production 

targets to a market-oriented approach (FAO, 2005). This caused a lack of money, which reduced the 

effectiveness of farmers‘ activities. Lack of resources as well as insufficient experience and 

knowledge caused the use of obsolete techniques in farming (Martynenko, 2001). Usage of 

fertilizers has reduced by a factor of seven since the year 1990 (FAO, 2005), which caused very low 

yields in comparison to the rest of the Europe (van Leeuwen et al., 2012).  

Currently, agricultural production accounts for one tenth of Ukrainian GDP and employs about 19% 

of people in Ukraine (World Bank, 2004). In the near future a steady increase is projected in the 

production of grain crops (van Leeuwen et al., 2012). However, according to van Leeuwen et al. 

(2012) growth in production is small and limited by the loss of fertility of soils and droughts. Thus, 

droughts and land degradation can be identified as two major problems of Ukrainian agriculture.  

According to previous research, droughts in the Ukrainian territory happen every 2-4 years (Kogan 

et. al., 2011; Vojegova et al., 2013; Adamenko and Prokopenko, 2011). Also, mild droughts affect 

20-40% of the Ukrainian territory every year. In the year 2007, 60% of the territory was hit by a 

severe drought (Kogan et. al., 2011), which destroyed crops in a vast area (Netis, 2007). Thus, 

weather variability and extreme weather conditions are the main risks for the Ukrainian agricultural 

sector (Kul‘bida, 2009).  

In the future, droughts may become even more frequent in Central and East European countries 

including Ukraine (AVEC, 2003). Increased climate variability and more frequent extreme climate 

events may cause downward trends in yields (McCarthy, 2009). Ukrainian agriculture is also 

vulnerable to droughts due to anthropogenic desertification processes developing according to a  

―Mediterranean scenario‖, with a high magnitude of erosion and disruption of feeding of ground 

water (Yatsyk et al., 2006). Netis (2009) has discovered that there was increase in precipitation and 

decrease in soil humidity over the last 35 years, which can be interpreted as evidence of the 

degraded ability of soil to hold water. Due to this, desertification may occur in Ukraine, even 

without an increase in the aridity of climate conditions (Yatsyk et al., 2006). 

The ability of farmers to resist droughts in Ukraine is limited due to poor access to finances and 

uncertainty caused by political decisions (van Leeuwen et al., 2012). In this case, the production 



2 

 

systems of farmers is not flexible enough, which, according to FAO (2004), may be a reason for the 

inability to cope with strong climate variations and their consequences. In order to deal with 

increasing aridity and extreme weather events, sound drought management is required. Decisions 

regarding appropriate drought mitigation measures should be based on objective assessment, which 

must be based upon reliable information (Balint et al., 2011). Good knowledge of climate patterns 

and crop vulnerability may help farmers to develop optimal strategies for their activities (FAO, 

2004).  This knowledge can be obtained by studying previous droughts that will identify territories, 

that are most vulnerable to droughts. Such studies will also help to evaluate the drought risks to 

which Ukrainian agriculture is exposed. 

Drought is an extreme weather event which, according to FAO (2013), can be defined as deficit of 

precipitation compared to the inter-annual average and which results in water shortage. If as a result 

of drought, soil moisture is insufficient for specific agricultural crops, drought is called agricultural 

drought (FAO, 2013). It is stated in Peters et al. (2002) that droughts are hard to monitor, since 

droughts have varying length, spatial extent and magnitude. Another challenge is that the onset of 

drought is slow and often hard to determine. Thus, it is not sufficient to use climate data only for 

drought monitoring. Climate data must be supplemented by satellite data (Peters et al., 2002), which 

―provides a synoptic view of the land and a spatial context for measuring drought impacts‖ (Gu et 

al., 2007). The Normalized Difference Vegetation Index (NDVI) is a comprehensive measure of 

photosynthetic activity, which has been widely used for monitoring vegetation response to climate 

variability in combination with weather data (Gesser et al., 2012; Propastin and Kappas, 2008; 

Runnström, 2000; Wang, et al., 2001; Aragón, et al., 2012; Ichii, et al., 2002; Peters et al., 2002; 

Gu, et al., 2007; Liu et al., 2011).  

Although the combination of climate data and NDVI has been proven to be effective, there are 

some limitations to this approach. According to Gu et al. (2007), NDVI responds to changes in 

rainfall with a time lag. The slow response of NDVI to a lack of rainfall is caused by the fact that 

NDVI is sensitive to the amount of chlorophyll in the vegetation foliage. After vegetation 

experiences water stress, it remains green for some time, thus NDVI does not changing immediately 

(Sandholt et al., 2002). The amount of rainfall has also limited applicability to characterize 

agricultural drought. For this purpose, soil moisture is a better indicator. Poor yields are more 

related to soil dryness then to insufficiency of rainfall, since water may be lost from soil as a result 

of improper agricultural activities (FAO, 2004).  

According to the surface energy balance law (Sandholt et al., 2002; Gonzalez et al, 2005; USWCL, 

2001), soil moisture has influence on the temperature of the land surface, due to changes in 

evaporation. Also, the amount of water in the root zone has an influence on water transpiration from 

plants and the temperature of the canopy (Sandholt et al., 2002). In order to characterize water 

stress of plants the Crop Water Stress Index (CWSI) was developed, which represents the difference 

between actual and potential transpiration. Although CWSI has been widely and successfully used 

in crop monitoring, use of CWSI for areas with partial vegetation coverage may be limited. In order 

to overcome this limitation, surface temperature was combined with NDVI and the Temperature-

Vegetation Dryness Index (TVDI) was developed (Sandholt et al., 2002). TVDI is simpler to 

calculate than CSWI since it does not require data on meteorological conditions. 
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1.1 Aim and objectives  

According to Brown et al. (2008), monitoring of drought requires a series of observations at the 

same location. For this purpose, time series of remote sensed data have been widely used for 

drought monitoring and monitoring of crop water stress in previous research. However, these 

methods have, thusfar, had little application over Ukrainian territory. Previously, vegetation 

conditions in response to weather events were analyzed over Ukrainian territory using the 

Vegetation Health Index (VHI), which is the combination of NDVI and brightness temperature 

(calculated from IR4, 10.3–11.3 of NOAA AVHRR) (Kogan, et al. 2011; Kogan and Guo, 2011).  

The purpose of the current research is to complement results acquired using VHI by investigating 

whether agricultural droughts is a driving force of poor performance of crop vegetation in certain 

years over part of the Ukrainian territory. In order to accomplish this, this research aims to analyze 

surface moisture conditions assessed using the Temperature-Vegetation Dryness Index (TVDI), and 

then to compare moisture conditions with vegetation performance assessed using NDVI. 

The current research also complements the results of research conducted by Kogan (2011) and 

Kogan and Guo (2011), by analyzing conditions of crop vegetation only. Vegetation performance 

calculated in the current research must be related to agricultural fields and must not be 

contaminated with data from other land use types. Unlike the NOAA AVHRR sensor used in 

previous research, the MODIS sensor has spatial resolution sufficient to perform analysis on a field-

by-field basis. This provides the possibility to separately analyze fields covered with winter and 

summer crops, which are exposed to different weather events due to different cultivation schedules. 

The aim of the current research is to investigate the condition of crops over the period between the 

years 2000-2012 and to examine whether poor vegetation performance may be caused by unusually 

dry surface moisture conditions. 

The objectives of this research are: 

- to calculate the spatial distribution of variability and inter-annual trends of conditions of 

winter and summer crops and standardized deviation of crop conditions from normal 

- to calculate the spatial distribution of variability and inter-annual trends of surface moisture 

conditions and standardized deviation of moisture conditions from normal 

- to compare results of the analysis of vegetation performance and moisture conditions and 

suggest whether agricultural droughts according to the definition from FAO (2013) may be a 

driving force of poor vegetation performance.  

Since summer and winter crops must be classified for every year of the analysis, this approach 

entails certain limitations on the extent of the study area, which covers the southern Oblasts of 

Ukraine only. The southern part of Ukraine was chosen for this research, since it is the most arid 

part of Ukraine (Rudenko, 2007) and is classified as semiarid (Verheye, 2006). The study period is 

limited by MODIS data availability, which is available since the year 2000. Also, this research is 

limited to being conducted on a yearly basis using metrics of NDVI and TVDI calculated from their 

respective time series.  
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2. Background and theory 

2.1 Study area 

2.1.1 Geography and climate 

The current study is focused on the southern region of Ukraine (Figure 1) which includes Odessa 

oblast, Mykolaiv Oblast, Kherson Oblast, Zaporizja Oblast and Autonomous Republic of Crimea 

(Crimean Peninsula). The study area covers approximately 140 thousand square kilometers and 

stretches 686 kilometers from west to east and 425 kilometers from north to south. Terrain is 

predominantly plains and the majority of the study area lies on the Black Sea Lowland with 

elevations ranging from 90 to 150 meters above sea level. The eastern and north-western parts of 

the study area are at a higher elevation than the rest of the area. Elevations there are around 200 

meters and reach 300 meters in some locations. In the southern part of the Crimea Peninsula, the 

Crimean Mountains are situated. The southern edge of the study area is bounded by the Danube 

River and the Black and Azov Seas. There are plenty of inland water bodies (Figure 1B) and two 

major rivers the Dnieper and Pivdenniy Bug, in the area. The study area is situated in the Steppe 

zone (Gumeniuk et al., 2010) with highly fertile Chernozem and Haplic Kastanozem soils, the 

thickness of which is 41–70 cm on average (FAO, 2005). 

 
Figure 1. Location of the study area. 

The climate of the study area is Atlantic-continental and characterized by continentally and aridity 

in comparison to other parts of Ukraine (UNFCCC, 1998). The annual amount of rainfall ranges 

from less than 400 mm to more than 550 mm, and the average annual temperature is 8 to 12 degrees 

centigrade (Rudenko, 2007). These variables change mainly from north to south. Due to low air 

humidity, dust storms and dry winds are frequent in the area (UNFCCC, 1998). 

 

The study area lies in the temperate climatic zone with hot summers and cold winters. The 

temperature and amount of precipitation varies during the year. In the study area, there are 220-240 

days in the year when temperature stays above +5 degrees centigrade and approximately 170 days 

when temperature is higher than +10 degrees, during which vegetation can grow (Rudenko, 2007). 

Figure 2 shows average monthly values of temperature and precipitation for Southern Ukraine for 

the period 1972-2006.  
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Figure 2. Variations in temperature and precipitation during the year in Southern Ukraine (Netis, 2009) 

2.1.2 Agricultural sector 

Administrative regions chosen as the study area are the most cultivated in Ukraine. As seen in Table 

1, the share of arable land is around 70% of the total area. As in the other parts of Ukraine, the 

agricultural sector is mainly represented by large agricultural enterprises (agro-holdings), some of 

which cultivate as much as 20 thousand hectares of arable land (Martynenko et al., 2001).  

The main crops cultivated in the study area are winter wheat and sunflower. In this area, 35% of all 

Ukrainian winter wheat and 37% of Ukrainian sunflower are produced (FAO, 2005). As seen in 

Table 1, these two crops together occupy more than half of the study area. The other half is 

occupied by winter barley, maize, rape, sugar beet, alfalfa etc. These crops are usually planted in a 

sequence, called a crop rotation scheme. In Ukraine, crop rotation schemes may include sequences 

of different lengths (from 2 to 6 years). For example, one of the most common crop rotation 

schemes is fallow, winter wheat, sunflowers, spring, barley and maize (FAO, 2005). During the 

fallow season, no crop is planted and land is regularly sown, which is required for land to replenish 

its moisture content. Unlike large agro-enterprises, private farmers cultivate vegetables and fruits 

rather than grain and industrial crops. Manual labor is required for the cultivation of these crops and 

there is a broader market for selling them (FAO, 2005). 

The Ukrainian agricultural sector causes about 40% of environmental degradation in Ukraine, the 

majority of which is the degradation of Ukraine‘s famous highly fertile soils (World Bank, 2007). 

This is caused by deterioration of the humus balance in the soil (FAO, 2005). For example, only 

61% of agriculture land in the year 1998 was of sufficient quality, 26% was classified as weak 

degraded and 4% was severely degraded (Martynenko et al., 2001). Although agricultural 

production has fallen since 1991 (World Bank, 2004), agro-holdings, which replaced state-owned 

farms during land privatization in 1992-2000, continue to overexploit the land (Martynenko et al., 

2001).  
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 Share of arable land Share of forest Share of winter wheat Share of  sun flower  

Odessa Oblast 66.5% 5-10% 40-50% 20-30% 

Mykolayiv Oblast 73% 0-5% 30-40% 20-30% 

Kherson Oblast 72.9% 0-5% 30-40% 10-20% 

Zaporizja Oblast 75.4% 0-5% 20-30% 30-40% 

Crimea  68.2% 10-15% 30-40% 0-10% 

Table 1. Some agricultural features of administrative regions within the study area (FAO, 2005) 

2.2 Literature review 

2.2.1 Previous approaches in investigation of relations between vegetation and climate 

During the investigation of relationships between vegetation activity and precipitation anomalies in 

Central Asia, NDVI has been used as a proxy for vegetation activity (Gesser et al., 2012). For this 

purpose, NDVI derived from the AVHRR sensor was compared to climate data using linear multi-

temporal correlation analyses. As a result, it was found that vegetation is sensitive to precipitation 

variations in almost 80% of the study area. The strongest sensitivity was found in areas where the 

annual amount of rainfall is between 100 and 400 mm. Temporal lag between anomalies in rainfall 

and vegetation response was found to be between 1 to 3 months. 

The spatial relationship between vegetation patterns and precipitation was investigated in the dry 

lands of Kazakhstan (Propastin and Kappas, 2008). In this research, NDVI-rainfall correlation was 

assessed using geographically weighted regression (GWR) for the period 1985-2000. NDVI was 

derived from the AVHRR sensor and climate data was taken from weather stations. Using GWR, 

maps of the study area were created showing spatial variations in the NDVI-rainfall relationship. In 

this research it was found that the NDVI-precipitation relationship varied spatially and temporally 

across the study area and period. Finally, it was concluded that the response of vegetation to 

changes in rainfall was a strong indicator of vegetation performance. 

In his research, Runnström (2000) has examined biological productivity of vegetation in semi-arid 

areas in Northern West China over the period 1982-1993. NDVI derived from the AVHRR sensor 

was used in the research to calculate vegetation peak seasonal values. As argued by Runnström, 

vegetation peak values are a better metric for comparisons between years since they are not 

influenced by the timing of summer rain. Trends of vegetation peak values were also compared to 

amount of summer rainfall. In this research, a positive trend in biological productivity was found 

over the majority of the study area. It was also found that a correlation between biological 

production and rainfall was stronger in more arid areas. Runnström concluded that the calculation 

of linear trends from NDVI time series is a comprehensive way to assess vegetation changes at the 

regional level.  
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Bi-weekly NDVI, precipitation and temperature datasets were used in order to investigate spatial 

patterns of NDVI caused by climatic variability in the central Great Plains of the United States for 

the period 1989-1997 (Wang, et al., 2001). Based on these datasets, correlation coefficients were 

calculated for the relationships between NDVI and various climate factors. Seasonal relations, as 

well as relations between growing seasons, were examined in this research. As a result, a strong 

correlation was found between the variations of NDVI spatial patterns and deviations from the 

average amount of precipitation. Significant covariance between these variables was discovered in 

60-95% of the study area. These results demonstrate that precipitation has a strong influence on the 

spatial patterns of vegetation productivity.  

The NDVI-rainfall relationship was investigated over a portion of North Central Mexico for the 

period 2000-2010 (Aragón, et al., 2012). In this research, MODIS-NDVI images were combined 

into yearly maximum images, which were then utilized in principal component analysis. An inter-

annual upward trend in the NDVI-rainfall relationship was found over the study area during the 

study period. This trend was validated by the data about crop harvest. 

AVHRR NDVI data sets were also used to examine the relationship between vegetation and climate 

on the global scale during the period 1982-1990 (Ichii, et al., 2002). Correlations between NDVI 

and temperature and NDVI and precipitation were examined in this research, and maps of these 

correlations were made. It was discovered that NDVI trends can be explained by changes in 

temperature during the growing season in northern middle and high latitudes. In this area, a 

significant increase was found in annual average NDVI and for the spring to autumn period. 

Changes in rainfall explained variations in NDVI in semi-arid regions of the Southern Hemisphere, 

where precipitations had significantly decreased during the study period. The increase of NDVI in 

equatorial regions cannot be explained by trends in precipitation or temperature. Instead, the 

assumption was made that this increase was caused by an increase in nitrogen and carbon dioxide 

levels in the atmosphere. 

NDVI was applied to drought monitoring by Peters et al. (2002). In this research the Standardized 

Vegetation Index (SVI) was used to describe deviations of vegetation conditions from normal. This 

index is based on weekly NDVI values acquired from the AVHRR sensor and derived using z-

scores calculated for each pixel of each week during the period 1989 – 2000. In this study, the SVI 

index was applied to the central part of the U.S. By comparing maps showing SVI values with maps 

created during the Drought Monitor project, it was concluded that the SVI index is a useful 

indicator for evaluation of vegetation stress in response to weather conditions.  

NDVI acquired from the MODIS datasets, in combination with normalized difference water index 

(NDWI), was used to assess droughts over the Great Plains of the U.S for a five-year period from 

2001 to 2005 (Gu, et al., 2007). By analyzing relations between NDVI, NDWI and data from the 

drought monitor project, it was determined that NDWI has higher drought sensitivity than NDVI. 

According to Gu, et al. (2007), this means that vegetation loses water faster than it loses 

chlorophyll. Based on this phenomenon, a new index was presented in this research, which is 

calculated as the normalized difference between NDVI and NDWI values. The new index is more 

sensitive to droughts than NDVI or NDWI alone. 
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The relationships between NDVI as a proxy of vegetation activity and climate variables were 

investigated over Southwest China (Liu et al., 2011). Inter-annual variations in NDVI values 

acquired from the SPOT VGT 1-km resolution NDVI dataset were compared to variations in 

precipitation and temperature acquired from 31 weather stations scattered over the study area. 

Correlations were computed for the annual average values of these variables during the drought 

period. Then, the statistical significance of the correlation was tested. Based on the test results, 

correlation coefficients were arranged into four classes by their degree of significance. As a result, 

maps were produced, which show patterns of change of correlation significance. It was also found 

that the correlation between NDVI and temperature is more significant than between NDVI and 

precipitation.  

Above in the current section, methods are summarized, which were used in previous researches as 

useful indicators of drought. These approaches were analyzed and based on the analysis method for 

the current research was designed. Although, the choice of method in the current research was 

strongly influenced by availability of open source data, inability to have field surveys and limited 

human resource, it follows the general principles of best practice described above. 

2.2.2 Use of cropland masking 

Various plant species respond differently to changes in environmental factors. In order to assess the 

effects of weather conditions on different vegetation types, phenology parameters can be used to 

discriminate between different vegetation cover (Hermance et al., 2007). Isolation of cropland in the 

analysis of NDVI time series is one of the factors that contributes to successful agricultural 

monitoring (Funk, et al., 2009). Cropland masking was extensively used in the prediction of yields, 

where it can substantially improve forecasts (Kastens et. al., 2005). Since masking of cultivated 

areas helps to limit the influence of non-agricultural areas on the result, it was used in the 

investigation of climate effects on agricultural vegetation. For example, the evaluation of response 

of soybean vegetation to climate variability was conducted using ―soybean pure-pixels‖, which 

were determined as a result of land cover classification using images from Landsat 5 and 7 

(Giarolla, et al., 2010). For this purpose, images were selected to represent two phenological stages 

in crop development, which correspond to sowing and grain maturation. In the investigation of 

variability of farming systems in Africa, previously produced crop masks were not used, since 

accurate and validated crop masks were not available for the territory and existing crop masks did 

not represent changes over time (Vrieling, et al., 2011). Instead, cropland areas were identified 

using thresholds applied to average NDVI values and seasonal variations in NDVI values. 

Due to the enhanced spatial resolution of the MODIS sensor compared to AVHRR, it is possible to 

discover NDVI characteristics of specific crop types using MODIS datasets. This feature of MODIS 

was used during the large-area crop mapping in the Central Great Plains, U.S.A. (Wardlow et al., 

2008). In this research, general crop types were identified using their seasonal NDVI profiles. As 

indicated in Wardlow, the spatial resolution of the MODIS sensor is sufficient to collect spatial-

temporal signals of individual crop types in fields that are 32 hectares and larger. By visually 

comparing MODIS and Landsat ETM+ images, Wardlow has concluded that they represent similar 

field patterns.  

2.2.3 Normalized Difference Vegetation Index (NDVI) 
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In order to examine the influence of climate on vegetation, NDVI derived from satellite imagery 

was used in the current research. According to Weier et al. (2000) NDVI is used to calculate the 

photosynthetic capacity of vegetation. This index is based on the fact that chlorophyll in plant 

leaves absorbs visible light (0.4-0.7 µm) and plant cell structures reflect near infrared light (0.7-1.1 

µm). As shown in Equation 1, NDVI is calculated as ―near-infrared radiation minus visible 

radiation divided by near-infrared radiation plus visible radiation‖.  

NDVI = (NIR — VIS)/(NIR + VIS)  (1) 

NDVI has been widely used to estimate influence of climatic condition on vegetation activities in 

different regions (Yuan et al., 2007). Time series of NDVI data is often used as a proxy for seasonal 

vegetation productivity and it provides information about seasonal and inter-annual response of 

vegetation to climate variability (van Leeuwen et al., 2013).  

According to Huete et al. (1997), NDVI is sensitive to changes in absorbed photosynthetically 

active radiation. It is more sensitive to variations in visible spectrum reflectance and it becomes 

insensitive to variations in the near infrared spectrum in densely vegetated areas. The other 

limitation mentioned in Heute et al. (1997) is that NDVI values are significantly higher in darker 

spectral signatures when there are no significant changes in scatter within the red to NIR portion of 

the spectrum. This effect was observed in the humid season in semi-arid areas, when NDVI values 

increased without increases in biomass. 

2.2.4 Calculation of phenological parameters using NDVI time series data and TIMESAT software 

The scientific community is interested in employing satellite data to assess changes in land surface 

phenology in order to understand the response of terrestrial ecosystems to climate and other factors 

(Hermance et al., 2007). If one plots continuous NDVI time series data for the growing season, the 

result will be a curve that displays different growing stages. Parameters describing these stages can 

be calculated by the analysis of such curves (USGS, 2011). According to Reed et al. (1994), these 

parameters can be divided into three categories: temporal metrics, NDVI-value metrics and metrics 

derived from metrics from these two categories. In Reed et al. (1994) twelve seasonal vegetation 

parameters, which can be calculated from NDVI time-serieses were identified, including the onset 

of greenness, time of peak NDVI, maximum NDVI, rate of green up, rate of senescence and 

integrated NDVI. 

Extraction of seasonality parameters can be problematic in the case where the quality of the time 

series is low (Jönsson and Eklundh, 2002). In order to solve this, Hermance et al. (2007) and Reed 

et al. (1994) have proposed that time series data must be smoothed before phenology information 

can be extracted from it. One of the ways to solve this problem is to calculate seasonality 

information based on a function fitted to the seasonal NDVI profile.  

Currently, only limited approaches exist for extraction of seasonality information from an NDVI 

time series. The successful and widely used tool to extract this information is the TIMESAT 

software developed by Eklundh and Jönsson (2012). In this software, seasonality information is 

extracted from the fitted function. Prior to fitting the function, seasons are determined, which is 

often hard to do due to the high levels of noise in data (Jönsson and Eklundh, 2003). In order to 

improve the determination of seasons this software uses the Savitzky-Golay, Gaussian and logistic 
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Figure 3. 

Scheme of 

energy balance 

functions. Savitzky-Golay filtering method based on a local polynomial fit. In the software, local 

functions are used to describe one growing season. They are merged with global functions that 

describe NDVI variability in all seasons. The local function consists of three parameters: the base 

level of NDVI, the amplitude of variations and the asymmetric Gaussian-like function. The 

Gaussian function has five additional parameters that describe the width and flatness of each half of 

the Gaussian curve (Jönsson and Eklundh, 2003). The global function is then used to derive 

seasonality parameters.  

2.2.5 Surface temperature 

According to USWCL (2001), the temperature of the canopy is related to plant water stress 

magnitude. This relation is based on the mechanism, by which plants transpire water in order to 

cool leaves. When there is not enough water, transpiration is reduced and leaf temperature is 

increased. Thus, the increase of canopy temperature is an indicator of plant water stress. The same 

condition is valid for the bare soil. Moist soil is cooler than dry soil because of water evaporation 

from its surface.  

Measurement of leaf surface temperature is one of the most widely used methods for remote 

detection of water stress in crop vegetation. 

          (2) 

     
     

  
             (3) 

        (4) 

This method can be explained by the energy balance equation (Equation 2) (Figure 4). In this 

equation, net radiation (  ) is amount of energy radiated from the sun. Soil heat flux ( ) shows 

amount of energy that utilized for heating soil. Heat flux ( ) is sensible heat radiated from the 

surface. Latent heat flux (  ) is energy acquired during evaporating water from surface of plants or 

soil. According to this equation, net radiation is equal to the sum of heat flux , soil heat flux and 

latent heat flux (Gonzalez et al, 2005). The values of these parameters depend on each other i.e. 

they are strongly interlinked (Sandholt et al., 2002). 

Soil heat flux dependent on net radiation, soil properties and land cover (Oliver et al., 1987). 

According to CRA-CIN, (2009) soil heat flux can be simply described by net radiation multiplied 

with a constant related to the density of vegetation cover (   ) (Equation 3). Latent heat flux 

describes the energy required to transform water into vapor. According to Gonzalez et al, (2005), 

   is highly dependent on plant water conditions and it is equal to zero for completely water 

stressed vegetation. Heat flux can be described by the aerodynamic characteristics of the air such as 

air density ( ), aerodynamic resistance (  ) that reflects resistance of air to heat transfer from 

surface, specific heat of the air (  ) which shows amount of heat energy in the air with respect to air 

pressure and air moisture, and the difference between surface and air temperature (Equation 3) 

(Gonzalez et al, 2005). Based on these assumptions, Equation 2 can be transformed to Equation 5, 

where    and    are surface and air temperature,    is a coefficient related to thermodynamic 

characteristics of the air. 
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                       (5) 

2.2.6 Temperature-Vegetation Dryness Index (TVDI) 

Based on information from section 2.2.5, the difference between surface and air temperature can 

serve as an indication of water conditions of plants in fully vegetated areas. In practice, vegetation 

has varying density over the large territory. In the case of partial vegetation, the difference between 

temperatures of vegetation and soil visible to a sensor will affect surface temperature values 

(Sandholt et al., 2002). This is a significant problem for water stress estimation using this method. 

One of the solutions to overcome this limitation is to combine surface temperature with spectral 

vegetation indices (Gonzalez et al, 2005) one of which is NDVI, which is related to the percentage 

of vegetation cover on the land surface. In combination, surface temperature (Ts) and NDVI can 

reflect vegetation and moisture conditions of the surface (Sandholt et al., 2002). 

 
Figure 4. Scheme of Ts/NDVI space (based on Sandholt et al., 2002) 

According to Nemani et al. (1992), Ts values are lower when values of NDVI are higher. Also it 

was suggested that for wet conditions, the difference between the temperature of leaves and bare 

soil is smaller than for dry conditions. However, there are some differences and, thus wet edge 

would not be parallel to NDVI axis as it was specified in TVDI formula. Further simplification of 

this space would assume that these lines are parallel. Isolines of Ts/NDVI relations drawn for 

different moisture conditions will form a triangle shape (Sandholt et al., 2002), as illustrated in 

Figure 5A. By plotting NDVI and surface temperature data against each other, the shape of a scatter 

plot will be either triangular or trapezoidal if ―if a full range of fractional vegetation cover and soil 

water contents is represented in the data‖ (Min et al., 2010) (Figure 5B). This shape is called the 

Ts/NDVI space. The upper and lower limits of the Ts/NDVI space are called the dry and wet edges 

respectively, which mean that points found in upper left part of the Ts/NDVI space represent values 

collected over the dry bare soil and points in a lower left limit represent a fully vegetated dry area.  

There are two possible methods for the estimation of these limits. According to Sandholt et al. 

(2002), the dry and wet edges of a Ts/NDVI space can be determined based on physical models or 

empirical results i.e. a scatterplot of Ts and NDVI measurements. The use of physical models is 

similar to an approach commonly used in CWSI (Crop Water Stress Index) calculations (Yuan et 

al., 2004; Gonzalez et al, 2005; USWCL, 2001), where maximal and minimal canopy temperature 

are determined by equations that include physical parameters like the vapor pressure deficit of the 

air, the heat capacity of air, aerodynamic resistance etc. These parameters can be determined via 

experiments in a controlled environment (Pinnok et al., 2002). Empirical estimation of the limits of 
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Ts/NDVI space is simpler, and it takes these parameters into account implicitly (Sandholt et al., 

2002). 

When the limits of the Ts/NDVI space are found, the Temperature-Vegetation Dryness Index 

(TVDI) can be calculated using Equation 6.    is a current value of surface temperature        is a 

minimal Ts value for current NDVI value and        is the maximal Ts value for current NDVI. 

The TVDI index can also be described as result of division of values     from Figure 5A. 

     
         

             
 (6) 

The TVDI index comprehensively reflects relation and changes between surface temperature and 

NDVI and it has many applications (Meng et al., 2010). This index is better applied to an area large 

enough to represent different vegetation and moisture conditions, where all portions of the Ts/NDVI 

space are defined (Sandholt et al., 2002).  

2.3 Vegetation variability over Ukrainian territory 

Although vegetation changes in relation to climate have been widely investigated in previous 

research, only a few research approaches have been applied on Ukrainian territory. One such study 

was conducted by Kogan et al. (2011). This study was performed using the Vegetation Health (VH) 

index, calculated using NDVI data and brightness temperature (BT) derived from the 10.3 to 11.3 

mm IR4 channel of the AVHRR. The BT index estimates the hotness of the canopy and it is useful 

since high temperature and insufficient water supply in dry years cause overheating of the canopy. 

As mentioned in in this study, the VHI is a useful approach for drought assessment over Ukrainian 

territory due to its lack of dependence on extensive spatial coverage of weather stations in the area 

of interest.  

The purpose of the research conducted by Kogan et al. (2011) was crop monitoring and early 

assessment of yield, which revealed the impact of climate on crop vegetation conditions. Calculated 

VHI was compared to national and regional Ukrainian yield statistics. Kogan et al. (2011) 

concluded that drought affects Ukrainian territory every 2-4 years and the most severe droughts 

occurred in years 2003 and 2007. As a result of the research, very strong vegetation stress occurred 

in Ukrainian territory in the year 2003 compared to years 2002 and 2004. Drought stress also 

caused crop yields in this year to be moderate. 

In another publication, Kogan (2007) compared development of drought in year 2007 to drought in 

year 2003. As seen from the result of the research, droughts in years 2003 and 2007 have similar 

temporal profiles until June.  However, unlike 2003, drought in 2007 continued until August. 

Vegetation change over the Northern Eurasian grain belt was assessed for the period 2001-2008 

using NDVI trends derived from MODIS-NDVI datasets (Wright et al., 2012). This research covers 

portion of central and southern Ukraine. As a result of the research it was found that NDVI trend 

was significantly negative over the study area as well as over Ukrainian territory. 
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Figure 5. Parameters of seasonal NDVI 

profile 

 

3. Materials and methods 

3.1. Vegetation data 

3.1.2 MODIS-NDVI product 

The MODIS-NDVI product was used in the current research (GEOG, 2013). It provides NDVI 

calculated from bands 1 and 2 of the Moderate Resolution Imaging Spectroradiometer (MODIS) 

instrument operated on board NASA‘s Terra and Aqua satellites (Carroll et al., 2004). Time-series 

of MODIS-NDVI datasets have a resolution of 250 meters and are available since the year 2000 

(GEOG, 2013). NDVI data is provided in this product as grayscale images in the Sinusoidal 

projection, where NDVI values are recalculated and stretched from 50 to 250. In order to cover the 

study area, NDVI datasets for the region Europe, East 2 were used in this research. MODIS-NDVI 

is available as 16-day maximum value composites (MVC). Compositing is used in order to select 

the most accurate value from 16-day observation periods. As mentioned in Heute et al., (2002) this 

method minimalizes contamination of values by clouds, heavy aerosols and view angle effects. In 

this research, 16-day composites for the period between Julian days 097 and 289 were used. 

According to Brown et al., (2008), vegetation index products derived from MODIS are more useful 

than products generated from Advanced Very High Resolution Radiometer (AVHRR), since 

MODIS products have better spatial and spectral resolution, more precise geolocation, and they are 

better corrected for atmospheric errors. Heute et al. (2002) has concluded that MODIS vegetation 

indices, as well as MODIS-NDVI, are sensitive to seasonal vegetation variations, land cover and 

biological variations. MODIS-NDVI has good dynamic range and sensitivity for monitoring and 

assessment of vegetation conditions. It was effectively used in previous research in order to 

estimate vegetation response to climate variations (Gu, et al., 2007; Giarolla, et al., 2010; Aragón, et 

al., 2012). 

In the current research, MODIS-NDVI datasets were used in original, scaled NDVI values, which 

relations to NDVI values can be described by the formula (7). 

Scaled NDVI = (NDVI * 200.0) + 50.0 (7) 

3.1.2 Parameters of seasonal NDVI profile used in the 

current research 

 In the current research, inter-annual changes in vegetation 

conditions were analyzed. In order to characterize annual 

vegetation conditions, the parameters of the seasonal 

vegetation patterns observed from MODIS-NDVI time series 

were used. These parameters are illustrated in Figure 8. All 

calculations in the current research were made using 8-bit 

stretched NDVI values (0-255). 

Cumulative NDVI or ΣNDVI has become a tool for 

monitoring Net Primary Productivity (NPP) on an annual 

basis (Ricotta et al., 1999). NPP is a parameter of special 
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Figure 6. Location of climate stations 

used in the current research 

interest for the assessment of phenological response to climate variability (Vrieling, et al., 2011). In 

order to analyze growing season parameters, values corresponding to the period before the 

beginning of the season must be removed i.e. the time series must be filtered from preseason noise 

(Funk, et al., 2009). Values of ΣNDVI parameters can also be contaminated by noise present in 

MODIS-NDVI datasets (Heute et al., 2002). In order to remove values that do not correspond to the 

growing season and to filter data from noise, the integral of a Gaussian function fitted to the 

growing season profile was used in the current research as a more stable substitute for ΣNDVI. 

Cumulative NDVI of the growing season was computed using the TIMESAT software package is 

referred to as the large integral hereafter (Figure 8) and was described in Yin et al. (2012) as closely 

related to NPP.  

Another parameter used in this research is an annual peak NDVI value (Figure 4), which according 

to Hird and McDermid (2011) is one of the most used NDVI seasonality metrics found in the 

literature. Dou et al. (2008) has concluded that the effects of precipitation on vegetation are most 

readily observed using this variable. Since contaminated signal is characterized by degraded values 

(Heute et al., 2002), maximal annual NDVI values represent the least contaminated values in the 

growing season (Hird and McDermid, 2011). Reed et al. (1994) has insisted that peak NDVI values 

must be calculated from original unsmoothed data, since they are generally not affected by 

atmospheric and other errors. However maximum NDVI values may still be distorted by positively 

biased noise in NDVI. 

3.2 Climate data 

3.2.1 Data from the network of climate stations 

Climate data for the current research was obtained from the 

NOAA (2013) Global Historical Climatology Network 

(GHCND). Stations used in this research are situated inside or 

around the study area and illustrated in Figure 9. In order to 

be used in the analysis, data was interpolated between these 

climate stations. Among 18 meteorological elements included 

in the NOAA database, average monthly temperature of air 

(Ta) was used in this research. Data was acquired for six 

months (April – September) for each year in the study period.  

Precipitation data was not used in the current research, instead 

TVDI index was used to assess moisture of soil. 

3.2.3 Approach for TVDI calculations used in the current research 

Two types of devices that can be used to measure surface temperature remotely are infrared 

thermometers and thermal scanners, on board aircraft and satellite platforms (USWCL, 2001). 

These devices measure the ―amount of radiation emitted from a surface and relate it to temperature‖ 

(USWCL, 2001). One of the types of devices capable of remote measurements of surface 

temperature that is installed on a satellite platform is the MODIS sensor. The surface temperature 

(Ts)  data product used in this research is MOD11A2, acquired from EROS (2011, 2012). Datasets 

of this product cover an 8-day period and they are composed from daily data as an average value of 

clear sky conditions. These datasets have 1 km spatial resolution. 
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As mentioned above, TVDI is usually implemented over large areas, with a range of different 

moisture conditions and land cover (Sandholt et al., 2002; Meng et al., 2010; Min et al., 2010). In 

the present research, the study area is comparatively small and in order to include different moisture 

conditions in calculations, TVDI was calculated on an inter-annual basis. In order to analyze 

changes between years, TVDI was calculated for particular dates (16-day periods) in each year 

during the growing season from April to October. The limits of the Ts/NDVI space for each date 

were defined for all studied years. In other words, Ts and NDVI values were sampled in a particular 

date in years 2000-2012 and one Ts/NDVI space was constructed from sampled values. Resulted 

Ts/NDVI space constructed using combined data from multiple years represents variations Ts and 

NDVI data not only in space, but also in time which is required to perform inter-annual analysis. 

      
                  

                     
  (8) 

Since air temperature on a particular date in different years can vary, surface temperature values and 

as a result TVDI calculations can be influenced by this difference. In order to account for this 

problem, Equation 6, was modified to Equation 8. In the new formula, air temperature was 

subtracted from surface temperature prior to constructing the Ts/NDVI space. Such an approach is 

already in use for calculations of CWSI (Yuan et al., 2004; Gonzalez et al, 2005; USWCL, 2001). 

In fact, Equation 8 is now quite similar to that for CWSI, with two key differences: The first 

difference is that    values are grouped for NDVI values. The second difference is that maximum 

and minimum    –     values are determined empirically on the regional scale and on an inter-

annual basis. 

According to Equation 5, variations in surface air temperature differences will reflect variations in 

latent heat flux (  ). Net radiation will be almost the same for particular calendar date in different 

years, due to the same solar angle in these days. Since Ts values are sampled for a particular NDVI 

value, the density of vegetation (   ) is constant. If we assume that the thermodynamic factors of 

the air are constant, then the difference between surface and air temperature will be dependent on 

variations of latent heat flux, which reflects soil moisture conditions. 

In the present research, the limits of Ts/NDVI space will not be modeled by a triangular or 

trapezoidal model. Instead, limits for Ts values will be empirically determined for each particular 8-

bit stretched NDVI value. This approach will reduce errors of overestimation and underestimation 

of the minimum and maximum Ts values for a given NDVI value caused by the use of simple linear 

models of wet and dry edges used in previous research (Sandholt et al., 2002; Meng et al., 2010; 

Min et al., 2010). 

In order to be compared on an inter-annual basis with vegetation characteristics represented by 

NDVI metrics, annual cumulative TVDI was calculated using TVDI values. For this purpose, TVDI 

values for a 16-day period within a given year were summed. Resulting cumulative TVDI was used 

in the further analysis.  
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3.3 Isolation of cultivated areas 

3.3.1 Existing crop masks available for the Ukrainian territory 

There are several Land Use Land Cover (LULC) datasets available for the Ukrainian territory. 

LULC classes of the Kryvoozersky administrative district, Mykolaiv Oblast were derived from 

three different datasets, illustrated in Figure 10. In Figure 10A, a dataset showing different crop 

types is illustrated; this was produced by Grekov (2011) using high resolution spatial imagery and 

extensive field surveys. Grekov‘s (2011) dataset covers the current administrative district and has 

high accuracy, thus it can be used as a ground truth dataset for LULC in this district. In Figures 10B 

and 10C, fragments of the Global Land Cover Dataset (EEA, 2008) and Pan-European Land Cover 

Database (PELCOM, 2001) are presented for the same area.  

 
Figure 7. Comparison of land use datasets of Kryvoozersky district, Mykolaiv Oblast 

The difference between the PELCOM and EEA datasets clearly demonstrates a problem similar to 

one described in Vrieling, et al. (2011). The PELCOM datasets does not reflect changes in LULC 

classes that take place over the time. By comparing the EEA dataset and the dataset derived by 

Grekov, it can be seen that a much smaller area is classified as non-agricultural in the EEA dataset. 

Agricultural areas in the EEA dataset have high classification accuracy i.e. there is a high 

probability that agricultural areas are classified as such in the EEA dataset. However, the object 

accuracy of agricultural areas is not as high, since some non-agricultural areas are also classified as 

agricultural. In order to have ―pure agricultural‖ pixels for analysis, object accuracy is required i.e. 

all points classified as fields should represent fields on the ground. The requirement here is to have 

only agricultural pixels in the analysis, thus it is not as important that all agricultural fields will be 

classified as it is that other LULCs not be misclassified as agricultural. The other obstacle to using 

the EEA and PELCOM datasets in the current research is that summer and winter crops are not 

differentiated therein. 

3.3.2 Crop masking approach implemented in the current research 

Since, it is impossible to use existing winter and summer crop masks, summer/winter crop masking 

was conducted in the current research.  
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Figure 8. NDVI profiles of summer/winter crops in Kyvoozersky district, Mykolayivs'ka oblast 

In Figure 11C, seasonal NDVI profiles for the year 2011 derived from MODIS-NDVI are illustrated 

for winter and summer crops. These profiles were created using a summer/winter crop map of 

Kyvoozersky district derived by the aggregation of respective crop types from Grekov‘s (2011) 

dataset (Figure 11B). As seen in Figure 11C, there is strong difference between the NDVI values of 

summer and winter crops on Julian days 129 and 177. On day 129, winter crops reach their 

maximum NDVI, while summer crops are at their early development stage. On day 177, summer 

crops are near their peak value, and winter crops have values close to their base value. This 

difference in crop development stages can be seen in Figure 12. In the figure, NDVI calculated from 

Landsat 5 TM images representing a small area in Mykolaiv Oblast is illustrated. As seen in the 

figure, fields that had low NDVI values in May had high NDVI values in July and vice-versa. These 

features of the growing season are also related to cultivation dates in the agricultural calendar for 

the Ukrainian steppe territories (Fedorenko, 2011) according to which winter crops are harvested in 

June and summer crops in August. 

Based on observations discussed in previous paragraphs, a winter/summer crop classification 

methodology was defined. This methodology uses difference between NDVI values of summer and 

winter crops on days 129 and 177, and also the high seasonal variability of NDVI of agricultural 

areas as compared to unused areas. In cases when data is missing in a particular year for the 16-day 

composites related to days 129 and 177, those for days 113 and 193 are chosen instead. 

                                                                    (9) 

As seen in Equation 9, if the index has a small value, then there is small seasonal variability of 

NDVI, and consequently, the area is not used in agriculture. This assumption is similar to one used 

in Vrieling et al. (2001). If this index has a high negative value, then a summer crop is planted in 

the area. If this index has a high positive value, then a winter crop is planted. Which values are 

small or large was determined through visual analysis of MODIS-NDVI datasets, based upon which 

threshold values of +0.3 and –0.3 were selected. The threshold can be used over the whole study 

territory, since it is situated in the same biome zone (temperate steppe) and phenological variations 

from West to East and from South to North are insignificant.  
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Figure 9. NDVI calculated from Landsat 5 images taken in spring and summer 

3.4 Statistical analysis of vegetation and climate variables  

3.4.1 Morton key as a basis for the analysis 

Due to utilization of crop rotation schemes, summer and winter crops are not planted each year in 

the same fields. In other words, crop patterns change between seasons. In order to analyze inter-

annual variability of phenology parameters of summer and winter crops, spatial data was aggregated 

to a rectangular grid with cells of size 10x10 km i.e. average or maximum value of values between 

pixels inside a cell was used. This is required in order to have continuous data for further analysis. 

Figure 33 illustrates the purpose of using grid cells to sample phenology parameters instead of 

simple pixel-by-pixel comparison. The grid was built in the same sinusoidal projection as MODIS-

NDVI datasets used throughout this research. Cell size was chosen experimentally with the goal of 

having fewer value gaps. The grid covers the whole study area as shown in Figure 13A. 

Cells in the grid were ordered by the Morton index (Figure 13B). Vegetation and climate data 

values were assigned to these cells using a zonal statistic function. As a result, values of variables 

ordered by Morton index were available in a tabular form for statistical analysis. This index was 

calculated in MS Excel using an algorithm illustrated in Figure 13C (Lawder  et al., 2000). 
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 Figure 10. Morton key index developed for this study area 

3.4.2 Standardization of measurements, calculation of trends and correlation 

In order to explore the behavior of variables, and the values of variables acquired by different 

measurements, their attribute values must be standardized, since the values of variables in different 

measurement locations (grid cells) belong to different measurement populations with differing 

variability, mean and standard deviation characteristics. According to Rogerson (2001) this can be 

done by subtracting the mean value from each value and dividing it by the standard deviation 

(Equation 10). The result is called a Z-score and it shows how many standard deviations of value a 

variable is from a population mean. The population mean for the grid cell value is the all year 

average value of this cell for the study period 2000-2012. Using Z-score values -1 and +1, three 

categories for each variable were defined: They are negative deviations larger than a standard 

deviation, deviations within a standard deviation, and positive deviations larger than a standard 

deviation. In other words, the first category shows unusually low values and the third shows 

unusually high values. 

  
     ̅

   
; (10) 

Standard deviation is the square root of squared deviations of observations from the mean 

(Rogerson, 2001). The STD shows absolute average deviation of observations from the mean 

regardless of sign. In Equation 11, calculation of standard deviation is shown for a population with 

n - samples. 

     √
∑      ̅   

   

   
 ; (11) 

STD was used in this research to evaluate the variability of variables over the study area and during 

the study period. It was calculated for non-standardized variables in their original units. In order to 

find relations between the variability in surface moisture and vegetation variables, standardized 

covariance or Pearson‘s correlation coefficient was used. The coefficient was estimated using 

Equation 12, which is the sum of the products of standardized moisture and vegetation variables 

(Equation 10) divided by the number of measurements minus one. Since temporal relations between 
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these variables are investigated in this research, the coefficient was calculated for each 

measurement location (grid cell) for variations in values during the 13-year study period. Thus, 

variables will have 11 degrees of freedom and assuming that correlation is negative and one 

directional, correlation -0.475 gives a probability of 0.05. Significance level was chosen to be 5%, 

thus correlation values more negative than -0.475 were regarded as significant results. 

  
∑              

 
   

   
; (12) 

Runnström (2000) and Peng et al. (2011), have used the slope of linear trend line as a representation 

of annual average vegetation gain. In Yin et al. (2012) trend analysis was used to analyze patterns 

of vegetation change. For the central-southern portion of Ukrainian territory, trend analysis was 

used by Wright et al. (2012) to examine vegetation changes. In the present research, this method 

was used as a tool to preliminarily estimate patterns and magnitudes of average annual changes in 

variables. It was calculated using Equation 13, and this equation was applied to each grid-cell in the 

study area. 

         
             

   ∑              ∑        ∑      

             
   ∑      

 
   ∑      

 
  (13) 

3.4.3 Grouping of variables 

In the current research, changes over the whole study area are investigated. Due to the size of the 

study area, it is not possible to plot variables against each other in separate graphs for all 

measurement locations. Instead, graphs representing a variable from all locations (all grid cells) 

were combined into a family of curves. Thus, temporal changes in variables were assessed by 

families of curves i.e. graphs representing all measurements within the study area. Each family of 

curves was illustrated by an envelope that contains 90% and 60% of the curves included in the 

family. In order to define such an envelope, values of variables were arranged in descending order 

and the lower bound of the envelope was identified as a value that splits off the lower 5% of values. 

The upper bound was calculated in a similar way, but 95% was used instead of 5%. The envelope 

that contains 60% of the curves was identified using 20% and 80% values as bounds. Then, 

calculated bounds were plotted for each year in the study period and connected with each other, 

thus forming continuous graphs.  

3.5 Data processing 

3.5.1 Data processing 

In Figure 14, the steps of data processing that were undertaken in the current research are 

illustrated. As seen in the figure, MODIS-NDVI and Ts time series data are used as input data. 

Climatic data from the network of climate station, as well as the rectangular vector grid, are also 

used as input data in the research. After the operations described in following subsections of this 

section were completed, raster datasets representing maximum NDVI, integral NDVI and 

cumulative TVDI were computed for each year of the study period. These datasets were 

summarized by grid cells using zonal statistics. Resulting tabular data was analyzed in MS Excel 

and the results of the analysis were joined to grid cell layers based on the Morton key approach 
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described above. By specifying different legend properties, the results of the research are visualized 

and presented in the form of thematic maps. 

 
Figure 11. General steps in data processing  

3.5.2 Classification of summer/winter crop fields 

In order to classify summer and winter crop fields, the index calculated according to Equation 8 was 

used. As shown in Figure A.1 in Appendix A, this index was calculated for each year. In order to 

calculate the index, maps showing vegetation variability were compiled. Data in these maps was 

reclassified using threshold values +0.3 and -0.3, related to winter and summer crops respectively. 

Reclassification results were exported to new layers and vectorised in order to filter polygons 

smaller than 32 ha. This is done since 250m MODIS-NDVI datasets have been demonstrated to be 

useful in locating individual crop fields when they are 32 hectares or larger (Wardlow et al., 2008), 

so that smaller polygon might represent noisy data. The remaining vector polygons were rasterized. 

As a result, annual summer/winter crop maps were created. 

3.5.3 Calculation of parameters of seasonal NDVI profiles 

Maps showing peak NDVI values for each year were derived from NDVI time series for winter and 

summer crops through the algorithm illustrated in Figure A.2. The algorithm begins using the 

initialization of the maximal value raster (MVR). Then each raster is retrieved from the time series, 

verified for validity (NDVI stretched values should be between 50 and 250) and compared to MVR. 

If the NDVI value of a pixel in the retrieved raster is higher than that in MVR, the value in MVR is 

rewritten with the pixel value. In other cases, the value in MVR is not edited. As a result, after each 

image from the time series is compared with MVR, MVR represents the values of pixels, which are 

maximal for the time-series. 

Integral NDVI for the growing period is derived as the integral of the seasonality function 

calculated by the TIMESAT software package as shown in Figure A.3. In order to process NDVI 

time series in the software, each image is converted to 16-bit binary image. Then, data processing 

was performed according to the TIMESAT specification (Jonsson and Eklundh, 2004). The 
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program delivered seasonality information as text files, in which rows and columns identify the 

locations of points. Each row in the file also has values of seasonality parameters. This data was 

imported to tables and positions described by rows and columns were converted to original 

coordinates. Then, coordinates were used to create point vector layers where points correspond to 

the pixels from initial datasets and have seasonality parameters associated with them as attribute 

information. Using point layers, raster datasets were created showing integral values of the growing 

season. 

In this research, phenology data was assigned to 10x10 kilometer grid cells illustrated in Figure 13. 

As shown in Figure A.4, maximum NDVI values, as well as integral NDVI values for winter and 

summer crop fields, were sampled for grid cells using zonal statistics. As a result of this operation, 

tables were produced showing average values of phenology metrics for grid cells. The Morton key 

method was used in these tables for identification. Tables were then used in statistical analysis and 

the results of the analysis were visualized using maps. For this purpose, they were exported to DBF 

tables and joined with the grid cells layer based on the Morton key.  

3.5.4 Automation of Vegetation data processing 

Data used in the current research is available in the form of time serieses, which consist of 11 years 

of data with 13 images per year. As seen from previous sections, the sequences of data processing 

applied in the research include operations conducted multiple times. In order to save time and 

minimize errors, data processing procedures were automated. Implementation of these operations 

was organized into an object-oriented structure (Figure A.5) in order to encapsulate common 

features. Such an approach makes this structure less complicated and more effective in terms of the 

easy and accurate implementation of changes.  

Algorithms for data processing were implemented as nested loops that retrieve each dataset in the 

time series. For example, the implementation of an algorithm for a maximum value raster (MVR) 

calculation (Figure A.2) is illustrated in Figure A.6. As seen in the figure, there are two nested for 

loops. The outer loop iterates through all years in the study period, while the inner loop iterates 

through the raster datasets for a certain year. 

Map algebra operations were implemented using Arc Objects .NET libraries. Operations presented 

in Figure A.3, which created point vector layers from tabular data and create raster layers, were 

implemented using ArcGIS functionality in the Python environment. 

3.6 TVDI calculations 

3.6.1 General description 

In the current research, TVDI was calculated using Equation 7. For this purpose, a software tool 

was developed. The tool uses time series Ts-Ta data and NDVI data as inputs. 

3.6.2 Input data processing 

Before the tool for TVDI calculations can be applied, the initial data must be processed. The main 

complication for use of the automatic tool for pixel-by-pixel TVDI calculation is that pixel positions 

must be identical in the temperature and NDVI rasters. In order to achieve this, Ts-Ta and NDVI 
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raster datasets must have the same spatial extent, the same size of pixel and the same number of 

pixels. In Figure A.7, the algorithm for the required data transformation is illustrated. In this 

algorithm, data from climate stations, the original Ts time series and the MODIS-NDVI time series 

are used as input data. The output data from the algorithm is two time series datasets of Ts-Ta and 

NDVI, which satisfy the condition mentioned above. 

Data from climate stations were acquired from the GHCND network (NOAA, 2012) in a comma-

separated value (CSV) format. As a first step, this data was imported to MS Excel where the data 

from climate stations was processed. The result was exported as a DBF table that was converted to a 

point vector layer in the ArcGIS environment. Average monthly temperature data, which is one of 

the attribute of the resulting point layer, was interpolated among climate stations for each month 

between April and October in the study period 2000-2012. The result of this stage is a time series of 

air temperature data. 

Temperature data was acquired from EROS (2011, 2012) in the form of multilayer HDF files. As 

shown in Figure 19, Ts data was extracted and recalculated to degrees Celsius. Values derived for 

8-day periods were combined to represent average values in 16-day period. It was done by 

combining two adjacent datasets of a temporal duration which was within the duration of the same 

MODIS-NDVI MVC. In this operation, values of pixel were determined as an average between two 

datasets. In the case when a value in one dataset is missing, the value from the other dataset was 

chosen. Finally, air temperature data was subtracted from the surface temperature data. 

As was already mentioned in the first paragraph of this section, datasets of MODIS-NDVI time 

series must be transformed in order to have the same spatial reference, extent and pixel size as Ts-

Ta data. In order to accomplish this, a dummy raster was created from a Ts-Ta dataset with the 

value of all pixels equal to one. As shown in Figure 19, this dataset was multiplied with each dataset 

from the NDVI time series. In the Environment Setting for this operation, the ―MEAN‖ method was 

specified to solve values at coinciding locations. The resulting raster datasets from this procedure 

have the same spatial properties as Ts-Ta datasets and represent NDVI values, which satisfies the 

condition specified at the beginning of this section. 

3.6.3 Calculation of limits of Ts/NDVI space 

In the current research, TVDI was calculated using the limits of Ts-Ta values empirically 

determined for each 8-bit stretched NDVI value. For this purpose, zonal statistics were used, the 

result of which were grouped by dates. The result was limits for all years for particular dates.  These 

were exported to SQL server tables in order to be used in the further analysis. The algorithm is 

illustrated in Figure A.8. 

As seen in Figure A.8, the input data for the algorithm is MODIS-NDVI and Ts-Ta time series, 

which were produced by the algorithm illustrated in Figure A.7. First, zonal statistics were 

calculated for each dataset in the time series. Then the results of zonal statistics for all years were 

grouped by date. Grouping was performed by determining the maximum and minimum values for a 

particular 16-day period between all years. During this operation, 156 datasets were grouped in 12 

datasets (one for each 16-day period). This data was grouped again in two tables, one representing 

inter-annual maximum Ts-Ta values for all time periods, and the other represent minimum values. 

These tables were exported to SQL server format in order to be used for TVDI calculations. 
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3.6.4 The tool for automated TVDI calculation 

In order to calculate TVDI, a software tool was developed in C# using ArcObjects libraries. The 

complete static scheme of this software is illustrated in Figure A.11. It consists of four libraries, 

which encapsulate functions for process management, TVDI and raster calculations (Calculations), 

reading Ts-Ta limits from database (EdgeDataBaseLibrary), and operations with files on a hard 

drive (RasterOpenSaveLibrary).  

The general description of the algorithm implemented in the software is illustrated in Figure A.9. 

The algorithm consists of two nested loops; one iterates through dates (16-day periods) of datasets 

in the time series, the other iterates through years in the study period. The algorithm revisits each 

dataset in the initial time series. In each iteration, data from current temperature and NDVI datasets 

are read and written to two arrays. Then, the limits of Ts-Ta/NDVI space are retrieved from a 

SQLserver database. Using this data, TVDI is calculated and written to a new raster dataset, which 

is then saved. The core functions for TVDI calculations are implemented in the Calculations 

library, which is illustrated in Figure A.10. The principle of TVDI calculation (comment frame in 

Figure A.10) is that it visits each record in the initial data arrays, calculates TVDI and stores result 

at the same index in the new array. 
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4. Results 

4.1 Classification of agricultural fields for each year in the study period 

In the beginning of this research, agricultural fields were classified using a variability index 

described in Equation 8, using threshold values of -0.3 for summer crop and +0.3 for winter crop. 

Classification was performed for each year in the study period (2000-2012). As a result of this 

classification, raster maps of summer crop and winter crop were created for each year. These maps 

were then used to eliminate other land cover types in order to gather phenological metrics 

specifically for summer crop and winter crop conditions.  

In Figure 15, the total area of fields classified for each year is illustrated. These are not the total 

amount of winter and summer crop fields on the ground. These are rather those fields, which are 

larger than 35 hectares and satisfy conditions discussed in section 3.2. As seen from the figure, 

there are strong variations between area of fields classified for different years. 

 
Figure 12. Total area of fields classified for years in the study period 

Figure 16 shows the spatial distribution of summer and winter crop fields. In this figure, the area of 

agricultural fields inside grid cells is presented, which is averaged for the study period. This figure 

shows that there are more winter crop fields in the southern part of the study area than in the 

northern part. In the majority of the Crimean Peninsula, the southern part of Odessa Oblast and the 

south eastern part of Kherson Oblast, the area of agricultural fields exceeds 2000 hectares per cell. 

Summer crops were primarily classified in Zaporizhia Oblast and in the north east part of Mykolaiv 

Oblast. There is also a large area of summer crop fields classified in the center of Zaporizhia Oblast. 

In the eastern part of the study area, agricultural fields were rarely classified. Insignificant amounts 

of summer crops were located in the Crimean Peninsula. 
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Figure 13. Average distribution of summer crop fields and winter crop fields over the study area during the 

study period 

4.2 Seasonal NDVI profiles for summer and winter crops 

After summer and winter crops were classified, clipping MODIS-NDVI time series with the results 

of crop classification produced crop specific time series. NDVI profiles of these time series are 

illustrated in figures in Appendix B. In these figures, NDVI curves are plotted as envelopes 

showing 90% and 60% of all measurements over the study area. Figure B.1 shows the seasonal 

NDVI profiles for winter crop fields and Figure B.2 shows the profile for summer crop fields. As 

seen from figures, seasonal NDVI profiles of winter/summer agricultural vegetation show distinct 

properties, as discussed in section 3.3.2 of the current report.  

As seen from Figure B.1, winter crop reaches its maximum NDVI values around days 113, 129 and 

145. After these dates, NDVI decreases sharply and reaches its minimum values around days 177 

and 193. In year 2003, the NDVI profile of winter crop is bimodal, since there is a significant 

increase in NDVI values of winter crops after the end of growing season. A similar but not as strong 

NDVI seasonal pattern can be seen in the preceding and following years (2002 and 2004). 

Deviations from the usual pattern can also be seen in year 2007. In this year, NDVI shows low 

values at day 161 compared to the rest of the study period. In other years NDVI values stay around 

150-200 (8-bit NDVI) while in year 2007, NDVI reaches a value of around 100-150 by day 161. 

Such a low value can be seen only in year 2003. 

NDVI profiles of summer crops are different from the profiles of winter crops (Figure B.2). NDVI 

for summer crop fields reaches maximal values around days 177, 193 and 209. In day 129 and 

before, the NDVI profile shows relatively low values in range 100-150. After NDVI reaches peak 

values, it begins to decrease slightly to its background values until day 273. As is the case for winter 

crops, summer crop profiles show anomalously low NDVI values in year 2007 at the end of the 

growing season. In other years, NDVI ranges from 150 to 200 at day 209, and in the year 2007 it 

reaches values 30 points lower than average. In year 2002, NDVI shows relatively low peak NDVI 

values (less than 200). Also the date at which NDVI reaches its peak in this year in different 

locations spreads between days 161 and 225. Such a low maximum NDVI value can also be seen in 

the years 2007 and 2009. 
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4.3 Phenology parameters of summer and winter crops 

4.3.1 Annual maximum NDVI value 

In Figure 17, maximum annual NDVI values are illustrated for winter and summer crops for each 

year. The spatial distribution of this variable is illustrated in Figure 18. As seen in Figure 17, annual 

maximum NDVI values vary around 200 (8-bit stretched NDVI). For winter crops, values reach a 

minimum in year 2003, when they were approximately 12 points smaller than in other years. The 

highest maximum values for winter crops can be seen in years 2008 and 2001. For summer crops, 

there is no distinct inter annual peak of maximum NDVI values. In years 2007, 2009 and 2012, 

maximum NDVI values for summer crop reach their minima. The spatial distribution of 

standardized (unusually high and low) maximum NDVI values is illustrated in Appendix C (Figures 

C.1, C.2).  

  
Figure 14.  Maximum annual NDVI values for winter and summer crops 

 
Figure 15.  Mean max NDVI values for winter and summer crops 

Standard deviation (STD) of maximum NDVI values between different measurement locations is 

illustrated in Figure 19. As seen in the figure, maximum NDVI values vary with higher amplitude 

for summer crops over the area than for winter crops. There is also a distinct minimum extreme 

around year 2007. The spatial distribution of inter-annual STD is shown in Figure 20. As seen in the 

figure, STD values for winter/summer crops are high in Cherson Oblast, where they reach values 

from 10 to 17 for the majority of the area. Deviations are relatively low for summer crops in 

Mykolaiv Oblast and Odessa Oblast (from 3 to 8 in the majority of areas) and for winter crops in 

Zaporizhia Oblast and Mykolaiv Oblast (from 6 to 10). 
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Figure 16. STD for maximum NDVI between measurement locations (grid cells) 

 
Figure 17. STD for maximum NDVI between years 

Inter-annual trends for maximum NDVI values are shown in Figure 21. As seen in the figure, trends 

for summer crops were positive in almost the entire study area, while trends for winter crops were 

highly negative in the north-eastern and western parts, where they ranged from -2.7 to -0.4. Trends 

for winter crops in the southern part of Odessa Oblast, the central part of Cherson Oblast and in the 

Crimean Peninsula were positive. Highly positive trends are seen for summer crops in the center of 

Cherson Oblast (0.7-6). 

 
Figure 18. Inter annual trends for maximum NDVI values 

4.3.2 Integral NDVI value of growing season 

The integral NDVI value of the growing season was calculated using the Linteg parameters using 

the TIMESAT software package.  Figure 22 shows inter-annual variations of this parameter for 

winter and summer crops and their spatial distribution are presented in Figure 23. As seen in Figure 

22, integral NDVI varied around 1100 for winter crop and 1500 for summer crop. It can also be 

seen that in years 2003 and 2004, integral NDVI of winter crops varied with higher amplitude 
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around the mean value than during other years. For these years, it ranged from about 700 to almost 

1600. It is also notable that for winter crops, integral NDVI values were the lowest in years 2007 

and 2012 (700-1000). For winter crops, integral NDVI reaches its peak values in years 2004, 2008 

and 2010. For summer crops, changes of integral NDVI over the study period are more gradual than 

for winter crops. It reaches maximum values in years 2003 and 2004, when it varied around 1700. 

Then it gradually decreased until the year 2008 to less than 1300. Similar minimum values can also 

be seen for years 2002 and 2011. The spatial distribution of unusually high and low integral NDVI 

values is illustrated in Appendix C (figures C.3, C.4). 

 
Figure 19. Integral NDVI value of growing season 

 
Figure 20.  Mean max integral NDVI values for winter and summer crops 

Figure 24 shows the standard deviation of integral NDVI for the study period. As seen in the figure, 

the highest amplitude of deviation of integral NDVI for winter crop was in year 2003. In this year 

the STD was equal to 300.  The lowest STD is seen in year 2007, when it reached 100. For summer 

crops, the situation is the opposite. The lowest deviations were in year 2003 (240) and the highest in 

years 2007 and 2001 when it was around 350.  Figure 25 shows the spatial distribution of inter-

annual STD. As seen in the figure, STD is unevenly spread over the study area. The largest values 

were in the northern part of Odessa Oblast for both crop types, and highest values over Odessa 

Oblast and the Crimean Peninsula for summer crops. 

 
Figure 21. STD for integral NDVI values (Linteg) between grid cells 



30 

 

 
Figure 22. STD for integral NDVI values (Linteg) between years 

In Figure 26, inter-annual trends of integral NDVI are shown. These trends are predominantly 

negative for both crop types over the study area. Trends have a positive direction in the northern 

part of Odessa Oblast, ranging from 1 to 22. Also a positive trend was found in the Crimean 

Peninsula for winter crops (1-10), and in the central part of Cherson Oblast for summer crops (1-

10).  Highly negative trends can be seen for summer crops in Zaporizhia Oblast, where they are 

smaller than -28 over the majority of the territory. Such negative trends are also seen in parts of 

Mykolaiv Oblast and in central and western parts of Zaporizhia Oblast. Trends covering the 

majority of study area for summer crops are smaller than -13. Such strong negative trends are also 

seen in Zaporizhia Oblast for winter crops. 

 

 
Figure 23. Trends integral NDVI values between years 

4.4 TVDI calculations results 

4.4 TVDI calculations results 

In this research, time series of TVDI index was calculated for the study period, and the results of 

these calculations were summarized for each year. In order to analyze these results together with 

vegetation data, TVDI was sampled by grid cells used as a basis for vegetation data analysis. Figure 

27 presents the results of TVDI calculations.  

As seen in the figure, unlike vegetation data, TVDI is regularly distributed over the study area. 

Smaller TVDI values can be seen in the northern part of the study area. There are also small TVDI 
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Figure 24. Distribution of cumulative TVDI over 

the study area and during the study period 

values in the northern part of Odessa Oblast and the Crimean Mountains. The trend of TVDI 

between years 2000-2012 is positive (Figure 28), which means that moisture conditions became 

dryer during this period. Inter-annual standard deviation (STD) of TVDI is stronger in the eastern 

and central parts of the study area. 

Inter-annual distribution of TVDI is more uneven 

than spatial. As seen in Figure 27, there were 3 

occasions of strong surface dryness conditions 

during the study period in years 2001, 2007 and 

2012. Also, dry conditions were seen in years 2003 

and 2009. Figure D.1 in Appendix D illustrates the 

spatial distribution of unusually low and high 

surface humidity conditions. As seen in the figure, 

drought in year 2007 was the most severe in terms 

of extent. The extent of droughts in years 2000 and 

2012 was also significant, while dryness in years 

2003 and 2009 locally occurred in some parts of the 

study area.  

 

 

 

 

 
Figure 25. Spatial distribution of trend and standard deviation of TVDI 

4.5 Impact of surface wetness conditions on conditions of agricultural vegetation 

After climate and phenology variables were calculated, relations between them were assessed. In 

Figure 29, graphs are illustrated where cumulative TVDI (TVDI) was plotted against four 

phenology variables. As seen in the figure, TVDI and 3 phenology variables show opposite patterns 

of decrease and increase. Minimum and maximum values of phenology variables are related in time 

to maximum and minimum values of TVDI. In other words, phenology variables reach their 

minimum values when TVDI reaches its maximum, and vice versa. On the other hand, there is no 

such relation between TVDI and integral NDVI for the summer crops. Figure 30 shows that there is 
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statistically significant negative correlation between vegetation variables (except integral NDVI of 

summer crops) and TVDI. The strongest correlation is seen in Mykolaiv oblast and the weakest in 

the Crimean Peninsula. For winter crops, integral NDVI is better correlated with TVDI than 

maximum NDVI values. The situation is the opposite for the summer crops, where maximum NDVI 

is highly correlated with TVDI. 

 
Figure 26.  Variations of TVDI versus phenology variables 

 
Figure 27. Correlation between TVDI and vegetation variables 

Spatial distribution of Z-scores of TVDI smaller than ―-1‖ are illustrated in Figure 31, which shows 

the extent of unusually dry surface moisture conditions in dry years (data for all years is illustrated 

in Appendix D). Also, this figure compares the extent of dryness to vegetation conditions, which are 

illustrated in Appendix C. As seen in the figure, unusually dry surface moisture conditions coincide 

with unusually low values of vegetation variables. However, the effects of lack of humidity on the 

surface are not seen in all three vegetation variables illustrated in the figure. Dryness in year 2000 

had only limited influence on crop vegetation. In year 2003, winter crops were heavily impacted, 

which is seen by the broad spatial extent of Z-scores lower than -1 for maximum NDVI values. 

Droughts in years 2007 and 2009 impacted summer crops more than winter crops. Drought in year 

2012 has evenly influenced both winter and summer crops. 
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Figure 28. Scheme showing Z-scores of TVDI and of the three vegetation variables 
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5. Discussions 

5.1 Classification of winter and summer crops  

In each year, summer and winter crops were classified using two raster datasets (Equation 9) and 

the same threshold values for each year. Prior to classification using MODIS images, this approach 

was tested using Landsat images. Results illustrated in Figure 32 show the boundaries of fields 

covered with winter and summer crops classified in this research. There is no overlap between 

fields, and the shape of fields is generally well preserved. Fields classified using Landsat and 

Equation 8 for the year 2011 over Kryvoozersky district match the results of crop classification 

described in Grekov (2011). 

 
Figure 29. Comparison between classification results acquired using Landsat 5 TM imagery  

and MODIS-NDVI products 

By comparison of classification results performed using MODIS and Landsat, it is evident that both 

winter/summer crop maps have generally similar field pattern. Due to coarse 250 meter pixel size, 

only large fields were classified with MODIS. Fields classified with MODIS-NDVI are located 

inside fields classified with Landsat, and there is only small area classified with MODIS which lay 

outside of Landsat classification results. In other words, almost all fields classified with MODIS are 

classified with Landsat, which is the evidence of high accuracy of crop classification which 

provided ―pure winter/summer crop pixels‖ which were used in further analysis.  

Crop classification for each year showed that winter crops are mainly planted in a southern part of 

the study area and the highest density of summer crop fields is seen in Zaporizhia Oblast (figure 

24), which is consistent with the report of Cherenkov et al. (2013). 

Current classification approach uses datasets related to the same dates for each year of the analysis 

(2000-2012). Even though climatic conditions can be different in these particular dates in different 

years, stages of summer and winter crops are the same. In each year in April, winter crop is fully 

emerged from the snow and starts growing, while summer crops is not yet or just planted. At the 

end of July and beginning of June, winter crop is usually cultivated and cultivation schedule differs 

insignificantly between years (Fedorenko, 2011). The same time summer crop reaches its vegetation 

peak values around these dates (Figure B.2). Thus, use of datasets related to the same periods (Apr-

07 to Apr-22 and Jun-26 to Jul-11) for crop classification in different years is possible. 
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As seen from figure 15, total area of winter and summer crop fields classified in different years 

varies. Such deviations can be caused by utilization of the same thresholds values for classification 

in different years, whereas climatic conditions are different from year to year. By comparison of 

figures 15 and 29, it can be assumed that amount of fields classified depends on wetness conditions, 

since extremums of these values coincide in time with extremums of TVDI. In year 2000, TVDI 

reached maximum values while area of classified fields was low. In year 2003, TVDI has peaked 

while extremely low area of winter crop was classified. The same time, area of summer crops 

reached its all year peak in 2003. Small area of winter crop can be explained by the fact that a lot of 

agricultural fields were damaged by ice crust in winter (65% of winter crops was destroyed this year 

according to Yatsik et al., 2006) and extreme dry conditions in spring (Netis, 2007). Large area of 

summer crop can be the result of replanting of damaged fields with new summer crop plants. This 

can be proven by figure B.2, were in year 2003 there are apparently two growing seasons for winter 

crops. Such bimodal profile according to Wardlow et al. (2007) caused by cultivation of winter and 

summer crops at the same field at the same year. In year 2007 during extreme drought conditions, 

area of summer crops reached its minimum. Apparently, much of summer crops was damaged by 

the drought, and remained crop fields showed extremely low values of phenology variables. 

The main drawback of the current classification approach is that the same threshold values were 

used over entire study area. This means that only crop species having strong seasonal variations are 

classified. By analyzing fields classified in this research and fields classified in Grekov (2011), it 

can be concluded that winter wheat, barley and rape and summer sunflower and soybean were 

classified. There is no other ground truth data which can prove that other crops were classified 

appropriately.  

5.2 Calculations of phenology variables 

In this research, conditions of vegetation were evaluated on an annual basis using two metrics 

derived from MODIS-NDVI datasets: annual maximum (peak) NDVI values and integral NDVI of 

the growing season. The first metric was derived directly from NDVI time series. The second 

metric was derived as an integral of Gaussian functions fitted to seasonal NDVI profiles using the 

TIMESAT software package. The function fitting approach provides the possibility ―to effectively 

track high-order inter-annual variations in NDVI time series‖ (Hermance et al., 2007). This 

approach also reduces noise, which distorts values in NDVI time series (Eklundh et al., 2012). 

Thus, the NDVI metrics used in this research are represented by generally undistorted values. 

In order to analyze vegetation changes, pixels representing NDVI metrics were sampled using a 

10x10 kilometer grid. In the figure, crop classification results for years 2010 and 2011 are 

presented. As seen in the figure, the field fabric is not continuous, and has different patterns in 

different years. Unlike data represented by fields, data summarized by grid cells is continuous over 

the years. Thus, grid cells provide a basis for reasonable inter-annual statistical analysis. 
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Figure 30. Average distribution of summer crop fields and winter crop fields over the study period 

Phenology parameters used in the current research were also used in previous work to estimate and 

examine vegetation conditions. Although both parameters describe vegetation conditions, their 

values are not strongly related to each other. Figure 34 shows the spatial distribution of statistically 

significant correlation between the current phenology parameters. Correlation between these two 

variables for summer crops is only significant in limited areas in Odessa Oblast and in the Crimean 

Peninsula. There is a larger area where these parameters are correlated for winter crops. However, 

over the majority of the study area, there is no significant correlation between maximum and 

integral NDVI. This can be partially explained by the dependence of integral NDVI (calculated as 

an integral of a function fitted to growing season) on the length of growing season, which, among 

other factors, is determined by cultivation schedule.  

 
Figure 31. Pearson coefficient of correlation between integral and maximum NDVI 

On average phenology parameters show higher values in north-eastern part of the study area. It can 

be seen for maximum NDVI values (figure 18) and for integral NDVI values (figure 23) of winter 

and summer crops. It is also evident that values of variables in north are slightly higher than in 

south. For summer crops, high values of maximum NDVI are seen in the central part of Zaporizhia 

Oblast and in Crimea Peninsula, were fields are irrigated.  

Trends are generally negative for both phenology variables over the study area (figure 21; figure 

26), which corresponds to findings in Wright et al. (2012). However, unlike findings of Wright et 

al. (2012), magnitude of the trend is not even over the study area. Especially, this is true for trends 

of integral NDVI, which are more unevenly spread then trends of maximum NDVI. Positive trends 

of vegetation variables can be seen in central part of Kherson Oblast where irrigation is used. Also 

positive trends for maximum NDVI are seen in the southern part of Odessa Oblast and for integral 

NDVI in the northern part of Odessa Oblast, which is situated in the forest-steppe agro-ecological 
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region (Gumeniuk et al., 2010) and were density of agricultural land is relatively low. One 

explanation for higher variation of trends calculated in the current research comparing to trend from 

Wright et al. (2012) is that current research was focused on agricultural areas and vegetation 

conditions in agricultural fields depends on cultivation practice. For example, high positive trend 

for summer crops in the central part of Kherson Oblast can be related to expansion of irrigation 

illustrated in figure 35, which was created in this reasearch using approximate classification 

method.  

 
Figure 32. Extension of irrigated crop fields in Kherson Oblast and Crimea Peninsula 

In this research, the variability of maximum and integral NDVI was estimated by standard deviation 

(STD). STD was calculated spatially (between grid cells) and between years. Temporal variability 

is illustrated in Figures 20 and 25. As seen in these figures, inter-annual variability of vegetation 

variables calculated for winter crops is higher than for summer crops. For summer crops variability 

of integral NDVI is higher in the eastern parts of study area, where density of summer crop fields is 

lower. According to Oindo et al. (2000), higher values of inter-annual standard deviation of NDVI 

may be evidence of heterogeneity of biodiversity. For winter crops, spatial standard deviation 

reaches its maximum around year 2003, and reaches its minimum around year 2007 for both 

integral NDVI and maximum NDVI. Distribution of spatial STD for summer crops is more regular 

between years. Although STD of agricultural vegetation is highly dependent on human activity, it is 

closely related to natural patterns and dependent on natural factors (Hall-Beyer et al., 2011). 

Maximum NDVI and integral NDVI show different inter-annual patterns for both winter and 

summer crops over the study period (Figure 18; Figure 23). Spatial distribution of Z-scores, 

illustrated in figures in Appendix C, is also different for maximum and integral NDVI. The decrease 

in maximum NDVI values for winter crops in year 2003 was not followed by a high decrease in 

integral NDVI values, which can be explained by the presence of two peaks during the growing 

season in this year (Figure B.1) and by the replanting damaged crops. Similarly, minimum integral 

NDVI values for winter crops in year 2007 coincide with normal maximum NDVI values for winter 

crop in this year. The reason for this is seen in Figure B.1. As was mentioned in section 4.2, NDVI 

values were extremely low during the end of growing season in 2007. As seen in the plot, NDVI 

values in day 161 were lower than 150, which is the lowest for all years of study.  During the same 

year, NDVI values before date 129 were normal, which explains normal peak values in this year. 

For summer crops, high NDVI values on day 145 in year 2012 may explain high values in integral 

NDVI for year 2012, when values of maximum NDVI were low. In this year, NDVI values in the 
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second part of the growing season (Figure B.2) were also extremely low, which can only be 

compared to values in year 2007. 

5.3 TVDI calculations 

In previous researches, TVDI index was used to compare moisture conditions in different locations 

of the large territory in one moment of time (Sandholt et al., 2002; Meng et al., 2010). In the present 

research, surface moisture changes both in space and in time were analyzed, which is similar to 

applications of CWSI index (Yuan et al., 2004; Gonzalez et al, 2005; USWCL, 2001). As in CWSI 

calculations, air temperature was used in the current approach for TVDI calculations in order to 

have account for changes of temperature of air over time. Inclusion of this variable helped to 

overcome time and regional dependence of TVDI values mentioned in Min et al (2010). However, 

it made calculations dependent on data from climate stations, network of which according to Kogan 

et al. (2009) is not sufficiently dense over Ukrainian territory. Although there is uncertainty caused 

by interpolation of temperature values between stations, difference of temperature values between 

stations are not larger than several degrees. Thus, network of climate stations may be sufficient in 

this case and interpolation of air temperature has not caused significant errors. 

As was mentioned in section 3.2.2 and in Sandholt et al. (2002), variations in surface temperature 

are assumed to be related to changes in surface moisture conditions which influence energy balance 

(figure 4). However, energy balance depends also on factors not accounted in the research. These 

are surface type, presence of shadows and variations in sensor‘s viewing angle that influences 

visible proportion between bare soil and vegetation (Sandholt et al., 2002). 

Calculations of TVDI depend on the shape of a Ts/NDVI space. In case a study area is large enough 

to represent different land cover and wetness conditions, the Ts/NDVI space can be modeled as a 

triangle or a trapezoid and wet and dry edges can be approximated by a linear model (Sandholt et 

al., 2002; Meng et al., 2010). If distribution of Ts/NDVI points forms an irregular shape, fixing dry 

and wet edges can be problematic and may lead to errors (Meng et al., 2010). In order to avoid these 

errors maximum and minimum Ts values were sampled for each NDVI value from Ts datasets, 

rather than approximated by a function. Thus, each Ts/NDVI space was limited by two contours of 

maximum and minimum Ts values, instead of lines.  

Julian day 097 113 129 145 161 177 193 209 225 241 257 273 

D
r
y
 
e

d
g

e
 

slope -0,053 -0,038 -0,029 -0,036 -0,062 -0,090 -0,036 -0,061 -0,065 -0,077 -0,058 -0,072 

intercept 30,762 29,341 27,839 31,165 41,798 38,059 33,954 32,510 36,356 36,253 25,290 31,136 

R2 0,744 0,757 0,710 0,596 0,372 0,894 0,126 0,763 0,682 0,760 0,694 0,724 

W
e

t
 
e
d

g
e
 

slope 0,042 0,008 -0,022 -0,027 -0,036 -0,036 -0,037 -0,051 -0,040 -0,046 -0,010 -0,034 

intercept -8,770 -2,257 2,994 2,463 5,240 3,082 4,596 6,965 4,567 6,395 -2,425 4,442 

R2 0,612 0,079 0,474 0,548 0,744 0,642 0,699 0,823 0,721 0,723 0,139 0,565 

 
Table 2. Parameters of linear regression fitted to the wet and dry sides of Ts/NDVI spaces 



39 

 

 
Figure 33. Zones of Ts/NDVI space (USWCL, 2001) 

The majority of the contours of Ts/NDVI limits identified for each 16-day period have a shape close 

to linear and can be described as a linear distribution, the parameters of which are illustrated in 

Table 2. Large differences in intercept values between dry and wet edges and the relatively small 

slope of dry edges (Table 2) suggests that the third zone (III) (Figure 36) in Ts/NDVI space is quite 

large in calculated Ts/NDVI distributions. According to Clark (1997) and USWCL (2001), pixels 

falling in this zone represent dry soil, and different degree of water stress in plants. 

As seen in Figure 27, moisture conditions are more favorable in forested areas. Particularly, TVDI 

is lower in the northern part of Odessa Oblast situated in the Forest Steppe agro-ecological region 

(Gumeniuk et al., 2010) and in the Crimean Mountains, which are also covered with forest. 

Deviations of TVDI values between years have higher amplitude in the central and eastern parts of 

the study area. As seen in Figure 28, areas with high values of standard deviation have also high 

positive trends of TVDI. This suggests that areas with higher variability of TVDI became dryer 

during the study period. This can be explained by findings from Gonzalez et al. (2005), where it 

was concluded that spatial variability of canopy temperature increases with the increase of water 

stress.  

Overall, TVDI trends are positive over the study area. These findings suggest that the southern 

Ukraine become dryer over the period between the years 2000-2013, which is also confirmed by a 

negative trend in the Standardized Precipitation Index (SPI) calculated for the same area by 

Khokhlov et al. (2012). Khokhlov et al. (2012) also concluded that the frequency of droughts has 

increased in the southern Ukraine in the past decade. However, there is no empirical evidence 

which supports the claim that climate became dryer in the southern Ukraine (Yatsyk et al., 2006). 

The increased aridity of the surface found in this research may indicate human desertification 

processes, mentioned in Yatsyk et al. (2006) and Netis (2009). 

According to findings in this research (Figure 27, Figure D.1), there were 5 years with unusually 

dry surface moisture conditions; 2000, 2003, 2007, 2009 and 2012. These findings confirm previous 

findings (Vojegova et al., 2013; Adamenko and Prokopenko, 2011) that indicate that drought is 

occurring every 2 or 3 years in the southern Ukraine.  

5.4 Relations between climate and vegetation conditions  

After vegetation and surface moisture variables were computed and analyzed, they were compared 

in order to find the impact of changes in moisture on vegetation conditions. As a result, a 

statistically significant negative correlation was found between integral NDVI of winter crop and 
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maximum NDVI of winter and summer crops. As seen in Figure 30, correlation with TVDI is 

especially strong for integral NDVI of winter crops and maximum NDVI of summer crops.  

As mentioned by Hall-Beyer et al. (2011), NDVI variability of cropland is not always dependent on 

natural factors, since it is influenced by human controlled factors. For instance TVDI is not 

correlated with integral NDVI of summer crops over the entire study area. The reason for this is the 

dependence of integral NDVI on the length of growing season, which is influenced by cultivation 

practices. Date of planting is determined based on spring air temperatures and the presence or lack 

of snow on the ground. Although maximum NDVI for summer crops is highly correlated with 

TVDI, almost no correlation is found in the center of Kherson Oblast and in the Crimean Peninsula, 

where irrigation is practiced.  

Integral NDVI of winter crops is less dependent on the length of the growing season, since only the 

spring and summer stages of the growing season are studied in this research, and winter crop is 

already grown when it emerges from snow. The length of the growing season is dependent on the 

date of cultivation only i.e. the date of the end of growing season. Integral NDVI has generally 

stronger correlation with TVDI than maximum NDVI values. For both metrics, correlation is 

insignificant in Kherson Oblast and the north of Odessa Oblast where, density of winter crop fields 

is low (Figure 16).  

By comparing wetness conditions and vegetation performance (Figure 31), we find the most 

significant influence on agricultural vegetation was caused by droughts in years 2007 and 2012. 

Droughts in years 2000 and 2009 were rather mild. Although the effects of drought in year 2000 are 

not clearly seen in vegetation performance, they probably caused a smaller yield of winter wheat in 

this year (Figure 37A). 

Drought in year 2012 had influence on both winter and summer crops. Its influence is clearly seen 

by low maximum NDVI values, which have almost the same spatial pattern as low TVDI values 

(Figure 31). According to Kytischeva (2012), air and soil moisture in this year was critically low in 

Zaporizhia Oblast, which caused substantial damage to sunflower.  

In 2007, drought conditions have caused unusually low NDVI values for winter crops during the 

second half of the growing season (Figure B.1). At the same time, maximum NDVI values for 

winter crop were normal (Figure 31), but average yield of winter wheat was just a little lower than 

in other years (Figure 37a). For summer crops NDVI influence from drought was harder to see, 

since NDVI values were low during the entire year (Figure B.2) and the total area of summer crop 

in this year‘s fields was the smallest in the study period (Figure 16). This drought was also 

recognized as the most severe by Kogan et al. (2011). 

 

Figure 34. Average yield of winter wheat in different years a) and yield of different crops  

in years 2008 and 2003 b) (Adamenko and Prokopenko, 2011) 
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In year 2003, significant damage of winter crops was not apparently caused by extremely dry 

conditions during spring and summer. Only some parts of the study area were unusually dry (Figure 

31) and the amount of rainfall registered by climate stations was around normal values in this year 

(Table E.1; Figure E.2). Due to this, the reasons for crop damage in year 2003 may be found during 

the winter, as suggested by Netis (2007). In this year, 65% of the winter crop was smothered by ice 

crust (FAO, 2005). Average winter wheat yield in this year was the lowest (Figure 37A). In the 

same year, damage to summer crops was found to be minimal (Figure 39), which coincides with 

only a small decrease in sunflower yield (Figure 37).  

In his research, Kogan et al. (2011) concluded: The data shows that year ―2003 indicates a very 

severe vegetation stress‖. The results of this research complements findings from Kogan et al. 

(2011). Since the surface was unusually dry only in limited locations, it was an extreme weather 

event in winter as specified by Netis (2007) and FAO (2005) that, according to the current research, 

damaged winter crops and had no effect whatsoever on summer crops.  
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6. Conclusion 

In this research, vegetation conditions of summer and winter crops were analyzed and compared to 

surface moisture conditions during the study period (2000-2012) and over the study area, which 

include five administrative regions: Odessa Oblast, Mykolaiv Oblast, Kherson Oblast, Zaporizja 

Oblast and the Autonomous Republic of Crimea. Analysis was performed on a field-by-field basis 

and temporally on an inter-annual basis. Findings acquired in this research are listed below: 

 Crop vegetation performance was generally negative over the study area. Some slightly 

positive trends were found in Zaporizja Oblast, Odessa Oblast and the Autonomous 

Republic of Crimea. Trends were highly negative in Mykolaiv and Kherson Oblasts.  

 There is a strong variability of vegetation performance variables both inter-annually and 

spatially. Inter-annual variability of integral NDVI values is stronger than variability of 

maximum NDVI values. 

 Crops cultivated in the northern parts of the study area are generally in better conditions 

than crops grown in the south.  

 In years 2003, 2007 and 2012, conditions of winter crops were below average over the 

majority of the study area, while conditions of summer crops were unusually low in years 

2007, 2009 and 2012. In other years, vegetation conditions were below normal for limited 

areas only. 

 Surface moisture conditions are evenly spread over the study area. The surface is wetter near 

the seacoast, around major inland water bodies and in the part with a high proportion of 

forest; the northern part of Odessa Oblast and the Crimean Mountains. 

 There was a negative trend of surface moisture (positive trend of TVDI) during the study 

period, which suggests that soil became dryer since the year 2000. Negative trends of 

surface moisture were found in areas with high variability of this parameter.   

 There were five years, when the surface was unusually dry: 2000, 2003, 2007, 2009, and 

2012.  

 Statistically significant correlation was found between surface moisture and vegetation 

variables over the majority of the study area. Correlation was not found for integral NDVI of 

summer crops, due to its high dependence on the length of the growing season.  

 It was found that unusually low agricultural vegetation performance coincides in time with 

unusually dry surface conditions. However, drought in year 2003 had no impact on summer 

crops and drought in year 2009 did not influence winter crops. 

Based on the list above, it can be concluded that surface moisture has significant influence on 

both winter and summer crops. In years when the area became unusually dry, crop vegetation 

responded with lower vegetation performance.  Although in comparison to research conducted 

by Kogan et al. (2011), the current research lacks the investigation of the duration of droughts, 

this research has complemented Kogan‘s research with an investigation of the driving forces of 

drought, and a specific focus on vegetation response from agricultural fields rather than the 

entire landscape. Beyond the study period of Kogan‘s research, two new years of unfavorable 

moisture conditions were found in the current research: year 2009 with limited impact on 

summer crops, and year 2012 with wide effects on summer and winter crops. 
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Appendix A. Data processing diagrams 

 

 
Figure A.1. Summer/winter crop classification procedure 

 

 

 

Figure A.2. Calculation of a maximal value raster 

 

Figure A.3. Compilation of datasets showing integral values of growing season using the TIMESAT 

software 
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Figure A.4. Sampling phenology metrics to tabular form 

 

 

 

Figure A.5. Object oriented structure for data processing 
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Figure A.6. Sequence for maximum value determination 

 

 

 

 

Figure A.7. Data processing for TVDI calculations 
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Figure A.8. Determining of limits of Ts-Ta values 

 

 

 

 
Figure A.9. Algorithm of TVDI calculations implemented in the software 
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Figure A.10. Implementation of core functions of the software for TVDI calculations 
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Figure A.11. UML class diagram of the software for TVDI calculations 
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Figure B.1. NDVI profiles for winter crop areas 

Appendix B. Seasonal NDVI profiles for winter crop and summer crop areas  
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Figure B.2. NDVI profiles for summer crop areas 

 



51 

 

Appendix C. Z-scores of maximum and integral NDVI for growing season 

 

 

Figure C.1. Spatial distribution of Z-scores of maximum NDVI values for winter crops 
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Figure C.2. Spatial distribution of Z-scores of maximum NDVI values for summer crops 
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Figure C.3. Spatial distribution of Z-scores of integral NDVI values for winter crops 
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Figure C.4. Spatial distribution of Z-scores of integral NDVI values for summer crops 
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Appendix D. Z-scores of maximum and cumulative TVDI 

 

Figure D.1. Spatial distribution of Z-scores of cumulative TVDI values  
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Appendix E. Rainfall data from climate stations situated within study area. 

 
Table E.1. Total monthly rainfall data (tens of mm) for each year in the study period 2000-2012 

 

 

 

 

Figure E.1. Location of climate stations 

Figure E.2. Total annual precipitation 
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