
Abstract

The concept of run-off triangles is widely used within the actuarial

field. Its purpose is to estimate Incurred But Not Reported claims for

insurance portfolios, in order to set appropriate reserves that are in

compliance with regulatory requirements as well as the company’s risk

appetite. In this thesis, a parametric approach is proposed, where the

portfolios are modeled using non-stationary distributions. The non-

stationarity is able to account for various dependencies arising within

the run-off triangle. In order to handle negative values, the families

within the Generalized Extreme Value distribution have been applied.

The findings are then benchmarked by comparing the method to a

non-parametric Chain Ladder bootstrap approach. Using Value-at-

Risk and Tail Value-at-Risk measures, the aggregated reserve is then

estimated through Monte Carlo simulations by applying elliptical cop-

ulas, where the effects from dependence between portfolios are studied.

The method is applied on data provided by a Swedish reinsurer, for its

portfolios Aviation, Marine and Property. The implementation of the

method conveys the impact of model risk and the importance of ac-

curate parameter estimation, otherwise resulting in unrealistic projec-

tions. Additionally, dependence for different copulas, tail dependence

in particular, is proven to have considerable effect for aggregated loss

reserving.

Keywords: Run-off triangle, IBNR, Non-stationary marginal distri-

butions, Elliptical copulas, Generalized Extreme Value distribution,

Value at Risk, Maximum Likelihood Estimation, Chain Ladder.
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1 INTRODUCTION

Chapter 1

1 Introduction

1.1 Background

A fundamental aspect of the insurance industry is the management of loss

reserves that cover for future payments arising from incurred claims. The

amount of reserves an insurer should hold is a delicate matter. Too low

reserves risk leaving the company in financial distress or bankruptcy, while

too high reserves will lower profitability and thus the company’s competi-

tiveness in the market. The underlying driver for estimating reserves is the

estimation of future payments from cedents’ claims, i.e. Incurred But Not

Reported (IBNR) claims. As a consequence, estimating IBNR is crucial for

setting appropriate loss reserve amounts.

When predicting future claims, they are generally estimated seperately

for the insurer’s different portfolios, or lines of business (LoBs), which are

typically categorized by the type of insurance, e.g. Accident & Health, Au-

tomotive, Property etc.. A classical framework that visualizes historical

payments from a single LoB involves illustration in a triangular manner,

which allows practitioners to track the time development of payments. Fu-

ture claims are then estimated based on the triangular framework, known

as a run-off triangle. There exists a substantial amount of actuarial theory

on loss reserving using run-off triangles. The most fundamental, simplis-

tic and most recognized methods are the Chain Ladder method and the

Bornhuetter-Ferguson method[1].

The loss reserves from each individual LoB are combined in order to es-

timate an aggregated reserve for the insurer or reinsurer. As is well known,

the risk of the aggregated loss reserve will be less than the sum of the risk

for each LoB, since insurance portfolios are not perfectly correlated. There-
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1.2 Aim of the Thesis 1 INTRODUCTION

fore, diversification effects have a considerable impact on the aggregated loss

reserve. Hence, capturing the dependence structure is vital for setting appro-

priate aggregated reserves. There are several interesting studies that address

this issue, among others, Shi & Frees (2010)[2] and De Jong (2011)[3], who

both use a parametric framework involving a copula approach.

1.2 Aim of the Thesis

This thesis focuses on the reserves for IBNR claims using run-off triangles.

Its aim is to estimate the aggregated reserve for IBNR claims that is nec-

essary for an insurer or reinsurer according to the regulatory requirements

set by the Solvency regulations. In order to do this, IBNR from each LoB is

separately modeled as a non-stationary marginal distribution, and the ag-

gregated reserve is estimated using copulas to model the joint distribution.

The purpose of this is to provide further information of the dependence

structure in order to set more accurate aggregated reserves. Unlike the non-

stationary marginal distributions used by Shi & Frees (2010), this method

allows for non-positive values in the run-off triangle using the families in the

Generalized Extreme Value distribution setting.

In order to benchmark the results, findings of the model are compared

to the classical Chain Ladder methodology, where a bootstrap method has

been applied. Additionally, the impact of dependence between LoBs is eval-

uated by comparing the results from the t-copula and Gaussian copula using

the dependencies obtained, with the independent Gaussian copula, thus as-

suming independence between LoBs.

1.3 Limitations

When mentioning insurance, this thesis solely refers to non-life insurance.

The properties of life insurance differ significantly from non-life insurance,

and is outside the scope of the thesis.

Calendar year dependence within a run-off triangle is not something

that will be taken into consideration in this thesis. Recent work which also

involves non-stationary marginal distributions is from Abdallah, Boucher

2



1.4 Outline 1 INTRODUCTION

and Cossette (2014)[4]. They incorporate calendar year dependence using

a hierarchical Archimedean copula setting, such that the joint distributions

between calendar years are used as input for the joint distribution between

LoBs. This could be subject to further studies. Other previous work that

incorporates calendar year effects in run-off triangles using a copula frame-

work is de Jong (2010), who uses a model based on normal distributions.

1.4 Outline

The structure of the thesis is such that an introduction of the Solvency

regulations is described in Chapter 2. The run-off triangle and the modeling

thereof is presented in Chapter 3. In Chapter 4 the relevant theory behind

copulas is defined. In Chapter 5 descriptions of validation methods are

presented, in order to understand the implementation section in Chapter

6. Following the implementation, results are presented in Chapter 7 and

conclusions and comments on the results are discussed in Chapter 8.
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2 REGULATION

Chapter 2

2 Regulation

To assure that the policyholders are protected and to ensure stability in the

financial market the insurance industry is restricted by regulations. The sol-

vency margin is the regulatory required capital an insurance or reinsurance

company is obliged to hold to cover for unforeseen events.

2.1 History

The available solvency margin was first defined in 1952, by T Pentikäinen,

as the difference between assets and liabilities.[5] Though there were several

methods for working out the solvency margin, the first formal set of non-life

insurance regulations came in 1973. In these early days solvency assessments

were based on simple formulas that were applied on accounting results. To

calculate the required solvency margin one had to consider a sum of two

results. The first was represented by investment risk and the second by

technical risk, which refers to the risk of using the wrong claim rates. The

models were simple to apply and easy to administer and understand, but

they lacked the capability of covering for the increase in market complexity.

The drawbacks of these solvency requirements were examined in a re-

port published in 1997 at a conference of insurance supervisory services in

the European Union. As a result of this report, additional parameters were

added. The development laid the foundation for modern insurance regula-

tions, resulting in the introduction of Solvency I in the European Union in

2002.[6]

The idea behind Solvency I, as a EU-wide legalization, was to develop a

single market of insurance services. Solvency I improved previous regulations

with a robust method to regulate solvency of insurance companies but at

4



2.2 Solvency II 2 REGULATION

the same time it maintained its simplicity.

Some of the significant differences following the introduction of Solvency

I was that the solvency requirements should be met at all times, not just

at the time of the latest balance sheet. Another addition was that member

states were given permission to set tighter regulations than those specified

in the directives.[7]

2.2 Solvency II

Solvency I was primarily focused on capital adequacy for insurers but lacked

inclusion of risk management and governance within firms. Hence, the in-

troduction of an improved set of regulations was needed.

Solvency II is the latest solvency regulation which is, after several push-

backs, scheduled to come into effect January 1, 2016.[8] The regulation is a

risk-sensitive system for measuring the financial stability of insurance com-

panies.

Solvency II is basically the insurance industry’s counterpart to the Basel

regulation of the banking industry. The architecture of Solvency II is, simi-

larly to Basel’s, built on a three pillar framework.

i. Pillar I - Capital adequacy, consists of resource requirements for the

insurer to be considered solvent, ensuring policy holder protection.

ii. Pillar II - Systems of governance, sets requirements for the risk man-

agement and governance of the insurer.

iii. Pillar III - Supervisory reporting and public disclosure, ensuring greater

transparency.[9]

For quantitative risk management purposes, there are two risk measures that

are frequently being used. These risk measures are Value-at-Risk (VaR) and

Tail Value-at-Risk (TVaR). The two are more specifically described below.

2.2.1 Value-at-Risk

Value-at-Risk is a measure to assess the risk associated with a portfolio of

assets and liabilities. It is a quantile of the loss distribution and its definition

5
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is presented below.

Definition 2.1: Given some confidence level α ∈ (0, 1), the VaR at a

portfolio is given by the smallest number l such that the probability that a

loss L exceeds l is no larger than (1-α).

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} (2.1)

Solvency II requires that the insurer has enough capital to cover losses over

the next twelve months with a probability of 99.5 percent, i.e. V aR99.5%.[10]

One of the drawbacks and main criticism with VaR is that it does not say

anything about the severity of the loss in case the α-quantile is exceeded, as

it does not consider the dynamics of the tail. Another critique concerns the

subadditivity of VaR. Mathematically speaking, VaR is not a coherent risk

measure1 as the subadditivity condition does not always hold. If considering

two losses L1, L2, the subadditivity is defined as

%(L1 + L2) ≤ %(L1) + %(L2) (2.2)

where % is a given risk measure.[11] Due to diversification benefits, this

property is often considered a logical one within the risk management field,

and is an incentive for copula theory within quantitative risk management

on aggregated basis. As it does not always hold for VaR, the method may

in some cases lead to nonsensical results.

2.2.2 Tail Value-at-Risk

Tail Value-at-Risk provides information about the average losses exceeding

the α-quantile. In this way TV aRα ≥ V aRα. Unlike VaR, TVaR also takes

into account the tail properties of the distribution, as all α-exceedances are

considered. This, in combination with TVaR being a coherent risk measure,

makes it an attractive risk measure. TVaR is defined in Definition 2.2.

1For more information on coherent risk measures, see [11]
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Definition 2.2 The Tail Value-at-Risk of a portfolio is given by

TV aRα =
1

1− α

ˆ 1

α
V aRαdα (2.3)

for a given confidence level α ∈ (0, 1).[12]

There are several methods within Solvency II which are accepted standards

for VaR and TVaR calculations. The technical specifications of Solvency

II state that traditional actuarial techniques, for non-life insurance loss re-

serving, include estimations through run-off triangles. Apart from being a

traditional tool within actuarial insurance, the run-off triangle methodology

is now also an accepted method for regulatory purposes.[13]

7
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Chapter 3

3 The Run-Off Triangle

3.1 Incurred But Not Reported Claims

It is not unusual that there is a time lag from the incident of an accident to

the actual payment, these claims are called IBNR. There are several possible

reasons for this, one is because of a delay in the reporting of an occurrence

by the policyholder. Another reason is that it can take time to establish the

actual cost of the claim. Property insurance is an example of this, it can

take time to establish the consequences of an incident and payments can be

made several years after the expiration of the contract. More strictly, IBNR

claims refer to the difference between ultimate claims, i.e. matured or closed

claims, and incurred claims. It consists of two parts

i. Pure IBNR - The reserves related to incurred events that have not yet

been reported.

ii. Known claim reserves - The reserves for claims that have been reported

but may have additional development.

3.2 Structure

When estimating IBNR, practitioners often assume a starting framework

known as the run-off triangle. The run-off triangle is illustrated in Table

3.1. Its simplicity makes it easy to understand and provides an overview of

the historical development of payments.

The run-off triangle is divided into cells where each cell corresponds to

payments arising from a specific accident year i ∈ {1, . . . , I} and a develop-

ment year j ∈ {0, . . . , J}, where typically I = J + 1.

8



3.2 Structure 3 THE RUN-OFF TRIANGLE

Table 3.1 The Run-off triangle

Development Lag

Accident Year 0 1 · · · J

1 X1,0 · · · X1,J

2
...

. . . . .
.

...
Xi,j

. .
.

I XI,0

The accident year corresponds to the losses occurring during a given twelve-

month period, and all premium earned during that same period, whereas

the development year is typically the number of years after the incurred

accident when a payment is made. Accident year is sometimes replaced by

underwriting year, which is defined as all losses and premiums attributable

to contracts signed or renewed within a given twelve-month period.[14] The

calendar year k appears diagonally and is defined as k = i+ j, with k ≤ I,

i.e. k ∈ {1, . . . , I}. Then Xi,j is defined as all incremental payments in

accident year i with development j, where i + j ≤ I, as i + j > I has not

yet occurred. In some settings cumulative payments Ci,j are preferred such

that Ci,n =
n∑
j=1

Xij , with Ci,0 = Xi,0. A general assumption regarding run-

off triangles, which is basic for its application, is that claims have a lifetime

of J years. After J years all claims are considered ultimate, i.e. claims are

closed, such that Xi,j>J = 0.

One initially unintuitive aspect of the run-off triangle is the existence of

negative values. As payments are defined as positive, negative values may

result from non-premium cash inflows such as salvage recoveries, payments

from third parties, internal errors, cancellation of outstanding claims due to

initial overestimation of the loss or due to legal trials resulting in favor of

the insurer.[15]

The main purpose of the run-off triangle is to attribute appropriate IBNR

for the corresponding accident years. This corresponds to estimating the

9



3.3 Interdependence 3 THE RUN-OFF TRIANGLE

future values below the triangle diagonal, which eventually forms a matrix.

As is logical, claims that have not yet developed for long typically have

higher IBNR than older claims. Hence, the lower part of the triangle, i.e.

more recent and not far developed claims, generally have higher IBNR and

are therefore of greater interest.

When inspecting the run-off triangle, large settlement amounts need to

be investigated to find the cause of their size. Outliers that follow from

single claims may undermine any method applied2. Therefore, adjustments

of the data may be necessary in order to ensure realistic estimates.[13]

3.3 Interdependence

Within a run-off triangle certain dependencies arise for various reasons.

Specifically there are three dependence patterns.

Horisontal Dependence Between specific accident years trends arise due

to the time development from the incurred accident. This refers to the time

development of payments, i.e. the horisontal trend in a run-off triangle. The

logical explanation behind this is the nature of payments where payments

typically decrease gradually with respect to time from the incurred accident,

i.e. with respect to j. The development of payments differ depending on

the contract and the LoB but the trend towards zero should be apparent in

a normal setting.

Vertical Dependence Dependencies between development years will ap-

pear as a vertical trend in a run-off triangle. For an insurer or reinsurer,

profitability in terms of sizes and amount of contracts signed will vary de-

pending on several factors, such as macroeconomic effects, as well as industry

and company specific factors. For instance, one can observe a cyclical pat-

tern within the insurance industry known as the underwriting cycle. The

cycle initially starts with a decrease in supply, raising premiums and un-

2The largest claims, such as catastrophe events and natural disasters, are generally
handled separately due to their large impact.
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derwriting standards3 after a period of capital losses. The raised premiums

and standards lead to a surge in profits, making the industry more attrac-

tive and therefore attracting competition. The increased competitiveness

pushes margins downwards and relaxes standards, thereby completing the

circle. The underwriting cycle can create a seasonal trend vertically.[16]

Looking at a broader perspective natural disasters are seeing increas-

ing trend in both severity and frequency due to climate change, inducing

an increasing trend for claims with natural disaster exposure. As an ex-

ample, natural disasters between 2000 and 2009 were three times as many

as between 1980 and 1989, with climate-related effects accounting for the

majority of the increasing frequency.[17]

Calendar Year Dependence Calendar year effects appear diagonally in

a run-off triangle, as these payments have occurred during the same calendar

year. Thus, calendar year effects can arise due to macroeconomic effects

such as inflationary trends and regulatory effects. One might also consider

management related effects, such as a strategic push towards closing claims

during a certain calendar year.

3.4 Cross Dependence

Typically run-off triangles are categorized by LoB. Hence, cross dependence

refers to the dependence between triangles. Naturally, larger incidents such

as natural disasters might have effects on several LoBs simultaneously. This

dependence will have to be taken into account when modeling reserves on an

aggregated entity level. Due to the interdependence in run-off triangles, cap-

turing the actual cross dependence is cumbersome. As most run-off triangles

exhibit a similar development year trend and are exposed to effects such as

inflationary trends, this will create an overestimation of cross correlation if

the interdependence is not extracted properly.

3Underwriting standard refers to the quality of cedents.
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3.5 Modeling

3.5.1 Non parametric

3.5.1.1 Chain Ladder The Chain Ladder method is based on the as-

sumption that the development pattern of claims observed in the past will

continue in the future.

To find the development patterns between the development years one

initially assumes a cumulative run-off triangle. The Chain Ladder method

quantifies the development pattern using development factors defined as the

average ratio between two consecutive development years. Mathematically,

the development factors are calculated as

f̂j =

I−j∑
i=1

Ci,j/

I−j∑
i=1

Ci,j−1, j ∈ {1, . . . , J} (3.1)

where f̂j is the estimate for the development factors. Here, accident years

Ci,1, . . . , Ci,J , i ∈ {1, . . . , I} are assumed to be independent.

The development factors are then used to predict the future cumulative

claims, i.e. the bottom right half of the triangle. This is done by multiplying

the values found in the diagonal using f̂j such that

Ĉi,j = Ci,I−i

j∏
k=I+1−i

f̂k, i+ j ≥ J + 2 (3.2)

where Ĉi,j is the estimated future cumulative claim. This is illustrated in

Table 3.2, where the observed values Ci,j are found in the upper left half

and the estimated values Ĉi,j in the bottom right respectively.

12
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Table 3.2 Estimated Future Cumulative Claims

Development Lag

Accident Year 0 1 · · · J − 1 J

1 C1,0 C1,1 · · · C1,J−1 C1,J

2

...

C2,J−1 Ĉ2,J

...

. . .

...

. .
.

Ci,j

. .
. . . .

I − 1 CI−1,0 CI−1,1

I CI,0 ĈI,1 · · · ĈI,J

Once future estimates are calculated, the development factors f̂j are used to

obtain a back-fitted triangle, where the original claims Ci,j are replaced by

the predictive claims using (3.3). Back-fitting is done by dividing the values

in the diagonal with f̂j such that

C̃i,j =
Ci,I−i
I−i∏

k=j+1

f̂k

, i+ j ≤ J (3.3)

where C̃i,j is the back-fitted claim. The resulting back-fitted triangle is

illustrated in Table 3.3.

13
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Table 3.3 Back-fitted Triangle

Development Lag

Accident Year 0 1 · · · J − 1 J

1 C̃1,0 · · · C̃1,J−1 C1,J

2

...

C2,J−1

...

. . .

. .
.

Ci,j

. .
.

I − 1 C̃I−1,0 CI−1,1

I CI,0

The next step is to calculate the residuals. For this calculation, one needs

to define Ci,−1 = C̃i,−1 ≡ 0. The residuals ri,j are then calculated as follows

ri,j =
(Ci,j − Ci,j−1)− (C̃i,j − C̃i,j−1)√

C̃i,j − C̃i,j−1

, i+ j ≤ J + 1 (3.4)

It is clearly seen from (3.4), for the equation to hold it requires C̃i,j−C̃i,j−1 >

0, which in turn from (3.2) requires f̂j > 1, ∀j. This is a clear limiting factor

for the Chain Ladder method and has been discussed in various actuarial

theory.[15] Assuming this holds, a resulting residual triangle is obtained.

14
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Table 3.4 Residual Triangle

Development Lag

Accident Year 0 1 · · · J − 1 J

1 r1,0 · · · r1,J−1 r1,J

2

...

r2,J−1

...

. . .

. .
.

ri,j

. .
.

I − 1 rI−1,0 rI−1,1

I rI,1

From the residual triangle, a bootstrap method4 can be applied to calculate

the reserves for each LoB.[18]

3.5.2 Parametric

For parametric models one is concerned with the modeling of incremental

claims Xi,j rather than the use of cumulative claims Ci,j . First Xi,j is

specified by X
(n)
i,j , n ∈ {1, . . . , N}, with n denoting an insurer’s nth portfolio,

i.e. LoB.

Clearly, payments arising from an accident year i are much related to the

number and sizes of contracts that were signed for the specific accident year,

thus not being properly comparable. When studying dependence between

triangles, the payments should therefore be independent of volumes and

sizes of contracts. In order to properly evaluate dependence between trian-

gles, they should be constructed in such a way that payments are considered

with respect to its exposure. The precise quantity of exposure cannot be

observed, therefore practitioners have used different measures to try to cap-

4The bootstrap simulation is found in appendix A.1.
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ture the exposure appropriately.[19] The general setting is that the claims

are exposure weighted such that Y
(n)
i,j = X

(n)
i,j /ω

(n)
i , where ω

(n)
i is the expo-

sure weight for triangle n in accident year i. Two general exposure weights

exist where

i. ω
(n)
i equals the size of the premiums collected from accident year i.

ii. ω
(n)
i equals the amount of contracts signed during accident year i.

Both methods account for the exposure in their own way. However, the

former does not take into account the premium variability from underwriting

cycle effects, whereas the latter does not take into account the varying sizes

of the contracts.

Due to triangle interdependencies, the applied marginal distribution

needs to adapt to these dependencies. Before proceeding, the reader should

take note as to how notations are being used in this thesis. As previously

stated, variables in subscript denotes a particular index, whereas variables in

parantheses imply a dependent variable. As such, the parametric marginal

distribution is defined in the following manner

F (n)(y
(n)
i,j ; i, j) = P [Y (n)(i, j) ≤ y(n)

i,j ] = F (n)(y
(n)
i,j ; η(n)(i, j), ζ(n)) (3.5)

In the above equation, F (n) is the CDF from a marginal distribution. The

η(n)(i, j) component denotes distribution parameters in F (n)(i, j), which are

dependent on i and/or j, and ζ(n) are other constant parameters in F (n)(i, j),

independent of i and j.

Hence, the η(n)(i, j) component explains the distribution parameter(s) in

terms of a function of explanatory variables that allows parameter(s) to vary

with respect to i and/or j, thus adapting to the properties of the data. One

could typically consider each parameter in η(n)(i, j) as a regression model

to fit the data. As such, η(i, j) can be expressed in a general setting as

η(n)(i, j) = ϕ(n) + α(n)(i) + β(n)(j) + δ(n)(i+ j) (3.6)

with the respective parameters depending on each triangular interdepen-
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dence respectively5. Here, the initial varying parameters start from zero,

i.e. α(n)(1) = 0, β(n)(0) = 0 and δ(n)(1) = 0. In cases where η(n)(i, j) con-

sists of more than one distribution parameter, the above equation assumes

a vector form

η̄(n)(i, j) = ϕ̄(n) + ᾱ(n)(i) + β̄(n)(j) + δ̄(n)(i+ j) (3.7)

In order to check the validation of the fitted distribution using one-sample

goodness of fit measures, one will need to transform the data in order to make

it independent of any trend parameters η(n)(i, j), as the random variables

for the respective margins are required to be iid.

The parametric distributions commonly used in the field of modeling

incremental run-off triangles are log-normal and gamma distributions. Since

these require the assumption of positive incremental claims, other methods

which relax this assumption have been studied. Alba & Corzo (2005)[15]

have addressed the issue by introducing a three parameter log-normal model

that is able to account for negative values.

3.5.2.1 Generalized Extreme Value Distribution The generalized

extreme value distribution (GEV) is regarded as one of the cornerstones

in extreme value theory. It is often applied when modeling block maxima,

i.e. maxima for given intervals from a set of observations. For instance,

given observations X1, . . . , XN , one might be interested in the behavior of

maxima Mn = max(X1, . . . , Xn) within sequences of length n, resulting in

Mn,1, . . . ,Mn,N/n maxima that are to be modeled.

Within the GEV distribution there are three families - Fréchet, Weibull

and Gumbel. They all share a general distribution function of the form

GEV (x;µ, σ, γ) = exp

{
−
(

1 + γ
x− µ
σ

)−1/γ
}
, (3.8)

where µ ∈ R is denoted as the location parameter, σ > 0 as the scale

parameter and γ ∈ R as the shape parameter. What differentiates the three

5Note that δ is the calendar year dependence, as k = i+ j.
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families is the shape parameter. For Fréchet γ > 0, Weibull γ < 0, and for

Gumbel γ = 0. Consequently, the families have different support with the

following bounds[20]

Fréchet(µ, σ, γ) ∈ [µ− σ/γ,∞)

Weibull(µ, σ, γ) ∈ (−∞, µ− σ/γ] (3.9)

Gumbel(µ, σ) ∈ (−∞,∞)

For a clearer illustration, the density plots are shown in Figure 3.1. As can

clearly be seen, the upper tail for the families without an upper bound is

substantially larger than the standard normal distribution.
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Figure 3.1: Density plots of the GEV families compared to a standard normal

distribution.

Any GEV distribution can be transformed to the standard Gumbel distri-

bution, i.e. GEV (0, 1, 0) using Definition 3.1.6

Definition 3.1 Let X ∼ GEV (µ, σ, γ), with µ ∈ R, σ > 0 and γ ∈ R.

Then X̃ of the form

6For the full derivation, see appendix A.2.
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X̃ =
1

γ
ln

(
1 + γ

X − µ
σ

)
(3.10)

is standard Gumbel distributed.

3.5.2.2 Parameter Estimation

Maximum Likelihood Estimation Maximum likelihood estimation

(MLE) is a flexible method for estimation of the unknown distribution pa-

rameters θ = (θ1, . . . , θn). Its principle is based on maximizing the probabil-

ity that a given data set belongs to a distribution Fθ, using the parameters

θ. Suppose that X = (X1, . . . , Xn) are independent realizations of a para-

metric family fX(x, θ). The likelihood function for the parameter θ is given

by

L(θ; X) =

n∏
i=1

f(Xi; θ) (3.11)

It is often more practical to work with the logarithms of the likelihood values

instead. The log-likelihood function is defined as

lnL(θ; X) =
n∑
i=1

ln f(Xi; θ) (3.12)

The optimal values θ̂MLE are defined as the values of θ that maximize the

likelihood function

θ̂MLE = arg max
θ

lnL(θ; X) (3.13)

The obtained distribution f(X, θ̂MLE) is then considered the distribution

that best describes the observed data X.[20]

Looking at an aggregated level, the obtained marginal distributions pro-

vide as input in the modeling of the joint distribution. If considering para-

metric models for run-off triangles it is natural to apply copula theory for

aggregated loss reserving. Hence, one is able to use the entire collection

of copulas and its respective properties for estimation, stress testing and

regulatory reporting purposes.
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Chapter 4

4 Copulas

The usage of copula has during the last two decades gained popularity in the

fields of applied mathematics, especially in finance, insurance and reliability

theory. As regulations have tightened in the insurance and finance indus-

try, following the Solvency and Basel frameworks, incentives for the usage

of copulas have increased. The incentives come from the ability to express

dependence on a quantile scale and thereby obtain risk measures required

by the regulations, and more importantly, to improve risk management ac-

tivities in general.[21]

Assume that X1, . . . , Xn are random variables with distribution func-

tions F1(x1) = P [X1 ≤ x1], . . . , Fn(xn) = P [Xn ≤ xn], respectively, and a

joint distribution function H(x1, . . . , xn) = P [X1 ≤ x1, . . . , Xn ≤ xn]. The

joint distribution function of the random variables contains both a descrip-

tion of the marginal behavior of the individual variables as well as infor-

mation about the dependency structure between them. Copulas allow for a

bottom-up approach, separating the marginal distribution from the depen-

dence structure and modeling these separately. The flexibility of choosing

marginal distributions free of choice and the extensive collection of copu-

las with various properties give the ability to model joint distributions at a

deeper level. Additionally, copulas are easily simulated, thus being useful in

Monte Carlo simulations.

The essentials of copulas in studying the multivariate distribution func-

tions are summarized in the following theorem.
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Theorem 4.1 (Sklar’s theorem)

Let H be a joint distribution function with margins F1, . . . , Fn. Then there

exists a copula which is mapping the unit hypercube into the unit interval,

C : [0, 1]n → [0, 1], such that for all x1, . . . , xn ∈ R

H(x1, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (4.1)

If the margins are continuous, then C is unique; otherwise, C is uniquely

determined on RanF1×RanF2× . . .×RanFn where RanFi = Fi(R) denotes

the range of Fi. Conversely, if C is a copula and F1, . . . , Fn are univari-

ate distribution functions, then the function H defined by (4.1) is a joint

distribution function with margins F1, . . . , Fn.[11]

Corollary 4.1

Let H, C, F1, . . . , Fn be defined as in Theorem 4.1, and define u1, . . . , un =

F1(x1), . . . , Fn(xn). Further, let F
(−1)
1 , . . . , F

(−1)
n be the quasi-inverses of

F1, . . . , Fn, respectively. Then the following holds

C(u1, . . . , un) = H(F
(−1)
1 (u1), . . . , F (−1)

n (un)) (4.2)

for any u in [0, 1]n[22]

For C to be a copula, the following three properties most hold.

i. C(u1, . . . , un) is increasing in each component of ui.

ii. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , n}, ui ∈ [0, 1].

iii. For all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi we have

2∑
i1=1

. . .
2∑

in=1

(−1)i1+...+inC(u1i1 , . . . , unin) ≥ 0 (4.3)

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , n}[11]
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4.1 Dependence measures

4.1.1 Linear Correlation

Pearson’s rho, ρP One of the most frequently used correlation measures

is Pearson’s linear correlation. It is, in the bivariate case, defined by

ρP (X,Y) =
cov(X,Y)√

var(X)var(Y)
=

E[(X-µX)(Y-µY)]√
var(X)var(Y)

(4.4)

In the copula framework, Pearson’s correlation depends on the copula of

a bivariate distribution as well as the marginal distributions. An obvious

weakness with Pearson’s correlation is that it only measures linear depen-

dence. Furthermore, it is only invariant in the case of strictly increasing

linear transformations and not in the case of nonlinear strictly increasing

transformations.

4.1.2 Rank Correlation

Rank correlations are measures of dependence which, unlike Pearson’s cor-

relation, only depend on the copula of a bivariate distribution and not the

marginal distributions. The standard empirical estimator of rank correla-

tion is calculated by looking at the ordering of the sample for each variable

instead of the numerical values, also known as concordance.

Definition 4.1 Two observations in R2, (xi, yi) and (xj , yj), are denoted

as concordant if (xi−xj)(yi− yj) > 0, and discordant if (xi−xj)(yi− yj) <
0.[11]

Kendall’s tau, τK Let {(x1, y1), . . . (xn, yn)} denote a random sample of

n observations from vectors (X,Y) of continuous random variables. There

are

(
n

2

)
distinct pairs (xi, yi) and (xj , yj) of observations in the sample.

Let c denote the number of concordant pairs and d denote the number of

discordant pairs. Then Kendall’s tau for the sample is defined as
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τK(X,Y) =
c− d
c+ d

=
(c− d)(
n

2

) (4.5)

This is equivalent with τK being equal to the probability of concordance

minus the probability of discordance for a pair of observations (xi, yi) and

(xj , yj) that are chosen randomly from the sample.

Let (X1,Y1) and (X2,Y2) be iid random vectors, then the population

version of Kendall’s tau is defined as

τK(X,Y) = P[(X1−X2)(Y1−Y2) > 0]−P[(X1−X2)(Y1−Y2)] < 0] (4.6)

Relating to copula theory, assume thatX and Y have the copula C, Kendall’s

tau is then defined as

τK(X,Y) = 4

¨

[0,1]2

C(u, v)dC(u, v)− 1 = 4E[C(u, v)]− 1 (4.7)

4.1.3 Tail dependence

Tail dependence describes the dependence between the variables in the upper

right quadrant as well as in the lower left quadrant of the unit square [0, 1]2.

Definition 4.2 Let X and Y be continuous random variables with distri-

bution functions F and G, respectively. The coefficient of upper tail depen-

dence, λu, is the limit of the conditional probability that Y is greater than

the 100t-th percentile of G given that X is greater than the 100t-th percentile

of F as t approaches 1, i.e.

λu = lim
t→1−

P [Y > G(−1)(t)|X > F (−1)(t)] (4.8)

provided a limit λu ∈ [0, 1] exists. If λu ∈ (0, 1], X and Y are said to show

upper tail dependence. If λu = 0, they are asymptotically independent in the

upper tail.
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Similarly, λl is the limit of the conditional probability that Y is less than

or equal to the 100t-th percentile. Concerning copula theory, the relation is

described in Theorem 4.2 below.

Theorem 4.2 Let X, Y, F, G and λu be defined as in Definition 4.2, and

let C be the copula of X and Y , with diagonal section δC
7. If the limits for

λu exists as in (4.8), then

λu = 2− lim
t→1−

1− C(t, t)

1− t
= 2− δ Ć(1−) (4.9)

Similarly, λl is defined as[22]

λl = lim
t→0+

1− C(t, t)

t
= δ Ć(0+) (4.10)

4.2 Elliptical Copulas

Elliptical copulas is a family of symmetrical copulas for which the depen-

dence structure can be described by the correlation matrix Σ. Thus, ellipti-

cal copulas have the advantage of being able to apply different correlations

between distributions for dimensions higher than the bivariate case.

t−copula
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−
1

0
1

2

Gaussian copula
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−
2

−
1

0
1

2

Figure 4.1: Contour plots describing the density for the t-copula and Gaussian

copula with ρ = 0.5.

7The diagonal section δC is defined by δC(t) = C(t, t).
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For all elliptical copulas, the relationship between its dependence parameter

and Kendall’s τ is of the form

τK =
2

π
arcsin ρ (4.11)

Where ρ is the corresponding off-diagonal dependence parameter in Σ.

Gaussian copula Gaussian copula, also known as normal copula, is a rep-

resentation of the multivariate normal distribution. Its distribution function

is not available in closed form. However, its density function is, and it is

structured as

c(u) =
1

|Σ|1/2
exp

{
−1

2
uT
(
Σ−1 − I

)
u

}
(4.12)

where u = (u1, . . . , un) and Σi,j =
cov(xi,xj)√
var(xi)var(xj)

, known as the correlation

matrix.[23] Its relation to the normal distribution makes it intuitive and fa-

miliar, therefore it is often the copula of choice in many field of applications.

With regards to risk management, the normal copula has recently been

criticized for not exhibiting any tail dependence. We have come to learn that

increased levels of stress, for instance in financial markets, have a tendency

of inducing additional dependence. As such, the normal copula would not

be a suitable choice in this regard as it cannot capture this feature, therefore

underestimating stressful scenarios.

t-copula Similarly to the Gaussian copula, the t-copula is a representation

of the multivariate t-distribution, where the density function is given by

cν(u) =
Γ(ν+n

2 )Γ(ν2 )n−1(1 + x′Σ−1x
ν )

|Σ|1/2
(4.13)

here, ν is the degrees of freedom, n is the dimension, and Γ is the gamma

function.

As can be seen in Figure 4.1, the t-copula has more outliers. Additionally,

for risk management purposes it has the attractive property of exhibiting

tail dependence, which can be observed in the upper and lower tail. The
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tails are symmetric and its tail dependence is of the form

λ = 2tν+1

{
−
[
(ν − 1)

1− ρ
1 + ρ

]1/2
}

(4.14)

where ρ is the off diagonal element of Σ and tν+1 is the t-distribution

function.[24]
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Chapter 5

5 Model Validation

5.1 Likelihood Ratio Test

The likelihood ratio test is limited to the comparison of nested models, i.e.

one of the two models being compared has to form a special case of the

other. Rather than giving information about the general fit of a model, the

test is a way to select the most appropriate one.

To test if the null hypothesis H0 : θ ∈ Θ0 against the alternative hypoth-

esis H1 : θ ∈ Θ, where Θ0 ⊂ Θ, one can perform the likelihood ratio test,

defined as

λ(X) =
sup θ∈Θ0L(θ; X)

sup θ∈ΘL(θ; X)
(5.1)

It can be shown that

− 2 lnλ(X) ∼ χ2
υ (5.2)

where the degrees of freedom parameter υ of the chi-squared distribution is

given by the number of free parameters in Θ minus the ones specified in Θ0.

The null hypothesis is rejected if −2 lnλ(X) > qυ,α, where qυ,α is the

α-quantile of the χ2
υ distribution.[11]

5.2 Information Criteria

Information criteria are methods that deal with the comparison of non-

nested models with possibly quite different number of parameters. Unlike

the likelihood ratio test, these approaches penalize the models according to

the number of parameters they use. As additional parameters never decrease

the MLE value, this penalization accounts for parameter uncertainty in the

model. The following two criterias use the notations described below.
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Suppose there are m models M1, . . . ,Mm and that model l has kl pa-

rameters denoted by θl = (θl1, . . . θlkl) and a likelihood function Ll(θl; X).

Let θ̂l denote the maximum likelihood estimation of θl.

5.2.1 Akaike Information Criteria

According to Akaike’s information criteria (AIC), the model closest to the

true model is the one minimizing

AIC(Ml) = −2 lnLl(θ̂l; X) + 2kl (5.3)

AIC is useful when selecting the best model in a set without saying anything

about the quality of that model. If all the models in the set give poor results,

AIC will still select the one that gives the best estimate, even though that

estimate might be poor in an absolute sense.

5.2.2 Bayesian Information Criteria

According to the Bayesian information criteria (BIC), the most appropriate

model is the one minimizing

BIC(Ml) = −2 lnL(θ̂l; X) + kl ln(n) (5.4)

where n is the number of observations. For ln(n) > 2, BIC penalizes model

complexity more than AIC. Given this, the only way they will give different

results is when AIC chooses a more complex model than BIC.[25]

5.3 The Auto-Correlation Function

The auto-correlation function (ACF) is a convenient tool that identifies

trends, seasonality and/or interdependencies in time-series data. It mea-

sures the correlation between yt and yt−k, where k ∈ N denotes the lag

parameter. For instance, if considering two daily stock prices yt−k and yt,

the lag parameter k denotes the number of days between the two daily

closing prices. The ACF is frequently used in time series modeling, with
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applications for risk management purposes. The ACF of yt is defined as

ρy(k) =
ry(k)

ry(0)
, k ∈ N (5.5)

where ry is the auto-covariance function for yt defined as

ry(k) ≡ C{yt, yt−k}
M
= E {(yt − E[yt])(yt−k − E[yt−k])} (5.6)

ρy(k) is bounded such that |ρy(k)| ≤ 1, with ρy(0) = 1, as is general for

any correlation measures. The time series is considered independent when

ρy(k) = 0 for k > 0.[26]

5.4 Kolmogorov-Smirnov

Kolmogorov-Smirnov test is a goodness of fit test based on the empirical

distribution of a random sample.

Let (x1, . . . , xn) be observations from iid random variables (X1, . . . , Xn)

with distribution function F . In the univariate case one can test the hypoth-

esis, H0 : F = F0 against H1 : F 6=F0 where F0 is some specified distribution

function, using the Kolmogorov-Smirnov test.

The one-sample test describes the maximum distance between the em-

pirical distribution function and its corresponding theoretical distribution

function. The test is defined as

Dn = sup
x∈R
|F̂n(x)− F (x)| (5.7)

where F̂n(x) is the empirical distribution function of the sample. The null

hypothesis is rejected if Dn > Dcrit, where the critical value is a function of

the significance level as well as the number of samples.[27]
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5.5 Cramér-von Mises

Cramér-von Mises can be used to test the goodness of fit for a copula. First

one defines the empirical copula as

Cn(u) =
1

n

n∑
i=1

1(Ûi,1 ≤ u1, . . . , Ûi,d ≤ ud), i ∈ {1, . . . , n} (5.8)

where u = (u1, . . . , ud) ∈ [0, 1]d. The goodness of fit test is then based on

the empirical process

Cn(u) =
√
n(Cn − Cθ,n) (5.9)

where Cθ,n is an estimator of C obtained under the null-hypothesis H0 :

C ∈ C0 for some class C0 of copulas. θn is the estimate of θ derived from the

pseudo-observations.

Based on the empirical process one can calculate the Cramér-von Mises

statistic as[28]

Sn =

ˆ
[0,1]d

Cn(u)2dCn(u) (5.10)

A large value of Sn leads to rejection of the null-hypothesis. The main

inconvenience with this approach is its high computational cost8.

8For further derivations of SnC see Genest et al. (2009)[28]
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Chapter 6

6 Implementation

The data used has been collected from Sirius International, a Swedish-based

reinsurer with a globally diversified business portfolio. Three of its main

LoBs, n ∈ 1, 2, 3, as defined in Section 3.5.2, are Aviation, Marine and

Property respectively. Data includes the development interval 0 to 13.5

years dating back to 2001 (I = 13). As is standard practice, individual

extreme losses have been extracted before data has been implemented in a

run-off triangle framework, categorized by each LoB respectively. Because

of the shortage of values in run-off triangles, development data has been

provided on a quarterly basis (J = 53) in order to cope with problems

arising from lack of data values as well as information lost from merging the

data. Due to the decreasing relevance of data for longer matured claims and

for optimization efficiency, the modeling is focused on claims with maturity

up to 4.5 years, i.e. J = 17. Since the data is divided into accident years

and development quarters, the run-off triangle will be asymmetrical. Despite

the asymmetry and the fact that development has been limited to 4.5 years,

previously stated run-off triangle methodology can be applied in this setting.

In this thesis, the exposure weight introduced is defined as ω
(n)
i =

UltPr
(n)
i · LR(n)

i such that payments X
(n)
i,j are exposure weighted of the

form

Y
(n)
i,j =

X
(n)
i,j

UltPr
(n)
i · LR

(n)
i

(6.1)

Here, UltPri is the estimated final (ultimate) premium revenue from con-

tracts signed in accident year i. LRi is the forward looking Loss ratio9.

9The estimation of UltPri and LRi has been performed by Sirius International, and is
taken as given in this thesis.
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In this case, the loss ratio LRi is set beforehand and is a projection of fu-

ture profitability. In a sense, LRi somewhat helps to offset varying market

profitability effects, much related to the underwriting cycle, which for some

LoBs can be substantial10.

6.1 Data Assumptions

The data provided by Sirius International is on underwriting year rather

than accident year basis. A difference between the two reporting measures

will appear in cases where the accident occurs in a year different from the

year underwriting was made. If reporting on underwriting year basis, pay-

ments are assigned to the year the contract was signed, i.e. underwriting

year, independently of when the accident occurs.

As inception date has not been provided, contracts are assumed to be

signed in the beginning of each year, such that payment development is with

respect to January 1. This assumption is valid in most cases, but not all.[29]

Therefore, the development lag might be overestimated in the cases when

the inception date is not the beginning of the year.

One could consider modeling dependence between contract types. How-

ever, no regard is taken to the types of contracts as these are aggregated in

order to obtain run-off triangles on LoB level. In reality, they have different

properties and will therefore affect payments differently.

6.2 Data Analysis

The exposure weighted payments Y
(n)
i,j are summarized in Table 6.1, and

their development over time is displayed in Figure 6.1. The finer devel-

opment granularity illustrates an initial increasing trend, which would not

be captured appropriately by annual development data categorization. One

can also see a tendency in which Marine affairs typically have a longer de-

lay. The commonly shared pattern is a shifting average as well as a varying

volatility depending on development quarter j.

10Aviation is an example of contracts that are sensitive to market conditions.
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Figure 6.1: Time series plots for exposure weighted data, where each line corre-

sponds to a fixed underwriting year.

Table 6.1 Summary Exposure Weighted Data

LoB Mean Min Max Standard Deviation

Aviation 0.4189 -0.1820 1.775 0.3802

Marine 0.6625 -1.390 4.128 0.6476

Property 0.3556 -0.3033 2.257 0.4530

As for non-positive values, an average of six percent is below or equal to

zero, with 39 percent of them being negative. If one were to consider a

longer development, the share of negative values would be likely to increase

as they tend to occur more frequently at a later development stage11. Due

to the non-positive data, it is clear that the commonly used gamma and

log-normal distributions of its original form are not applicable.

In order to verify current dependencies, the ACF for Y (n) is examined

across underwriting years, as well as development quarters. ACF plots for

underwriting years and development years are provided in Figure 6.2 and

Figure 6.3 respectively12.

The accuracy of the ACF when validating vertical dependence is very

low due to the limitation of data points, as I = 13. This is reflected in

11For the fully developed data, i.e. J = 53, the corresponding figures are 11 percent,
with 76 percent being negative values.

12The ACF figures in this thesis only present one row and column for each LoB as
examples. The actual verification needs to take all rows and columns into account.
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the wide confidence interval provided in the figure. For higher development

quarters, the accuracy decreases further as the number of data points is even

less for higher columns. The lag parameter k has been limited to k ≤ 4,

since the data set looses k values in the validation of ρY (k). Nevertheless,

given the overall view, there are no significant correlations and no apparent

patterns between the autocorrelation functions. Thus, independence across

underwriting years, i.e. vertical dependence, is assumed on the 95 percent

confidence interval provided.
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Figure 6.2: ACF plots illustrating vertical dependence. The dashed blue lines

represent a 95 percent confidence interval.

As for horisontal dependence the trend that is seen in Figure 6.1 is confirmed

by the repetitive pattern of the ACF in Figure 6.3. The initial increase fol-

lowed by the downward trend in the data is reflected as a positive correlation

for low k, and a negative correlation for larger k. Before modeling using cop-

ulas, this correlation will have to be extracted properly. Note the somewhat

tighter confidence interval obtained thanks to a slight increase in number of

data points J + 1 = 18.
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Figure 6.3: ACF plots illustrating horisontal dependence. The dashed blue lines

represent a 95 percent confidence interval.

6.3 Non-Stationary Marginal Distributions

As stated earlier, one can see a parallel shift in the data, as well as a varying

volatility with respect to development. Although GEV distributions are

commonly applied for modeling of maxima, its properties and appearance

makes it a reasonable choice in other applications. If one were to apply

a GEV distribution to this data, one could consider an adaptive location

and scale parameter to capture each dynamic respectively. Since it has

been concluded that no vertical trend exists, the GEV distribution can be

expressed as

Y (n)(j) ∼ GEV (µ(n)(j), σ(n)(j), γ(n)) (6.2)

Referring back to (3.5), ζ(n) = γ(n), with the η̄(n)(i, j) component defined

as

η̄(n)(i, j) =

(
µ(n)(j)

σ(n)(j)

)
(6.3)

As η̄(n)(i, j) only depends on j, this implies that in (3.7), ᾱ(n)(i), δ̄(n)(i+j) =

0 for all i,j, and so η̄(n)(i, j) is reduced to η̄(n)(j). The implication of this

is that each non-stationary distribution Y (n)(j) will consist of J stationary

distributions.

In order to cope with the various trends of µ(n)(j) and σ(n)(j), the fol-

lowing regression model is applied where increasing values of l and m are

tested
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η̄(n)(j) =

(
µ(n)(j)

σ(n)(j)

)
=


l∑

k=0

µ
(n)
k jk

m∑
k=0

σ
(n)
k jk

 (6.4)

Again, referring back to (3.7), the above equation corresponds to

ϕ̄(n) =

(
µ0

σ0

)
, with β̄(n)(j) =


l∑

k=1

µ
(n)
k jk

m∑
k=1

σ
(n)
k jk

 (6.5)

Thus, Y (n)(j) will henceforth be denoted Y
(n)
l,m (j), where parameters µ(n)(j),

σ(n)(j) and γ(n) are to be estimated for each LoB n respectively. The vali-

dation of Y
(n)
l,m (j) is done using the following process

i. Obtaining MLE parameters θ̂
(n)
MLE = (µ(n)(j), σ(n)(j), γ(n)) for each

Y
(n)
l.m (j), where log-likelihood values are obtained. Since σ(n)(j) >

0, ∀ j is required, the MLE is performed using the constrained linear

optimization constrOptim, implemented in R. For any linear trend in

σ(n)(j), constrOptim will be sufficient. When non-linearity in σ(n)(j)

holds, a simple penalized MLE is introduced such that the value 100 is

subtracted for every term in lnL(η̄(n)(j), γ(n) : Y(j)) where σ(n)(j) <

0.

ii. The obtained models Y
(n)
l,m (j) from MLE are compared using the three

validation methods stated in Chapter 5 - Likelihood ratio test, AIC

and BIC.

iii. In order to verify the performance of the estimated parameters, Def-

inition 3.1 is applied such that, if parameter estimation is true, the

transformed data Ỹ (n) ∼ Gumbel(0, 1). Since Y (n) is non-stationary,

i.e. not identically distributed, Definition 3.1 adopts to

Ỹ (n) =
1

γ(n)
ln

(
1 + γ(n)

Y
(n)
j − µ(n)(j)

σ(n)(j)

)
(6.6)
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Following the transformation, a one-sample Kolmogorov-Smirnov good-

ness of fit is conducted against the theoretical standard Gumbel. Fur-

thermore, visual comparisons between the obtained empirical distribu-

tion and the theoretical standard Gumbel are made using QQ-, PP-,

CDF-plots and histograms.

iv. Although the transformed data might resemble a standard Gumbel

distribution, the ACF complemented by simple visualization of the

time series data will ascertain whether the development trend has been

extracted properly from the transformation.

6.4 Modeling Copulas

As triangle interdependence is extracted in the transformation, the cross

dependence should ideally be the only dependence remaining. Hence, the

linear and rank correlation measures between LoBs give the cross depen-

dencies. As this application involves three LoBs, i.e. dimensions, a copula

that can capture all correlation patterns is preferred, since identical depen-

dence between LoBs would be a substantial generalization of the problem.

As previously stated, elliptical copulas provide this property.

Applying Sklar’s theorem, a copula may be constructed such that

H
(
Ỹ (1), Ỹ (2), Ỹ (3)

)
= CΣ

(
F (Ỹ (1)), F (Ỹ (2)), F (Ỹ (3))

)
≈ (6.7)

≈ CΣ

(
F (Z̃), F (Z̃), F (Z̃)

)
where Σ is the dependence parameter corresponding to copula C and Z̃ ∼
Gumbel(0, 1). For validation of the appropriateness of each copula, the

Cramér-von Mises goodness of fit test SnC is used against the empirical

joint distribution that is obtained from the three transformed LoBs Ỹ (n).

This validation is done using the gofCopula from the copula package in R. The

Cramér-von Mises statistics for each copula and its corresponding optimal

dependence parameter(s) is then obtained.
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Following a simulation of the copula CΣ(F (Z̃), F (Z̃), F (Z̃)), a mapping

of the simulation to the respective matrices n is performed, such that the

dependence parameter Σ has been incorporated between the LoBs. Note

that each matrix now corresponds to a completed run-off triangle of gener-

ated standard Gumbel observations, where the bottom right part from the

diagonal has been filled in. In order to return to the non-stationary distri-

bution, the values are re-transformed such that Ŷ
(n)
j is obtained from Z̃ by

the inverse of the transformation function stated in Definition 3.1. Using

Ŷ
(n)
j and Z̃, the inverse transformation is defined as

Ŷ
(n)
j = µ(n)(j) +

σ(n)(j)

γ(n)

(
eγ

(n)Z̃ − 1
)

(6.8)

Following the re-transformation, the estimated payments X̂(n) are obtained

after re-weighting corresponding Ŷ (n) with ω
(n)
i , i.e. X̂(n) = Ŷ (n)ω

(n)
i . Thus,

the estimated future payments are obtained from the lower right side of the

now complete run-off triangle.

To replicate the dynamics and uncertainties of the reserves, Monte Carlo

simulations (MC) are performed in order to obtain its empirical joint distri-

bution. The Monte Carlo simulations are performed such that new random

samples from the standard Gumbel distributions are gererated for each it-

eration.
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6.5 Process Flow Chart
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7 RESULT

Chapter 7

7 Result

7.1 MLE Model Validation

MLE values are presented in the following three tables for respective LoB.

Due to performance issues of constrOptim, for the considerably small data

set, when maximizing the log-likelihood function, parameters have been lim-

ited to l,m ≤ 3. In tables 7.1, 7.2 and 7.3, the values for the validation

measures are provided13. Note that the likelihood ratio values are evaluated

in comparison to its preceding model, such that the compared 95 percent

chi-squared quantile has one degree of freedom14. An improved model for

this significance level has been underlined.

Table 7.1 Aviation Model Validation

Y
(1)
l,m(j) lnL(η̄(j), ζ; Y) −2 lnλ(Y) AIC BIC p(DK−S) iid

Yj,0,0 −59.981 − 125.961 136.003 0.401 N
Yj,0,1 −58.756 2.450 125.512 138.901 0.495 N
Yj,0,2 −58.316 0.880 126.632 143.368 0.0998 N
Yj,0,3 −54.024 8.584 120.047 140.130 0.317 N
Yj,1,3 −54.024 0.000 122.047 145.477 0.320 N
Yj,2,3 4.483 117.014 7.035 33.812 0.0196 Almost
Yj,3,3 291.956 574.946 −565.913 −535.789 0.417 Almost

13Estimated parameters are provided in Appendix A.4.
14The 95 percent chi-square quantile with one degree of freedom is 3.8415
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Table 7.2 Marine Model Validation

Y
(1)
l,m(j) lnL(η̄(j), ζ; Y) −2 lnλ(Y) AIC BIC p(DK−S) iid

Yj,0,0 −186.949 − 379.897 389.938 0.0149 N
Yj,0,1 −183.630 6.638 375.259 388.647 0.0187 N
Yj,0,2 −159.461 48.338 328.923 345.658 0.0000 N
Yj,0,3 −156.112 6.698 324.225 344.307 0.0000 Almost
Yj,1,3 −154.943 2.338 323.887 347.317 0.0000 Almost
Yj,2,3 −148.631 12.624 313.262 340.039 0.0276 Almost
Yj,3,3 −139.439 18.384 282.112 327.001 0.0871 Almost

Table 7.3 Property Model Validation

Y
(1)
l,m(j) lnL(η̄(j), ζ; Y) −2 lnλ(Y) AIC BIC p(DK−S) iid

Yj,0,0 −77.230 − 160.460 170.501 0.0652 N
Yj,0,1 −74.136 6.188 156.271 169.660 0.0255 N
Yj,0,2 −44.698 58.876 99.396 116.131 0.0000 N
Yj,0,3 −2.846 83.704 17.691 37.774 0.0000 Almost
Yj,1,3 −3.611 −1.530 21.222 44.652 0.0000 Almost
Yj,2,3 4.786 16.794 6.429 33.206 0.0000 Almost
Yj,3,3 40.297 71.022 −62.594 −32.470 0.0547 Almost

A visualization of the transformation to Ỹ (n), using the optimal values θ̂MLE

obtained for l,m = 3, is provided in Figure 7.1. Row one illustrates the orig-

inal data and the obtained trend of the location parameter µ(n)(j) and scale

parameter σ(n)(j). The resulting transformation is visualized in row two.

Ideally a Gumbel(0, 1) distribution is returned, where data is independent.

Looking at the third row of Figure 7.1, the plots illustrate a replication of

the original data using simulations from the distributions Ŷ
(n)
j .
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Figure 7.1: Row 1. The original data Y (n) with fitted location and scale pa-

rameters µj and σj. Row 2. Corresponding transformed data Ỹ (n), ideally

Gumbel(0, 1). Row 3. Replication of original data using simulations from Ŷ
(n)
j ∼

GEV (µ(n)(j), σ(n)(j), γ(n)).

The Kolmogorov-Smirnov goodness of fit reports a p-value indicating that

for all transformations l,m = 3, their distribution being Gumbel(0, 1) can-

not be rejected on a 95 percent confidence interval. To further verify the
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obtained transformation Ỹ (n), QQ-plots are provided in Figure 7.2.15 These

plots compare the empirical quantiles against the theoretical ones from

Gumbel(0, 1).
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Figure 7.2: QQ-plots. Empirical quantiles plotted against theoretical quantiles.

Looking at the transformed data, much of the development dependence

appears to be extracted. This is confirmed from the ACF plots in Figure

7.3, where data seems to be independent. Hence, the assumption is made

that the transformation using l,m = 3 is independent and of the type

Ỹ (n) ∼ Gumbel(0, 1).
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Figure 7.3: ACF plots for the transformed data Ỹ (n), illustrating horisontal de-

pendence.

15For additional examination of the fit, see validation plots provided in Appendix A.3.
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7.2 Copula Modeling

Looking at the cross dependence between LoBs, the resulting values for

τK(Ỹ (n), Ỹ (p)) and ρP (Ỹ (n), Ỹ (p)) are provided in Table 7.4. The correlation

matrix is asymmetric due to the fact that τK is presented in the upper right

part and ρP in the lower left part of the diagonal. One notes a stronger

dependence between Property and the other two than between the Marine

and Aviation portfolios.

Table 7.4 Dependence Measures

Aviation Marine Property

Aviation 1 0.0600 0.1478
Marine 0.0141 1 0.1500

Property 0.1016 0.1858 1

A summary of estimated values from the gofCopula optimization and valida-

tion can be found in Table 7.5, where Σ is ordered as in Table 7.4. Following

the dependencies obtained for t-copula, with ν = 10.6978, its corresponding

tail dependence is λ̄ =
(

0.0280 0.0533 0.0573
)

.16

Table 7.5 Copula Goodness of Fit

Copula Σ SnC p(SnC)

Gaussian

 1 0.094 0.230
0.094 1 0.233
0.230 0.233 1

 0.3299 0.1294

t10.69

 1 0.084 0.218
0.084 1 0.234
0.218 0.234 1

 0.3299 0.1773

16ν = 10.6978 is the optimal degrees of freedom obtained from fitCopula in R.
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7.3 Simulation

From the obtained margins and copula parameters, the simulation is per-

formed using t-copula, Gaussian copula as well as the independent Gaussian

copula, where correlations are set to zero, i.e. Σ is the identity matrix.

The results from the copula simulations, as well as from the Chain Ladder

bootstrap simulation, are summarized in Table 7.6 below. These results are

based on running 10 000 Monte Carlo Simulations, as well as 10 000 Chain

Ladder bootstrap iterations. The table presents the future estimated losses

up to 4.5 years, i.e. the sum of the values in the lower right side of the

triangle’s diagonal17.

Table 7.6 Estimated Future Losses per LoB

Simulated Reserve Chain Ladder

LoB
Predicted

Loss

Upper

Bound

Lower

Bound

Predicted

Loss

Upper

Bound

Lower

Bound

Aviation 1,060,000,000 1,757,000,000 513,000,000 1,112,000,000 2,166,000,000 521,000,000

Marine 1,083,000,000 1,981,000,000 401,000,000 524,000,000 1,064,000,000 112,000,000

Property 4,518,000,000 8,666,000,000 1,132,000,000 2,070,000,000 3,322,000,000 772,000,000

Finally aggregated reserve estimates for the standard deviations and risk

measures VaR and TVaR, using the appropriate quantiles are provided in

Table 7.7.18

Table 7.7 Aggregated Estimated Risk Measures

Copula Standard

Deviation

VaR99.5% VaR99.7% TVaR99.5%

t 1,072,000,000 9,649,000,000 9,896,000,000 10,130,000,000
Gaussian 1,062,000,000 9,609,000,000 9,802,000,000 9,918,000,000

Independent 1,002,000,000 9,476,000,000 9,680,000,000 9,802,000,000

17Due to confidentiality, the values provided in Table 7.6 and 7.7 have been crypted.
18The risk measures applied on each LoB respectively are provided in Appendix A.5.
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Chapter 8

8 Conclusion and Discussion

When comparing the estimated reserve calculated using the non-stationary

distributions against the Chain Ladder bootstrap, one can see in Table 7.6

that they differ, especially for Marine and Property. In both cases the cop-

ula approach gives a higher estimated reserve and a substantially higher

estimated standard deviation19. This is despite the fact that the bootstrap

model generally has a high standard deviation, as it takes parameter uncer-

tainty into account.

As previously mentioned, simulations from the non-stationary distribu-

tions Ŷj
(n)

are illustrated in row three of Figure 7.1. Ideally these repli-

cations should resemble the original data Y (n). One generally notes that

neither the location nor scale parameter is able to fully adapt to the true

dynamics. Especially for Marine and Property the scale parameter appears

to be overestimated for many development quarters j. This helps to explain

the considerably low p-values obtained for the two LoBs using Kolmogorov-

Smirnov goodness of fit test. Preferably, one would hope for significantly

higher p-values. To further explore the reasons behind the deviating results,

densities of Ŷ
(n)
j are compared to the actual column mean in Figure 8.1.

As can be seen in Figure 8.1, the densities of the distributions Ŷ
(n)
j do not

fully coincide with the average of corresponding column in Y
(n)
j . A poorer

match is seen for Marine and Property as the densities are not in line with

the observed average, i.e. the vertical lines. This is better observed in Ta-

ble 8.1, where corresponding means and standard deviations are compared

directly. When applying weights to obtain the true estimates X̂(n), the dis-

crepancies are then magnified based on the size of the exposure weights ω
(n)
i .

Additionally, the appearance of the probability density functions for earlier

19The standard deviations for each LoB are presented in Appendix A.5.
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development quarters are very wide, and Table 8.1 confirms an overesti-

mated scale factor for some columns20. Hence, it can be concluded that the

obtained cubic dynamics of the location and scale parameter do not suffice

as a parameter choice, at least not Marine and Property.
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Figure 8.1: Density plots for Ŷ
(n)
j , j = (7, 12, 17) and the corresponding average

of Y
(n)
j , marked as a vertical line.

Table 8.1 Estimated Fit versus Original Data

Ŷ
(n)
j Y

(n)
j

LoBcolumn Mean Standard
Deviation

Mean Standard
Deviation

Aviation7 0.614 0.401 0.566 0.299
Aviation12 0.461 0.245 0.345 0.203
Aviation17 0.167 0.238 0.170 0.199

Marine7 0.832 0.797 0.856 1.006
Marine12 0.791 0.684 0.381 0.181
Marine17 0.135 0.104 0.157 0.106

Property7 0.696 0.487 0.407 0.194
Property12 0.239 0.216 0.203 0.181
Property17 0.098 0.118 0.049 0.093

20The overestimated scale factor for Marine and Property is reflected as a large standard
deviation in Appendix A.5.

47



8 CONCLUSION AND DISCUSSION

As is noted in the second row of Figure 7.1, the trend for the LoB was

not fully extracted. The optimization method constrOptim struggled to fit

nine parameters to the limited amount of data. If provided with an alter-

native optimization method, performance may improve, resulting in better

transformations.

Regarding the data applied in this thesis, the purpose of introducing

development quarter intervals was to get more accurate information of the

dynamics of the data and increasing the amount of data at hand. While

serving this purpose, the non-linearity of the data becomes more complex,

which complicates parameter estimation in MLE.

An additional complicating factor is the nature of reinsurance data. The

largest occurred losses have been extracted from the data since this would

offset modeling of “regular” claim data. Despite this extraction, the sizes

and development of reinsurance claims differ from ordinary insurance claims,

with data having more outliers and generally longer maturities. Therefore,

the marginal fits might improve if applied to more predictive data.

The more general problem for run-off triangles concerns the limitation of

data. As the used data has at most I = 13 values in each column (even less

for higher columns), the uncertainty is large, thus resulting in high variance

estimates. In order to better cope with this issue, one might consider increas-

ing granularity, for instance by replacing underwriting/accident years with

quarterly data. However, for underwriting quarters, the issues regarding

exposure weighting and vertical dependence will become more prominent,

since generally a majority of contracts are signed in the beginning of the

year. Another solution is to include earlier accident years. However, one

must consider the tradeoff between more data and the decreasing relevance

of old data.

Taking the marginal fits Ŷ (n) as given, the impact from the choice of copula

is seen in the reserve amounts, generating risk measures that vary between

one and three percent depending on the copula. A graphical representation

of the joint reserve for Marine and Property is displayed in Figure 8.2.
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Figure 8.2: Reserve simulations for Marine and Property.

Due to the positive dependence that t and Gaussian copula exhibit, larger

reserve estimates are generally obtained, as the diversification effects are

not as large as for the independent case. Additionally, note the difference in

properties for the t-copula and the Gaussian copula previously demonstrated

in Figure 4.1. The higher standard deviation comes from the effect of t-

copula having more outliers. One also notes more extreme values in the tails

for the t-copula, caused by its tail dependence. This property is reflected

in the higher VaR and TVaR obtained, and is more prominent for more

extreme tail events. This is verified by the marginal increase from VaR99.5%

to VaR99.7%, where the t-copula generates an increase by approximately 2.56

percent, whereas the same increase is 2.01 and 2.16 percent for Gaussian

copula and independent copula respectively.

The p-value for Cramér-von Mises SnC reports that the transformations

Ỹ (n) coming from an observation of a t-copula is most significant. Although

p(SnCt−copula) = 0.1773 is not considered high, it can still be assumed suffi-

cient. One should therefore assume that the joint dynamics of the portfolios

behave more in line with the t-copula than with the other two.

For this data, sizes of the LoBs are uneven. The Property portfolio is

several times larger than both Aviation and Marine, thus accounting for a

large share of the aggregated reserve. Had the portfolios been more equal

in terms of size, larger effects from dependencies and choice of copula would

have been observed.
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8.1 Recommendations

The model applied on the given data cannot be considered sufficient. The

reason for this is the non-stationary margins, which are not fully able to

adapt to the development of IBNR claims. If better marginal fits can be

accomplished, it is a different matter. However, one must consider the model

risk and parameter uncertainty which may result in unrealistic estimates.

The model’s ties to run-off triangle theory has its pros and cons. It

makes it more intuitive for practitioners in the field, but it is bound to the

limitations of general run-off triangle theory, such as shortage of data caused

by data merging.

Nevertheless, the theoretical approach taken in this thesis is one that

can be considered fairly general and applicable for loss reserving. It allows

the user to adapt marginal distributions that are free of choice and to choose

which marginal parameters to include within η(i, j) or ζ. The flexibility of

η(i, j) provides the ability of being able to account for vertical, horisontal, as

well as calendar year dependence, using any type of trend desired. Following

the non-stationary marginal distributions, the large collection of copulas and

varying cross dependence parameters can be used for various scenario and

stress testing, evaluating impacts from dependence and tail dependence.

The run-off triangle framework allows estimated reserves to be presented on

a calendar year, development year and/or accident year basis.
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Appendix A

A Appendix

A.1 Chain Ladder Bootstrap

Assume the initial Chain Ladder approach has been performed according

to Section 3.5.1.1 such that the residual run-off triangle is established. The

principle of the Chain Ladder bootstrap is then to rearrange the residual

run-off triangle randomly, resulting in a similar appearance as in Table A.1,

where r∗i,j is denoted as the new residual in position i, j (for instance, r∗1,0 =

rI−4,2 in Table A.1).

Table A.1 Rearranged Residual Triangle

Development Lag

Accident Year 0 1 · · · J − 1 J

1 rI−4,2 · · · r2,J−6 rI−1,1

2

...

r3,J−I−1

...

. . .

. .
.

r1,2

. .
.

I − 1 r1,J ri,j
I ri−3,1

Once rearranging has been made, using (3.4), a new incremental triangle

X∗ is constructed such that

X∗i,j = r∗i,j

√
Ĉi,j − Ĉi,j−1 + (Ĉi,j − Ĉi,j−1), i+ j ≤ J + 1 (A.1)
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The incremental triangle can easily be reconstructed to a cumulative triangle

C∗. Using the previously obtained development factors f̂j , the triangle can

be completed and estimated payments can be established. The random

resampling as well as the procedure that follows is done a significant number

of times, such that an empirical distribution is obtained and reserves can be

set.
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A.2 Standard Gumbel Transformation

Transforming X ∼ GEV (µ, σ, γ) to g(X) = X̃ ∼ Gumbel(0, 1).

P (g(X) ≤ x) = P (X ≤ g−1(x)) = exp(−e−x)

exp
{
−e−x

}
= exp

{
−
(

1 + γ
g−1(x)− µ

σ

)−1/γ
}

⇐⇒

e−x =

(
1 + γ

g−1(x)− µ
σ

)−1/γ

⇐⇒

x =
1

γ
ln

{
1 + γ

g−1(x)− µ
σ

}
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A.3 Marginal Validation Plots

The following figures illustrate the CDF, PP and density plots of Ỹ (n) for

Aviation, Marine and Property, compared to the theoretical standard Gum-

bel.
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Figure A.1: Empirical and theoretical CDFs
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Figure A.2: PP-plots
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Figure A.3: Histograms and theoretical densities
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A.4 MLE Parameters
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A.5 Estimated Line of Business Risk Measures

For completeness as well as comparability against the Chain Ladder boot-

strap simulation, standard deviations and risk measures are provided sepa-

rately for each LoB.

Table A.2 Aviation - Estimated Risk Measures

LoB Standard Deviation VaR99.5% VaR99.7% TVaR99.5%

t 147,000,000 1,477,000,000 1,511,000,000 1,536,000,000

Gaussian 147,000,000 1,484,000,000 1,509,000,000 1,541,000,000

Independent 147,000,000 1,480,000,000 1,512,000,000 1,535,000,000

Chain Ladder 181,000,000 1,725,000,000 1,781,000,000 1,829,000,000

Table A.3 Marine - Estimated Risk Measures

LoB Standard Deviation VaR99.5% VaR99.7% TVaR99.5%

t 219,000,000 1,695,000,000 1,748,000,000 1,787,000,000

Gaussian 218,000,000 1,690,000,000 1,745,000,000 1,779,000,000

Independent 219,000,000 1,695,000,000 1,730,000,000 1,774,000,000

Chain Ladder 108,000,000 874,000,000 911,000,000 925,000,000

Table A.4 Property - Estimated Risk Measures

LoB Standard Deviation VaR99.5% VaR99.7% TVaR99.5%

t 967,000,000 7,268,000,000 7,478,000,000 7,658,000,000

Gaussian 959,000,000 7,151,000,000 7,319,000,000 7,502,000,000

Independent 968,000,000 7,162,000,000 7,404,000,000 7,530,000,000

Chain Ladder 286,000,000 2,834,000,000 2,881,000,000 2,940,000,000
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