

	

Web performance optimization
- How is an optimized front-end achieved?

	

	

	

	

LTH School of Engineering at Campus Helsingborg

Department of Electrical and Information Technology

	

	

	

	

	

	

	

Bachelor thesis:
Robin Török
Sebastian Johansson

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

© Copyright Robin Török, Sebastian Johansson
LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden
LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg
Printed in Sweden
E-huset
Biblioteksdirektionen
Lunds universitet
Lund 2014

Abstract
The objective of this thesis was to gather information about how important
web performance is and what to do to optimize web pages. This information
will then be delivered as course materials to Edument AB. The course
materials will be presentation materials that are going to be a part of their
upcoming course about this topic.
The presentation materials were divided into eight parts in order to achieve a
natural distribution between the areas in the topic. Our ambition was to finally
provide well-elaborated presentation materials, which will not only contain
theoretic but also practical examples. This was done by splitting up the time
into four working phases for each part of the presentation materials.
During the first working phase a non-optimized example was tested in order
for the bottleneck to be found and analysed.
During the second working phase the example was optimized, focusing on the
bottleneck and to finally eliminate it.
The third was to test the optimized example and compare for further analysis.
The last phase was to document the conclusion of the tests made.

Keywords: HTML, CSS, JavaScript, Caching, Http, Web performance

Sammanfattning
Examensarbetet gick ut på att få information om varför det är viktigt med
webbprestanda samt hur man optimerar hemsidor för bästa prestanda. Denna
information skulle levereras som kursmaterial till Edument AB.
Kursmaterialet kommer utgöra presentationsmaterial för deras kommande kurs
angående ämnet.
Presentationsmaterialet delades upp i åtta delar för att få en naturlig fördelning
mellan de olika områdena inom ämnet. Ambitionen var att slutligen få fram ett
väl genomarbetat presentationsmaterial, som förutom teori även skulle
innehålla praktiska exempel. Detta gjordes genom att dela upp tiden i fyra
arbetsfaser för varje del av presentationsmaterialet.
Första fasen gick ut på att testa ett icke optimerat exempel där flaskhalsen
skulle hittas och analyseras.
Under andra fasen optimerades exemplet med avseende på flaskhalsen och
slutligen eliminera den.
Den tredje var att testa det optimerade exemplet och jämföra för vidare analys.
Den sista fasen var att dokumentera slutsatsen av de gjorda testerna.

Nyckelord: HTML, CSS, JavaScript, Caching, Http, Webbprestanda

Foreword
We would like to thank Edument AB for the opportunity to do this thesis. A
special thanks to Tore Nestenius, co-founder of Edument AB, for the guidance
and support throughout the thesis. We would also like to give a special thanks
to Christian Nyberg, our examiner at LTH School of Engineering.

List of contents
1	
 INTRODUCTION	
 ...	
 1	

1.1	
 BACKGROUND	
 ...	
 1	

1.2	
 PURPOSE	
 ...	
 1	

1.3	
 PROBLEM	
 ...	
 1	

1.3.1	
 Main	
 problems	
 ..	
 1	

1.3.2	
 Subproblems	
 ..	
 2	

1.4	
 LIMITATIONS	
 ...	
 2	

2	
 TECHNICAL	
 BACKGROUND	
 ..	
 3	

2.1	
 WEB	
 ...	
 3	

2.1.1	
 Web	
 browsers	
 ..	
 3	

2.1.2	
 Http	
 ..	
 3	

2.1.3	
 Caching	
 ...	
 4	

2.1.4	
 CDN	
 (Content	
 Delivery	
 Network)	
 ...	
 4	

2.2	
 RESOURCES	
 ...	
 5	

2.2.1	
 HTML	
 (HyperText	
 Markup	
 Language)	
 ..	
 5	

2.2.2	
 CSS	
 (Cascading	
 Style	
 Sheet)	
 ..	
 6	

2.2.3	
 JavaScript	
 ..	
 7	

2.2.3.1	
 Ajax	
 (Asynchronous	
 JavaScript	
 and	
 XML)	
 	
 8	

2.2.4	
 Images	
 ..	
 9	

2.3	
 TOOLS	
 ...	
 11	

2.3.1	
 Webpagetest.org	
 ..	
 11	

2.3.2	
 YSlow	
 ...	
 11	

2.3.3	
 PageSpeed	
 ...	
 12	

2.4	
 WATERFALL	
 CHART	
 ..	
 12	

3	
 METHODOLOGY	
 ...	
 15	

3.1	
 INFORMATION	
 GATHERING	
 ..	
 15	

3.2	
 TESTING	
 ENVIRONMENT	
 ..	
 15	

3.3	
 OPTIMIZING	
 ...	
 16	

3.3.1	
 Http	
 ..	
 16	

3.3.2	
 Caching	
 ...	
 16	

3.3.3	
 CDN	
 ..	
 16	

3.3.4	
 CSS	
 ..	
 17	

3.3.5	
 JavaScript	
 ..	
 17	

3.3.6	
 Images	
 ..	
 17	

3.4	
 TESTING	
 ...	
 17	

3.5	
 COURSE	
 MATERIALS	
 ..	
 18	

3.6	
 SOURCES	
 OF	
 ERROR	
 ...	
 19	

3.7	
 SOURCE	
 CRITICISM	
 ..	
 19	

4	
 ANALYSIS	
 ...	
 22	

4.1	
 HTTP	
 ...	
 22	

4.2	
 MINIFYING	
 HTTP	
 REQUESTS	
 ...	
 22	

4.3	
 CACHING	
 ...	
 23	

4.4	
 MINIFYING	
 CODE	
 ...	
 24	

4.5	
 CDN	
 ..	
 25	

4.6	
 CSS	
 ...	
 25	

4.7	
 JAVASCRIPT	
 ..	
 25	

4.8	
 IMAGES	
 ...	
 26	

4.9	
 TOOLS	
 ...	
 28	

5	
 RESULTS	
 ..	
 30	

5.1	
 HTTP	
 ...	
 30	

5.2	
 MINIMIZING	
 HTTP	
 REQUESTS	
 ...	
 30	

5.3	
 CACHING	
 ...	
 32	

5.4	
 MINIFYING	
 CODE	
 ...	
 34	

5.5	
 CDN	
 ..	
 35	

5.6	
 CSS	
 ...	
 36	

5.7	
 JAVASCRIPT	
 ..	
 36	

5.8	
 IMAGES	
 ...	
 38	

5.9	
 COURSE	
 MATERIALS	
 ...	
 40	

6	
 CONCLUSION	
 AND	
 POSSIBLE	
 FUTURE	
 WORK	
 	
 46	

7	
 TERMINOLOGY	
 ..	
 48	

8	
 REFERENCES	
 ...	
 50	

	

1

1 Introduction

1.1 Background
This thesis is built on Edument AB’s idea about creating a course about web
performance. Edument was founded in 2010 by Acke Selem and Tore
Nestenius. Edument is a software development and mentoring company
specializing in the most challenging parts of software development . The
employed consultants acts as mentors in other companies to make their
development more effective. As well as offering mentoring, Edument also
holds lectures about different subjects related to IT.
The work presented in this thesis will be a part of an upcoming course about
web performance. The course will include seven hours of lecturing and
demonstrations as well as seven hours of performance related exercises. The
purpose of the course is to teach the basics about web performance such as
finding the bottleneck and which aspects and resources that matters when
building a high performance website. The thesis includes the presentation
materials that will be used in the lectures.

1.2 Purpose
While a decade ago, it was acceptable for a web site to take a while to load, it
today has become more important than ever to have a fast web site. Especially
if the web site’s intention is to generate revenue. According to recent studies,
twenty percent of the visitors will abandon a webpage slower than 3 seconds,
which directly affects the revenues. (Strangeloop Networks, 2012)
The main purpose of this thesis is to give information of how optimization of
different aspects can be done, as well as present how the different optimization
methods can save the overall time spent on downloading a web site. These
areas will be represented in the presentation materials delivered to Edument.

1.3 Problem
The problems discussed and answered in this thesis are listed in section 1.3.1
and 1.3.2. They are divided into three main problems. These questions are
broad and not easy to answer. Therefore they are divided into six smaller more
concrete subquestions. A summarize of answers of these subquestions is
presented in chapter 6.

1.3.1 Main problems
• How can the browser's performance be optimized, from the user's

perspective, focusing on HTML, CSS, JavaScript and web services?

2

• How can web performance optimization and load testing be done and
how is it analysed?

• How can the problem of web performance be handled?

1.3.2 Subproblems
• How do HTTP, HTML, CSS, JavaScript and images affect

performance?
• What tools can be used to properly measure the web performance and

how is the result interpreted?
• Can web optimization be automated?
• How should a company proceed to optimize it's already exsisting web

site?
• How can caching be implemented properly and what are the pitfalls?
• Can a checklist be developed for guidence on how to optimize a web

site?

1.4 Limitations
Because of the limited time, there had to be some limitations. One limitation
was not to focus on code optimization. Although an effective code is
important, it was not as important as the topics included in this thesis. The
theoretical background of how it is possible to make changes to the code is
mentioned, but this is not tested and thereby not presented in the results.
Another limitation of this thesis was the mobile platform. Most of the
optimization methods in the thesis can also be applied on smartphones and
tablets, but the focus was set on the desktop.
Optimization of TCP/IP and networks is not included in this thesis.

3

2 Technical Background

The aspects being handled in terms of web performance optimization are
divided into two parts. The first part is how the web including browsers, the
http protocol and different techniques affect the performance of certain web
sites. The second is how the performance is affected by the resources used to
build a web site.

2.1 Web
One of the ways the web perfomance can be affected is by the interaction
between servers. The web, in our case refers to how the communication is
handled, in order to achieve as minimal communication times as possible.

2.1.1 Web browsers
The web browser is a software application that is the interface between a user
and the web. The web browser’s function is to handle the data being sent and
received trough the Http protocol. The way the browser handles the
information about a web site is by the HTML document. The document is
transformed into a DOM (Document Object Model) tree in order for the web
browser to be able to read and render the web sites more efficiently.
Alongside with the DOM the browser’s second function is to download all the
resources into the internal memory, this will serve the rendering and
functionalities needed by the webpage that is being shown.
The web browser is often a bottleneck in terms of optimization. It was never
meant for it to be used for advanced applications such as Facebook and
similar, which handle big amount of data.
When a browser downloads a web page it downloads different resources in
parallel. This parallelism requires more CPU capacity and bandwidth. To be
able to get the most out of it, and minimize the handling time for a better user
experience, it is important to know how many parallel downloads is optimal
for a certain web site. Optimizing the browser handling is being aggravated for
developers because of the wide assortment of different browsers being used
today. (Souders, S. 2007; Souders, S. 2009)

2.1.2 Http
Http is a protocol used by servers and computers to communicate with each
other. When there is a connection established after DNS Lookup, information
is shared. This information could, for instance, be a web site. Due to the fact
that a website often contains multiple resources, some of which contains a
relatively big amount of data, the content is divided into smaller Http
packages.

4

When a client needs data from a server a request, containing information of
what data is needed, is made. The respondent server then sends back a
response with a payload containing the data being requested earlier, if this is
permitted.
Since web sites nowadays have been growing tremendously in size, there is
need for reduction of requests as well as the size of the payload sent back. The
first point is especially important, the time spent on sending data back and
forth often constitute the biggest part of the web site loading time. (Simonstl
2009)

2.1.3 Caching
When communicating across the web it is in everyone's interest to reduce the
number of requests and bytes sent/received. When a user visits a web site that
consists of multiple pages, the habit is often to visit the succeeding pages. The
web site often reuses some content throughout the pages, which makes the
number of requested resources fewer. To be able to reuse resources the web
browser contains a local cache memory. The cache gives the ability for a
client to load the reused content located in the cache and thereby reduce the
number of Http requests. Due to the request not being sent, the time for
retrieving needed data is reduced. Caching data is an important part of
optimization when it comes to static content such as images, style sheets and
scripts. (GTmetrix n.d; Souders, S. 2007)

2.1.4 CDN (Content Delivery Network)
A content delivery network is a network of servers spread across a region to
serve people who own web sites or simply are storing data on a server. A
CDN is providing a service that is minimizing the geographical distance
between clients and hosts. The goal is to reduce the propagation time for Http
requests/responses. Instead of one host storing all the data needed for the web
site on a single entity, a good practice is to spread this data across a CDN
network. Clients will then be able to retrieve data from the web site faster, no
matter where the client is located in the world. (Souders, S. 2007; White, J.
2012)
For example a web site with users across the entire world can greatly benefit
from using a CDN, while local news web site perhaps cannot. The CDN is
mainly used to store static content. This is a service hosted by larger
companies and can be both free and commercial. (Souders, S. 2007; White, J.
2012)

5

2.2 Resources
When visiting a web site, multiple resources are downloaded. These resources
serve different purposes but works together to build a web site. The following
section will introduce the most common web site resources.

2.2.1 HTML (HyperText Markup Language)
HTML is the heart of web sites and is the standard language used when
constructing a web page. The HTML document consists of tags enclosed in
angle brackets. Most of the elements in HTML have a starting tag, such as
<div> with an associated closing tag, </div>. Figure 2.1 describes an
example of a simple HTML document. The document is built like a tree where
a tag can have multiple child tags which lies within their parent.

Figure 2.1: A very simple HTML document.

A tag can have attributes that provide it with properties. An image has a
source attribute which leads to the path of the image, a div can have an ID to
make it possible find it using style sheets and scripts. (W3Schools n.d.a)
There are different versions of HTML. While HTML4, or XHTML, has been
the most common in the last decade, HTML5 is becoming more popular. The
advantages of HTML5 are, among others, a simplified syntax, more powerful
elements like <header>, <footer>, and <menu> and the multimedia tags
<audio> and <video>. While these advantages can be attractive for a web
developer, they should be used with caution. Not all browsers support
HTML5, the older ones in particular, which can lead to compatibility issues
for some of the viewers. (Minnick, C. 2013)
When a web browser downloads a HTML document it parses its data, render a
DOM tree and looks for further resources to be downloaded. These resources
can be style sheets, scripts and images, which either style the HTML or give it
dynamic functionality that can enhance the user experience. (W3Schools
n.d.a)

<html>
 <head>
 <title>My title</title>
 </head>
 <body>
 <h1>My header</h1>
 <p>My paragraph</p>
 </body>
</html>

6

2.2.2 CSS (Cascading Style Sheet)
The CSS is a style sheet that describes the design of a web page and is used
widely by web developers. Figure 2.2 shows an example on how a style sheet
can look. It uses selectors to find elements in the HTML document to change
their visual properties. In Table 2.1 you can see some selectors and examples
on how they can be used. (W3Schools n.d.b)

Figure 2.2: A simple style sheet.

Table 2.1: CSS selectors

Some of these selectors are bad for performance. Using for example a
descendant selector such as #my_id a {color: #333;} makes the
browser search for all elements with the type a and then look for the id
my_id through traversing the HTML tree until it has been found. Simply by

Selector Example

ID #my_id {background-color: white;}

Class .my_class {color: black;}

Type A {text-decoration: none;}

Adjacent sibling H3 + #my_id {padding:10px;}

Child #my_id > LI {font-size: 12px;}

Descendant #my_id A {color: #333;}

Attribute [href="link.html"]{font-
weight:bold;}

Pseudo
classes/elements

A:hover {text-decoration:
underline;}

body {
 background-color: orange;
}

#my_id {
 color: green;
}

h1 {
 font-size: 16px;
}

7

using a better ID or classes you can still do exactly the same thing without
loosing time on finding the element. (Souders, S. 2009; W3Schools n.d.b)
A web designer may keep their CSS well commented and divided in multiple
files for best maintainability and overview. However, comments and
unnecessary spaces quickly add up to the file size which leads to a longer
download time when a browser requests it. By removing spaces and comments
in the CSS, you get a smaller file and a faster download. (Souders, S. 2009)
The more requests you make, the more time you spend on waiting for the
server to prepare your response. By combining the style sheets you get fewer
request on the same information.
If you want your design to change dynamically you can use something called
CSS expressions. By using these you can implement scripts in your style sheet
to change the design depending on events and similar. The problem with
expressions is that the page is evaluated every time you move your mouse,
scrolls the page, resize the window and so on. This can lead to a sluggish site,
which lowers the user experience. (Souders, S. 2009)
While it is possible to write both internal and inline CSS inside the HTML
document, it cannot be cached. Making it external makes the CSS more likely
to being cached. (Souders, S. 2009)

2.2.3 JavaScript
JavaScript is a dynamic programming language used to enable the browser to
execute scripts on client-side to interact with the HTML and CSS and
dynamically change these. It can also be used to communicate asynchronously
with servers without reloading the page.
JavaScript uses functions such as document.getElementById(…) to
retrieve and alter elements from HTML. When the script interacts with the
browser in this way it needs to access the DOM. The interaction between
JavaScript and the DOM is a bottleneck in terms of web performance. Every
time a script calls a function that interacts with the DOM, the DOM tree is
traversed until the script finds the element. With many elements the tree
becomes large and complex, which means traversing it becomes time
consuming. Reducing the number of DOM elements by removing unnecessary
tags in HTML both reduces the file size of the HTML document as well as
making traversing the tree faster.
Changing the layout and design of a page using JavaScript makes the browser
repaint the page. Doing this often leads to a sluggish page. The number of
repaints can be reduced by, instead of changing the styling attributes, change
the class of an element and thereby only repainting once.

8

JavaScript uses events such as onLoad and onClick. The HTML code
<button onClick="doSomething()"> Button </button> will
lead to that the JavaScript function doSomething() is executed whenever
the button is clicked. Having a lot of these kinds of events on your site may
lead to a poor user experience because of the added complexity. It also leads
to a larger file, which directly affect the download time. Instead of this
approach, event delegation is an alternative way to go. Event delegation means
that you instead of, as in Figure 2.3, using the onClick event on every td item
you have the onClick on the table element instead.

Figure 2.3: Table with the onClick attribute on every table cell.

The loading of JavaScript is perhaps one of the biggest issues. Placing a script
in the wrong place can slow down your site radically. Always try to place it as
low on the page as possible. Doing so it will not block any other downloading
in older browsers and will not execute before the page is rendered. Sometimes
a script is used to create the page, which makes this impossible.
As well as with CSS, JavaScripts can be compressed by removing unnecessary
code and thereby reduce the file size. Combining JavaScripts reduces the
number of Http requests, which more often than not leads to a faster page
download. (Souders, S. 2007; Souders, S. 2009; W3Schools n.d.c)
2.2.3.1 Ajax (Asynchronous JavaScript and XML)
Ajax uses techniques in JavaScript to make asynchronous http requests, which
makes it possible to fetch information in the background by using a so called
XMLHttpRequestObject. Because it is done in the background there is
no need for the webpage to be reloaded every the time. This also makes it
possible to reduce the size of the requests. (W3Schools n.d.d)
Ajax can be used to download other resources in order to speed up succeeding
pages. In Figure 2.4 there is an example on how this code might look. This is
called preemtive loading and places the downloaded resources in the cache for
faster fetching on succeeding pages. This technique can also be used to delay

<table>
<tr>
 <td id="item1" onClick="x('item1 ')">item1</td>
 <td id="item2" onClick="x('item2 ')">item2</td>
</tr>
<tr>
 <td id="item3" onClick="x('item3 ')">item3</td>
 <td id="item4" onClick="x('item4 ')">item4</td>
</tr>
</table>

9

heavier scripts which are not important enough to load in the begining.
(Souders, S. 2007; Souders, S. 2009)

Figure 2.4: JavaScript code that downloads other script and style sheet when page is loaded.

2.2.4 Images
Images is one of the largest resources sent back and forth in networks.
Beacause of this, one of the most important aspect when optimizing the
images on a web site is to shrink their size.
In order to choose the right image format, images are split into two categories:
graphics and photos. To place the image in the right category the features of
the image have to be considered. Here is a list of what signifies each type:
Graphics

• High contrast and sharp color-transitions.
• Icons, Logos, Graphs.
• Relatively small amount of colors.

Photos

• Smooth color transition and gradients.
• Often millions of colors.

window.onload = doOnLoad;

function doOnLoad() {
 setTimeout("downloadResources()", 1000);
}

function downloadResources() {
 downloadJS("scripts/myScript.js");
 downloadCSS("style/myStyleSheet.css");
}

function downloadJS(url) {
 var element = document.createElement("script");
 element.src = url;
 document.body.appendChild(element);
}

function downloadCSS(url) {
 var element = document.createElement("link");
 element.rel = "stylesheet";
 element.type = "text/css";
 element.href = url;
 document.body.appendChild(element);

}

10

Below in Table 2.2 is a summary of the most important features of the most
used image formats used on the web today.

Table 2.2: Properties of different image formats.

Since images are large resources on the web, it is important to take these into
consideration. When optimizing images there are two steps to go through. The
first is lossy compression wich means simply lowering the quality of the
image in the extent that it is not visible to the eye or at least high enough
quality. The second step is a lossless compression, wich deletes the
unnessecary metadata of the image and reduces the color palette of the image,
in certain extent that it only contain the number of pallettes that is actually
used. The tools used for lossless optimization is shown in Table 2.3. (Smith, P.
2013; Souders, S. 2009)
A common mistake is to scale down large images in the browser. When this is
done a larger image is downloaded, to later be reduced to, for example, a
thumbnail. An example of this is when a full picture of 1280 x 1162 pixels is
scaled down to 100 x 90 pixels. When downloading the bigger picture, that
will not be used, it takes more time than it would on a smaller version of the
same image. Therefore, it is important to save the image in the size that will be
used, even though it will be used in several different sizes. (Smith, P. 2013;
Souders, S. 2009)

 GIF JPEG PNG8 PNG24 PNG32

Transparency Binary No Binary No Alpha

Animation Yes No No No No

Nonlossy Yes No Yes Yes Yes

Interlacing Yes Yes Yes Yes Yes

Number of colors 256 2^24 256 2^24 2^24

11

Tool Description
JpegTran
(Recommended)

- Removes the metadata.
- Use Huffman coding to compress the Jpeg.

PNGCrush
(Recommended)

- Removes all chunks except the one for alpha
transperancy.
- Reduce the number of colours in the palette.
- Tries 100 different methods for optimizing.

PNGOUT - Performs bit depth, color and palette reduction.
optiPNG - An extension on PNGCruch
GIFsicle - Removes the duplicate information about a pixel in an

animation. Used when a pixel does not change between
frames during an animation.

Table 2.3: Optimizing tools for images.

2.3 Tools
In order to optimize a web site, it has to be analysed. By measuring with
different performance tools, the bottlnecks can be found. These sections
describes the different analysing tools used throughout this thesis.

2.3.1 Webpagetest.org
Webpagetest.org is an open source web performance tool developed by
Google, which is used for testing the loading time of a web site. The testing
tool can both be used online and downloaded to run locally on a computer.
There are multiple ways to test a targeted web site with this tool. For instance
you can get a waterfall chart presenting both the first as well as the second
view of a web page. Another great functionality that may come in handy is
generating videos showing how a page is loaded. This can even be done in a
comparison between multiple pages.
Webpagetest.org does also contain an analysing tool, which runs during the
tests, and present this trough grades and also some data of whether different
optimizing techniques are applied or not.
More about this tool can be learned at the webpage webpagetest.org/about.

2.3.2 YSlow
YSlow is a free web performance analysing tool developed by Yahoo!. It runs
tests on a targeted web site and returns grades of how optimized the web site is

12

regarding different aspects. In addition to rating the web site, it also provides
the user with feedback on how to better optimize the targeted web site. The
grades are based on 23 rules developed too best show where the targeted web
site can be optimized.
More about this tool can be learned at the webpage
developer.yahoo.com/yslow.

2.3.3 PageSpeed
PageSpeed is Google’s web performance analysing tool, it analyses different
well-known aspects of how to properly optimize a web site. The PageSpeed
presents the result in form of grades and also gives advices on what is not
properly optimized. PageSpeed and YSlow are similar tools with the same
main focus, but the minor rules differ.
More about this tool can be learned at the webpage
developers.google.com/speed/pagespeed.

2.4 Waterfall chart
The waterfall chart is the most common chart for presenting load-testing data
of a web site. As seen in Figure 2.5 the waterfall chart shows in each line an
Http request/response. It also shows how long it takes for the Http
request/response to go through each state.

Figure 2.5: Part of Eduments web site. Colours by state.

The explanation of the different states is:

• DNS Lookup - The time it takes for the right server to be found.
• Initial Connection - The time it takes to set up the connection.
• Time To First Byte - The time between the Http requests sent to the first

byte of the response returned.
• Start Render - First time the webpage is rendered.
• DOM Content Loaded - When the DOM has finished loading.

13

• Document Complete - Browser consider the page loaded.
• On Load - JavaScript event triggered when Document is Complete.

Seen in the Figure 2.6 what types resources are being loaded and also the
name of each resource for easy access.

Figure 2.6: Part of Eduments web site. Colours by type.

14

15

3 Methodology

The purpose of the following chapter is to give an understanding of the
methods used and how the problems and different situations were approached.
It also describes how the information was gathered as well as how the tests
were performed.

3.1 Information gathering
As the main assignment was to create course materials about web performance
for Edument AB the first step was to gather information. Edument provided a
number of books on the subject as well as notes and email conversations with
links to articles about web performance. The challenge was to put together all
the infomation found about the topic and evaluate it in order to deliver well
elaborated course materials.
At the begining of the thesis the main source of information was books handed
out by Edument AB. These books where from different publishing houses
which contributed to a needed variation of setup. After a time of reading, a
good overview of how the whole part of optimization was working had been
obtained. This led to the testing phase.
The different testing tools used throughout the thesis was found both on the
web and in the provided books. It was importat to test different tools to be able
to find the tool that was best fitted for analysing web pages in terms of
performance. The testing phase became an extended learning phase where
many new techniques for optimizing was found throughout the tests. To be
able to run the tests and being in control of what data was tested, a web site
was set up as a testing environment.

3.2 Testing Environment
The reason for setting up a web site as a testing environment was that the tests
had to be consistent. When owning the domain, all server preferences could be
set to make test on for instance gzip and caching which may not have been
possible otherwise. As the search of a webhost proceeded, Hostgator was
found. Together with Hostgator's cheapest plan the domain lthexjobb.com was
bought. This domain was the targeted web site to run tests on when using the
testing tools webpagetest.org, YSlow and PageSpeed.
The web site was meant to be dynamic and was constantly modified by using
different resources and different configuration settings on the server. The web
site was modified to get as reliable test results as possible in order to
accomplish as good examples as possible for the course materials.

16

3.3 Optimizing
The optimization phase proceeded throughout the entire thesis. As different
aspects of web performance optimization was read upon, it was followed by
testing and optimizing before heading towards the next topic. The testing and
optimization phases for each aspect were running in multiple rounds before
they were done.

3.3.1 Http
Optimizing Http was done by first minimizing the number of requests. The
testing was done by combining resources and checking the reduction of the
overall download time using webpagetest.org.
Another test that was done was using gzip to compress the payload to reduce
the size of the resources being downloaded.

3.3.2 Caching
When testing how caching affects web performance the Http header was
modified in the servers .htaccess file. The rules were set for the Http by
implementing a Far Future Header. The header was set in a way so the
expiration date of the resource was 1 month. The code below in Figure 3.1
was used to accomplish this.

Figure 3.1: Code for activating caching of resources.

3.3.3 CDN

In order to test how a content delivery network could boost the performance of
web sites, an account at CloudFlare was created. CloudFlare is one of the
leading CDNs as of today and provides a stable service. The company have

<IfModule mod_expires.c>
ExpiresActive On
Images
ExpiresByType image/gif "access plus 1 month"
ExpiresByType image/ico "access plus 1 month"
ExpiresByType image/png "access plus 1 month"
ExpiresByType image/jpg "access plus 1 month"
ExpiresByType image/jpeg "access plus 1 month"
CSS
ExpiresByType text/css "access 1 month"
Javascript
ExpiresByType application/javascript "access plus 1
hour"
</IfModule>

17

both free and commercial plans where the commercial ones provides for
instance better security and speed.
For the tests regarding CDN, a sub-domain was added to the test domain. The
sub-domain was connected to CloudFlares servers and acted like a CDN.

3.3.4 CSS
Since there are many ways to optimize style sheets, the main focus were on
the area giving the most performance gain. This was the downloading area.
To minimize the time taken for style sheets to be downloaded, a number of
measures can be taken. First off was minimizing the number of Http requests
because of CSS.
Tests regarding compression of style sheets were also done to show how the
size of a resource affects the download time.

3.3.5 JavaScript
The performed tests regarding JavaScript included tests on different
placements of the scripts in the HTML document, combined scripts and
compressed scripts.

3.3.6 Images
When testing how images affects performance and how they could be
optimized, a number of steps were made. The first step was reduction in
quality to reduce the size of an image, also known as lossy compression. The
second step included lossless compression, where image quality were not
affected. The final step was to give the ability for larger images to be rendered
progressively on web sites.
In addition to these three steps, tests on how combined images affected the
performance were also done.

3.4 Testing
The testing phase was started right after a thorough overview on how the
different elements of a web site were setup. When the server was up and
running, the needed resources were uploaded in order to start testing.
The testing was divided into multiple testing phases, one testing phase for
each topic of the thesis. The testing was done with three different testing and
analysing tools. These tools were helpful only to a certain extent. The rest had
to be analysed with help of the knowledge gathered during the researching
phases.
The tools used for testing was:

18

• Webpagetest.org
• YSlow
• PageSpeed

The analysing part of the tools provided grades of how optimized the web site
was. After this, the data given by the analysing tools was interpreted and
considerations were made on how to improve the web site, to get the best
results as possible.
During the testing it was very important to generate consistent data under a
consistent condition. The test always ran in two parts, firstly the non-
optimized example and then the optimized one. Both parts of testing were
done with the same browser, bandwidth, CPU power and server.
The tests were executed five times and the median was selected for the results
to be as correct as possible. The tests provided each a before and after
waterfall chart. The testing results were then used in the course materials as
real life examples.

3.5 Course materials
As mentioned earlier, the product to be delivered to Edument AB is course
materials intended to be a part of a future course on web performance.
The course will consist of lectures, demonstrations and educational
assignments spread over two days, seven hours a day. The purpose of this
thesis is to deliver presentation materials in form of power points which will
be used as a teaching base when lecturing.

Figure 3.2: A slide from the course materials.

19

The presentations consists of six modules describing performance related
problems and solutions in different situations. The subjects included are
optimization of Http requests, HTML and CSS, JavaScript and images as well
as how to analyse a waterfall chart and finding the bottlenecks.
The goal was to create enough, relevant and thrustworthy information as well
as case examples that can be used when educating. In Figure 3.2 a slide of a
presentation is shown to give a picture of what is delivered.

3.6 Sources of error
The main sources of errors in this thesis occurred during the testing phases.

• Wide range of web browsers:
Each browser is handling web sites in different ways. This leads to
some inconsistency when trying to optimize a cross browser web site.

• Number of times a test is run:
The tests during this thesis were always done 5 times. Therefore the
tests were presented as a possible outcome, which were also compared
with the theoretical values.

• CDN:
Only one free CDN was tested. Tests on CDN providers were not done
which can also lead to a possible source of error.

• Only one type of server:
During the whole thesis all the tests were running on an apache 2 server.

• Internet:
Internet can be an unreliable medium, where performance can be
affected by many different external sources.

3.7 Source Criticism
Most of the sources came from companies and authors that have worked with
web performance for many years. Even though some books were half a decade
old, much of the information gathered is valid even today. Almost everthing
was tested to see if the methods and theory still was applicable.
The web sites from Google and Yahoo! are web sites related to the testing
tools used and can therefore be trusted. The blogposts and articles from the
lesser known sites were of course investigated thoroughly and tested so that
the information was up to date and reliable.
Most of the information was gathered from Steve Souders books about web
performance. Souders is a well known expert in web performance and is a
Cheif of Performance at the company Fastly. The information retrieved from
his books is highly reliable.

20

21

22

4 Analysis

This chapter will discuss and analyse the results found in chapter 5.

4.1 Http
While optimizing Http it was discovered that there were mainly two ways to
manage it properly.

1. Reducing the number of Http requests.
2. Reduce the size of the Http payload.

The first and the most general way of optimizing with focus on the Http
protocol is by reducing the number of requests. There was no single way or
technique to do this, it was more like a line of argument throughout the whole
thesis when optimizing the web.
In order to reduce the size of the Http payload, the resources were compressed.
One way to do this was by configuring the server to enable compression by
gzip. The server then compressed the payload with gzip before a response was
sent and the client decompressed it when it was received. Gzipping was only
possible when it is enabled on both the sending and receiving side.
Some versions of servers do not provide a support for gzip. In this case a
possible solution is to use another compression method called deflate. There is
no major difference between using gzip or deflate. Both does a great job
compressing the requested resources.
To get a better clearance of how the gzip actually makes a difference the
Figure 5.1 and Figure 5.2 was compared. In the comparison, a clear trend was
showing that the effect of gzipping was only noticeable on bigger resources.
This is due to the fact that gzipping comes with an increase of CPU usage. The
CPU usage only outweighed the time earned by compressing when the
resources sizes were less than 1 or 2kb.
All the resources, except for images, were compressed using gzip. A rule of
thumb is to never gzip images. Images should instead be compressed with its
own compression techniques before stored on the hosting server.

4.2 Minifying Http Requests
To minify the number of http requests the number of resources being
downloaded has to be reduced. In order to reduce the different resources they
were combined.
In Figure 5.3 a waterfall chart of the original page, with 13 requests, is shown.
In this chart none of the resources are combined. In Figure 5.4 through 5.6 the
different resources are combined by type. In some cases there is a negligable,

23

if any, save. The explanation for this is that there is only a relatively small
amount of requests. Imagine a bigger page with a lot of requests. A page like
that will have more to gain on reducing the number of requests because of the
number of parallel downloads in the browser.
Even though a bigger web site has more to gain on minimizing the number of
requests, Figure 5.7 shows that not every resource did have a shorter
download time. The number of requests has however in this example been
reduced to seven.

4.3 Caching
Figure 5.11 and Figure 5.10 is showing the second page view when the same
webpage is cached respectivly not cached. In the waterfall charts there are 304
responses shown by the Http protocol. 304 response means that a check of the
expiration date has been made and that it have not been modified and can
therefore be used from the cache. This means that the resources does not have
to be sent from the server. The request is however still made.

Figure 4.1: Code for activating caching.

When enabling caching of static content for a web site, the Http header has to
be modified in order for the client, which is receiving the content, to know
whether to cache it or not.
Figure 4.1 shows how the far future headers were implemented for all the
resources except for the HTML document.

<IfModule mod_expires.c>

Enable expirations
ExpiresActive On

Images
ExpiresByType image/gif "access plus 1 month"
ExpiresByType image/ico "access plus 1 month"
ExpiresByType image/png "access plus 1 month"
ExpiresByType image/jpg "access plus 1 month"
ExpiresByType image/jpeg "access plus 1 month"

CSS
ExpiresByType text/css "access 1 month"

Javascript
ExpiresByType application/javascript "access
plus 1 hour"

</IfModule>

24

The reason for not caching resources for under 1 hour is that it is not likely
that people revisits a home page in the time frame of one hour. The far future
header is often the solution which is used to cache a resource for as long as
possible and is often recommended for static content. If the content is dynamic
it can lead to unwanted effects.
Caching should only be used on static resources wich are likely not to be
changed in the far future. The pitfall of caching is when dynamic resources are
cached and will therefore not be updated when needed. This can lead to
outdated information being shown on the webpage.
A possible solution for this is to simply set a version number in the filename
of the resource, which then is incremented along every update. The change in
the resources name will lead to a new Http request and the information will
always be up to date.

4.4 Minifying Code
By minifying style sheets and scripts the size is reduced which leads to a
shorter download time. Figure 5.12 shows a chart over a webpage without any
kind of code compression. The total download time is approximately 0.95
seconds. The time spent on downloading CSS is 156 milliseconds and
downloading JavaScript 594 milliseconds. The size of the style sheet is 75kb
and for the script 242kb. These files comes from a big news site with a lot of
styling and functionality.
By minifying, or compressing, the code in the style sheet the size is reduced to
66kb. A reduction of 12%. The downloading time was reduced to 153
milliseconds, which was a negligable saving.
Compressing the JavaScript gave a much bigger save in both size and time.
242kb was compressed to 82kb and 594 milliseconds was reduced to 317. This
means a reduction of 66% respectively 47%.
Clearly, the bigger the file is the more the savings there are by compressing.
JavaScript offers a bigger save than CSS, this is because of the comments are
more likely to add up in a script than in a style sheet. Long variable names can
also be shortened in scripts which is impossible to automate in style sheets.
Minifying code is a great and simple way to reduce the download time on
resources. Although this is good for performance, the maintainabilty is close
to gone on minfied code. This problem is easily avoided by working in full
size CSS and JavaScript and compressing them every time they are uploaded
to the server. This gives the best of both worlds. Creating a script that takes
care of this makes it possible to automate the minification.

25

4.5 CDN
To reduce the time spent on finding the correct server to download content
from, the geographical distance between client and server can be reduced. This
also reduce the time spent in cables just transporting data. One way to do this
is to investigate the users of the site and place the server as close as possible to
as many users as possible. This can be hard if the site is an international web
site with users from the whole world. This is where a CDN come in handy.
In Figure 5.16 a chart showing the downloading of a page to a browser in
Dulles, USA. Because the server is located in the US the download is
relatively fast. US users would probably not complain about a slow web site.
Consider loading the same site from Sydney, Australia while the server is still
located in the US. The loading in this case is presented in Figure 5.17. In
Sydney the loading takes almost three times as long. Here is obviously room
for improvement.
With all static content such as style sheets, scripts and images placed at a host,
in this case CloudFlare, the distance between client and server is reduced
dramatically. Loading the same resources as before but with static content on a
CDN, to a client in Dulles, does not seem to reduce the overall time more than
by a few milliseconds. The big win is in Sydney where the total download
time is reduced from 2.2 seconds to a little bit over 1.3. In terms of web
performance this is considered to be a huge save.
While a CDN may seem to be a good choice for boosting the performance of a
web site it has some drawbacks. One drawback is that you do not have 100%
control over the servers that hosts the content. This includes everything from
uptime to the security.

4.6 CSS
The style sheets were not optimized more than by combining multiple file into
one and by compressing the code. This is already mentioned in section 4.2 and
4.4 and is therefore not described or analysed in this section.

4.7 JavaScript
Optimizing the affect that JavaScript has on web performance, the focus was
on the biggest issue, the loading time. Since scripts put on top of the page can
block other resources when it is being downloaded or executed, multiple
loading tests were made. In these tests, scripts were put in different places in
the document to compare the cases to one another. The tests were then made
by using webpagetest.org to get a waterfall chart over the requests when first
entering the pages. These charts are shown in Figure 5.20 trough 5.23. As
shown in the tests, JavaScript is blocking the ability for the browser to

26

download multiple resources in parallel. In the first test the script blocked all
images, which did not get downloaded until the script was fully loaded, parsed
and run. In Figure 5.21 the script is placed between the style sheets and the
images. It is still blocked all the images. As seen in the two subsequent
Figures the script only blocks what comes after. In Figure 5.23 it did not block
any resources but the favicon.
Putting JavaScript at the bottom is clearly the best choice. This may however
not always be possible. Imagine a script that helps creating the web page,
when put at the bottom the site could be rendered later than wished. This is a
drawback when creating elements needen upon load. Combining scripts will
minimize the number of requests. A split between functions that will render
the page and functions that are needed later will however enable the important
scripts to be loaded early while the rest is put at the bottom to increase the
parallellism in the browser.
By using Ajax to download heavy scripts after the page is loaded the page
rendered faster. One drawback of this is that the script cannot run until it is
downloaded which makes it hard to put scripts that alter information on hold.
In Figure 5.24 this technique is shown in a waterfall chart. Another way to use
this technique is to download content needed later, for instance another script
or style sheet needed on succeeding pages. By doing this, the downloaded
content is already in the cache which speeds up the download for the next
page.

4.8 Images
An important thing to think of when using lossy optimization is that the point
of optimizing images is to give a better user-experience. That is why it is
important to lower the quality as much as possible, without compromising
with the visuals.
When using lossy optimization on images it is good to take into consideration
that Jpegs is a lossy format and should therefore be stored as a PNG24/32
before publishing. The reason that the PNG is a better format for the web than
GIF is that they serve the same purpose with the only difference that GIF can
be used for animation. If GIF is not used as an animation, it is better to convert
it into a PNG format due to the fact that it is a better compression format,
which finally leads to a smaller image size.
Lossless image optimization in turn gives a smaller size reduction, but is
complementary for the lossy part. Nevertheless it is a very important part for
giving an image its finishing touch and finally having a fully optimized image.
When photos are taken, information about the photos is stored alongside with
it. This extra information is stored as metadata. An example of metadata is

27

where and when the image was taken. The metadata is therefore redundant and
removed by lossless optimizing tools.
As Jpegs is used for photo types of images they can often get relatively large.
When a Jpeg becomes larger than 10kb it is often a good practice to take
progressive Jpegs into consideration. By saving it as progressive the browser
renders the picture from poor to best quality instead of from top to bottom
with full quality as they normally are rendered. This is shown in Figure 5.26.
In terms of logos and icons, when the two steps for optimization has been
done a final check for optimization is to use sprites if applicable. When two
logos has been optimized as PNGs, they should be merged together as a sprite
as shown in Figure 5.28. This can reduces the overall size of the images due to
the fact that only one colour palette is used. This is why it is a good practice to
merge images with similar colours into one sprite if multiple are used. Another
way to optimize a sprite is by aligning the logos horizontally. The
compression for both GIF and PNG is working horizontally, and therefore a
higher size reduction can be achieved. Finally a sprite should go through the
optimization once again.
This seems like a lot of work on web sites with a lot of images. The tools
listed in section 2.2.4 are partly automated. To fully automate the image
compression, a script that runs the tool of choice can be created. However,
when automating the optimization it is harder to get the quality of choice.
Sometimes, the time spent on optimizing images is not worth the gain in
performance.
Below, in Figure 4.2, there is a proposal of a decision tree when optimizing
images. The tree is based on the decisions made in this thesis.

28

Figure 4.2: Decision tree

4.9 Tools
As discovered later on in this thesis Yslow and Pagespeed were generating
great analysing results. The drawback was that they did not generate such
visual results that were required in the course materials. Therefore Yslow and
Pagespeed were only used in the beginning of the testing phases. They were
used to get a better understanding of the fundamental parts of optimization and
also analysing where the possible bottleneck might be. The main part of the
testing phase was spent on the webpagetest.org’s testing tool. It was used for
testing the non-optimized target, finding the bottleneck, testing the optimized
target and finally generating proper testing results that showed differences.
These testing results where then used in the course materials as real life
examples.

GIF

Animation?

Convert to
PNG8

Use GifSicle

Jpeg

Less than 256
colors?

Convert to
PNG8

Scale image and
Reduce quality

(Photoshop)
Use JpegTran

PNG

More than 256
colors?

Scale image and
Reduce quality

(Photoshop)
Save as PNG8
Use PNGCrush

Transparancy?

Convert to
Jpeg

Scale image and
Reduce quality

(Photoshop)
Save as PNG32
Use PNGCruch

Question

Yes
No

29

30

5 Results

Thanks to the testing tools used, results were generated across the entire
project. These results are presented in this chapter. Alongside with the
waterfall charts and calculations, there is also explanation for each test case.

5.1 Http
When using gzip compression on the Http requests, a reduction of size was
observed. In the tests, gzip was enabled to compress every resource except for
the images. One of the test is shown below, where Figure 5.1 demonstrates the
test with gzip disabled and Figure 5.2 with gzip enabled.

Figure 5.1: First view with gzip disabled.

Figure 5.2: First view with gzip enabled.

Every request, that was compressed by gzip, had in the second figure a smaller
file size. A trend is seen in this graph where the smaller resources have not
resulted in a reduced loading time. The affect is the opposite on the bigger
resource, for example javascript2.js. The logos and images have not been
changed because gzip was not used on these resources, for this reason they are
not taken into consideration.

5.2 Minimizing Http Requests
To minimize the number of requests sent from the browser there is one major
action to take. That is combining files.

31

Combining style sheets and scripts and is basically adding one file to another.
Combining images is done by adding them to a sprite. Below, combinings of
the different resources is presented.

Figure 5.3: No combining done.

As seen above, when no combining is done the stylesheets takes 122
milliseconds respectively 239 millisecond to download. The scripts takes 190,
617 and 196 milliseconds. The second script, javascript2.js, is much bigger
than the other two. The logos or icons are the same size and takes about 80 to
100 milliseconds to downlad, with exception of the first, logo1.png, that has
an inital connection on approximately 15 milliseconds.

Figure 5.4: Style sheets combined.

Figure 5.4 shows how combining style sheets affect the download time. It now
takes 288 milliseconds instead of 239, which was the longest before. The
download time is in fact longer, but now the second icon (logo2.png) also can
be downloaded in parallell.

Figure 5.5: JavaScript combined.

32

Above in Figure 5.5 the second and third script is combined. The first script
was so small, under 1kb, and was important to be executed first and was
therefore inlined into the HTML document.
The total time taken to download the scripts was 602 milliseconds. Combining
the scripts may not be the ultimate technique when the scripts are this big. The
biggest gain here is however the reduction of the number of requests.

Figure 5.6: Logos combined.

By using CSS Sprites the logos and icons were combined. This is shown in
Figure 5.6 above. Now all the logos are downloaded in parallell with the
scripts and style sheets. It does not however affect the total download time
more than by a few milliseconds.

Figure 5.7: All combined.

In Figure 5.7 below all the combining techniques are used. Compared to
Figure 5.3 were no combining was done the biggest different is the number of
requests. From 13 down to 7. The total download time is however the same.
This is because of the big script, javascript2.js. This shows that combining is
not always the answer to better web performance. By instead splitting the
JavaScripts and use the full amount of parallell downloads the web browsers
can offer the total download time will be reduced. This differs between
different web browsers and should therefore always be tested to reach the
ultimate optimization level of a specific site.

5.3 Caching
The figures below shows the testresults generated during the testphase of
caching.

33

Figure 5.8: First view with caching disabled.

Figure 5.9: First view with caching enabled.

The images above are representing the Http request in the first view of the
webpage. The first waterfall chart, Figure 5.8, is showing when caching is
enabled and the second, Figure 5.9, when it is disabled. The second or repeat
view is different. This is shown in Figure 5.10 repectively Figure 5.11.

Figure 5.10: Second view with caching disabled.

Figure 5.11: Second view with caching enabled.

The yellow background in Figure 5.10 and Figure 5.11 is indicating a 304
redirect. Redirect means that a conditional GET have been made and returned
the response 304. 304 means that no modification has been made to the
resource since the resource was requested last.

34

5.4 Minifying Code
Below, in Figure 5.12, is a waterfall chart over a web page download with no
code minified. The focus here is on the uncompressed CSS and JavaScript.
The style sheet is 75kb and the script is 242kb big.

Figure 5.12: Nothing minified. CSS - 75kb, JS - 242kb.

The following two charts presents the results when CSS and JavaScript is
compressed.

Figure 5.13: Compressed CSS - 66kb.

In Figure 5.13 the style sheet is compress to 66kb, which is a reduction of 9kb.
It does not affect the download time of the style sheet significally.

Figure 5.14: Compressed JavaScript - 82kb.

Above in Figure 5.14 only the script is compressed. It is reduced to 82kb,
which also gives a reduction of the download time.

35

Figure 5.15: Both CSS and JavaScript compressed.

In this final chart, Figure 5.15, both the CSS and JavaScript are compressed.
Compared to Figure 5.12 the total download time is reduced by approximately
40%.

5.5 CDN
As mentioned earlier, in section 2.1.4, a content delivery network serves to
locate web contents as close to as many users as possible. Since the web host
used in this thesis has their servers in the US Figure 5.16 shows the time taken
to download a web page directly from their server to a client in Dulles, US.

Figure 5.16: First view without CDN. Dulles, USA

The content in Figure 5.16 is downloaded in approximately 0.8 seconds.
Accessing the same server to download the same content from Australia
logically would take longer due to that the distance is far greater. The result of
the test is shown below, in Figure 5.17.

Figure 5.17: First view without CDN. Sydney, Australia.

36

Loading the page in Australia takes more than 2.2 seconds which is much
longer than in the US. In this case a CDN may come in handy.
Figure 5.18 presents the waterfall chart of downloading the same web page as
above. This time the static content, in this case images, style sheets and
scripts, is located on a CDN. No big overall difference from Figure 5.16
without CDN.

Figure 5.18: First view with CDN. Dulles, USA.

In Figure 5.19 the client is back in Australia and this time has the statics on a
CDN. The content is downloaded in a bit over 1.3 seconds which is a huge
save compared to without CDN.

Figure 5.19: First view with CDN. Sydney, Australia.

5.6 CSS
One of the optimizations done on style sheets was the combining of files.
Since this is described in section 5.2 this will not presented in this section.
Minification of style sheets is also presented earlier in section 5.4 and will not
be included here.

5.7 JavaScript
As well with CSS, combining of JavaScript is presented in section 5.2 and
minification is shown in section 5.4.

37

Someting that is not presented earlier is the result of the placement of
JavaScript. The following images present the waterfall charts when the
importing tags is placed in different positions in the HTML document.

Figure 5.20: JavaScript put in the head, before style sheets.

Figure 5.20 above shows how a script put above the style sheets, in the head of
the HTML, blocks everything after it. The first image, logo1.png, is not
downloaded until 0.60 seconds.

Figure 5.21: JavaScript put in the head, after style sheets.

Above, in Figure 5.21, the only difference from Figure 5.20 is when the style
sheets is downloaded. The third image, logo3.png, seems to take longer to
download. This shows how different the internet can be from time to time.

Figure 5.22: JavaScript put in the middle.

38

When putting the script in the middle, like in Figure 5.22, everything after it is
blocked and will not be downloaded until the script is fully downloaded,
parsed and executed.

Figure 5.23: JavaScript put att bottom.

In Figure 5.23 the script is put at the bottom of the HTML document and does
not block any other resource, except for the favicon. This saved 20
milliseconds as opposed to when the script was in the top of the document.
There was also done a test on post-onLoad download. Presented below is a
web page download with one style sheet and one script downloaded after
everything else with a delay on 1 second.

Figure 5.24: Post-onLoad download of style sheet and script.

5.8 Images
Due to the fact that there are different image formats used on the web today, it
generated quite a lot tests and results. In this part a few test cases of each
format is presented.
Jpeg is the format recommended for photos. The images below are showing a
comparison between two identical photos. The only difference is that the right
image in Figure 2.25 have been optimized by lowering the quality of the
image. The image have also run through the lossless image optimization tool
called JpegTran.

39

Figure 5.25: Comparison between the original (319kb) and optimized (144kb) image.

The full optimization of the Figure 5.25 lead to a decreased size with 175kb.
The right image in Figure 5.25 lost 54.9 % of its size by the optimization with
an almost non-recognizable quality reduction.
Due to the images having a tendecy to be large resources on a web site, it is
important to handle them carefully. A recomendation is to turn a big Jpeg into
a progressive Jpeg so it seems that it is rendered faster. The Figure 5.26 below
shows the result when progressive Jpeg is compared to a normal Jpeg.

Figure 5.26: Rendering of a progressive Jpeg.

The Figure 5.26 shows three points of when the progressive Jpeg renders,
alongside with the time it took. As seen in the images the quality increases by
time. When not using progressive images, the image is rendered in full quality
from top to bottom. This can be slow on big images or slower internet
connections.
Because it is a good praxis to convert GIF images into PNG, optimization of
GIF images will not be presented in this thesis.
The PNG has the sub types PNG8, PNG24 and PNG32. What is presented
here is the optimization of PNG8. Showing the two images in Figure 5.27 with
a comparison between an optimized and a non-optimized graphical image.

40

Figure 5.27: Comparison between original (12.6kb) and optimized (11.2).

The result of the lossy optimization is a reduction of 1.4kb which results in a
11.1% reduction.
When optimizing the images with a lossless technique there will be no
difference in quality. That is why only the test data is presented here. When
both PNGCrush and PNGOUT were used on the image the reduction in size
was 1.2kb, which is a 9.8% reduction.
To minimize the number of requests containing images, CSS Sprites were
used. The result of this technique was in addition to the reduction of the
number of requests also a smaller sprite due to the reduced number of color
palettes. An example of how a sprite may look like is shown in Figure 5.28.

Figure 5.28: Four images combined into one Sprite.

5.9 Course Materials
The results above were the main parts of the course materials which were to
be delivered to Eduement. The tests gave an understanding of what gives the
most gains performance wise. All of the aspects above are more or less
represented in the presentation materials to give the broad base that is needed
to understand web performance.
The topics included are:

• Analysing of waterfall charts
o How to generate a waterfall chart
o Finding the bottleneck
o Tools

• Http requests
o How can the number of requests be minimized?
o Combining/merging of style sheets, scripts and images
o Post onLoad downloading
o Compression by Gzip

41

• HTML & CSS
o How to optimize HTML?
o CSS selectors
o Minifying/compressing style sheets
o Combining style sheets

• JavaScript
o How can JavaScript be optimized?
o Interaction with the DOM
o Repaint/rerender
o Event delegation
o Code tips
o Script loading
o Position in the HTML
o Merging/combining, splitting and inlining
o Minifying/compressing scripts
o Ajax
o Preemptive loading

• Images
o How can images be optimized for the web?
o The different image formats
o Lossy optimization/compression
o Lossless optimization/compression
o Tools
o Interlace/progressive
o CSS Sprites
o Less used formats

Below are slides from some of the modules.

42

43

44

45

46

6 Conclusion and Possible Future Work

In the conclusion of this thesis the subproblems from the introduction will be
brought up once again. This time with comments on how each problem was
handled. As an ending of this chapter, a description is presented of how the
work would have been extended if more time were given and what to do
differently in the future.
How do HTTP, HTML, CSS, JavaScript and images affect performance?
During the work of the thesis it was discovered that the handling of the
HTML, CSS and Javascript could lead to severe bottlenecks when loading the
web site. The knowledge of what pitfalls existed and how they could be
avoided was very important. Images are usually the biggest resource of a web
site, therefore an important aspect when dragging down the overall size of a
web site.
What tools can be used to properly measure the web performance and
how is the result interpreted?
The tools used were Yslow, Pagespeed and webpagetest.org. After acquiring a
greater knowledge of the tools, webpagetest.org was used in the majority of
the time because of the automated testresults generated as waterfall charts.
Can web optimization be automated?
The aspects where optimization could mostly be automated was Http size,
images, CDN and compressing code. But when handling the Http requests,
caching and loading resources in certain manner that best results needs to be
achieved, it should be done manually.
How should a company proceed to optimize it's already existing web site?
The optimization part vary a lot depending on the size of the web site and how
it is used. The general rule is to find the bottleneck of the web site through
testing and analysing. Then the bottleneck should be eliminated with
techniques used in this thesis.
How can caching be implemented properly and what are the pitfalls?
When caching, it is important to only cache the static content of a web site.
The pitfall of caching dynamic content could be avoided for example by
versioning the content to force an update.
Can a checklist be developed for guidance on how to optimize a web site?
A checklist can only be developed in such extent that they give general
guidelines on common problems of a web site’s performance. For further
optimization it is important to analyze the specific web site.

47

The thesis ran during a limited space of time and lead to prioritizing the topics
that was most fundamental to learn in a course about web performance
optimization. For possible future work upon this thesis our main objective
would be expanding the topic about Ajax for managing asynchronous Http
requests. The topic about handling the mobile platform as addition to the
desktop platforms would also be added if there was more time.
As a review on what has been accomplished throughout the process of
creating a well elaborated course materials, it was a good idea to divide the
work into phases. The divison of the work generated for us a better
understanding of each topic.
The information gathering part of the thesis provided an overview on what
aspects that was important, in order to acheive a well optimized front-end.
To better understand and deliver well-elaborated course materials, testing was
the most important phase. The testing was after all what was proving that the
theoretical information was correct. Testing was also providing information
that will be more comprehensible in Eduments future course.
A final part on how proper testing is done and how the results were analysed
was applied into the course materials. Also some good practices from global
companies was added. This, in order to give future course participants
guidance to how they could them selves analyse testing results and properly
optimize on their own.
After all, the purpose of the whole topic of web performance optimization is to
provide a better user experience. It was following this point of view the topics
were selected for the thesis and the course materials.

48

7 Terminology

Client
A client is a computer hardware or
software that access a service made
available by a server.
Conditional GET
A conditional GET is an HTTP GET
request that may return an HTTP 304
response (not modified since last
GET).
DOM tree
The tree created by the browser when
parsing HTML. Every element is
represented by a node in the tree.
DNS lookup
A DNS Lookup is when a device asks
a DNS server for the IP address of the
targeted server.
Element (HTML)
An individual component of an
HTML document.
Event
Triggered by the browser or the user.
E.g. when clicking on an object.

Expiration date
The date a cached resource expires.
After this date a new version of it will
be requested.

Far future header
A header that will not expire in the
near future. Used when caching.
First view
The view of a web page the first time
it is visited.

Gzip
A compression method used when
sending data on the Internet.
Host
The server where the requests are sent
to. Stores the web site.

.htaccess
A directory-level configuration file
supported by several web servers. It
allows for decentralized management
of web server configuration.
HTML document
The content of the HTML file.

Huffman coding
An entropy-encoding algorithm used
for lossless data compression.
Interlacing
A method of encoding a bitmap image
such that a person who has partially
received it sees a degraded copy of
the entire image.
Lossless compression
When compressing images without
quality loss.
Lossy compression
When compressing images with a
quality loss.
Metadata
External information about the data.
Minifying
Compressing code by stripping it of
all comments and white spaces.
Parsing
The process of analysing a string of
symbols, either in natural language or
in computer languages.
PNG chunk
Contains certain information about the
image.
Second view
The view of a web page when it is
visited the second time.

Style sheet
The CSS. Used to style web page.

49

50

8 References

Google (2013) Web Performance Best Practices.
https://developers.google.com/speed/docs/best-practices/rules_intro
[2014-05-16].
GTmetrix (n.d.) YSlow: Add Expires headers.
http://gtmetrix.com/add-expires-headers.html [2014-05-16].
Minnick, C. (2013) Is HTML5 Safe to Use? http://www.minnick.com/is-
html5-safe/ [2014-06-19].
Senior, W & Wahlin D (2009) Building High Performance Web Applications.
Microsoft Corporation.
Simonstl (2009) How to Minimize HTTP Requests to Speed Up Web Pages.
http://answers.oreilly.com/topic/489-how-to-minimize-http-requests-to-speed-
up-web-pages/ [2014-05-16].
Smith, P. (2013) Professional Website Performance. John Wiley & Sons, Inc.

Souders, S. (2007) High Performance Web Sites. O’Reilly Media.

Souders, S. (2009) Even Faster Web Sites. O’Reilly Media.
Strangeloop Networks (2012) 2012 Holiday Performance Guide. Strangeloop
Networks.
W3Schools (n.d.a) HTML Introduction.
http://www.w3schools.com/html/html_intro.asp [2014-05-18].
W3Schools (n.d.b) CSS Introduction.
http://www.w3schools.com/css/css_intro.asp [2014-05-18].
W3Schools (n.d.c) JavaScript Introduction.
http://www.w3schools.com/js/js_intro.asp [2014-05-18].
W3Schools (n.d.d) AJAX Introduction.
http://www.w3schools.com/ajax/ajax_intro.asp [2014-06-19].
White, J. (2012) Why you should use a CDN for website optimization.
http://jackwhitey.hubpages.com/hub/cdn [2014-05-18].
Yahoo! (n.d.) Best Practices for Speeding Up Your Web Site.
https://developer.yahoo.com/performance/rules.html [2014-05-16].

