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I think most of us have some degree of confidence in our ability to multiply numbers.
After all, we are taught how to perform integer multiplication already at a young age.
Any curious person notices that this operation possesses a special property. Namely, if the
numbers a and b are both different from zero, then their product, a ·b, is also different from
zero. This is intuitively clear, at least when both a and b are natural numbers. The natural
numbers are, of course, the numbers 1, 2, 3 . . . and so on. After all, by buying three packs
of kanelbullar, with six in each, we certainly will not end up hungry. It is probably also
intuitively clear that the product of two non-zero rational (or real) numbers is non-zero.
That the product of two non-zero complex numbers is again non-zero might be a little less
intuitive, but our definitions make sure this also is the case.

It turns out that science, engineering and mathematics has a need of defining ’multipli-
cation’ of objects much different from numbers. A set of objects, or elements, which can be
added and multiplied, is known in mathematics as a ring. Mathematicians define precisely
what laws such a multiplication operation should obey. Curiously, they have decided that
the non-vanishing of products of two non-zero elements should not be one of them! They
also thought that it would be a little too restrictive to require that a multiplied by b should
give the same result as b multiplied by a. Hence, in general, a · b 6= b · a in a ring. The
importance of the definition of a ring lies in its generality. Given two elements a and b of
some ring, we can make sense of their sum a+ b and of their product a · b, but we care not
what a or b really are. They might be numbers, might be matrices, they might be anything.
But whatever they are, we can add and multiply them. The study of multiplication in a
special kind of rings, called group rings, was the subject of my thesis. Products can vanish
in a group ring, and the order of factors matters.

Both phenomena described above are known to first-year linear algebra students who
are familiar with matrices and their rules of addition and multiplication. It is possible
for the product of two non-zero matrices to be the zero matrix, and also the order of
multiplication of matrices matters. Many students will agree that the multiplication of
matrices seemed a little peculiar at first. This multiplication, together with corresponding
matrix addition, makes the set of square matrices of some fixed size into a ring.

It is often important to know if a ring contains non-zero elements which vanish upon
multiplication with some other non-zero elements. Such elements are called zero-divisors.
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This notion is abstract, but nevertheless it might have very real implications. As an ex-
ample, we take systems of linear equations and indicate how the possibility to solve such
a system relates to zero-divisors. Any student of science and engineering will know that
systems of linear equations arise naturally in literally every branch of natural science or
engineering. Fast and efficient methods of solving these systems are absolutely crucial.
In fact, (systems of) linear equations are relatively easy to handle, while non-linear equa-
tions are so difficult that we rather just approximate them with linear ones, and solve the
approximations instead.

Assume then that we have a system of linear equations, and that we have as many
equations as we have unknown variables. Such a system we usually call square. A square
system of linear equations can be modelled by one square matrix and one vector. A
solution consists of any vector satisfying the equations of the system. Freshman students
learn matrix determinants, and one of their applications is to be able to conclude easily
if a square system of linear equations has a unique solution. We can also characterize
this property using zero-divisors. It turns out that such a system of linear equations has
a unique solution exactly when its matrix, viewed as an element of the ring of square
matrices, is not a zero-divisor. If the matrix of the system is a zero-divisor, then a solution
might or might not exist. If a solution exists, it is never unique. This can lead to trouble
in different ways. In this sense, matrices that are zero-divisors are bad matrices. They
do not behave nicely, and they model systems of linear equations that do not have unique
solutions.

I mentioned above a special class of rings, the group rings. It would be a little too
technical to explain here how a group ring differs from a general ring, so we have to
content ourselves with the claim that from every possible ring one can construct many
group rings. One very famous question, initially posed by the brilliant mathematician
Irving Kaplansky, asks to classify the group rings in which multiplication resembles in a
way our familiar multiplication of numbers. More precisely, he conjectured that a certain
type of group rings were always free of zero-divisors. The problem is to rigorously prove
his claim. I have spent some time investigating the current status of the problem as part of
my work on my thesis. The result? I understand how unapproachable it is. The question
is today almost 50 years old, and so far nobody has been able to confirm that Kaplansky
was right, and nobody has been able to prove him wrong.

Much of work in contemporary mathematics, and indeed many other sciences, including
computer science and physics, is abstract (and for a good reason, but that is a topic for
another discussion). But very recently, a real-world application of group rings has been
proposed, in form of the construction of a versatile cryptographic system [1]. To be able
to understand how such a system might work, we will need to know what a multiplicative
identity element and what a unit is. We are unfortunately (or fortunately?) back to
abstraction.

A multiplicative identity is an element of the ring, which multiplied by any non-zero
element a gives us back a. This element is often denoted by 1, because it behaves similarly
to the number 1. Hence 1 · a = a · 1 = a. An element u is a unit if there exists an element
v such that u · v = v · u = 1. The element v is called the inverse of u. Far from every
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element of a group ring is a unit. If we look again at matrices which model square systems
of linear equations, then any matrix which is a unit is a good matrix. A unit matrix models
a system of linear equations which has a unique solution. As we will see below, units in
group rings also let us encrypt messages.

Given a message to transmit, it is possible to construct a group ring in which the
message appears (encoded) as an element. Let us assume that the element w of the group
ring is our message. If the recipient of our message hands us a unit u, then the encryption
of the message w is performed by multiplication by u. That is, the encrypted message is
u · w. As our recipient receives the encrypted message, he or she can now multiply the
encrypted message by v, resulting in v · u · w = (v · u) · w = 1 · w = w. This is the initial
message, as a group ring element! The recipient can now translate the element w into the
original message. Of course, all these computational steps are performed by a computer.
The strength of the system lies in the fact that units are hard to find in group rings. A
careful choice of a unit u makes it near impossible to find its inverse v using computers of
today. The recipient of the messages can hand over the same unit u to several sources which
wish to communicate, and be the only one to be able to decrypt the incoming messages.
This is the principle of public-key cryptography, with the unit u being the public key.

Using special kinds of multiplication as encryption is not really a recent development.
The ideas are almost 40 years old, and have indeed turned out to be very useful. The
famous RSA cryptosystem based upon ring multiplication is today widely used in many
applications, one of them being digital signatures. The group ring encryption described
above is a slightly more sophisticated version of the RSA cryptosystem.

Number arithmetic has historically introduced the ability to count and to measure. The
general multiplication discussed above certainly has not been developed with such direct
applications in mind. But nevertheless we have seen how this new notion can be used to
reason about equations arising in all branches of natural science, and we have seen how it
can be used to construct cryptographic systems. Even though the study of structures as
abstract as rings is often driven simply by curiosity, perhaps the unexpected applications
can be used as one argument to motivate their study.
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