
Master Thesis 
15 ECTS 

Autumn, 2014 

 
 
 
 
 

 
 

The Relative Performance of  
Conditional Volatility Models 

 
- An Empirical Evaluation on the  

Nordic Equity Markets 
 

 
 

 

 

Author: Kristoffer Blomqvist 

Supervisor: Bujar Huskaj 

 
 
 

 
 
 
 
Keywords: Volatility components, forecasting, long-run volatility effects, explanatory power, 

conditional volatility 



2 
 

  



3 
 

Abstract 
By regressing volatility series of equity returns on macroeconomic variables using data from 

the Nordic countries (Denmark, Finland, Norway and Sweden), three conditional volatility 

models (GARCH(1,1), CGARCH and SV) are evaluated on their ability to capture effects of 

long-run volatility shocks. In addition, the same models' short-run forecasting performance is 

tested by employing a rolling window approach. The results suggest that none of the models 

are superior of capturing long-run volatility effects, and the same holds for the short-run 

forecasting performance. The Stochastic Volatility model has the worst performance on 

average, while the difference between the GARCH-type models are negligible.  
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1. Introduction  
 
Ever since Markowitz’ Modern Portfolio Theory (1952) and the development of CAPM by 

Sharpe (1964) and Lintner (1965), the by far most important and widely used measure of risk 

has been the volatility (variance or standard deviation) of returns. In particular, asset 

allocation, risk management and asset pricing depend highly on volatility and the models used 

for estimation and forecasting it. From the past decades' increasing complexity of the 

financial markets, the ability to reduce (or optimize) risk exposure has become one of the 

most important merits for today’s investors. Nowadays, it is even possible to trade derivative 

instruments for which volatility itself is the underlying asset (Poon and Granger (2003)), 

which further enables investors to achieve one's desired risk exposure. 

  

Following the progression, a vast literature on the subject of volatility of financial assets has 

emerged. The arguably most important foundation for this branch of the literature is the work 

of Engle (1982), developer of the Autoregressive Conditional Heteroscedasticity (ARCH) 

model, and Bollerslev (1986), who extended the work by Engle into the Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) model. The basic idea is that the 

volatility of returns depends on past error terms (ARCH) as well as past variances (GARCH), 

implying that the volatility varies over time. Today, there are virtually countless variations 

and extensions of the most basic GARCH(1,1) model, all of which have different 

specifications in order to take various measures and events into account. 

 

One must keep in mind that the effects of complex market structures and time varying 

volatilities are not isolated to individual financial markets, but are relevant for policy 

decisions at macro level as well. For instance, events such as the tech bubble in the early 

2000's or the recent global subprime crisis have had great impacts on e.g. GDP growth and 

consumer behaviour. Thus, the research on volatility and volatility modelling remains highly 

topical and important, not only for investors, but for policy makers and consumers as well.  

 

In excess of the important but simple ARCH model, Engle in collaboration with Lee (1999)  

introduced a model within a special branch of the GARCH-family that separates the total 

volatility into a long- and short-run component. This particular two-component model by 

Engle and Lee is called the Component GARCH (CGARCH) model, and it was developed 

with the purpose to better take long-run persistency of volatility shocks into account. Since 



6 
 

then, several models have been developed based o the same principle (see e.g. Engle and 

Rangel (2008) and Cho and Elshahat (2014)). Since the financial markets are closely 

connected to macroeconomic factors, the long-run equity volatility is expected to partly be 

explained by variables such as GDP, inflation, interest rates etc. However, no consensus has 

been reached among researchers about which model has the best ability to capture these 

effects.  

 

In excess of correctly describing contemporaneous states of the world, the probably most 

important attribute of a model is, as Guidolin et al. (2009) put forward, the ability to 

accurately depict future events by forecasting. For instance, investments are generally made 

on the basis of beliefs about the future, and thus the forecasting ability of e.g. volatility 

models are put to the ultimate test. Still, despite the extensive research on the subject of 

volatility forecasting, no model has yet proven to be superior for the purpose of accurately 

describing future volatility.  

 

Based on the background above, the purpose of this thesis is to compare three conditional 

volatility models (GARCH(1,1), CGARCH and SV) on their ability to capture effects from 

persistent volatility shocks caused by macroeconomic factors, with particular interest in the 

long-run component of the CGARCH model. In addition, the short-run forecasting ability of 

the chosen models will be evaluated. The study is thus divided into two parts. The first part 

examines the explanatory power of macro variables on conditional volatility, as well as the 

ability of volatility models to capture effects of persistent volatility shocks. Three models with 

diverse properties are tested, namely the classic GARCH(1,1) model, the CGARCH model 

and a Stochastic Volatility (SV) model. The examination is performed by an OLS regression 

analysis. The second part evaluates the forecasting ability of the models. This is done by 

rolling window forecasts of the one-day-ahead conditional variance of the main stock indices 

in the Nordic countries (Denmark, Finland, Norway and Sweden). Several measures 

commonly seen in similar studies are used in order to evaluate the performances. The data set 

runs from 1993 to 2014, and includes periods of both economic distress as well as strong 

economic growth. This, in combination with the inclusion of four different markets provides 

robustness to the study.  
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The main results from this study tell us that the CGARCH model does not outperform the less 

sophisticated GARCH(1,1), neither for modelling long-run volatility nor for short-run 

forecasting, and that the SV model has the worst performance on average. 

 

The remaining text is organized as follows: Section 2 summarizes some of the most relevant 

previous research. Section 3 provides a brief overview of the theoretical framework and 

presents the models of choice. In Section 4, the data is discussed, while Section 5 describes 

the empirical methodology. Section 6 presents the results, which are discussed and analyzed 

further in Section 7. Finally, Section 8 concludes. 

2. Literature Review 
In this section, a brief summary over some of the most important and relevant studies 

previously made on the subject is provided. 

 

Sharing similarities with the CGARCH model, Engle and Rangel (2008) introduces the 

Spline-GARCH in an attempt to find a model that allows for long-run volatility forecasts that 

are dependent on macroeconomic variables. They use a large data set covering nearly 50 

countries, and the estimations are conducted using an unbalanced panel regression with 

various specifications. The authors’ main findings suggest that the long-run volatility 

component of their model is relatively high when the volatility of macroeconomic variables 

such as GDP, inflation and interest rate is high and output is low.  

 

Speight, McMillan and Gwilym (2000) use intra-day data from the UK FTSE-100 futures 

index to investigate the properties of the CGARCH model proposed by Engle and Lee (1999). 

Their findings support the component structure of the model, but the results also show that it 

is difficult to separate the long-term component from the total volatility for data at relatively 

low frequencies (at half-day frequency). 

 

As a response to the findings of Engle and Lee (1999), Cho and Elshahat (2011) present their 

own version of the CGARCH model called the Modified Component GARCH (MC-

GARCH). Their goal is to implement a model with a better ability to filter the long-run 

volatility in order to make it more distinguishable from the total conditional variance. The 

authors use various methods for evaluating the filtering performance of the MC-GARCH 
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model, and conclude that their model outperforms the CGARCH model’s filtering ability. 

Further studies of the properties of the MC-GARCH are conducted in Cho and Elshahat 

(2014). In their paper, they perform a comparison between the MC-GARCH model and the 

Spline-GARCH model introduced by Engle and Rangel (2008). The authors estimate the 

long-run and total variance on a daily basis and annualize the volatilities by average each 

year. The annualized volatilities are then modelled in a simple linear regression along with 

macroeconomic variables. Cho and Elshahat (2014) reach to the conclusion that macro 

variables better explain the long-run component of the MC-GARCH model than that of the 

Spline-GARCH model. 

 

As for the forecasting abilities of ARCH/GARCH-family models, Poon and Granger (2003) 

provide an extensive review of most of the research made on the subject until the date of their 

article. They found 93 research papers on the matter, and conclude that financial volatility 

clearly is predictable. However, they cannot find any definite results suggesting that one 

volatility model, or class of volatility models, has a superior forecasting performance.  

 

Yu (2002) performs a study on volatility forecasting in the New Zealand stock market with 

daily data. Nine different models are evaluated, including GARCH-family models and a 

Stochastic Volatility model, using four different measures such as RMSE and Theil’s-U. One 

of their main conclusions is that the SV model exhibits superior forecasting performance 

according to three of the evaluation measures.  

 

Goyal (2000) focuses entirely on GARCH models and their forecasting ability. The author 

employs a measure of actual volatility using daily data, and concludes that volatility forecasts 

explain very little of the actual volatility proxy. In addition, Goyal finds that a simple ARMA 

process has a better out-of-sample forecast ability than a more advanced GARCH-M model.  

 

In a paper by Hansen and Lunde (2005), 330 ARCH-type models are compared by means of 

their ability to describe the conditional variance. The authors use the DM-USD exchange rate 

and IBM stock returns for evaluation. For the exchange rate analysis, Hansen and Lunde 

cannot show that a simple GARCH(1,1) model is outperformed by more sophisticated 

models. However, for IBM stock data, the GARCH(1,1) model is found to be inferior, and 

models that incorporate a leverage effect for individual stock returns are found to have better 

forecasting abilities.  
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Ding and Meade (2010) examine the forecasting ability of GARCH-, SV- and EWMA 

(Exponentially Weighted Moving Average) models under different simulated volatility 

scenarios. The authors find little difference between the models in the simulated experiments, 

but for real underlying data the EWMA model seems to be somewhat more reliable and 

accurate than the two other types of models.   

3. Theoretical Framework 
This section provides a short introduction to the theoretical background upon which this 

thesis is based. Section 3.1 introduces the concept of volatility clustering and conditional 

volatility. Section 3.2. describes the conditional volatility models in greater detail.  

3.1. Constant-, and Conditional Volatility 
 
It is often observed that the volatility in financial time series (of returns) is not constant over 

time
1
. That is, during some periods the volatility is relatively low, while for other periods the 

volatility is high. In addition, studies have found that periods with high (low) volatility tend to 

be followed by periods with high (low) volatility. Mandelbrot (1963) was one of the first 

researchers to come to this conclusion, and the phenomenon is known as volatility clustering.  

 

In order to find a model that is able to capture the effect of volatility clustering, Engle (1982) 

developed the ARCH (Autoregressive Conditional Heteroscedasticity) model, in which the 

conditional variance depends on past squared returns. To illustrate, consider the following 

equations for describing the returns of a financial time series   : 

 

       ,                                                               (1) 

       ,                                                                   (2) 

 

Where   is the unconditional mean of   , and    is an independent and identically distributed 

random variable with mean zero and unit variance, i.e.    iid     . Equation (1) is also 

known as the mean equation, Equation (2) is the GARCH process. Here, if the returns are 

homoscedastic,    does not vary with time (     . However, if the series exhibit 

heteroscedasticity (or ARCH-effects), the conditional variance of the returns is given by: 

                                                        
1 The term volatility is in this study synonymous with variance. The terms are used interchangeably 
throughout the text. 
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 ,                                                           (3) 

 

where     and       to ensure stationarity and non-negativity of   
 . This equation of 

conditional volatility of some (G)ARCH model may include more lags of   , and can 

therefore more generally be written as: 

 

  
           

  
   .                                                    (4) 

 

Bollerslev (1986) generalized the ARCH model by Engle, so that the conditional variance 

depends both on past squared returns as well as past variances. The Generalized ARCH 

(GARCH) model is formulated as: 

 

  
           

  
           

  
   .                                      (5) 

 

For ARCH and GARCH models, the time-t conditional variance is exogenously given and 

known at time t-1. Moreover, the estimation procedure is normally performed by Maximum 

Likelihood (ML). 

 

Much research has been devoted to the question of what drives the volatility of financial 

returns. Most studies have focused on forecasting, either by studying the series of returns in 

isolation, or by measuring effects of news and announcements. However, only a fraction of 

the research made has considered general macroeconomic states as a factor for explaining the 

conditional volatility. It is a well known fact that volatility tends to be high during recessions, 

and low during periods of stable growth (Cho and Elshahat (2014)). A challenge faced by 

economists is thus to capture effects from macroeconomic factors, which are generally less 

frequently measured and less volatile than financial assets. Therefore, extensions of GARCH-

type models that incorporate two volatility components have been developed, where one 

component captures long-run non-constant persistence and the other describes short-run 

volatility shocks. The purpose is to achieve more accurate estimates of total volatility.  
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3.2. Conditional Volatility Models 
 
In this study, three main models are being evaluated on macroeconomic explanatory power, 

and short-run forecasting ability. Below follows a brief description of each model. 

3.2.1. GARCH(1,1) 
 
The most simple version of any GARCH(p,q) model is the GARCH(1,1). It is often found to 

be robust and useful for accurately describing and forecasting conditional variances of 

economic variables (see e.g. Bracker and Smith (1999) and Hansen and Lunde (2005)), and 

therefore it serves as a benchmark model in many evaluation studies. The equation for the 

conditional variance is specified as: 

 

  
         

       
 ,                                                 (6) 

 

where   is the intercept and               and         in order to ensure 

stationarity and non-negative values of   
 . 

3.2.2. CGARCH 
 
The Component GARCH (CGARCH) model by Engle and Lee (1999) is a two-component 

GARCH model that captures “long memory” in the volatility of financial time series. The 

authors find that aggregate volatility is affected by shocks at different frequencies, but argue 

that the CGARCH model captures the effects of both short-run, and more persistent long-run 

volatility shocks. The long-run shocks can be caused by economic states and events, e.g. 

macroeconomic factors, while short-run volatility is typically caused by news and 

announcements. To see how the CGARCH model is specified, consider again Equations (1)-

(2) above. In the CGARCH model, the conditional variance is given by: 

 

  
           

              
       ,                                 (7) 

           
      

        .                                                 (8) 
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We can rewrite the expression above to obtain: 

 

  
        ,                                                                                     (9) 

          
              

       ,                                        (10) 

           
      

        ,                                                (11) 

 

where    is the short-run, or transitory component, while    is the long-run time-varying 

component.   
  is stationary if     and        . Non-negativity is assured if     

                      and    . Moreover, by rewriting Equations (9) - 

(11), a reduced form of the model can be expressed as: 

 

  
                    

                  
  

            
                 

                                        (12) 

 

It is now apparent that the conditional volatility follows a restricted GARCH(2,2) process. 

The model reduces to a form of GARCH(1,1) if either       or      . Moreover, 

just as for the GARCH(1,1), the estimation for CGARCH is normally done by ML.  

3.2.3. Stochastic Volatility 
 
Unlike standard ARCH/GARCH models, the time-t conditional variance in a Stochastic 

Volatility (SV) model is not observable at time t-1 because the parameters are endogenously 

estimated. The foundation for SV models is found within the continuous time framework, but 

here the model is applied in a discrete time setting. Given the same mean equation and 

GARCH process as for previous models (see Equations (1)-(2)), we now assume that the 

logarithm of the conditional variance follows an AR(1) process: 

 

     
             

     .                                            (13) 

 

However, since   
  is not observable at time t-1, the usual ML estimation is not feasible. To 

solve the problem, one can employ a Quasi-Maximum Likelihood  (QML) estimation with the 

Kalman filtering procedure. To illustrate, let us first take squared logarithms and rewrite 

Equations (1)-(2) as: 

 

     
          

         
         

  .                                    (14) 
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Transforming the above expression further by adding and subtracting        
   , we get: 

 

     
          

           
          

         
          

    .             (15) 

 

If we assume that    iid     , it is possible to show that      
          

  

 
 . To simplify, 

we rewrite Equation (15) as: 

 

  
             ,                                                    (16) 

 

where   
       

          
   ,         

   and         
          

   . The conditional 

variance (    in Equation (16) is specified as: 

 

             .                                                   (17) 

 

Although the true distribution of    in Equation (16) is unknown, we can obtain estimates of 

   by treating it as          
  

 
 . It is further assumed that    NID     

   and         

 . Now, we can estimate    by using Kalman filter based QML. The estimation procedure is 

explained below. First, we introduce a few notations in Table 1. 

 
Table 1 - Notations for Kalman filter based QML 

Notation Explanation 

   Information set available at time t 

                    Estimate of    conditional on information available at time t-1 

                       
 
  Variance of    conditional on information available at time t-1 

                Estimate of    conditional on information available at time t 

                   
 
  Variance of    conditional on information available at time t 

                    Forecast of    conditional on information at time t-1 

                   Forecast error 

                 
   Conditional variance of the forecast error 
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The estimation process consists of two main steps: forecasting and updating. We start by 

calculating         in order to obtain the forecast of   . Thus, we must set priors of   
   and   

   

as well as for   and   in Equation (17) since no information is available at time 0. 

 

From the priors, we get: 

 

                    ,                                                         (18) 

                      
 ,                                                      (19) 

                                ,                                (20) 

                  
 .                                                              (21) 

 

Now we update the values to make a more accurate inference about the conditional volatility. 

This is possible since the forecast error         contains new information about   . We have: 

 

                       ,                                                        (22) 

                       ,                                                       (23) 

 

where    
       

       
. This is also known as the Kalman gain, which determines the weight 

assigned to new information about    contained in        . The procedure described above is 

then repeated recursively until time t = T. The final log likelihood function is given by: 

 

      
 

 
       

 

 
             

  

 
  

    
 

 
 

   
               

 

        
  

 

 
   ,              (24) 

 

where          
    

  . For a more detailed explanation of the Kalman filtering based 

QML, see Kim and Nelson (2003).  
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4. Data 
 

The equity data used in this study consists of daily MSCI index points ranging from January 

1
st
 1993 to May 5

th
 2014

2
. The daily returns are calculated as: 

 

      
  

    
 ,                                                            (25) 

 

where    is the closing index point at time t. Macroeconomic time series consist of quarterly 

observations ranging from 1993:Q1 to 2013:Q4. All data are obtained from DataStream for 

Denmark, Finland, Norway and Sweden. 

 

Similar to Cho and Elshahat (2014), macroeconomic variables are chosen in accordance with 

previous research and/or economic theory. GDP growth is included to capture effects of the 

business cycles throughout the time series. The log of GDP and short-term (risk-free) interest 

rate are supposed to measure the uncertainty of fundamental macroeconomic factors. Lastly, 

inflation is used as a predictor for future states of the economy, since it is closely related to 

policy decisions. Total inflation is, however, separated into growth of money supply (M2) and 

CPI. The idea is that inflation consists of both monetary expansion as well as structural (non-

monetary) inflation, caused by shifts in demand and supply curves of consumer goods. The 

two components can thus be separated and studied individually. Cho and Elshahat (2014) also 

include a proxy for the exchange rate, called Dollar Index. However, this index is not 

available for the Nordic countries, and is therefore not included here. 

5. Empirical Method 
Below follows a more detailed explanation of how the study is performed. Section 

5.1.provides a brief overview of the methodology, while Section 5.2. describes the various 

measures employed in the forecasting performance evaluation. 

5.1. Overview 
 

In the first part of this thesis, where the extent macroeconomic variables' explanatory power 

on conditional variance is examined, I mainly follow the work done by Cho and Elshahat 

                                                        
2
 The MSCI index is a broad benchmark index provided by MSCI Inc. 



16 
 

(2014). This implies that the conditional volatilities for the three models under evaluation are 

regressed on macroeconomic variables by employing Ordinary Least Squares (OLS). As for 

the GARCH-type models (not the SV-model), I also investigate whether a normal-, or a 

student-t distribution best describes the data. This is because time series of financial returns 

are often found to exhibit excess kurtosis, or “fat tails”, and thus the commonly employed 

assumption of normality may not be adequate. 

  

In the special case of estimating the SV model, the priors set as initial values are   
  

  

 
, 

  
      ,        and     , based upon previous experiments. A few other studies 

have found that the estimation is rather sensitive to the chosen priors, and therefore robustness 

checks are performed. However, when elaborating with other reasonable priors, the estimation 

results do not change notably.  

 

In order to obtain series that match the quarterly macroeconomic data, the daily volatility 

series are averaged over each quarter. Moreover, following Engle and Rangel (2008) and Cho 

and Elshahat (2014), volatilities of macroeconomic variables are approximated by the 

absolute value of the residuals in an AR(1) process: 

 

            ,                                                      (26) 

           ,                                                          (27) 

    
      .                                                                    (28) 

 

The exception from the equations above is for the volatilities of interest rates, which are not 

calculated in log form. The reason for this is that interest rates are already expressed as 

"returns" or changes of invested capital over the period considered.  

 

In the second part, I evaluate the short-term forecasting abilities of the three volatility models. 

This is performed by a static rolling window approach in order to forecast the one-day ahead 

conditional variance of each country's equity index. Several time periods with varying 

window sizes are studied. They are summarized in Table 2. 
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                        Table 2 - Forecasting periods 

Early Dates Observations 

In-sample 01/01/1993 – 01/02/1995 522 

Out-of-sample 01/03/1995 – 01/01/1998 784 

Mid 

In-sample 01/01/1993 – 01/03/2000 1869 

Out-of-sample 01/04/2000 – 01/04/2004 1043 

Late 

In-sample 01/01/2001 – 12/30/2005 1305 

Out-of-sample 01/02/2006 – 01/03/2011 1306 

Full 

In-sample 01/01/1993 – 12/20/1993 252 

Out-of-sample 12/21/1993 – 05/07/2014 5317 

 

 

 

 

The in-sample and out-of-sample periods are chosen based on the general volatility pattern of 

each period. For instance, the initial in-sample of "Early" has relatively low volatility, while 

the out-of-sample covers a period of generally increasing volatility for all countries. From the 

choice of different periods with different volatility patterns, the aim is to analyze how the 

models perform under various scenarios which in turn provide robustness to the study.  

5.2. Performance measures 
 
In order to evaluate the forecasting performance, one needs a set of evaluation measures. Such 

commonly used measures in the literature are e.g. the Mean Square Error (MSE) and the 

Mean Absolute Error (MAE). These are also called "loss functions", and are based upon a 

comparison of the realized ("true") volatility and volatility forecast. The realized volatility 

serves as a proxy for the true volatility. A frequently identified problem in the literature is 

how to choose this proxy, since the true volatility is not directly observable. Following Pagan 

and Schwert (1990) and Pojarliev and Polasek (2001), the true volatility in this study is 

approximated by the squared daily equity returns. Andersen and Bollerslev (1998) showed 

that squared daily returns is an unbiased, albeit noisy proxy for the true volatility, and instead 

suggest that one should use data of high-frequency intra-day returns. However, due to data 

limitations, I use the classic, and simpler, squared daily returns approach. Below follows a 

description of the measures I have chosen to employ in this study. 

The table shows the periods chosen for forecasting evaluation. The "In-

sample" period is the initial window size ranging from time t-j to time t. 

The first observation in the "Out-of-sample" period at time t+1 is the 

first to be forecasted. The next forecasted observation is at time t+2, 

with a window ranging from time t-j+1 to t+1. 



18 
 

5.2.1. Mean squared error 
 
The MSE is the average squared difference between forecasted volatility and realized 

volatility at time t, and is defined as: 

 

    
 

 
     

    
    

   ,                                                (29) 

 

where    
  is the volatility forecast and   

  is the realized ("true") volatility. 

5.2.2. Mean absolute error 
 
The Mean Absolute Error (MAE) is the average difference between forecasted volatility and 

realized volatility in absolute terms.  

 

    
 

 
     

    
   

   .                                                 (30) 

5.2.3. Root mean squared error 
 
The Root Mean Squared Error (RMSE) is defined as the square-root of the MSE: 

 

      
 

 
     

    
    

   .                                             (31) 

 

This measure is included since it is interesting to see whether the measured performance 

changes by letting the models be punished to a lesser extent by outliers.  

5.2.4. Theil’s-U 
 
A less commonly used evaluation measure is the Thiel's-U statistic. It is defined as: 

 

          
 

 
     

    
  

  
   

 

 
      

    
  

  
   

 .                                            (32) 

 

In words, the statistic is the MSE of the forecasted volatility divided by the MSE of a random 

walk process, or a naïve forecast. Thus, the forecast error is standardized by the random walk 

error, which implies that values below one indicate that the volatility models provide better 

forecasts than a random walk. We expect the statistic to be below 1 for all models. 
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5.2.5. LINEX 
 
Unlike the symmetric measures and statistics above, LINEX is asymmetric and defined as: 

 

      
 

 
            

    
         

    
      

   ,                       (33) 

 

where   is a given parameter. For this loss function, positive and negative forecast errors are 

weighted differently, depending on the sign of  . For    , negative errors (   
    

   ) 

receive a larger weight than positive errors, and vice versa. Following Yu (2002), I use four 

different values of  : -20, -10, 10 and 20, where the negative values penalize over-predictions 

to a greater extent than under-predictions. The opposite holds for positive values. 

 

In addition to the loss functions described above, I employ the same procedure as Pojarliev 

and Polasek (2001) by regressing the realized variance on a constant and the conditional 

variance forecast. The model is specified as: 

 

  
        

    ,                                                   (34) 

 

where   
  are the squared returns (realized variance) and    

  is the volatility forecast at time t. 

In the regression model above,   should be close to zero and    close to one for the model not 

to be biased. The R
2
-vaule from the regression serves as a measure of overall fit. That is, the 

higher the R
2
, the better the forecast. For the purpose of maximal comparability between the 

models, I do not separate the long-run component from the CGARCH model since I am 

mainly interested in the forecasting ability of the total variance.  
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6. Results 
Firstly, a preliminary analysis of descriptive statistics and other results of importance is 

conducted in Section 6.1. Section 6.2. provides the results from the conditional volatility 

model estimation. Section 6.3 presents the results from the regression analysis of the long-run 

volatility modelling, and lastly, Section 6.4.provides the short-run forecasting performance 

evaluation. 

6.1. Preliminary Analysis 
 
Looking at time series plots of the equity returns in Figure 1, we immediately see that the 

volatility appears to be clustered. 

 

           Figure 1 - Equity returns 
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The figure shows the equity returns for each country plotted against 

time. The series run from January 1
st
 1993 to May 7

th
 2014. 
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As mentioned in Section 2.1., this clustering phenomenon is a common finding in series of 

financial returns. We also see from the ARCH(1)-test in Table 3 that the returns are 

heteroscedastic. Thus, our models for estimating conditional variance are likely to describe 

the volatility well.  

 

                       Table 3 - ARCH test 

 
Denmark Finland Norway Sweden 

Obs*R
2 

304,31*** 106,49*** 460,88*** 181,52*** 

P-value 0,0000 0,0000 0,0000 0,0000 

 

 

 

 

It is worth mentioning that the returns for Finland seem to reach a volatility-peak during the 

tech bubble in the early 2000’s. Similar effects are apparent for Sweden, and the cause for this 

may be the large market cap of the two major telecom companies at the time: Nokia in 

Finland and Ericsson in Sweden. Moreover, for all countries, we see great volatility impacts 

from the global financial crisis in 2008/2009.  

 

Table 4 provides the correlation coefficients between the macro variables for each country, 

while the descriptive statistics are presented in Table 5. 

  

The Obs*R
2
 is a test statistic obtained by multiplying the R

2
-

value from an auxiliary regression of the squared residuals 

from an auxiliary regression of the returns, by the number of 

observations. This statistic is compared to the critical Chi-

squared value, and the null is no presence of ARCH-effects. 



 

 

 
Table 4 - Correlations 

Denmark 

Correlation GR. CPI VOL. CPI GR. GDP LNGDP VOL. GDP GR. M2 GR. M2t-1 VOL. RF VOL. RFt-1 VOL. RFt-2 

GR. CPI 1.0000 

         VOL. CPI  0.1759 1.0000 

        GR. GDP 0.0736 0.1582 1.0000 

       LNGDP 0.0336 0.2012 -0.1954* 1.0000 

      VOL. GDP 0.2042* 0.0621 0.1180 0.0131 1.0000 

     GR. M2 0.0322 0.1392 0.0512 0.1262 0.2717** 1.0000 

    GR. M2t-1 -0.1018 0.0968 -0.0008 0.1088 0.1595 0.1999* 1.0000 

   VOL. RF -0.0535 0.0318 -0.2295** -0.0015 0.1965* -0.2302** -0.0507 1.0000 

  VOL. RFt-1 -0.1052 0.0572 -0.0909 -0.1181 0.0675 -0.3156*** -0.1963* 0.5049*** 1.0000 

 VOL. RFt-2 -0.1094 0.0087 -0.0397 -0.2889*** -0.1494 -0.2304** -0.2041* 0.3405*** 0.5743*** 1.0000 

Obs. 80                     
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Table 4 (continued) 

Finland 

Correlation GR. CPI VOL. CPI GR. GDP LNGDP VOL. GDP GR. M2 GR. M2t-1 VOL. RF VOL. RFt-1 VOL. RFt-2 

GR. CPI 1.0000 

         VOL. CPI  0.3252*** 1.0000 

        GR. GDP 0.2034* -0.2119* 1.0000 

       LNGDP 0.2050* 0.1412 -0.2696** 1.0000 

      VOL. GDP -0.0757 0.2280** -0.3780*** 0.1002 1.0000 

     GR. M2 0.1126 -0.0159 0.0896 0.1913* -0.0427 1.0000 

    GR. M2t-1 0.0435 0.1933* -0.1726 0.1704 0.0977 -0.4133*** 1.0000 

   VOL. RF -0.1044 0.1944* -0.3877*** -0.1535 0.5195*** -0.0092 -0.0111 1.0000 

  VOL. RFt-1 0.0787 0.0904 -0.0543 -0.2769** 0.2529** -0.2671** 0.0377 0.4393*** 1.0000 

 VOL. RFt-2 -0.0440 0.1369 0.0098 -0.2859** 0.0572 -0.1033 -0.2629** 0.2137* 0.3168*** 1.0000 

Obs. 80                     
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Table 4 (continued) 

Norway 

Correlation GR. CPI VOL. CPI GR. GDP LNGDP VOL. GDP GR. M2 GR. M2 t-1 VOL. RF VOL. RF t-1  VOL. RF t-2 

GR. CPI 1.0000 

         VOL. CPI -0.0244 1.0000                 

GR. GDP 0.0093 -0.0804 1.0000 

       LNGDP -0.0318 0.1483 -0.1619 1.0000             

VOL. GDP 0.0466 -0.0278 -0.0286 -0.2726** 1.0000 

     GR. M2 -0.1035 0.0659 0.0982 0.0422 -0.2924*** 1.0000         

GR. M2 t-1 0.0788 0.0978 -0.1151 0.0295 0.0572 -0.2687** 1.0000 

   VOL. RF 0.0520 0.1370 -0.1575 -0.1161 0.2540** -0.2520** 0.0623 1.0000     

VOL. RF t-1  0.0124 -0.0148 -0.0699 -0.2677** 0.0376 -0.0921 -0.1228 0.4180*** 1.0000 

 VOL. RF t-2 -0.0027 -0.2518** 0.1595 -0.2220** -0.0612 -0.1536 -0.0779 0.0955 0.2200** 1.0000 

Obs. 80                     
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Table 5 presents the correlations between the macro variables used in the 

regression analysis for Denmark, Finland, Norway and Sweden. *, ** and *** 

denotes statistical significance at the 10%, 5% and 1% level, respectively. 

 

 
 

Table 4 (continued) 

Sweden 

Correlation GR. CPI VOL. CPI GR. GDP LNGDP VOL. GDP GR. M2 GR. M2 t-1 VOL. RF VOL. RF t-1  VOL. RF t-2 

GR. CPI 1.0000 

         VOL. CPI 0.0972 1.0000                 

GR. GDP 0.2215** -0.1177 1.0000 

       LNGDP -0.1140 0.1113 -0.4712*** 1.0000             

VOL. GDP 0.0426 0.0679 -0.1485 0.2356** 1.0000 

     GR. M2 0.1867* 0.1108 0.0554 -0.0683 0.1173 1.0000         

GR. M2 t-1 0.0399 0.0744 0.0139 0.0991 0.1102 0.22572** 1.0000 

   VOL. RF -0.1677 0.2502** -0.4846*** 0.4944*** -0.2324** -0.0004 0.1324 1.0000     

VOL. RF t-1  -0.2855** 0.1852 -0.4049*** 0.2952*** -0.1263 -0.0662 0.0482 0.6421*** 1.0000 

 VOL. RF t-2 -0.0274 -0.0421 -0.0309 -0.0918 -0.1332 -0.0357 -0.0619 0.1000 0.4249*** 1.0000 

Obs. 80                     

 
  



 

Table 5 - Despriptive statistics 

Returns 

 

GR. CPI 

  Denmark Finland Norway Sweden 

 

  Denmark Finland Norway Sweden 

 Mean 0.0004 0.0003 0.0003 0.0004 

 

 Mean 0.0050 0.0040 0.0049 0.0031 

 Median 0.0002 0.0000 0.0001 0.0002 

 

 Median 0.0041 0.0032 0.0049 0.0027 

 Max. 0.0975 0.1456 0.1144 0.1154 

 

 Max. 0.0138 0.0162 0.0246 0.0188 

 Min. -0.1126 -0.1740 -0.2370 -0.0869 

 

 Min. -0.0044 -0.0054 -0.0162 -0.0144 

 Std. Dev. 0.0115 0.0163 0.0151 0.0149 

 

 Std. Dev. 0.0045 0.0047 0.0054 0.0056 

 Skewness -0.3989 -0.3848 -0.9383 0.0170 

 

 Skewness 0.1864 0.5381 -0.1653 0.1176 

 Kurtosis 9.8632 11.9367 18.5042 7.5952 

 

 Kurtosis 2.1307 2.7813 7.0840 4.0618 

            J-B stat. 14188.7 23912.3 72489.8 6276.1 

 

 J-B stat. 3.0191 4.1705 58.0593 4.0901 

 Prob. 0.0000 0.0000 0.0000 0.0000 

 

 Prob. 0.2210 0.1243 0.0000 0.1294 

 Obs. 7133 7133 7133 7133 

 

 Obs. 83 83 83 83 

GR. GDP 

 

GR. M2 

  Denmark Finland Norway Sweden 

 

  Denmark Finland Norway Sweden 

 Mean 0.0037 0.0059 0.0060 0.0065 

 

 Mean 0.0113 0.0118 0.0168 0.0128 

 Median 0.0030 0.0058 0.0061 0.0072 

 

 Median 0.0106 0.0100 0.0191 0.0144 

 Max. 0.0382 0.0328 0.0353 0.0248 

 

 Max. 0.0900 0.0711 0.0557 0.0618 

 Min. -0.0245 -0.0658 -0.0227 -0.0375 

 

 Min. -0.0438 -0.0441 -0.0283 -0.0432 

 Std. Dev. 0.0122 0.0125 0.0124 0.0096 

 

 Std. Dev. 0.0241 0.0233 0.0184 0.0201 

 Skewness 0.1925 -2.2284 0.1877 -1.7753 

 

 Skewness 0.4412 0.1734 -0.2077 0.0208 

 Kurtosis 3.2163 14.7528 2.8031 8.5652 

 

 Kurtosis 3.5979 2.9228 2.2876 3.2149 

            J-B stat. 0.66 546.38 0.62 150.71 

 

 J-B stat. 3.8340 0.4364 2.3516 0.1657 

 Prob. 0.7196 0.0000 0.7330 0.0000 

 

 Prob. 0.1470 0.8040 0.3086 0.9205 

 Obs. 83 83 83 83 

 

 Obs. 83 83 83 83 
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Table 5 (continued) 

LNGDP 

 

VOL. CPI 

  Denmark Finland Norway Sweden 

 

  Denmark Finland Norway Sweden 

 Mean 12.8071 10.4322 13.3099 13.4923 

 

 Mean 0.0038 0.0038 0.0036 0.0042 

 Median 12.8309 10.4679 13.3283 13.5076 

 

 Median 0.0033 0.0029 0.0025 0.0034 

 Max. 12.9244 10.6476 13.4835 13.7285 

 

 Max. 0.0093 0.0118 0.0210 0.0172 

 Min. 12.5933 10.0867 12.9810 13.1878 

 

 Min. 0.0001 0.0004 0.0001 0.0000 

 Std. Dev. 0.0846 0.1706 0.1388 0.1634 

 

 Std. Dev. 0.0024 0.0028 0.0040 0.0036 

 Skewness -0.7978 -0.6167 -0.7062 -0.3331 

 

 Skewness 0.4426 1.0179 2.3604 1.5915 

 Kurtosis 2.6439 2.0749 2.4074 1.8138 

 

 Kurtosis 2.2525 3.1629 9.5936 5.4252 

            J-B stat. 9.020 8.319 8.211 6.478 

 

 J-B stat. 4.53 14.42 227.42 55.38 

 Prob. 0.0110 0.0156 0.0165 0.0392 

 

 Prob. 0.1038 0.0007 0.0000 0.0000 

 Obs. 84 84 84 84 

 

 Obs. 83 83 83 83 

VOL. GDP 

 

VOL. RF 

  Denmark Finland Norway Sweden 

 

  Denmark Finland Norway Sweden 

 Mean 0.0088 0.0078 0.0091 0.0065 

 

 Mean 0.4286 0.3213 0.4417 0.3348 

 Median 0.0073 0.0058 0.0074 0.0051 

 

 Median 0.3752 0.2409 0.3066 0.2414 

 Max. 0.0362 0.0675 0.0284 0.0423 

 

 Max. 1.4747 1.9987 2.3195 1.9512 

 Min. 0.0001 0.0000 0.0001 0.0001 

 

 Min. 0.0181 0.0010 0.0039 0.0068 

 Std. Dev. 0.0072 0.0089 0.0072 0.0068 

 

 Std. Dev. 0.3237 0.3139 0.4651 0.3214 

 Skewness 1.1855 3.9812 0.7623 2.6742 

 

 Skewness 1.1800 2.1618 1.9851 2.3972 

 Kurtosis 4.4891 25.6329 2.6190 12.8079 

 

 Kurtosis 4.3086 11.2095 7.6552 10.7638 

            J-B stat. 26.5 1990.8 8.5 431.6 

 

 J-B stat. 24.58 297.72 129.46 287.95 

 Prob. 0.0000 0.0000 0.0140 0.0000 

 

 Prob. 0.0000 0.0000 0.0000 0.0000 

 Obs. 83 83 83 83 

 

 Obs. 83 83 83 83 

 

 

 

From Table 4, we see that variations of GDP and the short-term interest rate in general exhibit 

significant correlations. Moreover, as is evident from the Jarque-Bera statistics in Table 5 and 

the QQ-plots in Figure 2, none of the countries' equity returns follow a standard normal 

distribution. Instead they appear to exhibit excess kurtosis, or "fat tails", and therefore the t-

distribution is expected to better describe the data.  

  

Table 5 presents the descriptive statistics for the equity retuns, growth rate of CPI, growth rate of 
GDP, growth rate of M2, log GDP, volatility of CPI, volatility of GDP and volatility of short-term 
interest rate. 
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Figure 2 - QQ-plots of equity returns 

Figure 2 (continued) 
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Figure 2 (continued) 

 

Figure 2 (continued) 

Figure 2 shows QQ-plots of the equity returns, where RET_DEN is the returns 

for Denmark, RET_FIN is the returns for Finland, RET_NOR is the returns for 

Norway and RET_SWE is the returns for Sweden, 
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6.2. Model Estimations 
 
Table 6 present the coefficients from the conditional variance estimations for all models. Note 

that the estimations of the SV model differ quite significantly from the GARCH-type models, 

and thus the coefficients are not interpreted in the same way. 

 

                Table 6 - Coefficients from volatility estimation 

Denmark 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

Parameter Value 

  0.0001*** 0.0001*** 0.0000*** 0.0000*** -0.1170*** 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0298)  

  
0.0843*** 0.0864*** 0.0780*** 0.0881*** 

 (0.0091)  (0.0130)  (0.0039)  (0.0082)  

 

  
0.8310*** 0.8283*** 0.9045*** 0.8979*** 

 (0.0200)  (0.0288)  (0.0046)  (0.0085)  

 

  
0.9965*** 0.9969***       

(0.0008)  (0.0014)        

  
0.0199*** 0.0255*** 

  

0.9873*** 
(0.0032)  (0.0064)  

  

(0.0032)  

  
    

  

-4.1482*** 
    

  

(0.2321)  

Finland 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

Parameter Value 

  0.0003** 0.0005 0.0000*** 0.0000*** -0.0349*** 
(0.0001)  (0.0006)  (0.0000)  (0.0000)  (0.0126)  

  
0.0566*** 0.0419*** 0.0534*** 0.0606***   

(0.0071)  (0.0112)  (0.0024)  (0.0060)    

  
0.8491*** 0.8934*** 0.9434*** 0.9366*** 

 (0.0237)  (0.0349)  (0.0021)  (0.0058)  

 

  
0.9986*** 0.9989***       

(0.0006)  (0.0016)        

  
0.0314*** 0.0378*** 

  

0.9959*** 
(0.0031)  (0.0076)  

  

(0.0014)  

  
    

  

-4.9803*** 

    

  

(0.2292)  
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               Table 6 (continued) 

Norway 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

Parameter Value 

  0.0001*** 0.0001*** 0.0000*** 0.0000*** -0.0822*** 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0248)  

  
0.0186 0.0787*** 0.0984*** 0.0957***   

(0.0132)  (0.0129)  (0.0059)  (0.0087)    

  
-0.5528 0.8565*** 0.8801*** 0.8875*** 

 (0.3980)  (0.0247)  (0.0068)  (0.0097)  

 

  
0.9799*** 0.9952***       

(0.0040)  (0.0019)        

  
0.0948*** 0.0309*** 

  

0.9907*** 
(0.0063)  (0.0096)  

  

(0.0027)  

  
    

  

-4.3660*** 
    

  

(0.2380)  

Sweden 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

Parameter Value 

  0.0002*** 0.0002** 0.0000*** 0.0000*** -0.0595*** 
(0.0000)  (0.0001)  (0.0000)  (0.0000)  (0.0170)  

  
-0.0220** -0.0218 0.0743*** 0.0715***   

(0.0112)  (0.0161)  (0.0048)  (0.0067)    

  
-0.3431 -0.2468 0.9178*** 0.9229*** 

 (0.4200)  (0.7005)  (0.0052)  (0.0068)  

 

  
0.9918*** 0.9941***       

(0.0024)  (0.0032)        

  
0.0769*** 0.0744*** 

  

0.9932*** 
(0.0048)  (0.0069)  

  

(0.0019)  

  
    

  

-4.6116*** 

    

  

(0.2155)  

 
 
 

 

Table 6 presents the values of the coefficients of the conditional variance for Denmark, 

Finland, Norway and Sweden. Standard errors within parenthesis. *,** and *** denotes 

statistical significance at 10%, 5% and 1% level, respectively. 



32 
 

From Table 6 above, we see that the   and   coefficients in the CGARCH models for Sweden 

are not statistically different from 0, even at the 10% level. This implies that the long-run 

component cannot be distinguished from the total conditional volatility. Thus the models are 

reduced to a form of GARCH(1,1). The same holds for the normally distributed CGARCH 

with Norwegian data. This is illustrated in Figure 3 in the appendix, where we clearly see that 

the long-run component is indistinguishable from the total variance for the above mentioned 

cases. Moreover, from Table 6, we see that many of the GARCH-type estimations are near-

unit root processes, which is expected and particularly common for CGARCH models (see 

Speight, McMillan and Gwilym (2000) and Engle and Lee (1999)). 

6.3. Long-Run Volatility 
 
All variables in the regression analysis are tested for unit root by Augmented Dickey-Fuller 

(Fuller (1976)) (ADF) tests. If one or more series are unit root processes, the results from a 

regression analysis are difficult to interpret because the variables exhibit (theoretical) infinite 

variance. In such cases, nonsense-causality (so-called spurious regressions) may arise, for 

which the results are unreliable. Lag length for the ADF test is set by Akaike (1974) 

Information Criterion (AIC). Every variable is tested with three different ADF specifications 

(1. no intercept; 2. including intercept; 3. including both intercept and trend). The results are 

not presented here to save space, but are available upon request. Variables for which the null 

hypothesis of a unit root is not rejected at the 10% level for at least one of the three 

specifications are transformed by first differencing or by detrending. Detrending is performed 

using the Hodrick-Prescott (HP) filter, with        as suggested by Hodrick and Prescott 

(1997) when using quarterly data. All variables are shown to be stationary after 

transformation. 

 

The results from the regressions are presented in Table 7. Here, CGARCH is the total 

variance of the CGARCH model, while LCGARCH is the long-run component. 
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Table 7 - Regression results 

Denmark 

Dependent 

variable 

CGARCH

N-dist 

CGARCH 

T-dist 

GARCH  

N-dist 

GARCH 

T-dist 

LCGARCH

N-dist 

LCGARCH

T-dist 
SV 

Variables Coefficient 

C 
0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001*** 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

GR. CPI Δ -0.0019 -0.0021 -0.0026 -0.0029 0.0002 0.0000 -0.0014 

(0.0016) (0.0017) (0.0018) (0.0019) (0.0011) (0.0011) (0.0013) 

GR. GDP 
-0.0041 -0.0044 -0.0046 -0.0049 -0.0025* -0.0030* -0.0032* 

(0.0025) (0.0027) (0.0029) (0.0032) (0.0015) (0.0018) (0.0018) 

GR. M2 
0.0012 0.0013 0.0014 0.0015 0.0005 0.0007 0.0006 

(0.0012) (0.0013) (0.0014) (0.0014) (0.0007) (0.0008) (0.0008) 

GR. M2t-1 
-0.0002 -0.0002 -0.0003 -0.0003 0.0001 0.0001 -0.0001 

(0.0005) (0.0005) (0.0006) (0.0007) (0.0003) (0.0004) (0.0004) 

VOL. RF 
0.0001* 0.0001* 0.0001* 0.0001* 0.0001** 0.0001** 0.0001** 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) 

VOL. RFt-1 
0.0001 0.0001 0.0000 0.0000 0.0001* 0.0001* 0.0000 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

VOL. CPI Δ 0.0009 0.0009 0.0016 0.0017 -0.0005 -0.0005 0.0010 

(0.0031) (0.0032) (0.0037) (0.0039) (0.0017) (0.002) (0.0024) 

VOL. GDP Δ 0.0024 0.0025 0.0030 0.0032 0.0007 0.0009 0.0020 

(0.0020) (0.0021) (0.0022) (0.0024) (0.0012) (0.0014) (0.0015) 

LNGDP
d -0.0002 -0.0001 0.0004 0.0005 -0.0011** -0.0010 0.0002 

(0.0007) (0.0007) (0.0007) (0.0008) (0.0006) (0.0006) (0.0006) 

R
2 

0.3109 0.3083 0.2805 0.2806 0.4005 0.3819 0.2974 

Obs. 80 80 80 80 80 80 80 
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Table 7 (continued) 

Finland 

Dependent 

variable 

CGARCH Δ 

N-dist 

CGARCH Δ 

T-dist
 

GARCH Δ 

N-dist 

GARCH Δ 

T-dist 

LCGARCH Δ 

N-dist 

LCGARCH Δ 

T-dist 
SV

 Δ 

Variables Coefficient 

C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0000) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) 

GR. CPI 
-0.0008 -0.0008 -0.0011 -0.0009 -0.0018 -0.0017 -0.0035 

(0.0052) (0.0069) (0.0075) (0.0077) (0.0054) (0.0059) (0.0074) 

GR. GDP 0.0002 0.0003 0.0004 0.0005 -0.0003 -0.0002 -0.0005 
(0.0016) (0.0023) (0.0025) (0.0026) (0.0017) (0.0019) (0.0016) 

GR. M2 Δ 0.0014 0.0016 0.0017 0.0018 0.0008 0.0010 0.0005 

(0.0008) (0.0010) (0.0011) (0.0011) (0.0007) (0.0008) (0.0008) 

GR. M2 Δ
 t-1 

0.0007 0.0008 0.0008 0.0008 0.0004 0.0005 -0.0001 

(0.0008) (0.0009) (0.0019) (0.0011) (0.0007) (0.0007) (0.0007) 

VOL. RF 
0.0000 0.0000 -0.0001 -0.0001 0.0000 0.0000 0.0000 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-2 
0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. CPI
 Δ 0.0034 0.0036 0.0036 0.0037 0.0027 0.0029 0.0020 

(0.0052) (0.0038) (0.0041) (0.0043) (0.0031) (0.0032) (0.0032) 

VOL. GDP Δ -0.0003 -0.0004 -0.0004 -0.0005 0.0001 0.0000 -0.0015 

(0.0016) (0.0018) (0.0020) (0.0021) (0.0012) (0.0014) (0.0017) 

LNGDP
d
 

0.0026** 0.0027** 0.0028** 0.0028* 0.0025*** 0.0026** 0.0025** 

(0.0011) (0.0013) (0.0014) (0.0015) (0.0009) (0.0016) (0.0012) 

R
2 

0.2002 0.2002 0.1921 0.1965 0.1742 0.1783 0.0909 

Obs. 80 80 80 80 80 80 80 
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Table 7 (continued) 

Norway 

Dependent 

variable 

CGARCH 

N-dist 

CGARCH 

T-dist 

GARCH  

N-dist 

GARCH 

T-dist 

LCGARCH 

N-dist 

LCGARCH 

T-dist 
SV 

Variables Coefficient 

C 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0001*** 0.0001*** 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) 

GR. CPI 
0.0028 0.0023 0.0028 0.0029 0.0028 0.0002 0.0005 

(0.0034) (0.0033) (0.0034) (0.0035) (0.0034) (0.0023) (0.0024) 

GR. GDP -0.0052* -0.0053* -0.0052* -0.0054* -0.0052* -0.0037* -0.0046** 
(0.0030) (0.0030) (0.0031) (0.0031) (0.0032) (0.0022) (0.0023) 

GR. M2 Δ 0.0001 0.0002 0.0001 0.0001 0.0001 0.0003 0.0000 

(0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0007) (0.0007) 

GR. M2 Δ
 t-1 

-0.0013** -0.0012* -0.0013** -0.0014** -0.0013** -0.0005 -0.0008* 
(0.0007) (0.0006) (0.0007) (0.0007) (0.0007) (0.0005) (0.0005) 

VOL. RF 
0.0001* 0.0002* 0.0001* 0.0001* 0.0001* 0.0002 0.0001* 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) 

VOL. RFt-2 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000* 0.0000 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

VOL. CPI -0.0002 -0.0003 -0.0002 -0.0003 -0.0003 -0.0010 0.0004 
(0.0037) (0.0041) (0.0037) (0.0039) (0.0037) (0.0039) (0.0036) 

VOL. GDP 
-0.0065 -0.0068 -0.0064 -0.0067 -0.0064 -0.0059 -0.0057 

(0.0048) (0.0048) (0.0047) (0.0049) (0.0047) (0.0036) (0.0035) 

LNGDP
d
 

0.0024 0.0021 0.0024 0.0025 0.0024 0.0007 0.0018 

(0.0023) (0.0024) (0.0023) (0.0024) (0.0023) (0.0018) (0.0019) 

R
2 

0.1293 0.1496 0.1287 0.1292 0.1291 0.2155 0.2245 

Obs. 80 80 80 80 80 80 80 
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Table 7 (continued) 

Sweden 

Dependent 

variable 

CGARCH 

N-dist 

CGARCH 

T-dist 

GARCH  

N-dist 

GARCH 

T-dist 

LCGARCH 

N-dist 

LCGARCH 

T-dist 
SV 

Variables Coefficient 

C 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

GR. CPI 
0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0036 

(0.0036) (0.0037) (0.0036) (0.0037) (0.0036) (0.0037) (0.0037) 

GR. GDP -0.0103*** -0.0105*** -0.0103*** -0.0105*** -0.0103*** -0.0105*** -0.0066*** 
(0.0033) (0.0034) (0.0033) (0.0034) (0.0033) (0.0034) (0.0024) 

GR. M2 
-0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0009 

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0009) 

GR. M2t-1 
-0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0004 
(0.0011) (0.0012) (0.0011) (0.0012) (0.0011) (0.0012) (0.0009) 

VOL. RF 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-2 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. CPI 0.0055 0.0058 0.0056 0.0059 0.0055 0.0058 0.0055 
(0.0044) (0.0045) (0.0044) (0.0045) (0.0044) (0.0045) (0.0036) 

VOL. GDP Δ 0.0057* 0.0058* 0.0057* 0.0057* 0.0057* 0.0058* 0.0033 

(0.0032) (0.0033) (0.0032) (0.0033) (0.0032) (0.0033) (0.0023) 

LNGDP
d
 

-0.0008 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008 -0.0005 

(0.0018) (0.0019) (0.0018) (0.0019) (0.0018) (0.0019) (0.0016) 

R
2 

0.3139 0.3148 0.3140 0.3150 0.3132 0.3141 0.2179 

Obs. 80 80 80 80 80 80 80 

 
 
 
 

 

 

 

From the regression results in Table 7, it is difficult to find any general patterns or tendencies. 

In most cases however, the coefficients have the expected sign, but they tend to be 

statistically insignificant. For Norway and Sweden, the growth rate of GDP seems to partially 

Table 7 presents the regression analysis results with estimated volatility series as 

dependent variables for Denmark, Finland, Norway and Sweden. Newey-West robust 

standard errors within parenthesis. *, ** and *** indicates significance level at 10%, 5% 

and 1% respectively. "GR." denotes "Growth rate of", "VOL." denotes "Volatility of" and 

"RF" denotes short-term (risk-free) interest rate. 

 
Δ 

denotes that the variables are regressed in first difference due to non-stationarity. 

 
d
  denotes that the variables are detrended due to non-stationarity. 
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explain the estimated volatility, although the coefficient is only marginally significant in the 

case of Norway. We also find weak significance of the volatility of the short-term interest rate 

for Denmark and Norway.  

 

As we saw from the coefficients in the CGARCH models with Swedish data in Table 7, the 

models reduce to a form of GARCH(1,1) for both distributions. Therefore, in the case of 

Sweden, there are almost no differences between the CGARCH, LCGARCH and 

GARCH(1,1) models. We observe the same effect for the normally distributed CGARCH for 

Norway. 

  

Moreover, for Finland and Norway, we obtain low R
2
-values, indicating that the 

macroeconomic variables are not suitable for explaining the conditional volatility (as 

estimated by our models) for these markets. The R
2
-values are somewhat higher for Denmark 

and Sweden, albeit considerably lower than those obtained by Cho and Elshahat (2014).  The 

normally distributed LCGARCH for Denmark obtains the highest R
2
-value of 0.4005. The 

same model also has the greatest number of significant variables. For Sweden and Finland, 

the models with SV as dependent variable appear to be the worst fitted. Macroeconomic 

volatilities are generally insignificant, and do not have any impact on the quarterly averaged 

conditional equity volatility.  

 

Variations of the regression models above are presented in the appendix, for which lags of 

variables currently regressed in levels are added. This is done in order to achieve robustness 

and to investigate whether variables other than those currently regressed in lags have potential 

(counter-) cyclical behaviour or forecasting power on equity volatility. However, the results 

from these regressions are very similar to the ones presented above, and do not add much to 

the analysis. 

6.4. Short-Run Forecasting 
 
As mentioned in Section 5.1., the forecasting ability of the conditional variance models are 

evaluated by several measures. Table 8 provide the results for the MSE, MAE, RMSE, 

Thiel's-U and LINEX measures for the chosen sample periods. Values of   (see Equation 

(33)) are sorted in an increasing order. Hence, LINEX1 is calculated with       and 

LINEX4 with     .    
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Table 8 - Evaluation measures 

Early 

     In-sample: 01/01/1993 – 01/02/1995 

     Out-of-sample: 01/03/1995 – 01/01/1998 

     
Denmark 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.0134 0.6814 0.1157 0.7407 0.2682 0.0670 0.0668 0.2667 

CGARCH T-dist 0.0133 0.6824 0.1154 0.7390 0.2669 0.0666 0.0664 0.2654 

GARCH N-dist 0.0132 0.6796 0.1150 0.7362 0.2650 0.0661 0.0660 0.2635 

GARCH T-dist 0.0132 0.6773 0.1150 0.7362 0.2649 0.0661 0.0660 0.2635 

SV 0.0130 0.7051 0.1140 0.7300 0.2603 0.0650 0.0648 0.2590 

Finland 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.1659 1.6202 0.4073 0.9010 3.3916 0.8380 0.8190 3.2392 

CGARCH T-dist 0.1658 1.6206 0.4071 0.9007 3.3909 0.8376 0.8181 3.2350 

GARCH N-dist 0.1636 1.6164 0.4045 0.8949 3.3458 0.8267 0.8079 3.1955 

GARCH T-dist 0.1666 1.6126 0.4081 0.9029 3.4089 0.8419 0.8220 3.2497 

SV 0.1956 1.6991 0.4423 0.9784 4.0213 0.9909 0.9631 3.7993 

Norway 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.0443 0.9515 0.2105 0.8350 0.8972 0.2228 0.2198 0.8734 

CGARCH T-dist 0.0476 0.9506 0.2182 0.8655 0.9645 0.2394 0.2361 0.9377 

GARCH N-dist 0.0459 0.9568 0.2142 0.8496 0.9289 0.2306 0.2276 0.9043 

GARCH T-dist 0.0463 0.9555 0.2153 0.8539 0.9384 0.2330 0.2298 0.9131 

SV 0.0491 0.9610 0.2216 0.8789 0.9951 0.2469 0.2433 0.9664 

Sweden 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.0667 1.1976 0.2583 0.8116 1.3578 0.3373 0.3331 1.3240 

CGARCH T-dist 0.0672 1.2008 0.2592 0.8072 1.3594 0.3376 0.3332 1.3243 

GARCH N-dist 0.0658 1.1899 0.2566 0.7990 1.3325 0.3309 0.3265 1.2976 

GARCH T-dist 0.0655 1.1845 0.2560 0.7972 1.3266 0.3294 0.3250 1.2914 

SV 0.0686 1.2897 0.2620 0.8160 1.3917 0.3453 0.3403 1.3512 
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Table 8 (continued) 

Mid 

     In-sample: 01/01/1993 – 01/03/2000 

     Out-of-sample: 01/04/2000 – 01/04/2004 

     
Denmark 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.0003 0.1202 0.0167 0.7519 2.0173 0.5020 0.4975 1.9812 

CGARCH T-dist 0.0003 0.1194 0.0165 0.7497 2.0058 0.4991 0.4946 1.9697 

GARCH N-dist 0.0002 0.1064 0.0150 0.5989 0.0045 0.0011 0.0011 0.0045 

GARCH T-dist 0.0002 0.1094 0.0154 0.7541 2.0285 0.5049 0.5004 1.9931 

SV 0.0002 0.1084 0.0156 0.7564 2.0444 0.5084 0.5032 2.0026 

Finland 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 3.5023 8.2835 1.8715 0.7321 79.3816 18.5985 16.5599 62.8903 

CGARCH T-dist 3.5004 8.3224 1.8709 0.7319 79.3064 18.5846 16.5540 62.8793 

GARCH N-dist 3.4786 8.2339 1.8651 0.7295 79.0207 18.4928 16.4298 62.3310 

GARCH T-dist 3.4909 8.1463 1.8684 0.7308 79.2813 18.5562 16.4902 62.5671 

SV 3.4189 7.6447 1.8490 0.7228 77.8967 18.2039 16.1210 61.0499 

Norway 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.0887 1.5704 0.2978 0.8031 1.7926 0.4458 0.4413 1.7562 

CGARCH T-dist 0.0894 1.5898 0.2991 0.8065 1.8070 0.4495 0.4450 1.7714 

GARCH N-dist 0.0901 1.5810 0.3001 0.8093 1.8200 0.4526 0.4480 1.7831 

GARCH T-dist 0.0900 1.5984 0.3001 0.8093 1.8190 0.4525 0.4480 1.7834 

SV 0.0943 1.5418 0.3071 0.8284 1.9095 0.4745 0.4688 1.8640 

Sweden 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.4108 3.7514 0.6410 0.6445 8.3599 2.0719 2.0369 8.0802 

CGARCH T-dist 0.4141 3.7745 0.6435 0.6470 8.4267 2.0884 2.0533 8.1451 

GARCH N-dist 0.4309 3.8232 0.6564 0.6600 8.7710 2.1735 2.1362 8.4732 

GARCH T-dist 0.4424 3.8446 0.6651 0.6687 9.0110 2.2320 2.1921 8.6913 

SV 0.5056 3.9249 0.7111 0.7150 10.3368 2.5558 2.5011 9.8994 
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Table 8 (continued) 

Late 

     In-sample: 01/01/2001 – 12/30/2005 

     Out-of-sample: 01/02/2006 – 01/03/2011 

     
Denmark 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.0057 0.2863 0.0752 0.7270 7.8202 1.9190 1.8520 7.2832 

CGARCH T-dist 0.0053 0.2989 0.0729 0.7239 7.7539 1.9027 1.8362 7.2211 

GARCH N-dist 0.0026 0.2305 0.0507 0.7227 7.7277 1.8963 1.8301 7.1975 

GARCH T-dist 0.0017 0.2169 0.0418 0.7231 7.7308 1.8977 1.8327 7.2102 

SV 0.0006 0.1348 0.0249 0.7599 8.5983 2.1033 2.0171 7.9079 

Finland 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.3459 2.7212 0.5881 0.7260 7.0742 1.7487 1.7107 6.7700 

CGARCH T-dist 0.3436 2.7433 0.5862 0.7236 7.0245 1.7368 1.6997 6.7278 

GARCH N-dist 0.3392 2.6979 0.5824 0.7189 6.9375 1.7149 1.6774 6.6380 

GARCH T-dist 0.3395 2.7217 0.5826 0.7192 6.9419 1.7162 1.6791 6.6456 

SV 0.3518 2.6247 0.5931 0.7321 7.2113 1.7806 1.7379 6.8697 

Norway 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 1.0009 4.3373 1.0004 0.7127 20.5870 5.0738 4.9379 19.4984 

CGARCH T-dist 1.0020 4.3502 1.0010 0.7131 20.5982 5.0781 4.9449 19.5312 

GARCH N-dist 0.9937 4.3090 0.9968 0.7102 20.4568 5.0396 4.9004 19.3416 

GARCH T-dist 0.9924 4.3160 0.9962 0.7097 20.4139 5.0310 4.8959 19.3314 

SV 1.0778 4.2204 1.0382 0.7396 22.4779 5.5017 5.2806 20.7075 

Sweden 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.4462 3.1303 0.6680 0.7152 9.1422 2.2579 2.2053 8.7212 

CGARCH T-dist 0.4491 3.1648 0.6701 0.7175 9.1912 2.2711 2.2203 8.7849 

GARCH N-dist 0.4438 3.1350 0.6662 0.7133 9.0903 2.2454 2.1937 8.6766 

GARCH T-dist 0.4454 3.1723 0.6674 0.7146 9.1149 2.2525 2.2027 8.7161 

SV 0.4622 2.9903 0.6799 0.7280 9.5157 2.3445 2.2789 8.9907 
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Table 8 (continued) 

Full 

     In-sample: 01/01/1993 - 12/20/1993 

     Out-of-sample: 12/21/1993 – 05/07/2014 

     
Denmark 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.1430 1.5594 0.3782 0.7384 2.9358 0.7244 0.7065 2.7930 

CGARCH T-dist 0.1469 1.5812 0.3833 0.7482 3.0120 0.7435 0.7259 2.8709 

GARCH N-dist 0.1436 1.5629 0.3790 0.7398 2.9465 0.7272 0.7095 2.8052 

GARCH T-dist 0.1440 1.5745 0.3794 0.7407 2.9556 0.7291 0.7109 2.8094 

SV 0.1490 1.4727 0.3860 0.7536 3.0829 0.7576 0.7332 2.8869 

Finland 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.8822 3.5364 0.9392 0.7304 19.4777 4.6253 4.2218 16.2161 

CGARCH T-dist 0.8915 3.4989 0.9442 0.7342 19.7093 4.6771 4.2643 16.3724 

GARCH N-dist 0.8779 3.4868 0.9369 0.7286 19.4335 4.6085 4.1961 16.0997 

GARCH T-dist 0.8786 3.4743 0.9373 0.7289 19.4490 4.6122 4.1997 16.1139 

SV 0.8830 3.2653 0.9397 0.7307 19.6400 4.6466 4.2109 16.1182 

Norway 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.3259 2.2587 0.5709 0.7345 6.6557 1.6462 1.6134 6.3925 

CGARCH T-dist 0.3170 2.2404 0.5630 0.7244 6.4827 1.6023 1.5681 6.2090 

GARCH N-dist 0.3213 2.2337 0.5669 0.7294 6.5600 1.6229 1.5911 6.3052 

GARCH T-dist 0.3220 2.2448 0.5674 0.7301 6.5733 1.6262 1.5945 6.3188 

SV 0.3348 2.1397 0.5786 0.7445 6.9399 1.7039 1.6454 6.4713 

Sweden 

Model MSE
4 

MAE
2 

RMSE
1 

Theil's-U LINEX1
3 

LINEX2
3 

LINEX3
3 

LINEX4
3 

CGARCH N-dist 0.3182 2.5608 0.5641 0.7510 6.5142 1.6094 1.5733 6.2252 

CGARCH T-dist 0.3163 2.5681 0.5624 0.7488 6.4760 1.5998 1.5636 6.1865 

GARCH N-dist 0.3054 2.5409 0.5526 0.7358 6.2567 1.5452 1.5093 5.9695 

GARCH T-dist 0.3056 2.5452 0.5528 0.7360 6.2616 1.5463 1.5103 5.9730 

SV 0.3022 2.4218 0.5498 0.7320 6.2245 1.5332 1.4900 5.8786 

 

 

 

A quick look at Table 8 above shows that the results are mixed. However, the same model 

generally tends to have the best performance through all measures, with some exceptions for 

MAE. Moreover, the SV model has the worst forecasting performance more often than the 

The table presents the results from five evaluation measures for the “Early”, “Mid”, “Late” and “Full” sample. Bold 

numbers indicate best value and italic numbers indicate the worst value.
1
 = Values multiplied by 10^3, 

2
 = Values multiplied 

by 10^4, 
3
 = Values multiplied by 10^5, 

4
 = Values multiplied by 10^6. 
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GARCH-type models. Interestingly however, we find that SV, despite its otherwise poor 

performance, often has the best forecasts according to MAE. This is true for all samples 

except for the "Early" one. Also,  the normally distributed GARCH-type models tend to 

perform better overall than the t-distributed counterparts. For instance, in three out of four 

samples with data from Finland, the normally distributed GARCH(1,1) model appears to have 

the best forecasting ability. We have seen from the J-B statistics and the QQ-plots that the t-

distribution, rather than the standard normal, is expected to better describe the data. However, 

this does not seem to be the general case here. Moreover, in the "Late" sample, where the out-

of-sample covers the turbulence from the recent global crisis, GARCH(1,1) appears to 

provide the best forecasts. Furthermore, we see that the forecasting errors for Finland tend to 

be larger than for the other countries, with exception of the "Late" sample. 

 

For further analysis, Table 9  below present the results from the auxiliary regressions where 

realized volatility is regressed on a constant and the volatility forecast for each model. The 

results are mixed in this evaluation as well. Nevertheless, we notice that the models with the 

highest R
2
-value for each country and sample tend to be the same models that achieve the best 

results in Table 8. In fact, this is true for 13 out of 16 scenarios. Moreover, we see that in the 

"Late" sample, the highest R
2
-values are obtained exclusively for the GARCH(1,1) models. In 

general however, we observe very low R
2
-values from the regressions. This finding is similar 

to the results obtained by Pojarliev and Polasek (2001), and is probably dependent on the 

noisiness of our proxy for actual volatility. A discussion of this seemingly poor forecasting 

performance can be found in e.g. Andersen and Bollerslev (1998). 

 

In the "Mid" sample for Norway, the  -coefficient is quite far from one, suggesting that the 

models exhibit some form of bias. In addition, the SV model is the worst predictor for the 

actual volatility more often than any other model, which is in line with the results presented in 

Table 8. 
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Table 9 - Auxiliary regressions results 

Early 

          In-sample: 01/01/1993 – 01/02/1995 

          Out-of-sample: 01/03/1995 – 01/01/1998 

  

  

 

  

     
Denmark   Finland 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 
0.0000 0.0000 0.0000 0.0000 0.0000   

α 
0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  

β 0.7442*** 0.7740*** 0.8301*** 0.8255*** 0.8691***   
β 1.0693*** 1.1477*** 1.1593*** 1.2174*** 0.8631*** 

(0.1973)  (0.2052)  (0.2208)  (0.2210)  (0.2005)    (0.2969)  (0.3144)  (0.3226)  (0.3413)  (0.2562)  

R
2 

0.0497 0.0532 0.0579 0.0580 0.0778   R
2 

0.1699 0.1727 0.1837 0.1714 0.0194 

Obs. 784 784 784 784 784   Obs. 784 784 784 784 784 

Norway   Sweden 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 0.0000 0.0000 0.0000 0.0000 0.0000**   α 0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  

β 
1.1740*** 0.7073** 0.9497** 0.9744** 0.8620**   

β 
0.8098** 0.8450*** 0.9555*** 1.0298*** 0.8772*** 

(0.3911)  (0.2864)  (0.3791)  (0.4133)  (0.3507)    (0.3175)  (0.3180)  (0.3618)  (0.3804)  (0.2770)  

R
2 

0.0871 0.0209 0.0530 0.0434 0.0512   R
2 

0.0811 0.0789 0.0952 0.0995 0.0573 

Obs. 784 784 784 784 784   Obs. 784 784 784 784 784 
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Table 9 (continued) 

Mid 

          In-sample: 01/01/1993 – 01/03/2000 

   

  

      Out-of-sample: 01/04/2000 – 01/04/2004 

   

  

      
Denmark   Finland 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 0.0000 0.0000 0.0000 0.0000 0.0000   α 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0003*** 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0001)  (0.0001)  (0.0001)  (0.0001)  (0.0001)  

β 
0.8551*** 0.9050*** 0.8007*** 0.7782*** 1.1819***   

β 
0.3719*** 0.3769*** 0.4079*** 0.3845*** 0.6480*** 

(0.1906)  (0.2010)  (0.1871)  (0.1847)  (0.2890)    (0.1159)  (0.1161)  (0.1240)  (0.1243)  (0.1645)  

R
2 

0.0770 0.0811 0.0705 0.0756 0.0687   R
2 

0.0102 0.0105 0.0108 0.0101 0.0134 

Obs. 1043 1043 1043 1043 1043   Obs. 1043 1043 1043 1043 1043 

Norway   Sweden 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 0.0000 0.0000 0.0000 0.0000* 0.0000*   α 0.0001*** 0.0001*** 0.0001*** 0.0001*** 0.0000 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  

β 
0.9071*** 0.8132*** 0.8235*** 0.7836*** 0.7765***   

β 
1.6363*** 1.5978*** 1.4181*** 1.4367*** 1.1698*** 

(0.1159)  (0.1161)  (0.1240)  (0.1243)  (0.1645)    (0.1682)  (0.1810)  (0.1549)  (0.1636)  (0.1465)  

R
2 

0.0825 0.0782 0.0709 0.0736 0.0273   R
2 

0.3054 0.2945 0.2442 0.2231 0.0924 

Obs. 1043 1043 1043 1043 1043   Obs. 1043 1043 1043 1043 1043 
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Table 9 (continued) 

Late 

          In-sample: 01/01/2001 – 12/30/2005 

   

  

      Out-of-sample: 01/02/2006 – 01/03/2011 

   

  

      
Denmark   Finland 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 0.0000 0.0000 0.0000 0.0000 0.0000   α 0.0000** 0.0000** 0.0000 0.0000 0.0000 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  

β 
0.9510*** 0.9566*** 0.9641*** 0.9313*** 1.5260***   

β 
0.8562*** 0.8378*** 0.9045*** 0.8863*** 1.1280*** 

(0.1240)  (0.1183)  (0.1147)  (0.1119)  (0.3062)    (0.1112)  (0.1016)  (0.1118)  (0.1147)  (0.1680)  

R
2 

0.2148 0.2211 0.2240 0.2237 0.1685   R
2 

0.1091 0.1159 0.1247 0.1243 0.0967 

Obs. 1306 1306 1306 1306 1306   Obs. 1306 1306 1306 1306 1306 

Norway   Sweden 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 0.0000** 0.0000** 0.0000* 0.0000* 0.0000*   α 0.0000* 0.0000** 0.0000* 0.0000* 0.0000 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  

β 
0.9215*** 0.9112*** 0.9517*** 0.9376*** 1.5362***   

β 
0.8841*** 0.8337*** 0.8972*** 0.8548*** 1.3974*** 

(0.0952)  (0.0968)  (0.0967)  (0.0959)  (0.2116)    (0.1089)  (0.0986)  (0.1086)  (0.1037)  (0.2204)  

R
2 

0.2541 0.2537 0.2585 0.2598 0.2286   R
2 

0.1547 0.1525 0.1587 0.1579 0.1409 

Obs. 1306 1306 1306 1306 1306   Obs. 1306 1306 1306 1306 1306 
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Table 9 (continued) 

Full 

          In-sample: 01/01/1993 - 12/20/1993 

   

  

      Out-of-sample: 12/21/1993 – 05/07/2014 

   

  

      
Denmark   Finland 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 0.0000*** 0.0000*** 0.0000*** 0.0000*** -0.0000   α 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000** 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  

β 
0.7684*** 0.7325*** 0.7767*** 0.7863*** 1.4374***   

β 
0.7282*** 0.7040*** 0.7650*** 0.7608*** 1.0049*** 

(0.0602)  (0.0636)  (0.0643)  (0.0747)  (0.2557)    (0.0548)  (0.0489)  (0.0572)  (0.0472)  (0.0841)  

R
2 

0.1892 0.1728 0.1839 0.1802 0.1550   R
2 

0.0885 0.0804 0.0889 0.0885 0.0773 

Obs. 5317 5317 5317 5317 5317   Obs. 5317 5317 5317 5317 5317 

Norway   Sweden 

Model 
CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

  
Model 

CGARCH  

N-dist 

CGARCH  

T-dist 

GARCH  

N-dist 

GARCH  

T-dist 
SV 

α 0.0000*** 0.0000*** 0.0000*** 0.0000** -0.0000*   α 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000 
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)    (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  

β 
0.8007*** 0.8401*** 0.8244*** 0.8204*** 1.4407***   

β 
0.6472*** 0.6635*** 0.7495*** 0.7516*** 1.1442*** 

(0.0845)  (0.0767)  (0.0753)  (0.0752)  (0.1932)    (0.0795)  (0.0798)  (0.0578)  (0.0578)  (0.1082)  

R
2 

0.2453 0.2606 0.2523 0.2514 0.2329   R
2 

0.1029 0.1050 0.1236 0.1225 0.1226 

Obs. 5317 5317 5317 5317 5317   Obs. 5317 5317 5317 5317 5317 

 
Table 9 presents the results from auxiliary regression, where squared daily returns are regressed on a constant and conditional variance 

for the “Early”, “Mid”, “Late” and “Full” sample. Newey-West robust standard errors within parenthesis. *, ** and *** denotes 

statistical significance at the 10%, 5% and 1% level, respectively. 
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7. Analysis and Discussion 
 

The first area of focus has been to evaluate which conditional volatility models that are able to 

capture effects of persistent volatility shocks. This has also served the purpose of examining 

to which extent macroeconomic variables have explanatory power on the long-run conditional 

equity volatility. 

 

After performing appropriate transformations of non-stationary series and running OLS 

regression analyzes, we find that the results are mixed. Despite having the expected sign in 

most cases, the majority of the coefficients of the macroeconomic variables are insignificant. 

This differs considerably from e.g. Cho and Elshahat (2014) and Engle and Rangel (2008), 

whose findings show that several macroeconomic variables included in this study have 

explanatory power on the conditional long-run volatility of equity returns. They do, however, 

use slightly different model specifications (particularly Engel and Rangel (2008), see Section 

2), which may partly explain the diverse outcomes. Also, since the Nordic countries are small, 

rather homogenous and very dependent on the economic state on a global level, it may be the 

case that the long-run volatility of these equity markets are explained by domestic 

macroeconomic factors to a lesser extent than e.g. the U.S. counterpart.  

 

Moreover, Cho and Elshahat (2014) use annual data ranging from 1960 to 2009. In the 

analysis made here, using annual data could possibly separate the models further from each 

other, since we would generally expect larger movements of variables at annual frequencies 

than on quarterly basis. Longer horizons/frequencies could thus, in turn, be beneficial for the 

long-run component of the CGARCH model, making it more distinctly different from the 

other models. In addition, it is possible that the macro variables in the period before the 

1990's or 2000's explain a large part of their conditional volatility, which may also explain the 

differences between our results. However, given the scope, time frame and data availability, 

experiments with different frequencies or time periods have not been conducted here. 

 

Nevertheless, the hypothesis was that the long-run component of the CGARCH model would 

be superior for estimating macro-related persistent volatility shocks, but the differences 

between the models have proven to be small. Furthermore, in some cases, the long-run 
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component of the CGARCH has shown to be inseparable from the total volatility (because   

and   could not be statistically separated from 0, see Equation 12), which has reduced the 

model to a special form of GARCH(1,1). Similar findings are discussed in Cho and Elshahat 

(2011). Only with data from Denmark do we see some indication that the long-run component 

may outperform the other models' estimation ability.  

 

The SV model appears to be the least able of taking long-run volatility into account. Yet 

again, the differences between the models are not overwhelming. Taken together, the 

CGARCH is generally not better than the relatively simple GARCH(1,1) for modelling 

persistent macroeconomic volatility effects on equity returns on quarterly basis, despite its 

two-component structure. 

 

In the second part, the short-run forecasting ability has been evaluated by estimating the one-

day ahead total conditional variance. Here, the long-run component is not separated from the 

total volatility of the CGARCH model for maximal comparability. Several sample periods 

based on the general volatility patterns that can be distinguished from the equity return series 

have been chosen for evaluation. First, the performance has been evaluated by so-called loss 

functions. Similar to the results from the long-run volatility regressions, the results from this 

analysis are mixed as well. The normally distributed GARCH(1,1) model have the best 

forecasting ability for Finland in most cases. Also, in the "Late" sample period, the 

GARCH(1,1) appears to generally have the best performance. The forecasts for this sample 

cover the recent global subprime crisis, which suggests that the GARCH(1,1) is more able 

than the other models to accurately describe future short-term volatility in periods of very 

high turbulence. However, no general pattern can be found for the rest of the countries or 

samples. Over all scenarios, the SV model has the highest number of worst performances. 

 

In the auxiliary regression analysis of the forecasting performance, the results are similar to 

those obtained from the loss functions. Again, the SV model generally achieves the worst 

results. Moreover, we notice that the R
2
-values are generally low or very low, and the models 

for Finland in the "Mid" sample appear to suffer from some form of bias. This bias and low 

R
2
-values are likely dependent on the proxy for true volatility (i.e. the dependent variable in 

each regression).  
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What is interesting however, is that the models obtaining the highest R
2
-value for each 

country and sample period, tend to be the same models that have the best performance 

according to the loss functions. This suggests that the results are not completely random, 

although it is difficult to come to any general conclusions regarding the superiority of any 

particular model for any particular volatility scenario. The exception is GARCH(1,1) in the 

"Late" sample, which, according to both the loss functions and the auxiliary regressions, 

achieves the best result  in this period of highly turbulent and volatile markets. In addition, the 

GARCH(1,1) generally provides the best forecasts for Finland, which appears to have the 

most volatile equity market throughout the sample (see Table 4 and Figure 1). One could thus 

come to the conclusion that the GARCH(1,1) is relatively more accurate than the other 

models in periods of financial turmoil. However, this conclusion is not supported by the 

results from the "Mid" sample, which covers the highly volatile tech bubble in the early 

2000's, and for which it cannot be shown that the GARCH(1,1) provides the best forecasts.  

 

Furthermore, normally distributed rather than t-distributed GARCH-type models have 

generally the best forecasting performance, which is rather surprising given the results from 

the J-B statistics and QQ-plots (see Section 6.1). A possible explanation is that the subsamples 

have less fat-tailed distributions than the full sample. This has, however, not been 

investigated. 

 

Nevertheless, from the forecast evaluation we may conclude that the differences between the 

GARCH(1,1) and the CGARCH models generally are small or negligible. Furthermore, the 

SV model appears to be relatively inaccurate and unreliable, and behaves slightly different 

from the GARCH-type models. This result regarding the SV model is in line with the findings 

of Dunis et. al (2001), but contradicts the conclusions from e.g. Hansson and Hördahl (2005) 

and Yu (2002), whose studies show that SV-type models are preferred to GARCH 

counterparts. Also, according to Adrian and Rosenberg (2008), two-component models are 

often found to outperform one-component specifications for explaining equity market 

volatility. However, this is not the case here.  
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8. Conclusions and Suggestions for Further 
Research 
 

This study has evaluated three different models (GARCH(1,1), CGARCH and SV) on their 

ability to describe and forecast conditional variance of the main Nordic equity indices. The 

first evaluation had the purpose of examining how well the above mentioned models capture 

effects of long-run persistent volatility shocks from macroeconomic variables, and to see to 

which extent these macro variables can explain stock market fluctuations. The initial 

hypothesis was that the long-run component of the CGARCH model would provide the best 

estimates, but the results have shown to be mixed. We conclude that none of the models are 

superior for modeling persistent volatility. However, we see tendencies suggesting that the SV 

model is the least appropriate for this purpose. 

 

The second evaluation is based upon short-run forecasting ability. This is examined by 

measuring errors from a rolling window one-day ahead conditional variance forecast, and by 

an auxiliary regression analysis. Despite mixed results, we notice that GARCH-type models 

following a normal distribution tend to obtain the best ranking according to the various 

measures. This is surprising, since the distribution of the (complete) return series has shown 

to be far from normal. Furthermore, we have seen that the SV model have the highest number 

of worst forecasting performances over all time periods and countries. The general conclusion 

is that the SV model is the least able to accurately describe both long- and short-run 

conditional volatility. We also conclude that the GARCH(1,1) model is not inferior compared 

to the more advanced CGARCH, and may even be superior in periods of high volatility. Thus, 

employing the simpler GARCH(1,1) when estimating and forecasting conditional volatility on 

the Nordic equity markets is probably the better choice. 

 

For future research, it would be interesting to investigate whether at GED distribution or 

similar would be better at describing the data used in this study. Furthermore, incorporating 

the macroeconomic variables into the actual models could provide a deeper understanding and 

more interpretable results than those obtained here. Allowing for asymmetry in the models 

might also improve the general performance.     
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Appendix 
 

Figure 3 shows the volatility plots of total volatility (CGARCH) and the long-run component 

(LCGARCH) in the CGARCH model. 

 

 
Figure 3 
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Figure 3 (continued)
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Figure 3 (continued)
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Table 10 presents the results from the additional regression analysis of the long-run volatility. 

Lags of variables previously regressed in levels have been added. 

 

Table 10 - Regression results,Additional lags 

Denmark 

Dependent 

variable 

CGARCH 

N-dist 

CGARCH 

T-dist 

GARCH  

N-dist 

GARCH 

T-dist 

LCGARCH 

N-dist 

LCGARCH 

T-dist 
SV 

Variables Coefficient 

C 0.0001 0.0001 0.0001* 0.0001 0.0001** 0.0001* 0.0001** 
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

GR. CPI
 Δ

 t-1 
-0.0046 -0.0049 -0.0056 -0.0059 -0.0026 -0.0032 -0.0030 

(0.0039) (0.0041) (0.0045) (0.0048) (0.0022) (0.0026) (0.0026) 

GR. GDPt-1 
-0.0037** -0.0038** -0.0035** -0.0037** -0.0028** -0.0032** -0.0021* 

(0.0017) (0.0018) (0.0017) (0.0018) (0.0014) (0.0016) (0.0012) 

GR. M2 
0.0013 0.0014 0.0016 0.0018 0.0004 0.0005 0.0007 

(0.0014) (0.0015) (0.0016) (0.0017) (0.0008) (0.0009) (0.001) 

GR. M2t-1 
-0.0003 -0.0003 -0.0005 -0.0005 0.0001 0.0001 -0.0002 
(0.0007) (0.0007) (0.0008) (0.0008) (0.0004) (0.0005) (0.0005) 

VOL. RF 
0.0001** 0.0001** 0.0001* 0.0001* 0.0001** 0.0001** 0.0001** 

(0.0001) (0.0001) (0.0000) (0.0001) (0.0000) (0.0001) (0.0000) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0000) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) 

VOL. RFt-2 
0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 

(0.0000) (0.0000) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) 

VOL. CPI
 Δ

 t-1 
-0.0025 -0.0026 -0.0030 -0.0032 -0.0014 -0.0017 -0.0028 
(0.0041) (0.0043) (0.0047) (0.0050) (0.0025) (0.0029) (0.0033) 

VOL. GDP
 Δ

 t-1 
0.0032 0.0034 0.0035 0.0037 0.0021 0.0024 0.0021 

(0.0021) (0.0022) (0.0023) (0.0024) (0.0014) (0.0017) (0.0014) 

LNGDP
d
t-1 

0.0015 0.0016 0.0020 0.0021 0.0003 0.0006 0.0013 

(0.0013) (0.0013) (0.0014) (0.0015) (0.0007) (0.0008) (0.0011) 

R
2 

0.3349 0.3342 0.3094 0.3091 0.4001 0.3890 0.2924 

Obs. 80 80 80 80 80 80 80 
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Table 10 (continued) 

Finland 

Dependent 

variable 

CGARCH Δ 

N-dist 

CGARCH Δ 

T-dist
 

GARCH Δ 

N-dist 

GARCH Δ 

T-dist 

LCGARCH Δ 

N-dist 

LCGARCH Δ 

T-dist 
SV

 Δ 

Variables Coefficient 

C -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0000) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) 

GR. CPIt-1 
0.0053 0.0057 0.0061 0.0064 0.0037 0.0042 -0.0004 

(0.0047) (0.0040) (0.0044) (0.0045) (0.0038) (0.0038) (0.0044) 

GR. GDPt-1 
0.0026 0.0027 0.0026 0.0027 0.0022 0.0024 0.0019 
(0.0017) (0.0027) (0.0029) (0.0030) (0.0020) (0.0022) (0.0025) 

GR. M2
 Δ 0.0018** 0.0020** 0.0022** 0.0023** 0.0012** 0.0014** 0.0009 

(0.0007) (0.0008) (0.0009) (0.0009) (0.0006) (0.0006) (0.0008) 

GR. M2
1

t-1 
0.0009 0.0010 0.0010 0.0011 0.0007 0.0007 0.0003 
(0.0007) (0.0008) (0.0009) (0.0009) (0.0006) (0.0007) (0.0008) 

VOL. RF 
0.0000 0.0000 -0.0001 -0.0001 0.0000 0.0000 0.0000 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-2 
0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. CPI
 Δ

 t-1 
-0.0073 -0.0077 -0.0074 -0.0079 -0.0036 -0.0044 -0.0009 
(0.0050) (0.0076) (0.0085) (0.0088) (0.0051) (0.0057) (0.0090) 

VOL. GDP
 Δ

 t-1 
0.0022 0.0024 0.0025 0.0027 0.0013 0.0015 0.0025 

(0.0016) (0.0018) (0.0019) (0.0020) (0.0011) (0.0012) (0.002) 

LNGDP
d

t-1 
0.0011 0.0011 0.0011 0.0011 0.0014 0.0013 0.0016* 

(0.0011) (0.0013) (0.0015) (0.0015) (0.0011) (0.0011) (0.0009) 

R
2 

0.2458 0.2433 0.2264 0.2318 0.2094 0.2149 0.1120 

Obs. 80 80 80 80 80 80 80 
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Table 10 (continued) 

Norway 

Dependent 

variable 

CGARCH 

N-dist 

CGARCH 

T-dist 

GARCH  

N-dist 

GARCH 

T-dist 

LCGARCH 

N-dist 

LCGARCH 

T-dist 
SV 

Variables Coefficient 

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001** 0.0001 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

GR. CPIt-1 
0.0141 0.0135 0.0140 0.0145 0.0141 0.0083 0.0082 

(0.0116) (0.0112) (0.0116) (0.012) (0.0116) (0.0073) (0.0073) 

GR. GDPt-1 
-0.0043 -0.0045 -0.0043 -0.0044 -0.0043 -0.0035* -0.0036 
(0.0030) (0.0030) (0.0030) (0.0031) (0.0030) (0.0021) (0.0022) 

GR. M2
 Δ

 
0.0015 0.0016 0.0015 0.0015 0.0015 0.0013 0.0011 

(0.0018) (0.0018) (0.0018) (0.0019) (0.0018) (0.0013) (0.0012) 

GR. M2
 Δ

 t-1 
0.0000 0.0001 0.0000 0.0000 0.0000 0.0004 0.0002 
(0.0009) (0.0010) (0.0009) (0.0010) (0.0009) (0.0008) (0.0008) 

VOL. RF 
0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001 0.0001* 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. RFt-2 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

VOL. CPIt-1 
0.0142 0.0131 0.0141 0.0146 0.0142 0.0075 0.0099 
(0.0172) (0.0165) (0.0171) (0.0177) (0.0172) (0.0104) (0.0108) 

VOL. GDPt-1 
-0.0049 -0.0055 -0.0049 -0.0051 -0.0049 -0.0048 -0.0037 

(0.0040) (0.0043) (0.0040) (0.0042) (0.0040) (0.0036) (0.0033) 

LNGDP
d
t-1 

0.0040 0.0038 0.0040 0.0041 0.0040 0.0022 0.0033 

(0.0036) (0.0036) (0.0036) (0.0037) (0.0036) (0.0026) (0.0027) 

R
2 

0.2217 0.2345 0.2214 0.2216 0.2216 0.2669 0.2743 

Obs. 80 80 80 80 80 80 80 
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Table 10 (continued) 

Sweden 

Dependent 

variable 

CGARCH 

N-dist 

CGARCH 

T-dist 

GARCH  

N-dist 

GARCH 

T-dist 

LCGARCH 

N-dist 

LCGARCH 

T-dist 
SV 

Variables Coefficient 

C 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

GR. CPIt-1 
0.0010 0.0010 0.0010 0.0010 0.0011 0.0010 0.0013 

(0.0039) (0.0040) (0.0039) (0.0040) (0.0039) (0.0040) (0.0031) 

GR. GDPt-1 
-0.0043 -0.0044 -0.0043 -0.0044 -0.0043 -0.0044 -0.0039 
(0.0030) (0.0031) (0.0030) (0.0031) (0.0030) (0.0031) (0.0025) 

GR. M2 
-0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0008 

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0008) 

GR. M2t-1 
-0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0010 
(0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0010) 

VOL. RF 
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0001) 

VOL. RFt-1 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) 

VOL. RFt-2 
-0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0000 

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

VOL. CPIt-1 
0.0116*** 0.0118*** 0.0116*** 0.0117*** 0.0117*** 0.0118*** 0.0088*** 

(0.0041) (0.0042) (0.0041) (0.0042) (0.0041) (0.0042) (0.0031) 

VOL. GDP
 Δ

 t-1 
-0.0008 -0.0008 -0.0008 -0.0007 -0.0008 -0.0008 -0.0012 

(0.0022) (0.0023) (0.0022) (0.0023) (0.0022) (0.0023) (0.0014) 

LNGDP
d
t-1 

0.0015 0.0016 0.0015 0.0016 0.0015 0.0016 0.0013 

(0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0012) 

R
2 

0.1641 0.1644 0.1648 0.1653 0.1645 0.1648 0.1493 

Obs. 80 80 80 80 80 80 80 

 
 

 

 

 

 

 

Table 10 presents the regression analysis results with estimated volatility series as 

dependent variables for Denmark, Finland, Norway and Sweden. Newey-West robust 

standard errors within parenthesis. *, ** and *** indicates significance level at 10%, 

5% and 1% respectively. "GR." denotes "Growth rate of", "VOL." denotes "Volatility 

of" and "RF" denotes short-term (risk-free) interest rate. 

 
Δ 

denotes that the variables are regressed in first difference due to non-stationarity. 

 
d
  denotes that the variables are detrended due to non-stationarity. 

 


