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Abstract

Quantum entanglement between electrons in nanostructures is a key concept of quantum
information still waiting to be experimentally demonstrated. In this master’s thesis we
present and analyze the full counting statistics of the charge transfer of a sextuple quan-
tum dot system which works as both entangler and detector of spatially separated electrons.
Under certain resonance conditions the system operates in the co-tunneling regime, limiting
environment-induced decoherence. By means of a generalized Schrieffer-Wolff transforma-
tion the co-tunneling dynamics are obtained from an effective Hamiltonian. Based on these
results, a master equation is derived for the reduced density operator of the open sextu-
ple dot system and used to compute the full counting statistics. We find that the system
displays quantum coherent non-local transport properties and violates Bell’s inequality. Con-
sequently, the sextuple dot system could potentially be used to experimentally demonstrate
entanglement between electrons as intended.
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Chapter 1

Introduction

The development of quantum mechanics during the last century was one of the most startling
paradigm shifts in the history of physics. Describing phenomena where classical physics
failed, quantum mechanics improved humanity’s understanding of the fundamental laws of
our world and laid the foundation for almost all modern physics.

Even though the predictions of quantum mechanics are incredibly consistent with experi-
mental results, they sometimes contradict our own intuition of how we think the world works.
Quantum entanglement is one of the most intriguing phenomena that appears in quantum
mechanics and lacks any equivalent in classical physics. Entanglement is a concept where
the properties of two or more particles are related to each other, such that knowledge of one
entangled particle’s property also reveals information about the other(s). This property can,
for instance, be the spin, polarization or position of the particles. At first glance, this phe-
nomenon may seem plain, but it turns out that entanglement has far-reaching consequences
for one of the fundamental principles of classical physics, viz. local realism.

Based on the underlying contradiction between quantum mechanics and local realism,
Einstein, Podolsky and Rosen questioned the actual effects of entanglement through the
EPR paradox presented in 1935 [1]. Ever since, entanglement and its consequences have
been subject of countless studies. In 1964, Bell showed [2] that in any local realistic theory
quantum correlations between separated physical systems are bounded by an inequality,
which can be violated if the predictions of quantum mechanics are valid. This inequality
can be used to experimentally test if local realism or quantum mechanics is the superior
theory consistent with our physical reality. Since the 1970s, a number of such experiments
have been conducted, including the ones by Aspect et al. [3] and Zeilinger et al. [4–6]. The
results supported quantum mechanics and the actual existence of quantum non-locality due
to quantum entanglement.

Nevertheless, entanglement between electrons in nanostructures has not yet been demon-
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strated. There are plenty of challenges associated with such experiments compared to those
involving photons. Two typical kinds of entanglement between electrons are spin-entangled
electrons and spatially entangled electrons. While spin is difficult to measure along an arbi-
trary direction, spatially entangled electrons are much more sensitive to decoherence due to
a stronger coupling to the environment [7].

A general knowledge and understanding of entanglement between electrons is nonethe-
less important for the field of quantum information. In this thesis a new structure is pre-
sented and analyzed with the aim to make it possible to demonstrate entanglement between
electrons experimentally. The structure is based on entanglement between spatially sepa-
rated electrons and is operating in the co-tunneling regime. This regime makes it possible
to minimize the time from production to detection of the entanglement. Consequently,
environment-induced decoherence is limited.

In Ch. 2, quantum entanglement is explained in more detail as well as the principle of
local realism and how these two concepts are related through Bell’s inequality. The sextuple
dot system is presented in Ch. 3 and its Hamiltonian is defined mathematically. In Ch. 4,
a generalized Schrieffer-Wolff transformation is used to extract the interesting co-tunneling
dynamics of the system. These results are used in Ch. 5 to derive a master equation in
Lindblad form that describes the time evolution of the reduced density operator of the open
sextuple dot system. From the master equation, all currents and fluctuations are determined
using the concept of full counting statistics in Ch. 6. Finally, we show that the system
displays quantum coherent non-local transport properties and violates Bell’s inequality in
Ch. 7. A final discussion and conclusion is provided in Ch. 8.
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Chapter 2

Quantum Entanglement and Local
Realism

In this chapter, a brief introduction is given in Sec. 2.1 to quantum entanglement, which is
one of the key concepts in this thesis. In Sec. 2.2, the quantum mechanical violation of local
realism is discussed. Experiments between entangled photons and electrons are described in
Sec. 2.3 and 2.4, respectively.

2.1 Entanglement of a Singlet Spin State

The concept of quantum entanglement and its inconsistency with local realism is most clearly
illustrated by considering a singlet spin state of two electrons. This example was originally
formulated by Bohm and Aharonov in 1957 [8], and later used by Bell in his original formu-
lation of Bell’s inequality in 1964 [2].

A singlet state consists of two electrons, in the following denoted by A and B, that have
a total spin equal to zero, which means that one of the electrons has spin up and the other
has spin down. However, it is unknown which electron has which spin orientation. Therefore
the total state is a superposition of the two possible combinations: particle A has spin up
and particle B spin down, or particle A has spin down and particle B spin up. In Dirac
notation, this state can be written as

|Ψ〉 =
1√
2

(|↑〉A|↓〉B − |↓〉A|↑〉B) (2.1)

where |↑〉A denotes that particle A has spin up and so on. The minus sign is a consequence of
the anti-symmetry of fermionic wavefunctions. The prefactor 1√

2
is a normalization constant.
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Let’s now imagine that the two singlet electrons are spatially separated by an arbitrary
large distance. By using some measurement devices, such as Stern-Gerlach magnets, the
spin of each electron can be measured separately along some arbitrary direction. Due to the
properties of the singlet state, the outcome of the measurements will be anti-correlated if
the basis is the same for the two measurements.

This means that we know the spin orientation of particle B already at the moment we
measure the spin of particle A, and vice versa. At first glance, this might not seem to be an
intriguing phenomenon, because the spin orientation of each particle may have been assigned
already at the moment the particles were separated.

However, the remarkable result appears due to the possibility of having different bases
for the measurements of the spin orientations. The correlation between the outcome of the
measurements on each electron’s spin will then depend on the choice of bases. This choice
of bases can be made long after the two particles were separated. It is therefore reasonable
to assume that the particles do not know what the outcome of the measurements will be at
the moment they are separated.

Nonetheless, particle B will immediately “know” the outcome of the first measurement on
particle A, even though the two particles are separated by an arbitrary large distance. It is
this peculiar result of entanglement that is inconsistent with local realism, which is discussed
in the next section.

More generally, entanglement can involve other properties than spin, such as polarization
or position. The former is typically used in experiments involving entangled photons. Math-
ematically speaking, an entangled state is the opposite of a separable state. This means that
an entangled state cannot be written as a product of pure states, i.e., the local state of each
particle. The singlet state in Eq. (2.1) is just one example of this.

2.2 Local Realism, EPR Paradox and Bell’s Inequality

The peculiar results of entanglement were questioned by Einstein, Podolsky and Rosen in
1935 through the so-called EPR paradox [1]. They claimed that quantum mechanics was
an incomplete theory since it violates local realism, which they considered to be a superior
principle of our physical reality.

Local realism combines two different concepts. First, it includes locality, which means
that measurements on space-like separated events cannot affect each other. For instance,
the outcomes of the two Stern-Gerlach magnets cannot affect each other until at least the
time it takes for light to travel between them has elapsed. Second, it includes reality, which
means that there exists an external reality with definite properties. These properties are not
dependent on whether we observe them or not.
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As pointed out in the EPR paradox, the concept of entanglement has far-reaching conse-
quences that are inconsistent with local realism [9]. Consequently, in the EPR paradox it
was argued that quantum mechanics was an incomplete theory missing some hidden vari-
ables. These hidden variables would, according to EPR, complete quantum mechanics and
make it finally consistent with local realism.

For a long time, it was not clear if it was possible at all to experimentally test if local
realism really prevails over quantum mechanics as EPR claimed. Several attempts were made
to theoretically prove that any hidden variable theory would be inconsistent with quantum
mechanics. The most famous one was probably von Neumann’s impossibility proof in 1932
[10], three years before the EPR paradox was presented. However, Bell proved in 1966 [11]
that von Neumann’s assumptions were not valid for non-commuting operators, which are
exactly the ones of interest. Already in 1952, Bohm had presented [12, 13] a local hidden
variable theory that contradicted von Neumann’s proof.

In 1964, Bell finally showed [2] that in any local realistic theory quantum correlations
between separated physical systems are bounded by an inequality. Quantum mechanics, on
the other hand, predicts that this inequality can be violated. This insight made it possible
to experimentally test if local realism prevails over quantum mechanics. This paved the way
for a whole new series of experiments from the 1970s up until today.

While Bell’s inequality concerned the singlet state specifically, a more generalized inequal-
ity was presented by Clauser, Horne, Shimony and Holt in 1969 [14]. In the so-called CHSH
inequality, named after the four authors, one considers two measurements on two different
particles. The probabilities to get different combinations of outcomes in the two measure-
ments are denoted by P++, P+−, P−+ and P−−, where for instance P++ is the probability
to get spin up in both measurements in the example with the singlet state. The so-called
quantum correlation, denoted by E, is defined by

E =
P++ + P−− − P+− − P−+

P++ + P−− + P+− + P−+

(2.2)

The probabilities will of course depend on the choice of bases. Hence, for each experimental
setup where θ1 is the angle of the basis of the first measurement and θ2 is the angle of the
basis of the second measurement, a certain expectation value Eθ1θ2 is obtained. The CHSH
inequality is constructed by conducting four experiments with different setups, where two
different bases θ1 and θ′1 are used for the first measurement and another two θ2 and θ′2 are
used for the second measurement. Every experiment combines one of the two former bases
with one of the two latter. The Bell parameter is then defined by

S = |Eθ1θ2 − Eθ1θ′2 + Eθ′1θ2 + Eθ′1θ′2| (2.3)
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Based on local realism, this quantity can never exceed a maximum value of 2. However,
quantum mechanics predicts that this quantity can reach values as high as 2

√
2. This

generalized formulation of Bell’s inequality will be used in Ch. 7 to show that the sextuple
dot system violates local realism, which demonstrates the actual existence of entanglement.

2.3 Experiments Involving Photons

As already mentioned, Bell’s inequality opened up a whole new field of research in experimen-
tal physics. Since the 1970s, a number of experiments have been conducted with entangled
photons to show that local realism can be violated. However, the experiments required
a clever design to show non-local effects and to avoid different kinds of loophole-inducing
assumptions.

The first experiment was performed by Freedman and Clauser in 1972 [15] and the results
were in favor of quantum mechanics. In 1973, Holt and Pipkin conducted an experiment
that was in favor of local realism, but Clauser found in 1976 that this was an effect of stresses
in the optics [9].

Later experiments aimed to eliminate different kinds of loophole-inducing assumptions.
For instance, the measurements had to be performed outside each other’s future light cones
to exclude the locality principle as a necessary assumption. Experiments by Aspect et al. in
the 1980s tried to close this so-called locality loophole [3]. However, it turned out that the
distance between the polarizers used in the experiment was too small to guarantee a truly
random orientation reseting. Weihs et al. became the first group to finally close the locality
loophole in 1998 [4].

Other loopholes have been addressed in later experiments. The freedom-of-choice loophole
was addressed in 2010 by Scheidl et al. and favored quantum mechanics [5]. A third loophole,
the fair-sampling assumption, was closed together with the locality loophole in 2013 by
Giustina et al. [6]. However, all loopholes have not yet been closed in one and the same
experiment [5].

2.4 Experiments Involving Electrons

Experiments involving entangled electrons instead of photons to show the effects of entan-
glement have yet to become reality. The main reason is that electrons interact with the
environment much more than photons [7]. The coupling to the environment gives rise to
decoherence that impairs the entanglement. This limits the chances of separating electrons
over large distances and long times, and still keep the entanglement intact.
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Instead of using polarization as entanglement property, spin or position is used for elec-
trons. Spin-entangled electrons are less exposed to decoherence than spatially entangled
electrons due to a weaker coupling to the environment. On the other hand, it is difficult to
measure spin along an arbitrary direction, whereas it is relatively easy to detect spatially
separated electrons.

If the time between production and detection of the entanglement is short, environment-
induced decoherence can be limited. This could potentially allow for the use of spatially
separated electrons and still keep the entanglement intact. The system presented in the
next chapter is based on this idea.
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Chapter 3

The Sextuple Dot System

In this chapter, the sextuple dot system is first described in detail in Sec. 3.1. In Sec. 3.2,
the second quantization formalism is introduced as a powerful tool to describe many-particle
systems in quantum theory. This formalism is used in Sec. 3.3 to formulate the Hamiltonian
of the sextuple dot system, which is the main result of this chapter.

3.1 Description of the System

As pointed out in the introduction, the purpose of the sextuple dot system is to make
it possible to experimentally demonstrate quantum entanglement between electrons in a
nanostructure. To do this we use a system consisting of six quantum dots, each coupled to a
lead as shown in Fig. 3.1. The center leads 1–2 are kept at a bias V , while the side leads 3–6
are grounded. All leads are kept at the same temperature kBT � eV . Only one energy level
is assumed to be within the bias window in each dot and a strong on-site Coulomb repulsion
prohibits two electrons from occupying the same spin-degenerated level. Consequently, only
one single electron can occupy each dot.

The electrons enter the system by tunneling to the center dots QD1 and QD2, respectively,
from the center leads. The high bias regime guarantees that the electron transport only
occurs in one direction; from the center leads via the sextuple dot system out to the side
leads on each side.

The dot-level energies are tuned such that sequential tunneling, i.e., when single electrons
tunnel at a time, from the center dots (QD1–2) to any of the side dots (QD3–6) is off-
resonance and thus weak. However, the energy levels of the center dots are matched to
the side dots such that co-tunneling, i.e., when the two electrons in the center dots tunnel
simultaneously, is at resonance and dominates the transport. The resonance condition is
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QD3

QD6

QD5

QD4

QD1

QD2

Figure 3.1: The sextuple dot system with the leads. The dashed box marks the open system.

further discussed in Sec. 7.1.

A strong Coulomb repulsion between the dots on each side prohibits the two electrons
from tunneling to the same side. In other words, one of the two electrons will always
tunnel to the left and one to the right. The electrons are detected at each side dot, which
consequently act like detectors. There are several different ways of detecting the electrons,
such as using quantum point contacts to detect single electrons or detecting the currents
through the leads. The quantum correlations between the side dots are studied. If the
entanglement had included sequential tunneling, the time from production to detection of the
entanglement would have been rather long and exposed to decoherence due to the coupling
to the environment. This would have resulted in a loss of the entanglement. However,
since the sextuple dot system operates in the co-tunneling regime, the time from production
to detection is short and there is in principle no time for the surroundings to affect the
entanglement.

For simplicity, tunneling is assumed to be allowed only between the center dots and the side
dots. The coupling between a dot and its lead is much stronger than the coupling between
two dots. The different coupling strengths give rise to three different time scales that can
be distinguished. The longest one is the co-tunneling, i.e., the time from the moment two
center dots have been occupied until they are empty again. The shortest one is the time
scale during which the tunneling between a dot and its lead takes place. In between is the
time scale during which the center dots are empty.

The assumptions leading to the different time scales are very important since they will be
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used to simplify the problem. For instance, they imply that there can only be two electrons
at most at the same time in the sextuple dot system. As will be shown later, the assumptions
also make it possible to neglect so-called elastic co-tunneling.

Entanglement

As already pointed out, one of the two electrons in the center dots will always tunnel to
the left and one to the right. However, we do not know which of the two electrons tunnels
to which side. This gives rise to entanglement effects similar to the ones discussed in the
example of the singlet state in Sec. 2.1. Until a measurement is performed, the system will
be in a superposition of two different pure states. For example, if the two electrons in the
center dots tunnel to QD3 and QD6, respectively, the total state will be given by

|Ψ〉 =
1√
2

(|3〉1|6〉2 − |6〉1|3〉2) (3.1)

where |3〉1 denotes that the particle in QD1 has tunneled to QD3 and so on. This state is
completely analogous to the singlet state in Eq. (2.1). Since the state cannot be rewritten
into a separable product of pure states, it is entangled.

By tuning the tunneling amplitudes between the center dots and the side dots, the prob-
ability that a particle tunnels to a certain side dot can be changed. This corresponds to
changing the basis of the spin measurement in the example of the singlet state.

Figure 3.2: Entanglement arises when two electrons in the center dots co-tunnel to two of
the side dots. It is not known if the yellow particle tunnels to the left and the green particle
to the right (red arrows) or if the yellow particle tunnels to the right and the green particle
to the left (blue arrows). Therefore the system will be in a superposition between the two
cases resulting in an entangled state.
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3.2 Second Quantization Formalism

Second quantization formalism is a powerful tool for handling many-particle systems math-
ematically. In the following a short and concise summary of this formalism is provided. A
more comprehensive introduction can be found in, e.g., Bruus and Flensberg [16].

The basis for the second quantization formalism is the creation operators a†i and the
annihilation operators ai, which create and annihilate, respectively, a particle in a state with
quantum number i, where i may be a set of numbers.

The commutator of two operators A and B is defined by [A,B]− = AB − BA, whereas
the anti-commutator is defined by [A,B]+ = AB + BA. If the (anti-)commutator fulfills
the condition [A,B]−(+) = 0, the two operators are said to be (anti-)commuting. It follows
directly from the definitions that [A,B]+(−) = (−)[B,A]+(−). The following commutator
rules can be easily derived:

[AB,C]− = A[B,C]+ − [C,A]+B [AB,C]− = A[B,C]− − [C,A]−B (3.2)

The creation and annihilation operators for fermions fulfill the following canonical anti-
commutation relations as a consequence of their anti-symmetric wavefunctions:

[ai, a
†
j]+ = δij [a†i , a

†
j]+ = [ai, aj]+ = 0 (3.3)

where the Kronecker delta function δij has been introduced. Note that creation as well as
annihilation operators acting on different states are anti-commuting.

In this thesis, {d†α, dα} will denote operators acting on the state of dot α and {c†kα, ckα}
will denote operators acting on the state of lead α with wavenumber k. For the number
operator nα ≡ d†αdα, the following commutator relations hold [17, 18]:

[dα, nα]− = dα [d†α, nα]− = −d†α [nα, nα′ ]− = 0 n2
α = nα (3.4)

3.3 Formulation of the Hamiltonian

Returning to the sextuple dot system, the Hamiltonian of the system can now be formulated
using the second quantization formalism. The Hamiltonian H will be split into two parts,
(1) H0 describing the unperturbed system consisting of the quantum dots, the leads and
their mutual coupling, and (2) V dd describing the sequential tunneling between the quantum
dots. Since the latter interaction is weak compared to the former, V dd will be considered
as a perturbation in Ch. 4, where the co-tunneling dynamics are extracted by means of a
generalized Schrieffer-Wolff transformation.
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Hamiltonian of the Unperturbed System

The unperturbed Hamiltonian consists of four parts. The first part describes the single-
particle energy levels εα of the quantum dots. As already mentioned, only one level is
assumed to be within the energy window, leaving the possibility of having two electrons at
most in a dot due to spin degeneracy and the Pauli principle. However, the on-site Coulomb
repulsion between two electrons in the same dot is assumed to be much larger than any
other relevant energy scale of the system. Hence, each dot can only contain one electron at
most. The effect of the spin is taken into account by a renormalization that will only affect
the rate at which the electrons enter the system. The Hamiltonian Hd for the sum of the
six isolated dots becomes then

Hd =
∑
α

εαd
†
αdα =

∑
α

εαnα (3.5)

The second part consists of an analog expression for each lead. The only qualitative difference
is that the density of states differs from the dots. An additional quantum number, the
wavenumber k, describes all states in each lead. The Hamiltonian becomes then

Hc =
∑
kα

εkαc
†
kαckα (3.6)

where the energy levels of the leads are denoted by εkα. Since the distance between the
quantum dots is small, the interaction strength Uαα′ of the Coulomb repulsion between
electrons in two different dots α and α′ has to be included as well. This is taken into
account by the third part, the so-called capacitive Hamiltonian:

Hcap =
∑
αα′

1

2
Uαα′d

†
αd
†
α′dα′dα =

∑
αα′

1

2
Uαα′nαnα′ (3.7)

where Uαα′ = Uα′α and Uαα = 0. To avoid double counting, a prefactor of 1
2

has been added.
The fourth and last part corresponds to the tunneling between the leads and the dots:

V dc =
∑
kα

(
tkαc

†
kαdα + t∗kαd

†
αckα

)
(3.8)

where tkα is the tunneling amplitude between dot α and its lead. The total unperturbed
Hamiltonian is then given by the sum of the four different parts:
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H0 =
∑
α

εαnα +
∑
kα

εkαc
†
kαckα +

∑
αα′

Uαα′nαnα′ +
∑
kα

(
tkαc

†
kαdα + t∗kαd

†
αckα

)
(3.9)

Hamiltonian of the Perturbation

The perturbation V dd describes the tunneling between the six dots. This allows electrons to
move from one dot to another. If tαα′ denotes the tunneling amplitude between dot α and
dot α′, the Hamiltonian is given by

V dd =
∑
αα′

1

2

(
tαα′d

†
αdα′ + t∗αα′d

†
α′dα

)
(3.10)

Note that t∗α′α = tαα′ and tαα = 0, since tunneling between a dot and itself is not possible.
Only t13, t14, t15, t16, t23, t24, t25, t26 and their complex conjugates are non-zero, because
only tunneling between any of the two center dots and any of the four side dots is allowed.
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Chapter 4

Schrieffer-Wolff Transformation

In cases where sequential tunneling of single electrons is suppressed (off-resonance), higher-
order processes such as co-tunneling become crucial for the dynamic behavior of the quantum
system. These dynamics can be extracted from the Hamiltonian by means of a generalized
Schrieffer-Wolff transformation. The transformation projects the Hamiltonian H onto the
low-energy sector yielding an effective Hamiltonian Heff. The aim of this chapter is to use this
concept to eliminate the sequential tunneling V dd between the dots in the total Hamiltonian
H = H0 + V dd from Sec. 3.3. For simplicity, this perturbation will be denoted by V in the
rest of the chapter.

The Schrieffer-Wolff transformation was originally used to show how the Hamiltonian of
the Anderson model is related to the Kondo Hamiltonian [19]. It has later been applied to
different kinds of systems, including structurally similar ones such as double quantum dots
[17, 20–22]. More generally, the Schrieffer-Wolff transformation U is a unitary transformation
that transforms a Hamiltonian H into an effective Hamiltonian Heff given by

Heff = UHU † = eSHe−S (4.1)

where the anti-Hermitian generator S of the transformation has been introduced. The ef-
fective Hamiltonian takes into account higher-order processes that become important when
the sequential tunneling is suppressed. A more rigorous mathematical analysis of the trans-
formation can be found in [23]. Using Baker-Campbell-Hausdorff formula [19], Eq. (4.1) can
be expressed as

Heff = eSHe−S = H + [S,H]− +
1

2
[S, [S,H]−]− + . . .

1

n!
[S, [S, . . . [S,H]− . . . ]−]− + . . . (4.2)

To eliminate V to first order in this expansion, the following condition has to be fulfilled
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V + [S,H0]− = 0 (4.3)

One of the practical difficulties with the Schrieffer-Wolff transformation is to find an explicit
expression for the generator S from Eq. (4.3).

4.1 Generator S of the Transformation

In this section, an explicit expression for the generator S is presented. A derivation of this
generator is provided in Appendix A.

The generator is first determined when the dot-lead coupling is neglected. The generator
is then given by (cf. Eq. (3.10))

S =
∑
αα′

1

2
Eαα′

(
tαα′d

†
αdα′ − t∗αα′d

†
α′dα

)
(4.4)

with

Eαα′ =
∑
B∈B

 1

εB

∏
β∈B

nβ
∏
β/∈B

(1− nβ)

 (4.5)

where B is the set of all possible combinations of occupied dot states, except the dot states
α and α′, and εB is the energy difference between the final state and the initial state when
tunneling takes place between dot α and dot α′ with the occupation combination B. A proof
is provided in Appendix A. Note that Eαα′ = −Eα′α and E†αα′ = Eαα′ . As seen in Eq. (4.4),
the generator is very similar to the perturbation V , but with the additional Eαα′ operators.

When the dot-lead coupling is taken into account, additional terms will appear in the
denominator, adjusting the values of εB. However, since the sequential tunneling is off-
resonance, the denominator εB is far from zero. A small additional value to the denominator
proportional to the weak coupling strength between the dots and the leads will not have any
substantial effect. Hence, the effect of the dot-lead coupling is negligible and the previous
expression of the generator still holds.

4.2 Effective Hamiltonian of First Order

If higher-order terms are neglected in Eq. (4.2), the effective Hamiltonian is given by
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Heff ≈ H0 +
1

2
[S, V ]− (4.6)

In other words, the additional term to the unperturbed Hamiltonian is in the form [S, V ]−.
The effective Hamiltonian can therefore be obtained by computing a number of commutators.

In the remaining part of this section, α1 and α2 denote arbitrary center dots, whereas
β1 and β2 denote arbitrary side dots. The new dynamics contained in the commu-
tator 1

2
[S, V ]− can then be divided into three kinds of commutators for a given term

1
2

(
tα1β1d

†
α1
dβ1 + t∗α1β1

d†β1dα1

)
in V .

Renormalization Terms

The first kind of term is given by

1

8
[Eα1β1(tα1β1d

†
α1
dβ1 − t∗α1β1

d†β1dα1), tα1β1d
†
α1
dβ1 + t∗α1β1

d†β1dα1 ]− =

=
1

4
|tα1β1|2Eα1β1(nα1 − nβ1) (4.7)

where Eα1β1 is given by Eq. (4.5). Apparently, this kind of term only consists of number
operators. It can thus be eliminated by means of a renormalization of the single-particle
energy levels εα and the interaction strengths Uαα′ . This does not affect the dynamic behavior
of the sextuple dot system qualitatively. In the following chapters all affected parameters
are assumed to be renormalized to take this effect into account.

Elastic Co-tunneling Terms

The second kind of term is

1

8
[Eα1β2(tα1β2d

†
α1
dβ2 − t∗α1β2

d†β2dα1), tα1β1d
†
α1
dβ1 + t∗α1β1

d†β1dα1 ]− =

= −1

8
Eα1β2(nβ1 → nα1)(tα1β2t

∗
α1β1

d†β1dβ2 + t∗α1β2
tα1β1d

†
β2
dβ1) (4.8)

and

1

8
[Eα2β1(tα2β1d

†
α2
dβ1 − t∗α2β1

d†β1dα2), tα1β1d
†
α1
dβ1 + t∗α1β1

d†β1dα1 ]− =

= −1

8
Eα2β1(nα1 → nβ1)(tα2β1t

∗
α1β1

d†α2
dα1 + t∗α2β1

tα1β1d
†
α1
dα2) (4.9)
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where Eα1β2(nβ1 → nα1) denotes the operator Eα1β2 given by Eq. (4.5), but with nβ1 replaced
by nα1 .

Both of these terms contribute with new dynamics to the effective Hamiltonian, namely
the possibility of having elastic co-tunneling. In Fig. 4.1, an example of elastic co-tunneling is
shown. However, the elastic co-tunneling is negligible. For instance, if an electron tunnels to
a side dot, it will instantaneously continue to tunnel to the lead, since the dot-lead coupling
is stronger than the couplings between the dots. The same argument applies to the situation
when only one of the center dots is occupied. In this case, the other center dot will more or
less instantaneously be filled by an electron before any elastic co-tunneling can take place.
When both center dots are filled, they will favor inelastic co-tunneling instead of elastic
co-tunneling because the former is at resonance.

Figure 4.1: Elastic co-tunneling. The electron (yellow dot) co-tunnels with itself and moves
in this case from QD6 to QD3 via QD2. This can happen in both presence and absence of
another electron (green dot).

Figure 4.2: Inelastic co-tunneling. Two electrons tunnel together. Two electrons in the cen-
ter dots tunneling to one side dot on each side is the only important co-tunneling mechanism
for the dynamics of the sextuple dot system.
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Inelastic Co-tunneling Terms

The third kind of term is given by

1

8
[Eα2β2(tα2β2d

†
α2
dβ2 − t∗α2β2

d†β2dα2), tα1β1d
†
α1
dβ1 + t∗α1β1

d†β1dα1 ]− =

=
1

8

(
1

εα2 + Uα1α2 − εβ2 − Uα1β2

− 1

εα2 + Uα2β1 − εβ2 − Uβ1β2

)(
tα1β1tα2β2d

†
α2
d†α1

dβ1dβ2

+ t∗α1β1
t∗α2β2

d†β2d
†
β1
dα1dα2 + t∗α1β1

tα2β2d
†
α2
d†β1dα1dβ2 + tα1β1t

∗
α2β2

d†β2d
†
α1
dβ1dα2

)
(4.10)

This term yields co-tunneling with two particles, i.e., inelastic co-tunneling. An example
of inelastic co-tunneling is shown in Fig. 4.2. The two last inelastic co-tunneling terms
correspond to co-tunneling with an electron in a center dot and an electron in a side dot,
which is a negligible process. The two first inelastic co-tunneling terms are thus those of
interest. They correspond to co-tunneling between the center dots and the side dots.

The two-particle co-tunneling amplitude tαα′ββ′ can be introduced as

tαα′ββ′ =
1

8

(
1

εα′ + Uαα′ − εβ′ − Uαβ′
− 1

εα′ + Uα′β − εβ′ − Uββ′

)
tαβtα′β′ (4.11)

In the following, x ∈ {3, 4} will denote a left side dot and y ∈ {5, 6} will denote a right side
dot. The total co-tunneling amplitude between the center dots QD1–2 and each pair of a
left side dot x and a right side dot y is then given by the sum of four different co-tunneling
amplitudes that are obtained by permuting the indices in Eq. (4.11):

t12xy =
1

8

(( 1

ε2 + U12 − εy − U1y

− 1

ε2 + U2x − εy − Uxy

+
1

ε1 + U12 − εx − U2x

− 1

ε1 + U1y − εx − Uxy

)
t1xt2y

−
( 1

ε1 + U12 − εy − U2y

− 1

ε1 + U1x − εy − Uxy

+
1

ε2 + U12 − εx − U1x

− 1

ε2 + U2y − εx − Uxy

)
t1yt2x

)
(4.12)
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4.3 Approximative Effective Hamiltonian

When neglecting the elastic co-tunneling terms, the effective Hamiltonian can be written in
the following form:

Heff =
∑
α

εαd
†
αdα +

∑
kα

εkαc
†
kαckα +

∑
αα′

1

2
Uαα′nαnα′ +

∑
kα

(
tkαc

†
kαdα + t∗kαd

†
αckα

)
+
∑
xy

(
t12xyd

†
1d
†
2dxdy + t∗12xyd

†
yd
†
xd2d1

)
(4.13)

where the two-particle co-tunneling amplitudes t12xy are given by Eq. (4.12). Note that εα
and Uαα′ now denote the renormalized quantities.
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Chapter 5

Master Equation in Lindblad Form

In this chapter, a master equation in Lindblad form is derived for the open sextuple dot
system. The master equation describes the time evolution of the reduced density operator
ρ(t) of the open system taking into account the interaction between the sextuple dots and
their surroundings, also called the bath for historical reasons. The derived master equation is
then formulated in matrix representation and used for computing the full counting statistics
in Ch. 6.

5.1 Density Operator

The density operator ρ (which has nothing to do with mass density) can be seen as a
generalization of a pure state |Ψ〉. In contrast to a pure state, the density operator can
describe quantum systems that are in a mixed state. The density operator can be written
as

ρ̂ =
∑
kk′

ρ̂k,k′|k〉〈k′| (5.1)

where {|k〉} is a set of pure states, which do not need to be orthogonal. More mathematically,
the density operator is defined as a positive operator with trace equal to one [24]. The
diagonal elements ρ̂k,k of the density operator are called populations since they correspond
to the probability that the system is found in a specific state. The off-diagonal elements
ρ̂k,k′ are called coherences and play a central role for describing interference.
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5.2 Derivation of the Master Equation

There are several different ways of deriving a master equation. The following one is based
on Gardiner and Zoller [25] and follows the same approach as Samuelsson [26]. It uses the
von Neumann equation as its starting point. By changing between the Schrödinger picture
and the interaction picture, a master equation is finally obtained for the time evolution of
the open sextuple dot system.

The time evolution of any closed system is described by the von Neumann equation. Since
the system can be in a combination of pure states, it is described by a density operator ρ̂(t)
as introduced in the previous section. The open sextuple dot system S (not to be confused
with the generator S in Ch. 4) and its bath B, consisting of the leads, together constitute
a closed system, meaning that the time evolution of the density operator ρ̂(t) of the entire
system is given by the von Neumann equation, i.e.,

dρ̂(t)

dt
= − i

~
[H, ρ̂(t)]− (5.2)

where H = HS +HB +HT with

HS =
∑
α

εαd
†
αdα +

∑
αα′

1

2
Uαα′nαnα′ +

∑
xy

(
t12xyd

†
1d
†
2dxdy + t∗12xyd

†
yd
†
xd2d1

)
HB =

∑
kα

εkαc
†
kαckα

HT =
∑
kα

(
tkαc

†
kαdα + t∗kαd

†
αckα

)
In the interaction picture the density operator ρ̂I(t) for the entire system is per definition
[27] related to ρ̂(t) in the Schrödinger picture by

ρ̂I(t) = ei(HS+HB)t/~ρ̂(t)e−i(HS+HB)t/~ (5.3)

and its time evolution is subsequently described by the von Neumann equation in the inter-
action picture

dρ̂I(t)

dt
= − i

~
[HT (t), ρ̂I(t)]− (5.4)

with the tunneling Hamiltonian in the interaction picture defined by

HT (t) = ei(HS+HB)t/~HT e
−i(HS+HB)t/~ (5.5)
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By integrating Eq. (5.4), the following relation is obtained:

ρ̂I(t)− ρ̂I(0) = − i
~

t∫
0

dt′[HT (t′), ρ̂I(t
′)]− (5.6)

Using the first Born approximation [28], this expression is inserted back into Eq. (5.4)
yielding

dρ̂I(t)

dt
= − i

~
[HT (t), ρ̂I(0)]− −

1

~2

t∫
0

dt′[HT (t), [HT (t′), ρ̂I(t
′)]−]− (5.7)

However, it is not ρ̂(t) (or ρ̂I(t)) itself that is of interest, but the reduced density operator
ρ(t) of the open sextuple dot system. The relation between these two operators is given [29]
by

ρ(t) = trB {ρ̂(t)} (5.8)

where trB denotes the trace over all bath parameters. The analog relation for the reduced
density operator is then

dρI(t)

dt
= − i

~
trB {[HT (t), ρ̂I(0)]−} −

1

~2

t∫
0

dt′trB {[HT (t), [HT (t′), ρ̂I(t
′)]−]−} (5.9)

The master equation is obtained from this equation by means of a number of approximations,
including the weak interaction limit and the Markov approximation.

Weak Interaction Limit and Unperturbed Bath

Assuming that the density matrix at t = 0 can be written as a product of the reduced density
matrices of the bath and the open sextuple dot system, respectively, leads to the following
relation:

ρ̂(0) = ρ̂I(0) = ρ(0)⊗ ρB(0) = ρI(0)⊗ ρB(0) (5.10)

As a first-order approximation this kind of decomposition of the total density matrix is
assumed to hold for all times, i.e.,

ρ̂I(t) = ρI(t)⊗ ρB(t) (5.11)

22



This approximation is valid if the coupling to the bath is weak and the leads have internal
dynamics that are much faster than the dynamics of the sextuple dot system.

A second approximation is made by assuming that the bath is unperturbed, i.e., it does
not change over time. This leads to

ρB(t) = ρB(0) ≡ ρB (5.12)

These approximations lead to

trB {[HT (t), ρ̂I(0)]−} = trB {[HT (t), ρI(0)⊗ ρB]−} = 0 (5.13)

and the master equation can be simplified to

dρI(t)

dt
= − 1

~2

t∫
0

dt′trB {[HT (t), [HT (t′), ρI(t
′)⊗ ρB]−]−} (5.14)

Markov Approximation

If the correlation times of the leads are much shorter than the dynamics of the sextuple dot
system, the Markov approximation can be used [28]. This approximation implies that the
system is time-local, i.e., it has no “memory” of the past. The integral in Eq. (5.14) can
then be simplified. A change of variables is used, where τ = t− t′ is introduced. The integral
limits are then extended to [−∞, 0] and ρI(t− τ) is replaced by ρI(t). The master equation
becomes

dρI(t)

dt
= − 1

~2

0∫
−∞

dτtrB {[HT (t), [HT (t− τ), ρI(t)⊗ ρB]−]−} (5.15)

Trace Computation

The last step is to compute the trace of the integrand. First, the commutators can be
expanded according to

trB {[HT (t), [HT (t− τ), ρI(t)⊗ ρB]−]−} =

= trB {HT (t)HT (t− τ)ρI(t)⊗ ρB} − trB {HT (t− τ)ρI(t)⊗ ρBHT (t)}
− trB {HT (t)ρI(t)⊗ ρBHT (t− τ)}+ trB {ρI(t)⊗ ρBHT (t− τ)HT (t)} (5.16)
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The remaining part consists of computing the four traces. In the following the first trace is
computed and the other three can be determined analogously. If the leads are in thermal
equilibrium with a temperature T and at voltages Vα, the density operator of the bath is
explicitly given [26] by

ρB =
∏
kα

(
fα(εkα)c†kα|0〉〈0|ckα + (1− fα(εkα))|0〉〈0|

)
(5.17)

where fα denotes the Fermi-Dirac distribution function and |0〉 is the vacuum state.
The expression for the bath density operator makes it possible to evaluate the following

traces:

trB
{
ckαck′α′ρB

}
= trB

{
c†kαc

†
k′α′ρB

}
= 0 (5.18)

trB
{
c†kαck′α′ρB

}
= fα(εkα)δkk′δαα′ (5.19)

trB
{
ckαc

†
k′α′ρB

}
= (1− fα(εkα))δkk′δαα′ (5.20)

In the interaction picture, the tunneling Hamiltonian is given by

HT (t) = ei(HS+HB)t/~HT e
−i(HS+HB)t/~ = ei(HS+HB)t/~tkαc

†
kαdαe

−i(HS+HB)t/~ + h.c. (5.21)

As mentioned in Sec. 3.2, operators acting on different spaces are commuting. Hence, the
expression for the tunneling Hamiltonian can be recast into

HT (t) =
∑
kα

tkαe
iHBt/~c†kαe

−iHBt/~eiHSt/~dαe
−iHSt/~ + h.c. (5.22)

Using the fact that HB is diagonal in the basis {|k, α〉}, this part can be rewritten as

eiHBt/~c†kαe
−iHBt/~ = c†kαe

−iεkαt/~ (5.23)

In contrast to HB, HS is not diagonal in the local Fock basis. But by introducing a new
basis for the one- and two-particle subspaces of S, the operator can be rewritten in a diagonal
form as

HS =
∑
γ2

εγ2|γ2〉〈γ2|+
∑
γ1

εγ1 |γ1〉〈γ1|+ ε0|0〉〈0| (5.24)

where {|γ2〉} spans the two-particle subspace and {|γ1〉} spans the one-particle subspace. We
express the creation and annihilation operators for the dots in the same basis, for instance:
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dα =
∑
β1β2

sαβ1β2|β1〉〈β2|+
∑
δ0δ1

sαδ0δ1|δ0〉〈δ1| (5.25)

Hence, the following relation holds:

eiHSt/~dαe
−iHSt/~ =

∑
β1β2

sαβ1β2e
iHSt/~|β1〉〈β2|e−iHSt/~ +

∑
δ0δ1

sαδ0δ1e
iHSt/~|δ0〉〈δ1|e−iHSt/~ =

=
∑
β1β2

sαβ1β2|β1〉〈β2|ei(εβ1−εβ2 )t/~ +
∑
δ0δ1

sαδ0δ1|δ0〉〈δ1|ei(εδ0−εδ1 )t/~ (5.26)

For simplicity, we rewrite this in a more compact form:

eiHSt/~dαe
−iHSt/~ =

∑
γγ′

sαγγ′|γ〉〈γ′|eiεγγ′ t/~ (5.27)

Using Eq. (5.23) and Eq. (5.27), Eq. (5.22) can be rewritten as

HT (t) =
∑
kαγγ′

tkαc
†
kαe
−iεkαt/~sαγγ′|γ〉〈γ′|eiεγγ′ t/~ + h.c. (5.28)

The trace can now be expressed as

trB {HT (t)HT (t− τ)ρI(t)⊗ ρB} =

=
∑
kαγγ′

tkαe
−iεkαt/~sαγγ′ |γ〉〈γ′|eiεγγ′ t/~

×
∑
δδ′

t∗kαe
iεkα(t−τ)/~s∗αδδ′|δ′〉〈δ|e−iεδδ′ (t−τ)/~ρI(t)trB

{
c†kαckαρB

}
+
∑
kαγγ′

t∗kαe
iεkαt/~s∗αγγ′|γ′〉〈γ|e−iεγγ′ t/~

×
∑
δδ′

tkαe
−iεkα(t−τ)/~sαδδ′ |δ〉〈δ′|eiεδδ′ (t−τ)/~ρI(t)trB

{
ckαc

†
kαρB

}
=

=
∑
αγγ′

sαγγ′|γ〉〈γ′|eiεγγ′ t/~
∑
δδ′

s∗αδδ′|δ′〉〈δ|e−iεδδ′ (t−τ)/~ρI(t)
∑
k

|tkα|2fα(εkα)e−iεkατ/~

+
∑
αγγ′

s∗αγγ′|γ′〉〈γ|e−iεγγ′ t/~
∑
δδ′

sαδδ′ |δ〉〈δ′|eiεδδ′ (t−τ)/~ρI(t)
∑
k

|tkα|2(1− fα(εkα))eiεkατ/~

(5.29)
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The other traces are obtained analogously. If the high bias regime is valid, the Fermi
functions will be more or less constant in the energy range of interest. Hence, the energy
argument can be neglected in the functions, i.e., fα(εkα) is replaced by fα. The rates Γα at
which the electrons tunnel between a dot α and its lead are introduced and defined by

Γαfα =
2π

~
∑
k

|tkα|2fα(εkα)δ(εkα − εδδ′)

Γα(1− fα) =
2π

~
∑
k

|tkα|2(1− fα(εkα))δ(εkα − εδδ′) (5.30)

where δ denotes the Dirac delta function. Integration of the first trace part of the integrand
yields the following result:

− 1

~2

0∫
−∞

dτtrB {HT (t)HT (t− τ)ρI(t)⊗ ρB} =

= − 1

~2

(∑
αγγ′

sαγγ′ |γ〉〈γ′|eiεγγ′ t/~
∑
δδ′

s∗αδδ′ |δ′〉〈δ|e−iεδδ′ t/~

× ρI(t)~π
∑
k

|tkα|2fα(εkα)δ(εkα − εδδ′)

+
∑
αγγ′

s∗αγγ′ |γ′〉〈γ|e−iεγγ′ t/~
∑
δδ′

sαδδ′|δ〉〈δ′|eiεδδ′ t/~

× ρI(t)~π
∑
k

|tkα|2(1− fα(εkα))δ(εkα − εδδ′)
)

=

= −
(∑
αγγ′

sαγγ′|γ〉〈γ′|eiεγγ′ t/~
∑
δδ′

s∗αδδ′|δ′〉〈δ|e−iεδδ′ t/~ρI(t)
Γα
2
fα

+
∑
αγγ′

s∗αγγ′|γ′〉〈γ|e−iεγγ′ t/~
∑
δδ′

sαδδ′ |δ〉〈δ′|eiεδδ′ t/~ρI(t)
Γα
2

(1− fα)

)
=

= −
(∑

α

eiHSt/~dkαe
−iHSt/~eiHSt/~d†kαe

−iHSt/~ρI(t)
Γα
2
fα

+
∑
α

eiHSt/~d†αe
−iHSt/~eiHSt/~dαe

−iHSt/~ρI(t)
Γα
2

(1− fα)

)
=
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= −eiHSt/~
∑
α

Γα
2

(
dαd

†
αρI(t)fα + d†αdαρI(t)(1− fα)

)
e−iHSt/~

Here we do not explicitly write out the renormalization constant that appears due to the
principal value of the integral of the complex exponential function in full. This constant can
be taken into account by shifting the energy levels.

Master Equation of the Sextuple Dot System

The other trace parts are given by analog expressions. Taken together, they yield the
following result:

dρI(t)

dt
= −eiHSt/~

∑
α

Γα
2

((
dαd

†
αρ(t) + ρ(t)dαd

†
α

)
fα +

(
d†αdαρ(t) + ρ(t)d†αdα

)(
1− fα

)
− 2d†αρ(t)dαfα − 2dαρ(t)d†α

(
1− fα

))
e−iHSt/~ (5.31)

Together with the relation between the Schrödinger picture and the interaction picture given
by

dρI(t)

dt
= eiHSt/~

(
dρ(t)

dt
+
i

~
[HS, ρ(t)]−

)
e−iHSt/~ (5.32)

the final master equation is obtained as

dρ(t)

dt
= − i

~
[HS, ρ(t)]− −

∑
α

Γα
2

((
dαd

†
αρ(t) + ρ(t)dαd

†
α

)
fα +

(
d†αdαρ(t)

+ ρ(t)d†αdα
)(

1− fα
)
− 2d†αρ(t)dαfα − 2dαρ(t)d†α

(
1− fα

))
(5.33)

5.3 Matrix Representation

From linear algebra, it is well-known that every linear operator can be represented by a
matrix when a specific basis is given. To do this, we choose a proper basis, i.e., the local
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Fock basis. Due to previous assumptions (see Ch. 3 concerning the different time scales)
only two electrons at most can be in the system at the same time. Therefore we only need to
consider the zero-, one- and two-particle subspaces of the Hilbert space. Furthermore, it is
only possible to have the two-particle states |12〉, |35〉, |36〉, |45〉 and |46〉, which means that
the only non-zero two-particle populations are ρ12,12, ρ35,35, ρ36,36, ρ45,45 and ρ46,46. The non-
zero coherences are ρ12,35, ρ12,36, ρ12,45, ρ12,46 and their Hermitian conjugated counterparts
because tunneling can only take place between the center dots and the side dots.

We use the following matrix elements to construct the matrix representation of the master
equation. The first elements will appear along the diagonal of the matrix. The elements are
determined by expanding the density operator in the Fock basis, e.g.,

〈k|d†αdαρ|k′〉 =
∑
qq′

ρqq′〈k|d†αdα|q〉〈q′|k′〉 = ρkk′ ∀α ∈ k (5.34)

The remaining non-zero diagonal elements are

〈k|ρd†αdα|k′〉 = ρkk′ ∀α ∈ k′

〈k|dαd†αρ|k′〉 = ρkk′ ∀α /∈ k
〈k|ρdαd†α|k′〉 = ρkk′ ∀α /∈ k′

〈k|nαnα′ρ|k′〉 = ρkk′ ∀(α, α′) ∈ k
〈k|ρnαnα′|k′〉 = ρkk′ ∀(α, α′) ∈ k′

The non-zero off-diagonal elements are

〈k|d†αρdα|k′〉 = ρk−α,k′−α ∀α ∈ k, k′

〈k|dαρd†α|k′〉 = ρk+α,k′+α ∀α /∈ k, k′

〈k|d†αd
†
α′dβdβ′ρ|k

′〉 = ρk,k′−β−β′+α+α′ ∀(β, β′) ∈ k′, (α, α′) /∈ k′

〈k|ρd†αd
†
α′dβdβ′|k

′〉 = ρk−β−β′+α+α′,k′ ∀(β, β′) ∈ k, (α, α′) /∈ k

Using these matrix elements and assuming the high bias regime (i.e., f1 = f2 = 1 and
f3 = f4 = f5 = f6 = 0) one obtains the following matrix representation of the master
equation:

dρ

dt
= Mρ (5.35)

where
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ρ =



ρ0,0

ρ1,1

ρ2,2

ρ3,3

ρ4,4

ρ5,5

ρ6,6

ρ12,12

ρ35,35

ρ36,36

ρ45,45

ρ46,46

ρ12,35

ρ12,36

ρ12,45

ρ12,46

ρ∗12,35

ρ∗12,36

ρ∗12,45

ρ∗12,46



(5.36)

and

M =

(
Mdd

i
~Mdc

i
~M

†
dc Mcc

)
(5.37)

where
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Mdd =



−Γ1 − Γ2 0 0 Γ3 Γ4 Γ5 Γ6 0 0 0 0 0
Γ1 −Γ2 0 0 0 0 0 0 0 0 0 0
Γ2 0 −Γ1 0 0 0 0 0 0 0 0 0
0 0 0 −Γ3 0 0 0 0 Γ5 Γ6 0 0
0 0 0 0 −Γ4 0 0 0 0 0 Γ5 Γ6

0 0 0 0 0 −Γ5 0 0 Γ3 0 Γ4 0
0 0 0 0 0 0 −Γ6 0 0 Γ3 0 Γ4

0 Γ2 Γ1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −Γ3 − Γ5 0 0 0
0 0 0 0 0 0 0 0 0 −Γ3 − Γ6 0 0
0 0 0 0 0 0 0 0 0 0 −Γ4 − Γ5 0
0 0 0 0 0 0 0 0 0 0 0 −Γ4 − Γ6



Mdc =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

t∗1235 t∗1236 t∗1245 t∗1246 −t1235 −t1236 −t1245 −t1246

−t∗1235 0 0 0 t1235 0 0 0
0 −t∗1236 0 0 0 t1236 0 0
0 0 −t∗1245 0 0 0 t1245 0
0 0 0 −t∗1246 0 0 0 t1246


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Mcc =



c(1235,+) 0 0 0 0 0 0 0
0 c(1236,+) 0 0 0 0 0 0
0 0 c(1245,+) 0 0 0 0 0
0 0 0 c(1246,+) 0 0 0 0
0 0 0 0 c(1235,−) 0 0 0
0 0 0 0 0 c(1236,−) 0 0
0 0 0 0 0 0 c(1245,−) 0
0 0 0 0 0 0 0 c(1246,−)


with

c(12xy,±) = −Γx/2− Γy/2±
i

~
ε12xy

where the co-tunneling energy differences are given by

ε12xy = εx + εy + Uxy − ε1 − ε2 − U12

If the co-tunneling is at resonance, we get ε12xy = 0. Note that all parameters are the
renormalized ones from the Schrieffer-Wolff transformation.

The eigenvalues and eigenstates of M are important since they describe the time evolution
of the system. The steady-state is given as the eigenstate with an eigenvalue equal to zero.
The general solution to the master equation in Eq. (5.35) is given by an exponential matrix
function. After a sufficiently long time, the transients of all non-zero eigenvalues will have
declined and the only surviving eigenstate is the one belonging to the eigenvalue equal to
zero. This means that the state approaches the steady-state when a sufficiently long time
has elapsed.
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Chapter 6

Full Counting Statistics

Like many other concepts in solid-state physics, full counting statistics (FCS) originates from
quantum optics [30, 31] and was originally used for studying photons. During the 1990s, FCS
started to become an important tool for studying electron transport as well [32, 33]. Since
2003, FCS has been used for studying systems governed by master equations [34]. Flindt
et al. used FCS for nano-electromechanical systems in 2005, using a Markovian master
equation [35]. In 2006, Kießlich et al. used the concept to study two coupled quantum dots
with coherences [36].

The FCS can be used to characterize the currents and noise of the electron transport in the
sextuple dot system using the so-called cumulant generating function (CGF). This concept
is further discussed in Sec. 6.1 and applied to the sextuple dot system in Sec. 6.2. In the
latter section, the master equation from Ch. 5 is used to compute the CGF of the sextuple
dot system, which is the main result of this chapter.

6.1 Counting Fields

A central concept related to FCS is the probability distribution Pτ (N), which describes the
probability that a number of electrons N has passed through a conductor, e.g., a quantum
dot, during a long measurement time τ (relative to the dynamics). The CGF is then given
[37] by

F (χ) = ln

[
∞∑

N=−∞

eiNχPτ (N)

]
(6.1)

where the counting field χ has been introduced. Note that the relation between eF (χ) and
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Pτ (N) is given by a (discrete) Fourier transform, where the counting field χ is the conjugated
variable to the number of electrons N .

Instead of considering the distribution Pτ (N), we can study the CGF. The advantage of
using the CGF is that it has a simple physical interpretation. From the function we get
the cumulants that correspond to different properties of the current. The n:th cumulant is
mathematically obtained from F (χ) by

κn =
∂n

∂(iχ)n
F (χ)

∣∣∣∣
χ=0

(6.2)

The first cumulant corresponds to the average current, the second cumulant to the variance
and the third cumulant to the skewness. Higher-order cumulants describe other statistical
quantitites [38].

Returning to the master equation, we can keep track of the electrons in the different
dots by using the counting fields. In the case of the sextuple dot system, we have six
different dots and therefore we have to use six counting fields, one for each dot. The previous
theory consequently has to be extended to several dimensions. The counting field χ =
(χ1, χ2, χ3, χ4, χ5, χ6) becomes a vector. They are added as exponentials in the form eiχN

and e−iχN in the matrix elements of Mdd corresponding to an electron jumping into the
sextuple dot system and an electron jumping out of the sextuple dot system, respectively.
We then obtain the following matrix representation:

Mdd(χ) = (6.3)



−Γ1 − Γ2 0 0 Γ3eiχ3 Γ4eiχ4 Γ5eiχ5 Γ6eiχ6 0 0 0 0 0

Γ1e−iχ1 −Γ2 0 0 0 0 0 0 0 0 0 0

Γ2e−iχ2 0 −Γ1 0 0 0 0 0 0 0 0 0

0 0 0 −Γ3 0 0 0 0 Γ5eiχ5 Γ6eiχ6 0 0

0 0 0 0 −Γ4 0 0 0 0 0 Γ5eiχ5 Γ6eiχ6

0 0 0 0 0 −Γ5 0 0 Γ3eiχ3 0 Γ4eiχ4 0

0 0 0 0 0 0 −Γ6 0 0 Γ3eiχ3 0 Γ4eiχ4

0 Γ2e−iχ2 Γ1e−iχ1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −Γ3 − Γ5 0 0 0

0 0 0 0 0 0 0 0 0 −Γ3 − Γ6 0 0

0 0 0 0 0 0 0 0 0 0 −Γ4 − Γ5 0

0 0 0 0 0 0 0 0 0 0 0 −Γ4Γ6



where Γα still denotes the rate at which electrons tunnel between dot α and its lead.
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The CGF can now be obtained from the master equation as the eigenvalue F (χ) of M(χ)
in Eq. (5.35) that fulfills the condition lim

χ→0
F (χ) = 0. This eigenvalue corresponds to the

stationary eigenstate and will be computed in the next section.

6.2 Cumulant Generating Function

The CGF is given as an eigenvalue of M(χ). The eigenvalue problem reads as

M(χ)ρstat(χ) = F (χ)ρstat(χ) (6.4)

where ρstat is the stationary density operator. The dimension of M(χ) is too large to directly
compute the eigenvalues analytically. Therefore several approximations have to be used.

First we write ρstat as a vector in the form

(
ρd
ρc

)
, where ρd includes the populations

and ρc the coherences of ρstat. The eigenvalue problem can then be written as the following
system of equations:

Mddρd +Mdcρc = F (χ)ρd

Mcdρd +Mccρc = F (χ)ρc (6.5)

The second equation can be rewritten as

ρc = (F (χ)−Mcc)
−1Mcdρd (6.6)

F (χ) can be expanded in terms of the co-tunneling amplitudes tαα′ββ′ . Since these are small
compared to the elements of Mcc, we get

ρc = −M−1
cc Mcdρd (6.7)

Inserting this back into the first equation yields

Mddρd −MdcM
−1
cc Mcdρd = F (χ)ρd (6.8)

Hence, F (χ) can be obtained as the eigenvalue of Mred = Mdd −MdcM
−1
cc Mcd, which is of

a lower matrix dimension than M . The lower dimension requires less computational power.
Mred is given by
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M
r
ed

(χ
)

=
(6

.9
)

                            −
Γ
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−

Γ
2

0
0

Γ
3
ei
χ
3

Γ
4
ei
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4

Γ
5
ei
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5

Γ
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                            
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where the co-tunneling rates between the center dots and each pair of a left side dot x and
a right side dot y are given by

axy =
|t12xy|2(Γx + Γy)

~2(Γx
2

+ Γy
2

)2 + ε212xy

(6.10)

where the co-tunneling energy differences are given by ε12xy = εx + εy + Uxy − ε1 − ε2 − U12.
If the co-tunneling is at resonance, we get ε12xy = 0. By writing Mred in the form

Mred =

(
M00 A
B C

)
(6.11)

where M00 corresponds to the zero-particle subspace, the eigenvalue is obtained from

det

(
M00 − F (χ) A

B C − F (χ)

)
= det

(
D
)

det
((
M00 − F (χ)

)
− AD(χ)−1B

)
= 0 (6.12)

where D(χ) = C − F (χ). Since det(D) 6= 0, this implies (M00 − F (χ)) − AD(χ)−1B = 0.
This equation can be solved to first order in the co-tunneling rates axy.

The CGF can finally be obtained as

F (χ) =
∑
xy

(ei(χx+χy−χ1−χ2) − 1)axy (6.13)

where x ∈ {3, 4} denotes any of the left side dots and y ∈ {5, 6} denotes any of the right
side dots.

Eq. (6.13) has a clear physical interpretation that describes the charge transfer of the
sextuple dot system. Each of the four terms in the sum corresponds to one of the co-
tunneling processes. The exponent (ei(χx+χy−χ1−χ2)−1) tells us that two electrons are moved
from the center dots to the left side dot x and the right side dot y. Subsequent co-tunneling
processes are uncorrelated, so the electrons are Poisson distributed. The processes happen
at a rate given by the co-tunneling rates axy. The rates Γα do not appear in the CGF since
the transport is limited by the weak co-tunneling rates, and not by the rates between the
dots and the leads.
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The co-tunneling rates axy are given by the cross-correlations between an electron en-
tering dot x and another electron entering dot y. This can be shown mathematically by
differentiating the CGF with respect to different counting fields:

∂2F (χ)

∂(iχx)∂(iχy)

∣∣∣∣
χ=0

= axy (6.14)

It is natural to interpret the co-tunneling rates axy as the analogs to the probabilities used
for the formulation of the quantum correlation given by Eq. (2.2). In the next chapter, this
interpretation will be used to formulate Bell’s inequality.
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Chapter 7

Bell’s Inequality

In this chapter, Bell’s inequality is derived for the sextuple dot system using the generalized
version of CHSH [14], which was introduced in Sec. 2.2. It is shown that quantum correlations
between charge transport through the side dots will violate the inequality and thereby local
realism. We express these quantum correlations in terms of the co-tunneling rates axy in
accordance with the interpretation in the previous chapter. These rates can be measured
experimentally since they correspond to the cross-correlations of the currents. In Sec. 7.4, we
also investigate short-time measurements by using the concept of second degree of coherence.

7.1 Simplifying Assumptions

In the following, the co-tunneling processes will be assumed to be at resonance. This means
that ε12xy = εx + εy + Uxy − ε1 − ε2 − U12 = 0 in Eq. (6.10) for all values of x and y.
Furthermore, due to symmetry on each side of the center dots, Γx = ΓL and Γy = ΓR are
assumed to be the same for the dot pairs on each side. Consequently, the co-tunneling rates
from Eq. (6.10) become

axy =
|t12xy|2(ΓL + ΓR)

~2(ΓL
2

+ ΓR
2

)2
∝ |t12xy|2 (7.1)

7.2 CHSH Inequality

The CHSH inequality can be formulated by introducing the quantum correlation

E =
a35 + a46 − a36 − a45

a35 + a46 + a36 + a45

(7.2)
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Since the co-tunneling rates axy all depend on the tunneling amplitudes, E will depend on
the tunneling amplitudes as well. Bell’s inequality is obtained by performing four differ-
ent experiments, each with a unique setup of tunneling amplitudes. Hence, four different
quantum correlations will be obtained.

First, a reference measurement is performed with the quantum correlation Eab. Then the
circumstances are changed such that the tunneling amplitudes between the center dots and
the left side dots are changed, yielding a quantum correlation Ea′b. In the third experiment,
the circumstances for the left side dots are the same as in the reference experiment, but now
the circumstances are changed for the right side dots, yielding a quantum correlation Eab′ .
Finally, a fourth measurement is performed where the circumstances are changed for both
the left side dots and the right side dots at the same time, yielding a quantum correlation
Ea′b′ .

The Bell parameter is then defined by

S = |Eab − Ea′b + Eab′ + Ea′b′ | (7.3)

where local realism implies that this parameter never exceeds a maximum value of 2. By
showing that four experiments can violate this inequality, one can demonstrate the effect of
entanglement. Since the inequality is not violated by every choice of four different experi-
ments, the challenge is to find four experiments that violate the inequality.

7.3 Parameterization of the Tunneling Amplitudes

To explicitly show that the system violates Bell’s inequality, we parameterize the tunneling
amplitudes. We assume that the tunneling amplitudes between the center dots and the side
dots can be tuned by changing the potential of some electrode. Furtermore, we assume that
this is mathematically analogous to a beam splitter in quantum optics. This means that the
tunneling amplitudes can be parameterized as shown in Fig. 7.1. It follows that

t1235 = b(t13t25 − t15t23) = b(sin θ1 cos θ2 − sin θ2 cos θ1) = b sin (θ1 − θ2)

t1236 = b(t13t26 − t16t23) = b(− sin θ1 sin θ2 − sin θ2 sin θ1) = −b cos (θ1 − θ2)

t1245 = b(t14t25 − t15t24) = b(cos θ1 cos θ2 + sin θ2 sin θ1) = b cos (θ1 − θ2)

t1246 = b(t14t26 − t16t24) = b(− cos θ1 sin θ2 + cos θ2 sin θ1) = b sin (θ1 − θ2) (7.4)

where b is a proportionality constant. These results give the following expressions for the

39



co-tunneling rates:

a35 = a46 ∝ sin2 (θ1 − θ2)

a36 = a45 ∝ cos2 (θ1 − θ2) (7.5)

sinθ1

-sinθ1

cosθ2
cosθ2

cosθ1
cosθ1

-sinθ2

sinθ2

QD1

QD2

QD3

QD4

QD5

QD6

Figure 7.1: The parameterization of the sequential tunneling amplitudes.

For a given setup (θ1, θ2), which defines the tunneling amplitudes, the quantum correlation
is now explicitly given by

E(θ1, θ2) =
a35 + a46 − a36 − a45

a35 + a46 + a36 + a45

= − cos (2(θ1 − θ2)) (7.6)

The Bell parameter in the CHSH inequality becomes then

S = |E(θ1, θ2)− E(θ1, θ
′
2) + E(θ′1, θ2) + E(θ′1, θ

′
2)| =

= | −cos (2(θ1 − θ2)) + cos (2(θ1 − θ′2))− cos (2(θ′1 − θ2))− cos (2(θ′1 − θ′2))| (7.7)

where local realism implies that this parameter never exceeds a maximum value of 2. Never-
theless, by choosing the angles properly (e.g., θ1 = π/2, θ′1 = π/4, θ2 = 3π/8 and θ′2 = π/8)
the expression can achieve values as high as 2

√
2 if the predictions of quantum mechanics

are correct. We have thus shown that, under certain assumptions, the sextuple dot system
displays non-local transport properties.

7.4 Short-Time Measurements

In the previous sections, the quantum correlations were determined based on average currents
obtained from the FCS. All these concepts are based on long-time measurements. To really
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achieve the analog case of quantum optics, where correlations between measurements on
single photons are conducted, we need to consider short-time measurements.

Until recently, it has not been possible to perform such experiments since it requires mea-
surement devices that can detect single electrons. However, during the last years quantum
point contacts have been developed that allow for detection of single electrons [39]. This
means that short-time measurements analogous to the ones performed in quantum optics
can be conducted.

To compute the quantum correlations in the short-time limit, we use the concept of second
degree of coherence. This is a concept used in quantum optics to describe correlations
between intensity fluctuations [40]. Recently, it has also been applied to solid-state physics
[41]. In our case, the second degree of coherence can be defined as

g(2)
xy (τ) =

〈〈JxΩ(τ)Jy〉〉+ 〈〈JyΩ(τ)Jx〉〉
2〈〈Jx〉〉〈〈Jy〉〉

(7.8)

where 〈〈A〉〉 = tr{Aρstat} denotes the stationary expectation value of the operator A,
Ω(τ) = eMτ is the master equation propagator and JN = ∂

∂(iχN )
M(χ)

∣∣
χ=0

is the opera-

tor corresponding to the charge flux through side dot N . In the limit when τ → 0, we get
Ω(τ) = 1. It can easily be shown that Jx and Jy are commuting, i.e., 〈〈JxJy〉〉 = 〈〈JyJx〉〉.
Hence, for the sextuple dots, the second degree of coherence becomes to first order in axy

g(2)
xy (0) =

〈〈JxJy〉〉
〈〈Jx〉〉〈〈Jy〉〉

= axy
ΓxΓy

Γx + Γy

1

(axy + axȳ)(axy + ax̄y)
(7.9)

The third factor in this expression is a normalization constant and becomes a fixed number.
If we use the previous assumption that Γx = ΓL and Γy = ΓR are the same for the dot pairs
on each side, the expression simplifies to

g(2)
xy (0) = axy

ΓLΓR
ΓL + ΓR

∝ axy (7.10)

Interpreting this as the analog to the probabilities used for the formulation of the quantum
correlation given by Eq. (2.2), we note that we end up with quantum correlations that are
still given by the axy coefficients. Hence, the results for long-time measurements hold also
for short-time measurements.
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Chapter 8

Discussion and Conclusion

The aim of this thesis was to present and analyze a sextuple dot system with the purpose to
make it possible to experimentally demonstrate entanglement between electrons in nanos-
tructures. As shown in Ch. 4, the system operates in the co-tunneling regime under the
given assumptions as intended. In Ch. 5, we derived a master equation and from this we
computed the full counting statistics in Ch. 6. By using the axy co-tunneling rates we ob-
tained expressions for the quantum correlations. The results showed that the system violates
Bell’s inequality and thus displays quantum coherent non-local transport properties. This
phenomenon is a consequence of the actual existence of quantum entanglement between
electrons.

In Ch. 7, we also showed that the results hold for short-time measurements. Using the
second degree of coherence, we concluded that the quantum correlations will be the same as
for the long-time measurements.

The main advantage of this system is the short time between production and detection of
the entangled electrons. This minimizes the environment-induced decoherence, which would
otherwise impair the entanglement. The system is also based on the use of spatially separated
electrons, which are easy to detect. There are no obstacles such as measuring spin along
arbitrary directions. Hence, the system combines the simple detection of spatially separated
electrons with the good coherence properties that usually only characterize spin-entangled
electrons.

Even though the results are promising, there are several challenges associated with the
system. The structure consists of six quantum dots, which are coupled in a specific way
that may be difficult to realize in practice. It must also be possible to tune the tunneling
amplitudes between the center dots and the side dots as required.

Further theoretical work should focus on trying to eliminate some of the assumptions that
have been used. For instance, it would be advantageous if the model could take into account
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the possibility of having tunneling between the two center dots or between two side dots.
In conclusion, this system opens up a new alternative of how entanglement between spa-

tially separated electrons in nanostructures can be demonstrated. A deeper knowledge and
understanding of entanglement is important for further developments in quantum informa-
tion, including the development of quantum computers.
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Chapter A

Appendix: Generator S in Ch. 4

In this appendix, we show that

V + [S,H0]− = 0 (A.1)

where

V =
∑
αα′

1

2

(
tαα′d

†
αdα′ + t∗αα′d

†
α′dα

)
(A.2)

H0 =
∑
α

εαnα +
∑
αα′

1

2
Uαα′nαnα′ (A.3)

has the solution

S =
∑
αα′

1

2
Eαα′

(
tαα′d

†
αdα′ − t∗αα′d

†
α′dα

)
(A.4)

with

Eαα′ =
∑
B∈B

 1

εB

∏
β∈B

nβ
∏
β/∈B

(1− nβ)

 (A.5)

where B is the set of all possible combinations of occupied dot states, except the dot states
α and α′, and εB is the energy difference between the final state and the initial state when
tunneling takes place between dot α and dot α′ with the occupation combination B. Note
that Eαα′ = −Eα′α and E†αα′ = Eαα′ .
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Since S is anti-Hermitian, we start by writing the generator in the form S = S ′ − S ′†,
where S ′ is an arbitrary operator. Eq. (A.1) can then be recast into

V + [S,H0]− = V ′ + V ′† + [S ′, H0]− + [S ′, H0]†− = 0 (A.6)

where V ′ =
∑
αα′

1
2
tαα′d

†
αdα′ . By separating non-conjugated parts from conjugated ones, a

possible solution is given by

V ′ + [S ′, H0]− = 0 (A.7)

Next, we make the assumption that S ′ can be written in the same form as V ′, i.e., S ′ =∑
αα′

S ′αα′ , where S ′αα′ is an operator acting exclusively on dot α and α′. Eq. (A.7) becomes

then ∑
αα′

V ′αα′ + [
∑
αα′

S ′αα′ , H0]− = 0 (A.8)

Due to the linearity of the commutator, this is equivalent to∑
αα′

V ′αα′ +
∑
αα′

[S ′αα′ , H0]− = 0 (A.9)

A solution can be found by solving the following equation for each pair of dots (actually
there are two equations for each pair since the order of the indices matters):

V ′αα′ + [S ′αα′ , H0]− = 0 ∀(α, α′) (A.10)

Since H0 only consists of number operators, S ′αα′ commutes with all parts of H0 that act on
different states. Hence, Eq. (A.10) can be simplified to

V ′αα′+[S ′αα′ , H
d
α+Hd

α′+
∑
α′′

α′′ 6=α,α′

(Hcap
αα′′ +Hcap

α′′α +Hcap
α′α′′ +Hcap

α′′α′)+H
cap
αα′+H

cap
α′α]− =

= V ′αα′ + [S ′αα′ , H
d
α +Hd

α′ +
∑
α′′

α′′ 6=α,α′

(2Hcap
αα′′ + 2Hcap

α′α′′) + 2Hcap
αα′ ]− = 0 ∀(α, α′) (A.11)

We finally show that

S ′αα′ =
1

2
tαα′Eαα′d

†
αdα′ (A.12)
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with

Eαα′ =
∑
B∈B

 1

εB

∏
β∈B

nβ
∏
β/∈B

(1− nβ)

 (A.13)

is the solution:

[
1

2
tαα′Eαα′d

†
αdα′ , H

d
α +Hd

α′ +
∑
α′′

α′′ 6=α,α′

(2Hcap
αα′′ + 2Hcap

α′α′′) + 2Hcap
αα′ ]− =

=
1

2
tαα′Eαα′ [d

†
αdα′ , H

d
α +Hd

α′ +
∑
α′′

α′′ 6=α,α′

(2Hcap
αα′′ + 2Hcap

α′α′′) + 2Hcap
αα′ ]− =

= −1

2
tαα′

∑
B∈B

∏
β∈B

nβ
∏
β/∈B

(1− nβ)

 d†αdα′ = −1

2
tαα′d

†
αdα′ = −V ′αα′ (A.14)
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and E. Schöll, Phys. Rev. B 73, 033312
(2006).

[37] D. A. Bagrets, Y. Utsumi, D. S. Gol-
ubev, and G. Schön, Fortschr. Phys. 54,
917 (2006).

[38] L. Mandel and E. Wolf, Optical Coher-
ence and Quantum Optics (Cambridge
University Press, 1995), p. 16–20.

[39] S. Gustavsson, R. Leturcq, B. Simovič,
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