
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

 CODEN:LUTEDX/(TEIE-5313)/1-110/(2013)

Modelling and Simulation of
Smart Grids using Dymola/Modelica

Jonas Enerbäck
Oscar Nalin Nilsson

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Modelling and Simulation of
Smart Grids in Dymola/Modelica

J. Enerbäck & O. Nalin Nilsson

June 11, 2013

Abstract

Smart grids have been proposed as a way to increase grid robustness and reduce
consumption peaks and at the same time decrease electricity costs for the end
users. This thesis aims to develop generic models for smart grids focusing on
smart houses which are used to test if it is possible to reduce consumption
peaks, decrease electricity cost and at the same time increase grid stability.
Models have been developed in Dymola using the Modelica language and a
controller program has been developed using C++. Based on simulations of
the models it is concluded that the consumption peaks in the grid can be
decreased while at the same time grid robustness in terms of withstanding
short power outages is improved. Furthermore this effort reduced electricity
cost for the end users as well.

Acknowledgements

We would like to thank our supervisor at Lund University Faculty of Engineer-
ing Jörgen Svensson and our mentors at Modelon AB Jens Pålsson and Carl
Wilhelmsson for their input and comments.

We would also like to thank the people working at Modelon AB for their
hospitality towards us when working with this thesis at Modelon AB’s office.

1

Contents

1 Introduction 3
1.1 Background . 4
1.2 Motivation . 4
1.3 Project Scope . 5
1.4 Goals . 5

2 Smart Grids 7
2.1 Electricity Generation Today . 8

2.1.1 Supply and Demand . 8
2.2 Electricity Grid . 9
2.3 Key Concept . 10
2.4 Current Projects . 11

2.4.1 Smart Grids Gotland, Sweden 12
2.4.2 Stockholm Royal Seaport, Sweden 13

2.5 Issues . 13

3 Modelica/Dymola 15
3.1 Modelica . 16

3.1.1 Electric Power Library 18
3.2 C/C++ using External Static Libraries 18
3.3 C/C++ using External Objects 19

4 Smart Cell 22
4.1 Concepts . 23
4.2 Modeling . 23

4.2.1 Internal DC Bus and medium voltage grid 24
4.2.2 Converter . 25
4.2.3 Battery . 25
4.2.4 Load . 26
4.2.5 Generator . 26

4.3 Functionality . 27
4.3.1 Load . 27
4.3.2 Battery/Storage . 28
4.3.3 Generator . 28
4.3.4 External connection . 28

4.4 Smart Cell Models . 28
4.4.1 Smart House . 28

2

4.4.2 Distribution Grid . 29

5 System Controller 30
5.1 System Controller . 31
5.2 Control Strategy . 31
5.3 Workflow for Smart House . 32
5.4 Workflow for External grid . 36

6 Implementation 39
6.1 General Idea . 40
6.2 C++ . 40
6.3 Dymola implementation . 41

6.3.1 System Controller . 41
6.3.2 Resources . 42
6.3.3 External Connection . 44

6.4 Dymola and C++ running together 45

7 Scenarios 46
7.1 Short term scenario: . 47
7.2 Long term scenarios: . 48

8 Results 54
8.1 Short term scenario: . 55
8.2 Long term scenarios: . 59

9 Discussions and Conclusions 62
9.1 Evaluation of the Project . 63

9.1.1 Implementation problems 63
9.2 Improvements . 64

9.2.1 Modelling . 64
9.2.2 Model Verification . 64
9.2.3 Boundary Values . 64
9.2.4 Implementation . 65
9.2.5 Real-Time . 65

9.3 Conclusion . 65

A General 67
A.1 Mid-Range controller . 67

B Modelica Source Code 68
B.1 Solar panel . 68
B.2 Wind Power Plant . 68
B.3 Generic Smart Block . 69
B.4 External Connector Block . 71

3

C C/C++ Source Code 75
C.1 Dymola interface . 75
C.2 SCADA . 77
C.3 Block . 96
C.4 Pi controller . 102

Bibliography 104

4

Chapter 1

Introduction

In this chapter the background to smart grids is given as well as the project
scope and goals of the thesis.

3

CHAPTER 1. INTRODUCTION 4

1.1 Background
Today most electricity is produced mainly with fossil fuels, nuclear and hy-
dro. These energy sources are dispatchable in their nature, i.e. the amount
of electricity that is produced is determined exactly and can be increased or
decreased within a specific time frame according to changes in demand. Due
to the probable negative impact of CO2 [1] on the environment and the deple-
tion of fossil fuels it is essential that the electrical energy consumption has to
decrease and that the consumption is done in a more efficient way.

Smart grids is a concept that tries to solve these issues. The concept is
not well defined but it circles around communication between different actors
such as power producers, transmission system operators , distribution system
operators, and end users. The communication might contain minute wise
information about current production, consumption and price of electricity.
In the short term this may be used to create incentives to lower consumption
of electricity at peaks of high demand. In the longer run households may have
automatic systems that will close down low priority loads, e.g. outdoor lights,
during hours of high demand (high price) and start resources with low priority,
e.g. laundry machine or dishwasher, during hours of low demand.

Small-scale power generation or micro generation, such as solar and wind
power at household level, might be a cost efficient way of generating electricity
locally, both to fulfil the consumers needs but also in order to sell to the electric
grid.

The U.S. Department of Energy describes smart grid as: ”An automated,
widely distributed energy delivery network, the Smart Grid will be charac-
terized by a two-way flow of electricity and information and will be capable
of monitoring everything from power plants to customer preferences to indi-
vidual appliances. It incorporates into the grid the benefits of distributed
computing and communications to deliver real-time information and enable
the near-instantaneous balance of supply and demand at the device level.” [2,
p.13] they continue with:

”While supply and demand is a bedrock concept in virtually all other in-
dustries, it is one with which the current grid struggles mightily because, as
noted, electricity must be consumed the moment it is generated. Without
being able to ascertain demand precisely, at a given time, having the ‘right’
supply available to deal with every contingency is problematic at best. This is
particularly true during episodes of peak demand,those times of greatest need
for electricity during a particular period.” [2, p.13]

1.2 Motivation
The aim of this project was to develop a model of a smart house connected to
an external grid using the Modelica based tool Dymola and to design control
laws that control production and consumption on the grid using C++. The
control structure was designed and implemented in C++ since the simulation
in Dymola has no pre-defined causality which makes it difficult to do control

CHAPTER 1. INTRODUCTION 5

of the system. By using Dymola to simulate the physical parts and using the
imperative programming language C++ to make decisions, it is possible to
use the strength of Dymola and the strength of C++. The control system
continuously gather information from the grid such as power consumption,
voltage level and priorities for different loads and acts using this information
to optimize the energy use. The grid should in an automated fashion act and
gather information to keep the grid operating in an optimal way. Apart from
modelling a DC grid on household level a grid connecting several households
should also be modelled. This grid connecting several houses will form a
model over a smart cell. Control laws for this cell should be able to distribute
electricity from local wind farms, solar power plants and over production from
households in an efficient way.

To model and control smart grids is important. These grids can be used to
distribute variable produced electricity such as wind power, in a more efficient
way than the current electricity grid. Furthermore these grids can be used to
reduce consumption peaks and improve the reliability of the grid. A DC grid
is modelled instead of AC since the basic smart control aspect is still the same
with a DC grid and is easier to model. Furthermore some researchers believe
that future smart grids will be implemented using DC components and DC
grids. Since many micro generating sources are DC in their nature, such as
solar power plants, it will be possible to avoid transformations losses using DC.
Also an important role in future smart grids will be the ability to store energy,
preferable in battery equipped cars, and since energy storage in batteries are
done in DC, using DC grids will further avoid transformation losses[3].

1.3 Project Scope
This project is limited to develop a DC model of a household and a medium
DC voltage grid. The household controls an arbitrary number of loads which
importance is determined according to their priority. Furthermore the house-
hold model should be able to have micro production, such as wind power and
solar power, and a battery to be able to operate when the external grid fails.
The model of the mid voltage grid has the ability to connect wind power plants
and batteries. The storage discharged during times of high electricity prices
and charged during times of low prices to deliver cheaper electricity to the end
user. Also the battery functions acts as a temporary buffer to be used when
the transmission network fails. All control logics are developed in C++ and
interfaced to Dymola using C.

1.4 Goals
This project seeks to answer the following questions:

• Does a household have the capacity to deliver power for electrical com-
ponents when there is a blackout on the power grid through the use of
micro generation and energy storage?

CHAPTER 1. INTRODUCTION 6

• Does the distribution network have the ability to do voltage control and
provide power to households when the transmission network can not
provide any power?

• How large difference in electricity price between daytime and nighttime
is necessary in order to have a pay off for installation of "smartness" in a
house? What is the reduction of cost for a household (10-30 MWh/year)

• Is it possible to reduce power peaks in the grid with the use of the
proposed control strategy and price differentiation?

This is done by developing components such as loads (electronic devices), gen-
erators, batteries and connections between voltage levels which are used to
model smart houses and smart grids.

Chapter 2

Smart Grids

Since the beginning of last century transmission grids has been used to dis-
tribute centrally produced electricity from a few places to the end user. With
the increased usage of renewable energy sources such as wind power and so-
lar power new challenges are put on the grid[4]. A future grid must be able
to distribute locally produced electricity from a lot of different sources and
coordinate consumption to handle the varying electricity generation from the
renewable energy sources. The following chapter will give an introduction to
the concepts of smart grids and compare it with the power grid used today.

7

CHAPTER 2. SMART GRIDS 8

2.1 Electricity Generation Today
Today the electricity in the world is produced mainly with fossil fuels, hydro
and nuclear energy. The non renewable energy sources adds up to over 80%
of the total electricity production. The global distribution between energy
sources can be seen in figure 2.1 [5]. The electricity comes predominantly from
a few Large central power stations; the nuclear energy is produced from 437
nuclear reactors [6, p. 20], electricity from coal is produced from 2300 coal-fired
power stations (7000 individual units)[7] and hydro electricity comes from 2744
hydropower plants [8].

Natural gas

21.4%

Nuclear

13.4%
Hydro

16.2%

Coal and Peat

40.5% Oil
5.1% Other*
3.3%

Figure 2.1: World electricity generation by source of energy 2009, a total of
20 052.8 TWh, [5]. *Includes biofuels, wind, geothermal and solar.

In the early ages all energy sources used were renewable: wind, firewood and
water from water dams. During the last century the turbines and electricity
generators have revolutionized the electricity consumption and changed the
way we live. Near all electricity is produced by electric generators. They are
based on Faraday’s law of induction which was discovered in the 1930s by the
British scientist Michael Faraday. The law describes how a magnetic field will
interact with an electric circuit. When a permanent magnet is moved relative
to a conductor, an electromotive force EMF is created. If the generator is
connected to a load a current will flow. Generators will produce a current
that alternates, thus Alternating Current, AC. The movement of the magnets
is created by the flow of a medium though turbines. This medium might be
steam (e.g nuclear power), water (hydro power) or wind (wind power).

2.1.1 Supply and Demand
Electricity is consumed the same instant as it is produced, there is no delay
and energy is not stored on the grid for later use (except when specific storage
is used, e.g. pumped hydro). Therefore there has to be an equilibrium between

CHAPTER 2. SMART GRIDS 9

the production and consumption at all times. If there is overproduction, the
frequency of the grid will increase and if there is overconsumption the fre-
quency will drop. This is similar to how acceleration of a car works, the force
acting on the car due to the torque produced by the engine has to be equal
to aerodynamic drag plus friction in order for the acceleration of the car to be
zero, i.e. constant speed. If the car suddenly is going up hill, the speed will
drop if the torque is not increased. The fluctuations in consumption/demand
is compensated by changing the production.

The recent increase of installed renewable energy sources puts new demands
on the grid. Apart from wind and solar energy, the electricity generation is
deterministic in its nature, i.e. the source of energy, fossil fuels, water, uranium
or biomass, is always available and thus the electricity power produced can be
set arbitrary within certain limits. Renewable energy sources such as solar
and wind power are in that sense very different since the source of energy is
intermittent and thus the amount of electricity generated can not be decided
by an operator or a control system. To keep the balance between supply and
demand the rest of the power sources need to compensate for fluctuating power
from the renewable energy sources (RES). For example if the generated power
from a wind power plant drops, a coal power would increase its generation
to compensate for the power loss. With the increasing installation of RES
the power control task is getting more difficult. One possible solution to this
would be to not only control the generation of power but also control the
consumption. This could be done by delaying non essential loads to run during
times of high generations. This would decrease the impact of the fluctuating
power generation and enable the installation of more RES.

2.2 Electricity Grid
The electricity grid used today is built by high voltage transmission lines con-
nected to a distribution grid at a lower voltage. The transmission grid is used
to transport electricity long distances. Energy loss in a cable is proportional
to the square of the current times the resistance in the cable. Therefore high
voltage lines are used when transporting electricity long distances. Most com-
monly used voltage levels in Sweden are 130 kV and 400 kV. The distribution
grid is connected to the transmission grid at local transformation stations and
provides local houses and industries with electricity. Typical voltage on the
distribution grids in Sweden are 10, 20 or 50 kV [9, p. 78-79]

The distribution grid is designed using a radial structure, see figure 2.2a.
This means that the grid is only connected to the transmission line at one
point and power is only flowing one direction. This structure is cheap but it is
very error-prone. If one connection fails all resources connected further down
from this point fails. The transmission grid is built to be more robust. Mainly
because a blackout on the transmission would impact the whole electricity grid,
in worst case whole countries electricity grids could fail. In July 2012 India
experienced a major blackout, 700 million people were left without power for
two days. This was a so called cascading failure. In this case one transmission

CHAPTER 2. SMART GRIDS 10

line failed which caused the parallel lines to fail and soon the failure cascaded
through the whole northern grid [10]. To make the transmission grid more
reliable, redundant connections are introduces, see figure 2.2b. This makes
it possible to disconnect failing part of the grid to keep the grid operating
normally[9, p. 80-81].

(a) Radial structure
(b) Redundant connec-

tions introduced.

Figure 2.2: Grid structures used in electricity grids today.

2.3 Key Concept
The key concept of a smart grid is to integrate and coordinate the action
of all grid users, such as big power plants, small micro production units and
active as well as passive households in an efficient and environmental friendly
way. This is done by introducing more interconnections in the grid and more
intelligence which can take automatic decision based on measurements from
the grid. Active households are costumers that make active decisions based on
the current electricity price, e.g. postpone the start of the dishwasher or the
washing machine
The main advantages of smart grids can be divided into three parts: lower
environmental impacts, higher reliability and lower operational cost.

1. Climate - The main objective of a smart grid is to allow an increased
usage of renewable energy sources such as wind power and solar power.
In USA wind power is expected to increase from 145 TWh in 2013 to
1160 TWh by 2030 [11] [12]. Renewable energy sources are stochastic
in their nature, which is problematic since electricity must be consumed
when it is generated. Smart grids can be controlled in such a way that
it follows the stochastic production pattern, and can therefore enable an
increased usage of renewable energy sources.

2. Reliability - Reliability is one of the most important aspects of a new
generation power grid. By introducing more intelligence in the grid and

CHAPTER 2. SMART GRIDS 11

using measurements from the grid it will be possible to automatically
react to and prevent errors in the grid[12].

3. Economy - The next generation smart grids will make it possible for
the end consumer to buy, sell and consume electricity more efficient and
easily. This is made possible by introducing more intelligence into the
power grid and houses. End users will have the possibility to postpone
for instance their dishwasher until the night when the electricity price is
low and sell micro produced electricity during times of low consumption.

The movement from non-renewable production of electricity puts new strains
on the grid. Today electricity is produced centrally at few large power stations
and then transported to the end user, from high voltage to low voltage. Renew-
able energy sources such as wind turbines and solar panels will be distributed
locally and produce electricity close to the end user. This introduces new is-
sues, since wind and solar power are stochastic energy sources, it is hard to
tell in advance when electricity can be generated. It could locally be over-
production of electricity which the grid must be able to address. Traditional
grids are designed and built mainly to transport electricity from high voltage
(central generation units) to low voltage (end users) and it is therefore not
possible to deal with local overproduction in a sufficient way. Smart grids will
make it possible to coordinate consumption such that overproductions will be
addressed. One idea would be that all electrical cars in the neighbourhood
would be charged when there is overproduction in the neighbourhood. It is
also possible to charge local energy storage units during times of overproduc-
tion. Smart grids are targeted to transport electricity from low voltage to
high voltage, which will make it possible to sell locally produced electricity to
neighbouring areas when there is overproduction.

Another big problem which must be taken into account when designing an
electrical grid is peaks in demand. The grid must be designed such that it
copes with the demand peaks even if these peaks only are present during short
times a few days a year. This means that the grid is usually operating far
from the systems operating limits. By using smart grids it will be possible to
reduce the demand peaks by coordinating generation and consumption. This
means that the grid will operate at a higher base level but with smaller peaks.
The grid can therefore be designed for a lower stress level. [12].

2.4 Current Projects
Even though the concept of smart grids has been around for a couple of decades
it is not until recent years that some projects have been carried out. In the
following chapter two current projects in Sweden are presented; Smart Grids
Gotland and Stockholm Royal Seaport.

CHAPTER 2. SMART GRIDS 12

2.4.1 Smart Grids Gotland, Sweden
At the Swedish island Gotland there is an ongoing smart grid project that
was initialized in September of 2012 and will continue to 2015. The local
energy company GEAB1 is together with Vattenfall, ABB2, Svenska Kraftnät,
Schneider Electric and KTH 3 building a smart grid. Its goal is to investigate
the possibilities to modernise current electrical grids to include larger amount
of renewable energy. This is done with the background of the 20-20-20-goals,
where EU shall achieve 20 % renewable energy, 20 % reduction in greenhouse
gas emissions and 20% energy efficiency increase by the year 2020. [13] [14]

The project has three overall goals; optimal integration of large amounts
of wind power in a current distribution grid, show new technical solutions
to increase power quality on a rural power grid with a large part distributed
power production and create possibilities for demand side participation in the
electricity market. Some of the quantifiable goals are; improve reliability by
reducing SAIDI44 by 20 % on the grid between the substations Källunge and
Bäcks, active participation of approximately 30 industry customers and to at-
tract approximately 2000 private households to participate in market tests.[13]
[14]

The private households will receive electricity price signals and will adapt
accordingly. Energy Service Interface (ESI) is a product that will enable au-
tomatic start of electronic devices, e.g. dishwasher or water heater, when the
availability of electricity is high thus the electricity price is low. This active
participation will give the end user the opportunity to lower its overall elec-
tricity costs. Industries and large farms will also have information about the
current electricity price in order to reduce the total cost and to decrease con-
sumption peaks. This might involve turning off processes with low priority
when the availability of electricity is low and the price is high. Households,
industries and farms that are producing electricity through small scale solar or
wind power will be able to sell electricity to the grid during times of overpro-
duction5, this is called prosumer (contraction of producer and consumer).[13]
[14]

ABB is developing an energy storage for Gotland which is going to be used
to handle fluctuations in demand. The storage will be charged when the supply
of wind power is high and discharged when there is high demand of power. The
storage will be able to produce 3.6 MW during 5 minutes and at the same time
help to stabilize the grid.[13] [14]

1Gotlands Energi AB
2ASEA Brown Boveri ltd.
3Kungliga Tekniska Högskolan (Royal Institute of Technology)
4System Average Interruption Duration Index, is a reliability indicator and is calculated

as ”the sum of all customer interruption durations divided by the total number of customer
served”.

5The consumption of power is less than the production.

CHAPTER 2. SMART GRIDS 13

2.4.2 Stockholm Royal Seaport, Sweden
Stockholm Royal Seaport, Stockholm, Sweden (sv. Norra Djurgårdsstaden)
extends from Husarviken in the north, over Värtahamnen and free port, to
Loudden the south and is one of the most extensive urban development. The
first housing units where built in 2012 and the area is expected to be completed
by 2030. Stockholm Royal Seaport will then consist of 10 000 residences and
30 000 workplaces. The project is supported by the Clinton Climate Initiative
(CCI) and some of the climate and environmental goals involves reducing the
emissions of CO2 from the national average of 4.5 tonnes per person to 1.5
tonnes for habitants in the Stockholm Royal Seaport. The smart grid devel-
opment is lead by by Fortum together with Ericsson, ABB, Electrolux, HSB,
KTH.[15][16]

The goal is to increase the energy efficiency and reduce consumption peaks
by visualizing energy usage and make it easier for the users to be active con-
sumers and producers of electricity, thus prosumers. This will be achieved with
the help from components such as; photovoltaic solar panels, local energy stor-
age, control systems for more effective allocation of energy usage, individual
measurements and visualization of consumption for control and monitoring.
The power grid development includes research in medium and low voltage
switchgear and substations with extensive monitoring and control, cable boxes
with control and monitoring, centralized energy storage and integration of
charging stations for electric vehicles (EV) to the power grid.[16]

Residents at the Stockholm Royal Seaport will be able to:

• Produce electricity from roof mounted solar panels and through the smart
grid the power can be stored locally or sold to the grid. The goal is to
have 30 % of the electricity used by a building produced locally from
solar panels, wind power or to use excess energy.

• Influence their electricity usage by shifting consumption to periods of the
day where supply of power is good and price is low.

• Charge electric vehicles from their own charging post. The smart grid
will automatically start charging during periods of low price. In the
future the electric vehicles might be used as a power reserve the same
way as an energy storage.

• Visualize information about prices, power consumption for each elec-
tronic device and CO2-impact.

[16]

2.5 Issues
The main problem with smart grids is the installation cost. The cost of creating
a national smart grid system is projected to be incredibly high. Last year the
USA congress invested $4.5 billion in an economical incentive program for

CHAPTER 2. SMART GRIDS 14

smart grids. A full build up is believed to cost at least a couple of hundred
billion dollars more [17].

Even though smart grids are presented as a way to solve a lot of the prob-
lems that are associated with the power grid used today, it could potentially
introduce new problems to the grid if it would be widely adopted. For a smart
grid to operate effectively the need for communication infrastructure in the
grid is essential. All grid users would need to know what is going on in the
neighbouring cells. To make this possible huge amount of information must
be sent through the grid and complex control systems need to gather and send
this information. The potential threat of cyber criminals is a big concern since
smart grids would need the ability to remotely disconnect power systems. Fur-
thermore the integrity for the end user is a concern. A fully adopted smart
system would imply that the power grid operator would have huge amount
of information of how households are operating. If this information should
be available to the power grid operator is a source of discussion. It could
potentially threaten the integrity of the end user [18].

Another problem with smart grids is that the increased complexity of the
system will make the average life time of the components in the grid much
shorter. A new transformation is believed to have an average life time of 40 to
50 years but introducing more complex control system where the loads vary
fast the life time is believed to be reduced to 10 - 15 years. Smart grids is
therefore associated with higher maintenance costs than the traditional grids
used today [18].

Chapter 3

Modelica/Dymola

Dymola is a commercial modeling and simulation environment that is devel-
oped by Dassault Systémes AB. The name Dymola is a contraction of Dynamic
Modeling Language. The program is a tool for the modeling language Model-
ica, which is an open source, object oriented modeling language for component
oriented modeling of complex physical systems containing, e.g., mechanical,
electrical, electronic, hydraulic, thermal, control, electric power or process-
oriented subcomponents. The modelica language is standardized by the Mod-
elica Association, www.modelica.org. In this chapter Modelica and Dymola is
introduced and its interactions with C and C++ are explained. Modelica/Dy-
mola were used to develop the models of the physical components of the smart
grid and C++ were used to design the control laws for the system.

15

CHAPTER 3. MODELICA/DYMOLA 16

3.1 Modelica
Modelica is an object-oriented, declarative modeling language which the pro-
gram Dymola is a tool for. It’s developed by the non-profit organization Mod-
elica Association. The Modelica Association provides the popular Modelica
Standard Library which provides model components for physical systems con-
taining, e.g., mechanical, electrical, electronic, hydraulic, thermal, control,
electric power or process-oriented subcomponents. The standard library is a
free library and may be used in commercial products.[19, p. 25]

The declarative way of assigning relations differs from the most common
programming languages. In languages like C/C++, Java, PHP, Python , Ada
or Fortran declarations are Imperative, which means that statements assign
values to variables. For example, in an imperative programming language the
code below would be interpret as ”assign the value 5 to the variable y” followed
by ”assign the value 9 plus the value of y to the variable x”, i.e. the left hand
side of ”:=” is assigned the value of the right hand side.

1 y :=5;
2 x :=9+y ;

This might seem like the most obvious way of constructing programs since
this is the way that the hardware operates. Changing the order of the lines in
the code above would not be possible since y has not been initialized yet.

In a declarative programming language or in acausal modeling there are no
assignments, there are only relations. For example, the code below would be
interpreted as ”The product of x and y is equal to z”.

1 x ∗ y = z ;

Note that there is no difference between the code above and z = x ∗ y; This
is the usual way we think of equations, as pure relations rather than assign-
ments. More advanced declarations are also possible such as derivatives which
is desired from a modeling point of view since most physical relations can be
described by differential equations. An example of a simple Ordinary Differen-
tial Equation, or ODE, is seen in equation 3.1. The modelica implementation
of the ODE is seen in the code below. This relation would not be possible to
write in an imperative programming language.

T
dy

dt
+ y = u; (3.1)

1 der (y)+ y/T =u/T;

There is however other modeling and simulation tools that can achieve the
property of ODE. A Simulink implementation of the differential equation above
is seen in figure 3.1. In Simulink transfer function blocks are used rather than
the differential equation.

CHAPTER 3. MODELICA/DYMOLA 17

Figure 3.1: Simulink implementation of the Ordinary Differential Equation in
equation 3.1

Using Simulink for modeling has drawbacks. It is problematic to create non-
linear models in Simulink. For example, the differential equation

d2y

dt2
+ 2ydy

dt
+ y = u (3.2)

has Simulink implementation seen in figure 3.2.

Figure 3.2: Simulink implementation of the non-linear differential equation in
equation 3.2

Equation 3.2 can be rewritten by introduction the states x1 = dx
dt

and
x2 = d2x

dt2 as:
dx1

dt
= x2

dx2

dt
= u− x1 − 2x1x2

(3.3)

The corresponding Modelica code is seen below.
1 der (x1) = x2 ;
2 der (x2) = u−x1−2∗x1∗x2 ;

This is a very convenient way of declaring advanced differential equations.

Another problem is the lack of unit handling. In Simulink all signals be-
tween blocks are unit less. For example modeling a gear box which has two
inputs, the ratio and a rotational speed. Simulink will not notice nor give any
warnings if one of the inputs is a Voltage. In Dymola/Modelica variables and
parameters have units to avoid this problem.

CHAPTER 3. MODELICA/DYMOLA 18

3.1.1 Electric Power Library
Electrical Power Library, or EPL, is a Modelica library developed by Modelon
AB that provides a framework for modelling and simulation of power systems
in three or one phase AC and DC. EPL provides standard connections and
components which makes it possible to easily design electrical systems in a
drag and drop manner. All physical modelling in this thesis was done using
the Electric Power Library. The library provides components to model power
systems in both transient and steady state mode. The EPL has special con-
nectors. All connectors have a flow, current, and a potential, voltage which
obey to Kirchoff’s laws (sum of currents are zero and the potential is equal).
The following setup provides a small example of how EPL could be used.

Figure 3.3: EPL rectifier example

In the example from figure 3.3 a rectifier is used to convert AC to DC. This
example is set up by an AC voltage source, leftmost position in the figure,
that is connected to the rectifier through an inductor and an AC meter. On
the right hand side the rectifier is connected to a DC meter and a DC source,
left most in the figure, which acts as a boundary condition for the problem.
The AC and DC meters are diagnostic component which are used to check
the AC and DC level before respectively after the rectifier. The rectifier is
also connected to a boundary component through a thermal connector which
models heat loss in the rectifier. Connecting two components in EPL means
that the current and potential are set to be equal in the common node. This
provides an example of how easy it is to design your own power system and
test it by dragging and dropping components in Dymola.

3.2 C/C++ using External Static Libraries
It is common to use libraries for functions or methods that are used often. For
example a function that counts the number of characters in a string might be
used in a great number of programs and thus it is desirable to have a pre-
compiled library rather than having to include the function code every time
a program is counting characters. There are essentially two kinds of libraries;
static and shared libraries. A new instance of the static library will be created
for every program that uses the library. Several programs might access the
same instance of a dynamic library. Thus static libraries will be the choice
when interacting with Dymola.

CHAPTER 3. MODELICA/DYMOLA 19

External Static Libraries is a way of accessing functions written outside
Dymola with memory attached to it. The idea is to have a compiled library of
functions which are accessed through an interface in Dymola. In the Modelica
code an interface is written to pass arguments from Dymola to the C header
file which in its turn have access to the library. The methodology is described
by a simple example where an External Static Library is used to multiply two
numbers outside Dymola.

In modelicaFunction.mo the modelica function is defined. It takes two real
inputs and calls the function product in product.h with the two real inputs
and returns one real output. The annotation defines the names of the header
file and the library. In this case the product.h and product.cpp are compiled to
a library called ext.

Listing 3.1: modelicaFunction.mo
1 func t i on product " Mult ip ly ␣two␣numbers "
2 input Real x , y ;
3 output Real prod ;
4 ex t e rna l "C" prod = product (x , y) ;
5 annotat ion (Inc lude="#inc lude ␣<product.h>" , Library=" ext ") ;
6 end product ;

In interfaceDymola.h the function product is wrapped as a C function [20] and
calls the C++ function product.cpp. The code written in the header file must
be in the C subset of C++ since Dymola only supports external function calls
from C and not C++. In listing 3.3 the simple product function is seen.

Listing 3.2: interfaceDymola.h
1 # i f n d e f PRODUCT_H
2 # d e f i n e PRODUCT_H
3
4 # i f d e f __cplusplus
5 e x t e r n " C " {
6 # e n d i f
7 e x t e r n d o u b l e p r o d u c t (d o u b l e x , d o u b l e y) ;
8 # i f d e f __cplusplus
9 }

10 # e n d i f
11 # e n d i f

Listing 3.3: product.cpp
1 # i n c l u d e <product . h>
2 d o u b l e p r o d u c t (d o u b l e x , d o u b l e y)
3 {
4 r e t u r n x ∗ y ;
5 }

This shows a simple example of how functions written outside Dymola can be
called using External static libraries. It is also possible to use External objects
with Dymola, see 3.3 for more information.

3.3 C/C++ using External Objects
External functions sometimes need to access internal memory like objects in
object oriented programming.This can be done in Dymola by using external

CHAPTER 3. MODELICA/DYMOLA 20

objects. An external object should extend the subclass ExternalObject and
must have two local external functions: a constructor and a destructor. The
constructor is called automatically in Dymola once for each object when the
simulations starts and outputs the external object. The external object is
mapped in C as a void pointer. The destruction is automatically called once
for each object at the end of the simulation and has exactly one input, the
external object. The external object can be passed to other external functions
to access the internal memory.
In the following section a small example is described where a block is imple-
mented in Dymola that can store and output a vector using external objects.
In listing 3.4 the external object is defined as a subclass to ExternalObject and
the constructor and destructor is defined with inputs and outputs. Other ex-
ternal functions that access the same internal memory has the external object
as input, which can be seen in listing 3.5.

Listing 3.4: Resources.mo
1 c l a s s MyBlock
2 extends ExternalObject ;
3
4 func t i on cons t ruc to r
5 input In t ege r [:] inVec ;
6 output MyBlock obj ;
7 ex t e rna l "C" obj = in i tB l o ck (inVec , s i z e (inVec , 1)) ;
8 annotat ion (Library=" inOutBlock " , Inc lude="#inc lude ␣\" inter faceDymola .h \" " ,
9 Inc ludeDi r e c to ry=" model ica :// vector /Resources / Inc lude / " ,

10 L ibraryDi rec to ry=" model ica :// vector /Resources / Library / ") ;
11 end cons t ruc to r ;
12
13 func t i on de s t ruc to r
14 input MyBlock obj ;
15 ex t e rna l "C" c l o s eB lock (obj)
16 annotat ion (Library=" inOutBlock " , Inc lude="#inc lude ␣\" inter faceDymola .h \" " ,
17 Inc ludeDi r e c to ry=" model ica :// vector /Resources / Inc lude / " ,
18 L ibraryDi rec to ry=" model ica :// vector /Resources / Library / ") ;
19 end de s t ru c to r ;
20 end MyBlock ;

Listing 3.5: otherFunctions.mo
1 func t i on getBlock
2 input MyBlock obj ; // r e f e r e n c e to the ex t e rna l ob j e c t
3 input In t ege r s i z e ; // s i z e o f the output vector
4 output In t eg e r [s i z e] outVec ;
5 ex t e rna l "C" getBlock (obj , outVec , s i z e) ;
6 end getBlock ;

When all the external functions are defined in Dymola and the C structure
that implements the function are written, Dymola is ready to use the external
functions. In this thesis C++ has been used. Since Dymola only supports
external objects written i C an interface class has been written to interact
with the C++ code. This interface can been seen seen in listing 3.6 and 3.7.

Listing 3.6: interfaceDymola.h
1 # i f n d e f __INTERFACEDYMOLA_H
2 # d e f i n e __INTERFACEDYMOLA_H
3
4 # i f d e f __cplusplus
5 e x t e r n " C " {
6 # e n d i f
7
8 t y p e d e f s t r u c t B l o c k B l o c k ;
9 v o i d ∗ i n i t B l o c k (i n t ∗ i n V e c , i n t s i z e) ;

10 v o i d c l o s e B l o c k (v o i d ∗ o b j) ;
11 v o i d g e t B l o c k (v o i d ∗ obj , i n t ∗ m y P o i n t e r , i n t s i z e) ;
12
13 # i f d e f __cplusplus
14 }

CHAPTER 3. MODELICA/DYMOLA 21

15 # e n d i f
16 # e n d i f

Listing 3.7: interfaceDymola.cpp
1 # i n c l u d e " B l o c k . h "
2 # i n c l u d e <s t d l i b . h>
3
4 e x t e r n " C " {
5 v o i d ∗ i n i t B l o c k (i n t ∗ i n V e c , i n t s i z e) {
6 B l o c k ∗ m y B l o c k = n e w B l o c k (i n V e c , s i z e) ;
7 r e t u r n (v o i d ∗) m y B l o c k ;
8 }
9

10 v o i d c l o s e B l o c k (v o i d ∗ o b j) {
11 B l o c k ∗ m y B l o c k = (B l o c k ∗) o b j ;
12 if (o b j == N U L L)
13 r e t u r n ;
14
15 m y B l o c k −>c l o s e B l o c k () ;
16 f r e e (m y B l o c k) ;
17 }
18
19
20 v o i d g e t B l o c k (v o i d ∗ obj , i n t ∗ m y P o i n t e r , i n t s i z e I n) {
21 B l o c k ∗ m y B l o c k = (B l o c k ∗) o b j ;
22 m y B l o c k −>g e t (m y P o i n t e r , s i z e I n) ;
23 }
24 }

The purpose of the interface is to call C++ function from C code and typecast
the objects such that it fits both the C++ code and the Dymola functions.
Since the external object is mapped as a void pointer in C one must cast the
return object from the initBlock() function to a void pointer. Furthermore the
closeBlock() and getBlock() function must typecast the input object to be a
block pointer to be able to use Block class functions.
The resulting code for the block in Dymola that can store and output a vector
can be see in listing 3.8. At line 6 an external object is initialized called
myBlock and the input vector k is stored in myBlock’s data structure. Using
the function getBlock() and passing the external Object the vector k is returned
and outputted.

Listing 3.8: vectorBlock.mo
1 model vectorBlock
2
3 parameter In t eg e r k [:] ;
4 In t eg e r out [s i z e (k , 1)] ;
5
6 vector .Resources .MyBlock myBlock = vector .Resources .MyBlock (k) ;
7 Mode l i c a .B lock s . In t e r f a c e s .Rea lOutput y [s i z e (k , 1)]
8 annotat ion (Placement (t rans fo rmat ion (extent ={{90 ,−10} ,{110 ,10}}))) ;
9

10 equat ion
11 out = Resources .ge tB lock (myBlock , s i z e (k , 1)) ;
12 y=out ;
13
14 end vectorBlock ;

Chapter 4

Smart Cell

A cell is built up by a number of houses and generators that are connected
together using a local medium voltage grid. This grid is controlled by a system
controller which main task is to maintain voltage on the grid to provide the
connected houses with power. The houses connected to the grid are also con-
trolled by a system controller that manages the micro generation and loads.
This chapter introduces the concepts of smart cells and the modelling of these.
The models were built up by a number of components which will be presented
in this chapter. The process of putting these components together to form a
smart cell will also be explained.

22

CHAPTER 4. SMART CELL 23

4.1 Concepts
A smart house is a house that is fully integrated with the smart grid. It
communicates with the grid how much power it generates and consumes. Using
this information the house can decide how much power should be sold to
the grid during times of overproduction and how much power can be bought
from the grid during times of low micro generation in households, without
violating the grid conditions. Each smart house is equipped with a System
Controller, which continuously gathers information from the house[21]. Using
this information the system controller makes decisions to make sure that the
internal grid conditions are not violated and the micro generation units are
used in an effective way. This system can be combined with smart loads
such as dishwasher and other electric appliances that can be controlled by
the system controller to run during times of over production and/or when the
electricity price is low. Smart houses should be able to integrate and control
solar panels, wind turbine and batteries on a household level to make sure
that these units are used in a cost efficient way and that the internal DC bus
is operating without violating the grid conditions. Many believe that battery
equipped cars would be the perfect energy storage for the smart house. Using
these already available batteries the consumer will not need to invest in extra
storage and the system controller would make sure that the car is fully charged
when needed. Furthermore when the car is connected to the house it can be
used as an energy buffer for the micro generation units to more effectively be
able to use these energy sources. A schematic idea of the smart house is seen
in figure 4.1. [22]

Connecting these houses to a local medium voltage grid that is controlled
by system controller forms a smart cell. The system controller on this level
controls a number o generators, such as wind turbines or solar panels, a battery
and a number of houses. The main task for the controller on this level is to
maintain voltage on the grid and provide the houses with power. A schematic
idea of smart grids is seen in figure 4.1.

4.2 Modeling
The houses are modelled using a DC bus which connects all loads, generators
and batteries. The local medium voltage grid is modelled using DC as well.
Using DC has the advantages that it simplifies the computations for the sim-
ulation tool, i.e. Dymola. The modelling of the internal bus and the medium
voltage grid could be done in AC as well. But this modelling was concentrated
on the control structure of a smart cell and therefore DC chosen. Houses and
the medium voltage grid are equipped with a central system controller which
controls all resources. A resource is a generic description of either a load, gen-
erator, battery or an external connection. External connections are used to
connect houses to the external medium voltage grid.

CHAPTER 4. SMART CELL 24

DC
DC

DC
DC

DC
DC

Loads

DC
DC

Battery

AC
DC

DC bus

Infinite bus

System
Controller

AC
DC

System
Controller

Electrical

Information

A
C

D

C

DC
DC

Battery

Figure 4.1: Overview of the smart grid. All houses are equipped with a battery,
a solar panel, a small scale wind turbine and a number of loads. The
external grid is equipped with generators and an energy storage.

4.2.1 Internal DC Bus and medium voltage grid
The internal DC bus and the medium voltage grid were modelled using EPL
standard component for DC capacitor and a standard DC ground component.
This to model the dynamical behaviour of the grid voltage depending on the
current power balance on the grid. The voltage for the DC grid would vary in
the following way if the power is not balance on the grid.

∆P (t) = Pin(t) + Pgen − Pcon(t)

v = 1
C

∫ ∆P (t)
v

dt
(4.1)

Where the Pin is the power in from the external connection, Pgen the power
generated from the generators, Pcon the power consumed, C the capacitance
of the grid, v the grid voltage and t the time variable. The Dymola figure
representing this model can be seen in figure 4.2.

Figure 4.2: External DC grid and internal DC bus icon in EPL.

CHAPTER 4. SMART CELL 25

4.2.2 Converter
All resources uses a converter to connect to the DC grid. The converter is used
to be able to connect different voltage levels to the grid. The model uses the
power balance equation (equation 4.2), where i1 and v1 are the current and
voltage from the grid and i2 and v2 are the current and voltage on resources
side. The power balance is assumed to be perfect, i.e. now power losses.
Furthermore the exchange unit has the possibility to set the current on the
grid side, since the current that flows through the unit need to be controlled.
This current is set to be an external input to the exchange unit. The Dymola
icon representing this model can be seen in figure 4.3.

Figure 4.3: Converter figure in EPL

v1 · i1 = v2 · i2 (4.2)

4.2.3 Battery
The battery is modelled as a capacitance. The usage of the Electric Vehicle
during day time is modelled as two switches and two resistances to allow the
battery to discharge during daytime. The Dymola model of the battery used
can be seen in figure 4.4. The pulse is used to control the switches. By pulsing

Figure 4.4: Internal DC grid figure in EPL

with a period of a day it is possible to discharge during daytime and connect
the battery to the system, to charge, during night. The energy stored in a
capacitance is given by equation 4.3.

Estored = 1
2CV

2 (4.3)

CHAPTER 4. SMART CELL 26

Where C is the capacitance and V the voltage. The capacitance is therefore
chosen rather big to model a car battery’s energy capacitance.

The energy left in the battery is often given as percentage of the maximum
energy that can be stored in the battery. This value is called State of Charge,
or SOC, and is calculated with equation 4.4 where Ecurrent is the current energy
level in the battery and Emaximum is the maximum energy that can be stored
in the battery.

SOC = Ecurrent

Emaximum

, 0 ≤ SOC ≤ 1 (4.4)

4.2.4 Load
The model of a smart load is using standard EPL components: a one terminal
variable resistor which is connected in parallel to the grid through an EPL
switch, which makes it possible to turn on and off the load giving an external
connection. The one term variable resistor is modelled using Ohm’s law with
a resistance that may varied during the simulation with the input. The switch
implements a continuous transition from closed to open with a very low con-
ductivity when the switch is open and a very low resistance when the switch is
closed. The Dymola figure representing this model can be seen in figure 4.5.

Figure 4.5: Smart load figure in EPL

4.2.5 Generator
The model of a generator uses a converter, from section 4.2.2, and an EPL
voltage source. The voltage source is an infinite power source and the converter
is used to control the current outputted from the generator. The Dymola figure
representing this model can be seen in figure 4.6. The control current to the
converter can be mapped to power using either equation 4.5 or 4.7.

Figure 4.6: Generator figure in EPL

CHAPTER 4. SMART CELL 27

Small Scale Wind Power

The amount of power generated from a wind power plant is given by equation
4.5 [23].

Pw(U) =

0, U < Umin

1
2ρAU

3Cp(λ, β), Umin < U < Urat

PR, Urat < U < Umax

0, Umax < U

(4.5)

where ρ is the air density (kg/m2), A area of the wind turbine (m2), U wind
speed (m/s), CP the coefficient of power and PR is the rated power (W). Umin

or Cut-in wind speed is the minimal wind speed for which the power plant
generates electricity, Urat is the Rated output wind speed, Umax or Cut-out wind
speed is the maximum wind speed for which the plant generates power . For
simplification the following parameter values has been chosen:

ρ = 1.225 kg/m3

CP (λ, β) = 0.33
(4.6)

The modelica implementation of the Wind power plant is seen in section B.2

Photovoltaic System

The amount of Photovoltaic generation, PP V , can be calculated by

PP V = ηP V nP V SP V IP V (1− 0.005 (tCR − 25)) [kW] (4.7)

where ηP V is the conversion efficency of the solar cell, nP V is the number of
solar panels, SP V is the array area, IP V is the solar radiation (kW/m2), tCR

is the outside air temperature (◦C) [4]. The modelica implementation of the
Photovoltaic cell is seen in section B.1.

4.3 Functionality
To be able to control the system in an efficient manner the resources are
equipped with some functionality, such as priority and delay time. This func-
tionality will help the system controller to keep track of its resources and
control them in a satisfactory way. [21] The resources are equipped with the
following functionality:

4.3.1 Load
All loads have a consumer signal which determines when the consumer wants
to turn on the load. This signal is sent from a random pulse block. When the
load receives a pulse the system tries to turn on the load. The time frame for
this pulse can be set in the random pulse block and are uniformly probable to
pulse during this time frame. Each load also has a parameter called operation

CHAPTER 4. SMART CELL 28

time, during this interval the load will remain turned on. It is also possible to
configure the loads with a price limit. This means that the system controller
will not turn on the load until the price has dropped below a certain price
limit. A maximum delay is also defined. This defines the maximum time the
system controller can postpone a consumer start of a load. When the delay
is greater then the maximum delay the load will automatically turn on. All
loads are also configured with priorities, which defines in which order the loads
should be turned on.

4.3.2 Battery/Storage
The system controller can define a charge price limit and a discharge price
limit. This will make it possible to charge the car battery during night if price
differentiation is used. The battery will be used to control voltage when the
house operates in islanding mode.

4.3.3 Generator
The generators are either photovoltaic solar panels or small scale wind tur-
bines. The power generated is determined by equation 4.5 and 4.7. The power
information from each generator is sent to the system controller in order to
keep track of the total power that is available.

4.3.4 External connection
The external connection is a connection from one voltage level to another,
eg. from medium voltage grid to internal DC bus or from high voltage grid
to medium voltage grid. Its objective is to control voltage the lower of the
two voltage levels. This is done with a PI-controller that controls the current
through the external connection. The external connection is able to control
the voltage level as long as there is power available on the higher of the two
voltage levels. When the available power drops below a given value the external
connection is no longer suitable for control and thus the battery will provide
power to the house.

4.4 Smart Cell Models
The components developed in Dymola and described in sections 4.2 and 4.3
where used to put together models for smart cells. The cell was built up by
smart houses and a distribution grid. The models were configured in Dymola
in a drag and drop manner.

4.4.1 Smart House
The smart house contains a combination of loads, battery/storage, generators
and external connections, see table 4.1. These resources are connected to an

CHAPTER 4. SMART CELL 29

internal DC bus to form a house model. The configuration possibilities can be
seen in table 4.1. A house need one external connector to be able to connect
to the external grid.

Loads 0−∞
Battery/storage 0− 1
Generators 0−∞
External connections 1

Table 4.1: Components and the number that each smart house contains (the upper
limit for loads and generators is limited by the computer memory).

4.4.2 Distribution Grid
The Distribution Grid were built up by one connection to high voltage grid
and several connectors that connects smart houses. The external grid might
optionally contain generators and storage. Using the storage the grid would be
able to cope with short blackouts on the main high voltage grid. The external
medium voltage grid does not have the ability connect loads. But this could
easily be implemented if this functionality is desirable.

Loads 0
Battery/storage 0− 1
Generators 0−∞
External connections 2−∞

Table 4.2: Components and the number that each distribution grid contains (the
upper limit for generators is limited by the computer memory).

Chapter 5

System Controller

This chapter introduces the System Controller and explains how the controller
handles resources, blackouts and grid control. The control strategy is explained
and the decision making for house level and the medium voltage grid are
presented using workflow figures.

30

CHAPTER 5. SYSTEM CONTROLLER 31

5.1 System Controller
The System Controller is what makes the system smart. On house level it is
essentially a computer connected to all resources in the house such as loads
(lamps, TV, dishwasher), possible generators (wind turbines, solar panels, car
batteries) and a connector to the external grid. The connections enables infor-
mation exchange. The System Controller takes information about consump-
tion, production and requests from the end user and acts accordingly. The
System Controller is also connected to the electricity market in order to re-
ceive current electricity prices. Users configure the System Controller in order
to achieve the desired behaviour. This configuration should be as simple as
possible and could involve priority assignment for loads to assure that vital
household component always are active. The configuration is optimally done
through some Graphical User Interface preferably on a smart phone or smart
pad. The medium voltage grid will essentially be controlled in the same man-
ner. But the controller on this level will control external connections to houses
instead of loads.

5.2 Control Strategy
The main objective for the System Controller is to always keep the voltage
level, v, at the reference value, vref for the grid it is supervising. The second
goal is to minimize the electricity cost. Generators such as solar panels and
wind turbines will always provide 100 % of its generated power to the grid.
Since net metering1 is used there is no need to store energy from the micro
generators during times of high production and low consumption. The grid
can be used as a storage, all energy sold to the grid can later be bought at the
same price.

On house level the system controller always tries to connect loads from
a load queue. The loads are put in the queue when the consumer wants to
turn it on. If more then one load wants to be turned on at the same time
the load with the highest priority is considered first. Loads that have been
configured with a price limit will be delayed until the price has dropped below
the price limit. If the price has not dropped below the price target before
the maximum delay time the system controller will force the load to turn on.
If the grid conditions changes there might not be enough power available to
keep the loads turned on. The strategy is then to turn off the load which has
the lowest priority first. If this is not enough more loads will be turned off
according to their priorities. The energy storage on both the medium voltage
grid and in the house will serve as a buffer during power loss. The houses will
use their external connection to the medium voltage grid to provide power and
control voltage when its possible. But during blackouts when the external grid
fails the energy storage serves as voltage controllers. The system controller

1Net metering is when a prosumer (producer and consumer) is allowed to sell power to
the grid for the same price as buying.

CHAPTER 5. SYSTEM CONTROLLER 32

on the medium voltage grid will use its connection to the high voltage grid as
voltage controller. But will also use its energy storage during blackouts on the
external grid. The system controller on all levels will always strive to have a
fully charged battery. If there is enough power the battery will be charged.
This is prioritized higher than turning on loads.

5.3 Workflow for Smart House
Each time the System controller is updated the functions are called according
to the main workflow. During this process the System Controller goes through
all resources connected to its system and sends instructions to them if needed.
The main workflow is seen in figure 5.1. For short term simulations the work
flow for figure 5.1a is used and for long term simulations the workflow for 5.1b
is used. The difference between long term and short term is that for long term
the voltage control is not considered. Furthermore behaviour during islanding
mode is not of interest. Instead the voltage is determined by an ideal voltage
source and not by a PI-controller. By not considering the voltage control it
is possible to sample the system much slower. This will make it possible to
simulate the system for much longer times. Year long simulations was done
to determine the systems power performance and cost. This would require a
lot of computational power and time if voltage control would be done during
these simulations.

When the system controller needs to determine which resource should be
used for voltage control the set controller function is used. The decision struc-
ture for this function is seen in 5.2. Its objective is to find a suitable controller
every time the system controller updates the system. The main goal is to
always use the external net for voltage control if possible and thus using the
battery only when the external net has a power outage. When the system
controller needs to find a new suitable controller the find controller function
is used. The workflow for this function is seen in 5.3a. It is fairly simple: if
there is power available on the external net the external connection is chosen as
controller otherwise the battery is chosen. Updating the PI-controllers which
are used for voltage control are done by calling the update controller function.
The function calculates the voltage error and calls a PI-controller to calculate
the proper control signal.

The system controller gives the energy storage unit instructions by calling
the update battery function. This function will only instruct the energy storage
to charge when its not used for voltage control or is fully charged. Whether
loads should be turned on or off is determined by the update loads function.
Loads will be turned on if the voltage at the internal DC bus is at the correct
level, at steady state and if there is power available. If there is a load in the
waiting/ready queue and there is power available for this load, it is turned on.
Loads that are configured with a price limit will only be placed in the queue
if the price is below the price limit. Whether there is power available or not is
determined by the difference between the total amount of power (external con-
nection/battery and micro generation) and the current consumption of power

CHAPTER 5. SYSTEM CONTROLLER 33

initialize

Set Controllers

Update
Controllers

Update Battery

Update
Generators

Update Loads

(a) Main workflow short
term

initialize

Update Battery

Update
Generators

Update Loads

(b) Main workflow long
term

Figure 5.1: Work flow structure for the main loop used every time the system
controller updates the system.

(sum of all individual loads and charging batteries).

CHAPTER 5. SYSTEM CONTROLLER 34

start

Controller
initialized?

Check controller
resource type

Power available? Power available?

Find controller

End

yes

External net
Battery

yesno

yes

no

no

Figure 5.2: Decision structure for the Set controller function. Used by the system
controller to determine if the controller used is suitable. This function
is called every time the system updates.

CHAPTER 5. SYSTEM CONTROLLER 35

st
ar
t

Po
we

r
av
ai
la
bl
e

on
ex
te
rn
al

ne
t?

C
ho

os
e
ex
te
rn
al

co
nn

ec
tio

n
as

co
nt
ro
lle
r

C
ho

os
e
ba

tt
er
y

as
co
nt
ro
lle
r

En
d

ye
s

no

(a
)
Fi
nd

co
nt
ro
lle
r.

st
ar
t

Is
th
e
ba

tt
er
y

co
nt
ro
lle
r?

In
te
rn
al

D
C

bu
s
le
ve
li
s
ok

?
an

d
Ba

tt
er
y

co
nn

ec
te
d
an

d
Ba

tt
er
y
no

t
fu
lly

ch
ar
ge
d

C
ha

rg
e
ba

tt
er
y

D
on

’t
ch
ar
ge

ba
tt
er
y

En
d

no ye
s

no

ye
s

(b
)
U
pd

at
e
ba

tt
er
y.

F
ig

ur
e

5.
3:

D
ec
isi
on

st
ru
ct
ur
e
fo
r
fin

d
co
nt
ro
lle

r
an

d
up

da
te

ba
tt
er
y.

Fi
nd

co
nt
ro
lle

r
is

ca
lle

d
ev
er
y
tim

e
th
e
sy
st
em

co
nt
ro
lle

r
ne

ed
s
to

fin
d
a
ne

w
co
nt
ro
lle

r.
U
pd

at
e
ba

tt
er
y
is

ca
lle

d
ev
er
y
tim

e
th
e
sy
st
em

co
nt
ro
lle

r
up

da
te
s
th
e
sy
st
em

to
de

te
rm

in
e
w
he

th
er

th
e

ba
tt
er
y
sh
ou

ld
ch
ar
ge

or
no

t.

CHAPTER 5. SYSTEM CONTROLLER 36

start

Turn off loads
that have run
through the

operation time

Voltage at
steady state and

voltage level
ok and power
available > 0

Find loads in
waiting queue.
Power available
for this load?

Turn on loads

End

yes no

yes

no

Figure 5.4: Decision structure for update loads. This function is called every time
the system controller checks whether a load should be turned on or
not.

5.4 Workflow for External grid
The system controller for the external grid is similar to the controller on house
level. The difference lies in that no loads are connected to the system con-
troller. Instead the controller needs to manage a number of external connec-
tions. These connection are connecting houses and other external grids to the
grid. Therefore the update loads function are not used by the system con-
troller on this level. Instead a function called update external connections is
used. This function will find and choose the external connection that is con-

CHAPTER 5. SYSTEM CONTROLLER 37

initialize

Set Controllers

Update
Controllers

Update Battery

Update
Generators

Update External
Connections

Figure 5.5: Work flow structure for the main loop used on the medium voltage
grid every time the system controller updates the system.

nected to the higher voltage grid as controller for the medium voltage grid. It
also takes information about the available power from the high voltage grid
together with the power from the generators and energy storage (battery) and
divides it equally among the rest of the external connections (houses). The
main objective for the battery on this level is to act as a buffer. The power
storage is charged when the electricity price is below a certain level (usually
night time) but can also be configured to discharged during times of high price
(usually in the evening). This is done to reduce power peaks and to reduce
the overall electricity cost. Furthermore the energy storage is used for voltage
control when the high voltage grid fails. The workflow for the energy storage
at the external grid is seen in figure 5.6.

CHAPTER 5. SYSTEM CONTROLLER 38

start

Electricity
price > price

level discharge?

Use storage to
generate power

Electricity
price < price
level charge

Charge battery

End

yes
no

yes

no

Figure 5.6: Decision structure for update storage external net. This function is
called every time by the system controller on the externla grid to de-
termine how the storage should be used.

Chapter 6

Implementation

In this chapter the general idea of how to use Dymola together with an exter-
nal C++ program is presented. The data structure that was used to manage
systems and resources are also presented. Furthermore the Modelica imple-
mentation is shown. Apart from this the interactions between Dymola and the
control program are explained.

39

CHAPTER 6. IMPLEMENTATION 40

6.1 General Idea
The general idea is to use Dymola to model the physical parts, i.e. the grid
and resources, and to use a controller program written in C++ for decision
making. All resources are using smart blocks to send and receive information
and commands from the C++ program. These blocks will be presented in
detail in section 6.3. During the simulation the controller program is running
in parallel with Dymola and is doing all controlling of the system.

6.2 C++
The controller program must keep track of how many systems that are cur-
rently running and how many resources each system is connected to. The
main program contains a vector which contains all system controllers that are
currently running. Each system controller contains a vector of all resources
connected to it. All system controllers and resources are associated with an id
(identity number) according to their position in the system’s vector and the
position in the vector that is controlled by the main program, starting from
zero. Every resource can therefore be uniquely determined by the system con-
troller id and the resource id. When the program need to instruct a resource
to turn on or off, the program knows the resource id and system id and can
therefore find the resource in the data structure and can instruct it to output
the necessary signals to Dymola. This data structure can be seen in figure
6.1.[21]
The data structure is implemented using the following three classes: System-
ControllerInter, SCADA and Block. The SystemControllerInter class manages
the vector with systems and is the only class that implements functions that
are called from Dymola. These functions are interfaced with Dymola using a C
interface, see section C.1. Each system is an instance of the SCADA class and
manages a vector with all the resources connected to it. Futhermore this class
implements all the control functions acting on the system. These functions
can be seen in section C.2.[21]

All resources that are connected to a system are an instance of the Block
class. The code for this class can be seen in C.3. Each Block instance holds a
configuration vector, a get vector and a set vector and some internal variables.
The get vector is used to send information from Dymola to the controller pro-
gram and the set vector is used by the controller program to send information
to Dymola. The internal variables are used to store information that is only
necessary for the controller program to know of, i.e. if the current resource
is operating in controller mode or not. How Dymola is receiving and sending
information is explained in detail in the next section.[21]

CHAPTER 6. IMPLEMENTATION 41

Systems

System

cv
get

System

set

Resource

cv
get

set

cv
get

set

cv
get

set

cv
get

set

cv
get

set

Figure 6.1: Schematic figure over the data structure used by the controller pro-
gram. The program keeps track of the systems using a vector of sys-
tems and each system has a vector of resources to keep track of its
resources.

6.3 Dymola implementation
The smart house can be configured in a drag and drop manner with different
number of resources, see 4.4. A typical configuration for a smart house in
Dymola can be seen in figure 6.2. The house is equipped with two generators,
one battery, one external connector and three loads. The system controller,
is connected to each resource and all resources are connected to the internal
DC bus. The inputs to the house is the id from the system controller. The
system controller controls the medium voltage grid and uses the shared external
connector unit and an input for the price information. This could be used by
the controller unit to determine when it is time to turn off or on loads. The
house also has an (EPL) DC converter to connect the house to the medium
voltage grid and a price output signal, which gives information of what the
total electricity cost has been. The total price is calculated by integrating the
product of the price signal and the power going through the external connector.

6.3.1 System Controller
The Modelica code for the system controller can be seen in listing 6.1. From
line three to 18 some inputs, outputs, functions and parameters are defined.
Inside the algorithm block from line 19 to 28 the system controller operation
is defined. At the first sample the system controller block calls the func-
tion init−SystemControllerInter which calls a function in the controller pro-
gram that initializes the system and returns its id to Dymola. This id is

CHAPTER 6. IMPLEMENTATION 42

Figure 6.2: Overview of an typical Modelica model of a smart house with two
generators, one battery, one external connector and three loads.

then outputted from the block using the integer output sysID. At all other
sample points except first and second the scada blocks calls the function
update−SystemControllerInter which calls an updatefunction to run in the
controller program. This causes the system to update.

Listing 6.1: scada.mo
1 model SCADA
2 pub l i c
3 Mode l i c a .B l o ck s . I n t e r f a c e s . I n t e g e rOutpu t sysID
4 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t p r i c e
5
6 extends sys temContro l l e r .B locks .MyDisc re teBlock ;
7
8 import in i t_SystemContro l Inter =

sys t emCont ro l l e r .Exte rna lFunct i ons .Sys t emCont ro l In t e r_ in i t ;
9 import update_SystemControlInter =

systemContro l l e r .Externa lFunct ions .SystemContro l Inter_update ;
10
11 parameter Real vo l tageRef=10 " Refernec ␣ value ␣ f o r ␣ the ␣ vo l tage " ;
12 parameter Real to l e ranceVo l tage=0.05 " Tolerance ␣ f o r ␣ turn ing ␣on␣ loads " ;
13 parameter Real to lerancePower=0.05 " Tolerance ␣ f o r ␣power " ;
14
15 protec ted
16 In t ege r id1 ;
17 Real cv [:] = {voltageRef , to l e ranceVo l tage , to lerancePower } ;
18 constant In t ege r s i g n a l s S i z e= 3 ;
19 a lgor i thm
20 when f i r s t T r i g g e r then // f i r s t sample
21 id1 := in i t_SystemContro l Inter (cv , s i g n a l s S i z e) ;
22 end when ;
23
24 when sampleTrigger and not f i r s t T r i g g e r and not secondTr igger then // th i rd sample
25 update_SystemControlInter (id1 , p r i c e) ;
26 end when ;
27
28 sysID := id1 ;
29
30 end SCADA;

6.3.2 Resources
All resources, generators, batteries and loads, are equipped with a generic
smart block. The Modelica model of a generic generator can be seen in figure
6.3. The implementation of the generator will be presented here as an exam-
ple, loads and batteries are implemented in a very similar way.

CHAPTER 6. IMPLEMENTATION 43

Figure 6.3: Overview of the Modelica model of a generic generator.

All resources are built up around the generic smart block, which can be seen
in figure 6.3. The model feeds a number of measurements and signals to
the generic smart block. Since the same block is used for all resources some
measurements and signals will not be used by the generator and is therefore
set to -1, such as the resistance signal. The generic smart block outputs a
control current to the DC/DC converter and a breaker signal, which is used to
turn off and on loads. The Modelica code for the main algorithm of the generic
smart block can be seen in listing 6.2, the complete Modelica implementation
can be seen in appendix B.3.

Listing 6.2: The main algorithm for the genericSmartBlock.
1 model gener icSmartBlock
2
3
4
5 a lgor i thm
6 when i n i t i a l () then
7 // nothing
8 end when ;
9 when sampleTrigger and secondTrigger then

10 resourceID := init_Block (sysID , cv , s i gna l sS i z e IN , signalsSizeOUT) ;
11 end when ;
12
13 when sampleTrigger and not f i r s t T r i g g e r and not secondTrigger then
14 // −− s e t s i n gna l s out
15 signalsOUT := {pre (vo l tageGr id) , pre (powerOUT) , pre (vo l tageExte rna l) , pre (SOC) , pre (

maxPower) , pre (r e s i s t a n c e) , −1, pre (consumerPro f i l e) } ;
16 set_Block (sysID , resourceID , signalsOUT) ;
17 // −− s e t s i g n a l s in
18 s i gna l s IN := get_Block (sysID , resourceID , s i gna l s S i z e IN) ;
19 breaker := i n t e g e r (s i gna l s IN [1]) ;
20 contro lCurrent := s i gna l s IN [2] ;
21 end when ;
22 end gener icSmartBlock ;

Since the resources need to know the system id before they can initialize it is
initialized at the second sample, see line 10, the system controller is initialized
at the first sample. For the rest of the simulation time the block gathers the
measurements and external signals and calls the set−Block function to send
the signalsOUT vector to the controller program. When this is done the block
calls the get−Block to receive signals from the controller program and outputs
this to the control current signal and the breaker signal.

CHAPTER 6. IMPLEMENTATION 44

6.3.3 External Connection
The external connector is used to connect houses with external grids and ex-
ternal grids with with other grids. Therefore this resource is a shared resource.
Both systems, the house controller and the grid controller need to be able to
send and receive signals and measurements to the external connector. The
Modelica model of this can be seen in figure 6.4.

Figure 6.4: Overview of the Modelica model of an external connector.

The Modelica model of the external connector has the same signals and mea-
surements as the resource block but has one additional system id. The external
connection is shared between two system and is therefore fed with two system
ids. Both systems need to be able access it. Furthermore notice that the block
has two (EPL) DC connectors, one connecting to the high level grid and one
connecting the low level grid. The Modelica code for the main algorithm can
be seen in listing 6.3, the complete Modelica implementation can be seen in
appendix B.4.

Listing 6.3: The main algorithm for the external connector block.
1 model smartBlockExterna l22apr i l
2
3 . . .
4
5 a lgor i thm
6 when i n i t i a l () then
7 // nothing
8 end when ;
9

10 when sampleTrigger and secondTrigger then
11 resourceIDHigh := init_Block (sysIDHigh , cvHigh , s i gna l sS i z e InH igh ,

s igna l sS i zeOutHigh) ;
12 resourceIDLow := init_Block (sysIDLow , cvLow , s igna l sS ize InLow , s ignalsSizeOutLow) ;
13
14 end when ;
15
16 when sampleTrigger and not f i r s t T r i g g e r and not secondTrigger then
17 // f i r s t get the power blanace in format ion form the high vo l tage g r id
18 s igna l s INHigh := get_Block (sysIDHigh , resourceIDHigh , s i gna l sS i z e InH igh) ;
19
20 // s e t t h i s in fo rmat ion to the low vo l tage s i d e o f the g r id
21 signalsOUTLow := {pre (voltageLow) , pre (powerOUT) , pre (voltageHigh) , pre (SOC) , min (

pre (maxPower) , s igna l s INHigh [3]) , pre (r e s i s t a n c e) , s igna l s INHigh [3] } ;
22 signalsOUTHigh := {0 , 0 , 0 , 0 , pre (maxPower) , 0} ;
23
24 set_Block (sysIDLow , resourceIDLow , signalsOUTLow) ;
25 set_Block (sysIDHigh , resourceIDHigh , signalsOUTHigh) ;
26
27 // get the s i g n a l s from the low vo l tage ex t e rna l b lock !
28 signalsINLow := get_Block (sysIDLow , resourceIDLow , 2) ;
29 breaker := in t e g e r (s ignalsINLow [1]) ;

CHAPTER 6. IMPLEMENTATION 45

30 contro lCurrent := signalsINLow [2] ;
31 end when ;
32 end smartBlockExterna l22apr i l ;

At the first sample two instances of the block is created, line 11 and 12. One
for the system controller controlling the high voltage grid and one for the
system controller controlling the low voltage grid. When the initialization is
done, after sample point two, the block will call the function get−Block for
the high voltage system to receive data from this system. The high voltage
system will provide the low voltage system with information of how much
power is available for this system to take off the high voltage grid and still
keep the power balance in the grid. This information exchange between the
high voltage and low voltage system is done in line 24 and 25 where the blocks
uses the set function. The low voltage system then call the get function to get
the control signals from the control signals in line 28.

6.4 Dymola and C++ running together
Dymola is using a static library file where all functions that interacts with
Dymola are defined. The data flow between the Dymola simulation and the
controller program can be seen in figure 6.5. At every sample point the smart
block calls the get and set function to send respectively get information from
the controller program.

Solve
equations in
Dymola

Call get and
set to
update
signals

Solve
equations in
Dymola

Controller
program

Call get and
set to
update
signals

Controller
program

Figure 6.5: Schematic figure over how Dymola and the controller program run
together.

Chapter 7

Scenarios

In this chapter the scenarios that were used to test the functionality of the
system controller are presented. There are two main scenarios, one short term
and one long term. The short term scenario was chosen to test how the system
reacts to fast changes in the external high voltage grid. This scenario aims to
test the robustness of the system, how it handles grid blackouts. By letting the
high voltage grid fail the system is forced into islanding mode and need to rely
on its energy storage to maintain voltage and deliver power to the grid. The
long term scenario was designed to test the power performance of the system
and the economical aspects of this. By introducing price differentiation, lower
electricity price during night, it would be cheaper to run loads during night
time. By allowing the system controller to delay certain loads to run during
the night, power peaks can be reduced and the cost of running these loads will
be reduced. This scenario was simulated for four different houses with different
micro generation.

46

CHAPTER 7. SCENARIOS 47

7.1 Short term scenario:
This scenario was designed to test if the external medium voltage grid and
the smart houses were able to adapt to changing conditions of the external
high voltage grid. At t0 = 0 s the medium voltage grid and the houses internal
grids start from v = 0 V. The voltage at both the medium voltage grid and the
houses internal grids were controlled to the desired voltage level. At t1 = 80
s the external high voltage grid fails and the medium voltage grid goes into
islanding mode, i.e. operates without any external connection. The system
controller at this level is forced to use all its resources to try to maintain the
voltage level.

Figure 7.1: Overview of the Modelica model used to simulate the short time sce-
nario.

At the medium level grid there are three houses connected as well as a battery
and a small generator, the generator represents a wind power plant. This
configuration can be seen in figure 7.1. The houses have two small generators
representing a small wind turbine and a solar panel. They are also equipped
with a battery i.e. a battery equipped car connected to the house. Each house
is also equipped with three loads. The setup can be seen in figure 7.2. The
following configuration has been chosen to highlight the control strategy the
system controller uses to maintain voltage level and power loads.

• House1: Generator 1: 700 W, Generator 2: 700 W, Battery: Pmax = 1
kW, Emax = 0.46 kWh

• House2: Generator 1: 300 W, Generator 2: 400 W, Battery: Pmax = 1
kW, Emax = 0.46 kWh

• House3: Generator 1: 0 W, Generator 2: 0 W, Battery: Pmax = 1 kW,
Emax = 0.46 kWh

CHAPTER 7. SCENARIOS 48

Figure 7.2: Overview of the Modelica model of the houses used to simulate the
short time scenario.

The generation is set to be constant since this scenario only tested how the
system reacts to fast changes in the transmission grid. The voltage reference
value for the external medium voltage grid was set to vref = 1000V and the
battery on this level has a storage capacity of 1.4 kWh. All the houses have
voltage reference of vref = 230V . The simulation is running for 1000 seconds.
Using this configuration, the simulation will show how the control program
handles different micro generations during changing conditions on the high
and medium level grid in other words islanding mode.

7.2 Long term scenarios:
In this section the long term performance of a smart house is investigated from
an economic and a power peak perspective. The main questions are: are there
any economic incentives in installing this kind of control in a household and
can it decrease power consumption peaks.

Depending on the size of a house and whether electricity is used for heat-
ing/cooling the total consumption per year will vary. In this example we have
chosen houses with central heating and a total consumption of 13 MWh per
year. The Swedish power company Vattenfall AB fixed price at 93.25 öre/kWh
was used1. It is assumed that from 07:00 to 23:00 the cost for buying electricity
is given by the Vattenfall-price and from 23:00 to 07:00 the price will be 30 %,
40 % or 50 % lower, this will be refereed to as price differentiation.

All houses are equipped with the loads from table 7.1 and they have batter-
ies installed that charge during the night and discharges during the daytime,
outside the grid. This models a battery equipped car which charges during
the night and discharges during the course of day, due to usage of the car.
Furthermore the houses are configured with the following micro generation:

1Vattenfall 1 year fixed price contract (taken from vattenfall.se the 13th of May 2013)

CHAPTER 7. SCENARIOS 49

• House 1 has photovoltaic solar panels as well as a small scale wind
turbine.

• House 2 has no micro generation at all.

• House 3 has a small scale wind turbine but no solar panels.

• House 4 has solar panels but no small scale wind turbine.

It is assumed that net billing/metering is used. Net billing is a concept where
a house with micro generation will sell power to the power company during
times of overproduction. The house will then be able to swap the exported
power to import power when needed.

Figure 7.3: Digram of the input data and output power from the wind power plant
model used. In the top subplot the wind data is plotted and in the
bottom the output power from the wind power is plotted.

For the small scale wind turbine the equation described in section 4.2.5 is
used together with the wind data2 presented in figure 7.3. The wind speed
data is given in hourly measurements. The parameters for the wind turbine in
equation 4.5 are chosen as:

ρ = 1.225 kg/m2

A =
(2

2

)2
· π = 3.141 m2

(7.1)

The photovoltaic panels are using the equation described in section 4.2.5
together with the radiance data3 and temperature data4. Temperature, sun

2The wind data is taken from the course EIEN10- Wind Power Systems (2012) given at
The Faculty of Engineering at Lund University

3Radiance data for Norrköping for the year 2012 is provided by the database STRÅNG,
which is a mesoscale model for solar radiation which is financed by Naturvårdsverket, SMHI
and Srålsäkerhetsmyndigheten

4Temperature data from Norrköping for the year 2012 is given as hourly measurements.
The data is provided by Dataleveranser at SMHI

CHAPTER 7. SCENARIOS 50

Figure 7.4: Diagram of the input and output data from the solar power model
used. In the top sub plot the solar radiance is plotted, in the middle
the temperature data is plotted and in the bottom the outputted power
produced by the solar panel is plotted. The radiance and temperature
data is given for Norrköping 2012 and the total amount of energy
generated for 2012 is 381 kWh.

radiance and the resulting power generated can be seen in figure 7.4. The
parameters for the solar panel in equation 4.7 are chosen as:

ηP V = 14.4 %
nP V = 18
SP V = 1.3 m2

(7.2)

To simulate the consumption for a house the electrical devices from table
7.1 are used. In the last column of the table there is a time interval in which
the device is likely to be turned on. This is modelled such that the device is
turned on in a stochastic sense. Every time instances in the time interval are
equally probable i.e. the time the loads is turned on is uniformly distributed.
The generated consumer power profile can be seen in figure 7.5.

The Dymola implementation of the smart house for long term is similar to
the one for short term but with much more loads. A figure of the implemen-
tation is seen in figure 7.6.

CHAPTER 7. SCENARIOS 51

Type power [W] operation maximum time
time [min] delay [min] interval[hour]

Dishwasher 1900 180 360 7-8
Washing machine 2100 180 600 19-20
Tumbler dryer 1900 120 600 19-21
Water heater 800 360 600 6-8
Microwave 1000 15 N/A 6-8
Oven 2100 60 N/A 18-20
Hair dryer 1200 10 N/A 6-8
Coffee maker 600 400 N/A 6-8
Toaster 1000 15 N/A 7.5-8.5
Fridge 400 ∞ N/A N/A
Freezer 300 ∞ N/A N/A
Computer 100 180 N/A 6-7 & 18-21
TV 80 180 N/A 18-20
Electric devices stand by 50 ∞ N/A N/A
Lights 50 180 N/A N/A

Table 7.1: Table of all the loads the houses are equipped with. Power specifies the
amount of power that the device consumes while turned on, operation
time specifies for how long the device is turned on, maximum delay is
the maximum time for which the device can be postponed, and time
interval is the interval for which the devices are turned on, the exact
time is uniformly distributed inside the interval. (The power consump-
tion and operation time is inspired by ”El nära och långt borta -hur
kan hushållen agera på elmarknaden?” which is a book published by
Energimyndigheten)

CHAPTER 7. SCENARIOS 52

Figure 7.5: The generated consumer profile is shown. Notice the stochastic be-
haviour of the loads.

CHAPTER 7. SCENARIOS 53

F
ig

ur
e

7.
6:

D
ym

ol
a
m
od

el
fo
r
lo
ng

te
rm

sc
en

ar
io
.

Chapter 8

Results

In this chapter simulation results from the scenarios introduced in chapter 7 are
presented. The system performance is evaluated during external power losses
and the control strategy is explained. The long time aspects of using these
control laws are also evaluated. The power performance and the economical
cost are presented.

54

CHAPTER 8. RESULTS 55

8.1 Short term scenario:
The most important task for the system controllers is to maintain an acceptable
voltage level in the grids. The external grid voltages can be seen in figure 8.1.
At t = 80 s the external high voltage grid fails and the system controller on
the medium voltage grid is forced to operate in islanding mode. Doing so the
system controller is forced to use its battery to do voltage control.

The plot is divided into three different zones, where zone 1 is where all
grids operates normally, zone 2 is where the medium level grid operates in
islanding mode and zone 3 when the houses operate in islanding mode. In
zone 1 the voltage controller power up the system. When the correct voltage
level is reached the houses connects to the grid and begin to turn on loads.
The impact of this can be seen in zone 1. Entering zone the external high
voltage grid fails and the medium voltage grid operates in islanding mode.
This transmission can be seen in figure 8.1. Where the battery at the medium
voltage grid start to control voltage. In zone 3 the battery at the medium
voltage grid can not power the grid and the houses are therefore forced to
disconnect from the grid and to operate in islanding mode.

Figure 8.1: Simulation results from the short term scenario. In the top plot the
voltage level for the external high level grid is visible. The voltage
level for the medium voltage grid is plotted in the lower plot.

In figure 8.2 the voltage levels for the three houses are presented. This figure
is divided into the same three zones. Notice that all houses manage to keep
their voltage level close to the reference value of 230 V. Small voltage drops
are noticed in zone 1 when the loads are turned on. Entering zone 2 house 1
maintains its voltage. House 2 and 3 experience a small voltage change since
the system controller is forced to turn off the lowest priority load. Entering
zone 3 all houses experience voltage drops. This is due to that the battery
start to control voltage instead of the external connection. It takes a few sec-
onds for the new controller to achieve good control of the voltage. House 1 and
2 experience larger voltage drops since these houses also needs to turn off loads.

CHAPTER 8. RESULTS 56

Figure 8.2: Simulation results from the short term scenario. In the top plot the
voltage for house 1 is plotted, in the middle plot the voltage for house
2 is plotted and in the bottom house the voltage is plotted for the third
house.

Figure 8.3: Simulation results from from the short term scenario. In the top sub-
plot the voltage level for the battery in the different houses are plotted,
all starting with an initial SOC of 0.5. In the bottom subplot the volt-
age level for the battery at medium voltage grid level is plotted, with
the initial SOC of 0.7. Note that system controller on the medium
voltage level considers the battery empty when it has reached SOC of
0.2.

During zone 1 and zone 2 the batteries at house level charges since there is
power capacity to do so. The battery SOC can be seen in figure 8.3. In zone 3,
when the houses operate in islanding mode, the battery is controlling voltage
and the SOC is therefore decreasing for all houses. Except for house 2 after
t = 900 s. The SOC for the battery in house 2 drops below 0.1 at t = 900 s
and the system controller therefore tries to recharge the battery by using the

CHAPTER 8. RESULTS 57

power from the micro generation and by disconnecting loads.

Figure 8.4: Simulation results from the short term scenario. In zone 1 the external
high voltage grid operates normally and the loads turns on according
to their priority in all the houses. The loads has priority according to
their number, 1 is the highest and 3 the lowest. In zone 2 and 3 the
loads behaves differently in the houses since the micro generation is
not the same in the houses.

The SOC for the battery at medium voltage grid is also plotted in figure
8.3. Notice that the SOC for the battery drops to 0.2 at t = 440. This is
what forces the houses to disconnect from the grid since the system controller
considers the battery empty at SOC = 0.2. When the houses are disconnected
the system controller at this level tries to recharge the battery by using the
available generation at this level. This is why the SOC increases in zone 3.

In figure 8.4 the power of the loads in the houses are shown. When oper-
ating in zone 1, the loads turn on according to their priority and the system
controller has no problem maintaining voltage. When entering zone 2, house
2 and 3 can not keep their lowest priory load (3) turned on , the system con-
troller is forced to turn off the load to maintain the correct voltage level on
the grid. When entering zone 3 the houses operate in islanding mode. House
one is forced to turn off its lowest priority load, since the power generated
from the micro generation and battery is not enough to keep all loads turned
on. House 3 is forced to turn off its second load since the battery alone can
not provide enough power for the two loads. House 2 is forced to turn off
load two at t = 890 s since its battery discharges completely, this can be seen
in figure 8.3. The battery can therefore no longer provide power to the system.

CHAPTER 8. RESULTS 58

These results show that the controller program handles blackouts on the exter-
nal high voltage grid well. With the help of an energy storage the system can
maintain voltage and keep the highest priority loads turned on. The system is
also capable to recharge the batteries to prepare the grid for further blackouts.
The grid robustness is mainly determined by the size of the energy storage.
In these simulations the storage has been chosen rather small to illustrate the
different zones in a quite small time frame. If the energy storage were dimen-
sioned larger the system controller would be able to keep the houses/loads
connected longer.

CHAPTER 8. RESULTS 59

8.2 Long term scenarios:
The main focus of these simulations will be to compare power peaks when
using load delay and price differentiation with a system not using load delay.
The economical aspects of this will also be evaluated by investigating the total
electricity cost for one year running these control laws.

Figure 8.5: Simulation results comparing the power consumed for one week, the
lower plot is from the house that uses price differentiation to delay
some loads to run during times of low prices. The upper plot is from
the house that does not use load delay.

In figure 8.5 the consumed power for a house is compared when using load
delay with not using load delay. It is obvious from the figure that the system
controller manages to reduce the power peaks with use of load delay. During
the first week the consumed power peak for the system that is not using load
delay is Pmax = 6806.52 W. The system that is using load delay manage to
reduce the peak to Pmax = 3859.76 W.

The maximum power peaks during the whole simulation are compared in
chart 8.1 for the different houses. Each house is simulated once using load
delay and once without load delay. The different micro generation between
the houses does not give any big influence on the power peaks. This could
mainly be explained with the facts that using load delay big loads are delayed
to run during night and maximum power is therefore reached during night-
time. Micro generation would help to reduce power peaks in the grid but
during night they tend to have quite small production and will not influence
the power peaks noticeable. The systems using load delay manage to reduce
the power peak with about 35%.

In chart 8.2 the total price for running all houses are presented. Each house
has been simulated using load delays with three different price differentiations,
30 %, 40 % and 50 %. Furthermore this data has been compared with the
total price when simulating the houses without load delay and using 30 %
price differentiation.

CHAPTER 8. RESULTS 60

5.433kWload delayHouse 1 7.333kWno load delay

5.560kWload delayHouse 2 7.460kWno load delay

5.488kWload delayHouse 3 7.388kWno load delay

5.510kWload delayHouse 4 7.405kWno load delay

0kW 1kW 2kW 3kW 4kW 5kW 6kW 7kW 8kW

Chart 8.1: Simulation results from all the proposed houses. Power peaks are com-
pared when using load delay with not using load delay.

11.365no load delay 30 % price diff
9.670load delay 30 % price diffHouse 1 8.937load delay 40 % price diff

8.205load delay 50 % price diff

14.919no load delay 30 % price diff
13.224load delay 30 % price diffHouse 2 12.370load delay 40 % price diff

11.516load delay 50 % price diff

11.708no load delay 30 % price diff
10.013load delay 30 % price diffHouse 3 9.278load delay 40 % price diff

8.544load delay 50 % price diff

14.576no load delay 30 % price diff
12.881load delay 30 % price diffHouse 4 12.029load delay 40 % price diff

11.177load delay 50 % price diff

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All prices are given in kSEK.

Chart 8.2: Simulation results from all the proposed houses. Total price for one year
was compared using load delay with not using load delay for different
price differentiation levels.

CHAPTER 8. RESULTS 61

In figure 8.6 the SOC for the battery is plotted for the first week of sim-
ulation. The battery is charged during night, when the price is low. And
discharges during day time, to simulate a car driving during day time. This
power will therefore not go back into the internal grid and the battery will
start almost empty every evening.

Figure 8.6: Simulation results for the battery from the long time scenario, the SOC
is plotted.

These results shows that using these control laws the system controller
manages to decrease the power peaks with about 35 %. Using 30 % price
differentiation the yearly cost differs with 1.650 SEK when using load delay
compared to not using load delay. The cost difference can of course be increased
if the price differentiation is larger.

Chapter 9

Discussions and Conclusions

In this final chapter the project is evaluated and summarized. Some future
work is suggested and the concluding results from the project are stated.

62

CHAPTER 9. DISCUSSIONS AND CONCLUSIONS 63

9.1 Evaluation of the Project
The purpose of this project was to develop generic models for smart houses
using Dymola/Modelica and to design control laws using C/C++. Apart from
houses a medium voltage grid was also modelled, which formed a smart cell
together with the houses. The project goals are listen in section 1.4. Overall
the project was considered a success. Models have been developed and can
be configured in Dymola by dragging and dropping components to form an
arbitrary smart house. These houses can be connected using external connec-
tions to a medium voltage grid together with generators and battery to form
smart cells. The physical part of the modelling was easily done using Dymola
and EPL. EPL components were used and configured to suit our modelling
purposes. The cells are controlled using control laws developed in C/C++.
Simulation was done which shows that the system controller manage to re-
duce power peaks by using price differentiation and load delay. Short term
simulations also showed that the robustness of the grid is improved using the
proposed control strategies and energy storage. The simulation also shows
that the yearly cost was decreased for the end user when load delay was used.
When using 30 % differentiation the yearly electricity cost could be decreased
with 1.650 SEK for a house with a total consumption of 13 MWh per year. It
is hard to tell whether this price incentive is big enough for end users to invest
in these kinds of systems. If new houses would be prepared for installation the
installation cost might not be very high and this system might repay. There
are also robustness incentives for grid operators. By introducing the proposed
control strategies and energy storages the grid would be more reliable and
withstand short periods of blackouts.

Several studies have projected that the global oil reserve will run out some-
where between 2050 and 2075. This will drive up the electricity price since a
large amount of the electricity used today are generated using fossil fuel, such
as oil [24]. Given future higher electricity prices, the economical incentives for
smart grids will increase in the future.

9.1.1 Implementation problems
The system controller was implemented using C++ and interfaced with Dy-
mola using pre-compiled external static libraries. All functions that are called
need to explicitly be defined in Dymola with function name, input and output
variables. This method results in lot of work if changes in function arguments
would be done. If one input argument should be added to a function this
will introduce changes in Dymola’s function definition, the interface file, the
C++ source code and further down the C++ data structure. Therefore if one
argument is added to a function, the code need to be changed in 8 places.

Another problem introduced by external C++-program approach was the
timing for which blocks and system controllers were initialized. Since the
resources need to know which system it belongs to, i.e the system id, the system
controller needs to be initialized first. Dymola has no predefined causality

CHAPTER 9. DISCUSSIONS AND CONCLUSIONS 64

therefore this was problematic to do. This was solved by not initialize the
system controllers and resources at the same sample.

Apart from the initialization problems debugging using an external C++-
program was hard. The functionality of the C++-program could only be evalu-
ated when the Dymola simulation was running. Since the program needs to be
fed with signals from the Dymola simulation to work properly. Pre-compiled
libraries were used and a debugger tool can therefore not be used to test con-
trol functionality. The only debugging available was explicitly checking in and
out signals in Dymola and try to trace the error in the code using print outs
into a console window while running the simulation.

9.2 Improvements
During the process of working with the thesis we realised some improvement
and changes that could be done to further improve the simulations. The fol-
lowing sections provides some ideas for future work.

9.2.1 Modelling
The models that are used in this project are simplifications of the actual phys-
ical components. For example; loads are modelled as resistances and batteries
as capacitances. It is essential that these simple models are exchanged for bet-
ter and more accurate models of the physical components. Loads would have
different model implementations depending on the components, a dishwasher
should be modelled as an electric motor containing inductance, resistance and
an EMF1, a water heater should have heating and cooling effects of the water
corresponding to usage and converters should model losses.

Model improvements are very important to enhance short term simulations
and scenarios. It is less important for long term since fast dynamics does not
effect costs as much as the total consumption. However, fast dynamics might
increase power peaks for long term scenarios which of course is of interest.

9.2.2 Model Verification
Unfortunately no measurement data was available for model verification. It
would be essential to improve the models by using measurement data from
actual physical components to identify parameter values.

9.2.3 Boundary Values
Boundary values such as consumer inputs for turning on and off loads and
configurations of priorities and operation time do not correspond to any ac-
tual user behaviour. The consumer ”on/off” input is modelled as a random
behaviour between given time points. It would be desirable to have actual

1Electro Motive Force

CHAPTER 9. DISCUSSIONS AND CONCLUSIONS 65

data sets for consumer habits for a house to increase the accuracy of power
consumption patterns in order to get more realistic values for power peaks and
total costs.

9.2.4 Implementation
As mentioned in 9.1.1 there are a lot of problems concerning communication
and control with the implementation method chosen. We believe that these
problems can be circumvented by not using Dymola as simulation tool in this
case. Modelica is very powerful in making the physical models but not for
control with complex decision systems. We would thus suggest that only the
physical components such as, loads, generators, batteries, grids and converters
should be modelled using Modelica and the control of these components should
be done in another program. Exporting models as FMU’s2 and importing them
to Simulink is a proposed method since Simulink is suitable for dealing with
signals.

Rather than having one program with all functionality for both system
controller and resources (one .lib file where different functions are called for
different blocks), as was the case for this thesis, a Simulink implementation
of the control system could involve a CAN-bus3 which resources and system
controller are connected to. This would separate the programs running the
controllers and resources in a greater extent than the current solution. There
are already Simulink toolboxes for CAN-bus simulation. Writing the control
algorithms in MatLab-functions rather than C++ might also be more intu-
itive for the inexperienced programmer and debugging will be easier than the
current method.

9.2.5 Real-Time
One major benefit with using Simulink for control is the possibility for au-
tomatic code generation, i.e. generate C code which can be used on a micro
controller to be used in real time. This is however also possible in Dymola if
the control algorithm is written in Dymola and not as external libraries.

9.3 Conclusion
Using smart grids the power performance for the grid can be improved. It is
shown that power peaks in the grid can be decreased in average with 35 %
. With 30 % price differentiation the proposed control strategy reduces the
yearly cost for an end user with 1.650 SEK. Whether this price reduction is

2Functional Mock-up Unit is an executable file, in this case, containing physical mod-
els and possibly its solver that can be exported to another simulation environment to be
executed.

3Controller Area Network is a communication system often used in vehicles to simplify
information exchange between the sensors and computers which, in modern cars, are a couple
of hundred as of today.

CHAPTER 9. DISCUSSIONS AND CONCLUSIONS 66

enough to pay off installation costs for the end user is hard to tell. Since
only a few small scale project that have been developed, cost for large scale
implementations is hard to estimate.

Appendix A

General

A.1 Mid-Range controller
Mid-range control strategy was considered possible when controlling the gener-
ators atmedium voltage level, but did not end up in the finial control program.
Mid-range control is a strategy involving two controllers used to control one
measurement signal. This is useful if different actuators with different range
and resolution are used. Suppose that the level in a water tank is controlled
using two actuators. One has a fine resolution of 0.1 l/s but saturates at 2 l/s,
the other has a resolution of 5 l/s and a maximum flow of 30 l/s. The idea be-
hind mid-range control is to use the first actuator to react at small deviations
from the set point and the second controller to react on large deviations. This
is done be feeding the second controller, C2, with the control signal from the
first controller, C1, and the desired control signal set point value, usp, for C1,
see figure A.1. [25, p. 378-380]

C1

C2

P1

P2

r

usp

e y1

y2

u

−

y

−
ym

Figure A.1: Mid range controller

67

Appendix B

Modelica Source Code

B.1 Solar panel

Listing B.1: Modelica model for solarPanel
1 model s o l a rPane l
2
3 parameter Real c o nv e r s i o n_e f f i c i e n t = 0 .144 ;
4 parameter Real numer_of_panels = 18 ;
5 parameter Real array_area = 1 . 3 ;
6
7 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t I_pv
8 a ;
9 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t t_cr

10 a ;
11 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput P_pv
12 a ;
13
14 equat ion
15 P_pv = conv e r s i o n_e f f i c i e n t ∗numer_of_panels∗ array_area ∗

I_pv∗(1−0 .005 ∗(t_cr−25)) ;
16 a ;
17 end so l a rPane l ;

B.2 Wind Power Plant

Listing B.2: Modelica model for wind power plant
1 model windPowerPlant
2
3 parameter Real rotor_diameter = 2 ;
4 parameter Real eta = 1 ;
5 parameter Real Cp = 0 . 3 ;
6 parameter Real rau = 1 .225 ;
7

68

APPENDIX B. MODELICA SOURCE CODE 69

8 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t wind_speed
9 a ;

10 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput generated_power
11 a ;
12 equat ion
13 generated_power = i f wind_speed >4 and wind_speed<12 . 5
14 then 1/2∗ rau ∗(rotor_diameter /2) ^2∗Mode l i ca .Cons tant s .p i ∗

wind_speed^3∗ eta ∗Cp
15 e l s e i f wind_speed>12 . 5 and wind_speed<25 then 1127 .48

e l s e 0 ;
16
17 a ;
18 end windPowerPlant ;

B.3 Generic Smart Block

Listing B.3: The Modelica code for generic smart block.
1 model gener icSmartBlock
2
3 extends sys temContro l l e r .B locks .MyDisc re teB lock ;
4
5 import in i t_Block =

sys t emCont ro l l e r .Ex t e rna lFunc t i on s .B lo ck_ in i t ;
6 import set_Block =

sys t emCont ro l l e r .Exte rna lFunct i ons .B lock_se t ;
7 import get_Block =

sys temContro l l e r .Exte rna lFunct ions .B lock_get ;
8
9 Mode l i c a .B l o c k s . I n t e r f a c e s . I n t e g e r I npu t sysID " System␣

i d e n t i t y "
10 a ;
11
12 pub l i c
13 Mode l i c a .B l o ck s . I n t e r f a c e s . I n t e g e rOutpu t breaker " Contro l s

␣ the ␣ switch ␣on/ o f f "
14 a ;
15
16 pub l i c
17 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t SOC
18 " Gives ␣ the ␣ s t a t e ␣ o f ␣ charge ␣ f o r ␣ the ␣ batte ry ␣ i f ␣ the ␣

r e sou r c e ␣ i s ␣ o f ␣ type ␣2␣ e l s e ␣−1"
19 a ;
20
21 pub l i c
22 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t r e s i s t a n c e
23 " Gives ␣ the ␣ cur rent ␣ r e s i s t a n c e ␣ i f ␣ the ␣ r e sou r c e ␣ i s ␣ load ␣

e l s e ␣−1"

APPENDIX B. MODELICA SOURCE CODE 70

24 a ;
25 pub l i c
26 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t maxPower
27 " Gives ␣ the ␣ cur rent ␣maximum␣ a v a i l i a b l e ␣power␣ i f ␣ the ␣

r e sou r c e ␣ i s ␣ generator ␣ e l s e ␣−1"
28 a ;
29 pub l i c
30 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t vo l tageExte rna l
31 "Measures␣ the ␣ vo l tage ␣ o f ␣ the ␣ connected ␣component "
32 a ;
33 pub l i c
34 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t vo l tageGr id "Measures

␣ the ␣ g r id ␣ vo l tage "
35 a ;
36 pub l i c
37 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t powerOUT "Measures␣

the ␣ outputten ␣power "
38 a ;
39 pub l i c
40 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput contro lCurrent
41 " Gives ␣ the ␣ cur r eent ␣ the ␣ block ␣ should ␣output "
42 a ;
43 pub l i c
44 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t consumerPro f i l e
45 "Measures␣ the ␣ g r id ␣ vo l tage "
46 a ;
47
48 // −− Parameters −−
49 pub l i c
50 parameter In t eg e r p r i o r i t y " Resource ␣ p r i o r i t y " ;
51 parameter In t eg e r resourceType " Resource ␣ type " ;
52 parameter Real maxCurrent=63;
53
54 // −− Parameters f o r c o n t r o l l e r −−
55 parameter Real K=−1 " Propor t i ona l ␣ gain " ;
56 parameter Real Ti=−1 " I n t e g r a l ␣ gain " ;
57 parameter Real Tt=−1 " Antiwindup␣ time␣ constant " ;
58 parameter Real ymin=−1 "Minimum␣output␣ value ␣ from␣ c o n t r o l l e r

" ;
59 parameter Real ymax=−1 "Maximum␣ouput␣ value ␣ from␣ c o n t r o l l e r "

;
60 parameter Real p r i c eL imi t
61 "Component␣ w i l l ␣not␣be␣ turned␣on␣ i f ␣ p r i c e ␣␣>␣ pr i ceL imit ,

␣−1␣ d e f au l t " ;
62 parameter Real maximumDelay=0 "Maximum␣delay ␣ f o r ␣component , ␣

0␣ d e f au l t " ;
63 parameter Real operationTime=10000
64 " Operation ␣ time␣ f o r ␣component , ␣10000␣ i s ␣ d e f au l t " ;
65 constant In t eg e r lowFlag = 0 ;

APPENDIX B. MODELICA SOURCE CODE 71

66
67 // −− va r i a b l e s −−
68 In t eg e r resourceID ;
69 Real cv [:] = { resourceType , p r i o r i t y , maxCurrent ,K, Ti , Tt ,

ymin , ymax , samplePeriod , lowFlag , pr i ceL imit ,
maximumDelay , operationTime } ;

70 Real signalsOUT [signalsSizeOUT] ;
71 Real s i gna l s IN [s i g na l s S i z e IN] ;
72
73 constant In t eg e r signalsSizeOUT = 8 ;
74 constant In t eg e r s i g na l s S i z e IN = 2 ;
75
76 a lgor i thm
77 when sampleTrigger and secondTr igger then
78 resourceID := in i t_Block (sysID , cv , s i gna l sS i z e IN ,

signalsSizeOUT) ;
79 end when ;
80
81 when sampleTrigger and not f i r s t T r i g g e r and not

secondTr igger then
82
83 // −− s e t s i n gna l s out
84 signalsOUT := {pre (vo l tageGr id) , pre (powerOUT) , pre (

vo l tageExte rna l) , pre (SOC) , pre (maxPower) , pre (
r e s i s t a n c e) , −1, pre (consumerPro f i l e) } ;

85 set_Block (sysID , resourceID , signalsOUT) ;
86
87 // −− s e t s i g n a l s in
88 s i gna l s IN := get_Block (sysID , resourceID ,

s i g na l s S i z e IN) ;
89 breaker := i n t e g e r (s i gna l s IN [1]) ;
90 contro lCurrent := s i gna l s IN [2] ;
91
92 end when ;
93 a ;
94 end gener icSmartBlock ;

B.4 External Connector Block

Listing B.4: The main Modelica code for external connector block.
1 model smartBlockExterna l22apr i l
2 extends sys temContro l l e r .B locks .MyDisc re teB lock ;
3
4 import in i t_Block =

sys t emCont ro l l e r .Ex t e rna lFunc t i on s .B lo ck_ in i t ;
5 import set_Block =

sys t emCont ro l l e r .Exte rna lFunct i ons .B lock_se t ;

APPENDIX B. MODELICA SOURCE CODE 72

6 import get_Block =
sys temContro l l e r .Exte rna lFunct ions .B lock_get ;

7
8 Mode l i c a .B l o c k s . I n t e r f a c e s . I n t e g e r I npu t sysIDHigh " System␣

i d e n t i t y "
9 a ;

10 pub l i c
11 Mode l i c a .B l o ck s . I n t e r f a c e s . I n t e g e rOutpu t breaker " Contro l s

␣ the ␣ switch ␣on/ o f f "
12 a ;
13 pub l i c
14 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t SOC
15 " Gives ␣ the ␣ s t a t e ␣ o f ␣ charge ␣ f o r ␣ the ␣ batte ry ␣ i f ␣ the ␣

r e sou r c e ␣ i s ␣ o f ␣ type ␣2␣ e l s e ␣−1"
16 a ;
17 pub l i c
18 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t r e s i s t a n c e
19 " Gives ␣ the ␣ cur rent ␣ r e s i s t a n c e ␣ i f ␣ the ␣ r e sou r c e ␣ i s ␣ load ␣

e l s e ␣−1"
20 a ;
21 pub l i c
22 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t maxPower
23 " Gives ␣ the ␣ cur rent ␣maximum␣ a v a i l i a b l e ␣power␣ i f ␣ the ␣

r e sou r c e ␣ i s ␣ generator ␣ e l s e ␣−1"
24 a ;
25 pub l i c
26 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t voltageLow
27 "Measures␣ the ␣ vo l tage ␣ o f ␣ the ␣ connected ␣component "
28 a ;
29 pub l i c
30 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t voltageHigh "Measures

␣ the ␣ g r id ␣ vo l tage "
31 a ;
32 pub l i c
33 Mode l i c a .B l o ck s . I n t e r f a c e s .Rea l I npu t powerOUT "Measures␣

the ␣ outputten ␣power "
34 a ;
35 pub l i c
36 Mode l i c a .B l o ck s . In t e r f a c e s .Rea lOutput contro lCurrent
37 " Gives ␣ the ␣ cur r eent ␣ the ␣ block ␣ should ␣output "
38 a ;
39 Mode l i c a .B l o c k s . I n t e r f a c e s . I n t e g e r I npu t sysIDLow " System␣

i d e n t i t y "
40 a ;
41 pub l i c
42 parameter In t eg e r p r i o r i t y " Resource ␣ p r i o r i t y " ;
43 parameter In t eg e r resourceType " Resource ␣ type " ;
44 parameter Real maxCurrent=63;
45

APPENDIX B. MODELICA SOURCE CODE 73

46 // −− Parameters f o r c o n t r o l l e r −−
47 parameter Real K=−1 " Propor t i ona l ␣ gain " ;
48 // annotat ion (d i a l o g (group="Parameters " , tab="Cont r o l l e r " ,

enable = us eCont ro l l e r and not resourceType ==0)) ;
49 parameter Real Ti=−1 " I n t e g r a l ␣ gain " ;
50 // annotat ion (d i a l o g (group="Parameters " , tab="Cont r o l l e r " ,

enable = us eCont ro l l e r and not resourceType ==0)) ;
51 parameter Real Tt=−1 " Antiwindup␣ time␣ constant " ;
52 // annotat ion (d i a l o g (group="Parameters " , tab="Cont r o l l e r " ,

enable = us eCont ro l l e r and not resourceType ==0)) ;
53 parameter Real ymin=−1 "Minimum␣output␣ value ␣ from␣ c o n t r o l l e r

" ;
54 // annotat ion (d i a l o g (group="Parameters " , tab="Cont r o l l e r " ,

enable = us eCont ro l l e r and not resourceType ==0)) ;
55 parameter Real ymax=−1 "Maximum␣ouput␣ value ␣ from␣ c o n t r o l l e r "

;
56 // annotat ion (d i a l o g (group="Parameters " , tab="Cont r o l l e r " ,

enable = us eCont ro l l e r and not resourceType ==0)) ;
57
58 // −− va r i a b l e s −−
59 In t eg e r resourceIDHigh ;
60 In t eg e r resourceIDLow ;
61 Real s igna l s INHigh [s i gna l s S i z e I nH i gh] ;
62 Real signalsOUTLow [s ignalsSizeOutLow] ;
63 Real s ignalsINLow [s i gna l sS i z e InLow] ;
64 Real signalsOUTHigh [6] ;
65
66 constant In t eg e r s i gna l s S i z e I nH i gh = 3 ;
67 constant In t eg e r s igna l sS i zeOutHigh = 6 ;
68
69 constant In t eg e r s i gna l sS i z e InLow = 2 ;
70 constant In t eg e r s ignalsSizeOutLow = 7 ;
71
72 constant In t eg e r highFlag = 1 ;
73 constant In t eg e r lowFlag = 0 ;
74
75 Real cvHigh [:] = { resourceType , p r i o r i t y , maxCurrent ,K, Ti , Tt

, ymin , ymax , samplePeriod , highFlag } ;
76 Real cvLow [:] = { resourceType , p r i o r i t y , maxCurrent ,K, Ti , Tt ,

ymin , ymax , samplePeriod , lowFlag } ;
77
78 a lgor i thm
79 when i n i t i a l () then
80 // nothing
81 end when ;
82
83 when sampleTrigger and secondTr igger then
84 resourceIDHigh := in i t_Block (sysIDHigh , cvHigh ,

s i gna l sS i z e InH igh , s igna l sS i zeOutHigh) ;

APPENDIX B. MODELICA SOURCE CODE 74

85 resourceIDLow := in i t_Block (sysIDLow , cvLow ,
s igna l sS i ze InLow , s ignalsSizeOutLow) ;

86
87 end when ;
88
89 when sampleTrigger and not f i r s t T r i g g e r and not

secondTr igger then
90 // f i r s t get the power blanace in fo rmat ion form the high

vo l tage g r id
91 s igna l s INHigh := get_Block (sysIDHigh ,

resourceIDHigh , s i gna l s S i z e I nH i gh) ;
92
93 // s e t t h i s in fo rmat ion to the low vo l tage s i d e o f the

g r id
94 signalsOUTLow := {pre (voltageLow) , pre (powerOUT) , pre (

vo ltageHigh) , pre (SOC) , min (pre (maxPower) ,
s igna l s INHigh [3]) , pre (r e s i s t a n c e) , s igna l s INHigh
[3] } ; // min to take in to account the power balance
on the ex t e rna l g r id

95 // signalsOUTHigh := {pre (voltageLow) , pre (powerOUT) ,
pre (vo ltageHigh) , pre (SOC) , pre (maxPower) , pre (
r e s i s t a n c e) } ;

96 signalsOUTHigh := {0 , 0 , 0 , 0 , pre (maxPower) , 0} ;
97
98 //signalsOUTLow := {pre (voltageLow) , pre (powerOUT) , pre (

vo ltageHigh) , pre (SOC) , pre (maxPower) , pre (r e s i s t a n c e
) , 100} ;

99 set_Block (sysIDLow , resourceIDLow , signalsOUTLow) ;
100 set_Block (sysIDHigh , resourceIDHigh , signalsOUTHigh) ;
101
102 // get the s i g n a l s from the low vo l tage ex t e rna l b lock !
103 signalsINLow := get_Block (sysIDLow , resourceIDLow ,

2) ;
104 breaker := i n t e g e r (s ignalsINLow [1]) ;
105 contro lCurrent := signalsINLow [2] ;
106
107 end when ;
108
109 annotat ion (Diagram (coordinateSystem (preserveAspectRat io=

f a l s e , extent={{−100,
110 −100} ,{100 ,100}}) , g raph i c s) , Icon (

coordinateSystem (
111 preserveAspectRat io=f a l s e , extent

={{−100 ,−100} ,{100 ,100}}) , g raph i c s)) ;
112 end smartBlockExterna l22apr i l ;

Appendix C

C/C++ Source Code

C.1 Dymola interface

Listing C.1: SystemControlInter.h
1 #ifndef SYSTEMCONTROLINTER_H
2 #define SYSTEMCONTROLINTER_H
3
4 #ifdef __cplusplus
5 extern "C" {
6 #endif
7 // Functions ac t ing on system c o n t r o l l e r from dymola
8 // used to i n i t i a l i z e a system c o n t r o l l e r
9 extern int SystemControlInter_init (double∗ ←↩

configuration_vector ,
10 int configuration_vector_size , int signals_size_scada)←↩

;
11 // used to update the low vo l tage system c o n t r o l l e r
12 extern void SystemControlInter_update (int system_id , ←↩

double price) ;
13 // used to update the high vo l tage system c o n t r o l l e r
14 extern void SystemControlInter_updateHighVoltage (int ←↩

system_id ,
15 double price) ;
16
17 // Functions ac t ing on r e s ou r c e s from dymola
18 // used to i n i t i a l i z e s b lock
19 extern int Block_init (int system_id , double∗ ←↩

configuration_vector ,
20 int configuration_vector_size , int signals_in_size ,
21 int signals_out_size) ;
22 // used to send in fo rmat ion to dymola .
23 extern void Block_get (int system_id , int resource_id ,
24 double∗ dymola_return_vector , int ←↩

dymola_return_vector_size) ;

75

APPENDIX C. C/C++ SOURCE CODE 76

25 // used to r e c e i v e in f romat ion from dymola
26 extern void Block_set (int system_id , int resource_id ,
27 double∗ dymola_set_vector , int dymola_set_vector_size)←↩

;
28 #ifdef __cplusplus
29 }
30 #endif
31 #endif

Listing C.2: SystemControlInter.cpp
1 #include "SystemControlInter.h"
2 #include "SCADA.h"
3 #include <vector>
4 #include <cstd io>
5
6 #include <iostream>
7 using namespace std ;
8
9 static int id = 0 ; // s e t d e f au l t id to 0

10 static vector<SCADA∗> systems ; // vec to r with systems with←↩
dynamic s i z e

11
12 extern int SystemControlInter_init (double∗ ←↩

configuration_vector ,
13 int configuration_vector_size ,
14 int signals_size_scada)
15 {
16 systems . push_back (new SCADA) ; // c r e a t e a new SCADA−uni t (←↩

system)
17 systems . at (id)−>initSystem (configuration_vector , ←↩

configuration_vector_size ,
18 signals_size_scada) ; // i n i t i a t e SCADA−un i t
19 id++; // increments the id
20 return id−1; // r e tu rn s the cur rent id
21 }
22
23 extern void SystemControlInter_update (int system_id , ←↩

double price)
24 {
25 systems . at (system_id)−>updateSystem (price) ;
26 }
27
28 extern void SystemControlInter_updateHighVoltage (int ←↩

system_id , double price)
29 {
30 systems . at (system_id)−>updateSystemHighVoltage (price) ;
31 }
32

APPENDIX C. C/C++ SOURCE CODE 77

33 extern int Block_init (int system_id , double∗ ←↩
configuration_vector ,

34 int configuration_vector_size ,
35 int signals_in_size ,
36 int signals_out_size)
37 {
38 return systems . at (system_id)−>addResource (←↩

configuration_vector ,
39 configuration_vector_size ,
40 signals_in_size , signals_out_size) ;
41 }
42
43 extern void Block_get (int system_id , int resource_id ,
44 double∗ dymola_return_vector ,
45 int dymola_return_vector_size)
46 {
47 systems . at (system_id)−>getBlock (resource_id , ←↩

dymola_return_vector ,
48 dymola_return_vector_size) ;
49 }
50
51 extern void Block_set (int system_id , int resource_id ,
52 double∗ dymola_set_vector ,
53 int dymola_set_vector_size)
54 {
55 systems . at (system_id)−>setBlock (resource_id , ←↩

dymola_set_vector ,
56 dymola_set_vector_size) ;
57 }

C.2 SCADA

Listing C.3: SCADA.h
1 #include "Block.h"
2 #include <vector>
3
4 class SCADA
5 {
6 public :
7 SCADA (void) ;
8 ~SCADA (void) ;
9

10 // func t i on s used from Dymola
11 void initSystem (double∗ configuration_vector , int ←↩

configuration_vector_size ,
12 int singals_size_scada) ;

APPENDIX C. C/C++ SOURCE CODE 78

13 void getBlock (int resource_id , double∗ ←↩
dymola_return_vector ,

14 int dymola_return_vector_size) ;
15 void setBlock (int resource_id , double∗ dymola_set_vector←↩

,
16 int dymola_set_vector_size) ;
17
18 int addResource (double∗ configuration_vector_in , int ←↩

configuration_vector_size ,
19 int signals_in_size , int signals_out_size) ;
20 // func t i on s used to update the systems
21 void updateSystemHighVoltage (double price) ;
22 void updateSystem (double price) ;
23 // a l i a s
24 double ∗measure , controller_id ;
25 bool ∗external_net ;
26 bool flag ;
27 double ∗ref ;
28 // i n t e r n a l f un c t i on s
29 private :
30 void SCADA : : setController (int id) ;
31 void SCADA : : turnOff (int load_id) ;
32 void SCADA : : turnOn (int resource_id) ;
33 void SCADA : : setController () ;
34 double SCADA : : getMaximumAvailablePower () ;
35 double SCADA : : getPresentConsumedPower () ;
36 bool SCADA : : voltageAtSteadyState () ;
37 bool SCADA : : checkVoltage () ;
38 bool SCADA : : checkPrimaryController () ;
39 bool SCADA : : checkExternalNet () ;
40 void SCADA : : setUpControllers () ;
41 void SCADA : : updateControllers () ;
42 void SCADA : : updateBattery () ;
43 void SCADA : : updateLoads (double maximum_available_power ,
44 double present_generated_power ,
45 double price) ;
46 bool SCADA : : checkPower (double maximum_available_power ,
47 double present_consumed_power) ;
48 int SCADA : : findResource (int resource_type_in , int ←↩

high_low ,
49 int on_off) ;
50 int SCADA : : findResource (int resource_type_in , int ←↩

high_low ,
51 int on_off , int consumer_profile , double price) ;
52 void SCADA : : updateExternalConnections (double ←↩

available_power) ;
53 int SCADA : : nbrOfResourcesOfType (int resource_type_in) ;
54 void SCADA : : updateGenerator () ;
55 bool charge_battery_now ;

APPENDIX C. C/C++ SOURCE CODE 79

56 double SCADA : : getPowerExternalNet () ;
57 int SCADA : : getNumberOfUnits (int resource_type , int ←↩

on_off) ;
58 void SCADA : : updateBatteryHighVoltage (double price) ;
59 void SCADA : : setControllerHigh () ;
60
61 // i n t e r n a l v a r i a b l e s
62 std : : vector<Block∗> blocks ;
63 // vec to r with a l l the r e s ou r c e s
64 double∗ p_configuration_vector_scada ;
65 // scada con f i g vec to r
66 int current_resource_id ;
67 // cur rent r e s ou r c e s id counter
68 int number_of_resources ;
69 // t o t a l number o f r e s ou r c e s
70 double derivative_approximation_vector [2] ;
71 // used approx d e r i v a t i v e
72 int present_sample ;
73 // sample counter
74 double∗ p_voltage_ref ;
75 // po i n t e r s to vo l tage r e f in c on f i g vec to r
76 double∗ p_tolerance_voltage ;
77 // po i n t e r s to t o l vo l t age in c on f i g vec to r
78 double∗ p_tolerance_power ;
79 // po i n t e r s to t o l power in c on f i g vec to r
80 int primary_controller_id ;
81 int external_net_id ;
82 } ;

Listing C.4: SCADA.cpp
1 #include "SCADA.h"
2 #include <math . h>
3 #include <fstream>
4 #include <iostream>
5
6 #define LOAD 0
7 #define GENERATOR 1
8 #define BATTERY 2
9 #define EXTERNAL_NET 3

10
11 #define BATTERY_EMPTY 100
12 #define BATTERY_CHARGE_LEVEL 500
13 #define BATTERY_DISCHARGE_LEVEL 200
14
15
16 #define BATTERY_EMPTY_HIGH 100
17 #define BATTERY_CHARGE_LEVEL_HIGH 500
18 #define BATTERY_DISCHARGE_LEVEL_HIGH 200

APPENDIX C. C/C++ SOURCE CODE 80

19
20 #define EXTERNAL_NET_BAD 1000
21
22 #define HIGH 1
23 #define LOW 0
24
25 #define HIGHEST 1
26 #define LOWEST 0
27 #define DEFAULT −1
28 #define ON 1
29 #define OFF 0
30 #define CONSUMER_ON 1
31 #define CONSUMER_OFF 0
32 using namespace std ;
33
34 SCADA : : SCADA (void)
35 {
36 number_of_resources = 0 ;
37 controller_id = −1;
38
39 external_net = false ;
40 flag = false ;
41 external_net_id = −1;
42
43 derivative_approximation_vector [0] = 0 ;
44 derivative_approximation_vector [1] = 0 ;
45
46 present_sample = 0 ;
47 }
48
49 void SCADA : : initSystem (double∗ configuration_vector ,
50 int configuration_vector_size ,
51 int signals_size_scada)
52 {
53 p_configuration_vector_scada = (double ∗) malloc (sizeof (←↩

double) ∗configuration_vector_size) ;
54
55 int i ;
56 for (i = 0 ; i < configuration_vector_size ; i++)
57 {
58 ∗(p_configuration_vector_scada+i) = ∗(←↩

configuration_vector+i) ;
59 }
60
61 // con f i gu r e the po i n t e r s
62 p_voltage_ref= p_configuration_vector_scada ;
63 p_tolerance_voltage = p_configuration_vector_scada+1;
64 p_tolerance_power = p_configuration_vector_scada+2;
65 primary_controller_id = −1;

APPENDIX C. C/C++ SOURCE CODE 81

66
67 // charge f l a g
68 charge_battery_now = false ;
69 }
70
71 void SCADA : : getBlock (int resource_id , double∗ ←↩

dymola_return_vector ,
72 int dymola_return_vector_size)
73 {
74 return blocks . at (resource_id)−>get (dymola_return_vector ,
75 dymola_return_vector_size←↩

) ;
76 }
77
78 void SCADA : : setBlock (int resource_id ,
79 double∗ dymola_set_vector ,
80 int dymola_set_vector_size)
81 {
82 blocks . at (resource_id)−>set (dymola_set_vector , ←↩

dymola_set_vector_size) ;
83 }
84
85 int SCADA : : addResource (double∗ configuration_vector ,
86 int configuration_vector_size ,
87 int signals_in_size ,
88 int signals_out_size)
89 {
90 blocks . push_back (new Block ()) ;
91 blocks . at (current_resource_id)−>initBlock (←↩

configuration_vector ,
92 configuration_vector_size←↩

,
93 signals_in_size ,
94 signals_out_size) ;
95 current_resource_id++;
96 number_of_resources++;
97 return current_resource_id−1;
98 }
99 // Below are f unc t i on s c a l l e d from the middle vo l tage ←↩

system c o n t r o l l e r −−−−−−−
100 // Main loop used by the high vo l tage scada
101 void SCADA : : updateSystemHighVoltage (double price)
102 {
103 double available_power = getMaximumAvailablePower () − ←↩

getPresentConsumedPower () ; // c a l c u l a t e s the power ←↩
av a i l a b l e

104 setControllerHigh () ;
105 updateExternalConnections (available_power) ;
106 updateGenerator () ;

APPENDIX C. C/C++ SOURCE CODE 82

107 updateBatteryHighVoltage (price) ;
108
109 if (primary_controller_id != −1) // check that a ←↩

c o n t r o l l e r i s i n i t i a l i z e d
110 {
111 // check i f the bat te ry i s d ischarged , i f that the ←↩

case update c o n t r o l l e r i s not c a l l e d .
112 if (∗ (blocks . at (primary_controller_id)−>resource_type)←↩

== BATTERY && ∗(blocks . at (primary_controller_id)−>←↩
state_of_charge) < BATTERY_EMPTY_HIGH)

113 {
114 ∗(blocks . at (primary_controller_id)−>control_current)←↩

= 0 ;
115 }
116 else
117 {
118 blocks . at (primary_controller_id)−>←↩

updateGeneratorPrimary (∗ p_voltage_ref) ;
119 }
120 }
121 present_sample++;
122 }
123
124 // used to f i nd s u i t a b l e c o n t r o l l e r
125 void SCADA : : setControllerHigh ()
126 {
127 if (number_of_resources > 1)
128 {
129 int external_controller_id ;
130 int battery_id ;
131 int iter ;
132 // loops through a l l r e s ou r c e s to f i nd the ex t e r n l ←↩

connector and
133 // batte ry id .
134 for (iter = 0 ; iter < number_of_resources ; iter++)
135 {
136 if (∗ (blocks . at (iter)−>resource_type) == EXTERNAL_NET←↩

&&
137 ∗(blocks . at (iter)−>←↩

high_low_external_connection_flag) == LOW)
138 {
139 external_controller_id = iter ;
140 }
141 else if (∗ (blocks . at (iter)−>resource_type) == BATTERY←↩

)
142 {
143 battery_id = iter ;
144 }
145 }

APPENDIX C. C/C++ SOURCE CODE 83

146 // ex t e rna l connextor i s used as i n i t i a l c o n t r o l l e r
147 if (primary_controller_id == −1)
148 {
149 primary_controller_id = external_controller_id ;
150 setController (primary_controller_id) ;
151 }
152 // checks power from ex t e rna l connector
153 // i f power i s not enought the batte ry w i l l be used
154 else if (∗ (blocks . at (primary_controller_id)−>←↩

resource_type) == EXTERNAL_NET)
155 {
156 if (∗ blocks . at (primary_controller_id)−>maximum_power ←↩

< 1000)
157 {
158 ∗(blocks . at (primary_controller_id)−>←↩

control_current) = 0 ;
159 ∗(blocks . at (primary_controller_id)−>on_off) = 0 ;
160 primary_controller_id = battery_id ;
161 setController (primary_controller_id) ;
162 }
163 }
164 // checks power a v a i l a b l e on ex t e rna l connector when ←↩

the bat te ry i s used
165 else if (∗ (blocks . at (primary_controller_id)−>←↩

resource_type) == BATTERY)
166 {
167 if (∗ blocks . at (external_controller_id)−>maximum_power←↩

> 1000)
168 {
169 ∗(blocks . at (primary_controller_id)−>←↩

control_current) = 0 ;
170 ∗(blocks . at (primary_controller_id)−>on_off) = 0 ;
171 primary_controller_id = external_controller_id ;
172 setController (primary_controller_id) ;
173 }
174 }
175 }
176 }
177
178 // updates the power to the houses
179 void SCADA : : updateExternalConnections (double ←↩

available_power)
180 {
181 int iter ;
182 int number_of_external_connections = ←↩

nbrOfResourcesOfType (EXTERNAL_NET) ;
183 if (number_of_resources == 1)
184 {

APPENDIX C. C/C++ SOURCE CODE 84

185 ∗(blocks . at (0)−>←↩
power_available_higher_voltage_grid_set) =

186 ∗(blocks . at (0)−>maximum_power) ;
187 }
188 else
189 {
190 double power_external_net = getPowerExternalNet () ;
191 for (iter = 0 ; iter < number_of_resources ; iter++)
192 {
193
194 if (∗ (blocks . at (iter)−>resource_type) == EXTERNAL_NET
195 && ∗(blocks . at (iter)−>←↩

high_low_external_connection_flag) == HIGH)
196 {
197 if (∗ (blocks . at (primary_controller_id)−>←↩

resource_type) == BATTERY
198 && ∗(blocks . at (primary_controller_id)−>←↩

state_of_charge) < 1 .5∗ BATTERY_EMPTY_HIGH
199 | | flag == true)
200 {
201 flag = true ;
202 ∗(blocks . at (iter)−>←↩

power_available_higher_voltage_grid_set) = 0 ;
203 }
204 else if (checkVoltage ())
205 {
206 ∗(blocks . at (iter)−>←↩

power_available_higher_voltage_grid_set) =
207 power_external_net / (←↩

number_of_external_connections − 1) ;
208 }
209 }
210 }
211 }
212 }
213
214 // c a l c u l a t e s the a v a i l a b l e power
215 double SCADA : : getPowerExternalNet ()
216 {
217 int iter ;
218 double accumelated_maximum_power ;
219 for (iter = 0 ; iter < number_of_resources ; iter++)
220 {
221 if ((∗ (blocks . at (iter)−>resource_type) == EXTERNAL_NET ←↩

&& ∗(blocks . at (iter)−>←↩
high_low_external_connection_flag) == LOW) | |

222 ∗(blocks . at (iter)−>resource_type) == GENERATOR | |
223 ∗(blocks . at (iter)−>resource_type) == BATTERY && ∗(←↩

blocks . at (iter)−>state_of_charge) > ←↩

APPENDIX C. C/C++ SOURCE CODE 85

BATTERY_EMPTY_HIGH)
224 {
225 accumelated_maximum_power += ∗(blocks . at (iter)−>←↩

maximum_power) ;
226 }
227 }
228 return accumelated_maximum_power ;
229 }
230
231 // c a l c u l a t e s the number o f r e s ou r c e s o f a g iven type
232 int SCADA : : nbrOfResourcesOfType (int resource_type_in)
233 {
234 int number_of_resources_of_type = 0 ;
235 int iter ;
236 for (iter = 0 ; iter < number_of_resources ; iter++)
237 {
238 if (∗ (blocks . at (iter)−>resource_type) == ←↩

resource_type_in)
239 {
240 number_of_resources_of_type++;
241 }
242 }
243 return number_of_resources_of_type ;
244 }
245
246 // updates the bat te ry i n s t r u c t i o n s
247 void SCADA : : updateBatteryHighVoltage (double price)
248 {
249 int battery_id = findResource (BATTERY , HIGHEST , DEFAULT) ;
250 int price_limit_charge = 240 ;
251 int price_limit_discharge = 320 ;
252 if (number_of_resources > 1)
253 {
254 if (battery_id != primary_controller_id && −1 != ←↩

primary_controller_id && battery_id != −1)
255 {
256
257 if (checkVoltage () && ∗(blocks . at (battery_id)−>←↩

voltage_external) <
258 BATTERY_CHARGE_LEVEL_HIGH && price < ←↩

price_limit_charge)
259 {
260 ∗(blocks . at (battery_id)−>control_current) =
261 −blocks . at (battery_id)−>powerLimitation (0 . 1∗ (←↩

price_limit_charge − price) , 0 . 001) ;
262 }
263 else if (checkVoltage () && ∗(blocks . at (battery_id)−>←↩

voltage_external) >

APPENDIX C. C/C++ SOURCE CODE 86

264 BATTERY_DISCHARGE_LEVEL_HIGH && price > ←↩
price_limit_discharge)

265 {
266 ∗(blocks . at (battery_id)−>control_current) =
267 blocks . at (battery_id)−>powerLimitation (0 . 1∗ (←↩

price − price_limit_discharge) , 0 . 001) ;
268 }
269 else
270 {
271 ∗(blocks . at (battery_id)−>control_current) = 0 ;
272 }
273 }
274 }
275 }
276 // end o f middle vo l t age cono t ro l f un c t i on s ←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
277 // Below are f unc t i on s used to con t r o l house l e v e l
278 // Main loop f o r the c o n t r o l l l e r on house l e v e l
279 void SCADA : : updateSystem (double price)
280 {
281 setController () ;
282 updateControllers () ;
283 updateBattery () ;
284 updateGenerator () ;
285
286 if (present_sample%27 == 0) {
287 updateLoads (0 , 0 , price) ;
288 }
289 present_sample++;
290 }
291
292 // Finds a s u i t a b e l e c o n t r o l l e r
293 void SCADA : : setController ()
294 {
295 // checks i t the re are r e s ou r c e s connected to the ←↩

c o n t r o l l e r
296 if (number_of_resources != 0)
297 {
298 int external_id = findResource (EXTERNAL_NET , HIGHEST , ←↩

DEFAULT) ;
299 int primary_controller_id_battery = findResource (←↩

BATTERY , HIGHEST , DEFAULT) ;
300
301 if (primary_controller_id == −1) // i n i t i a l i z e s a ←↩

c o n t r o l l e r
302 {
303 setUpControllers () ;
304 }

APPENDIX C. C/C++ SOURCE CODE 87

305 else if (∗ (blocks . at (primary_controller_id)−>←↩
resource_type) == EXTERNAL_NET &&

306 ∗(blocks . at (primary_controller_id)−>←↩
power_available_higher_voltage_grid)

307 < EXTERNAL_NET_BAD)
308 {
309 ∗(blocks . at (primary_controller_id)−>control_current)←↩

= 0 ;
310 setUpControllers () ;
311 }
312 else if (∗ (blocks . at (primary_controller_id)−>←↩

resource_type) == BATTERY &&
313 ∗(blocks . at (external_id)−>←↩

power_available_higher_voltage_grid)
314 > EXTERNAL_NET_BAD)
315 {
316 ∗(blocks . at (primary_controller_id)−>control_current)←↩

= 0 ;
317 setUpControllers () ;
318 }
319 }
320 }
321
322 // Checks the cond i t i on on the ex t e rna l net
323 bool SCADA : : checkExternalNet ()
324 {
325 int external_net_id = findResource (EXTERNAL_NET , HIGHEST←↩

, DEFAULT) ;
326 if (∗ (blocks . at (primary_controller_id)−>resource_type) !=←↩

EXTERNAL_NET &&
327 ∗(blocks . at (external_net_id)−>voltage_external) > ←↩

EXTERNAL_NET_BAD)
328 {
329 return true ;
330 }
331 else
332 {
333 return false ;
334 }
335 }
336
337 // f i n d s a s u i t a b l e c o n t o r l l e r
338 void SCADA : : setUpControllers ()
339 {
340 int primary_controller_id_external = findResource (←↩

EXTERNAL_NET , HIGHEST , DEFAULT) ;
341 int primary_controller_id_battery = findResource (BATTERY←↩

, HIGHEST , DEFAULT) ;
342

APPENDIX C. C/C++ SOURCE CODE 88

343 if (∗ (blocks . at (primary_controller_id_external)−>←↩
power_available_higher_voltage_grid) >

344 EXTERNAL_NET_BAD)
345 {
346 primary_controller_id = primary_controller_id_external←↩

;
347 }
348 else if (∗ (blocks . at (primary_controller_id_battery)−>←↩

state_of_charge) >
349 BATTERY_EMPTY | | present_sample == 0)
350 {
351 primary_controller_id = primary_controller_id_battery ;
352 }
353 setController (primary_controller_id) ;
354 }
355
356
357 // checks the cond i t i on on the c on t r o l e r
358 bool SCADA : : checkPrimaryController ()
359 {
360 if (primary_controller_id == −1)
361 {
362 return false ;
363 }
364 else if (∗ (blocks . at (primary_controller_id)−>←↩

power_available_higher_voltage_grid) <
365 EXTERNAL_NET_BAD
366 && ∗(blocks . at (primary_controller_id)−>resource_type) ←↩

== EXTERNAL_NET)
367 {
368 ∗(blocks . at (primary_controller_id)−>control_current) =←↩

0 ;
369 ∗(blocks . at (primary_controller_id)−>on_off) = 0 ;
370 return false ;
371 }
372 else
373 {
374 return true ;
375 }
376 }
377
378 // c a l l s the PI−c o n t r o l l e r
379 void SCADA : : updateControllers ()
380 {
381 if (primary_controller_id != −1)
382 {
383 double control_current_primary =
384 blocks . at (primary_controller_id)−>←↩

updateGeneratorPrimary (∗ p_voltage_ref) ;

APPENDIX C. C/C++ SOURCE CODE 89

385 }
386 }
387
388 // I n s t r u c t i o n s the bat te ry in the house
389 void SCADA : : updateBattery ()
390 {
391 int battery_id = findResource (BATTERY , HIGHEST , DEFAULT) ;
392
393 if (battery_id != primary_controller_id)
394 {
395 if (∗ (blocks . at (battery_id)−>voltage_external) <
396 BATTERY_CHARGE_LEVEL
397 && ∗(blocks . at (battery_id)−>voltage_grid) >
398 ∗p_voltage_ref∗ (1 − ∗p_tolerance_voltage))
399 {
400 ∗(blocks . at (battery_id)−>control_current) = −0.5;
401 }
402 else
403 {
404 ∗(blocks . at (battery_id)−>control_current) = 0 ;
405 }
406 }
407 }
408
409 // Updates the generato r output power
410 void SCADA : : updateGenerator ()
411 {
412 int iter ;
413 for (iter = 0 ; iter < number_of_resources ; iter++)
414 {
415 if (∗ (blocks . at (iter)−>resource_type) == GENERATOR)
416 {
417 blocks . at (iter)−>updateGenerator () ;
418 }
419 }
420 }
421
422 // Manges and updates the loads
423 void SCADA : : updateLoads (double maximum_available_power1 ,
424 double present_consumed_power1 ,
425 double price)
426 {
427 // r e s e t s the delay_counter
428 int i = 0 ;
429 for (i = 0 ; i <number_of_resources ; i++)
430 {
431 if (∗ blocks . at (i)−>consumed_power_profile == ←↩

CONSUMER_ON
432 && blocks . at (i)−>delay_counter == 0)

APPENDIX C. C/C++ SOURCE CODE 90

433 {
434 blocks . at (i)−>consumer_flag = true ;
435 }
436 else if (blocks . at (i)−>delay_counter > ∗blocks . at (i)−>←↩

maximum_delay)
437 {
438 blocks . at (i)−>consumer_flag = false ;
439 blocks . at (i)−>delay_counter = 0 ;
440 }
441 }
442
443 // Turns o f f l oads that have run through operation_time ←↩

and r e s e t s the counter
444 for (i = 0 ; i <number_of_resources ; i++)
445 {
446 if (∗ blocks . at (i)−>resource_type == LOAD &&
447 blocks . at (i)−>operation_time_counter > ∗blocks . at (←↩

i)−>operation_time)
448 {
449 ∗(blocks . at (i)−>on_off) = 0 ;
450 blocks . at (i)−>consumer_flag = false ;
451
452 blocks . at (i)−>operation_time_counter = 0 ;
453 }
454 }
455
456 // c a l c u l a t e s the a v a i l a b l e and consumed power
457 double maximum_available_power = ←↩

getMaximumAvailablePower () ;
458 double present_consumed_power = getPresentConsumedPower←↩

() ;
459
460 // checks vo l tage l e v e l , steady s t a t e adn i f the re i s
461 // power a v a i l a b l e
462 if (voltageAtSteadyState () && checkVoltage () &&
463 checkPower (maximum_available_power , ←↩

present_consumed_power))
464 {
465 // f i n d s nest load to turn on , i f the re are any
466 int load_id = findResource (LOAD , HIGHEST , OFF , 0 , ←↩

price) ;
467 if (load_id != −1)
468 {
469 double power_from_load = ∗(p_voltage_ref) ∗
470 ∗(p_voltage_ref) / ∗(blocks . at (load_id)−>←↩

resistance) ;
471 // turns i t on i f the re i s enough power
472 if (power_from_load + present_consumed_power <
473 maximum_available_power)

APPENDIX C. C/C++ SOURCE CODE 91

474 {
475 turnOn (load_id) ;
476 blocks . at (load_id)−>delay_counter = 0 ;
477 }
478 }
479 }
480 // turns o f lowest p r i o r i t y load i f g r i d cond i t i on s ←↩

changes
481 else if (maximum_available_power < present_consumed_power←↩

)
482 {
483 int load_id_off = findResource (LOAD , LOWEST , ON) ;
484 if (load_id_off != −1)
485 {
486 turnOff (load_id_off) ;
487 }
488 }
489 }
490
491 // checks whether the re are power a v a i l a b l e or not
492 bool SCADA : : checkPower (double maximum_available_power ,
493 double present_consumed_power)
494 {
495 return (maximum_available_power > (1+∗p_tolerance_power)←↩

∗
496 present_consumed_power) ;
497 }
498
499 // checks the vo l tage l e v e l on the g r id
500 bool SCADA : : checkVoltage ()
501 {
502 if (∗ (blocks . at (primary_controller_id)−>voltage_grid) <
503 (1 +∗p_tolerance_voltage) ∗ ∗p_voltage_ref &&
504 ∗(blocks . at (primary_controller_id)−>voltage_grid) >
505 (1 − ∗p_tolerance_voltage) ∗ ∗p_voltage_ref)
506 {
507 return true ;
508 }
509 else
510 {
511 return false ;
512 }
513 }
514
515
516
517 // Turns o f f r e s ou r c e s
518 void SCADA : : turnOff (int resource_id)
519 {

APPENDIX C. C/C++ SOURCE CODE 92

520 ∗(blocks . at (resource_id)−>on_off) = 0 ;
521 }
522
523 // Turns on r e s ou r c e s
524 void SCADA : : turnOn (int resource_id)
525 {
526 ∗(blocks . at (resource_id)−>on_off) = 1 ;
527 }
528
529 // c on f i g u r e s the c o n t r o l l e r
530 void SCADA : : setController (int controller_id)
531 {
532 ∗(blocks . at (controller_id)−>on_off) = 1 ;
533 (blocks . at (controller_id)−>setController (true)) ;
534
535 }
536
537 // c a l c u l a t e s the maximum ava i l a b l e power on the g r id
538 double SCADA : : getMaximumAvailablePower ()
539 {
540 int battery_id = findResource (BATTERY , HIGHEST , DEFAULT) ;
541 if (battery_id != −1){
542 if (∗ (blocks . at (battery_id)−>voltage_external) < ←↩

BATTERY_EMPTY)
543 {
544 charge_battery_now = true ;
545 }
546 else if (∗ (blocks . at (battery_id)−>voltage_external) > ←↩

200)
547 {
548 charge_battery_now = false ;
549 }
550 }
551
552 int i ;
553 double accumelated_maximum_power = 0 ;
554 for (i = 0 ; i<number_of_resources ; i++)
555 {
556 if (∗ (blocks . at (i)−>resource_type) == GENERATOR | |
557 ∗(blocks . at (i)−>resource_type) == EXTERNAL_NET | |
558 (∗ (blocks . at (i)−>resource_type) == BATTERY
559 && ∗(blocks . at (i)−>voltage_external) >
560 BATTERY_EMPTY && primary_controller_id == i
561 && charge_battery_now == false) &&
562 ∗(blocks . at (i)−>on_off) == 1)
563 {
564 accumelated_maximum_power += ∗(blocks . at (i)−>←↩

maximum_power) ;
565 }

APPENDIX C. C/C++ SOURCE CODE 93

566 }
567 return accumelated_maximum_power ;
568 }
569
570 // r e tu rn s the cur rent consumed power
571 double SCADA : : getPresentConsumedPower ()
572 {
573 int i ;
574 double accumelated_generated_power = 0 ;
575 for (i = 0 ; i<number_of_resources ; i++)
576 {
577 if ((∗ (blocks . at (i)−>resource_type) == LOAD | |
578 (∗ (blocks . at (i)−>resource_type) == BATTERY && ←↩

primary_controller_id != i))
579 && ∗(blocks . at (i)−>on_off) == 1)
580 {
581 if (∗ (blocks . at (i)−>resource_type))
582 {
583 accumelated_generated_power −= ∗(blocks . at (i)−>←↩

power_out) ;
584
585
586 }
587 else
588 {
589 accumelated_generated_power += ∗(blocks . at (i)−>←↩

power_out) ;
590 }
591 }
592 }
593 return accumelated_generated_power ;
594 }
595
596 // checks i f the vo l tage l e v e l i s in steady s t a t e
597 bool SCADA : : voltageAtSteadyState ()
598 {
599 if (primary_controller_id != −1)
600 {
601 derivative_approximation_vector [0] = ∗(blocks . at (←↩

primary_controller_id)−>voltage_grid) ;
602 double derivative_approximation =
603 (derivative_approximation_vector [0]−←↩

derivative_approximation_vector [1]) /
604 (∗ (blocks . at (primary_controller_id)−>←↩

sample_period)) ;
605
606
607 if (derivative_approximation <0.01 && ←↩

derivative_approximation> −0.01)

APPENDIX C. C/C++ SOURCE CODE 94

608 {
609 derivative_approximation_vector [1] = ←↩

derivative_approximation_vector [0] ;
610 return true ;
611 }
612 derivative_approximation_vector [1] = ←↩

derivative_approximation_vector [0] ;
613 }
614 return false ;
615 }
616
617 // f i n d s r e s ou r c e o f a g iven type
618 int SCADA : : findResource (int resource_type_in , int high_low←↩

, int on_off)
619 {
620 int i ;
621 int temporary_high_priority = 5 ;
622 int temporary_low_priority = −1;
623 int resource_id = −1;
624 for (i = 0 ; i < number_of_resources ; i++)
625 {
626 if (∗ (blocks . at (i)−>resource_type) == ←↩

resource_type_in &&
627 (∗ (blocks . at (i)−>on_off) == on_off | | on_off == ←↩

DEFAULT))
628 {
629 if (high_low == HIGHEST) //
630 {
631 if (∗ (blocks . at (i)−>priority) < ←↩

temporary_high_priority)
632 {
633 resource_id = i ;
634 temporary_high_priority= (int) ∗(blocks←↩

. at (i)−>priority) ;
635 }
636 }
637 else
638 {
639 if (∗ (blocks . at (i)−>priority) > ←↩

temporary_low_priority)
640 {
641 resource_id = i ;
642 temporary_low_priority= (int) ∗(blocks .←↩

at (i)−>priority) ;
643 }
644 }
645
646 }
647 }

APPENDIX C. C/C++ SOURCE CODE 95

648 return resource_id ;
649 }
650
651 // f i n d s next load to turn on , c on s i d e r i ng p r i c e l im i t s
652 int SCADA : : findResource (int resource_type_in , int high_low←↩

,
653 int on_off , int consumer_profile , double price)
654 {
655 int i ;
656 int temporary_high_priority = 5 ;
657 int temporary_low_priority = −1;
658 int resource_id = −1;
659 for (i = 0 ; i < number_of_resources ; i++)
660 {
661 if (∗ (blocks . at (i)−>resource_type) == LOAD)
662 {
663 // cout << " f l a g : " << blocks . at (i)−>consumer_flag <<←↩

endl ;
664 }
665
666 if (∗ (blocks . at (i)−>resource_type) == resource_type_in ←↩

&&
667 (∗ (blocks . at (i)−>on_off) == on_off | | on_off == DEFAULT←↩

) &&
668 (blocks . at (i)−>consumer_flag))
669 {
670 if (high_low == HIGHEST)
671 {
672 if (∗ (blocks . at (i)−>priority) < ←↩

temporary_high_priority)
673 {
674 if (∗ (blocks . at (i)−>price_limit) > price | |
675 ∗(blocks . at (i)−>price_limit) == −1 | |
676 (double) blocks . at (i)−>delay_counter >
677 ∗blocks . at (i)−>maximum_delay − 1)
678 {
679
680 resource_id = i ;
681 temporary_high_priority= (int) ∗(blocks . at (i)−>←↩

priority) ;
682 }
683 }
684 }
685 else
686 {
687 if (∗ (blocks . at (i)−>priority) > ←↩

temporary_low_priority)
688 {
689 resource_id = i ;

APPENDIX C. C/C++ SOURCE CODE 96

690 temporary_low_priority= (int) ∗(blocks . at (i)−>←↩
priority) ;

691 }
692 }
693
694 }
695 }
696 return resource_id ;
697
698 }
699
700 // determines the number o f r e s ou r c e s o f a g iven type
701 int SCADA : : getNumberOfUnits (int resource_type , int on_off)
702 {
703 int counter , iter ;
704 for (iter = 0 ; iter < number_of_resources ; iter++)
705 {
706 if (∗ (blocks . at (iter)−>resource_type) == resource_type
707 && ∗(blocks . at (iter)−>on_off) == on_off)
708 {
709 counter++;
710 }
711 }
712 return counter ;
713 }

C.3 Block

Listing C.5: block.h
1 #include "Pi.h"
2 class Block
3 {
4 public :
5 Block (void) ;
6 void initBlock (double∗ configuration_vector ,
7 int configuration_vector_size ,
8 int signals_in_size ,
9 int signals_out_size) ;

10 void get (double∗ dymola_return_vector , int ←↩
dymola_return_vector_size) ;

11 void set (double∗ dymola_set_vector , int ←↩
dymola_set_vec_size) ;

12 void updateBlock (double voltage_ref) ;
13
14 void setController (bool set) ;
15 void Block : : updateGenerator () ;

APPENDIX C. C/C++ SOURCE CODE 97

16 double voltageGrid (void) ;
17 double Block : : powerLimitation (double control_current , ←↩

double epsilon) ;
18
19 double∗ signals_out ;
20 double∗ signals_in ;
21 double∗ configuration_vector ;
22
23 int configuration_vector_size ;
24 int signals_in_size ;
25 int signals_out_size ;
26
27 // Set up po i n t e r s
28 // c on f i gu r a t i on vec to r
29 double ∗resource_type , ∗priority , ∗maximum_current , ∗k , ←↩

∗Ti , ∗Tt , ∗y_min ;
30 double ∗y_max , ∗sample_period , ∗←↩

high_low_external_connection_flag ;
31 double ∗price_limit , ∗maximum_delay , ∗operation_time ;
32 // s i g n a l s out
33 double ∗voltage_grid , ∗power_out , ∗voltage_external , ∗←↩

state_of_charge ;
34 double ∗maximum_power , ∗resistance , ∗←↩

power_available_higher_voltage_grid ;
35 double ∗consumed_power_profile ;
36 // s i g n a l s in
37 double ∗on_off , ∗control_current , ∗←↩

power_available_higher_voltage_grid_set ;
38 double updateGeneratorPrimary (double voltage_ref) ;
39 double updateGeneratorSecondary (double control_current) ;
40
41 // i n t e r n a l v a r i a b l e s
42 bool consumer_flag ;
43 int delay_counter ;
44 int operation_time_counter ;
45
46 private :
47 // c o n t r o l l e r v a r i a b l e s
48 Pi∗ pi ;
49 bool controller_in_use ;
50
51 void updateExternalConnector (double voltage_ref) ;
52 double controllerUpdatePrimary (double voltage_ref) ;
53 double controllerUpdateSecondary (double control_current)←↩

;
54 } ;

Listing C.6: block.cpp

APPENDIX C. C/C++ SOURCE CODE 98

1 #include "Block.h"
2 #include <iostream>
3
4 #define LOAD 0
5 #define GENERATOR 1
6 #define BATTERY 2
7 #define EXTERNAL_NET 3
8 #define ON 1
9 #define OFF 0

10 using namespace std ;
11
12 Block : : Block (void)
13 {
14 controller_in_use = false ;
15 }
16
17 void Block : : initBlock (double∗ configuration_vector_in ,
18 int configuration_vector_size_in ,
19 int signals_in_size_in ,
20 int signals_out_size_in)
21 {
22 this−>configuration_vector_size = ←↩

configuration_vector_size_in ;
23 this−>signals_in_size = signals_in_size_in ;
24 this−>signals_out_size = signals_out_size_in ;
25
26 signals_out = (double ∗) malloc (sizeof (double) ∗←↩

signals_out_size_in) ;
27 signals_in = (double ∗) malloc (sizeof (double) ∗←↩

signals_in_size_in) ;
28 configuration_vector = (double ∗) malloc (sizeof (double) ∗←↩

configuration_vector_size_in) ;
29
30 int i ;
31 for (i = 0 ; i < configuration_vector_size ; i++)
32 {
33 ∗(configuration_vector+i) = ∗(configuration_vector_in+←↩

i) ;
34 }
35
36 for (i = 0 ; i < signals_in_size ; i++)
37 {
38 ∗(signals_in + i) = 0 ;
39 }
40
41 for (i = 0 ; i < signals_out_size ; i++)
42 {
43 ∗(signals_out + i) = 0 ;
44 }

APPENDIX C. C/C++ SOURCE CODE 99

45
46 // con f i gu r e the po i n t e r s c on f i gu r a t i on vec to r
47 resource_type = (configuration_vector+0) ;
48 priority = (configuration_vector+1) ;
49 maximum_current = (configuration_vector+2) ;
50 k = (configuration_vector+3) ;
51 Ti = (configuration_vector+4) ;
52 Tt = (configuration_vector+5) ;
53 y_min = (configuration_vector+6) ;
54 y_max = (configuration_vector+7) ;
55 sample_period = (configuration_vector+8) ;
56 high_low_external_connection_flag = (←↩

configuration_vector+9) ;
57 price_limit = (configuration_vector+10) ;
58 maximum_delay = (configuration_vector+11) ;
59 operation_time = (configuration_vector+12) ;
60
61 // con f i gu r e the po i n t e r s s i g n a l s out
62 voltage_grid = (signals_out+0) ;
63 power_out = (signals_out+1) ;
64 voltage_external = (signals_out+2) ;
65 state_of_charge = (signals_out+3) ;
66 maximum_power = (signals_out+4) ;
67 resistance = (signals_out+5) ;
68 power_available_higher_voltage_grid = (signals_out+6) ;
69 consumed_power_profile = (signals_out+7) ;
70
71 // con f i gu r e the po i n t e r s s i g n a l s in
72 on_off = (signals_in+0) ;
73 control_current = (signals_in+1) ;
74 // −−−−−−−−−−
75 power_available_higher_voltage_grid_set = (signals_in+2)←↩

;
76
77 // i i n t e r n a l v a r i a b l e s
78 consumer_flag = false ;
79 delay_counter = 0 ; // i n i t i a l i z e de lay counter to 0
80 operation_time_counter = 0 ;
81 }
82
83 // s t o r e s the value o f s i gna l s_ in to the ←↩

dymola_return_vecor and
84 // increments the opera t i on and delay time counter s
85 void Block : : get (double∗ dymola_return_vector , int ←↩

dymola_return_vector_size)
86 {
87 // update the de lay and poera t i on time
88 if (∗ resource_type == LOAD)
89 {

APPENDIX C. C/C++ SOURCE CODE 100

90 if (∗ on_off == ON)
91 {
92 operation_time_counter++; // increment the opera t i on←↩

time counter ;
93 }
94 else if (consumer_flag == true)
95 {
96 delay_counter++; // increment the opera t i on ←↩

time counter
97 }
98 }
99 int i ;
100 for (i = 0 ; i < dymola_return_vector_size ; i++)
101 {
102 ∗(dymola_return_vector + i) = ∗(signals_in+i) ;
103 }
104 }
105
106 // s t o r e s the value o f the dymola_set_vector in to the ←↩

vec to r s igna l s_out
107 void Block : : set (double∗ dymola_set_vector , int ←↩

dymola_set_vector_size)
108 {
109 int i ;
110 for (i = 0 ; i < dymola_set_vector_size ; i++)
111 {
112 ∗(signals_out + i) = ∗(dymola_set_vector + i) ;
113 }
114 }
115
116 // r e tu rn s the con t r o l cur rent f o r the gene ra to r s
117 double Block : : updateGeneratorPrimary (double voltage_ref)
118 {
119 double epsilon = 10 ; // vo l tage l im i t f o r the ←↩

powerLimitat ion func t i on
120 ∗control_current = pi−>update (∗ voltage_grid , ←↩

voltage_ref) ; // c a l c u l a t e c on t r o l s i g n a l
121 ∗control_current = powerLimitation (∗ control_current , ←↩

epsilon) ; // l im i t c on t r o l s i g n a l
122 return ∗control_current ;
123 }
124
125 // i n i t i a l i z e s a new c o n t r o l l e r
126 void Block : : setController (bool set)
127 {
128 pi = new Pi () ;
129 pi−>init (∗k ,∗ Ti ,∗ Tt ,∗ y_min ,∗ y_max , ∗sample_period) ;
130 controller_in_use = set ;
131 ∗on_off = 1 ;

APPENDIX C. C/C++ SOURCE CODE 101

132 }
133
134
135 // return the vo l tage o f the g r id
136 double Block : : voltageGrid ()
137 {
138 return ∗voltage_grid ;
139 }
140
141 // Limits the c on t r o l cur rent to s a t i s f y the maximum power←↩

cond i t i on
142 // ep s i l o n i s the vo l tage l im i t
143 double Block : : powerLimitation (double control_current , ←↩

double epsilon)
144 {
145 if (∗ voltage_grid<epsilon && ∗voltage_grid>−epsilon)
146 {
147 return control_current ;
148 }
149 else if (control_current > (∗ maximum_power) /(∗←↩

voltage_grid))
150 {
151 return (∗ maximum_power) /(∗ voltage_grid) ;
152 }
153 else if (control_current < −(∗maximum_power) /(∗←↩

voltage_grid))
154 {
155 return −(∗maximum_power) /(∗ voltage_grid) ;
156 }
157 return control_current ;
158 }
159
160 // updates the generator by outputs the produced power to ←↩

the g r id
161 void Block : : updateGenerator ()
162 {
163 if (∗ voltage_grid < 0.01 && ∗voltage_grid > −0.01) {
164 ∗control_current = powerLimitation (∗ maximum_current←↩

, 0 . 0 0 0 1) ;
165 }else
166 {
167 ∗control_current = ∗maximum_power/ ∗voltage_grid ;
168 ∗control_current = powerLimitation (∗ control_current , ←↩

0 .0001) ;
169 }
170 }

APPENDIX C. C/C++ SOURCE CODE 102

C.4 Pi controller

Listing C.7: pi.h
1 class Pi
2 {
3 public :
4 Pi (void) ;
5 void init (double k , double ti , double tt ,
6 double y_min , double y_max , double sample_period←↩

) ;
7 double update (double voltage_measure , double voltage_ref←↩

) ;
8 ~Pi (void) ;
9

10 private :
11 double I ; // i n t e g r a t ed e r r o r
12 double k , Ti ; // p ropo ra t i ona l ga in and i n t e g r a t o r time ←↩

constant
13 double Tt ; // time constant f o r an t i windup
14
15 double y_min , y_max ; //max and min value f o r actuator
16 double sample_period ; // sample per iod o f c o n t r o l l e r
17 } ;

Listing C.8: pi.cpp
1 #include "Pi.h"
2 #include <iostream>
3 using namespace std ;
4
5 // I n i t i a l i z i n g a l l c on t r o l parameters to zero .
6 Pi : : Pi (void)
7 {
8 this−>I = 0 ; // i n t e g r a t ed e r r o r
9 this−>k = 0 ; // propo ra t i ona l ga in

10 this−>Ti = 0 ; // i n t e g r a t o r time constant
11 this−>Tt = 0 ; // time constant f o r an t i windup
12
13 this−>y_min = 0 ; //max value f o r actuator
14 this−>y_max = 0 ; //min value f o r actuator
15 this−>sample_period = 0 ; // sample per iod o f c o n t r o l l e r
16 }
17
18 // Sets a l l the c on t r o l parameters .
19 void Pi : : init (double k , double Ti , double Tt , double y_min←↩

,
20 double y_max , double sample_period)

APPENDIX C. C/C++ SOURCE CODE 103

21 {
22 this−>k = k ;
23 this−>Ti = Ti ;
24 this−>Tt = Tt ;
25 this−>y_min = y_min ;
26 this−>y_max = y_max ;
27 this−>sample_period = sample_period ;
28 }
29
30 // Cal led to re turn the con t r o l cur r ent .
31 double Pi : : update (double voltage_measure , double ←↩

voltage_ref)
32 {
33 double y , temp , error ;
34 error = voltage_ref−voltage_measure ;
35 temp = k∗(error+(sample_period/Ti) ∗I) ;
36
37 // ant i windup
38 if (temp>y_max)
39 {
40 y = y_max ;
41 }
42 else if (temp<y_min)
43 {
44 y = y_min ;
45 }
46 else
47 {
48 y = temp ;
49 }
50 I = I + error + (y−temp) /(k∗Tt) ;
51 return y ;
52 }
53
54 // Destructor not used .
55 Pi : : ~ Pi (void)
56 {
57 }

Bibliography

[1] J. Cook, D. Nuccitelli, S. A. Green, M. Richardson, B. Winkler, R. Paint-
ing, R. Way, P. Jacobs, and A. Skuce, “Quantifying the consensus on
anthropogenic global warming in the scientific literature,” ENVIRON-
MENTAL RESEARCH LETTERS, 2013.

[2] U. D. of Energy, The Smart Grid: An Introduction. Office of Electricity
Delivery and Energy Reliability, 2008.

[3] W. Zhang, H. Liang, Z. Bin, W. Li, and R. Guo, “Review of dc technology
in future smart distribution grid,” Innovative Smart Grid Technologies -
Asia (ISGT Asia), IEEE, 2012.

[4] A. Yoza, K. Uchida, A. Yona, and T. Senjyu, “Optimal operation of
controllable loads in dc smart house with ev,” IEEE , Renewable Energy
Research and Applications International Conference, pp. 1–6, 2012.

[5] OECD, ed., OECD Factbook 2011-2012: Economic, Environmental and
Social Statistics. Oecd Factbook, Brookings Inst Press, 2012.

[6] IAEA, Nuclear Power Reactors in the World 2012 Edition. IAEA, 2012.
ISBN 978-92-0-132310-1.

[7] “Iea clean coal centre’s coalpower database.”

[8] I. A. E. A. (IAEA), “Iaea pris (power reactor information system).”

[9] M. Alaküla, L. Gertmar, and O. Samuelsson, Elenergiteknik. Depart-
ment of Industrial Electrical Engineering and Automation, Lund Univer-
ity, 2011.

[10] H. Pidd, “India blackout leave 700 million without power,” The Guardian,
July 2012.

[11] “U.s. energy information administration - electric power monthly,” 2013.

[12] K. Moslehi and R. Kumar, “Smart grid - a realiability perspective,” Smart
Grid, IEEE Transactions, 2010.

[13] ABB, “Gotland - fullskalig testplats för smarta el-
nät.” http://www.abb.com/cawp/db0003db002698/
be5d45ce73178831c125788500384649.aspx, May 2013.

104

BIBLIOGRAPHY 105

[14] “Smart grid gotland.” http://www.smartgridgotland.se/, May 2013.

[15] CCI, “Clinton climate initiative.” http://www.clintonfoundation.org/main/our-
work/ by-initiative/clinton-climate-initiative/programs/c40-cci-cities/
climate-positive-development-program.html, May 2013.

[16] ABB, “Norra djurgårdsstaden.” http://www.abb.com/cawp/
db0003db002698/2059d29c34a9f600c12578fb003d24e7.aspx, May 2013.

[17] S. Coughlin, “Smart grid: A smart idea for america?,” IEEE, highlighted
articles.

[18] S. Bengtlars and E. Lidén, “Risk and vulnerability analyses for smart
grids,” Master’s thesis, Uppsala Univeristy, 2012.

[19] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Press, 2004. ISBN 0-471-471631.

[20] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Pren-
tice Hall P T R, 2nd ed., March 1988. ISBN 0-13-110370-9.

[21] J. Svensson, Active Distributed Power Systems. Lund University, 2006.
ISBN 91-88934-43-8.

[22] M. Multin, F. Allerding, and H. Schmeck, “Integration of electric vehicles
in smart homes - an ict-based solution for v2g scenarios,” IEEE PES
Innovative Smart Grid Technologies, pp. 1–8, 2012.

[23] J. F. Manwell, J. G. MacGowan, and A. L. Rogers, Wind energy explained
- theory, design and application. Wiley, second ed., 2009.

[24] T. colorado River Commission of Nevada, “World fossil fuel reserves and
projected depletion,” 2002.

[25] K. J. Astrom and T. Hagglund, Advanced PID Control. ISA- The Instru-
mentation, Systems, and Automation Society, 2006. ISBN 1-55617-942-1.

