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Abstract

Risk measures such as Value at Risk are highly dependent on a sample
of daily returns. The daily return can be measured in different intervals
and this thesis examines how the choice of the daily return interval affects
derivative pricing, risk measures, fund performance and products with col-
lateral agreements. It is shown that the VaR measure varies significantly
with the choice of daily return interval and for the OMXS30, an optimal
interval is presented. The daily return characteristics are examined using
market microstructure theories and the concept of volatility is also han-
dled for different time intervals. Collateral payments have a direct effect
on a bank’s result due to the funding costs of outstanding collateral. It is
shown that the daily return interval is an important component in deter-
mining the payments and that the choice of return interval can be used
to have an expected positive flow of collateral which leads to a positive
revenue component for the bank.



Abstract

Riskmatt som Value at Risk ar vildigt beroende av ett sample av
dagliga avkastningar. De dagliga avkastningarna kan métas med olika
tidsintervall och denna uppsats behandlar hur valet av tidsintervall paverkar
prissdttningen av derivatprodukter, riskméatt, hur bra en fond ser ut att
prestera samt produkter med collateralavtal. Det visas att Value at
Risk-mattet varierar oerhért med valet av tidsintervall for de dagliga
avkastningarna och det presenteras ett optimalt val av tidsintervall for
OMXS30. Beteende hos de dagliga avkastningarna behandlas med teorier
kring marknadens mikrostruktur och volatilitetsbegreppet i avseende pa
olika upplosning i tidsdimensionen diskuteras. Betalning av collateral
har en direkt effekt pa en banks resultat da det direkt slar mot bankens
finansieringskostnader. Det visas att tidsintervallet fér de dagliga avkast-
ningarna ar en viktig komponent for att berdkna collateralflédet och att
valet av tidsintervall kan anvéindas for att fa ett forvantat positivt collat-
eralfléde vilket blir en intéaktskélla for banken.



Preface This thesis is written in conjunction with the Market Risk Control
Department at Handelsbanken Capital Markets in Stockholm. I would like to
thank the group for their never-ending support and especially for the intriguing
discussions about financial risk modeling. I would also like to thank my supervi-
sor at LTH, Erik Lindstrom, for valuable comments and powerful insights along
the way.



Contents

Background
Relevant Literature

Derivative Pricing

3.1 Fixed Income Markets . . . . . . ... ... ... ... ......
3.1.1 Construction of Discounting Curves . . .. ... ... ..
3.1.2 Empirical Test: Sensitivity of Interpolation Methods . . .

3.2 Derivatives with Equity as Underlying . . . . . .. ... .. ...

3.3 Derivatives with Commodities as Underlying . . . .. ... ...

3.4 Interest Rate Derivatives . . . . . . . . .. .. ... ...

Pricing Discrepancies and Closing Times

4.1 Price Changes as a Function of Time . . . . . .. ... ... ...

4.2 Valuation Jumps Depending on Closing Times . . ... ... ..
4.2.1 Distribution of Valuation Jumps . . . .. ... ... ...

4.3 VaR and CVaR Dependence on Closing Times . . . . ... ...
4.3.1 Estimating Current Volatility . . . . . .. ... ... ...
4.3.2 Methods for Calculating VaR . . . .. .. ... ... ...

4.4 VaR Calculations . . . . . .. . ... ...

4.5 Theoretical Test: Is it Possible for a Fund to Have Significant
Different Performance Measures due to the Closing Time

4.6 Empirical Test: Does it Exist a Difference in Performance Mea-
sures for a Fund Depending on the Closing Time . . . . . .. ..

Market Microstructure

5.1 Intraday Volatility Structure . . . . .. ... ... .. ... ...

5.2 Imtraday Drift . . . . . . ... ... ...

5.3 VaR-dependence on Market Microstructure . . .. ... .. ...

5.4 VaR Uncertainty and Time Dependence . . . . . ... ... ...

5.5 Empirical Test: VaR Computations on Equity Portfolios . . . . .
5.5.1 Indices Returns as Portfolio Proxies . . .. ... ... ..
5.5.2 VaR Computations . . . . . . ... ... ... ... ... .

Time of Valuation for Products with Collateral Agreements
6.1 Time of Valuation . . .. ... ... ... ... ... . ...
6.1.1 Simulation of Aggregated Results . . . . . ... ... ...
6.1.2 Brownian Motions and Random Walks . . . . . .. .. ..

6.1.3 Theoretical Approach to Determine an Effective Valua-
tion Time . . . . . .. .. . L oo

6.2 Simulation Test: Is the Number of Unnecessary Collateral Pay-
ments Dependent on the Stopping Time? . . . .. .. ... ...
6.2.1 Simulation with an Ito Process . . . . ... ... .. ...
6.2.2 Simulation with a Jump Process . . . ... .. ... ...

10

10
10
12
14
16
17
17

19
19
20
22
23
24
25
26

31

32

33
33
34
34
36
37
37
38



6.3 Empirical Test: Does Collateral Payments depend on the Stop-

ping Time? . . . . . . . L
6.3.1 What is the Real Cost of a Non Optimal Closing Time? 48

7 Discussion and Conclusions 50

8 Proposal for Further Research 51



List of Figures

= W N

(@31

13

14
15

16

17
18

19

20

Valuation of a Zero Coupon Bond . . . . .. ... ... .....
Actual interest rate points and an interpolated discount curve.
Accumulated returns of an asset and the markets opening hours.
Average absolute price difference from the actual closing price
depending on the closing time. . . . .. ... ... ... ... ..
Average absolute price difference from the actual closing price
depending on the closing time. . . . .. ... ... oo,
Distribution of VaR numbers with different closing times.
Distribution of VaR numbers with different closing times.
Distribution of CVaR numbers with different closing times.
Distribution of CVaR numbers with different closing times.
Representation of the different intra day return characteristics.
Intraday volatility for the OMXS30 . . ... ... .. ... ...
Distribution of VaR numbers for OMXS30 with different stopping
times. . . . . L
Distribution of CVaR numbers for OMXS30 with different stop-
ping times. . . . . . ... Lo
Max difference in VaR for every half hour for the OMXS30. . . .
Distribution of VaR numbers for an equity portfolio with different
stopping times. . . . . .. ..o L
Distribution of CVaR numbers for an equity portfolio with dif-
ferent stopping times. . . . . .. ... ... L
Visual representation of the collateral mechanics. . . . . . . . ..
The process of computing the daily collateral payment for a single
counterpart. . . . . ... Lo Lo
If the price of the contract reaches the grey level, there will be a
collateral payment. . . . . . .. .. .. Lo
The probability for a random walk to reach in -2A in 7 is larger
than zero. . . . . . . . ...

11
20

21
22
27
28
29
30
32
34

35

37

38

40



List of Tables

[\

13
14
15
16

17
18
19

Constructed example data set for bond valuation. . . ... ...
Delta risks as a function of maturity for the IR-swap.. . . . . . .
Price differences from the theoretical price as a function of shifts
in the yield curve. . . . . . ... ... L
Average absolute price difference from the actual closing price
depending on the closing time. . . . .. .. ... ...
Expected value of valuation jump size depending on time. . . . .
Yearly volatility of valuation jumps depending on time. . . . . .
VaR dependence on closing times. Portfolio value 1 million. . . .
CVaR dependence on closing times. . . . . .. .. ... ... ...
Maximal difference between computed VaR and CVaR values. . .
Sharpe ratio for four constructed return characteristics, all yield-
ing an annual return of around 12,2%. . . . . .. ... ... ...
Sharpe ratios depending on closing time. . . . . . . .. ... ...
Top Swedish equity funds based on standard deviation according
to morningstar. . . . ... ..o
Simulated collateral payments using an Ito process. . . . . . . . .
Simulated collateral payments using a Jump process . . . . . . .
Total number of Collateral Payments . . . . . . . ... ... ...
Total amount of received and transferred collateral payments.
Masked digits. . . . . . ...
Total number of ingoing and outgoing collateral payments. . . . .
Total number of days with positive and negative cash flow.

Total interest rate cost for SHB and its counterparts. Masked
digits. . . . . e



1 Background

Risk monitoring and asset pricing is essential in all fields of finance and is a
important part of every serious investment banks operations. Risk measures in
combination with risk limits are used to steer the company towards profitable
risk taking, without taking risks that would be able to significantly damage
operations. After the financial crisis in 2008, many of the risk measurement
models used have been significantly criticized but many of them are still included
in new regulatories such as Basel III as the recommended or the only accepted
way to compute various risks. The risk measures are often constructed in such a
way that they are easy to understand and that they answer a relevant question.
The construction however leaves a couple of questions unanswered which makes
the risk measures dangerous if they interpreted in the wrong way. Asset pricing
is also a very important part of an investment banks operations. Without correct
pricing, risk measures cannot be computed correctly and trading results will be
erroneous. If the bank offers their costumers too low prices, the customers
will buy as much as they can and the bank itself will not be able to hedge
their risk without loosing money. If the prices are too high the costumers will
buy from another market participant and the reputation of the bank will be
damaged. Both asset pricing and risk measurement depends on high quality
market data. A lot of companies that provides market data in various forms such
as Bloomberg and Thomson Reuters, and investment banks depends severely
on their products. By snapping data directly from the external source, the bank
gets clean and validated data input to their asset pricing and risk measurement
mechanisms. The data however is very expensive and a bank usually pays
every time they download data. Market prices however are volatile and should
be used directly when they are snapped, or seen in a theoretical perspective,
snapped when they are needed. In order to save computational power and
money, sometimes market data snapped at a certain time is used later on during
the day. As an example, a stock option valued at 17.30 can use an asset price
from 16.30 and a FX quote from 16.00. This can possibly yield bad prices
even though the valuation model is correct. As for risk measurement, the risk
figures can differ significant depending on the time the market data is snapped.
For products with collateral agreements, different valuation times can lead to
differences in valuation between the counterparts which possibly can yield large
payments from one bank to another. This thesis will examine how sensitive
different pricing techniques and risk measures are to market data snapped at
different times, and how much a change in snapping time will affect the pricing
and risk measurement. The focus will be on how to give an asset or fund an
end of day price and how the VaR and CVAR measure is affected by changes in
the data snapping time.



2 Relevant Literature

A good introduction to different asset types and the pricing of various assets is
given in Hull [2011] and a bit more mathematical approach is given in Aberg
[2010]. The risk neutral framework for valuation of derivatives is nicely covered
in Bjork [2009] and the mathematics needed can be found in Shreve [2008].
Pricing of interest rate products are covered in depth in Hull and White [1990]
and especially swaps can be found in Rolapp [2006] with the theory of yield
curve construction in Hagan and West [2007]. The estimation of data, especially
volatility used to compute asset prices can be found in Becker et al. [2009] with
some very interesting ideas on how to estimate intraday volatility from high
frequency data in Zhang et al. [2005] and Chan and Karolyi [1991]. Some
characteristics of the market micro structure and empirical properties of asset
returns can be found in Cont [2001]. An introduction to various risk measures
and especially Value at Risk is presented in Duffie and Pan [1997] and Linsmeier
and Pearson [1999]. The more advanced reader will find both Uryasev [2000]
and Sarykalin et al. [2008] as interesting approaches to Conditional Value at
Risk and related optimization algorithms. In order to measure the performance
of funds or separate assets, performance measures are used which are explained
in Bailey [2012]. Stochastic analysis is used to model and simulate stock price
movements, and Klebaner [1998] gives a thoroughly introduction to the subject.
The Brownian motion itself is presented in detail in Morters and Peres [2008]
and Westman and Hanson [2002] extends the framework to model stock price
movements as jump diffusion processes.

3 Derivative Pricing

3.1 Fixed Income Markets

A fixed income security is defined as a financial obligation of an entity that
promises to pay a specified, fixed amount of money at specified future dates.
The most commonly traded fixed income products are bonds and preferred
stocks. To price a bond, one must be able to compute the value today of a
future fixed cash flow. The Net Present Value, NPV, of a future cash flow
is computed by discounting the cash flow with an interest rate with the same
maturity and which is regarded as risk free. The valuation process can be seen
in the picture below.
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To be able to price a cash flow when it does not exist a risk free rate with the
same time to maturity, one must interpolate the discount rate points into a yield
curve. With the yield curve, it is possible to compute the NPV for all cash flows
that have a corresponding point on the yield curve. The usual representation of
the yield curve, also used in Hagan and West [2007], is a function F(t) defined
on all future times ¢ such that F(t) represents the value today of receiving one

Net Present Value at t=0
of the Future Cashflow at
t=T.

Discount process
from t=T to t=0

Cashflow at
Maturity Date

5 B
Time To Maturity

7

Figure 1: Valuation of a Zero Coupon Bond
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Figure 2: Actual interest rate points and an interpolated discount curve.
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3.1.1 Construction of Discounting Curves

According to Rolapp [2006] it is market practice to choose the swap rate with
the same currency as the contract that is to be valued and construct a set of
swap rates with different maturities. From these points, there exists several ways
of constructing a yield curve. Different interpolation methods yields different
characteristics which largely can affect the pricing process in certain conditions
according to Hagan and West [2006]. To examine these characteristics, three
different interpolation methods is introduced and then empirically tested in
3.1.2. These methods are implemented as standard interpolation methods in
Sungard’s Front Arena Prime and hence are they commonly used among banks
and funds.

Linear Interpolation Linear interpolation is the most simple method to con-
struct a yield curve. It simply draws a straight line from one point to another.
This method is robust against problems in the data set since one erroneously
placed point does just affect the line to the points next to it. If the rates for
a certain maturity is not used for valuation of the actual contract, the method
will make a correct valuation even though a point is erroneously placed. As an
example, lets compute the seven year rate using linear interpolation with the
data set given in Table 1.

t—1T; t—1T;
Yi(t) =Yi+ = Yip1 = YV)Yi(t) =Y + ﬁ()/i-i-l -Y) (1)
] i+1 — 44

’ Time to Maturity \ Yield to maturity ‘

0 2.00%
1 3.00%
3 4.00%
10 6.50%

Table 1: Constructed example data set for bond valuation.

The 7 year YTM-rate is then computed by formula (1)

7—3
10 -3

Y3(7) = 4.00 + (6.50 — 4.00) = 5.4286% (2)

Cubic Spline Interpolation A spline interpolation is an interpolation method
where the interpolant is a type of piecewise polynomial which is called a spline.
The cubic spline simply uses a third degree polynomial. The yield curve is repre-
sented by a number of functions Y, (t) each representing the yield curve between
two rate points. According to Hagan and West [2006], the Cubic Spline method
suffers from global errors if one rate point gets an erroneous value. If one point
in the interest rate products that is building the yield curve is mispriced or there
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is an error in the conversion between the product prices and the yield curve,
this error will change the whole resulting yield curve which will result in a faulty
asset price. For the example data in Table 1, the following equations leads to
the yield curve.

Yo(t) = aot® + bot® +cot +do T <t <T}
Vi(t)=at* + it + et +dy Ty <t<Th (3)
Yé(t) = a2t3 + b2t2 + cot + do T, <t<T;

Every equation has 4 unknown variables, the coefficients a, b, ¢, and d which
yields the following system of equations.

(T3 T T, 10 0 0 0 0 0 0 0 ao [ 2.00
Tf’ Tl2 T 1 0 0 0 0 0 0 0 0 bo 3.00
0 0 0 o0 T} T2 Ty 1 0 0 0 0 co 3.00
0 o 0 o0 T3 T? T 1 0 0 0 0 do 4.00
0O 0 0 0 0 o 0 o0 T3 T3 Ty 1 || o 4.00
o 0 00 0 0 0 0 TP T2 T3 1 by | | 6.50
3T¢ 214 1 0 =3I -2I7 -1 0 O 0 0 0 a | 0
6y, 2 0 0 —-617 -2 1 0 0 0 0 0 dy 0
0 0 0 0 3712 2T, 1 0 -3T% 2Ty -1 0 as 0
0 0 0 0 61 2 0 0 —-6T, -2 0 0 bo 0
61y 2 0 O 0 0 0 0 0 0 0 0 Co 0
0 0 0 0 0 0 0 0 613 2 0 0][d ]| | O
The coefficients become
(a0 ] [ —0.1798 ]
bo 0
co 1.1798
do 2.0000
ay 0.0143
by . —0.1419
c1 o 0.8811
dy 2.2464
as 0.0006
b —0.0183
Co 0.5104
| d2 | | 26171

And the 7 year YTM-rate can then be computed by

Ya(t) = ap % t3 + by xt> + co st + dy — (4)
Y>(7) = 0.0006 * 7° — 0.0183 % 7> 4+ 0.5104 * 7 + 2.6171 = 5.5019%
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Hermite Interpolation Hermite interpolation is method that interpolates
data points as a polynomial function. The Hermite polynomial uses divided
differences and is therefor closely related to the Newton polynomial according
to Tobon [2011]. The difference is that the Hermite method needs more data to
compute the polynomial but can on the other hand produce a polynomial of a
higher degree than the Newton method. Contrary to the Cubic Spline method,
big shifts in one rate point does just change the function locally. Let r be a
vector Y = {y1,y2, ..., yn} and

Y (t) = Y; 4+ mi(t)(Yigr — Yi) + ma(t)(1 = my(t))gi + mF(6)(1 = my(t))e;  (5)
where

t—1T;
Tiy1 =T,

gi = (Tiy1 — Ti)yi — (Yig1 — Y5)
ci =2(Yip1 = Ys) = (Tig1 — T3) (W1 + i)

Then the vector Y is computed by inserting m;(t), g;, ¢; in formula (5) which
yields

Y = 1 [(Yz —Yi_1)(Tip1 — Ty) n (Yig1 = Y)(T; — Ti-1)

6
Tivy1 —Ti T, — T Tiy1 —T; } (6)

with the boundary conditions

" 1 [(Yz—yﬂ(Tg-l-Tz—QTﬂ n (Y3—Y2)(T2—T1)}

T, T Ty — T, Ts — Ty
_ 1 (Yn - Yn—l)(Tn - Tn—l) + (Yn - Yn—l)(zTn - Tn—l - Tn—2)
Yn Tn+1 - Tnfl Tnfl - Tn72 Tn - Tnfl

When the vector Y’/ is computed, it is possible to simply insert the desired ¢
into the equation to obtain the interpolated interest rate.

3.1.2 Empirical Test: Sensitivity of Interpolation Methods

The goal is to examine the properties of the different interpolation methods and
their effect on the theoretical price off an OTC interest rate swap. To see the
models different characteristics, a mispricing in the underlying rates is simulated
according to the first column in Table 3. Since the interpolation methods handles
shifts in the interest rates point in different ways, the robustness concerning a
mispricing in the underlying interest rates is shown in Table 3. The swap used
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for pricing is an interest rate swap that swaps a fixed rate for the 3 month
STIBOR rate with start date in May 2009 and with maturity date in May 2024.
To simulate the mispricing, the 1 year rate point for the underlying discount
curve is shifted. The delta risk exposure of the IR-swap before the mispricing is

[(ID[ IM [3M [6M [ 1Y | 2Y [ 3Y [ 4Y | 5Y | 7Y | 10Y [ 15Y |
[ 17 [ 1910 [ 708 | 8 | -729 | -1446 | -2140 [ -2796 | -5394 | -11726 | -162554 | -4222 |

Table 2: Delta risks as a function of maturity for the IR-swap.

Since the swap has risk exposure for every maturity according to Table 2,
it is shown in Table 3 that the Cubic Spline is most affected by the rate shift,
especially for the downward shift. As the present value of the contract is around
31 Million SEK, the biggest difference (Cubic Spline with rate shift -0,15%) is
below 0,005% of the present value. Since it is an OTC contract, it is not traded
in the market and the present value of the contract is strictly theoretical. In
that regard, the choice of discounting rates seems to affect the price far more
than the actual interpolation methods since there is no market consensus on
which discounting rates to use. However, the test confirms the hypothesis that
the linear method handles a change in a rate point the best since it just adapts
locally. The actual price changes are even so far too small to have any impact
on general business.

Rate shifts in % \ Cubic Spline \ Linear | Hermite

0,15 849 518 959
0,06 200 236 475
0,03 17 142 313
0 0 0 0
-0,03 450 46 9
-0,06 666 140 171
-0,15 1532 423 655
Sum of differences 3714 1505 2582

Table 3: Price differences from the theoretical price as a function of shifts in
the yield curve.

The over all price differences between the different interpolation methods is
very small and since the contract is not traded in the market it is not possible
to claim that one interpolation method is better than another. As long as the
buyer accepted the price when the contract was sold, the counterpart just have
to quote daily prices using the same method to discount to avoid jumps in the
valuation.
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3.2 Derivatives with Equity as Underlying

The most common derivative with equity as underlying are options. Options
are traded both on exchanges and over-the-counter. There exists two types of
options, a call option gives the holder the right to buy the underlying asset at
a certain date at a certain price and a put option gives the right to sell the
underlying asset at a certain date at a certain price. The predetermined price
in the contract is known as the strike price and is denoted K. The date in
the contract is known as the maturity and is denoted 7. An option is a very
versatile product that can be used in both speculative and conservative ways.
This versatility however comes with the price that an option is a very complex
security that can be extremely risky if used in certain ways. The payoff of an
call option at maturity T is

max (St — K, 0)
and for the put options the payoff is

maz(K — St,0)

A common way to price options is to use the well known Black & Scholes formula
according to Danthine and Donaldson [2005]. The Black-Scholes equation for
european options is

oV 1, ,%V OV B
E+§US@+TS%_TV_O

The solution to this equation is the closed form solution for the price of an
european option. For the call option, the closed form solution is

C(S,t) = N(d1)S — N(dg)Ke "I,

where
PR LIC ORAGR DICE)
e o(T —t)

and

() + (r— 5)(T —
o(T —1)

There exists several other ways the compute a theoretical price of an option.
Stochastic differential equations with far more complex dynamics than the Black
& Scholes model often yields far more accurate option prices. There is also a
branch of simulation techniques which simulates the behavior of the underlying
assets with an Monte Carlo algorithm. Another way the compute the option
price is to discretisize the stochastic differential equations and numerically ap-
proximate the solution. An introduction to several option pricing techniques is
given in Melin [2013].

t
d2: ):dl—U\/T—t
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3.3 Derivatives with Commodities as Underlying

The most common contract with commodities as underlying are futures and
forwards. The contract is set between two parties to buy or sell a certain
quantity of a specified asset to a fixed price at a fixed future date. A futures
contract is a standardized contract that is actively traded on several exchanges.
A forward contract is custom made contract between the two parties and does
not trade in the markets. Unlike an option, both parties of a futures contract
must fulfill the contract on delivery date. This feature makes the contract ideal
for commodity producers such as farmers to fix the price for their harvest and
thus reduce the uncertainty of their income. For commodities that exists in
plentiful supply the contract can be priced via arbitrage arguments and this is
typical for physical commodities. The price of a forward or future F(¢,T) at
time ¢ with delivery at T is the assets spot price S(¢) compounded by the risk
free rate r during the contracts life (T — t).

F(t,T) = S(t)(1 +r) T

with discrete compounding and

F(t,T) = S(t)e" T

with continuos compounding.

3.4 Interest Rate Derivatives

To be able to compute prices for interest rate contracts one must be able to
model the interest rate itself. There exists many models that tries to model the
interest rate, and one of the more famous models is the Vasiciek model. The
Vasiciek model assumes that interest rate movements only is driven by changes
in market risk. The model specifies that the instantaneous interest rate follows
the stochastic differential equation

dry = a(b—r)dt + odW; (7)

where b is the long term mean of the interest rate, a is the velocity at which
the rate will reverse towards b and ¢ is the instantaneous volatility that enters
the system. The model can be used to price various interest rate products
such as caps, floors, bond options and swaptions and other even more complex
contracts. The price of a bond in the Vasciek model can be calculated by

t t
rp=e [ro + / abe®du + J/ ea“qu}
0 0

t
= {ro +b(e™ — 1) + / oe““qu}
0

t
=u; + 0/ = qw,
0
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where wu; is a deterministic function and E [r¢] = u;. The expected value F [ry]
can be determined without solving the stochastic differential equation. By tak-
ing the integral of the dynamics in (7)

t
re =10 + / (a(b—ry)du + odW,,)
0

is obtained and this yields

up : Eryd =1 +/O a(b— E[ry])du =

d

—ug =a(b—u

gt = alb —u)

This is a linear ordinary differential equation that can be solved using the inte-

grating factor e .

U = E [’I“t} = €_at [TQ + b(@at — 1)}
Further, the volatility can be defined as

ol =Varr)=F [(oe—at /O t qu)Q]

t
=gl ™F {/ eQa“du]
0

1— 672at

2a )
Now using the risk neutral valuation framework, which is explained in detail
in Bjork [2009], the price of a zero coupon bond in the Vasiciek model can be
written as

= o2(

T
B(t,T)=FE exp(—/ rydu) | Fy
¢

Another interest rate contract that is commonly traded is the interest rate swap.
It simply exchanges the cash flow between two parties from two different interest
rate products. An example is that Company A has loans with a floating rate
and wants to buy an insurance against higher interest rates. One way to do this
is to buy a interest swap and obtain a fixed rate instead of the floating rate.
The value of the swap for the party that receives the fixed rate is

Vvswap = szz - Bfloat

Where Byi; and Bjoq: is the prices of a fixed rate bond and a float rate bond
respectively. The price of the fixed rate bond is very intuitive and it can be
expressed as the sum of the future cash flows discounted back to todays date.
More formal it can be written as

18



N CF;

Bfw(th) - (1 + r)(T—t) + Z (1 +7”)t

The floating rate bond is a bit more complex to value. It can be valued using

an argument that the bond is worth its notional value directly after an interest

payment since it is the only “fair price” and there is no accrued interest. Suppose

that the notional is N and that one interest payment is denoted k, the value

of the bond just before an interest payment is N + k. Because the value of

the bond is N directly after a payment, it can be regarded as an instrument

providing just one cash flow at time ¢ where ¢ is the time to the next payment.
Hence, the value of the future cash flow at time ¢ is

(N +Ek)e "

where r is the risk free rate.

4 Pricing Discrepancies and Closing Times

4.1 Price Changes as a Function of Time

As proposed by Lunde and Timmermann [2004] a part of the stock price move-
ments can be explained by observable factors which leads to a semi predictable
market. Fama and French [2004] and Poterba and Summers [1989] provided
empirical support for the existence of mean-reverting component in the stock
price process and Campbell and Shiller [1988|, Fama and French [1989], Ferson
and Harvey [1991] showed that risk premiums, maturity premiums and expected
earnings could be used to model and predict the stock price movements. The
factors described can all be considered as a function of time since they all vary
with time. The time itself might not be the reason to the price changes, but as
time progresses the underlying factors changes which leads to changes in val-
uation. The information available, the investors will to take on risk and the
expectations of the market does also change with time. This leads to that even
fixed contracts such as bonds will have a fluctuation in their price during its
life time. In Cont [2001] the stock price is explained as a continuos process
that only can be observed during the time when the market is open. When the
market is closed, the process is still ongoing but because the price cannot be
observed, the price will make a jump when the market opens again. The plot
below shows a price process which is unobservable but made visible inside the
red dotted lines.
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Figure 3: Accumulated returns of an asset and the markets opening hours.

4.2 Valuation Jumps Depending on Closing Times

Since the price movement is depending on time, the price will make large jumps
if the time when the process is unobserved is long. If a portfolio consisting of
equities is valued before market closing there will be a significant error in end of
day pricing which will lead to a larger jump the following day when the market
opens. In Table 4, it is shown how large the average mispricing component of
an early closing is in regards to the asset price at closing time. For a single
stock, the mean of the absolute price difference is well above 0,3% which states
the obvious fact that a lot of available information for pricing is not being used
if the end of day pricing is done before the markets close.

[ Stock name \ Closing time | 16.00 | 16.15 [ 16.30 | 16.45 [ 17.00 | 17.15 | 17.30

|

ASTRA ZENECA 0,27% | 0,24% | 0,22% | 0,20% | 0,17% | 0,13% | 0,0%
ELECTROLUX B 0,35% | 0,32% | 0,20% | 0,26% | 0,22% | 0,17% | 0,0%
oM B 0,27% | 0,25% | 0,23% | 0,21% | 0,17% | 0,17% | 0,0%
SANDVIK 0,35% | 0,31% | 0,29% | 0,25% | 0,19% | 0,16% | 0,0%
SKANSKA 0,25% | 0,24% | 0,22% | 0,19% | 0,17% | 0,13% | 0,0%
SSAB A 0,42% | 0,39% | 0,36% | 0,31% | 0,27% | 0,22% | 0,0%
SWEDBANK A 0,35% | 0,32% | 0,29% | 0,25% | 0,21% | 0,18% | 0,0%
VOLVO B 0,32% | 0,28% | 0,24% | 0,21% | 0,19% | 0,16% | 0,0%

Table 4: Average absolute price difference from the actual closing price depend-

ing on the closing time.

To illustrate Table 4 even more clearly, the size of the valuation jumps are

plotted in figure 4 and 5. The time between the when the price is snapped and
market closing time is defined as 7. It can be seen that the size of the jumps gets
significantly smaller when 7 gets smaller. It can also be seen that the largest
jump is the one from 17.15 until 17.30 which is interesting since in implies that
the stock prices are more volatile at the very end of the day. This is supported
by results in Cont [2001] and the results in Section 5.
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Figure 4: Average absolute price difference from the actual closing price depend-
ing on the closing time.
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Figure 5: Average absolute price difference from the actual closing price depend-
ing on the closing time.

4.2.1 Distribution of Valuation Jumps

The expected value of a valuation jump between two time points is very depen-
dent on the overall trend of the stock. If a stock has 10% positive return in
one year, it is equal to a daily return of 0,04%. A valuation jump from 16.30
to 17.30 would then yield a return of 0,005%. These figures are far too small
to work with and the volatility computed on a one year data set would be very
large. Instead, the size of the valuation jump for an asset S between time t;
and tg, J(St,,St,) is computed by

J<St1’5t2) :‘ Stz - Stl ‘

and it is normalized by St to be presented in percentage form. It is observed
in Table 5 that the jump size from the actual closing time until the markets
open the next day is dependent on the closing time. When the closing time goes
towards market closing, the jump size gets smaller. Thus, it can be concluded
that the time before closing holds valuable information about the stocks value.
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| Stock name \ Distribution [ 16.00 [ 16.15 | 16.30 | 16.45 | 17.00 [ 17.15 |

ASTRA ZENECA 0,27% | 0,24% | 0,22% | 0,20% | 0,17% | 0,13%
ELECTROLUX B 0,35% | 0,32% | 0,29% | 0,26% | 0,22% | 0,17%
HM B 0,27% | 0,25% | 0,23% | 0,21% | 0,17% | 0,17%
SANDVIK 0,35% | 0,31% | 0,29% | 0,25% | 0,19% | 0,16%
SKANSKA 0,25% | 0,24% | 0,22% | 0,19% | 0,17% | 0,13%
SSAB A 0,42% | 0,39% | 0,36% | 0,31% | 0,27% | 0,22%
SWEDBANK A 0,35% | 0,32% | 0,29% | 0,25% | 0,21% | 0,18%
VOLVO B 0,32% | 0,28% | 0,24% | 0,21% | 0,19% | 0,16%

Table 5: Expected value of valuation jump size depending on time.

The volatility of the jumps however is measurable and gives a hint about
whether the last hour of trading gives a significant impact on a stocks closing
price. As seen in Table 6, the volatility of the jumps is decreasing as 7 is
decreasing. In line with the results presented in Table 4, a large bit of the total
volatility is obtained from 17.15 to 17.30. This yields that the volatility gets
higher when market closing is getting closer which is in line with results in Cont
[2001]. The volatility of the jumps between a fixed time and 17.30 is presented
in Table 6. To further illustrate the distribution and difference of the calculated
risk measures, they are plotted for every stock in Figure 6, 7, 8 and 9.

| Stock name \ Distribution [ 16.00 [ 16.15 | 16.30 [ 16.45 [ 17.00 | 17.15 |

ASTRA ZENECA 6,50% | 5,86% | 5,46% | 4,78% | 4,15% | 3,40%
ELECTROLUX B 8,50% | 7,98% | 7,07% | 6,27% | 5,34% | 4,14%
HM B 6,58% | 6,06% | 5,67% | 5,14% | 4,32% | 4,16%
SANDVIK 8,69% | 7,85% | 7,19% | 6,20% | 4,92% | 4,09%
SKANSKA 6,45% | 6,01% | 5,27% | 4,68% | 3,87% | 3,31%
SSAB A 10,60% | 9,72% | 8,55% | 7,34% | 6,42% | 5,22%
SWEDBANK A 8,99% | 8,01% | 7,28% | 6,27% | 5,21% | 4,38%
VOLVO B 7,83% | 6,91% | 5,97% | 5,40% | 4,73% | 3,85%

Table 6: Yearly volatility of valuation jumps depending on time.

4.3 VaR and CVaR Dependence on Closing Times

Value at Risk, or more commonly VaR, is by definition a lower a-percentile
of some random variable X. VaR is often used in engineering areas involving
uncertainties such as material construction, nuclear science and finance. Many
finance regulations such as Basel I, Basel II and Basel III uses VaR as risk
measure for portfolios with various assets. Since the measure uses the deviation
of asset returns, it can be computed as easily both for equities, commodities or
bonds. Portfolios that includes combinations of different asset types is just as
easy as a single asset type portfolio since the total portfolio returns are used
in the computations. The VaR measure is flexible in its definition and can be
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computed in several different ways. Some different ways will be introduced in
this chapter.

Definition 4.1 (Value at Risk) The VaR of X with confidence level & €]0, 1]
is

VaRy(X) =min{z | Fx(z) > a}

For normally distributed random variables, the VaR is proportional to the stan-
dard deviation. If X ~ N(u,0?)and Fx(z) is the cumulative distribution func-
tion of X, then according to Uryasev [2000] the VaR can be described as

VaRa(X) = Fx'(a) = p+ k(a)o
where k() = v2erf~!(2a — 1) and erf(2) = (2//7) [ e~* dt.

4.3.1 Estimating Current Volatility

To be able to compute the VaR measure with some methods and especially for
normally distributed random variables, a good approximation of the standard
deviation must first be obtained. The standard deviation can be interpreted
as market volatility if the random variables are market returns. Two different
ways to approximate the market volatility will be presented below.

Historical Volatility The easiest way to approximate the current market
volatility is the compute the historical volatility of the market returns. This is
made by simply treating every return as a random variable and compute the
variance of the random variables. Often, a one year volatility measure is used
but volatility in regards to another time scale can easily be transformed to yearly
volatility. The standard formula for computing the variance of market returns
is

1 T N
oir = ﬁZs:tﬂ(Rs — pt,r)?

Black-Scholes Implied Volatility Another way to to approximate the cur-
rent market volatility is to use the standardized Black & Scholes formula for
option pricing. As we recall from section 3.2, the price of a call option by the
Black & Scholes model is

C(S,t) = N(d)S — N(dy)Ke 7T,

where

and
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S a2
dy — In(3)+ (r—%)(T 1) —dy VT
o(T —1)
If the options market price can be observed in the market, it can be used
to solve the pricing formula for volatility instead. More exactly the price of
an option in the Black & Scholes world is C(S,T,t, K,r,0?) and if C*(S,t)
is the observed market price of the same option, o2 can be found such that
C(S,T,t,K,r,0%) = C*(S,t) and the volatility that solves this equation is the
volatility that is implied by the market. This can then be done for several
options with different strike prices to find a good approximate for the market
volatility.

4.3.2 Methods for Calculating VaR

There exists several methods to calculate VaR. The methods differ on vari-
ous points, but the biggest difference is the assumption on the distribution of
the underlying data. The choice of method is up to the computational power
available and the type of data. It is also possible to choose whether the VaR
measure should be bounded by real returns (Historical Simulation) or if the re-
turns should be interpreted as a part of unknown and approximated distribution
(Monte Carlo Simulation).

Historical Simulation This is the easiest way to compute the VaR. It simply
uses a time series of old returns which is sorted top-up. Sometimes weights are
applied to the time series to let the more recent observations have more impact
on the result. The return that corresponds to the a-th quantile is then the
worst return with probability P defined as P = 1 — « and this return is then
multiplied with the portfolio value to get the Value at Risk. If the returns are
normally distributed this method should yield the same result as the Delta-
Normal method.

Delta-Normal Method The Delta-Normal method assumes that all asset
returns are normally distributed. Since a portfolio simply is a linear combi-
nation of assets, which are normally distributed, the portfolio return itself is
also normally distributed. By computing the assets variances and their corre-
lations the portfolio can be expressed as a linear combination of variances and
covariances that is weighted on the exposure of the different assets.

Monte Carlo Simulation The distribution of the portfolio returns can be
approximated using historical data. After the type of distribution has been
chosen and the parameters has been approximated, the path of the portfolio
value can be simulated by drawing returns from the return distribution. This is
done for example one million times which yields a distribution of portfolio values
at end of the time period. By choosing the portfolio value that corresponds to
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the a-quantile and subtracting that portfolio value from the starting portfolio
value, the VaR is obtained.

4.4 VaR Calculations

Normally closing prices are used to compute the VaR to get an end of day
VaR. If the prices are snapped before closing time, the sample that builds the
VaR measure will be completely different. To show this effect, the VaR and
CVaR is computed for eight different stocks for seven different times and the
corresponding returns are presented in Table 7 and Table 8.

| Stock name \ Distribution [ 16.00 | 16.15 [ 16.30 | 16.45 | 17.00 | 17.15 | 17.30 |

ASTRA ZENECA 3.13% | -2,97% | -3,14% | -3,11% | -3,34% | -3,70% | -3,35%
ELECTROLUX B 3,45% | -3,33% | -3,80% | -3,52% | -3,48% | -3,53% | -3,58%
OM B 372% | -3,43% | -3,82% | -3,67% | -3,67% | -3,73% | -3,88%
SANDVIK 3,79% | -3,45% | -3,19% | -2,07% | -3,33% | -3,84% | -3,37%
SKANSKA 5,90% | -5,48% | -5,13% | -5,04% | -4,95% | -5,12% | -4,70%
SSAB A 4,84% | -5,10% | -4,48% | -4,48% | -4,51% | -4,67% | -4,59%
SWEDBANK A 427% | -4,73% | -4,86% | -5,12% | -4,66% | -4,98% | -5,42%
VOLVO B 4,01% | 4,40% | -3,99% | -3,06% | -4,03% | -4,44% | -4,35%

Table 7: VaR dependence on closing times. Portfolio value 1 million.
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Figure 6: Distribution of VaR numbers with different closing times.
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Figure 7: Distribution of VaR numbers with different closing times.

As can be seen in tables and the plots the VaR measure can vary a lot
depending on the closing time. For some of the stocks the difference can be
as big as 1% of the market price. This asymmetry in the histogram that is
depending on the closing time makes portfolios where different snapping times
are used very hard to model in a risk perspective. The table and plots with
the CVaR measure shows a smaller asymmetry between the different snapping
times. The risks are at the same time higher which results in higher risks with
less uncertainty. That is interesting due to the capital required to be hold by a
bank that is directly connected to the banks risk exposure. Table 8 presents the
calculations for the CVaR measure and figure 8 and 9 shows the distribution of

the CVaR measures.
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| Stock name \ Distribution [ 16.00 [ 16.15 [ 16.30 [ 16.45 [ 17.00 [ 17.15 [ 17.30 |

ASTRA ZENECA 3,83% | -3,64% | -3,73% | -3,67% | -3,66% | -3,77% | -3,53%
ELECTROLUX B 4,64% | -4,55% | -4,79% | -4,51% | -4,32% | -4,11% | -4,30%
OM B 5,18% | -5,01% | 5,07 | -5,01% | -5,01% | -4,99% | -5,10%
SANDVIK 4,14% | -3,77% | -3.52% | -3,47% | -3,68% | -3,93% | -3,70%
SKANSKA B 6,15% | -6,05% | -5,88% | -5,83% | -5,71% | -5,91% | -5,34%
SSAB A 5,16% | -5,36% | -4,82% | -4,73% | -4,66% | -4,78% | -4,72%
SWEDBANK A 6,74% | -7.27% | 7,14% | -6,99% | -6,81% | -7,28% | -7,44%
VOLVO B “1,07% | -4,40% | 4,12% | 4.21% | -4,05% | -4,56% | -4,55%

Table 8: CVaR dependence on closing times.
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Figure 8: Distribution of CVaR numbers with different closing times.

29



CYAR-SKANSKAB CYAR-SSABA

AR -SWEDBANK & VAR-YOLVO B

Figure 9: Distribution of CVaR numbers with different closing times.

To further illustrate the difference in the returns that yield the VaR figure,
the maximal difference defined as

Mazdiff =| VaRatae — VaRazin |

is computed for both the VaR and the CVaR measure for eight
stocks. It seems like the CVaR measure is a bit more compact than
the VaR measure, and as described before would that incline that the
CVAR measure yields larger risks with less uncertainty in regards
to valuation time.
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’ \ Max. Difference VaR | Max. Difference CVaR ‘

ASTRA ZENECA 0,73% 0,30%
ELECTROLUX 0,46% 0,68%
OM B 0,46% 0,19%
SANDVIK 0,87% 0,67%
SKANSKA 1,20% 0,80%
SSAB A 0,62% 0,70%
SWEDBANK 1,15% 0,71%
VOLVO B 0,48% 0,51%

Table 9: Maximal difference between computed VaR and CVaR values.

4.5 Theoretical Test: Is it Possible for a Fund to Have
Significant Different Performance Measures due to the
Closing Time

If two time series accumulates the same return over an interval, there can still be
significant differences in the standard deviation of the series. The standard devi-
ation is a critical component in many measures that are used to rank portfolios
and funds. To illustrate how time series with the same amount of accumulated
return can yield different performance measures, the following series has been
constructed and the Sharpe ratio has been computed in accordance with Bailey
[2012], thus
B[Ry — Ry E[R, — Ry

Sp = . =
P var (R, — Ryp)

’ \ Day 1 \ Day 2 \ Acc. return \ Annual std \ Sharpe ratio ‘

Serie 1 | 1,1% 1% 12,16% 20,1% 0,497
Serie 2 | 0,8% | -0,705% | 12,21% 14,40% 0,604
Serie 3 | 02% | 0,11% 12,27% 2,9% 3,37
Serie 4 | 0,045% | 0,045% | 12,30% o0 S, — oo

Table 10: Sharpe ratio for four constructed return characteristics, all yielding
an annual return of around 12,2%.

As seen in Table 10, the performance measures can differ depending on the
structure of the underlying time series. If a portfolios value is measured at
different times, the same portfolio could have different performance measures
depending on the time for valuation. To illustrate this effect, Figure 10 shows
three different time series all yielding 0% return over time. Every color has
two daily return characteristics where one line is dashed. The intraday return
measured at closing time is 0 for all time series but measured at 16.00, they
will show positive or negative returns. Every other day the dashed line is the

31



intraday return and every other day the full line will represent the intraday
return. The blue series will will yield the highest standard deviation but still
have a accumulated return around 0%. This phenomena gets interesting since
many funds report to consumer web sites that measures and compares the funds
performance, such as the swedish site www.morningstar.se. By sending data at
another time than the funds own closing time, there will over time be large
discrepancies between the measures indicated by the web site and the funds
own figures. This effect could be both positive or negative, but it is not likely
that a fund manager want to have more uncertainty regarding the performance
of his or her fund.

0015

16.00

0.005

-.008

I

Figure 10: Representation of the different intra day return characteristics.

4.6 Empirical Test: Does it Exist a Difference in Perfor-
mance Measures for a Fund Depending on the Closing
Time

To examine whether there could be a significant difference in performance mea-
sures if the valuation time is changed, the Sharpe ratio has been computed for
eight stocks and for the OMXS30. As a funds return is a linear combination of
the underlying assets, the stocks represent a part of a fund return. As Table
11 shows, there is a difference in the Sharpe ratios that could be relevant when
consumers are choosing in which funds to invest regarding to some performance
measure.
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’ | o17.30 | Si7.30 | 916.00 | Sie.00 | Siz.30 — Sis.00 | Abs. difference |

OMXS30 16,6% | 7,0490 | 16,9% | 6,9509 0,0980 141%
ASTRA ZENECA | 18,2% | 5,1175 | 19,0% | 4,3405 0,2770 5,72%
ELECTROLUX | 27,6% | 3,6039 | 26,9% | 3,6506 20,0473 1,31%
OM B 20,2% | 3,8258 | 21,2% | 3,9917 20,1659 1,34%
SANDVIK 25,2% | 3,9306 | 25,8% | 3,7939 0,1368 3,60%
SKANSKA 21,1% | 4,0566 | 21,7% | 3,0176 0,1491 3,55%
SSAB A 33,0% | 3,2581 | 33,0% | 3,1784 0,7960 2,51%
SWEDBANK | 29,0% | 2,6783 | 28,9% | 2,6729 0,0054 0,20%
VOLVO B 27,8% | 3,4863 | 26,2% | 3,6513 20,1650 4,73%

Table 11: Sharpe ratios depending on closing time.

To see how sensitive consumer behavior is regarding to performance mea-
sures, swedish equity funds that is listed on www.morningstar.se by the 2014-04-
25 has been sorted on standard deviation. This approach is encouraged by the
site and since investors in general wants low standard deviations in the returns,
it is more likely that consumers will choose the one with the lower standard devi-
ation. This list also shows that the difference between being the one with lowest
standard deviation and being the one at fourth place is just 0,5%, an effect that
easily could be obtained by some bad luck during the choice of valuation time.

’ Fund ‘ op ‘
Aktie-Ansvar Sverige 10,4%
Danske Invest Sweden A | 10,4%
Nordea Swedish Stars utd | 10,9%
PriorNilsson Sverige Aktiv | 11,2%

Table 12: Top Swedish equity funds based on standard deviation according to
morningstar.

5 Market Microstructure

5.1 Intraday Volatility Structure

The intraday volatility structure is computed by the technique introduced in
Zhang et al. [2005] as the “Second best approach: Subsampling and averaging”.
The method uses that even if the optimal sampling frequency is found, the data
might not be used to its full extent. To ensure this, the variance estimator
[Y,Y] is averaged to [Y,Y]“"? using K grids of average size . The following
formula is for the equidistantly sampled case which has been used to compute
the intraday volatility of OMXS30 displayed in Figure 11.
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For the full derivation and details of the formula, see Zhang et al. [2005].
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Figure 11: Intraday volatility for the OMXS30

5.2 Intraday Drift

If a stock has a yearly return of 10%, the intraday drift would be around 0,04%.
This figure is very small and very hard to estimate. The underlying assumption
that expected or historical yearly return is a good proxy and is scalable to a
daily figure is also not considered a fact in financial theory. The variance of
the estimate would also be so large that its confidence interval would probably
cross the zero even for a positive yearly return, which is a huge contradiction. A
small band moving average of daily drifts could just as easy be a good proxy for
the daily drift. Since the computation, the reliability and the variance argues
that intraday drift cannot be computed in a good way, with support of Lyons
[1995], the intraday drift is assumed to be zero and is not investigated further.

5.3 VaR-dependence on Market Microstructure

To capture the effects of market micro structure on risk measures the Value
at Risk and Conditional Value at Risk is computed with every minute of the
trading day as stopping time. This means that for every minute between 09.00
and 17.30 a daily return is computed. This is repeated for 250 days which yields
a data set containing 510 data series of 250 daily returns. When the VaR and
CVaR is computed for every data series, it yields 510 VaR and CVaR figures
for the OMXS30 respectively. These figures interpreted as a distribution of risk
measures and the shape of the distribution shows how sensitive the measure is
to the actual valuation time. One might argue that the closing prices at 17.30
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is not the best prices seen from for example a liquidity perspective, and that
it might be better to have 16.30 as the stopping time. Figure 12 and 13 shows
that these type of decisions can change the measured risk in a portfolio to a
great extent. The VaR is computed as a 99% measure and it is computed as,

VaRy(X) =min{z | Fx(z) > a}
using the historical simulation technique described in section 4.3.2.

VAR
25 T T T T T T

0.47 0472 0.974 0.976 0.978 0.98

Figure 12: Distribution of VaR numbers for OMXS30 with different stopping
times.
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Figure 13: Distribution of CVaR numbers for OMXS30 with different stopping
times.

As can be seen in Figure 12 and 13, the CVaR measure yields a higher risk
and a more compact distribution. This means that risk described by the CVaR
is more certain but it is also higher than the VaR. As they are defined slightly
different, the differences are expected and it is up to risk managers to decide
which method to use. However, the effects of the market micro structure is
smaller for the CVaR measure as can be seen in the more compact distribution.

5.4 VaR Uncertainty and Time Dependence

Looking at Figure 12 and 13, one can argue that the shown distributions might
consist of two different distributions. To try to find different characteristics in
the VaR uncertainty, the total uncertainty measured as the distance between
the smaller and the largest VaR value is computed for every half hour during
the day. This yields that if there exists a point on the curve where the the
uncertainty is significantly lower than the rest of the curve, it is highly probable
that it would yield a tighter VaR distribution to use that time for valuation. As
can be seen in Figure 14, 15:30 seems like a good time to snap prices in order
to have a low uncertainty in the measured VaR.
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Figure 14: Max difference in VaR for every half hour for the OMXS30.

5.5 Empirical Test: VaR Computations on Equity Port-
folios

Most equity portfolios are not as diversified as the OMXS30 indices. Since the
diversification yields a lower standard deviation in the returns, the VaR and
CVaR figures of an market index should be lower than the same figures for
an equity portfolio. To see this, the same method described in section 5.3 is
implemented to a equally weighted portfolio of eight swedish stocks. The results
from the computations are presented in section 5.4.2.

5.5.1 Indices Returns as Portfolio Proxies

It is common to represent a equity portfolio with a linear combination of equity
indices. This makes the data collection far more easy and the computations
becomes less complex. However, as mentioned before the standard deviation
of an market index is often far lower than a non fully diversified portfolio.
By computing the VaR distribution for the constructed portfolio mentioned
including the eight stocks and comparing it to the VaR distribution of the
OMXS30, a difference in the shape of the distribution is likely be observed.
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5.5.2 VaR Computations

20 T T T T T T T

EII?EI?4 0.976 0.97% 0.93 0.984 0.956 0.958 0.99

Figure 15: Distribution of VaR numbers for an equity portfolio with different
stopping times.
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Figure 16: Distribution of CVaR numbers for an equity portfolio with different
stopping times.

As proposed in Section 5.4.1 both the VaR and the CVaR for the equity portfolio
is significantly broader then for the OMXS30. This concludes the assumption
that a less diversified portfolio where returns are approximated by an equity
index is likely to show a VaR or CVaR figure that is lower than it would actually
be if computed on the actual portfolio instead of the proxies.

6 Time of Valuation for Products with Collateral
Agreements

6.1 Time of Valuation

Collateral agreements are common between banks and other financial firms in
order to minimize their respective credit risk. The agreement regulate how often
and within which boundaries collateral should be payed by the counterpart. As
an example, two banks (A and B) enters a one year forward contract on crude
oil. At the time of signing the contract has zero value, but as soon as the crude
oil price starts to move one bank will gain money and the other will lose money.
Since the contract is one year long, the payment at maturity date could be very
substantial if the crude oil price has increased or decreased a lot in combination
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with a significant contract size. If bank A has made a substantial profit, it
cannot be completely sure that bank B can meet its obligations and pay bank
A in cash. There is also no way for bank A to control if bank B has a hedge on
the position or if bank B has several big, naked positions which has all gone in
the wrong way. In that case, bank B could go bankrupt and bank A would not
receive all or any of the money gained within the contract. To keep the risks
down for both sides, a payment related to the daily price change is made every
day. At a predetermined level, for example 3% of the contract value, the bank
who has the short position will pay the excess value of the contract exceeding
3%. This is done every day and if the contract loses value, the bank who has
the short position will receive the collateral payment.

The plot below shows a contract that has value zero at the start and where
collateral has to be paid if the value of the contract exceeds the boundaries A
and -A. One bank will value the contract after 420 minutes, that is 16.00. The
other bank will value the contract at 420 + = minutes. The difference between
the valuation times is set to the parameter 7.

420 420+x

Start of
Random Walk

| O [ A

Figure 17: Visual representation of the collateral mechanics.

For a contract thats pays collateral, both counterparts must choose a time
when they value the contract and pay collateral to the counterpart if the current
valuation and the collateral agreement stipulates so. The time bank A choose
to value the contract is defined as the banks stopping time, in this case t4. This
section will show that the chosen time is important in regards to how much
collateral one side will have to pay. The paid collateral will always be even
when the contract matures, but there can be a huge difference in how much
money one side has to pay and how many payments they have to make. Since
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the bank that during the life of the contract has the money over night gets an
over night interest rate and the one who needs to borrow the money has to pay
the same rate it is crucial to pay as little as possible and at as few times as
possible. This is where the choice of stopping time gets very important.

6.1.1 Simulation of Aggregated Results

SHB uses a third party software to handle collateral payments. The system
makes it possible to see every daily payment to each counterpart but it is not
possible to see how much a certain contract or portfolio contributes to the
payment. That is because the total payment is a netted sum of individual
payments. In regards to the valuation time, every portfolio might have its own
valuation time and the assets included can be valued with prices that differs
from the valuation time. As shown in Figure 18, the system can be seen as a
black box that yields a single payment per counterpart each day. The payment
is dependent on the sum of multiple asset values which values either depend
on the movement of some underlying assets or the asset value depend on the
asset itself. If the system is observed during a long period such as a year, it
is possible according to Bjork [2009] to approximate the underlying assets with
a random walk with zero drift. This yields that every portfolio has expected
return zero and the the sum of the portfolios also has expected value zero. The
collateral payments also has expected value zero with variance dependent on
the total number of assets. This means that on average there should be the
same amount of outgoing and ingoing payments for the bank and that the total
payments should sum to zero. If that is not the case, the full specifications of
the box cannot be modeled with a random walk that implies there exist some
characteristics in the box which cant be interpreted. This could be discrepancies
in the valuation time, difference between how the banks collateral team works
or a factor that is unidentified.
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Daily Collateral Payments per Counterpart

Step 1. Compute result
per portfolio

Portfalio 1

AssetValue(EQ, COM, IR)

M

Evaluated at t=t0

Step 3. Compute
collateral payment
w.r.t weighted
collateral agreements

Step 2. Compute daily

Portfolio 2
total return

AssetValue(EQ, COM, IR)

b

Evaluated at t=t1

\ Portiolice e |Collateral
Payment
Portfolio 3
AssetValue{EQ, COM, IR)

b

Evaluated at t=t2

Portfolio N
AssetValue(EQ, COM, IR)

Evaluated at t=1t3

Figure 18: The process of computing the daily collateral payment for a single
counterpart.

6.1.2 Brownian Motions and Random Walks
The Brownian motion is described by the Wiener process, named after Norbert
Wiener. The Wiener process is a stochastic process with stationary independent
increments. The Brownian motion X; is characterized by four facts:
Definition 6.1: The Brownian Motion
1. Xy = 0 almost surely
2. X; is almost surely continuous
3. X; has independent increments
4. Xy — X~ N0t —s) for0<s<t

The standard Brownian motion has several interesting properties, some of them

are:
e The expectation is zero, F [X;] =0
e The variance is t, Var(X;) = E [X?] — E*[X)] = E [X?] - 0=t

e The covariance is, Cov(Xs, X¢) = min(s,t)
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Quadratic Variation For a Brownian motion or any other stochastic process,
it is possible to define its variation or Quadratic variation even though it is
a stochastic variable. A limit must then be introduced, and convergence in
probability &, = max;(t}},; — t;) is chosen since it is the weakest one and the
easiest one to work with according to Kurtz [2007]. The Quadratic variation of
a Brownian motion X; can then be defined as

T, =Y |B@t) - Bt )|’
=1

with the expectation
n N 9
E[T)) =T, =Y |B(t}) = Bt )| =D (ti —ti1) =t
i=1 j

Martingale Property for Brownian Motion The Martingale property is
very important to understand the Brownian motion. It basically states that
the best guess of the state of the Brownian motion in the next time step is
its current state. To understand the definition of the property, the concept of
filtration must be explained. A filtration F; is simply all the information about
the states of the Brownian motion from zero up to the state at time ¢. Since
every increment of the Brownian motion is independent and normal distributed,
the process from t to t 4+ s is a new Brownian motion which fulfills all of the
criterias in Definition 6.1. It is now possible to define the Martingale property.

Definition 6.2: Martingale Property for the Brownian Motion
A stochastic process {X(t),t > o} is martingale if for any ¢ it is integrable,
E|X(t)| < oo, and for any s > 0

E[X(t+s)|F]=Xt) as.,

where F; is the information about the process up to time ¢.

Symmetry of the Brownian Motion To prove that the brownian motion
is symmetric it must be shown that X; := —W; is a Brownian motion if W} is
a Brownian motion. According to Definition 6.1, it must be shown that all four
properties of the Brownian motion still is valid for Xj;.

1. Xo=-Wo =0

2. Since Xy, =X, , = —(W;, =Wy, _,) and we know that W, —W;, Wy _ —
Wi, 5y ..., Wi, — Wy, are independent, we obtain that the random variables
X, — X X, — Xy ..y X, — Xy, are independent.

n—17 n—27"°

3. Xy — Xy = —-(W, —W,) ~ —N(0,t —s) = N(0,t — s) since the normal
distribution is symmetric.
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4. Clearly t — X;(w) = —Wy(w) is continuous, since t — W(w)

Now it can be concluded that the Brownian motion behaves in the same way in
both positive and negative directions since it is symmetric.

Stopping Times Stopping times will be used to define certain times when
the state of a Brownian motion is measured. Since those times will be known,
a simple definition of stopping times will suffice.

Definition 6.3 (Stopping times) A random time T is called a stopping
time for B(t), t > 0,if for any ¢ it is possible to decide whether T has occurred
or not by observing B(s), 0 < s < t.

6.1.3 Theoretical Approach to Determine an Effective Valuation
Time

If the market is sampled every minute, from the market opening at 09.00 there
is 420 minutes until 16.00 which is then used as benchmark for the first closing
time in this section. Due to symmetry, the probability of the random walk
being larger than A or smaller than -A, at a certain time ¢, is equal and does
not depend on the variance of the Brownian motion. Since the variance is
positive, the following proposition holds if > 0 and X; is a Brownian motion
due to the definition of quadratic variation.

Xa20

VA

and this is true due to the fact that

P(Xas0 < A) = P42 < 1) < P(X 9000 < A) = P(% <1 @®)

VG,T(X420) = V4200 = v420 < VG/I”(X420+93) =V 420 + xo = /420 + x T > 0

For the extra steps x it is true that P(X, < —2A) >0 forallx > 0. If x — 0
then P(X, < —2A) — 0 since the quadratic variation of the Brownian Motion
goes towards zero. This means that it is possible that one random walk yields
two collateral payments if x > 0. If = 0, then there can only be one collateral
payment for each Random walk. This is why the bank B will always will pay
more collateral than bank A.

The probability of a random walk after = steps to be larger (smaller) than
A (-A) is equal due to the symmetry of the Brownian motion.

6.2 Simulation Test: Is the Number of Unnecessary Col-
lateral Payments Dependent on the Stopping Time?

To simulate a daily return of a financial contract a random walk is used. Due
to the fact that an intraday price change is modeled, the drift p is expected
to be zero according to Bjork [2009]. The random walk simulates the price of
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the contract and the two boundaries A and —A simulates the price level of the
contract where collateral has to be paid. The simulation is conducted by letting
the random walk start from zero and then measure its value on the first stopping
time ¢; which is located after 420 steps, one step for each minute between 09.00
and 16.00. If the value of the random walk is larger than the boundary A at
time t4 company A has to pay collateral. The random walk then continues with
extra steps according to Table 5 and checks the value of the random walk at

Ll L (D) NN, PR I F g [ ) PN ) [ A A 1L 1 PR ]

Bank A pays collateral

Price of
confract

Bank B pays collateral

Figure 19: If the price of the contract reaches the grey level, there will be a
collateral payment.

By shifting the number of extra steps z, it is shown how a bigger |t4 — tg| =
T will give extra collateral payments for company B. This procedure is repeated
one million times and then it is possible to compare the ratio of collateral pay-
ments by bank A and payments made by bank B. Because of the symmetry of
the Brownian motion, it is not necessary to fit the Brownian motions parameters
to real market data. As long as the problem is symmetric, the ratio between the
collateral payments will be correct. The pseudo code for the simulation process
can be seen below.
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Algorithm 1 Collateral Simulation Process
varl=0

var2=0

Repeat one million times

e Let the Random walk X, take 510 steps
e if X499 > 50 then varl = varl+1
e if X519 < -50 then var2 = var2+1

varl equals the number of collateral payments for company A
var2 equals the number of collateral payments for company B

6.2.1 Simulation with an Ito Process

The simulated process is dX; = pudt + cdW; where y = 0 due to the intraday
time period. The zero drift for intraday periods is also described by Becker et al.
[2009]. This yields a simple zero mean stochastic process X ~ N(0,1) which is
repeated in every time step like Y; = Y;_; + X where X ~ N(0,1) according to
the definition of the Brownian motion. For one million simulations, the flow of
collateral payments can be seen in Table 5.

’ Extra steps \ Payments from A \ Payments from B \ Extra payments from B ‘

20 7450 8530 15.1%
30 7529 9196 22.1%
40 7445 9896 32,9%
60 7217 11181 54,9%
90 7311 13327 82,2%

Table 13: Simulated collateral payments using an Ito process.

6.2.2 Simulation with a Jump Process

The price process of the market could also be interpreted as a stochastic process
with a possibility to make jumps. The assumption that the process could take
jumps is empirically validated in Westman and Hanson [2002] and could easily
be explained by political statements, terrorist actions or natural disasters. The
jump process is defined as dX; = udt + odW; + 0dQ where d@Q is a random
variable defined as

o [ X~NO1)  prob=0,008
o 0 otherwise

Since the problem i symmetric the size of § just alters the number of total
payments. The ratio between the payments from A and B will be the same
for every 4. With that in mind, § is set to 6 as it yields about two times the
payments as the Ito process for the interval and due to the symmetry it does not
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have to be estimated with market data in order to give valid results. The same
simulation technique as in 6.2.1 is then used to find the number of payments for
both counterparts.

’ Extra steps \ Payments from A \ Payments from B \ Extra payments from B ‘

20 16104 18306 13,7%
30 16023 19402 21,0%
40 16138 20590 27,6%
60 16129 22850 41,7%
90 16264 25971 59,7%

Table 14: Simulated collateral payments using a Jump process

As the variance is higher for the Jump process than the Ito process, the
percentage of extra payments is larger. As seen in table 15, the total sum of
payments is also larger which implies that the total number of payments and the
percentage of extra payments could be interpreted as a function of the process
variance. This result yields that if the market can be modeled by a process with
jump characteristics, then the choice of stopping time is extra important.

Extra steps \ Ito process \ Jump process \ Total extra payments

20 16030 18597 16,0%
30 16725 19358 15,7%
40 17341 19823 14,3%
60 18398 21763 18,2%
90 20638 23979 16,1%

Table 15: Total number of Collateral Payments

Table 15 compares the total number of payments generated by the Ito process
and the Jump process. As stated, the jump process yields more payments since
the variance increases as the jumps are introduced.

6.3 Empirical Test: Does Collateral Payments depend on
the Stopping Time?

The problem regarding collateral payments is not strictly mathematical. If a
contract has moved in such way that it should yield a collateral payment, the
receiving part must send a request of payment. The counterpart could then
argue about valuations discrepancies and it is not sure that a payment will take
place. This makes it very important to have qualified and competent staff in the
collateral department. Since an outgoing payment yields a direct cost or a direct
loss of income, a bank or financial institution will try to minimize its collateral
flow without losing counterparts, costumers or market reputation. The effect
regarding the effectiveness of the collateral staff is hard to quantify and analyze
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in a mathematical fashion. Since factors such as stopping times, competence
and ability within the collateral department and their backup from valuation
groups, it all boils down to payments into the bank and out from the bank, it is
very hard to isolate the factors and analyze them separately. In a mathematical
point of view without the other effects, the extra collateral payments for the
one has the latest closing time is because of the positive probability that the
value of the contract goes from receiving collateral to paying collateral. In the
introduced framework it is equivalent with the random walk going from 0 to
—2A in the interval 7 which is illustrated in Figure 18.

Figure 20: The probability for a random walk to reach in -2A in 7 is larger than
Z€ro.

6.3.1 What is the Real Cost of a Non Optimal Closing Time?

As described in section 6.3, the money transferred due to collateral payments is
not just due to the stopping time. As stated before, a contracts price assumed
to follow a random walk with zero drift intraday, thus its price is normal dis-
tributed. When several normal distributed contract returns are summarized to
a portfolio, the portfolio return is still normal distributed with zero as expected
value. With many portfolios summarized to a result for one counterpart, the
result per day has still zero mean and the variance is lower than the sum of
the individual variances. A sum of n of those daily results for one counterpart
should sum to zero, with an expected value that goes to zero when n becomes
big. By taking real collateral data and assuming that the contracts follow the
random walk, the closing times and valuation models are identical and that the
different collateral teams are equally effective the collateral payments should
sum to zero. The number of payments, the number of days with positive cash
flow and the total paid interest should also be equal for both counterparts. The
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tables below shows real data concerning the bank and its counterparts. The

period is one year.

’ Counterpart \ Received money \ Transferred money \ Excess payout ‘

Bank A X 1,33*X 33%
Bank B % 116%Y 6%
Bank C Z 1,35*%Z 35%

Table 16: Total amount of received and transferred collateral payments. Masked
digits.

Table 16 shows that SHB pays out more collateral than it receives during
the period of measurement and for the three mentioned counterparts.

’ Counterpart \ Number of incoming payments | Number of outgoing payments

Bank A 119 117
Bank B 132 159
Bank C 121 101

Total 372 377

Table 17: Total number of ingoing and outgoing collateral payments.

Table 17 shows that the number of ingoing and outgoing payments are about
the same if measured as the total sum of the individual counterparts.

’ Counterpart \ Days with positive cash flow \ Days with negative cash flow ‘

Bank A 89 144
Bank B 94 197
Bank C 87 135

Table 18: Total number of days with positive and negative cash flow.

Table 18 shows that the total number of days with negative cash flow is
significantly larger for SHB than for its counterparts.

’ Counterpart \ Interest cost for the counterpart \ Interest cost for SHB \ Extra interest ‘

Bank A X 1,40%X 10%
Bank B Y 2,00%Y 110%
Bank C Z 9,52%7 952%

Table 19: Total interest rate cost for SHB and its counterparts. Masked digits.

Table 19 shows that SHB pays significant more interest than its counterparts

for the measured period.
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7 Discussion and Conclusions

The valuation of derivatives does not invite to significant challenges. For the
interest rate products, the construction of the yield curve is essential and a lot
of effort should be put in to choosing the right underlying interest rate points
for the curve. As proven in 3.1.2, different interpolation methods does not yield
a significant price change for a bond and the valuation mechanism seems fairly
robust to mispriced interest rate points. For the other types of derivatives, the
challenging part is to obtain high quality input parameters to the valuation
methods. As for the volatility, several methods are introduced in 4.3 and 5.1.
The analysis of valuation jumps from an early closing time to market close
shows significant results that the closing time affect the size of the valuation
jump which is made at market opening the following day.

The VaR and CVaR are both very sensitive to changes in the valuation time.
The CVaR shows a more compact distribution than the VaR, but shows at the
same time higher total risk. From the banks point of view, if the risk figures are
lower, less money has to be hold to make up for the risks. This fact make the
banks choose the VaR approach even though the distribution is broader and the
uncertainty is larger. When risk limits for trades are expressed in VaR figures,
the measure becomes more relative than absolute since a change in the closing
time would yield a new correct but completely different VaR figure. VaR can
be a good measure of risk if it is compared with the same measure from the
previous days. To just have one VaR figure can be very illusive and bring a
false confidence of knowing the risk exposure. If just one figure is presented, it
is impossible to know where in the risk distribution the figure is located and as
shown in 4.4 the difference can be 1% for equity indices such as OMXS30 and
even larger for equity portfolios with poor diversification. It is shown that for
the Swedish stock market, it would yield the lowest uncertainty to use 15:30 as
valuation time.

In 4.5 it is shown that a fund or equity portfolio can have severely different
risk measures depending on when the portfolio is valued. To counter this effect,
some performance measures are computed over a period as long as ten years. If
one year measures are used, which is common for new funds, there is a very large
dependence between closing times and the standard deviation. It is proven that
for the same yearly return, the standard deviation can go from zero to infinity
all depending on the closing time. This is tested empirically in 4.6 and it shows
that a portfolio composed with either luck or bad luck can show very low or
very high standard deviation depending on the time of valuation.

The intraday volatility structure is introduced and estimated in section 5.
The intraday drift is disregarded because of the assumption that the stock re-
turns follows a brownian motion with such a low intraday drift that it can be
regarded as zero. The technique of proxying equity portfolios with indices when
computing risks is introduced and it is shown that this method often underes-
timates the underlying risks.

Contracts with collateral agreements are introduced in section 6. The as-
sumption that all contract prices follows a random walk makes it possible to
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analyze the closing time dependence both analytical and by simulation. The
structure of the collateral payments are examined, and it shows that the infras-
tructure in place to make the computations and payments easy also makes it
hard to evaluate the performance of the collateral group and to separate the
effects from various identified sources of error. The goal was to separate the
closing time as the source for additional payments and to show that a changed
closing time would solve the problem. Instead, it has been showed that there
are indications that SHB pays to much in collateral and several possible reasons
for this has been mentioned. To move the closing time backwards is however a
good idea not depending on the possible reasons for the additional payments.
The figures of the total cost of collateral interest for every counterpart is masked
in this presentation, but the sum is however big enough for the bank to start
their own investigation of possible factors that leads to additional collateral
payments.

8 Proposal for Further Research

The quantitative parts of this thesis is all limited by the used data set. Since
high frequency data stock market data is very expensive, only one year of minute
data was available for the indices and the eight different stocks used. The
results would have more impact if the period was extended and if the tests
were conducted with sub periods to check if the results were valid in both up
trending and down trending markets. Further, it would be interesting to extend
the VaR analysis to leveraged derivatives to see if the skewness in the measure
depending on the closing time would increase with the leverage. From the banks
perspective, the collateral mechanism is interesting to investigate further. The
impacts from the various sources is hard to separate but the results still implies
that SHB is paying significantly more collateral than it statistically should. This
indicates that there are improvements to be made in the choice of closing time
and in the soft areas that cannot be quantified.
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