

Department of Automatic Control

Resource Management and
Prioritization in an Embedded

Linux System

Fredrik Johnsson

Olle Svensson

Msc Thesis
ISRN LUTFD2/TFRT--5952--SE
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2014 by Fredrik Johnsson and Olle Svensson. All rights reserved.
Printed in Sweden by Media-Tryck
Lund 2014

Abstract

This master thesis tackles the problem of limited computing resources on a
camera that is executing computing applications together with image acqui-
sition and streaming. The thesis was carried out at Axis Communications
in cooperation with the Department of Automatic Control at Lund Univer-
sity. The problem of limited resources on an Axis camera is handled by a
two part solution where a resource manager (RM) distributes the available
resources and services can adapt their service level (SL) in order to finish
their jobs on time. The solution is based on game theory, where services
are players, varying their service levels in order to get a good match be-
tween given resources and their computing requirements. This service level
adaptation scheme is implemented for the streaming service on the cam-
era and for some test services, performing mathematical operations. The
resource manager is incorporated into systemd, and uses cgroups [16] to
distribute the computing capacity. The experimental results show that the
resource manager is fully operational and capable of managing and priori-
tizing resources as intended on the embedded system.

i

Acknowledgements

There are many people we would like to thank for helping us with this
project. We would especially like to thank our supervisors, Umut Tezduyar-
Lindskog, Axis and Martina Maggio, LTH Department of Automatic Con-
trol, the project would not have been possible without their feedback and
knowledge. Would also like to thank engineering manager Pontus Bergen-
dahl, Axis, who was responsible for actually making this master thesis hap-
pen.

iii

Contents

1. Introduction 1
1.1 Problem Formulation 1
1.2 Related Work . 2
1.3 Outline . 4

2. Background 5
2.1 Game Theoretic Resource Manager 5
2.2 Systemd and Cgroups 10
2.3 Video Streaming . 12
2.4 Sockets and Epoll . 14
2.5 Equipment . 14

3. Implementation 18
3.1 Design choices . 18
3.2 Inter-Process Communication 19
3.3 Service Level Update 35
3.4 Video Streaming . 40
3.5 Resource Allocation . 43
3.6 Sequence Diagram . 46

4. Use cases 49
4.1 Nominal Conditions . 49
4.2 Overload Conditions (Streaming Dependent) 49

v

CONTENTS

4.3 Normal mode . 50
4.4 Overload Conditions (Non-Streaming Dependent) 51
4.5 GTRM slice empty and filled 51
4.6 Applications with different weights 52
4.7 Nominal conditions in overload case 52

5. Experimental Results 54
5.1 Result discussion . 66

6. Conclusion and Future Work 69
6.1 Result discussion . 69
6.2 Conclusion . 70
6.3 Future work . 71

Bibliography 72
A. Source Code Overview 75

A.1 gtrm_lib.c/h . 75
A.2 manager.c/h . 78
A.3 gtrm_app_lib.c/h . 80
A.4 sl_adapt.c . 84

B. Source Code 86
B.1 manager.c . 86
B.2 manager.h . 94
B.3 gtrm_lib.c . 94
B.4 gtrm_lib.h . 97
B.5 gtrm_app_lib.c . 99
B.6 gtrm_app_lib.h . 108
B.7 video.c . 109
B.8 sl_adapt.c . 110
B.9 sl_adapt.h . 113

vi

1
Introduction

This master thesis treats the problem of assigning limited resources to em-
bedded cameras. Axis cameras are used for the study. Axis is a company
founded and based in Lund that manufactures network relayed surveillance
cameras and video encoders.

1.1 Problem Formulation

To save energy and make better use of the available hardware, there is a
trend to have multiple resource intensive applications running on Axis cam-
eras. These applications are services, that should execute within a certain
time and with variable precision requirements. At the same time, reliable
and consistent video frame rate and quality is a necessary condition to be
fulfilled, which calls for running video streaming services in isolation, with-
out being subject to the interference of other services. The two conflicting
requirements make different services compete for resources like CPU and
RAM. This may result in poor performance of the camera, when the execu-
tion scenarios bring the camera under a load that is heavier than usual. For
example, when answering calls from the network, the camera is subject to
a heavier demand.

In these scenarios it would be advisable to have a technique to diminish
the load produced by services that are not necessary, ideally without af-

1

Chapter 1. Introduction

fecting their timing properties. The quality of service reduction is often ad-
dressed via the introduction of service levels, where services can decrease
the load generated on the hardware by lowering their service level, there-
fore producing results that have a lower quality. When the load conditions
are back to optimal, the service can increase the service level, to provide the
best available quality without harming the execution of the most important
applications.

This work implements a game theoretic mechanism based on the Game
Theoretic Resource Manager (GTRM), developed at Lund University [15]
and a library that lets services implement the service level adaptation and
the communication with a global resource manager. The goal is to demon-
strate that it is possible to use GTRM on an Axis cameras running Linux
and to use it to manage applications competing for resources. The evalu-
ation features the streaming application, competing with load generators.
The image quality is taken as the service level and the cameras are assumed
to have a desired frame rate, therefore introducing for each frame a deadline
of 1/desired f ramerate.

1.2 Related Work

The problem of allocating resources to running applications and at the same
time varying the quality of the computation of these applications to avoid
overload conditions has been addressed in many different ways, sometimes
also using game theory.

For example, Wei et al. [25] have used game theory to assign resources
to fully parallelizable tasks. Contrary to their approach, in our case appli-
cations are not fully parallelizable and could execute sequential sections. In
some of these sections, assigning more resources would not speed up the
application, while in others the benefits will be significant. The resource
manager developed in this thesis, therefore, needs to act based on actual
measurements.

Subrata et al. [23] solved the problem of balancing the load in grid com-

2

1.2 Related Work

puting by applying game theory. Here the players are machines that wants
to maximize their profit by finishing jobs that arrive according to a Pois-
son process. Grosu and Chronopoulos [13] made similar work with load
balancing strategies. The load is distributed amongst different competing
players which would hopefully reach a common state which would benefit
all the players the most. However, there is no cooperation on the application
side to reach a consensus.

Many resource managers are feedback oriented. The first resource man-
agers that make explicit use of control theory and feedback loops was de-
veloped by Lu et al. [14], Steere et al. [22] and Eker et al. [12]. However
they do not implement the concept of varying the computation quality, or
service level.

The QoS-based Resource Allocation Model (Q-RAM) was proposed
by Rajkumar et al. [19] for managing multidimensional resources. Here
it is desired to minimize the QoS constraints while maximizing the total
utility. The solution is centralized and every application receives a certain
quality to be used for the computation and cooperates with the architecture
by enforcing that quality. However, the amount of communication needed
to achieve this goal is non-negligible and therefore it is not advisable for a
video surveillance and streaming systems where the network bandwidth is
used to stream the surveillance videos.

A solution that both manages the resources and the service level of an
application is proposed in the ACTORS project [11], but just as the solu-
tions proposed by [19, 21, 10] the solution is centralized. Separating the
service-level adjustment and the resource management has been proposed
in the context of network bandwidth allocation [20].

GTRM [15], that is used here as a reference point, decouples the re-
source assignment and the service level selection, but it is implemented
with SCHED_DEADLINE, which is not included in the Linux kernel used for
Axis cameras. Moreover, Axis cameras are already exploiting the resource
allocation capabilities offered by systemd. In this work, a GTRM-like ap-
proach is implemented to be applicable to Axis cameras.

3

Chapter 1. Introduction

1.3 Outline

The remaining of this report is organized as follows.

• Chapter 2 gives a detailed description of the software and hardware
used during this project.

• Chapter 3 details the implementation and design decisions, defining
therefore how the resulting camera acts.

• Chapter 4 discusses the use cases that where taken as a reference for
the project. These describe the product functionality and are relevant
to test the resulting prototype.

• Chapter 5 outlines how the product was tested and shows the results
obtained with the tests and discusses the findings of the thesis.

• Chapter 6 finally concludes the report and highlights future works.

4

2
Background

2.1 Game Theoretic Resource Manager

The aim of the resource manager is to make sure that the running appli-
cations have acceptable performance levels. The decision about how much
resource to allocate to each application is based on its performance. The
application’s performance is measured in terms of a matching function, that
tells how good the match is between the resource given to the application
and the corresponding deadline. The assumption behind this is that the re-
source distribution determines the execution time to complete a job. The
applications are supposed to be made of jobs.

The matching function is calculated as the difference between the ap-
plications deadline and the execution time of the jobs. Ideally the match-
ing function should be zero. When zero, the application has just enough
resources to meet its deadline running with some service level. When pos-
itive, the resources are abundant to execute the jobs timely, indicating that
the job is done before deadline. A negative matching function means that
too little resource is assigned, indicating that the application has missed or
will miss its deadline.

The framework consists of two parts: the service level adaptation and
the resource management. These two parts are independent and decoupled.

5

Chapter 2. Background

Service Level adaptation
The Service Level (SL) defines the quality of the service provided by the
application. In the case of the streaming application, the service level is
defined as the quality of the image to be streamed, but for a different ap-
plication, the service level can mean something else. The main property of
the SL is monotonicity. An increase in SL gives an increase in the required
resource on the application’s side. The idea is to change the SL to optimize
the utilization of the amount of resources available.

When the performance is too low, the application is supposed to de-
crease its service level, while when the performance is too high, the ap-
plication will increase the quality of the performed computation. This will
make sure that the application is always presenting valid result in time but
with varying quality, as a trade-off. This adaptation is done by the applica-
tion itself, without the resource management policy interfering with it.

There are of course many possible ways of adjusting the service level,
two of them were considered. In the first case, the application only consid-
ers information that are internally available, while in the second case, the
application receives "hints" from GTRM and follows those hints.

The independent adaptation simply multiplies the current service level,
the matching function and a constant scale factor ε . This adaptation de-
creases the service level if the performance is negative and increases it
if the matching function is positive. The scaling factor ε slows down the
adaption rate to avoid instability. The service level sli of an application i,
is calculated from the matching function, fi and from the previous service
level as,

sli(t +1) = sli(t)+ ε · (fi(t) · sli(t)). (2.1)

The coordinated adaptation follows a suggestion given by the resource
manager, that includes also the variation of the resource allocation, that is
the virtual platform vp. In fact, the resource manager sends to the appli-
cation a performance multiplier PMi that is used as an estimation of how
much the service levels should change to match the current allocation, that

6

2.1 Game Theoretic Resource Manager

is unknown on the application side.
The performance multiplier PMi is computed as,

PMi = (1+ fi) · (vpi(i+1)/vp(i)), (2.2)

and the applications sets the new service level as

sli(t +1) = sli(t)+(ε · sli(t) ·PMi). (2.3)

The test applications used in this thesis simply makes some random
computations in an infinite loop to demand and make use of resources. In
this case each iteration corresponds to one “job”, but a job could for ex-
ample be the processing of an image frame done by an image processing
application. The quality of service for these applications is the amount of
computations done each iteration, thus a higher service level means more
computations done each iteration. One could also model the service level
the other way around, meaning we have a fixed amount of computations
done each iteration, thus increasing the service level would instead increase
the amount of computational iterations.

The Test Application
The test application from [15] has been adapted to work with the imple-
mentation in this paper. Below follows an explanation of how it works to
provide an example of how an application could implement SL adaptation
and be managed by the GTRM. The applications considered in this paper
typically have a periodic task to perform, here called job, with an associ-
ated soft deadline. The test application has a linear relationship between the
SL and the time it takes for the CPU/CPUs to perform a job described by
Equation 2.4,

Ccpu = acpu ·SL+bcpu, (2.4)

where Ccpu is the number of times a random number is generated which
should be proportional to time it takes the CPU/CPUS to perform the job.

7

Chapter 2. Background

The SL adaptation is performed for each job. The average performance of
the last ten jobs are then sent to the RM and the SL adaptation is made as
described in the previous section. See the sequence diagram in Figure 3.2
for the application loop.

Resource Management
The Resource Manager (RM) measures the performance of the applica-
tions. It tries to distribute the resources in the best possible way to the run-
ning applications, for them to meet their performance requirements. The
resources are modeled as “virtual platforms”. A virtual platform represents
a percentage of the total available resources; for example, the amount of
time an application is allowed to use the CPU with respect to the other ap-
plications. Here “resources” could refer to something else than CPU, such
as memory or network bandwidth, depending on what is allocated in the
system. The GTRM is run in the main loop of systemd, (see section 2.2),
which checks sockets for messages and dispatches jobs from the incoming
messages. This means that the GTRM acts in irregular time intervals with
the shortest being the time it takes to pass the main loop when there are no
incoming messages and the longest depending on the amount of incoming
messages and the execution time of the next task queued up in the priori-
tized queue that stores the jobs from the incoming messages.

Resource Allocation update
The resource update changes the virtual platforms allocated to each run-
ning application. It follows the algorithm described in “A Game-Theoretic
Resource Manager for RT Applications” [15, page 4].

[...] the RM assigns resources according to the rule:

1. it measures the performance1 fi(t);

1 As stated in its definition, fi is a function of the service level si and the virtual platform vi.
However, here we intentionally hide this dependency and report only the dependency on
time t, since the RM only measures a value over time.

8

2.1 Game Theoretic Resource Manager

2. it updates the virtual platform ṽi as follows:

ṽi(t+1)= ṽi(t)+εRM(t)
(
−λi fi(t)+

n

∑
j=1

λ j f j(t)ṽi(t)
)
,

(2.5)

where εRM(t) is a step-size sequence;

3. it computes the original value of bandwidth by

vi(t +1) = mṽi(t +1),

4. it updates the time t← t +1 and repeats.

Here ṽ is the normalized virtual platform and m is the number of com-
puting elements. This means that the computed resource allocation v rep-
resents the percentage of the total resources allocated to the application
and is converted into the actual value during the third step of the algo-
rithm. CPUShares are used here in place of bandwidth, and specifies the
minimum relative amount of CPU-time to assign to an application. For in-
stance, if two applications are assigned 100 and 200 CPUShares each, the
one assigned with 200 will get twice the amount of CPU-time compared
to the other. CPUShares are also independent on the amount of CPU cores
and this means that the resource manager does not have to compensate nor
keep track of the amount of CPU-cores of the system, as opposed to the
bandwidth implementation.

Decoupling
The theory behind the decoupling of the resource allocation and the service
level assignment was developed at the Department of Automatic Control at
the Lund University. The resulting resource manager is referred to as Game
Theoretic Resource Manager (GTRM).

Decoupling the two adaptations makes it possible to obtain a linear time
complexity for the resource adaptation algorithm. In fact, the amount of

9

Chapter 2. Background

operations that are necessary to perform the adaptation defined by Equa-
tion 2.5 depends only on the number of running applications. Also, one
of the main benefits of this decoupling is that the task of adjusting the SL
is given to the applications that have knowledge of how to tune their pa-
rameters in order to adjust them to their needs, to the amount of resource
received and to the quality of the computation.

2.2 Systemd and Cgroups

Systemd [17] [18] is a daemon for Linux, that executes system management
operations. It is the first process that starts during boot, and thus it is given
the PID 1. Systemd implements a lot of features for increased performance
and system management over previous start up processes, like initd. It also
has different features for management of resources, using cgroups [16],
which makes it interesting for a resource manager implementation.

Cgroups, abbreviated from control groups, can be used to set the
amount of resources, such as CPU or memory, of a process or a group of
processes via a virtual file system. This file system forms a tree where the
resources of a parent folder are shared by its children. The division of the
resources among the children is determined by the amount of “shares” the
children has been given.

Each application can be run as a “service” by specifying a service file
which defines many different parameters and options. In this file, it is pos-
sible to specify which application or applications should be associated with
which service and for example how much CPU shall be given to this ser-
vice. The service file can then be placed in a certain folder in the cgroup
file hierarchy, see Figure 2.1.

Different folders are used to represent different cgroup controllers or
a combination of controllers. Depending on which controllers are enabled,
some features are available, such as limiting CPU and memory. Services
can be grouped into different slices and share properties depending on
which slice they belong to. One can for example set how much CPU-time

10

2.2 Systemd and Cgroups

CPU

�
���

H
HHH

Slice 1 Slice 2

�
���

H
HHH

Service 1 Service 2

Figure 2.1 The slices and services in the cgroup tree.

Name CPUShares % of CPU
CPU 1 100

Slice 1 400 80
Slice 2 100 20

Service 1 200 2/3 ·80 = 53
Service 2 100 1/3 ·80 = 27

Figure 2.2 Table over assigned CPU for the different units.

shall be given to the applications in the slice and decide how the applica-
tions will divide it amongst themselves.

In this implementation of the GTRM, the resources are divided using
the CPUShares property of the slices or services, both special cases of the
base type units. Every slice is represented by a folder in the cgroup tree and
has a CPUShares property that decides how much of the available resources

11

Chapter 2. Background

of the parent slice it will get. A slice contains services and services contains
applications.

All the resources of a parent slice will be hierarchically divided to the
units that are classified under this slice according to how much shares each
of them has. A unit that has a third of the total shares of all units on the same
level under its parent slice will receive a third of the resources available for
the parent. In case of a multi-core system, the shares are distributed over all
the CPU cores. For example if two services are given 100 and 300 CPU-
shares respectively, running on a four core system, one service may use 100
% of one core and the other 100 % of each of the remaining three cores.

An example of this is shown in Figure 2.1 and Figure 2.2. Note that the
top level folder in this example, the controller named CPU, is alone on its
level meaning that the CPUShares for this slice do not matter since there is
no competition. There are two slices dividing the CPU-controller, the first
slice is given four times the amount of CPU-shares compared to the second
slice. This means that the applications in slice 1, is assigned 80% of the
CPU-time in total. The applications running in slice 1 are defined in two
services, which also specify the amount of CPU-shares for each service.
The first service is given a total of 200 shares and the second 100 shares.
Service 1 will thus be given 2⁄3 of the shares in slice 1 and service 2 the
remaining 1⁄3.

2.3 Video Streaming

The video streaming application is based upon the GStreamer multimedia
framework [7] [8]. The framework is a modular system, where a chain is
built by linking elements together in a pipeline to form a process chain. The
data flows downstream from a source element, through filter elements and
end up in a sink element, see Figure 2.3 for a graphical representation of
the pipeline.

The data is contained into buffers. Buffers can contain one or more
frames, flowing downstream. On Axis cameras, the source elements receive

12

2.3 Video Streaming

Pipeline

Source - filter - Sink

Figure 2.3 The GStreamer pipeline.

the images already compressed by external hardware through another ap-
plication which reads a file descriptor in order to get the frames from the
encoding device. The data is then sent through a number of filters and fi-
nally is released to the network by the sink element. This chain is dynam-
ically created depending on different settings like which are beings codecs
used (mjpeg, h264 and more) or network connection (http or udp).

For streaming using h264 over rtp, two pipelines are used which look
like this.

artpecsrc > cachesink
cachesrc > rtph264pay > rtpbin > udpsink

The first pipeline simply fetches images from the camera sensor, in the
artpecsrc-element to be used by different video streams. Artpec is the
system-on-a-chip on the camera, providing the images.

The second pipeline consists of different elements depending on what
kind of stream is required. The first element will provide the pipeline
with incoming buffers produced by the first pipeline. The rtph264pay-
element [6] payload-encodes the H264 video frames into RTP [9] packets.
rtpbin is an element which combines the features of many different RTP-
elements, allowing multiple RTP-sessions. The final element, udpsink,
sends data over the network using UDP.

13

Chapter 2. Background

2.4 Sockets and Epoll

This section introduces sockets and epoll for communication between pro-
cesses on the system.

Sockets
The communication between applications and systemd is obtained through
sockets [24]. The RM runs in the systemd main loop, therefore sockets are
used to send data between the RM and the applications.

Sockets are the endpoints for inter-process communication (IPC) flows
over a network, where the entities communicating may reside on the same
physical device or are simply nodes on the same network. These sockets are
provided by the socket() system routine in Linux, therefore their usage is
regulated by the normal operating system APIs.

A call to the socket() API function creates a socket and returns an
integer, a unique file descriptor representing the socket for future usage. A
file descriptor in Linux is associated with an open file, where the file can be
anything that can be written to or read from. Knowing the descriptor gives
read and write access to the socket. A socket has a type, being it either
stream or datagram, the latter is the one used by the GTRM socket.

Epoll
Epoll [5] is a Linux system call, allowing the user to listen to multiple sock-
ets simultaneously. The API function epoll_wait(...) returns a queue
of event-objects containing information about what file descriptors have re-
ceived datagrams together with other information. By looking at this queue
the user knows what file descriptor to read with to obtain the newly arrived
data.

2.5 Equipment

The project involves experiments with two different cameras: the M1033
and the P3367, both manufactured by Axis. Both the cameras have

14

2.5 Equipment

systemd installed, although the P3367 runs a more updated version of it.

Axis M1033
The Axis M1033 is a small camera as can be seen in figure 2.4, con-
nected to the network either wired or wireless. It supports multiple H.264
streams and Motion JPEG running at a maximum resolution of 800x600 at
30 frames per second. It has two audio streaming channels, which means
that it can both record and play audio clips. [3]

Figure 2.4 The Axis M1033 camera

It is very likely, due to its capabilities, that multiple applications run
simultaneously on the hardware, especially due to the ability of recording
and playing audio clips simultaneously. In fact, while the video is recorded
and sent over the network, it is also possible to run other applications using
the collected data, for example some motion detection application.

15

Chapter 2. Background

Axis P3367
The Axis P3367 [4] is a fixed dome network camera, see Figure 2.5
and 2.6, which is capable of multiple H.264 streams as well as Motion
JPEG streams. It supports various frame rates and resolutions of up to 5
Megapixel at 12 frames per second. It also supports HDTV 1080p at 30
frames per second and has two way audio streaming capabilities.

Figure 2.5 The Axis P3367 camera, without its dome casing

The power is supplied using Power over Ethernet, therefore the camera
does not need a separate power supply and is powered directly through the
network cable. It features an ARTPEC-4 [2] system-on-chip, developed by
Axis, which contains a single-core CPU running at 400 MHz and a co-
processor dedicated to video analytics.

It is clearly more advanced than the M1033 but it shares the same char-
acteristics of being extremely flexible to execute multiple applications at
the same time, especially due to the video analytics co-processor.

These cameras are very common among Axis’ customers and also by
developers, and will serve as realistic testing platforms for this project. Ini-
tially the M1033 was the only camera considered but during development a
later version of systemd was brought to the P3367 and the project moved

16

2.5 Equipment

Figure 2.6 The Axis P3367 camera, here in its final form

to that camera instead. Testing will thus only be carried out on the P3367
as the previous camera’s systemd implementation differs to much to bring
the software to both of them.

17

3
Implementation

This chapter describes the implementation of the GTRM framework for
Axis cameras. The code was written in C and cross-compiled using Axis’
compiler for the corresponding hardware platform. The resource allocation
framework was tested in different use cases and with a variety of service
files and slices. The resulting plots are generated with Octave.

3.1 Design choices

Introducing service levels in all the applications running on camera is not
a realistic approach. This is because there are many different applications,
some of which may not even be developed at Axis, and developers are not
expected to modify all these applications to implement the performance
measurements and service level features needed, despite the modification
being trivial in many cases. Also, for some applications it is not possible to
identify the concept of service level.

The service level is in this work implemented for the video streaming
application and for some test application that generates mathematical load
in the system. This thesis only focuses on the implementation of GTRM and
assumes that a correct implementation of the framework implies also that
the proof of convergence of the game theoretic strategy holds, as demon-
strated for [15].

18

3.2 Inter-Process Communication

Also, the service level assignment is limited to the linear case, where
resource requirements (in this case CPU requirements) are a linear function
of the service level. It can be argued that the CPU requirement/SL relation-
ship can be linearized around a point and hence still considered linear close
to the operating point.

The matching function used to determine the performance of the appli-
cation is time sensitive and reads as

fi =
Di

Ri
−1 (3.1)

where Di is the soft deadline for the job and Ri is the job response time.
This matching function is positive when the resource given is aboundant
and negative if it is scarce. It is also zero in case there is a perfect match
between the resource given and the service level set by the application. The
aim of GTRM is to bring fi to zero for all the running applications. It is
assumed that fi is measurable also for the non-service level aware appli-
cations. The matching function is updated as the average of the measured
value for the last ten jobs. Resource management in this work is restricted
to CPU; cgroups have a controller to handle memory management as well,
the memory controller, but this one is not installed on the camera.

3.2 Inter-Process Communication

The resource manager is implemented within systemd and its code is there-
fore integrated into the systemd code. If an application has a poor match-
ing function it should send information to systemd via UNIX-sockets. The
Inter-Process Communication (IPC) consists of one socket declared within
the systemd code and one for each application that the resource manager
should monitor. The socket setup is inspired by the “Notify” feature of
systemd which is used by services that want to notify systemd that they
have started or about status changes [sysd-notify].

19

Chapter 3. Implementation

Retrieving new events
The system uses epoll to find out which sockets have received new mes-
sages. The events returned from epoll_wait() are then put in a prioritized
queue. The first element in the prioritized queue is then dequeued, calling
its callback function. This means that a message might not be read imme-
diately after being retreived from the buffer. Most of the functions used to
manage epoll are located in sd-event.c, which serves as a wrapper for
many different events, such as those generated by epoll.

The epoll_wait prototype is

int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);

and the function behaves as follows. When there are messages to be read on
one of the file descriptors observed by the epoll instance identified with
the file descriptor epfd, the function returns the number of file descriptors
that have new messages to be read.

If this happens, epoll_event *events points to a buffer that the
function fills with the incoming events. The buffer in the end contains
a maximum of maxevents. The function waits for a maximum timeout
value.

The epoll_event structure follows.

1 t y p e d e f union e p o l l _ d a t a {
2 void * p t r ;
3 i n t fd ;
4 u i n t 3 2 _ t u32 ;
5 u i n t 6 4 _ t u64 ;
6 } e p o l l _ d a t a _ t ;
7
8 s t r u c t e p o l l _ e v e n t {
9 u i n t 3 2 _ t e v e n t s ; / * E p o l l e v e n t s * /

10 e p o l l _ d a t a _ t d a t a ; / * User da ta v a r i a b l e * /
11 } ;

The void pointer epoll_event.data.ptr will be set to point to a
sd_event_source structure. This structure is the element that is enqueued

20

3.2 Inter-Process Communication

into the prioritized queue. The element contains information concerning the
event priority and defines the event type. It also points to a structure con-
taining the file descriptor for the event and its callback function.

The function sd_event_run is called once for every iteration of the
main loop. The relevant code in this function is shown below.

1 _ p u b l i c _ i n t s d _ e v e n t _ r u n (s d _ e v e n t *e ,
2 u i n t 6 4 _ t t i m e o u t) {
3 s t r u c t e p o l l _ e v e n t * ev_queue ;
4 unsigned ev_queue_max ;
5 s d _ e v e n t _ s o u r c e *p ;
6 i n t r , i , m, t i m e o u t ;
7 ev_queue = new (s t r u c t e p o l l _ e v e n t , ev_queue_max) ;
8 m = e p o l l _ w a i t (e−>e p o l l _ f d , ev_queue ,
9 ev_queue_max , t i m e o u t) ;

10
11 f o r (i = 0 ; i < m; i ++) {
12 i f (ev_queue [i] . d a t a . p t r ==
13 INT_TO_PTR (SOURCE_MONOTONIC))
14 r = f l u s h _ t i m e r (. . .) ;
15 e l s e i f (ev_queue [i] . d a t a . p t r ==
16 INT_TO_PTR (SOURCE_REALTIME))
17 r = f l u s h _ t i m e r (. . .)
18 e l s e i f (ev_queue [i] . d a t a . p t r ==
19 INT_TO_PTR (SOURCE_SIGNAL))
20 r = p r o c e s s _ s i g n a l (e , ev_queue [i] . e v e n t s) ;
21 e l s e i f (ev_queue [i] . d a t a . p t r ==
22 INT_TO_PTR (SOURCE_WATCHDOG))
23 r = f l u s h _ t i m e r (e , e−>watchdog_fd ,
24 ev_queue [i] . e v e n t s , NULL) ;
25 e l s e
26 r = p r o c e s s _ i o (e , ev_queue [i] . d a t a . p t r ,
27 ev_queue [i] . e v e n t s) ;
28 }
29
30 p = e v e n t _ n e x t _ p e n d i n g (e) ;
31 r = s o u r c e _ d i s p a t c h (p) ;
32 re turn r ;
33 }

The epoll_wait function is called and a for loop goes through all the

21

Chapter 3. Implementation

file descriptors and checks what their event type is to call the appropriate
function to add them to the prioritized queue. The GTRM file descriptor is
linked to a IO_SOURCE event which means that the function process_io()
will be called in case there is an event on such file descriptor.

Subsequently, the next event is dequeued from the queue and dispatched
by calling event_next_pending(). The code of this function is shown
below.

1 s t a t i c s d _ e v e n t _ s o u r c e *
2 e v e n t _ n e x t _ p e n d i n g (s d _ e v e n t * e) {
3 s d _ e v e n t _ s o u r c e *p ;
4 p = p r i o q _ p e e k (e−>pend ing) ;
5 i f (! p)
6 re turn NULL;
7 i f (p−>e n a b l e d == SD_EVENT_OFF)
8 re turn NULL;
9 re turn p ;

10 }

Finally, the source_dispatch function is called to activate the callback
function linked to the top sd_event_source* element.

1 s t a t i c i n t s o u r c e _ d i s p a t c h (s d _ e v e n t _ s o u r c e * s) {
2 i n t r = 0 ;
3 sw i t ch (s−>t y p e) {
4 case SOURCE_IO :
5 r = s−>i o . c a l l b a c k (s , s−>i o . fd ,
6 s−>i o . r e v e n t s , s−> u s e r d a t a) ;
7 break ;
8 case SOURCE_MONOTONIC:
9 r = s−>t ime . c a l l b a c k (s , s−>t ime . nex t ,

10 s−> u s e r d a t a) ;
11 break ;
12 case SOURCE_REALTIME :
13 r = s−>t ime . c a l l b a c k (s , s−>t ime . nex t ,
14 s−> u s e r d a t a) ;
15 break ;
16 / * More c a s e s c o v e r e d * /
17 case SOURCE_WATCHDOG:
18 a s s e r t _ n o t _ r e a c h e d ("Wut? I s h o u l d n ’ t e x i s t . ") ;
19 }

22

3.2 Inter-Process Communication

20 re turn 1 ;
21 }

The GTRM socket
The socket used by the applications to communicate with the resource man-
ager and by the resource manager to retrieve information about the appli-
cation health is setup as follows.

The socket is created and added to the epoll instance in the function
manager_setup_gtrm, some information about it follows.

static int manager_setup_gtrm(Manager *m)
Used to setup the socket, event source and file descriptor for the
resource manager. Called from manager_startup and
manager_reload.

• m: Reference to the manager.

• Return value: Zero if function ran correctly, otherwise it is set
to the corresponding error number.

23

Chapter 3. Implementation

This function contains the socket creation, obtained through socket:

fd = socket(AF_UNIX,
SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);

The socket uses the protocol family AF_UNIX, which provides efficient
communication on the same machine. SOCK_DGRAM sets the socket type
to be datagram since there is no need to resend missed obsolete data
and no messages are expected to be lost when sent over the same ma-
chine. SOCK_NONBLOCK prevents the socket from blocking during a read
call when there is no data to be read. A random address name is created
and assigned to the socket by a call to bind. The file descriptor of the
socket is then added to the epoll instance, and an epoll_event is as-
sociated to the file descriptor. The epoll_event contains a pointer to an
sd_event_source. These functionalities are achieved through the call to
sd_event_add_io.

r = sd_event_add_io(m->event, &m->gtrm_event_source,
m->gtrm_fd, EPOLLIN, manager_dispatch_gtrm_fd, m);

The GTRM socket has been therefore added to the poll and a corre-
sponding event is subsequently generated whenever a message is sent to
that socket. Finally, in the function manager_setup_gtrm a priority is
given to the gtrm_event_source. This affects how the prioritized queue
sorts messages from this source type and the priority is set equally to the
priority for notify messages.

Once the socket is setup and ready, an environment variable is set in
Linux containing the address to the GTRM-socket. The environment vari-
able is used by the applications to retrieve the destination of the messages
to be sent about their performance.

GTRM socket’s callback function: Once an event has been popped from
the prioritized queue the callback function manager_dispatch_gtrm_fd
is invoked. The callback function contains all the code that should be exe-
cuted when a message is received on the GTRM socket. The function ex-

24

3.2 Inter-Process Communication

tracts the data from the message — the PID of the application sending the
message, its performance, and its weight. The hashmap, which contains all
the applications that are managed by GTRM, is then updated with this new
data.

static int manager_dispatch_gtrm_fd
(sd_event_source *source, int fd, unit32_t revents, void *userdata)
Called upon receiving the performance of an application.

• source: source of the event.

• fd: file descriptor to the event source.

• revents: Set by the kernel to indicate what event on the file
descriptor that triggered the call to this function. For the
purposes of this work, it is always the incoming event.

• userdata: Contains a reference to the manager.

• Return value: Not used, always zero.

The function contains some declaration and initialization.

1 s t a t i c i n t m a n a g e r _ d i s p a t c h _ g t r m _ f d
2 (s d _ e v e n t _ s o u r c e * sou rce , i n t fd ,
3 u i n t 3 2 _ t r e v e n t s , void * u s e r d a t a) {
4 Manager *m = u s e r d a t a ;
5 char buf [1 0 2 4] ; / / read message
6 i n t n ; / / b y t e s i z e o f t h e read message
7 s t r u c t sockadd r_un * from ; / / s e n d e r ’ s a d r e s s
8 s o c k l e n _ t f r o m l e n ;
9 rm_app_t * app ; / / da ta abou t t h e a p p l i c a t i o n s

10 rm_app_t * app2 ;
11 f r o m l e n = 1024 ;
12 . . . / / w i l l be shown l a t e r

25

Chapter 3. Implementation

Within the function, the rm_app_t structure is used.

struct rm_app_t Represents an application being managed and
consists of the following fields.

• tid: Applications PID.

• vp: Virtual platform.

• vp_old: Previous virtual platform.

• performance: Matching function of the application.

• weight: The current “weight” of the application.

• happy: Indicates if the application is happy with its current
performance. This field was added to prevent application from
sending their performance even when they are satisfied and
nothing should be needed from the resource manager,
eliminating unnecessary computations.

• sa: Socket Address, used to send back the performance
multiplier.

A while loop reads the socket one message at a time, until there are no
more unread messages.

1 / / r e suming from above
2 do {
3 memset (buf , ’ \ 0 ’ , 1023) ;
4 from = c a l l o c (1 , s i z e o f (s t r u c t sockadd r_un)) ;
5 app = c a l l o c (1 , s i z e o f (rm_app_t)) ;
6 n = r e c v f r o m (fd , buf , 1024 , 0 ,
7 (s t r u c t s o c k a d d r *) from , &f r o m l e n) ;
8 / / w i t h non−b l o c k i n g s o c k e t s

26

3.2 Inter-Process Communication

9 / / i f n i s n e g a t i v e , t h e r e was no message
10 n = r e c v f r o m (fd , buf , 1024 , 0 ,
11 (s t r u c t s o c k a d d r *) from , &f r o m l e n) ;
12 i f (n <0)
13 break ;
14 i f (n >1024) / / r e a d i n g 1024 c h a r a c t e r s a t a t i m e
15 l o g _ e r r o r (" m a n a g e r _ d i s p a t c h _ g t r m _ f d :
16 r e c e i v e d t o o b i g message ") ;
17
18 g t r m _ c h a r 2 g t r m s t r u c t (buf , app) ;
19 p i d _ t p i d = app−> t i d ;
20 app−>sa = from ;
21 i f (hashmap_get (m−>gtrm_apps , p i d) == NULL) {
22 hashmap_put (m−>gtrm_apps , pid , app) ;
23 } e l s e {
24 app2 = hashmap_get (m−>gtrm_apps , p i d) ;
25 g t r m _ u p d a t e _ r m _ s t r u c t (app , app2) ;
26 }
27 } whi le (n >0) ;
28 m−>u p d a t e _ g t r m = t r u e ;
29 re turn 0 ;
30 }

The data contained in the message is used to create a rm_app_t struc-
ture. If the hashmap already contains a rm_app_t structure for the specific
application, the rm_app_t in the hashmap is simply updated by calling the
function gtrm_update_rm_struct(app,app2). In the opposite case, the
new application is added to the hashmap using the application PID as the
key.

Above, a few library function contained in gtrm_lib were used. In
particular, the gtrm_char2gtrmstruct function is used to convert the in-
formation between the received string and the GTRM compliant structure.

void gtrm_char2gtrmstruct(char* str, rm_app_t *re) Extracts data
from a received string and stores it as a structure instead. The data

27

Chapter 3. Implementation

sent from an application consists of the PID, performance, weight and
if the application is satisfied or not.

• str: String to extract data from.

• re: Struct to hold the extracted data.

• Return value: None, the result is stored in re.

Resource Manager Update
The resource manager is continuously recomputing the amount of resources
that is to be given to the applications for as long as all the applications
are not completely satisfied. The following code is contained inside the
manager_loop-function of manager.c.

1 i n t manager_ loop (Manager *m) {

Before the loop actually starts to run, a structure that contains the nec-
essary data for the resource manager, gtrm_t, is created and initialized.

struct gtrm_t
Stores various parameters used by the GTRM.

• c1: Constant used for computing ε , determines how much the
virtual platforms will be changed.

• c2: Another constant used for computing epsilon similar as c1.

• iterations: Keeps track of how many iterations the GTRM has
run.

• all_happy: Used to indicate if we have to make any adjustments
to the resource allocations.

28

3.2 Inter-Process Communication

• num_apps: Total amount of applications that we are managing.

• prev_apps: The amount of applications in the previous iteration.

1 g t r m _ t * g t r m _ t = c a l l o c (1 , s i z e o f (s t r u c t g t r m _ t)) ;
2 g t rm_t−>num_apps = 0 ;
3 g t rm_t−>p r e v _ a p p s = 0 ;
4 g t rm_t−> i t e r a t i o n s = 0 ;
5 g t rm_t−>a l l _ h a p p y = t r u e ;
6 g t rm_t−>c1 = 0 . 1 ;
7 g t rm_t−>c2 = 1 0 ;
8 whi le (m−>e x i t _ c o d e == MANAGER_RUNNING) {
9 . . .

Inside the loop, an if-statement makes sure that the resource manager is not
run if not needed.

1 i f ((! (g t rm_t−>a l l _ h a p p y) | | m−>u p d a t e _ g t r m) &&
2 ! hashmap_isempty (m−>gt rm_apps)) {

The first step is to update the number of running applications.

1 gt rm_t−>p r e v _ a p p s = g t rm_t−>num_apps ;
2 g t rm_t−>num_apps = hashmap_s i ze (m−>gt rm_apps) ;

int gtrm_compute_virtual_platforms
(Hashmap *apps, gtrm_t *gtrm_t)
Calculates the amount of resources (virtual platform) for an
application.

• apps: The hash-map containing information about the
applications being managed.

29

Chapter 3. Implementation

• gtrm_t: Struct with parameters used when calculating the
virtual platforms.

• Return value: Not used, always zero.

1 g t r m _ c o m p u t e _ v i r t u a l _ p l a t f o r m s
2 (m−>gtrm_apps , g t r m _ t) ;
3 g t rm_t−> i t e r a t i o n s ++;

The virtual platforms are then applied to the applications and a variable
set by the dispatch is reset to false.

void gtrm_apply_virtual_platforms(Manager* m)
Computes and applies the amount of CPUShares that each application
shall be given.

• m: Reference to manager, used to get the applications

• Return value: None.

1 g t r m _ a p p l y _ v i r t u a l _ p l a t f o r m s (m) ;
2 m−>u p d a t e _ g t r m = f a l s e ;

The final step inside the loop is to update the performance multiplier to
be provided to the applications and log the relevant data.

void gtrm_update_performance_multipliers
(int gtrm_fd, Hashmap *gtrm_apps)

30

3.2 Inter-Process Communication

Calculates, updates and sends the performance multiplier to each
application, using the performance, virtual platform and the previous
virtual platform for each application.

• gtrm_fd: File descriptor used to send the performance
multiplier.

• gtrm_apps: Hash-map containing rm_app_t structs for each
application.

• Return value: None.

void gtrm_write_log
(Hashmap *gtrm_apps, unsigned int num_applications)
Writes information about the resource management to a log file,
which can then be used to generate graphs about the applications
behavior and the resource manager allocation.

• gtrm_apps: Hash-map containing rm_app_t structs for each
application.

• num_applications: Used to make sure we do not try to print an
empty hash-map.

• Return value: None.

1 g t r m _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r s
2 (m−>gtrm_fd ,m−>gt rm_apps) ;
3 g t r m _ w r i t e _ l o g (m−>gtrm_apps , g t rm_t−>num_apps) ;
4 }
5 }

31

Chapter 3. Implementation

If the loop exits it is necessary to deallocate the gtrm_t structure to
avoid memory leaks.

1 f r e e (g t r m _ t) ;
2 re turn m−>e x i t _ c o d e ;
3 }

Applying the virtual platforms
The computed values for the virtual platforms need to be distributed to the
applications. This is achieved via the following function.

1 void g t r m _ a p p l y _ v i r t u a l _ p l a t f o r m s (Manager * m) {

Three variables are defined for setting the shares, iterating through the
hashmap and a structure for each application.

1 i n t s h a r e s ;
2 I t e r a t o r i ;
3 rm_app_t * a ;

HASHMAP_FOREACH is a macro defined in hashmap.h and it is used to
easily iterate through all the elements in the hashmap. The macro takes
three parameters, a local variable to store the current element in the itera-
tion, the hashmap to iterate through and an iterator.

1 HASHMAP_FOREACH(a , m−>gtrm_apps , i) {

Since the virtual platform is given as a percentage of the total amount of
available resource, each application’s virtual platform is multiplied by a
constant, _TOTAL_SHARES, to give the absolute amount of shares.

1 s h a r e s = a−>vp * _TOTAL_SHARES ;
2 m a n a g e r _ s e t _ c p u _ s h a r e s (m, a−>t i d , s h a r e s) ;
3 }
4 }

Finally the CPUShares of the application is set, end then the loop repeats
until all the applications in the system have been updated.

32

3.2 Inter-Process Communication

int manager_set_cpu_shares(Manager *m, pid_t pid, int shares)
Sets the CPUShares of an application.

• m: Reference to manager, used to get the applications.

• pid: Process identifier of the application.

• shares: Amount of shares we want to set.

• Return value: Zero if successful, one otherwise.

Setting CPUShares
From the command line one can manually set the amount of CPUShare
of an application by running the command, systemctl set-property
’service name’ CPUShares=’shares’ followed by systemctl
daemon-reload. These commands take a lot of time since they involve
calls via DBus to systemd. That is the reason why in this work the re-
source manager itself is located within systemd, so that these calls can be
circumvented, by setting the CPUShares directly.

1 i n t m a n a g e r _ s e t _ c p u _ s h a r e s (Manager *m, p i d _ t pid , i n t
s h a r e s) {

Two local variables are needed, a pointer to a Unit, which is a parent class
to Service and Slice classes, describing how systemd should handle a pro-
cess/application, and one to a CGroupContext. From the PID of an appli-
cation, the corresponding Unit pointer can be obtained.

1 Uni t * u ;
2 CGroupContext * c ;
3 u = m a n a g e r _ g e t _ u n i t _ b y _ p i d (m, p i d) ;

In case the application does not exist, because the application terminated,
the Unit pointer produced previously will be a NULL-pointer. The applica-

33

Chapter 3. Implementation

tion is thus removed from the hashmap, which requires a reset of the virtual
platforms, and the function call returns.

1 i f (u == NULL) {
2 hashmap_remove (m−>gtrm_apps , p i d) ;
3 r e s e t _ v i r t u a l _ p l a t f o r m s (m−>gt rm_apps) ;
4 re turn 1 ;
5 }

If the Unit-pointer obtained was not NULL, a so called CGroupContext
can be acquired from the Unit-pointer.

1 c = u n i t _ g e t _ c g r o u p _ c o n t e x t (u) ;

In this context, the CPUShares can be set to what is desired and it is fol-
lowed by a necessary call to apply the changes.

1 c−>c p u _ s h a r e s = s h a r e s ;
2 c g r o u p _ c o n t e x t _ a p p l y (c , CGROUP_CPU, u−>c g r o u p _ p a t h) ;
3 re turn 0 ;
4 }

In Section 2.2 the concept of CPUShares was introduced. CPUShares
assigns CPU-resources between the application proportionally to the
amount of shares assigned to each application. This implies that assigning
an application an amount of shares, will give different amount of resources
depending on how the shares are assigned to the competing applications.
The CPUShares also define a minimum amount of resources, an applica-
tion can thus receive more resources than specified if there is free resources
available. This is different to the approach in [15] where the resources
where set exact via SCHED_DEADLINE. Some risks are introduced by us-
ing SCHED_DEADLINE which are not present in the CPUShares approach,
e.g., assigning, in total, more resources than available, causing a kernel-
panic, or not fully utilizing the system by assigning less resources, in
total. SCHED_DEADLINE also has to take the amount of CPU cores into
consideration, which CPUShares is independent of.

34

3.3 Service Level Update

3.3 Service Level Update

The applications using the GTRM framework have all a similar structure,
the main difference being how they implement the update in the service
level to match the resource allocation. In fact, the service level changes are
mapped into some parameter changes, that in turn affects the resource re-
quirement. This is different on a per application basis and every application
developer knows better what to change within the application to make it re-
quire less or more resource and provide a worse or better quality of service.

In general, however, a few elements can be identified. The service level
adaptation should run periodically and a socket needs to be established and
read during the adaptation phase. Below follows an example of a test appli-
cation, in order to show how the service level adaptation can be performed
and what functions that are provided by gtrm_app_lib.c. The test ap-
plication and library are altered versions of the test application and library
jobsignaler.c used within [15]. The modifications are mainly due to the
presence of sockets, instead of the initial shared memory approach used by
jobsignaler.

1 / / I n i t i a l d e c l a r a t i o n s , some n o t r e p o r t e d
2 / / because i r r e l e v a n t [. . .]
3 u i n t i d ;
4 _ a p p l i c a t i o n _ h * my se l f ;
5 . . .
6
7 i n t main (i n t argc , char * a rgv []) {
8 / / p a r s i n g i n f o r m a t i o n from char * argv [] .
9 f l o a t s e r v i c e _ l e v e l ;

10 f l o a t a_cpu , b_cpu ;
11 f l o a t a_mem , b_mem ;
12 double e p s i l o n , we ig h t ;
13 double d e a d l i n e _ s e c o n d s ;
14
15 i n t j o b s ;
16 double p e r f o r m a n c e ;

The application creates the socket address and passes it as an argument
to gtrm_lib_setup_socket. The file descriptor is then linked to a file

35

Chapter 3. Implementation

with the application name.
1 char * s o c k _ p a t h = " / r o o t / temp / app " ;
2 unsigned i n t r _ n b r = random_u64 () ;
3 char * sock_name [1 0 0] ;
4 s p r i n t f (sock_name , "%s /%u " , sock_pa th , r _ n b r) ;
5 g t r m _ l i b _ s e t u p _ s o c k e t (sock_name) ;

int gtrm_lib_setup_socket(char* filename) Sets up a socket to
communicate with the resource manager. Reads an environment
variable set by systemd for the GTRM socket adress and creates a
socket adress struct.

• filename: The socket needs a file to work, the parameter
specifies its path.

• Return value: Zero, not used.

Subsequently the arguments for the gtrm_lib_set function are initial-
ized and passed.

1
2 mysel f−>w e ig h t = w e i gh t ;
3 mysel f−> a p p l i c a t i o n _ i d = g e t p i d () ;
4 u i n t 6 4 _ t d e a d l i n e = (unsigned i n t)
5 ((double) 1000000000 * d e a d l i n e _ s e c o n d s) ;
6 u i n t 6 4 _ t e r t [1] = { d e a d l i n e } ;
7 g t r m _ l i b _ s e t (myse l f , 1 , e r t) ;

Applications can have different job types corresponding to different dead-
lines within the same code. For example, this is the case of a video de-
coder/encoder, that could process different types of frames (I/B/P) with
different requirements. Encoding an I frame requires to simply transfer the
information from one place to the other, while encoding a B and P frame,
in fact, requires that the difference between frames are calculated. The test

36

3.3 Service Level Update

application has only one job type but the framework directly supports mul-
tiple job types. An application can have different job types corresponding
to different deadlines. The test application only has one job type.

int gtrm_lib_set (_application_h* a, uint types, uint64_t* ert)
Initializes the application struct with job types and their expected
response times. Initializes the application struct with job types and
their expected response times.

• a: Struct representing an application.

• types: Number of different job types.

• ert: Array of expected response time for each job type.

• Return value: Exit status of function.

The main loop of the program follows.

1 f o r (; ;) {
2 i n t 6 4 _ t c p u _ r e q u i r e m e n t = a_cpu * s e r v i c e _ l e v e l
3 + b_cpu ;
4 i n t 6 4 _ t mem_requirement = a_mem * s e r v i c e _ l e v e l
5 + b_mem ;
6 i n t t y p e = 0 ;
7 i d = g t r m _ l i b _ j o b s i g n a l e r _ s i g n a l s t a r t
8 (myse l f , t y p e) ;
9 / / Do t h e r e q u i r e d work

10 do_work (c p u _ r e q u i r e m e n t , mem_requirement ,
11 NOISE_PERCENTAGE) ;
12 g t r m _ l i b _ j o b s i g n a l e r _ s i g n a l e n d (mysel f , i d) ;
13 i d = 0 ;
14 p e r f o r m a n c e = g t r m _ l i b _ g e t _ p e r f o r m a n c e _ n u m b e r
15 (mysel f , t y p e) ;
16
17 / / Adapt o n l y i f needed

37

Chapter 3. Implementation

18 i f (p e r f o r m a n c e < −0.01 | | p e r f o r m a n c e > 0 . 0 1) {
19 mysel f−>happy = f a l s e ;
20 / / send per fo rmance t o s y s t e m d
21 g t r m _ l i b _ s e n d _ p e r f o r m a n c e (myse l f , p e r f o r m a n c e) ;
22 / / i f t h e r e i s no m u l t i p l i e r t o read use t h e
23 / / s i m p l e s e r v i c e l e v e l a d a p t i o n
24 i f (g t r m _ l i b _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r
25 (m ys e l f) == 0)
26 s e r v i c e _ l e v e l += e p s i l o n * s e r v i c e _ l e v e l *
27 (mysel f−>p e r f o r m a n c e _ m u l t i p l i e r −1) ;
28 e l s e
29 s e r v i c e _ l e v e l += e p s i l o n *
30 (p e r f o r m a n c e * s e r v i c e _ l e v e l) ;
31 / / s a t u r a t i o n
32 i f (s e r v i c e _ l e v e l < MINIMUM_SERVICE_LEVEL)
33 s e r v i c e _ l e v e l = MINIMUM_SERVICE_LEVEL ;
34 i f (s e r v i c e _ l e v e l != s e r v i c e _ l e v e l) / / a v o i d NANs
35 s e r v i c e _ l e v e l = 1 . 0 ;
36 } e l s e i f (myse l f−>happy == f a l s e) {
37 mysel f−>happy = t r u e ;
38 g t r m _ l i b _ s e n d _ p e r f o r m a n c e (myse l f , p e r f o r m a n c e) ;
39 }
40 }
41 }

In the code, the following functions are used.

int gtrm_lib_signalstart (_application_h* a, uint type)
Indicates the start of a job.

• a: Struct for representing the application.

• type: Type of the job that is started.

• Return value: Identifier of the started job.

38

3.3 Service Level Update

int gtrm_lib_signalend (_application_h* a, uint id)
Indicates the end of a job.

• a: Struct for representing the application.

• id: Identifier of the job that has completed.

• Return value: Exit status.

double gtrm_lib_get_performance_number
(_application_h* a, int job_type)
Calculates the performance (matching function) by averaging the
performance of the last ten jobs of a specified type.

• a: Struct representing an application.

• type: Which job type for which we want to calculate the
performance.

• Return value: Performance of the application.

int gtrm_send_performance_multiplier
(double pm, int fd, struct sockaddr *sa)
Sends a performance multiplier to an application via sockets.

• pm: Performance multiplier to send.

39

Chapter 3. Implementation

• fd: File descriptor used to send the performance multiplier.

• sa: Socket address.

• Return value: Always zero.

3.4 Video Streaming

This work features the modification of the video streaming application. The
proposed solution and implementation is discussed here.

The streaming service, named Monolith, streams both video and au-
dio. It handles image compression and filtering, manages several differ-
ent streams, such as H.264 and MJPEG streams. This application has been
modified to implement the service-level feature. The service level alters the
image quality by modifying the pipeline to prepare the frame for the video
streaming service.

In this pipeline an “identity” element is added. The identity element for-
wards the received frames to the next element without affecting them. This
element is added just after the first (source) element. The identity element
calls a callback function by sending a “handoff” signal each time it receives
a new buffer, where a buffer can contain one or more frames.

The time between each incoming buffer to the identity element is the
“job time” for the streaming application, which is used when calculating the
matching function, see Equation 3.1. If a buffer contains only one frame,
this job time should correspond to fps on the camera.

After the matching function is computed, it is possible to calculate a
new service level for the application and to notify the resource manager.

In the streaming application, the relationship between execution time:

R, SL, and VP is assumed to be: R = α
s
v
, here the SL and the frame size

are set to have a 1:1 relationship. The frame size is set to equal the SL by

40

3.4 Video Streaming

updating the parameter frame_size in the source element which is read and
updated each time an image is fetched from the camera. In the source ele-
ment update of the frame size, a very simple P-controller is used, where the
compression of the images is used as the control signal in order to get the
desired frame size. Note that the compression is done on dedicated hard-
ware and not by the CPU being controlled by the GTRM, hence the decrease
in execution time when lowering the frame size comes purely from the han-
dling of smaller frames in the Gstreamer elements.

void setup_sl_adapt
(float service_level, double epsilon, double weight, double
deadline_seconds)
Sets up deadline for computing the matching function and sets up the
Inter-Process Communication with the resource management.

• service_level: Initial service level.

• epsilon: Constant which specifies service level adaptation rate.

• weight: Determines how the much of the adaptation will be
done by altering the service level or the changing the amount of
resources.

• deadline_seconds: This deadline will correspond to the desired
frame rate.

• Return value: None.

void sl_adapt() Performs the service level adaptation, notifies the
resource manager and writes some logging.

41

Chapter 3. Implementation

• Return value: None.

The function which initiates the video pipeline is called cache_video
and is located in video.c. The function code is quite complex but here we
describe only what the features that are relevant for this thesis.

1 s t a t i c GstElement *
2 c a c h e _ v i d e o (g p o i n t e r key , P rops * props ,
3 g p o i n t e r * u s e r _ d a t a) {
4 / / I n i t i a l i z a t i o n and v a r i a b l e d e f i n i t i o n s

First, all the different elements belonging to the pipeline are de-
fined, including the newly introduced identity element, which is called
gtrm_sl_adapt. A call to setup_sl_adapt sets the variables needed for
the service level adaptation.

At first all the different elements for the pipeline are defined, in-
cluding the identity element, which is called gtrm_sl_adapt. A call to
setup_sl_adapt sets up the what is needed for the service level adaptation.

1 Gs tElement * g t r m _ s l _ a d a p t = NULL;
2 s e t u p _ s l _ a d a p t (s e r v i c e _ l e v e l , e p s i l o n ,
3 weight , d e a d l i n e _ s e c o n d s) ;

The identity element is created by the following calls and the
hand-off-signal of the element is enabled and set up.

1 g t r m _ s l _ a d a p t = g s t _ e l e m e n t _ f a c t o r y _ m a k e
2 (" i d e n t i t y " , " gtrm ") ;
3 g _ o b j e c t _ s e t (G_OBJECT (g t r m _ s l _ a d a p t) ,
4 " s i g n a l−h a n d o f f s " , TRUE, NULL) ;
5 g _ s i g n a l _ c o n n e c t (g t r m _ s l _ a d a p t , " h a n d o f f " ,
6 G_CALLBACK (g t r m _ s l _ c b) , s r c) ;

Finally, the element must be inserted into the pipeline. This is obtained
via the following calls.

1 gs t_b in_add_many (GST_BIN (p) , s r c , g t r m _ s l _ a d a p t ,
2 c o n v e r t , c a p s _ f i l t e r , s i nk , NULL) ;

42

3.5 Resource Allocation

3 / / More parame te r d e f i n i t i o n here
4 g s t _ e l e m e n t _ l i n k _ m a n y (s r c , g t r m _ s l _ a d a p t , c o n v e r t ,
5 c a p s _ f i l t e r , s i nk , NULL) ;
6 }

The callback function for the element consists of a single call to
sl_adapt(), which is defined in sl_adapt.c. This adaptation looks more
or less identical to that in the test application described in Section 3.3 and
in Equations 2.1 and 2.3. The resulting service level is used to set the size
of each frame, where a larger frame has higher image quality.

1 s t a t i c vo id g t r m _ s l _ c b (Gs tE lement * i d e n t i t y ,
2 G s t B u f f e r * buf , Gs tE lement * s r c) {
3 i n t f r a m e _ s i z e = s l _ a d a p t a t i o n () ;
4 g _ o b j e c t _ s e t (G_OBJECT (s r c) , " f r a m e _ s i z e " ,

f r a m e _ s i z e , NULL) ;
5 }

3.5 Resource Allocation

The resource allocation mechanism is realized using cgroups, CPUShares
and slices. Using slices one can set a minimum amount of available re-
sources for the applications that belong to the slice.

If the applications under a slice do not use all of the resources allocated
to them, the unused share is free to be used by other slices. In a hierarchical
manner, each slice can have sub-slices, therefore dividing the resource at a
finer granularity level. The hierarchy is built within the cgroups folder.

The slices in the pie chart of Figure 3.1 represent two different sets of
applications. The static yellow slice consists of applications that are not
managed by GTRM and share the resources according to the predefined
setting given by the slice. Applications that belong to this set usually do not
vary their resource requirement or are hard real-time, which means they
should be given enough resource so that their deadlines are met.

The red set shows two applications managed by the GTRM framework.
These application might implement the service level adaptation paradigm.

43

Chapter 3. Implementation

Figure 3.1 Pie chart for resource allocation.

Applications belonging to this slice usually do vary their resource require-
ments, or can change the quality of the computation to adapt to the available
resources. In Figure 3.1 there are two applications (also called services) of
this type.

All applications that are managed by the GTRM run as services under
the GTRM-slice. A service can reserve a minimum percentage of allocated
resources referring to its parent slice. In the Pie chart above the static slice
would be guaranteed a minimum of 1⁄3 of the total resources while the two
GTRM services are given half of the 2⁄3 reserved by its parent slice, therefore
obtaining a minimum of 1⁄3 of the total available resources each.

In the GTRM slice, some of the applications are service level-aware and
some are not. Ideally all applications running in the GTRM-slice should, if
it makes sense to the application, have a concept of service level. Each
application is assigned a weight, that sets how much responsibility for the
adaptation is taken care of by the application that changes its service level
and how much adaptation should be realized via resource allocation. All
applications in the GTRM slice must implement the performance evaluation
via a matching function and the communication with the resource manager

44

3.5 Resource Allocation

via a socket.

Resource allocation in practice
The resource split shown in Figure 3.1 is made by creating a gtrm.slice
file in the folder /etc/systemd/system. Any application that wants to
take advantage of the GTRM capabilities needs to create a service file in
the same folder. When the service is started a folder named gtrm.slice
will be created in the corresponding cgroup controller-folder to represent
the slice. The controller is a combination of the CPU-and CPUAccounting,
cpu,cpuacct. The applications run in this slice will be represented as a
folder within the slice-folder. The resulting path to the service will look
like this.

/sys/fs/cgroup/cpu,cpuacct/.slice/gtrm.service/

The unit file to represent the gtrm.slice is defined as follows. Here
the only parameter specified is the amount of CPUShares. By setting this
field the system is given the ability to change the CPUShares of this slice.

gtrm.slice

[Unit]
[Slice]
CPUShares=1024

Any service file in the /etc/systemd/system folder overrides a ser-
vice file for the same application declared somewhere else. The following
describes the service files used by our test applications.

gtrm-test.service and gtrm-test2.service

[Unit]
[Service]
ExecStart=/mnt/flash/test-gtrm-app 50 10 0 0 0 0.1 0.5 0.04
CPUShares=100
Slice=gtrm.slice

45

Chapter 3. Implementation

If no such file is created, by default, systemd defines a slice called
system.slice located in /usr/lib/systemd/system. All services will
belong to this slice unless another slice has been specified.

system.slice

[Unit]
Description=System Slice
Documentation=man:systemd.special(7)
DefaultDependencies=no
Before=slices.target
Wants=-.slice
After=-.slice

DefaultDependencies is set to no to disable some non-essential de-
pendencies. The Before and After fields makes sure that the units are
started in the correct order, if necessary delaying one unit to make sure the
other starts first. The unit(s) specified in the Wants- field will start when
this unit is started. In this case the -.slice will be started simultaneously
as system.slice, but the After field ensures that system.slice will
start-up first of them. This slice is given the default amount of CPUShares
which is 1024, since nothing is specified in the unit file.

3.6 Sequence Diagram

The sequence diagram in Figure 3.2 describes the flow of execution of the
system via pseudo-code. Some function calls that are not relevant have been
left out.

Application
The application computes its performance (matching function), via a func-
tion called calculate_performance(). According to its value, and even-
tually to the performance multiplier received from the resource manager

46

3.6 Sequence Diagram

Figure 3.2 Sequence diagram

at the past step, the service level of the application is adjusted by call-
ing update_service_level(). Finally, the resource manager is notified
via the send_performance() call. Receiving the performance multiplier
is done via a non-blocking socket which means that the application does
not have to wait for the resource manager to send it. If there are messages
containing performance multipliers on the socket, only the newest value is
used. If the socket is empty the performance multiplier is set to one which
corresponds to use of the update rule in Equation 2.1.

Resource manager, GTRM
The resource manager consists of parallel parts. Upon receiving the perfor-
mance of an application, the handler (or dispatch function) corresponding
to the reception event is executed. In the sequence diagram of Figure 3.2,
this call is labeled as gtrm_dispatch. Its main responsibility is to read
and parse the received message and then update the hashmap containing
the relevant data about the application that sent the performance measure-
ment. Meanwhile, the resource management runs as a part of the main re-
source manager loop. The resource management algorithm uses the infor-
mation in the hashmap to calculate the new virtual platforms via the func-
tion calculate_virtual_platforms according to Equation 2.5. These

47

Chapter 3. Implementation

virtual platforms are then used to set the amount of CPUShares to be given
to each application in the call to apply_virtual_platforms.

To ease the service level adaptation, the resource manager also
sends a suggestion to the application, that depends on how much
the virtual platform is changed in the current round via a call to
send_performance_number.

48

4
Use cases

This chapter introduces relevant use cases that were the basis for the work
and guided the design of the system. In all the use cases it is assumed that
the resource available to the static slice is correctly sized, so that the GTRM-
slice does not have any more available than the allocated resource and has
to distribute it to the applications running within the slice.

4.1 Nominal Conditions

In nominal conditions, the system is well dimensioned. The applications
running inside the GTRM slice can be run at maximum service level without
overloading the hardware.

The service level for all the running applications should be at the highest
possible value. The matching functions of the applications should be either
positive or zero for the applications and the deadlines of all the running
services should be met.

4.2 Overload Conditions (Streaming Dependent)

In the second case, the streaming application is overloading the system. The
applications subsequently mentioned are all included in the GTRM slice,

49

Chapter 4. Use cases

that should allocate the resources available for them in order to match the
deadlines of every applications, including the streaming service.

The detailed conditions addressed are the following:

4.3 Normal mode

1. The camera is filming a scene that causes a high load. This may hap-
pen because the camera itself is moving around or because the sce-
nary is very dynamic.

2. Service level aware applications are running together with the
streaming service. These applications (including the streaming one)
adapt their service level (and therefore the quality of their computa-
tion).

3. The GTRM increases the resource given to the applications with the
worst performance (matching function). The resource is taken from
other, better performing, applications on the same slice. These bet-
ter performing services lower their service level to accomodate the
change in the resource allocation.

4. The scene becomes simpler or the camera stops, therefore inflicing a
lighter load on the system. The service level of the applications can
be increased since the streaming one is not so demanding in terms of
resource.

5. The GTRM and SL adaptation will not drag down performance com-
pared to the old system.

The matching function of all the applications should be close to zero,
since they can all adjust their service level in a reasonable way during the
execution. The frame rate for the video streaming should be constant dur-
ing the execution, because the internal service adaptation of the streaming
service should take care of adjusting the compression level of the image.

50

4.4 Overload Conditions (Non-Streaming Dependent)

4.4 Overload Conditions (Non-Streaming
Dependent)

At the beginning of this use case the static slice is not fully loaded, therefore
some of the resource may be transfered from it to the GTRM managed slice.

1. The static slice is not consuming all the resource allocated to it, there-
fore the GTRM slice can collect some of the remaining resource. The
applications belonging to the GTRM slice can raise their service level
to a value that is higher than the one that would be the equilibrium
point in the nominal conditions.

2. The resource demand of the static slice starts to grow.

3. The service level of the applications belonging to the GTRM slice
adapt, lowering the quality of the computation, until a new equilib-
rium is reached.

4. The demand of the static slice becomes lower again and the resource
is released to the GTRM slice. The service level increase and the
resource is redistributed to the applicaions on the GTRM slice.

Again, the frame rate of the streaming application should be the same
during the execution. Also, the applications on the static slice should be
able to run without harm even when causing a higher (but still within the
amount of resource statically allocated) load onto the system.

4.5 GTRM slice empty and filled

This is a corner case, where no applications are running within the GTRM
slice. The static slice is allowed to use the entire amount of resource if
necessary. During the test case, some applications of the GTRM slice are
started and the virtual platforms should be adjusted accordingly, taking re-
source from the static slice until the size of the static slice meets the original

51

Chapter 4. Use cases

allocation. If sized correctly, the matching functions of the applications be-
longing to the GTRM slice should be zero or positive and their service level
should settle to an equilibrium value.

4.6 Applications with different weights

During this test, some applications are run in the GTRM slice. However,
these applications are highly heterogeneous — which means that they have
different weights and they are willing to adjust their service level to vari-
ous extents. Some applications are eager to help the infrastructure and will
lower their requirement easily, while some other applications are more re-
luctant to reduce the quality of the performed computation.

1. As a starting point, all the applications running in the GTRM slice
have a positive or zero matching function, meaning that they are sat-
isfied with the amount of resource assigned to them.

2. The performance of one of the application decreases, for example
due to an increase in its computational load.

3. The GTRM and the service level adaptation starts trying to compen-
sate for that.

It is expected that the system reaches a stable point. The applications
with the higher weights adapt their matching function mainly due to an
increase in the amount of allocated resource. The allocation with lower
weights cope with the reduced resource availability by decreasing their ser-
vice level.

4.7 Nominal conditions in overload case

In this case, a number of applications are running with reasonable per-
formance levels and no adaptation is needed. The system is subsequently
loaded to the point where some of the applications can not be satisfied.

52

4.7 Nominal conditions in overload case

1. A number of applications are running with good performances and
no service level adaptation or resource management is needed.

2. A new application is started with a default service level.

3. The resource manager takes care of allocating the resource to the new
application, redistributing the available capacity. At the same time,
the service level adjustment within the application tries to match the
amount of resource given by the GTRM.

4. The amount of load introduced in the system is too much for the ap-
plications to be entirely satisfied. Some applications still have a neg-
ative matching function, despite having reduced their service level to
the minimum value.

The system reaches a stable point where not all applications have a good
performance. The applications that supports the service level adaptation
lowered their quality as much as possible. The GTRM loop will continue to
try to adjust to the current conditions.

53

5
Experimental Results

This chapter describes the tests that have been conducted on the entire ar-
chitecture to validate the claims. The tests will resemble the envisioned use
cases.

A first set of tests is obtained by starting and stopping different test-
applications on the Axis P3367 camera. These applications run on the
GTRM-slice and their resource is managed by the GTRM itself. The
slices and services are started and stopped with the command line tool
systemctl [1].

As previously discussed, the resource available in the camera is split
into two different top slices. The first one is the system slice, that contains
all the normal services. The second one is the GTRM slice, that contains
applications that are possibly service level aware, the resource devoted to
which are managed by the GTRM. The command line tool systemd-cgls
shows the layout of the slice tree. Its output is shown in Figures 5.1 and 5.2.
The system slice has been given CPUShares = 1024, while the GTRM slice
got CPUShares = 256, meaning that the resource is split 4

5 to 1
5 , between

the two slices.
To test the system, several test applications are run together, specify-

ing different parameters for each of them.When started, the test applica-
tions takes 10 parameters, described in the box below. These parameters
are modified in different tests. By varying the weight parameter from 0

54

Chapter 5. Experimental Results

Figure 5.1 The first lines of the output from systemd-cgls.

Figure 5.2 The last lines of the output from systemd-cgls.

to 1, the applications can be set somewhere between the extremes of only
adapting through resource allocation and only adapt through service level
modification. By varying the a_cpu and b_cpu, the emulated relationship
between service level and resource requirement is changed. While b_cpu
represents service level independent load, a_cpu denotes the relationship
between the set service level and the service level dependent load that the
application excerpt on the platform. The parameter epsilon makes the
service level adaptation slower or faster. All services are given an initial
CPUShares = 100, to be able to send their first message to systemd rela-
tively fast.

55

Chapter 5. Experimental Results

test-gtrm-app.c(int argc, char* argv[])
The argv[] gets parsed to the following variables in the following
orders:

• float service_level, Sets the starting value for the service level.

• float a_cpu, Used for calculating the cpu_req.

• float b_cpu, Used for calculating the cpu_req.

• float a_mem, Not used.

• float b_mem, Not used.

• double epsilon, Affects how quickly the SL adapts.

• double weight, Determines how much of the adaptation that
will be made by the RM or by the SL adaptation. Is defined
between 0 and 1.

• double deadline, The deadline for the job.

The CPU requirement is a linear function of the SL:
cpu_req = a_cpu∗ ls+b_cpu. Cpu_req is simply the number of
calculations that will be performed each job.

In the tests, the applications are expected to converge to a matching
function close to or equal to zero, with a service level that should stabilize
over time. It is also expected that the resource manager initially assigns
the same amount of resource to all the applications. As their demands and
adaptation rates vary, the application’s service level and virtual platforms
do not have to converge identically, but if the system works as intended all
the applications should end up with a matching function close to zero.

56

Chapter 5. Experimental Results

The tests are performed by starting the services one by one. Every time
an application is added, the system is expected to reset the virtual plat-
forms and assign to each application the same amount of resources. After
that the system will then manage the resources and service level until all
the applications are satisfied with their performance level. Notice that the
resource manager is managing only 90% of the total shares assigned to it.
This is a parameter of GTRM that could be changed upon request, and the
10% unused resource is intended as a slack, for example to run the resource
manager itself.

Test 1: Four applications with the same weights, service
level, and resource adaptation
In this test, four applications are started, one every 10 seconds. The appli-
cations are started with the settings shown in Table 5.1. The result is shown
in Figure 5.3.

app SLt=0 acpu bcpu ε weight Deadline
app1 75 10 0 0.06 0.5 0.04
app2 75 20 0 0.06 0.5 0.04
app3 75 10 0 0.01 0.5 0.04
app4 75 10 0 0.01 0.5 0.04

Table 5.1 Settings for the test applications in Test 1.

It can be seen that the applications receive different amount of resources
and settle to different service levels. Application 4, which is the last one
to enter the pool, starts with a very negative matching function. The re-
arrangement of resources allows the application to obtain a larger virtual
platform and therefore compute at a higher service level. It can also be
observed that — despite the performance functions being quite noisy —
the service levels settle to an equilibrium, as well as the virtual platforms.

Comments on the results The plots in Figure 5.3 behave on the whole
as expected from the settings in Table 5.1. The mean of the noisy perfor-

57

Chapter 5. Experimental Results

(a) Virtual Platforms (b) Service Levels

(c) Matching Functions

Figure 5.3 Results for Test 1.

mance converges to zero which corresponds to each application finding a
pairing of SL and virtual platform (VP). In the plot a higher/lower SL gives
a higher/lower Virtual platform. The SL/VP combination for app2 becomes
different since the acpu is twice that of the other apps resulting in a half as
large compared to what it would have been otherwise. The VP resets after
a new app has been started as it should. The SL for app 3 and 4 converge
slower than that of app 1 and 2 because of the lower ε in app 3 and 4.

58

Chapter 5. Experimental Results

Test 2: Four applications with different weights, service
level, and resource adaptation

(a) Virtual Platforms (b) Service Levels

(c) Matching Functions

Figure 5.4 Results for Test 2.

In this second test, four applications are started as done for the previous
one. The difference here is that these applications have different weights,
which indirectly governs how much of the adaptation that should be made
by the application or by the GTRM. For a summary of the relevant data for
the experiment, see Table 5.2.

Figure 5.4 shows the results in terms of virtual platforms, service levels

59

Chapter 5. Experimental Results

app SLt=0 acpu bcpu ε weight Deadline
app1 75 10 0 0.06 0.2 0.04
app2 75 20 0 0.06 0.4 0.04
app3 75 10 0 0.01 0.6 0.04
app4 75 10 0 0.01 0.8 0.04

Table 5.2 Settings for the test applications in Test 2.

and matching functions. As can be seen, the performance functions, despite
being noisy, converge to signals with zero mean.

Comments on the result. This test behaves alot like the previous one but
with one difference in how the SL/VL combinations converge. The main
point of this test is to see how the weight affects the VPs convergence
points. As can be seen in the plot of the virtual platforms in Figure 5.4,
the applications with higher weights are assigned a higher VP which is in
accordance with the theory.

Test 3: Four applications with zero weights and service
level adaptation
In this third test, four applications are started as done for the previous ones.
However, the weights of the applications are set to zero. With all weights
set to zero the virtual platforms are not expected to change. The result is
shown in Figure 5.5.

Comments on the results As expected there is no change in VP except
for the even split when a new application is added. The performance looks
a bit noisier than previously indicating an improvement when both SL and
VP adaptation is being used.

Test 4: Four applications with weights equal to one and
service level adaptation
This test is the dual of the previous one but all the weights are set to 1. With
all weights set to one the adaptation is expected to be done by varying the

60

Chapter 5. Experimental Results

(a) Virtual Platforms (b) Service Levels

(c) Matching Functions

Figure 5.5 Results for Test 3.

virtual platforms. The result is shown in Figure 5.6.

61

Chapter 5. Experimental Results

(a) Virtual Platforms (b) Service Levels

(c) Matching Functions

Figure 5.6 Results for Test 4.

62

Chapter 5. Experimental Results

Comments on the results By comparing the two SL plots from Test1,in
Figure 5.3,and Test4, in Figure 5.6, it seems like the SLs for app3 and app4
converge slower in the Test4 case. The VP plot also displays greater dif-
ference between the 4 applications than in the Test1 case. Although these
changes are small in comparison to the changes in Test3 it can be argued
that more of the adaptation is done by varying the VP in Test4 as opposed
to in Test1. Once again the performance seems a bit noisier compared to
the Test1 case indicating an improvement when both SL and VP adaptation
is being used.

Test 5: Four applications with no service level adaptation
Four applications are started one by one with the settings in Table 5.3. As
can be seen, the value of a_cpu is zero for all the applications, meaning that
the service level is not at all affecting the amount of resources requested on
the application side. According to proposition 3.2 in “A Game-Theoretic
Resource Manager for RT Applications” [15], the normalized virtual plat-
forms will tend to the values given by

ṽ∗i →
λi

∑
n
j=1 λ j

, (5.1)

app SLt=0 acpu bcpu ε weight Deadline
app1 75 0 10 0.06 0.2 0.04
app2 75 0 10 0.06 0.4 0.04
app3 75 0 10 0.01 0.6 0.04
app4 75 0 10 0.01 0.8 0.04

Table 5.3 Settings for the test applications in Test 5.

Figure 5.7 shows the convergence of the virtual platforms and the cor-
responding matching functions. As can be seen, the matching functions of
all the applications become positive, meaning that the architecture is capa-

63

Chapter 5. Experimental Results

(a) Virtual Platforms (b) Matching Functions

Figure 5.7 Results for Test 5.

ble of handling the load produced by the applications correctly, despite the
reduction in the virtual platforms.

Also, as can be seen, all the virtual platforms converge to the same
value, except for the one given to the last application, that is the last (since
it started later) to reach a positive matching function. All the resources that
are not distributed are therefore given to this application to help it recover
faster. When the matching functions are positive, the allocation of resource
stays unchanged, since there is no need for redistribution.

app SLt=0 acpu bcpu ε weight Deadline
app1 75 0 120 0.06 0.2 0.04
app2 75 0 120 0.06 0.4 0.04
app3 75 0 120 0.01 0.6 0.04
app4 75 0 120 0.01 0.8 0.04

Table 5.4 Settings for the test applications in Test 5 with a higher b_cpu
value.

64

Chapter 5. Experimental Results

(a) Virtual Platforms (b) Matching Functions

Figure 5.8 Results for Test 5 with a higher b_cpu.

Comments on the results

Test with a lower bcpu,

In this test only the VP and performance plots are of interest since acpu = 0
and hence changes in SL has no effect. The VP for the different applications
does not seem to converge to the theoretical ones which probably is because
of a too small static SL, bcpu. The effects of this small bcpu can be seen in
the performance plot in Figure 5.7 when 25 < t < 35 where the performance
is stuck in the upper half plane indicating that the applications need a higher
SL in order to make use of all of their available CPU. After time t = 45 the
time between updates of the performance in the RM increases drastically,
(the performance plots shows the performance that the RM has received).
This is most likely due to a temporary problem with sending messages on
DBus which in turn might have been caused by the flood of sent messages
due to the high performance.

The test is repeated, increasing the value of bcpu. Also, in this second
case, a resource hungry application is started on the system slice in an at-
tempt to limit the noise in performance. The settings for the test can be seen
in Table 5.4 while Figure 5.8 shows the matching functions and the virtual
platforms in this second case.

65

Chapter 5. Experimental Results

Test with a higher bcpu,

The values that the VP for the different applications converges to, com-
pensated for the scale factor, together with the theoretical values and the
weights are shown in Table 5.6. From the table it can be seen that the ap-
plications have not reached their theoretical values, however, they are not
far from them. The discrepancy might be explained by all the noise that the
performance still displays. This noise seems to have been reduced by the
CPU load generator on the system.slice.

Test 6: Mixed load of applications with and without
service level adaptation
In this last test, five applications are started one by one with the settings
shown in Table 5.5. Figure 5.9 depicts the result of the run.

app SLt=0 acpu bcpu ε weight Deadline
app1 50 0 30 - 0.5 0.04
app2 50 20 0 0.01 0.5 0.04
app3 50 0 30 - 0.2 0.04
app4 50 20 0 0.01 0.2 0.04
app5 50 10 0 0.002 0.8 0.04

Table 5.5 Settings for the test applications in Test 6

Comments on the results The plots looks as expected. That the weights
influence how much VP an application gets can be seen in that vpapp5 >
vpapp2 > vpapp4. The small ε for app 5 makes the SL adaptation very slow.

5.1 Result discussion

Overall the plots of the virtual platforms and the service level look good,
with the exception of the extremely noisy matching functions. They do,

66

5.1 Result discussion

(a) Virtual Platforms (b) Service Levels

(c) Matching Functions

Figure 5.9 Results for Test 6.

however, have zero mean which is why it is deemed as a good enough re-
sult. There are a couple of possible explanations for the noisy performance;
one being the extra CPU that the GTRM slice receives when the system
slice has spare resources to lend. This introduces a disturbance driving the
performance up. However when loading the system slice with a CPU hun-
gry application, no major changes in performance were shown. To reduce
the amount of noise in the matching functions, one could average over a
larger interval of samples, therefore smoothening the function’s behavior.

67

Chapter 5. Experimental Results

app weight V Ptheoretical V Pplot
app1 0.2 0.1 0.17
app2 0.4 0.2 0.23
app3 0.6 0.3 0.28
app4 0.8 0.4 0.32

Table 5.6 Table showing the convergence of VP and weights in test 5b

68

6
Conclusion and Future
Work

This thesis implemented a Game Theoretic Resource Manager (GTRM) on
Axis cameras, to distribute the CPU among multiple running applications
that can be adaptive in nature and vary their service level and the required
computation, together with the quality of the offered service.

6.1 Result discussion

Overall the plots of the virtual platforms and the service level look good but
the main problem is the extremely noisy performance plots. They do, how-
ever, have zero mean which is why it is deemed as a good enough result.
There are a couple of possible explanations for the noisy performance; one
being the extra CPU that the GTRM slice receives when the system.slice
has spare resources to lend. This introduces a disturbance driving the per-
formance up. However when loading the system.slice with a CPU load gen-
erator no major changes in performance were shown. Another explanation
could be the delay in the socket communication since delays tend to make
systems oscillate. A third reason is simply a bug somewhere in the code.

69

Chapter 6. Conclusion and Future Work

The time between actions from the GTRM is irregular, how this affects the
system has not been taken into consideration.

6.2 Conclusion

The provided implementation demonstrated that the GTRM can be inte-
grated into systemd and run in an Axis camera. To this end, many steps
have been followed. First of all the Inter-Process Communication of the
original GTRM was succesfully converted from shared memory to socket
communication. The conversion was necessary to realize the integration
with the camera framework. The implementation of the socket-based IPC
resembled the code of the “Notify” feature, already included in the oper-
ating system. However, the resulting code was harder to understand and
debug, compared to code completely written from scratch. The final result
worked well and was well integrated into systemd.

The transition from shared memory to socket usage also required a new
data structure for the applications. A hashmap was a natural choice. The
applications PIDs were the natural choice to be used for the hashmap keys.
The constant time-complexity of the data access provided by a hashmap
does not negatively impact on the GTRM performance. The provided imple-
mentation also included macros for iterating through the hashmap, together
with all the normal functions for adding and retrieving elements.

The resource management loop was inserted into the main loop of
systemd and performed as expected. By changing to CPU-shares from
cpu.quota and cpu.period, the risk of causing a kernel panic by as-
signing more resource than available was eliminated. Since the assignment
of CPU-shares is done inside systemd, without the need of communication
over DBus, it does not require a significant amount of time.

70

6.3 Future work

6.3 Future work

The performance of the system can be further improved when more appli-
cations are using the service level framework, therefore every application
that can be ported to the idea of service levels and varying quality should be
improved. Implementing the matching function calculation and the service
level adaptation would be the ultimate solution to the resource management
and prioritization problem. This would also eliminate the need for the static
cgroup slice, since all the applications would be running in the same slice,
managed by the GTRM.

The system itself is in need of further testing to track down bugs and
memory leaks, if any. Future work would consist of taking this rough proto-
type and develop a more refined product. The consequences of the irregular
update times of the VP in the GTRM should be further looked into, there are
simple solutions to using the longest time between updates for all updates
which would give uniform updating to the cost of a slower controller. The
use of sockets should also be further looked into as this may be the root of
the noisy performance plots. Different SL functions of multiple parameters
could also be considered, which might result in faster convergence of the
SL. This project is well integrated into Axis’ version control and could eas-
ily be applied as a patch to future products. Also, it could be of interest to
share this work with the systemd open source community.

71

Bibliography

[1] systemctl man pages http://www.freedesktop.org/software/
systemd/man/systemctl.html.

[2] Axis artpec-4 chip. http://www.axis.com/corporate/press/
se/releases/viewstory.php?case_id=2374.

[3] Axis m1033 manual. http://www.axis.com/files/manuals/
um_m1033w_47130_en_1206.pdf.

[4] Axis p3367 manual. http://www.axis.com/files/manuals/um_
p3367v_49013_en_1211.pdf.

[5] Epoll. http://en.wikipedia.org/wiki/Epoll.

[6] Gst elements. http://www.freedesktop.org/
software/gstreamer-sdk/data/docs/latest/
gst-plugins-good-plugins-0.10/ch01.html.

[7] Gstreamer. http://gstreamer.freedesktop.org/.

[8] Gstreamer-tutorial. http://docs.gstreamer.com/display/
GstSDK/Tutorials.

72

BIBLIOGRAPHY

[9] Real-time transport protocol. http://en.wikipedia.org/wiki/
Real-time_Transport_Protocol.

[10] Karl-Erik Årzén, Vanessa Romero Segovia, Stefan Schorr, and Ger-
hard Fohler. Adaptive resource management made real. In Proc.
3rd Workshop on Adaptive and Reconfigurable Embedded Systems,
Chicago, IL, USA, April 2011.

[11] Enrico Bini, Giorgio C. Buttazzo, Johan Eker, Stefan Schorr, Raphael
Guerra, Gerhard Fohler, Karl-Erik Årzén, Romero Vanessa, and Clau-
dio Scordino. Resource management on multicore systems: The AC-
TORS approach. IEEE Micro, 31(3):72–81, 2011.

[12] Johan Eker, Per Hagander, and Karl-Erik Årzén. A feedback sched-
uler for real-time controller tasks. Control Engineering Practice,
8(12):1369–1378, January 2000.

[13] Daniel Grosu and Anthony T. Chronopoulos. Noncooperative load
balancing in distributed systems. Journal of Parallel and Distributed
Computing, 65(9):1022–1034, 2005.

[14] Chenyang Lu, John A. Stankovic, Gang Tao, and Sang H. Son. Design
and evaluation of a feedback control EDF scheduling algorithm. In
Proceedings of the 20th IEEE Real Time Systems Symposium, pages
56–67, Phoenix (AZ), U.S.A., December 1999.

[15] Martina Maggio, Enrico Bini, Georgios Chasparis, and Karl-Erik
Årzén. A game-theoretic resource manager for rt applications. In
Euromicro Conference on Real-Time Systems (ECRTS), 2013.

[16] Paul Menage. Sgroups. https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt.

[17] Lennart Poettering. Systemd. http://www.freedesktop.org/
wiki/Software/systemd.

73

BIBLIOGRAPHY

[18] Lennart Poettering. Systemd-blog. http://0pointer.de/blog/
projects/systemd.html.

[19] Rauganathan Rajkumar, Chen Lee, John Lehoczky, and Dan
Siewiorek. A resource allocation model for QoS management. In
Proceedings of the IEEE Real Time System Symposium, 1997.

[20] Javier Silvestre-Blanes, Luís Almeida, Ricardo Marau, and Paulo Pe-
dreiras. Online QoS management for multimedia real-time transmis-
sion in industrial networks. IEEE Transactions on Industrial Elec-
tronics, 58(3):1061–1071, March 2011.

[21] Michal Sojka, Pavel Píša, Dario Faggioli, Tommaso Cucinotta, Fabio
Checconi, Zdeněk Hanzálek, and Giuseppe Lipari. Modular software
architecture for flexible reservation mechanisms on heterogeneous re-
sources. Journal of Systems Architecture, 57(4):366–382, 2011.

[22] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee,
Calton Pu, and Jonathan Walpole. A feedback-driven proportion al-
locator for real-rate scheduling. In Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation, February 1999.

[23] Riky Subrata, Albert Y. Zomaya, and Björn Landfeldt. A coopera-
tive game framework for QoS guided job allocation schemes in grids.
IEEE Transactions on Computers, 57(10):1413–1422, October 2008.

[24] Stephen A. Rago W. Richard Stevens. Advanced Programming in the
UNIX Environment: Second Edition. Addison Wesley Professional,
2005.

[25] Guiyi Wei, Athanasios V. Vasilakos, Yao Zheng, and Naixue Xiong. A
game-theoretic method of fair resource allocation for cloud comput-
ing services. The Journal of Supercomputing, 54(2):252–269, Novem-
ber 2010.

74

A
Source Code Overview

In this section follows an overview of the header and source files used in
the system and their attributes.

A.1 gtrm_lib.c/h

A library which contains various functions used by the resource manager
to make various computations and inter process communication.

struct rm_app_t
Represents an application being managed and consists of the following
fields.

• tid: Applications PID.

• vp: Virtual platform.

• vp_old: Previous virtual platform.

• performance: Performance, or matching function of the application.

• weight: The current "weight" of the application.

75

Appendix A. Source Code Overview

• happy: Indicates if the application is happy with its

current performance. This field was added to prevent application
from sending their performance even when they are satisfied and
nothing should be needed from the resource manager, eliminating
unnecessary computations.

• sa: Socket Address, used to send back the performance multiplier.

struct gtrm_t
Stores various parameters used by the GTRM.

• c1: Constant used for computing epsilon, determines how much we
will change the virtual platform.

• c2: Another constant used for computing epsilon similar as c1.

• iterations: Keeps track of how many iterations the GTRM has run.

• all_happy: Used to indicate if we have to make any adjustments to
the resource allocations.

• num_apps: Total amount of applications that we are managing.

• prev_apps: The amount of applications in the previous iteration.

void gtrm_char2gtrmstruct(char* str, rm_app_t *re)
Extracts data from a received string and stores it as a struct instead. The
data sent from an application consists of the PID, performance, weight, and
if the application is satisfied or not.

• str: String to extract data from.

• re: Struct to hold the extracted data.

• Return value: None, the result is stored in re.

76

A.1 gtrm_lib.c/h

int gtrm_send_performance_multiplier(double pm, int fd,
struct sockaddr *sa)
Sends a performance multiplier to an application via sockets.

• pm: Performance multiplier to send.

• fd: File descriptor used to send the performance multiplier.

• sa: Socket address.

• Return value: Always zero.

double gtrm_get_epsilon(unsigned int iterations,
unsigned int offset, double c1, double c2)
Calculates the constant epsilon used by the resource manager.

• iterations: Number of iterations run by the RM.

• offset: If one, resets the time used in the iteration. This restarts the
calculation.

• c1: Constant, previously described.

• c2: Constant, also previously described.

• Return value: The calculated epsilon or one if this is the first iteration.

void gtrm_update_performance_multipliers(int gtrm_fd,
Hashmap *gtrm_apps)
Calculates, updates and sends the performance multiplier to each applica-
tion, using the performance, virtual platform and the previous virtual plat-
form for each application.

• gtrm_fd: File descriptor used to send the performance multiplier.

77

Appendix A. Source Code Overview

• gtrm_apps: Hash-map containing rm_app_t structs for each applica-
tion.

• Return value: None.

void gtrm_write_log(Hashmap *gtrm_apps, unsigned int
num_applications)
Writes information about the resource management to a log file, which can
then be used to generate some nice graphs.

• gtrm_apps: Hash-map containing rm_app_t structs for each applica-
tion. «««< HEAD

• num_applications: Used to make sure we do not try to print an empty
hash-map. =======

• num_applications: Used to avoid printing an empty hash-map. »»»>
baa53d7d018201d6bd7f70a511b99ef4ec14b918

• Return value: None.

A.2 manager.c/h

One of the main files in systemd and is for example responsible for inter
process communication. The following fields are added to the Manager
struct in manager.h:

• gtrm_socket: String that represent the socket used by GTRM.

• gtrm_fd: A file descriptor, which is an integer, for communicating
with GTRM.

• gtrm_event_source: Used to determine the source of an event and
how this event is supposed to be handled.

• gtrm_apps: Hash-map containing all the applications being managed
by the GTRM.

78

A.2 manager.c/h

static int manager_dispatch_gtrm_fd(sd_event_source
*source, int fd, unit32_t revents, void *userdata)
Called when we receive the performance of an application.

• source: source of the event.

• fd: file descriptor to the event source.

• revents: Set by the kernel to indicate what event on the file descriptor
that triggered the call to this function. In our case it is always the
incoming event.

• userdata: In this case it contains a reference to the manager.

• Return value: Not used, always zero.

static int manager_setup_gtrm(Manager *m)
Used to setup the socket, event source and file descriptor for the resource
manager. Called from manager_startup and manager_reload.

• m: Reference to the manager.

• Return value: Zero if function ran correctly, otherwise it is set to the
corresponding error number.

int gtrm_compute_virtual_platforms(Hashmap *apps,
gtrm_t *gtrm_t)
Calculates the amount of resources (virtual platform) for an application.

• apps: The hash-map containing information about the applications
being managed.

• gtrm_t: Struct with parameters used when calculating the virtual plat-
forms.

• Return value: Not used, always zero.

79

Appendix A. Source Code Overview

void gtrm_apply_virtual_platforms(Manager* m)
Computes and applies the amount of CPUShares that each application shall
be given.

• m: Reference to manager, used to get the applications

• Return value: None.

int manager_loop(Manager *m)
The main loop of the system which continuously calls gtrm_compute_virtual_platforms,
gtrm_apply_virtual_platforms and gtrm_update_performance_multipliers
if all applications are not satisfied with their performance.

• m: Reference to manager, used to get the applications.

• Return value: Exit code of systemd.

int manager_set_cpu_shares(Manager *m, pid_t pid, int
shares)
Sets the CPUShares of an application.

• m: Reference to manager, used to get the applications.

• pid: Process identifier of the application.

• shares: Amount of shares we want to set.

• Return value: Zero if successful, one otherwise.

A.3 gtrm_app_lib.c/h

These files are used by the applications to get performance, send perfor-
mance and setup IPC, for example. In the header file the following structs
are defined:

80

A.3 gtrm_app_lib.c/h

struct _job_h
A struct used to represent a job. Applications can have different type of jobs
with different deadlines. We only use one type however.

• id: Identifier to keep track of a job being executed.

• type: What type of job this is.

• start_timestamp: Time when the job was started.

• end_timestamp: Time when we were finished with job. The times-
tamps are used to calculate the total execution time of a job.

struct _application_h
Each application stores the relevant information in terms of resource man-
agement and SL-adaptation in this struct.

• application_id: Identifier for an application.

• jobs: Number of possible job types

• weight: Determines how to divide the adaptation between the re-
source manager and service level adaptation.

• performance_multiplier: Depends on how the virtual platform has
changed and is used for better service level adaptation.

• total_jobs: How many jobs that has been launched in total.

• progress_jobs: Jobs in progress.

• completed_jobs: Total amount of completed jobs.

• expected_response_times: Array of the expected response time for
each job type.

• happy: Indicates if the application is satisfied with its performance or
not.

81

Appendix A. Source Code Overview

int gtrm_lib_setup_socket(char* filename)
Sets up a socket to communicate with the resource manager.

• filename: The socket needs a file to work, the parameter specifies its
path.

• Return value: Zero, not used.

void gtrm_lib_send_performance(_application_h *h,
double performance)
Sends the performance of an application to the GTRM.

• h: Struct representing an application.

• performance: Performance or matching function to send to the
GTRM.

• Return value: None.

int gtrm_lib_set(_application_h* a, uint types, uint64_t*
ert)
Initializes the application struct with job types and their expected response
times.

• a: Struct representing an application.

• types: Number of different job types.

• ert: Array of expected response time for each job type.

• Return value: Exit status of function.

82

A.3 gtrm_app_lib.c/h

static int manager_setup_gtrm(Manager *m)
Used to setup the socket, event source and file descriptor for the resource
manager. Called from manager_startup and manager_reload.

• m: Reference to the manager.

• Return value: Zero if function ran correctly, otherwise it is set to the
corresponding error number.

double
gtrm_lib_get_performance_number(_application_h* a, int
job_type)
Calculates the peformance (matching function) by averaging the perfor-
mance of the last ten jobs of a specified type.

• a: Struct representing an application.

• type: Which job type for which we want to calculate the performance.

• Return value: Applications performance.

int
gtrm_lib_update_performance_multiplier(_application_h
*a)
Receives the performance multiplier computed by the RM.

• a: Struct for representing the application, and storing the performance
multiplier.

• Return value: Zero, never used.

83

Appendix A. Source Code Overview

int gtrm_lib_signalstart(_application_h* a, uint type)
Indicates the start of a job.

• a: Struct for representing the application.

• type: Type of the job that is started.

• Return value: Identifier of the started job.

int gtrm_lib_signalend(_application_h* a, uint id)
Indicates the end of a job.

• a: Struct for representing the application.

• Return value: Exit status.

A.4 sl_adapt.c

Used by the streaming application, monolith, to incorporate service level
features.

void setup_sl_adapt(float service_level, double epsilon,
double weight, double deadline_seconds)
Sets up deadline for computing the matching function and sets up the IPC
with the resource management.

• service_level: Initial service level.

• epsilon: Constant which specifies service level adaptation rate.

• weight: Determines how the much of the adaptation will be done by
altering the service level or the changing the amount of resources.

• deadline_seconds: This deadline will correspond to the desired frame
rate.

• Return value: None.

84

A.4 sl_adapt.c

void sl_adapt()
Performs the service level adaptation, notifies the resource manager and
writes some logging.

• Return value: None.

test-gtrm-app.c(int argc, char* argv[])
The argv[] gets parsed to the following variables:

• float service_level, Sets the starting value for the service level.

• float a_cpu, Used for calculating the cpu_req.

• float b_cpu, Used for calculating the cpu_req.

• float a_mem, Not used.

• float b_mem, Not used.

• double epsilon, Affects how quickly the SL adapts.

• double weight, Determines how much of the adaptation that will be
made by the RM or by the SL adaptation.

• double deadline, The deadline for the job.

The CPU requirement is a linear function of the SL: cpu_req= a_cpu∗ ls+
b_cpu. Cpu_req is simply the number of calculations that will be performed
each job.

85

B
Source Code

This appendix presents all the source code written for this project.

B.1 manager.c

Note that this file is a part of systemd and only what was added or changed
to this file is included in the following code-snippets. For the rest of the code
in this file, please refer to the open-source project [17].

1 # d e f i n e GTRM_SOCKET "@/ org / f r e e d e s k t o p / sys temd1 / gtrm "
2 . . .
3 s t a t i c i n t m a n a g e r _ d i s p a t c h _ g t r m _ f d (s d _ e v e n t _ s o u r c e *

sou rce , i n t fd , u i n t 3 2 _ t r e v e n t s , void * u s e r d a t a) ;
4 . . .
5 i n t manager_new (SystemdRunningAs r u n n i n g _ a s , Manager **

_m) {
6 . . .
7 m−>p i n _ c g r o u p f s _ f d = m−>g t rm_fd = m−> n o t i f y _ f d = m−>

s i g n a l _ f d = m−>t i m e _ c h a n g e _ f d = m−>d e v _ a u t o f s _ f d
= m−> p r i v a t e _ l i s t e n _ f d = m−>kdbus_fd = −1;

8 . . .
9 m−>gt rm_apps = hashmap_new (t r i v i a l _ h a s h _ f u n c ,

t r i v i a l _ c o m p a r e _ f u n c) ;
10 . . .
11 }
12 s t a t i c i n t manage r_se tup_g t rm (Manager *m) {

86

B.1 manager.c

13 union {
14 s t r u c t s o c k a d d r sa ;
15 s t r u c t sockadd r_un un ;
16 } sa = {
17 . sa . s a _ f a m i l y = AF_UNIX ,
18 } ;
19 i n t r ;
20 i f (m−>g t rm_fd < 0) {
21 _ c l e a n u p _ c l o s e _ i n t fd = −1;
22
23 / * F i r s t f r e e a l l s e c o n d a r y f i e l d s * /
24 f r e e (m−>g t r m _ s o c k e t) ;
25 m−>g t r m _ s o c k e t = NULL;
26 m−>g t r m _ e v e n t _ s o u r c e = s d _ e v e n t _ s o u r c e _ u n r e f (m−>

g t r m _ e v e n t _ s o u r c e) ;
27
28
29 fd = s o c k e t (AF_UNIX , SOCK_DGRAM| SOCK_CLOEXEC |

SOCK_NONBLOCK, 0) ;
30 i f (fd < 0) {
31 l o g _ e r r o r (" F a i l e d t o a l l o c a t e n o t i f i c a t i o n

s o c k e t : %m") ;
32 re turn −e r r n o ;
33 }
34
35 i f (g e t p i d () != 1 | | d e t e c t _ c o n t a i n e r (NULL) > 0)
36 s n p r i n t f (s a . un . sun_pa th , s i z e o f (s a . un . s u n _ p a t h)

, GTRM_SOCKET " /% " PRIx64 , random_u64 ()) ;
37 e l s e
38 s t r n c p y (sa . un . sun_pa th , GTRM_SOCKET, s i z e o f (s a .

un . s u n _ p a t h)) ;
39 sa . un . s u n _ p a t h [0] = 0 ;
40
41 r = b ind (fd , &sa . sa , o f f s e t o f (s t r u c t sockaddr_un ,

s u n _ p a t h) + 1 + s t r l e n (sa . un . s u n _ p a t h +1)) ;
42 i f (r < 0) {
43 l o g _ e r r o r (" b ind () f a i l e d : %m") ;
44 re turn −e r r n o ;
45 }
46
47 sa . un . s u n _ p a t h [0] = ’@’ ;

87

Appendix B. Source Code

48 m−>g t r m _ s o c k e t = s t r d u p (sa . un . s u n _ p a t h) ;
49 i f (!m−>g t r m _ s o c k e t)
50 re turn log_oom () ;
51
52 m−>g t rm_fd = fd ;
53 fd = −1;
54 }
55 e l s e
56
57 i f (!m−>g t r m _ e v e n t _ s o u r c e) {
58 r = s d _ e v e n t _ a d d _ i o (m−>even t , &m−>

g t r m _ e v e n t _ s o u r c e , m−>gtrm_fd , EPOLLIN ,
m a n a g e r _ d i s p a t c h _ g t r m _ f d , m) ;

59 i f (r < 0) {
60 l o g _ e r r o r (" F a i l e d t o a l l o c a t e gtrm e v e n t

s o u r c e : %s " , s t r e r r o r (− r)) ;
61 re turn −e r r n o ;
62 }
63
64 / * P r o c e s s s i g n a l s a b i t e a r l i e r t han SIGCHLD , so

t h a t we can
65 * s t i l l i d e n t i f y t o which s e r v i c e an e x i t

message b e l o n g s * /
66 r = s d _ e v e n t _ s o u r c e _ s e t _ p r i o r i t y (m−>

g t r m _ e v e n t _ s o u r c e , −7) ;
67 i f (r < 0) {
68 l o g _ e r r o r (" F a i l e d t o s e t p r i o r i t y o f gtrm

e v e n t s o u r c e : %s " , s t r e r r o r (− r)) ;
69 re turn r ;
70 }
71 }
72 re turn 0 ;
73 }
74 . . .
75 void m a n a g e r _ f r e e (Manager *m) {
76 . .
77 h a s h m a p _ f r e e _ f r e e _ f r e e (m−>gt rm_apps) ;
78 s d _ e v e n t _ s o u r c e _ u n r e f (m−>g t r m _ e v e n t _ s o u r c e) ;
79 . . .
80 f r e e (m−>g t r m _ s o c k e t) ;
81 . . .

88

B.1 manager.c

82 }
83 i n t m a n a g e r _ s t a r t u p (Manager *m, FILE * s e r i a l i z a t i o n ,

FDSet * f d s) {
84 . . .
85 manage r_se tup_g t rm (m) ;
86 . . .
87 }
88 i n t m a n a g e r _ s e t _ c p u _ s h a r e s (Manager *m, p i d _ t pid , i n t

s h a r e s) {
89 Uni t * u ;
90 CGroupContext * c ;
91
92 u = m a n a g e r _ g e t _ u n i t _ b y _ p i d (m, p i d) ;
93 i f (u == NULL) {
94 hashmap_remove (m−>gtrm_apps , p i d) ;
95 r e s e t _ v i r t u a l _ p l a t f o r m s (m−>gt rm_apps) ;
96 re turn 1 ;
97 }
98
99 c = u n i t _ g e t _ c g r o u p _ c o n t e x t (u) ;

100 c−>c p u _ s h a r e s = s h a r e s ;
101 c g r o u p _ c o n t e x t _ a p p l y (c , CGROUP_CPU, u−>c g r o u p _ p a t h)

;
102 re turn 0 ;
103 }
104 s t a t i c i n t m a n a g e r _ d i s p a t c h _ g t r m _ f d (s d _ e v e n t _ s o u r c e *

sou rce , i n t fd , u i n t 3 2 _ t r e v e n t s , void * u s e r d a t a) {
105 Manager *m = u s e r d a t a ;
106 a s s e r t (m) ;
107 a s s e r t (m−>g t rm_fd == fd) ;
108
109 i f (r e v e n t s != EPOLLIN) {
110 l o g _ w a r n i n g (" Got u n e x p e c t e d p o l l e v e n t f o r gtrm ") ;
111 re turn 0 ;
112 }
113
114 char buf [1 0 2 4] ;
115 i n t n ;
116 s t r u c t sockadd r_un * from ;
117 s o c k l e n _ t f r o m l e n ;
118 rm_app_t * app ;

89

Appendix B. Source Code

119 rm_app_t * app2 ;
120 char l a s t _ w a s _ f r o m [1 2 4] ; / / k e e p s t h e a d r e s s (s u n _ p a t h)

from l a s t s e n d e r
121
122 f r o m l e n = 1024 ;
123 i n t c o u n t e r = 0 ;
124 do{
125 c o u n t e r ++;
126 memset (buf , ’ \ 0 ’ , 1 0 2 3) ;
127 from = c a l l o c (1 , s i z e o f (s t r u c t sockadd r_un)) ;
128 app = c a l l o c (1 , s i z e o f (rm_app_t)) ;
129
130 / / n i s n e g a t i v e i f t h e r e was no message i f s o c k e t

i s non b l o c k i n g
131 n = r e c v f r o m (fd , buf , 1 0 2 4 , 0 , (s t r u c t s o c k a d d r *) from

,& f r o m l e n) ;
132 i f (n <0)
133 break ;
134 i f (n >1024) {
135 l o g _ e r r o r (" m a n a g e r _ d i s p a t c h _ g t r m _ f d : r e c e i v e d t o

b i g message ") ;
136 }
137
138 g t r m _ p r i n t _ s t r u c t (app) ;
139 a s s e r t ((s i z e _ t) n < s i z e o f (buf)) ;
140
141 g t r m _ c h a r 2 g t r m s t r u c t (buf , app) ;
142 p i d _ t p i d = app−> t i d ;
143 app−>sa = from ;
144
145 i f (hashmap_get (m−>gtrm_apps , p i d) == NULL) {
146 hashmap_put (m−>gtrm_apps , pid , app) ;
147 } e l s e {
148 app2 = hashmap_get (m−>gtrm_apps , p i d) ;
149 g t r m _ u p d a t e _ r m _ s t r u c t (app , app2) ;
150 }
151
152 } whi le (n >0) ;
153
154 f p r i n t f (s t d e r r , " Read : %d messages " , c o u n t e r) ;
155 m−>u p d a t e _ g t r m = t r u e ;

90

B.1 manager.c

156 re turn 0 ;
157 }
158 . . .
159 i n t g t r m _ c o m p u t e _ v i r t u a l _ p l a t f o r m s (Hashmap * apps ,

g t r m _ t * g t r m _ t) {
160 unsigned i n t o f f s e t = g t rm_t−>num_apps != g t rm_t−>

p r e v _ a p p s ;
161 i f (o f f s e t)
162 r e s e t _ v i r t u a l _ p l a t f o r m s (apps) ;
163 double c1 = gt rm_t−>c1 ;
164 double c2 = gt rm_t−>c2 ;
165 double e p s i l o n = g t r m _ g e t _ e p s i l o n (g t rm_t−> i t e r a t i o n s ,

o f f s e t , c1 , c2) ;
166 f l o a t sumlambdaf i = 0 . 0 ;
167 I t e r a t o r i ;
168 _ ap p_ t * a ;
169 boo l a l l _ h a p p y = t r u e ;
170 HASHMAP_FOREACH(a , apps , i) {
171 sumlambdaf i += (a−>w e ig h t) * a−>p e r f o r m a n c e ;
172 }
173
174 HASHMAP_FOREACH(a , apps , i) {
175 a l l _ h a p p y = a−>happy && a l l _ h a p p y ;
176 a−>vp_o ld = a−>vp ;
177 f l o a t vp_o ld = a−>vp_old / (_MAX_ASSIGNABLE) ;
178 f l o a t tmp = vp_old − e p s i l o n * (a−>w e i gh t * a−>

p e r f o r m a n c e − (sumlambdaf i * vp_o ld)) ; / /
computed as sum t o one

179
180 tmp = tmp * _MAX_ASSIGNABLE ; / / s c a l e d
181 i f (tmp < _MIN_SINGLE_ASSIGNABLE)
182 tmp = _MIN_SINGLE_ASSIGNABLE ;
183 e l s e i f (tmp > _MAX_SINGLE_ASSIGNABLE)
184 tmp = _MAX_SINGLE_ASSIGNABLE ;
185 a−>vp = tmp ;
186 }
187 gt rm_t−>a l l _ h a p p y = a l l _ h a p p y ;
188 re turn 0 ;
189 }
190
191 void g t r m _ a p p l y _ v i r t u a l _ p l a t f o r m s (Manager * m) {

91

Appendix B. Source Code

192 i n t s h a r e s ;
193 I t e r a t o r i ;
194 rm_app_t * a ;
195 HASHMAP_FOREACH(a , m−>gtrm_apps , i) {
196 s h a r e s = a−>vp * _TOTAL_SHARES ;
197 m a n a g e r _ s e t _ c p u _ s h a r e s (m, a−>t i d , s h a r e s) ;
198 }
199 }
200 . . .
201 i n t manager_ loop (Manager *m) {
202 . . .
203 g t r m _ t * g t r m _ t = c a l l o c (1 , s i z e o f (s t r u c t g t r m _ t)) ;
204 g t rm_t−>num_apps = 0 ;
205 g t rm_t−>p r e v _ a p p s = 0 ;
206 g t rm_t−> i t e r a t i o n s = 0 ;
207 g t rm_t−>a l l _ h a p p y = t r u e ;
208 g t rm_t−>c1 = 0 . 1 ;
209 g t rm_t−>c2 = 1 0 ;
210 . . .
211 whi le (m−>e x i t _ c o d e == MANAGER_RUNNING) {
212 . . .
213 i f ((! (g t rm_t−>a l l _ h a p p y) | | m−>u p d a t e _ g t r m) && !

hashmap_isempty (m−>gt rm_apps)) {
214 g t rm_t−>p r e v _ a p p s = g t rm_t−>num_apps ;
215 g t rm_t−>num_apps = hashmap_s i ze (m−>gt rm_apps) ;
216 g t r m _ c o m p u t e _ v i r t u a l _ p l a t f o r m s (m−>gtrm_apps ,

g t r m _ t) ;
217 g t rm_t−> i t e r a t i o n s ++;
218 g t r m _ a p p l y _ v i r t u a l _ p l a t f o r m s (m) ; / / s e t _ s h a r e s

a c c o r d i n g t o p l a t f o r m
219 m−>u p d a t e _ g t r m = f a l s e ;
220 g t r m _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r s (m−>gtrm_fd ,m

−>gt rm_apps) ;
221 g t r m _ w r i t e _ l o g (m−>gtrm_apps , g t rm_t−>num_apps) ;
222
223 }
224 }
225 f r e e (g t r m _ t) ;
226 re turn m−>e x i t _ c o d e ;
227 }
228

92

B.1 manager.c

229 i n t m a n a g e r _ s e r i a l i z e (Manager *m, FILE * f , FDSet * fds ,
boo l s w i t c h i n g _ r o o t) {

230 . . .
231 i f (m−>g t rm_fd >= 0) {
232 i n t copy ;
233
234 copy = f d s e t _ p u t _ d u p (fds , m−>g t rm_fd) ;
235 i f (copy < 0)
236 re turn copy ;
237
238 f p r i n t f (f , " gtrm−fd=%i \ n " , copy) ;
239 f p r i n t f (f , " gtrm−s o c k e t=%s \ n " , m−>g t r m _ s o c k e t) ;
240 }
241 . . .
242 }
243 i n t m a n a g e r _ d e s e r i a l i z e (Manager *m, FILE * f , FDSet * f d s

) {
244 . . .
245 f o r (; ;) {
246 . . .
247 e l s e i f (s t a r t s w i t h (l , " gtrm−fd =")) {
248 i n t fd ;
249
250 i f (s a f e _ a t o i (l + 10 , &fd) < 0 | | f d < 0 | | !

f d s e t _ c o n t a i n s (fds , fd))
251 log_debug (" F a i l e d t o p a r s e gtrm fd : %s " , l +

10) ;
252 e l s e {
253 i f (m−>g t rm_fd >= 0) {
254 m−>g t r m _ e v e n t _ s o u r c e = s d _ e v e n t _ s o u r c e _ u n r e f (

m−>g t r m _ e v e n t _ s o u r c e) ;
255 c l o s e _ n o i n t r _ n o f a i l (m−>g t rm_fd) ;
256 }
257
258 m−>g t rm_fd = f d s e t _ r e m o v e (fds , fd) ;
259 }
260
261 } e l s e i f (s t a r t s w i t h (l , " gtrm−s o c k e t =")) {
262 char *n ;
263
264 n = s t r d u p (l +14) ;

93

Appendix B. Source Code

265 i f (! n) {
266 r = −ENOMEM;
267 goto f i n i s h ;
268 }
269
270 f r e e (m−>g t r m _ s o c k e t) ;
271 m−>g t r m _ s o c k e t = n ;
272
273 }
274 . . .
275 }
276 . . .
277 }
278 i n t m a n a g e r _ r e l o a d (Manager *m) {
279 . . .
280 / * Re−r e g i s t e r g t r m _ f d as e v e n t s o u r c e * /
281 q = manage r_se tup_g t rm (m) ;
282 i f (q < 0)
283 r = q ;
284 . . .
285 }

B.2 manager.h

1 s t r u c t Manager {
2 . . .
3 char * g t r m _ s o c k e t ;
4 i n t g t rm_fd ;
5 s d _ e v e n t _ s o u r c e * g t r m _ e v e n t _ s o u r c e ;
6 Hashmap * g t rm_apps ;
7 boo l u p d a t e _ g t r m ;
8 . . .
9 }

B.3 gtrm_lib.c

1 # i n c l u d e < s t d b o o l . h>
2 # i n c l u d e " hashmap . h "

94

B.3 gtrm_lib.c

3 # i n c l u d e " g t r m _ l i b . h "
4
5
6 / / used t o c a l c u l a t e e p s i l o n
7 i n t 6 4 _ t t i m e _ s i n c e _ s t a r t ;
8
9 / / da ta i s s t o r e d i n char as " pid−per formance−happy−

w e i g h t "
10 void g t r m _ c h a r 2 g t r m s t r u c t (char * s t r , rm_app_t * r e) {
11
12 char * pch ;
13
14 pch = s t r t o k (s t r , " x ") ;
15 re−> t i d = (u i n t) a t o i (pch) ;
16
17 pch = s t r t o k (NULL, " x ") ;
18 re−>p e r f o r m a n c e = a t o f (pch) ;
19
20 pch = s t r t o k (NULL, " x ") ;
21 re−>happy = (u i n t) a t o i (pch) ;
22
23 pch = s t r t o k (NULL, " x ") ;
24 re−>w e ig h t = a t o f (pch) ;
25 }
26
27 void g t r m _ p r i n t _ s t r u c t (rm_app_t *rm) {
28 p r i n t f (" \ n t i d :%d \ nvp:% f \ nvp_old :% f \ n p e r f o r m a n c e :% f \

nwe igh t :% f \ nhappy :%d \ n " ,
29 rm−>t i d , rm−>vp , rm−>vp_old , rm−>per fo rmance , rm−>weight ,

rm−>happy) ;
30 }
31
32 i n t g t r m _ s e n d _ p e r f o r m a n c e _ m u l t i p l i e r (double pm , i n t fd ,

s t r u c t s o c k a d d r * sa) {
33 i n t n ;
34 s o c k l e n _ t t o l e n ;
35 t o l e n = (s o c k l e n _ t) s i z e o f (s t r u c t sockadd r_un) ;
36 char buf [5 1 2] ; / / 2do no magic numbers
37 memset (buf , ’ \ 0 ’ , 5 1 2) ;
38 s p r i n t f (buf , "%f " ,pm) ;
39 n= s e n d t o (fd , buf , 5 1 2 , 0 , (s t r u c t s o c k a d d r *) sa , t o l e n) ;

95

Appendix B. Source Code

40 re turn 0 ;
41 }
42
43 void g t r m _ u p d a t e _ r m _ s t r u c t (rm_app_t * s r c , rm_app_t * d e s t

) {
44 d e s t−>p e r f o r m a n c e = s r c−>p e r f o r m a n c e ;
45 }
46
47 double g t r m _ g e t _ e p s i l o n (unsigned i n t i t e r a t i o n s ,

unsigned i n t o f f s e t , double c1 , double c2) {
48 double v a l u e = c2 ;
49 s t r u c t t i m e s p e c t i m e _ i n f o ;
50 i n t 6 4 _ t c u r r e n t _ t i m e ;
51 c l o c k _ g e t t i m e (CLOCK_MONOTONIC, &t i m e _ i n f o) ;
52 c u r r e n t _ t i m e = (i n t 6 4 _ t) t i m e _ i n f o . t v _ s e c *1000000000
53 + (i n t 6 4 _ t) t i m e _ i n f o . t v _ n s e c ;
54
55 i f (o f f s e t ==1)
56 t i m e _ s i n c e _ s t a r t = c u r r e n t _ t i m e ;
57
58 i f (i t e r a t i o n s >0)
59 v a l u e = v a l u e * (double) (c u r r e n t _ t i m e −

t i m e _ s i n c e _ s t a r t) / 1 0 0 0 0 0 0 0 0 0 . 0 ;
60 e l s e
61 {
62 t i m e _ s i n c e _ s t a r t = c u r r e n t _ t i m e ;
63 re turn 1 ;
64 }
65 re turn (c1) / (1 . 0 + v a l u e) ;
66 }
67
68 void g t r m _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r s (i n t gtrm_fd ,

Hashmap * g t rm_apps) {
69 I t e r a t o r i ;
70 rm_app_t * a ;
71 double pm ;
72 HASHMAP_FOREACH(a , g t rm_apps , i) {
73 i f (a−>vp_o ld != 0) {
74 pm = (1+ a−>p e r f o r m a n c e) * (a−>vp / a−>vp_o ld) ;
75 g t r m _ s e n d _ p e r f o r m a n c e _ m u l t i p l i e r (pm , gt rm_fd , a−>sa

) ;

96

B.4 gtrm_lib.h

76 }
77 }
78 }
79
80 void g t r m _ w r i t e _ l o g (Hashmap * gtrm_apps , unsigned i n t

n u m _ a p p l i c a t i o n s) {
81 i f (n u m _ a p p l i c a t i o n s > 0) {
82 s t r u c t t i m e s p e c t i m e _ i n f o ;
83 i n t 6 4 _ t c u r r e n t _ t i m e ;
84 c l o c k _ g e t t i m e (CLOCK_REALTIME, &t i m e _ i n f o) ;
85 c u r r e n t _ t i m e = (i n t 6 4 _ t) t i m e _ i n f o . t v _ s e c

*1000000000
86 + (i n t 6 4 _ t) t i m e _ i n f o . t v _ n s e c ;
87 FILE* l o g f i l e = fopen (" / r o o t / gt rm . l o g " , " a+") ;
88
89 I t e r a t o r i ;
90 rm_app_t * a ;
91
92 HASHMAP_FOREACH(a , g t rm_apps , i) {
93 f p r i n t f (l o g f i l e , "%l l d , %d , %f , %f , %f \ n " ,
94 c u r r e n t _ t i m e , a−>t i d , a−>vp ,
95 a−>per fo rmance , a−>w e ig h t) ;
96 }
97 f c l o s e (l o g f i l e) ;
98 }
99

100 }

B.4 gtrm_lib.h

1 # i n c l u d e < s t d l i b . h>
2 # i n c l u d e < i n t t y p e s . h>
3 # i n c l u d e < s t d i o . h>
4 # i n c l u d e " hashmap . h "
5 # i n c l u d e < s y s / s o c k e t . h>
6 # i n c l u d e < s y s / un . h>
7 # i n c l u d e < s y s / t y p e s . h>
8 # i n c l u d e " hashmap . h "
9

10 # d e f i n e _MIN_SINGLE_ASSIGNABLE 0 . 0 1
11 # d e f i n e _MAX_SINGLE_ASSIGNABLE 0 . 9 0

97

Appendix B. Source Code

12 # d e f i n e _MAX_ASSIGNABLE (0 . 9 0 0 0)
13 # d e f i n e _TOTAL_SHARES 1024
14 # d e f i n e _RM_DEADLINE 1000000 / / n sec
15
16 t y p e d e f s t r u c t rm_app_t rm_app_t ;
17 t y p e d e f s t r u c t g t r m _ t g t r m _ t ;
18
19 s t r u c t rm_app_t {
20 p i d _ t t i d ;
21 f l o a t vp ;
22 f l o a t vp_o ld ;
23 f l o a t p e r f o r m a n c e ;
24 f l o a t we ig h t ;
25 u i n t happy : 1 ;
26 s t r u c t sockadd r_un * sa ;
27 } ;
28
29 s t r u c t g t r m _ t {
30 double c1 ;
31 double c2 ;
32 unsigned i n t i t e r a t i o n s ;
33 boo l a l l _ h a p p y ;
34 unsigned i n t num_apps ;
35 unsigned i n t p r e v _ a p p s ;
36
37 } ;
38
39 void g t r m _ c h a r 2 g t r m s t r u c t (char * s t r , rm_app_t * r e) ;
40 void g t r m _ p r i n t _ s t r u c t (rm_app_t *rm) ;
41 i n t g t r m _ s e n d _ p e r f o r m a n c e _ m u l t i p l i e r (double pm , i n t fd ,

s t r u c t s o c k a d d r * sa) ;
42 void g t r m _ u p d a t e _ r m _ s t r u c t (rm_app_t * s r c , rm_app_t * d e s t

) ;
43 double g t r m _ g e t _ e p s i l o n (unsigned i n t i t e r a t i o n s ,

unsigned i n t o f f s e t , double c1 , double c2) ;
44 void g t r m _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r s (i n t gtrm_fd ,

Hashmap * g t rm_apps) ;
45 void g t r m _ w r i t e _ l o g (Hashmap * gtrm_apps , unsigned i n t

n u m _ a p p l i c a t i o n s) ;

98

B.5 gtrm_app_lib.c

B.5 gtrm_app_lib.c

1 # i n c l u d e < s y s / t y p e s . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e < u n i s t d . h>
4 # i n c l u d e < s y s / s o c k e t . h>
5 # i n c l u d e < s y s / un . h>
6 # i n c l u d e < s t r i n g . h>
7 # i n c l u d e < n e t d b . h>
8 # i n c l u d e < s t d i o . h>
9 # i n c l u d e < s t d d e f . h>

10 # i n c l u d e " g t r m _ a p p _ l i b . h "
11
12 # d e f i n e MAXMSG 512
13 # d e f i n e MESSAGE " Message from c l i e n t "
14 # d e f i n e GTRM_SOCKET "@/ org / f r e e d e s k t o p / sys temd1 / "
15 # d e f i n e NO_OF_SENDS 5
16 # d e f i n e WAIT_FOR_REPLY 0
17 # d e f i n e DEBUG 0
18
19 i n t sock , a d d r _ l e n ;
20 s t r u c t sockadd r_un * g t rm_sa ;
21
22 / / c r e a t e s a s o c k e t and b i n d s i t w i t h s o c k a d d r sa u s i n g

f i l e n a m e as s u n _ p a t h . r e t u r n s s i z e o f sa .
23 void make_named_socket (char * f i l e n a m e) {
24 s i z e _ t s i z e ;
25
26 / * Cr ea t e t h e s o c k e t . * /
27 sock = s o c k e t (PF_UNIX , SOCK_DGRAM| SOCK_NONBLOCK, 0) ;
28 i f (sock < 0) {
29 # i f d e f DEBUG
30 f p r i n t f (s t d e r r , " s o c k e t () f a i l e d : \ n ") ;
31 # e n d i f
32 p e r r o r (" s o c k e t ") ;
33 e x i t (EXIT_FAILURE) ;
34 }
35 s t r u c t sockadd r_un sa ;
36
37 / * Bind a name t o t h e s o c k e t . * /
38 sa . s u n _ f a m i l y = AF_FILE ;

99

Appendix B. Source Code

39 s t r c p y (sa . sun_pa th , f i l e n a m e) ;
40
41 / * The s i z e o f t h e a d d r e s s i s
42 t h e o f f s e t o f t h e s t a r t o f t h e f i l e n a m e ,
43 p l u s i t s l e n g t h ,
44 p l u s one f o r t h e t e r m i n a t i n g n u l l b y t e . * /
45 s i z e = (o f f s e t o f (s t r u c t sockaddr_un , s u n _ p a t h) +

s t r l e n (sa . s u n _ p a t h) + 1) ;
46
47 i f (b ind (sock , (s t r u c t s o c k a d d r *) &sa , s i z e) < 0) {
48 p e r r o r (" b ind ") ;
49 e x i t (EXIT_FAILURE) ;
50 }
51 }
52
53 i n t g t r m _ l i b _ s e t u p _ s o c k e t (char * f i l e n a m e) {
54 / * Make t h e s o c k e t . * /
55 make_named_socket (f i l e n a m e) ;
56
57 / * I n i t i a l i z e t h e s e r v e r s o c k e t a d d r e s s . * /
58 / / read gtrm a d d r e s s
59 char * env ;
60
61 env = g e t e n v ("GTRM_SOCKET") ;
62
63 / / some t imes g e t e n v won ’ t g i v e you t h e s t a r t o f t h e

addres s , so here we t r y and f i x t h a t .
64 i f (env [0] ! = ’@’)
65 {
66 char * temp ;
67 char * temp_two [1 0 0] ;
68 temp =(char *) temp_two ;
69
70 s t r c p y (temp ,GTRM_SOCKET) ;
71 whi le (* temp != ’ \ 0 ’)
72 temp ++;
73
74 s t r c p y (temp , s t r s t r (env , " gtrm ")) ;
75 env =(char *) temp_two ;
76 }
77 g t rm_sa = m a l lo c (s i z e o f (s t r u c t sockadd r_un)) ;

100

B.5 gtrm_app_lib.c

78
79 s t r c p y (gt rm_sa−>sun_pa th , env) ;
80 a d d r _ l e n = s t r l e n (gt rm_sa−>s u n _ p a t h) + s i z e o f (g t rm_sa

−>s u n _ f a m i l y) ;
81
82 gt rm_sa−>s u n _ p a t h [0] = 0 ;
83 gt rm_sa−>s u n _ f a m i l y = AF_UNIX ;
84 }
85
86 void g t r m _ l i b _ s e n d _ p e r f o r m a n c e (_ a p p l i c a t i o n _ h *h , double

p e r f o r m a n c e) {
87 char msg [1 0 0] ;
88 / / da ta i s s t o r e d i n char as " pid−per formance−happy−

w e i g h t "
89 p r i n t f (" p i d = %d \ n " , h−> a p p l i c a t i o n _ i d) ;
90 s p r i n t f (msg , "%ux%fx%ux%f " , h−> a p p l i c a t i o n _ i d ,

pe r fo rmance , h−>happy , h−>w e ig h t) ;
91
92 i n t n ;
93 n = s e n d t o (sock , msg , 1 0 0 , 0 , (s t r u c t s o c k a d d r *) g t rm_sa ,

a d d r _ l e n) ;
94 i f (n <0) {
95 p e r r o r (" s e n d t o ") ;
96 f p r i n t f (s t d e r r , " c o u l d n o t send p e r f o r m a n c e ") ;
97 }
98 }
99

100 i n t g t r m _ l i b _ s e t (_ a p p l i c a t i o n _ h * a , u i n t t y p e s ,
u i n t 6 4 _ t * e r t) {

101 # i f d e f _JOBSIGNALER_DEBUG
102 f p r i n t f (s t d o u t , " [s e t] s t a r t e d \ n ") ;
103 # e n d i f
104 i n t r e t v a l u e = EXIT_NORMAL;
105
106 / / A p p l i c a t i o n dependan t i n i t i a l i z a t i o n
107 i f (t y p e s > _H_MAX_JOBS) {
108 # i f d e f _JOBSIGNALER_ERROR
109 f p r i n t f (s t d e r r , " [s e t] j o b s number e x c e e d i n g

maximum ; l i m i t e d \ n ") ;
110 # e n d i f
111 t y p e s = _H_MAX_JOBS ;

101

Appendix B. Source Code

112 }
113 a−>j o b s = t y p e s ;
114 i n t c _ a c t ;
115 f o r (c _ a c t = 0 ; c _ a c t < t y p e s ; ++ c _ a c t)
116 a−>e x p e c t e d _ r e s p o n s e _ t i m e s [c _ a c t] = e r t [c _ a c t] ;
117
118 / / A p p l i c a t i o n i n d e p e n d e n t i n i t i a l i z a t i o n
119 a−> t o t a l _ j o b s = 0 ;
120 a−>p r o g r e s s _ j o b s = 0 ;
121 a−>c o m p l e t e d _ j o b s = 0 ;
122 a−> p e r f o r m a n c e _ m u l t i p l i e r = 1 ;
123
124 # i f d e f _JOBSIGNALER_DEBUG
125 f p r i n t f (s t d o u t , " [s e t] ended \ n ") ;
126 # e n d i f
127 re turn r e t v a l u e ;
128 }
129
130 double g t r m _ l i b _ g e t _ p e r f o r m a n c e _ n u m b e r (_ a p p l i c a t i o n _ h *

a , i n t j o b _ t y p e) {
131 / / Averag ing t h e v a l u e o f l a s t j o b s o f s p e c i f i e d t y p e

: t h e f u n c t i o n
132 / / u s e s a l l j o b s o f t h e g i v e n t y p e t h a t are i n t h e

l a t e s t
133 / / r e c o r d s . I f empty i t w i l l r e t u r n z e r o . I f c a l l e d

w i t h −1 i t w i l l
134 / / r e t u r n t h e average over a l l t y p e o f j o b s .
135 double sum_per fo rmances = 0 . 0 ;
136 double num_performances = 0 . 0 ;
137 i n t c _ a c t ;
138 i n t u p v a l u e = a−>c o m p l e t e d _ j o b s ;
139 i f (a−>c o m p l e t e d _ j o b s > _H_MAX_RECORDS)
140 u p v a l u e = _H_MAX_RECORDS;
141
142 f o r (c _ a c t =0 ; c _ a c t < u p v a l u e ; ++ c _ a c t) {
143 / / t h i s l a s t c o n d i t i o n i n t h e i f i s used t o a v o i d

t o r e p o r t
144 / / j o b o f t y p e 0 t h a t are n o t r e a l j o b s b u t i n i t i a l

v a l u e s o f
145 / / t h e v e c t o r : r e a l j o b s have a s t a r t t i m e s t a m p
146

102

B.5 gtrm_app_lib.c

147 i f ((a−>j c o m p l e t e d [c _ a c t] . t y p e == j o b _ t y p e | |
148 j o b _ t y p e == −1 | | j o b _ t y p e >=a−>j o b s) &&
149 a−>j c o m p l e t e d [c _ a c t] . s t a r t _ t i m e s t a m p != 0) {
150 i n t 6 4 _ t d e a d l i n e = a−>e x p e c t e d _ r e s p o n s e _ t i m e s [a−>

j c o m p l e t e d [c _ a c t] . t y p e] ;
151 i n t 6 4 _ t r e s p o n s e _ t i m e = a−>j c o m p l e t e d [c _ a c t] .

end_ t imes tamp
152 − a−>j c o m p l e t e d [c _ a c t] . s t a r t _ t i m e s t a m p ;
153 double t h i s _ p e r f = ((double) d e a d l i n e / (double)

r e s p o n s e _ t i m e) − 1 . 0 ;
154 i f (t h i s _ p e r f <−1.0)
155 t h i s _ p e r f = −1.0; / / t h r e s h o l d s
156 i f (t h i s _ p e r f > + 1 . 0)
157 t h i s _ p e r f = + 1 . 0 ;
158 sum_per fo rmances += t h i s _ p e r f ;
159 num_performances += 1 . 0 ;
160 }
161 }
162 i f (num_performances == 0)
163 re turn −1.0;
164 e l s e
165 / / a v e r a g i n g
166 re turn sum_per fo rmances / num_performances ;
167 }
168
169 i n t g t r m _ l i b _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r (

_ a p p l i c a t i o n _ h * h) {
170 i n t n ;
171 char buf [1 0 2 4] ;
172 char f i n a l _ b u f [1 0 2 4] ;
173 i n t g o t _ s o m e t h i n g = 0 ;
174
175 do{
176 memset (buf , 0 , 1 0 2 4) ;
177 n = r e c v f r o m (sock , buf , 1 0 2 4 , 0 , NULL, 0) ;
178
179 / / i f no msg l e f t
180 i f (n <0)
181 break ;
182
183 i f (n >1024)

103

Appendix B. Source Code

184 p r i n t f (" t o o b i g msg ! >1024 , n:%d \ n " , n) ;
185
186 a s s e r t (n <=1024) ;
187 s t r c p y (f i n a l _ b u f , buf) ;
188 g o t _ s o m e t h i n g = 1 ;
189 } whi le (n >0) ;
190
191 i f (g o t _ s o m e t h i n g ! = 1)
192 re turn −1;
193 h−> p e r f o r m a n c e _ m u l t i p l i e r = a t o f (f i n a l _ b u f) ;
194
195 # i f d e f DEBUG
196 i f (g o t _ s o m e t h i n g ! = 0)
197 f p r i n t f (s t d e r r , " r e c e i v e d p m u l t i :% f \ n " , a t o f (

f i n a l _ b u f)) ;
198 # e n d i f
199 re turn 0 ;
200 }
201
202 i n t g t r m _ l i b _ s i g n a l e n d (_ a p p l i c a t i o n _ h * a , u i n t i d) {
203
204 / / Get a c t u a l t i m e
205 s t r u c t t i m e s p e c t i m e _ i n f o ;
206 i n t 6 4 _ t t ime ;
207 c l o c k _ g e t t i m e (CLOCK_REALTIME, &t i m e _ i n f o) ;
208 t ime = (i n t 6 4 _ t) t i m e _ i n f o . t v _ s e c *1000000000 + (

i n t 6 4 _ t) t i m e _ i n f o . t v _ n s e c ;
209 i n t r e t v a l u e = EXIT_FAILURE_JOBNOTFOUND ;
210
211 # i f d e f _JOBSIGNALER_MULTITHREADED
212 p t h r e a d _ m u t e x _ l o c k (&a−>mutex) ;
213 # e n d i f
214
215 / / Look ing f o r t h e j o b t o be t e r m i n a t e d
216 i n t c _ a c t ;
217 f o r (c _ a c t =0 ; c _ a c t <(a−>p r o g r e s s _ j o b s %

_H_MAX_RECORDS) ; ++ c _ a c t) {
218 i f (a−> j p r o g r e s s [c _ a c t] . i d == i d) {
219
220 / / W r i t i n g i t

104

B.5 gtrm_app_lib.c

221 u i n t i n d e x _ c o m p l e t e d = a−>c o m p l e t e d _ j o b s %
_H_MAX_RECORDS;

222 i n t t y p e = a−> j p r o g r e s s [c _ a c t] . t y p e ;
223 i n t 6 4 _ t s t a r t = a−> j p r o g r e s s [c _ a c t] .

s t a r t _ t i m e s t a m p ;
224 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . i d = a−> t o t a l _ j o b s

;
225 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . t y p e = t y p e ;
226 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . s t a r t _ t i m e s t a m p =

s t a r t ;
227 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . end_ t imes t amp =

t ime ;
228 a−>c o m p l e t e d _ j o b s ++;
229
230 / / C l e a r i n g up t h e p r o g r e s s l o g
231 a−> j p r o g r e s s [c _ a c t] . i d = 0 ;
232 a−> j p r o g r e s s [c _ a c t] . t y p e = 0 ;
233 a−> j p r o g r e s s [c _ a c t] . s t a r t _ t i m e s t a m p = 0 ;
234 a−> j p r o g r e s s [c _ a c t] . end_ t imes t amp = 0 ;
235 a−>p r o g r e s s _ j o b s −−;
236
237 / / Done
238 # i f d e f _JOBSIGNALER_DEBUG
239 f p r i n t f (s t d o u t , " [s t o p] removed j o b %d i n t o %d \

n " , c _ a c t , i n d e x _ c o m p l e t e d) ;
240 # e n d i f
241 r e t v a l u e = EXIT_NORMAL;
242 }
243 }
244
245 # i f d e f _JOBSIGNALER_MULTITHREADED
246 p t h r e a d _ m u t e x _ u n l o c k (&a−>mutex) ;
247 # e n d i f
248 re turn r e t v a l u e ;
249
250 }
251
252 i n t g t r m _ l i b _ j o b s i g n a l e r _ s i g n a l s t a r t (_ a p p l i c a t i o n _ h * a ,

u i n t t y p e) {
253
254 / / Get a c t u a l t i m e

105

Appendix B. Source Code

255 s t r u c t t i m e s p e c t i m e _ i n f o ;
256 i n t 6 4 _ t t ime ;
257 c l o c k _ g e t t i m e (CLOCK_REALTIME, &t i m e _ i n f o) ;
258 t ime = (i n t 6 4 _ t) t i m e _ i n f o . t v _ s e c *1000000000 + (

i n t 6 4 _ t) t i m e _ i n f o . t v _ n s e c ;
259 u i n t j o b _ i d = a−> t o t a l _ j o b s ;
260
261 # i f d e f _JOBSIGNALER_MULTITHREADED
262 p t h r e a d _ m u t e x _ l o c k (&a−>mutex) ;
263 # e n d i f
264
265 / / The number o f j o b s i n p r o g r e s s s h o u l d n e v e r e x c ee d

t h e max number
266 / / O t h e r w i s e j o b s w i l l be o v e r w r i t t e n and w i l l n e v e r

f i n i s h
267 u i n t i n d e x _ i n _ p r o g r e s s = a−>p r o g r e s s _ j o b s %

_H_MAX_RECORDS;
268 a−> j p r o g r e s s [i n d e x _ i n _ p r o g r e s s] . i d = a−> t o t a l _ j o b s ;
269 a−> j p r o g r e s s [i n d e x _ i n _ p r o g r e s s] . t y p e = t y p e ;
270 a−> j p r o g r e s s [i n d e x _ i n _ p r o g r e s s] . s t a r t _ t i m e s t a m p =

t ime ;
271 a−> j p r o g r e s s [i n d e x _ i n _ p r o g r e s s] . end_ t imes tamp = t ime ;
272 a−> t o t a l _ j o b s ++;
273 a−>p r o g r e s s _ j o b s ++;
274
275 # i f d e f _JOBSIGNALER_DEBUG
276 f p r i n t f (s t d o u t , " [s t a r t] added j o b %d \ n " ,

i n d e x _ i n _ p r o g r e s s) ;
277 # e n d i f
278
279 # i f d e f _JOBSIGNALER_MULTITHREADED
280 p t h r e a d _ m u t e x _ u n l o c k (&a−>mutex) ;
281 # e n d i f
282 re turn j o b _ i d ;
283 }
284 i n t g t r m _ l i b _ j o b s i g n a l e r _ t e r m i n a t e (_ a p p l i c a t i o n _ h * a) {
285 re turn EXIT_NORMAL;
286 }
287
288 i n t g t r m _ l i b _ j o b s i g n a l e r _ s i g n a l e n d (_ a p p l i c a t i o n _ h * a ,

u i n t i d) {

106

B.5 gtrm_app_lib.c

289
290 / / Get a c t u a l t i m e
291 s t r u c t t i m e s p e c t i m e _ i n f o ;
292 i n t 6 4 _ t t ime ;
293 c l o c k _ g e t t i m e (CLOCK_REALTIME, &t i m e _ i n f o) ;
294 t ime = (i n t 6 4 _ t) t i m e _ i n f o . t v _ s e c *1000000000 + (

i n t 6 4 _ t) t i m e _ i n f o . t v _ n s e c ;
295 i n t r e t v a l u e = EXIT_FAILURE_JOBNOTFOUND ;
296
297 # i f d e f _JOBSIGNALER_MULTITHREADED
298 p t h r e a d _ m u t e x _ l o c k (&a−>mutex) ;
299 # e n d i f
300
301 / / Look ing f o r t h e j o b t o be t e r m i n a t e d
302 i n t c _ a c t ;
303 f o r (c _ a c t =0 ; c _ a c t <(a−>p r o g r e s s _ j o b s %

_H_MAX_RECORDS) ; ++ c _ a c t) {
304 i f (a−> j p r o g r e s s [c _ a c t] . i d == i d) {
305
306 / / W r i t i n g i t
307 u i n t i n d e x _ c o m p l e t e d = a−>c o m p l e t e d _ j o b s %

_H_MAX_RECORDS;
308 i n t t y p e = a−> j p r o g r e s s [c _ a c t] . t y p e ;
309 i n t 6 4 _ t s t a r t = a−> j p r o g r e s s [c _ a c t] .

s t a r t _ t i m e s t a m p ;
310 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . i d = a−> t o t a l _ j o b s

;
311 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . t y p e = t y p e ;
312 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . s t a r t _ t i m e s t a m p =

s t a r t ;
313 a−>j c o m p l e t e d [i n d e x _ c o m p l e t e d] . end_ t imes t amp =

t ime ;
314 a−>c o m p l e t e d _ j o b s ++;
315
316 / / C l e a r i n g up t h e p r o g r e s s l o g
317 a−> j p r o g r e s s [c _ a c t] . i d = 0 ;
318 a−> j p r o g r e s s [c _ a c t] . t y p e = 0 ;
319 a−> j p r o g r e s s [c _ a c t] . s t a r t _ t i m e s t a m p = 0 ;
320 a−> j p r o g r e s s [c _ a c t] . end_ t imes t amp = 0 ;
321 a−>p r o g r e s s _ j o b s −−;
322

107

Appendix B. Source Code

323 / / Done
324 # i f d e f _JOBSIGNALER_DEBUG
325 f p r i n t f (s t d o u t , " [s t o p] removed j o b %d i n t o %d \

n " , c _ a c t , i n d e x _ c o m p l e t e d) ;
326 # e n d i f
327 r e t v a l u e = EXIT_NORMAL;
328 }
329 }
330
331 # i f d e f _JOBSIGNALER_MULTITHREADED
332 p t h r e a d _ m u t e x _ u n l o c k (&a−>mutex) ;
333 # e n d i f
334 re turn r e t v a l u e ;
335 }

B.6 gtrm_app_lib.h

1 # i n c l u d e < i n t t y p e s . h>
2 # i n c l u d e < s y s / t y p e s . h>
3 # i n c l u d e < s t d b o o l . h>
4 # i n c l u d e < a s s e r t . h>
5 # i n c l u d e < t ime . h>
6 # i n c l u d e < l o g . h>
7
8 # d e f i n e _H_MAX_JOBS 10 / / Number o f d i f f e r e n t j o b t y p e s
9 # d e f i n e _H_MAX_RECORDS 10 / / Number o f maximum r e c o r d s

10 # d e f i n e _H_MAX_FILENAMELENGHT 1000
11
12 / / E x i t codes
13 # d e f i n e EXIT_NORMAL 0
14 # d e f i n e EXIT_FAILURE_UNDEFINEDAUTOSIGNALER −1
15 # d e f i n e EXIT_FAILURE_SHAREDMEMORY −2
16 # d e f i n e EXIT_FAILURE_JOBNOTFOUND −3
17
18 t y p e d e f s t r u c t {
19 u i n t i d ;
20 u i n t t y p e ;
21 i n t 6 4 _ t s t a r t _ t i m e s t a m p ;
22 i n t 6 4 _ t end_ t imes tamp ;
23 } _ job_h ;
24

108

B.7 video.c

25 t y p e d e f s t r u c t {
26 unsigned i n t a p p l i c a t i o n _ i d ;
27 i n t shared_memory_segment ;
28 u i n t j o b s ; / / Number o f p o s s i b l e j o b t y p e s
29 double we ig h t ;
30 double p e r f o r m a n c e _ m u l t i p l i e r ;
31 u i n t t o t a l _ j o b s ;
32 u i n t p r o g r e s s _ j o b s ;
33 u i n t c o m p l e t e d _ j o b s ;
34 u i n t 6 4 _ t e x p e c t e d _ r e s p o n s e _ t i m e s [_H_MAX_JOBS] ;
35 _ job_h j p r o g r e s s [_H_MAX_RECORDS] ;
36 _ job_h j c o m p l e t e d [_H_MAX_RECORDS] ;
37 p t h r e a d _ m u t e x _ t mutex ;
38 u i n t happy : 1 ;
39 } _ a p p l i c a t i o n _ h ;
40
41 / / p u b l i c
42 i n t g t r m _ l i b _ s e t u p _ s o c k e t (char * f i l e n a m e) ;
43 void g t r m _ l i b _ s e n d _ p e r f o r m a n c e (_ a p p l i c a t i o n _ h * h ,

double p e r f o r m a n c e) ;
44 i n t g t r m _ l i b _ s e t (_ a p p l i c a t i o n _ h * a , u i n t t y p e s ,

u i n t 6 4 _ t * e r t) ;
45 double g t r m _ l i b _ g e t _ p e r f o r m a n c e _ n u m b e r (_ a p p l i c a t i o n _ h *

a , i n t j o b _ t y p e) ;
46 i n t g t r m _ l i b _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r (

_ a p p l i c a t i o n _ h *) ;
47 i n t g t r m _ l i b _ s i g n a l e n d (_ a p p l i c a t i o n _ h * a , u i n t i d) ;
48 i n t g t r m _ l i b _ s i g n a l s t a r t (_ a p p l i c a t i o n _ h * a , u i n t t y p e) ;
49
50 / / i n t e r n a l
51 void make_named_socket (char *name) ;

B.7 video.c

This file is a part of the video streaming application and presented is what
was added to it in this project.

1
2 s t a t i c vo id
3 g t r m _ s l _ c b (Gs tE lement * i d e n t i t y , G s t B u f f e r * buf ,

Gs tE lement * s r c)
4 {

109

Appendix B. Source Code

5 i n t f r a m e _ s i z e = s l _ a d a p t a t i o n () ;
6 g _ o b j e c t _ s e t (G_OBJECT (s r c) , " f r a m e _ s i z e " ,

f r a m e _ s i z e , NULL) ;
7 }
8
9 s t a t i c GstElement *

10 c a c h e _ v i d e o (g p o i n t e r key , P rops * props , g p o i n t e r *
u s e r _ d a t a)

11 {
12 . . .
13 Gs tElement * g t r m _ s l _ a d a p t = NULL;
14 f l o a t s l _ s t a r t = 100 ;
15 double e p s i l o n = 0 . 8 ;
16 double we ig h t = 0 . 5 ;
17 double d e a d l i n e _ s e c o n d s = 0 . 0 3 3 3 ;
18 s e t u p _ s l _ a d a p t (s l _ s t a r t , e p s i l o n , weight ,

d e a d l i n e _ s e c o n d s) ;
19 . . .
20 g t r m _ s l _ a d a p t = g s t _ e l e m e n t _ f a c t o r y _ m a k e (" i d e n t i t y " ,

" gtrm ") ;
21 g _ o b j e c t _ s e t (G_OBJECT (g t r m _ s l _ a d a p t) , " s i g n a l−

h a n d o f f s " , TRUE, NULL) ;
22 g _ s i g n a l _ c o n n e c t (g t r m _ s l _ a d a p t , " h a n d o f f " ,

G_CALLBACK (g t r m _ s l _ c b) , s r c) ;
23 . . .
24 gs t_b in_add_many (GST_BIN (p) , s r c , g t r m _ s l _ a d a p t ,

c o n v e r t , bmpenc ,
25 c a p s _ f i l t e r , s i nk , NULL) ;
26 i f (! g s t _ e l e m e n t _ l i n k _ m a n y (s r c , g t r m _ s l _ a d a p t ,

c o n v e r t , bmpenc ,
27 c a p s _ f i l t e r , s i nk , NULL)) {
28 e r r o r (" Could n o t l i n k e l e m e n t s . ") ;
29 goto e r r o r _ l i n k ;
30 }
31 . . .

B.8 sl_adapt.c

1 # i n c l u d e " s l _ a d a p t . h "

110

B.8 sl_adapt.c

2
3 void
4 s e t u p _ s l _ a d a p t (f l o a t s e r v i c e _ l e v e l _ , double e p s i l o n _ ,

double weight_ ,
5 double d e a d l i n e _ s e c o n d s _)
6 {
7 / / Parameter p a r s i n g
8 s e r v i c e _ l e v e l = s e r v i c e _ l e v e l _ ;
9 e p s i l o n = e p s i l o n _ ;

10 d e a d l i n e _ s e c o n d s = d e a d l i n e _ s e c o n d s _ ;
11 sock_name = (char *) c a l l o c (1 , 200) ; / / 2do add f r e e
12 s o c k _ p a t h = (char *) c a l l o c (1 , 200) ; / / 2do add f r e e
13 s p r i n t f (sock_pa th , " / mnt / f l a s h / fd ") ;
14 i n t t emp_pid = (i n t) g e t p i d () ;
15
16 m ys e l f = c a l l o c (1 , s i z e o f (_ a p p l i c a t i o n _ h)) ;
17 s p r i n t f (sock_name , "%s /%d " , sock_pa th , temp_pid) ;
18 g t r m _ l i b _ s e t u p _ s o c k e t ((char *) sock_name) ;
19 u i n t 6 4 _ t d e a d l i n e = (unsigned i n t) ((double)

1000000000 * d e a d l i n e _ s e c o n d s) ;
20 u i n t 6 4 _ t e r t [1] = { d e a d l i n e } ;
21 g t r m _ l i b _ s e t (myse l f , 1 , e r t) ;
22 mysel f−>w e ig h t = we igh t_ ;
23 mysel f−> a p p l i c a t i o n _ i d = g e t p i d () ;
24 }
25
26
27
28 void
29 s l _ a d a p t a t i o n ()
30 {
31 i d = 0 ;
32 g t r m _ l i b _ s i g n a l e n d (mysel f , i d) ;
33 double p e r f o r m a n c e ;
34
35 i n t t y p e = 0 ;
36 i d = g t r m _ l i b _ s i g n a l s t a r t (myse l f , t y p e) ;
37
38 p e r f o r m a n c e = g t r m _ l i b _ g e t _ p e r f o r m a n c e _ n u m b e r (myse l f

, t y p e) ;
39

111

Appendix B. Source Code

40 / / I want t o adap t o n l y i f needed
41 i f (p e r f o r m a n c e < −0.01 | | p e r f o r m a n c e > 0 . 0 1) {
42 mysel f−>happy = f a l s e ;
43 / / send per fo rmance t o s y s t e m d
44 g t r m _ l i b _ s e n d _ p e r f o r m a n c e (myse l f , p e r f o r m a n c e) ;
45 i f (g t r m _ l i b _ u p d a t e _ p e r f o r m a n c e _ m u l t i p l i e r (m yse l f)

== 0) {
46 s e r v i c e _ l e v e l += e p s i l o n * s e r v i c e _ l e v e l * (myse l f

−> p e r f o r m a n c e _ m u l t i p l i e r − 1) ;
47 } e l s e {
48 s e r v i c e _ l e v e l += e p s i l o n * p e r f o r m a n c e *

s e r v i c e _ l e v e l ;
49 }
50
51 i f (s e r v i c e _ l e v e l < MINIMUM_SERVICE_LEVEL)
52 s e r v i c e _ l e v e l = MINIMUM_SERVICE_LEVEL ;
53 i f (s e r v i c e _ l e v e l != s e r v i c e _ l e v e l) / / a v o i d nans
54 s e r v i c e _ l e v e l = 1 . 0 ;
55
56 } e l s e i f (myse l f−>happy == f a l s e) {
57 p r i n t f (" happy appy \ n ") ;
58 mysel f−>happy = t r u e ;
59 g t r m _ l i b _ s e n d _ p e r f o r m a n c e (myse l f , p e r f o r m a n c e) ;
60 }
61 # i f d e f LOGGING_APPLICATION
62 s t r u c t t i m e s p e c t i m e _ i n f o ;
63 i n t 6 4 _ t c u r r e n t _ t i m e ;
64 c l o c k _ g e t t i m e (CLOCK_REALTIME, &t i m e _ i n f o) ;
65 c u r r e n t _ t i m e = (i n t 6 4 _ t) t i m e _ i n f o . t v _ s e c *

1000000000 + (i n t 6 4 _ t) t i m e _ i n f o . t v _ n s e c ;
66
67 char name [2 0 0] ;
68 s p r i n t f (name , " / mnt / f l a s h / l o g s /%u . l o g " , myse l f−>

a p p l i c a t i o n _ i d) ;
69 FILE * l o g f i l e = fopen (name , " a+") ;
70
71 i f (l o g f i l e == NULL)
72 p e r r o r (" c o u l d n o t open f i l e ") ;
73 a s s e r t (l o g f i l e != NULL) ;
74 f p r i n t f (l o g f i l e , "%l l d , %f , %f , %l l d ,%u \ n " ,

112

B.9 sl_adapt.h

75 (long long i n t) c u r r e n t _ t i m e , pe r fo rmance ,
s e r v i c e _ l e v e l ,

76 (long long i n t) 0 , i d) ;
77 f c l o s e (l o g f i l e) ;
78 # e n d i f
79
80 }

B.9 sl_adapt.h

1 # i n c l u d e < l i m i t s . h>
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s t d l i b . h>
4 # i n c l u d e < s i g n a l . h>
5 / / Using t h e l i b r a r y :
6 # i n c l u d e " g t r m _ a p p _ l i b . h "
7 # i n c l u d e < u n i s t d . h>
8 # i n c l u d e < e r r n o . h>
9

10 # d e f i n e TOTAL_JOBS 100
11 # d e f i n e NOISE_PERCENTAGE 0 . 0
12 # d e f i n e MINIMUM_SERVICE_LEVEL 0.0001
13 # d e f i n e ERROR_APPLICATION 0
14 # d e f i n e LOGGING_APPLICATION 0
15 # d e f i n e EXIT_APPLICATIONFAILURE −1
16 # d e f i n e DEBUG 0
17
18 u i n t i d ;
19 _ a p p l i c a t i o n _ h * my se l f ;
20 f l o a t s e r v i c e _ l e v e l ;
21 double e p s i l o n ;
22 u i n t 6 4 _ t d e a d l i n e _ s e c o n d s ;
23 char * s o c k _ p a t h ;
24 char * sock_name ;
25
26 void s l _ a d a p t a t i o n () ;
27 void s e t u p _ s l _ a d a p t (f l o a t s e r v i c e _ l e v e l _ , double

e p s i l o n _ , double weight_ ,
28 double d e a d l i n e _ s e c o n d s _) ;

113

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER´S THESIS
Date of issue
July 2014
Document Number
ISRN LUTFD2/TFRT--5952--SE

Author(s)

Fredrik Johnsson
Olle Svensson

Supervisor
Umut Tezduyar-Lindskog, Axis
Martina Maggio, Dept. of Automatic Control, Lund
University, Sweden
Karl-Erik Årzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Resource Management and Prioritization in an Embedded Linux System

Abstract

This master thesis tackles the problem of limited computing resources on a camera that is executing
computing applications together with image acquisition and streaming. The thesis was carried out at
Axis Communications in cooperation with the Department of Automatic Control at Lund University.
The problem of limited resources on an Axis camera is handled by a two part solution where a
resource manager (RM) distributes the available resources and services can adapt their service level
(SL) in order to finish their jobs on time. The solution is based on game theory, where services are
players, varying their service levels in order to get a good match between given resources and their
computing requirements. This service level adaptation scheme is implemented for the streaming
service on the camera and for some test services, performing mathematical operations. The resource
manager is incorporated into systemd, and uses cgroups [16] to distribute the computing capacity.
The experimental results show that the resource manager is fully operational and capable of managing
and prioritizing resources as intended on the embedded system.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-121

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Blank Page

