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Abstract

Biotechnological tools have never been stronger than today and the data they
provide is absolutely fascinating. As we get a clearer picture of the intricate
workings of living systems effective mathematical and statistical tools become
a necessity in order to reach a comprehensive understanding of said systems.

The purpose of this thesis is to statistically explore cutting edge biomedical
data taken from virus infected human tissue samples in the hopes of finding
interesting correlations amongst the different components in the samples. We
will also show that spatial statistical methods can be used to draw valuable and
significant conclusions about biological systems.

The method of choice for the statistical analysis in this thesis is the V-
proportionality measurement. In theory it can distinguish positive, negative and
lack of spatial correlation in datasets through clever use of the Voronoi diagram.
The code used for the implementation of the V-proportionality measurement is
both explained and provided within the confines of this paper.
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1 Introduction

The focus of this thesis will be on the exploration of a new interesting type
of medical data. Its aspiration to explore the spatial correlations between the
intricate parts of the human immune response and virus infected tissue. A
quite unexplored statistical method is used, which in theory should be able to
distinguish positive, negative and the lack of spatial correlation.

The data used in this thesis is provided by a biotechnology company by the
name Medetect who among other things develop tools for the analysis of diseased
tissue. One of these tools allow for the detection of virus infected cells alongside
many parts of the immune response, in the same sample. This is achieved with
the use of cutting edge technology and would have been impossible merely years
ago.

Extracting all the necessary information for a medical diagnosis in a single
tissue sample is not just convenient, but comes with additional benefits. Since
all the information is provided within the same sample, the spatial interdepen-
dencies of infections and the immune response can be studied. The researchers
at Medetect are confident that these tissue samples will one day serve as a valu-
able tool in practical medicine. Hopefully the contents of this thesis will help
the researchers in their endeavours by presenting an effective method for the
study of spatial correlation.

1.1 Overview of thesis

Section 2 introduces important concepts and definitions, then proceeds to de-
scribe and discuss the statistical method employed in the thesis. Section 3 uses
simulated well understood data to validate the method. In section 4, analysis
of real world data is conducted. The conclusions draw from the theses and
suggestions for further work is presented in section 5.
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2 Method

The following statistical method was first introduced in Óscar Mart́ınez Mozos’
intriguing paper on the spatial relations of neurons in the retina (2010). The
method was chosen since paper shows promising results on data similar to ours.

This thesis will only be concerned with two-dimensional Euclidean spaces,
hence the definitions have been altered specifically for this. The reason being
that the method can be explained both clearer and more efficiently to the reader.
However, this does mean that some of the statements made are not true in
general, especially when discussing the Voronoi diagram.

2.1 The Voronoi diagram

First defined by Georgy Feodosevich Voronoy (1908), the Voronoi diagram is a
quite natural construction. Given a set of points in some space, the Voronoi
diagram simply splits the space into regions containing whatever is deemed
closest to a point according to some metric. We will use the following definition
based on the one provided in Óscar Mart́ınez Mozos’ paper.

Definition 1 Let d(.,.) be the Euclidean distance function and S = {s1, s2, ..., sn}
a finite set of points in the plane. Let p be all the points in the plane such that
p 6∈ S. Now we introduce:

V (si) = {p | d(si, p) ≤ d(sj , p); p 6∈ S, ∀si 6= sj}

V (S) will hence be a collection convex polygons. This collection is called the
Voronoi diagram.

Each si is usually referred to as a Voronoi site. Our Voronoi diagram can be
seen as a way to produce convex regions around each Voronoi site where the
interior points are atleast as close to the site as any other site. These regions
denoted as V (si) are most commonly known as Voronoi polygons.

Figure 1: The Voronoi diagram applied to a realization of uniformly distributed pattern.

2.2 The V-proportionality

Now that the Voronoi diagram is well defined we will extend the concept of it
into a useful spatial statistical model, namely the V-proportion measurement.
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In order to explain the method clearly one may imagine two sets of points Q
and S on a plane. Using S as sites we construct the Voronoi diagram. For each
of the polygons created, we will produce a δ smaller polygon proportional to its
corresponding site. The area in between every Voronoi polygon and its smaller
counterpart make up a set of bands on the plane. The entire construction of
bands and polygons can be seen in Fig. 2.

We now investigate how many of the points in Q reside within our set of
bands and compare it with the total amount of points in Q. This ratio is known
as the V-proportion. More formally we will use the following definition, slightly
more general than the one provided by Óscar Mart́ınez Mozos.

Definition 2 Let Q = {q1, q2, ..., qm} and S = {s1, s2, ..., sn} be two sets of
points. Produce the Voronoi diagram of S and construct the set E = {e1, e2, ..., em}
where

ej = arg minx

(
d(x, qj)

∣∣∣∣ x ∈ ⋃n
i=1 ∂V (si)

)
and ∂V (si) denotes the boundary of the Voronoi polygon. Introduce the set
QB ⊆ Q where

QB = {qj ∈ Q | d(qj , ej) ≤ δ · d(si, ej), where qj ∈ V (si)}

Finally we define the V-proportion as the following ratio

| QB |
| Q |

.

Figure 2: A visualisation of the V-proportionality construction. Sites are represented by
filled circles and comparison points by empty ones. The grey area running along the edge of
each Voronoi polygon shows the previously discussed bands. Here the created by taking 30%

of the distance d between edge and site.

The usefulness of the V-proportion may not be abundantly clear but the think-
ing is quite straight forward. For simplicity imagine our sets Q and S from
before and create the V-proportionality construction using S as sites. If the sets
completely lack spatial correlation, one can expect the average point density to
be almost the same inside and outside of the bands. If our two sets are positively
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spatially correlated and the sites promote the occurrence of points in Q, the av-
erage point density will be significantly higher outside of the bands. Lastly, if
the points in S actively inhibit the occurrence of points in Q the average point
density will be significantly higher inside of the bands since the points of Q
will in general cluster around the edges of the Voronoi polygons. Throughout
this thesis spatial relations of this kind will be referred to as negative spatial
correlation.

Even though the V-proportionality measurement has now been both defined
and discussed, the way it should be used in order to draw conclusions has
not. First and foremost, we need to introduce a Monte Carlo test procedure
to serve as a reference point for lack of spatial correlation. Two completely
spatially independent data sets are simulated in an area identical to the one
under investigation. The sets are made to contain the exact same number of
points as our sets of interest. The V-proportionality of the simulated data is
then calculated. This process is repeated as many times as deemed necessary
for the construction of a reliable confidence interval.

As can be seen from Definition 2 our measurement is completely dependant
on the the size of the bands, decided by the free parameter δ. The procedure
of calculating the V-proportion and simulating confidence intervals will now be
repeated for bands of different sizes. Finally the results are plotted and the
spatial correlation of the two sets of interest can be analysed. If V-proportion
values ever exceed that of confidence intervals it is interpreted as negative spatial
correlation. Further, if the opposite is found positive spatial correlation can be
assumed. More on this in section 3, where examples based on different kinds of
simulated data can be found.

2.2.1 Handling of the edge effect

The data for which the V-proportionality is an effective analysis tool usually
comes as a rectangular sampling window of a much larger pattern. This has an
inherent problem that needs to be addressed, namely the edge effect. As the
observant reader might have noticed in Fig. 1, many of the sites close to the
boundary of the sampling window will result in open polygons when the Voronoi
diagram is calculated. It is hard to construct meaningful bands for these open
polygons as the necessary information is partly missing.

In order to get around this problem, the open polygons and comparison
points residing within them are removed. This leads to more dependable results
as it eliminates the chance that information not reflecting reality is introduced,
but does decrease the total amount of data. This is the same course of action
taken in Óscar Mart́ınez Mozos’ paper.

2.3 Implementation

The code for the implementation of the V-proportionality was written in the
language R (2014). The better part of the code relies on routines contained
within the packages deldir, sgeostat and spatstat. The full code can be
found in appendix A, but the general concept can be described as follows.

Step 1
The package deldir is used to create a Voronoi diagram of the data chosen
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as sites.

Step 2
A help function that takes advantage of the fact that deldir provides
the corner coordinates for the convex polygons created is used to produce
bands of size δ.

Step 3
Each comparison point is examined to determine whether it resides within
a band or not using the package sgeostat. The V-proportion is then
calculated.

Step 4
Two independent randomly distributed sets of the same cardinality as the
data sets are simulated. This is done in an area equal to the one of the
data sets using the package spatstat.

Step 5
The help function is used to create bands.

Step 6
Each simulated comparison point is investigated to determine how many
of them reside within the bands. The simulated V-proportion is then
calculated.

Step 7
Steps 4,5,6 are repeated T times in order to calculated the mean and
confidence intervals of the simulated datasets.

As explained in the previous section, this process needs to be repeated for
different δ values and then plotted to provide us with the final product.

3 Validation of the method

Both the theory and its implementation has been discussed in detail. In order
to validate the method, patterns with and without spatial correlation are sim-
ulated. The V-proportionality method is then used to analyse the sets in an
effort to prove that the results obtained are in accordance with the theory. In
each one of these analyses we simulate 1000 populations for comparison in order
to establish reliable 95% confidence intervals.

3.1 Lack of spatial correlation

Completely independent random patterns can easily be simulated using routines
built into R. This is done using the function runifpoint() contained within
the package spatstat. The function simulates a given amount of independent
uniformly distributed points in a two dimensional plane.

Two sets of this kind are simulated in a square area of 3002 pixels. One
containing 50 points to be used as sites, alongside one containing 300 points for
comparison. The sets simulated are then analysed and the results can be seen
in Fig. 3. As expected no significant deviation from the mean can be detected
and presumptions of spatial correlation may be dismissed.
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Figure 3: The two simulated random patterns alongside their V-proportionality
measurement. Sites are represented by filled circles and the comparison set by empty ones.

3.2 Positive spatial correlation

Aggregated patterns can effectively be simulated using a Poisson cluster process,
first introduced by Neyman and Scott (1958). This process was later described
methodically by Peter J. Diggle (2013), in three postulates.

Postulate 1 Parent events form a Poisson process with intensity ρ

Postulate 2 Each parent produces a random number S of offspring, realized
independently and identically for each parent according to a probability
distribution ps : s = 0, 1, ....

Postulate 3 The positions of the offspring relative to their parents are inde-
pendently and identically distributed according to a bivariate pdf h(·).

In order to obtain positive spatial correlation, the offspring are created using a
bivariate normal distribution relative to their parent. The simulation of these
sets can be done in R using the function pcp.sim() contained within the package
splancs.

In the same manner as before, the parent and offspring sets are simulated
in a square area of 3002 pixels. The results presented in Fig. 4, shows that
the V-proportionality values are significantly lower than the random equivalent,
indicating a strong positive spatial correlation between the two sets.
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Figure 4: The two simulated positively spatially correlated patterns alongside their
V-proportionality measurement. Sites are represented by filled circles and the comparison

set by empty ones.

3.3 Negative spatial correlation

To simulate negatively correlated patterns we utilize a process described by
Swedish statistician Bertil Matérn (1960). Matérn’s method marks the birth
time of points in a Poisson process, if a new event lies within distance δ of
an older one it is removed. This creates a simple sequential inhibition process
defined by Peter J. Diggle (2013, pp. 111) as:

Definition 3 Consider a sequence of n events Xi in a finite region A. Then

Matérn 1 X1 is uniformly distributed in A

Matérn 2 Given {Xj = xj , j = 1, ..., i− 1}, Xi is uniformly distributed on the
intersection of A with {y : ‖y − xj‖ ≥ δ, j = 1, ..., i− 1}.

A set X is simulated in a area of 3002 pixels using the Matérn process with
inhibition distance 25 pixels. Another set Z of uniformly distributed points is
simulated into the same area as X. If a point in Z lies within the radius η of
a point in X, it is removed. This procedure produces to two sets that both
visually and V-proportionality wise exhibits a clear negative spatial correlation,
as seen in Fig. 5.
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Figure 5: The two simulated negatively correlated patterns alongside their
V-proportionality measurement. Sites are represented by filled circles and the comparison

set by empty ones.

4 Spatial correlation analysis on real data

As briefly mentioned in the introduction, the data analysed in this thesis comes
from diseased human tissue samples where different cell types have been mapped
out. This is done by applying molecules of a certain color that bind to the
receptors of a specific cell type. The sample is then analysed and the position of
each coloured cell is recorded. The process of colouring is repeated for different
cell types until the position each cell of interest has been recorded. Two different
types of these tissue samples were analysed. The first taken from virus infected
lungs where both the virus infected cells and the immune response is mapped
out. The second from diseased tonsil tissue where only the immune response is
mapped out.

Reading the chapter on non-specific(innate) host resistance in Prescott, Harley
and Klein’s Microbiology (2008) is suggested for the interested reader as it pro-
vides a comprehensive understanding of the human immune system. This is
however just a suggestion and not a necessity for understanding the results in
this thesis.

The statistical investigation of the data was preformed in two steps. First,
a wide array of V-proportionality tests were carried out to examine the spatial
relation between the different cell types in each sample. After the broad initial
examination, the pairs of cells that showed some sort of interesting correlation
were subjugated to a more thorough analysis. Confidence intervals of 95% were
used in the following V-proportionality tests.

4.1 Virus infected cells and myeloperoxidase in lung tissue

The primary analysis of the lung tissue data suggested the possibility of a sig-
nificant correlation between myeloperoxidase(MPO) and virus infected cells.
Myeloperoxidase is a peroxidase enzyme most commonly expressed in neutrophil
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granulocytes. This enzyme uses hydrogen peroxide to produce hypochlorous
acid, a cytotoxin that kills pathogens.

Figure 6: The pattern of MPO(filled circles) and Virus infected cells(empty circles) in
human lung tissue.

The spatial analysis of these two cell types was preformed on 20 different band
sizes each with a 1000 simulated populations to ensure the accuracy of the
confidence bands. Both MPO and the virus infected cells were used as sites
respectively, the results can be seen in Fig. 7.

Figure 7: To the left MPO as sites and to the right viruses as sites.

When the MPO points are used as sites a significant negative spatial correlation
can be detected in several band sizes. This result seems reasonable seeing as
the function of MPO is to produce a virus killing cytotoxin.

No significant correlation is found when using the virus infected cells as sites,
this is most likely explained by the handling of open polygons. Because of the
way the samples have been taken, the wast majority of MPO points are located
close to the boundary of the window, whereas the virus infected cells are located
more towards the center. This leads to the removal of a large portion of the
data when the virus infected cells are used as sites and far less can be concluded
from the results.
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4.2 MPO and CD68 in tonsil tissue

The data acquired from the mapping of the immune response in human tonsil
tissue indicated that a further analysis of the correlation between MPO and
Cluster of Differentiation 68(CD68) was warranted. CD68 is a glycoprotein
expressed on different macrophages in the human immune system and is hence
a good marker for the immunity response to pathogens.

Figure 8: The pattern of MPO(filled circles) and CD68(empty circles) in human tonsil
tissue.

The spatial analysis of these two cell types was preformed on 20 different band
sizes each with a 1000 simulated populations to ensure the accuracy of the
confidence bands. Both CD68 and MPO were used as sites respectively, the
results can be seen in Fig. 9.

Figure 9: To the left CD68 as sites and to the right MPO as sites.

Using CD68 points as sites suggests a positive spatial correlation between the
two cell types within the 95% confidence interval on smaller band sizes. That
positive spatial correlation is found between these two cell types is not partic-
ularity surprising. They can be seen as two different weapons deployed by the
human body in an attempt to combat an infection.

11



However, no significant spatial correlation can be detected when using MPO
points as sites. Further analysis of the interdependencies of these cell types is
suggested.

5 Conclusions

To summarize, this thesis has shown that the V-proportionality approach is a
valid option for statistical analysis when dealing with biological data of this
kind. Significant spatial correlation was found in multiple samples and basic
hypotheses as to why was provided. While this was the aspiration of the thesis,
a weakness of the V-proportionality approach was also found. As discussed
earlier, the interaction between the way the samples have been taken and how
the edge effect was handled led to a grate loss of data in certain cases.

5.1 Further work

The patterns of the virus infected cells and the immune response is only part of
the picture. In many of these samples, areas of different tissue types are present
and detectable. These serve as a backdrop for the patterns and may or may not
affect the correlation between the populations. Devising some sort of method
that incorporates this additional information could lead to a stronger analysis.
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Appendix A

#Provide data as deldir tile.lists with rw=c()

attribute corresponding to size of sampling window

#N=Number of bandsizes , Generations=Number of

simulation generations ,

#Mode=" remove" or "keep" open polygons , Thesis=type of

plot "yes "/"no"

Vprop <-function(tilelist ,compset ,N,Generations ,mode="

keep",thesis ="no"){

realV <-list();z=1 #PART 1, EMPIRICAL V-

PROPORTIONALITY

if(mode ==" remove "){

z=2

modifiedcompset=list()

bandset <-hull(tilelist ,0, z)

for(i in 1: length(compset)){

xorg <-compset [[i]][[2]][[1]]; yorg <-compset [[i

]][[2]][[2]]

for(j in 1: length(bandset)){

xycoords=xy.coords(bandset [[j]][,1], bandset [[j

]][ ,2])

if((in.chull(xorg ,yorg ,xycoords$x ,xycoords$y))

==TRUE){

xytemp <-c(xorg ,yorg)

modifiedcompset=append(modifiedcompset ,list(

xytemp))

}

}

}

if(length(modifiedcompset)==0){

plot (1,1)

title(main="No points left after removing open

polygons ")

return ()

}

for(k in 1:N){

Pb=0; bandset <-hull(tilelist ,(100/N)*k, z)

for(i in 1: length(modifiedcompset)){

xorg <-modifiedcompset [[i]][1]; yorg <-

modifiedcompset [[i]][2]

for(j in 1: length(bandset)){

xycoords=xy.coords(bandset [[j]][,1], bandset

[[j]][ ,2])

if((in.chull(xorg ,yorg ,xycoords$x ,xycoords$y

))==TRUE){

Pb=Pb+1

break

}
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}

}

realV[k]=(1-Pb/length(modifiedcompset))

}

print("Open polygons removed ")

}

if(mode !=" remove "){

for(k in 1:N){

Pb=0; bandset <-hull(tilelist ,(100/N)*k, z)

for(i in 1: length(compset)){

xorg <-compset [[i]][[2]][[1]]; yorg <-compset [[i

]][[2]][[2]]

for(j in 1: length(bandset)){

xycoords=xy.coords(bandset [[j]][,1], bandset

[[j]][ ,2])

if((in.chull(xorg ,yorg ,xycoords$x ,xycoords$y

))==TRUE){

Pb=Pb+1

break

}

}

}

realV[k]=(1-Pb/length(compset))

}

print("Open polygons kept")

}

print(" Empirical Vproportion klar")

simuV <-matrix(0, nrow=Generations ,ncol=N);w=0 #PART

2, MONTECARLO PROCEDURE

for(l in 1: Generations){

Tile=runifpoint(length(tilelist),win=owin(c(0,max=

attr(tilelist ,"rw")[2]),c(0,max=attr(tilelist ,"

rw")[4])))

tiletess <-deldir(Tile$x ,Tile$y ,rw=c(attr(tilelist

,"rw")))

Stileset <-tile.list(tiletess)

if(z==1){

Comp=runifpoint(length(compset),win=owin(c(0,max

=attr(tilelist ,"rw")[2]),c(0,max=attr(

tilelist ,"rw")[4])))

}

if(z==2){

Snollbandset <-hull(Stileset ,0,z);polylist=list()

for(j in 1: length(Snollbandset)){

tempmatrix=matrix(0,nrow=length(Snollbandset [[

j]][ ,1]),ncol =2)

tempmatrix [,1]= Snollbandset [[j]][ ,1];

tempmatrix [,2]= Snollbandset [[j]][,2]

tempmatrix=rbind(tempmatrix ,tempmatrix [1,])

polylist [[j]]= tempmatrix
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}

Comp=runifpoint(length(modifiedcompset),win=owin

(poly=polylist))

}

for(k in 1:N){

if(z==1){

SPb=0

Sbandset <-hull(Stileset ,(100/N)*k, z)

for(i in 1:Comp [[2]]){

for(j in 1: length(Sbandset)){

xycoords=xy.coords(Sbandset [[j]][,1],

Sbandset [[j]][ ,2])

if((in.chull(Comp$x[i],Comp$y[i],

xycoords$x ,xycoords$y))==TRUE){

SPb=SPb+1

break

}

}

}

simuV[l,k]=(1-(SPb/Comp [[2]]))

}

if(z==2){

SPb=0

Sbandset <-hull(Stileset ,(100/N)*k, z)

for(i in 1:Comp [[2]]){

for(j in 1: length(Sbandset)){

xycoords=xy.coords(Sbandset [[j]][,1],

Sbandset [[j]][ ,2])

if((in.chull(Comp$x[i],Comp$y[i],

xycoords$x ,xycoords$y))==TRUE){

SPb=SPb+1

break

}

}

}

simuV[l,k]=(1-(SPb/Comp [[2]]))

}

}

w=w+1

print(c((w/Generations)*100 ,"% Simulering klar"))

}

Smean=list();Svar=list();Conf=matrix(0,nrow=2,ncol=N

) #PART 3, CALCULATION OF CONFIDENCE INTERVALS

for(i in 1:N){

Smean[i]<-mean(simuV[,i])

}

for(i in 1:N){

sum=0

for(j in 1: Generations){

sum=sum+(( Smean[[i]]-simuV[[j,i]])^2)
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}

Svar[i]<-(1/( Generations -1))*sum

}

for(i in 1:N){

Conf[1,i]=norm.ci(t0=Smean[[i]],var.t0=Svar[[i]])

[2]

Conf[2,i]=norm.ci(t0=Smean[[i]],var.t0=Svar[[i]])

[3]

}

if(thesis !=" yes"){

plot(seq (100/N,100 ,100/N), realV ,type="o",col="red

",ylim=c( -0.2 ,1.2),xlab=" Bandsize %",ylab="V-

proportion ")

lines(seq (100/N,100 ,100/N), Smean ,type="o",col="

blue",xlab=" Bandsize %",ylab="V-proportion ")

errbar(seq (100/N,100 ,100/N),Smean ,Conf[1,],Conf

[2,],add="TRUE")

title(main = bquote (" Sites:" ~ .( length(bandset))

~ "Points :" ~ .(Comp [[2]])))

}

if(thesis ==" yes"){

plot(seq (100/N,100 ,100/N), realV ,type="o",lty=2,

pch="*", ylim=c( -0.2 ,1.2),xlab=" Bandsize %",ylab

="V-proportion ")

lines(seq (100/N,100 ,100/N), Smean ,type="o",lty=1,

pch=".", xlab=" Bandsize %",ylab="V-proportion ")

errbar(seq (100/N,100 ,100/N),Smean ,pch=".", Conf

[1,],Conf[2,],add="TRUE")

}

if(z==2 & thesis !=" yes"){

title(sub="OPEN POLYGONS REMOVED ")

}

}

#Help function that calculates "inverted"

proportionality bands.

#Open polygons are removed if mode=2

hull <-function(tilelist , delta , mode){

rekt <-list();delta=delta /100

for(i in 1: length(tilelist)){

oriX <-tilelist [[i]][[2]][[1]]; oriY <-tilelist [[i

]][[2]][[2]]

temp1 <-matrix(0,nrow=length(tilelist [[i]][[3]]) ,

ncol =2)

for(j in 1: length(tilelist [[i]][[3]])){

diffX=(abs(oriX -tilelist [[i]][[3]][[j]]))*delta

diffY=(abs(oriY -tilelist [[i]][[4]][[j]]))*delta

if(tilelist [[i]][[3]][[j]]<oriX){

temp1[j,1]<-( tilelist [[i]][[3]][[j]]+ diffX)
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}

if(tilelist [[i]][[3]][[j]]>oriX){

temp1[j,1]<-( tilelist [[i]][[3]][[j]]-diffX)

}

if(tilelist [[i]][[4]][[j]]<oriY){

temp1[j,2]<-( tilelist [[i]][[4]][[j]]+ diffY)

}

if(tilelist [[i]][[4]][[j]]>oriY){

temp1[j,2]<-( tilelist [[i]][[4]][[j]]-diffY)

}

}

rekt[[i]]= temp1

}

if(mode ==2){

rekt2=list()

for(k in 1: length(tilelist)){

if(any(tilelist [[k]]$bp)== FALSE){

rekt2 <-append(rekt2 ,rekt[k])

}

}

return(rekt2)

}

return(rekt)

}
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Populärvetenskaplig sammanfattning

Möjligheten att utnyttja framsteg fr̊an nästintill alla vetenskapliga discipliner
gör att forskning inom medicin och bioteknik g̊ar fram̊at i rasande fart. Med
de nyaste teknikerna kan vi idag studera de mest komplexa sambanden i den
mänskliga kroppen, n̊agot som läkare och forskare i tidigare generationer bara
kunnat drömma om.

Med dessa nya tekniker produceras kopiösa mängder data som m̊aste struk-
tureras och analyseras, det är här matematisk statistik kommer in. Den tjänar
som vetenskapens objektiva ögon och ser det som är för stort, för komplicerat
eller för subtilt för v̊ara egna att upptäcka.

Det är just detta denna uppsats strävar efter att uppn̊a. Att undersöka
data fr̊an nyutvecklade medicinska forskningsmetoder med hjälp av matematik,
för att hitta samband p̊a ett objektivt sätt. I uppsatsen studeras bland annat
sambanden mellan infektion och immunförsvar i sjuka mänskliga lungor samt
sambanden mellan de olika delarna i själva immunförsvaret.

För att uppn̊a relevanta resultat behöver vi först övertyga oss själva att sättet
vi arbetar med datan är effektivt och faktiskt fungerar. Därför tillägnas en stor
del av detta arbete den matematiska metoden som används för v̊ar analys.
Metoden kallas för V-proportionalitetsm̊attet dess generella tillvägag̊angssätt
bör vara först̊aligt även för den utan en bakgrund inom matematik.


