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Abstract

In this thesis, I present a case where Dark Matter subhalos would annihilate at some
stage in their lifetime. The implication of this scenario could potentially aid the
Missing Satellites and the Cusp-Core density profile problem. The Dark Matter par-
ticles’ annihilation process and effective “friction” lead to an energy and momentum
loss into radiation and hence to the destabilization of the Dark Matter subhalo with
subsequent collapse and total annihilation. Expected possible observational signa-
ture of this effect is a multi-GeV gamma-ray burst, which is potentially observable
by high-energy gamma-ray detectors such as FERMI etc. The basic purpose here is
to develop a simple analytic model for the collapse dynamics of such a subhalo. I
present results that show how the particle departure rate of a given subhalo does not
depend on initial parameters such as initial contraction velocity, the initial radius and
the initial mass of a given subhalo. Only does it depend on fundamental constants
and Dark Matter model parameters, namely its mass and couplings to ordinary mat-
ter particles in the Standard Model. This remarkable result potentially allows one to
distinguish a whole class of catastrophic astrophysical events with universal charac-
teristics independent on the formation history of such objects. These characteristics
could then be used as constraints for the above-mentioned fundamental constants
for a given Dark Matter model.





Populärvetenskaplplig beskrivning

Vardagliga ting, s̊asom detta papper, är sammanställt av vanlig materia. Det vi
ser med v̊ara ögon och genom teleskop när vi tittar upp mot stjärnorna är ocks̊a
sammanställt utav vanlig materia. Det visar sig att denna materia endast fyller v̊art
kända universum till 5 %. Resten kallas för Mörk Materia och Mörk Energi, där
den föreg̊aende fyller universum med 27 % och den snarare till 68 %. Mörk Materia
är postulerad till att existera d̊aden vanliga materians massa i galaxer inte räcker
för att förklara galaxers rotationskurvor. För att ackommodera galaxers observerade
rotationshastighet pytsas massa fr̊an en okänd källa in, s.k. Mörk Materia.

Nyligen har väldigt hög-energiska fotoner blivit detekterade fr̊an jordens rota-
tionsbana av the Large Area Telescope (LAT) ombord Fermi satelliten. Detta stärker
fallet för existensen av Mörk Materia d̊adet finns teorier om hur dessa fotoner kan
komma till existens fr̊an kollisioner av Mörk Materia partiklar. Dessa fotoner skulle
ha omkring 10,000 g̊anger energi relativt till n̊agon annan kosmologisk händelse,
s̊asom supernovor etc. Dessa höga energier kan troligtvis inte förklaras genom da-
gens ledande teori om vanlig materia, den s.k. Standard Model av partikelfysik och
därfr borde modeller utanför denna modell studeras.

Idag tror de flesta astrofysiker att galaxer i universum är inbäddade i en svärm
av sub halos som tillsammans gör ett halo av Mörk Materia. I det tidiga univer-
sumet förutsäger man att mörk och vanlig materia interagerade väldigt ofta. Vid ett
senare tillfälle, d rum-tiden i universum expanderade, blev det för kallt för dem att
interagera, den mörka materian frös där av ut. Dagens indirekt observerade mörka
materia kan därför betraktas som relik fr̊an det förflutna. N̊agot som de flesta astro-
fysiker inte tror och vad som är presenterat i denna uppsats är scenariot där sub halos
har förmgan att, vid n̊agot tillfälle i sitt annars statiska liv, totalt kollapsa och str̊ala
ut all dess materia p̊aen väldigt kort tid (n̊agon minut eller tv̊afr̊an mina resultat).
Det r fr̊an dessa utstr̊alningar man skulle kunna se de hög-energiska fotonerna.

Simulationer av universums och där av galaxers evolution visar en större mängd
Mörk Materia än vi faktiskt har i universum. Ett sub halo som vid n̊agot tillfälle
försvinner i form av str̊alningsprodukter skulle kunna förklara varför vi inte ob-
serverar fler sub halos.
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Chapter 1

Introduction

For some years now, the origin for some multi-GeV gamma-ray bursts remain un-
known. As there is strong evidence supporting the existence of Dark Matter (DM)
Bertone et al. (2005), models of self-annihilating DM structures (subhalos) could
explain the source of these gamma-rays, Pasechnik et al. (2006), Berlin et al. (2014),
Daylan et al. (2014), Belotsky et al. (2013) and Berezinsky et al. (2003).

Recently, an article by NASA covered this very topic, Reddy (2014). It is an
important topic, as the particle species of DM is currently unknown and N-body
simulations, which try to replicate the evolution of the universe from its early stages
to today through computer simulations, rely on those DM parameter details. A DM
subhalo that inevitably annihilates is an attractive scenario as it could explain two
current problems of sophisticated N-body simulations namely, the Missing Satellite
and Cusp-Core problem. They are discussed in sections 1.2 and 1.3.

What follows in Section 1.1 is a brief introduction to some ideas about DM. Chapter 2
explains the model for the dynamics of such a collapsing DM subhalo. It is derived
from non-relativistic gravitating gas dynamics and in order to end up with analytical
solutions, adiabatic approximations are used. If a reader is interested enough, those
approximations can be developed further.

1.1 Dark Matter

Currently, the model that so far best describes the evolution of the universe is called
the Λ Cold Dark Matter model (ΛCDM). It is sometimes called the Standard Model
of Big Bang cosmology. Λ refers to the cosmological constant which is seen in Albert
Einstein’s field equation, Einstein (1916), and is associated with the existence of Dark
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1.1. DARK MATTER CHAPTER 1. INTRODUCTION

Energy. It was placed in his field equation because there needed to be something
to “hold back gravity”. It is the value for the energy density of the vacuum of
space which accounts for the accelerating expansion of the universe, as discovered by
Hubble (1929) who measured the distance of galaxies and their associated velocity
at which they apparently move away from us i.e. their red shifts (as an object moves
away from us, the observed wavelength of light is elongated i.e. Doppler shifted and
appears more red in the gamma-ray spectrum). It turned out that the relationship
between distance and velocity for cosmological objects is linear v = H0d which shows
that our universe has a cosmological constant (constant in space not in time) H0.
Riess et al. (1998) showed that not only is there a spatially constant relation between
distance and velocity for cosmological objects but showed that in time, those objects
move away from us at an accelerated pace. A radial factor of a receding object has
a positive value of acceleration.

The term cold refers to the thermal property of the Dark Matter and in this
sense, whatever the particle species of the CDM, it is non-relativistic (slow moving).

A way of probing cosmological parameters in the universe, such as its age and energy-
density distribution, is through looking at anisotropies (fluctuations in temperature)
in the first formed atoms in the universe. In the early universe, photons had a very
short mean free path because spatially, it was so dense that the they continually
scattered at a near vicinity. As the region was dense, it was hot too. When the uni-
verse spatially expanded, the particles could, in a sense, cool down and form atoms.
The first photons from that era make up a picture of the early universe, it is called
the Cosmic Microwave Background (CMB). The CMB contains the first radiation
from the early universe. Measuring the frequencies of that radiations tells us about
the matter distribution in the current universe, along with other parameters as well,
some are listed in the Table 1.1.

Parameters Numerical value
Dark Energy ΩΛ = 0.6825
Dark Matter Ωd = 0.2671
Baryonic Matter Ωb = 0.0490
Universe’s age 13.798± 0.037 Gy
Hubble constant H0 = 67.80± 0.77 km Mpc−1s−1

Table 1.1: Parameters from the 15.5 month Planck mission Planck Collaboration
et al. (2013).
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1.1. DARK MATTER CHAPTER 1. INTRODUCTION

1.1.1 The Neutralino as a Dark Matter particle candidate

A popular candidate for a DM particle is the supposed neutralino (χ), which is a
heavy and stable particle predicted by supersymmetry (SUSY). In fact, SUSY part-
ners are much heavier than all known particles in the Standard Model (SM). “Su-
persymmetry” means that for each fermionic and bosonic particle in the SM, there
exists bosonic and fermionic counterparts. In other words, SUSY partners have ex-
actly the same quantum numbers as the SM particles except for spin and mass,
bosons are flipped into fermions and fermions are flipped into bosons. A specific
mixture of SUSY partners of gauge bosons (“gauginos”) and Higgs boson (“Higgsin-
ios”) is called neutralino. An asymmetric DM model i.e. where a DM particle does
not have an anti-particle, would not fit a completely annihilating subhalo model.

The neutralino fits the criteria of being a Weakly Interactive Massive Particle
(WIMP) which is important for a CDM scenario as a cold and thus slow-moving
particle would suggestively be heavy and weakly interacting. A WIMP is also a
natural candidate as its resulting mass density in the present Universe is of the order
of the critical density ρc in the early Universe. The critical density is the density
needed for space to remain flat, which is today’s observed case. The WIMPs interact
only via the weak force and gravitation. The weak W -boson coupling αW = 1/30
in the Standard Model is assumed here. The mass range of a WIMP particle could
be as indicated in Fig. 1.1.

Figure 1.1: Large Underground Xenon (LUX) results with 90 % confidence level
(blue solid line) on the exclusioin limit on the WIMP-nucleon elastic scattering cross-
section as a function of WIMP mass Akerib et al. (2014).
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Fig. 1.1 shows the exclusion limits on the DM scattering cross-sections. There
is no DM interaction found above the blue solid line. The LUX experiment wants
to observe interactions between DM and normal matter, this is done in a very pure
liquid Xenon bath of 370 kg Aprile et al. (2012). This experiment is capable of
searching for DM particles in the mass region 10-1000 GeV.

An attractive interaction model is the scenario where two DM particles annihilate into
two SM particles, which in turn annihilate into gamma-rays. In a heavy Higgs boson
model, the neutralino takes the following annihilation path (Gorbunov & Rubakov
(2011) Eq. 9.54);

χχ̄→ ff̄ .

Here, f refers to a SM fermion. The gamma-rays are suggested to originate from the
ff̄ annihilation product:

ff̄ → γγ.

Another currently studied DM candidate is the Axion which is a hypothetical particle
in the SM. An Axion would have a low mass (mA = 106 − 1 eV). Theory predicts
that the universe could be filled with very cold (Bose-Einstein condensate) Axions.
If they exist, they would have decoupled from ordinary particle interaction sooner
than the Neutralino and such WIMP candidates. There are many other suggestions
but that goes beyond this thesis.

1.1.2 Detecting Dark Matter

As mentioned in the above section, DM can be directly detected via particle colli-
sion experiments. The XENON100 collaboration, Aprile et al. (2012), is one such
experiment where one attempts to look for interactions via nuclear recoils in a liquid
xenon target. They however reported that they found no evidence for dark matter
interactions.

WIMPs could also show themselves in the next LHC upgrade which is planned to
start running in Dec. 2014 allowing it to operate at 14 TeV, which is the supposed
upper bound for the neutralino mass.

The density of baryonic and dark matter in clusters of galaxies can be determined
by measuring their gravitational potential and thus their mass distribution. This
method is called gravitational lensing and builds upon the fact that light from lumi-
nous objects residing behind a galaxy cluster gets bent by their gravitational field.
This phenomena make luminous objects appear multiple times in a single image. In
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such studies, it turns out that there is not enough baryonic matter to account for
the observed light distortion and thus the total observed mass distribution. This
remaining non-visible i.e. non-electromagnetic interacting, mass distortion, is what
we call DM.

Another method for detecting DM is by looking at the rotational curve for a given
galaxy. In a simple model, one would extract the velocity from Newton’s law

v(R) =

√
GM(R)

R
,

where G is the gravitational constant. From this relation, it is seen that v(R) is
proportional to the mass M(R). Thus, by observing the rotation of a galactic object,
one could extract its mass. From the very famous plot, seen in Fig. 1.2, v(R) is
constant even passing the periphery of the disk.

Figure 1.2: The rotational velocity of the galaxy NGS 6503, Begeman et al. (1991).
The three labeled lines show the supposed different dependencies of the rotational
velocity whilst the overall result is shown in the top curve.

This remarkable result is a strong argument for the existence of DM as there
needs to be something accounting for the “extra” observed rotational velocity, which
is in turn proportional to the mass.

1.1.3 Structure formation of Dark Matter subhalos

If the early universe was hot then DM particles were in kinetic equilibrium with
ordinary (baryonic) matter. That means that the DM particles annihilated into SM
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particles and vice versa.
SM ↔ DM

As the universe cooled (due to its spatial expansion) there came a point in time
at which the temperature, denoted Td, became too cold to maintain the kinetic
equilibrium state of the DM and SM particles, they decoupled.

SM ��↔ DM

If the decoupling temperature Td was much smaller than the mass of the DM par-
ticle mχ, that is to say Td (1 K = 8.6 · 10−14 GeV) << mχ = 100 GeV, then one
effectively ends up in a cold, i.e., non-relativistic, DM environment because its sur-
rounding empty space is very cold. In the WIMP scenario, the DM interacts weakly
(especially at long distances) and will as such start to isolate it self further. Primor-
dial perturbations from the early universe provided over-dense DM regions, which
in turn attracted more DM. Once such an over-density is large enough, DM struc-
tures became gravitationally bound. In this way, structures of DM are allowed form,
Diemand & Moore (2011).

Initially, the newly bound DM structures were relatively small. At a later stage,
they would collapse from self-gravitational instability (Jeans instability principle)
and merge with another DM substructure. This continued hierarchically until mas-
sive objects were formed. This created potential wells for the baryons to “fall into”.
In this way, baryonic structures were formed such as stars, galaxies etc. This era is
called the structure formation epoch. Today, DM structures or subhalos exist as a
relic in and around galaxies as survivors from the (bottom-up) hierarchy formation,
extending the bound of a galaxy.

1.2 Missing satellite problem (MSP)

Kauffmann et al. (1993) were the first to show that, when simulating the evolution
of galaxies, there ought to be ∼ 100 DM subhalos which would potentially be able to
host observable satellite galaxies (L > 106L�). This prediction shows an overabun-
dance of DM subhalos given that there are only ∼ 10 satellites brighter than this
around the Milky Way.

Bullock (2010) showed, from existing models, that the number of subhalos can
be expressed as an analytical power-law-like equation. It estimated, for a Milky Way
size host halo, that a total of ∼ 1011 − 1017 subhalos would exist within 400kpcs of
the Sun.

The following is an excerpt from the letter:
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“The most extreme way one might characterize the MSP is to say that CDM
predicts > 1011 subhalos while we observe only ∼ 102 satellite galaxies. While this
statement is true, it should not worry anyone because the vast majority of those
CDM subhalos are less massive than the Sun. No one expects a satellite galaxy to
exist within a dark matter halo that is less massive than a single star.”

If it turns out that no such dim satellites exist then a self-collapsing DM subhalo
could be a solution. As it would follow that the DM subhalos would have already
annihilated before the satellite was even formed, or, that an already formed satellite
would, in some way, cease its existence as the number of DM subhalos got lower in
count by annihilating, destabilizing the baryonic content and ending the satellite’s
life.

1.3 Cusp-Core Problem

Observations have lead astronomers to believe that the mass-density distribution
of DM towards the center of a galaxy is constant as the rotational velocity of DM
grows linearly with the radius (right part of Fig. 1.3). This behaviour can as such
be described to behave as a central core, constant density ρ. The same galaxy
formation and evolution simulations mentioned in section 1.2 also showed a power-
law like behaviour of the DM’s mass-density profile (left part of Fig. 1.3). As that
result contradicts observations it is named: “the cusp-core problem”. Just like in
MSP, simulations predict an over-abundance of DM subhalos.

Figure 1.3: A galaxy (blue disk) with two different DM mass-density profiles ρ as a
function of radius r. Left profile comes from prediction, right from observation. The
solid lines are to indicate the DM mass-density as a function of radius in a galaxy.

The mass-density of a DM subhalo is proportional to its radius, ρ ∼ rα, where
α determines the slope of a power-law curve (α = 0 for linear core profile). An
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analytic solution to the simulations, Navarro et al. (1996), found the DM mass-
density distribution to be α = −1 towards the center of a galaxy and an α = −3
towards the edge. The following relation was to be called the “universal density
profile” but is also known as the Navarro-Frenk-White (NFW) profile:

ρNFW (r) =
ρ0

(r/Rs) (1 + r/Rs)
2

where ρ0 and Rs vary from halo to halo.
The cusp-core problem is taken seriously as its simulations are based upon the

ΛCDM paradigm, the leading theory of Big Bang cosmology. As such, one cannot
dismiss its conclusion, which disagrees with observation.

1.4 The Fermi-LAT gamma-ray excess

High-energy gamma-rays have been detected by the Large Area Telescope (LAT) on
board the Fermi satellite. The mission was launched June 11, 2008 and went on for
195 weeks. The LAT observes 20% of the sky at any given moment and surveys
the sky every 3 hours at low earth orbit. The detector is set up such that when a
gamma-ray enters, it has 16 tungsten sheets to interact with. The material is chosen
such that it can capture events at 8 keV - 300 GeV. The gamma-rays can produce
an electron and an anti-electron pair which gets its energy measured at the last part
of the detector namely the calorimeter. Most of the gathered data is associated
with already known astrophysical events. However, unassociated (excess) lines were
found, like the monochromatic gamma-ray line at an energy of Eγ ≈ 130 GeV, Nolan
et al. (2012).

It is claimed by Tempel et al. (2012) that this line has a statistical significance of
4.5σ and originates from the central region of a galaxy (Weniger (2012)). This could
however just be “an upward statistical fluctuation of the background” - Boyarsky
et al. (2013) and therefore it is concluded that more statistics need to be gathered.
The following figure is taken from Tempel et al. (2012).
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Figure 1.4: Estimated high-energy gamma-ray spectrum (dark red solid line with
peak at 130 GeV) with a 95% confidence level (grey area) (Weniger (2012)). The
solid black line and the dotted line running through the middle is the data fitted
background and its respective predicted 2.6 power-law spectrum. The dark blue
dashed line represents a simple DM annihilation into SM gamma-rays model, Cirelli
et al. (2011).

Fig. 1.4 shows a clear peak at Eγ ≈ 130 GeV as the dark red line indicates the
gamma-ray spectrum from this unknown event. A compelling observation in figure
1.4 is the dashed dark blue line which represents the simple scenario of a 2 DM → 2
γγ event. It is indeed interesting that the simple model seems to fit best at the excess
peak. So far, a strong peak with a high statistical significance that comes from the
center of a galaxy exists and seems to agree with a simple DM particle annihilation
model. This is very compelling for a DM subhalo annihilation scenario.

There are however less optimistic opinions about the Eγ = 130GeV gamma-ray
line. One of them, Shakya (2014), finds the excess line “inconsistent with neutralino
annihilation into two photons” (but does go on to approve another DM model, albeit
with parameters stretched to their limits).
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Chapter 2

Modelling the collapse

2.1 Preliminary remarks

The following model is constructed for an adiabatic collapse such that the following
approximations would be valid:

• spherically-symmetric, isotropic and spatially-homogeneous collapse

• instantaneous departure of annihilation products from the clump

• zero angular momentum of Dark Matter particles

• pure Dark Matter (no baryonic component)

• the Dark Matter is symmetric WIMP-like, namely, is capable of its complete
self-annihilation (asymmetric DM models would not apply here).

The first approximation is reasonable and based upon the fact that during the
collapse process the denser regions of DM annihilate faster then less dense ones, thus
all the initial inhomogeneities in mass distribution are relatively quickly washed out.
Other approximations are made for simplicity of the analysis and can be discarded
later on if necessary.

Such a simplified dynamics can be analysed fully analytically as an exactly solv-
able problem of mathematical physics.
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2.2 The model

The model is formulated based upon the theory of non-relativistic gravitating gas
dynamics. The energy balance equation

∂

∂t

∫
ρχ dV︸ ︷︷ ︸

rate of energy increase

= −
∫
ρχvi dSi︸ ︷︷ ︸

energy crossing a surface element

−
∫

2(σv)annρ
2
χ

mχ

dV︸ ︷︷ ︸
energy loss in annihilation

(2.1)

determines real time dynamics of the energy loss of the subhalo during its evolution.
Here, ρχ is the DM subhalo energy density for which perfect sphericity, independent
of spatial coordinates, is assumed; ρχ(t) = 3M(t)/4πR(t)3. vi (i = 1, 2, 3) are the
spatial components of the radial velocity of a DM particle crossing the surface el-
ement Si pointing outwards of the volume. (σv)ann ' const(t) is the kinetic DM
annihilation cross section and mχ ∼ 0.1 − 1 TeV is the typical WIMP DM particle
mass. Differentially, Eq. (2.1) represents the energy conservation in a given volume
element dV of the clump. Namely, the rate of increase of its energy ∂ρχ/∂t dV is
given by an amount of energy crossing the area surrounding the volume, −ρχvi dSi,
and the total annihilation rate in that volume which describes the dissipation of en-
ergy, −2(σv)annρ

2
χ/Mχ dV .

Analogically, the linear momentum balance equation

∂

∂t

∫
ρχvi dV︸ ︷︷ ︸

rate of momentum increase

= −
∫

(ρχvivk + Pik) dSk︸ ︷︷ ︸
momentum crossing a surface element

−
∫
ρχ∇iφ dV︸ ︷︷ ︸

gravitational interaction

−
∫
νdisρχvi dV︸ ︷︷ ︸

friction term

−
∫

2(σv)annρ
2
χ

mχ

vi dV︸ ︷︷ ︸
momentum loss in annihilation

(2.2)

describes a change in the total linear momentum associated with a radial motion of
DM particles in a given volume of the collapsing subhalo. Here, Pik is the pressure
density tensor of the DM inside the subhalo which vanishes in the homogeneous
approximation, νdis is the frequency of collisions of collapsing DM particles with
outgoing annihilation products and φ is the non-relativistic gravitational potential.
In the limit of zero angular momentum, this equation follows from the linear (radial)
momentum conservation. Namely, the rate of increase of the linear momentum in
a volume element ∂(ρχvi)/∂t dV is given by the total linear momentum crossed the
surrounding surface, −ρχvivk dSk, the net DM momentum loss in the volume element
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due to the gravitational interactions, −ρχ∇iφ dV , and the elastic re-scattering of
falling DM particles off escaping products of their annihilation (DM particles transfer
a part of their linear momentum into relativistic radiation such that this momentum
instantaneously leaves the clump with the radiation), −νdisρχvi dV , and the last
piece, −2(σv)annρ

2
χvi/Mχ dV , describes the momentum loss due to DM annihilation

into relativistic products.
At last, the non-relativistic gravitational potential created by the DM density ρχ

is defined by the General Relativity (Poisson’s-like) equation

∆φ = 4πGρχ , (2.3)

where G = M−2
PL is the gravitational constant in natural units expressed in terms of

the Planck mass MPL ' 1.2 · 1019 GeV.

The last terms in the energy and momentum balance equations describe the in-
stantaneous departure of annihilation products from the collapsing subhalo. The
momentum dissipation term containing νdis has a direct analogy in classical mechan-
ics, namely, the ”friction”. It also has the feature where it is inversely proportional to
the collision time scale; νdis = τ−1

dis . The frequency of collisions and density of annihi-
lation products can be estimated as follows (Gorbunov & Rubakov (2011) Eq. 9.7):

νdis = n1(σv)S, n1 ∼
(σv)An

2
χ

νdis
, nχ =

ρχ
mχ

. (2.4)

Here, n1 is the number density of SM particles created during the annihilation pro-
cesses and (σv) represents particle cross sections where v is the relative velocity of
the two annihilating particles and σ the annihilation cross-section. The term (σv)S

more precisely represents the kinetic cross-section and (σv)A the annihilation cross
section. Combining the above formulas one obtains

νdis ∼
√

(σv)A(σv)Snχ.

It turns out, for this case, that the annihilation and elastic scattering cross sections
are energetically at the same order of magnitude; (σv)S ∼ (σv)A. Thus, using the
last term in Eq. (2.4)

νdis = b
(σv)Aρχ
mχ

, (2.5)

where b is a numerical coefficient close to unity, b ∼ 1, meaning that it would be just
as likely for the DM to elastically collide with the SM particles as it would be for
the DM to annihilate into SM particles.
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2.3 Analytical analysis

To aid the solving of some equations, a few relations are derived in the beginning.
Since an isotropic, non-rotational and homogeneous subhalo collapse model is used, a
vector element xi will change only with time; xi = xi(t). Based on those assumptions,
there are some trivial definitions to be made, namely

|xi| ≡ R(t) =
√
x2

1 + x2
2 + x2

3 , ẋi ≡ vi , H(t) ≡ ȧ

a
, (2.6)

where the scale factor a(t) = R(t)/R0 is introduced as a dimensionless ratio of the
subhalo radius R(t) and its associated initial value R0 = R(t = 0). H(t) then
becomes the parameter for a given subhalos’ annihilation rate.

As xi = niR(t), using the terms in Eq. (2.6) yields the useful result

vi = H(t)xi. (2.7)

Next, the functions containing the ∇ operator are simplified using Eq. (2.7);

(vk∇k)vi =

[
dx1

dt

∂

∂x1

+
dx2

dt

∂

∂x2

+
dx3

dt

∂

∂x3

]
vi = H(t)vi,

∇kvk =

[
∂

∂x1

H(t)x1 +
∂

∂x2

H(t)x2 +
∂

∂x3

H(t)x3

]
= 3H(t).

(2.8)

Lastly, a parameter ξ links the non-relativistic gravitational potential with the
above discussed vector element xi;

∇iφ = ξxi

∇i∇iφ = ∇iξxi

∆φ = 3ξ

(2.9)

now inserting the Poisson’s-like equation from Eq. (2.3) which finally yields an ex-
pression for ∇iφ, namely

∇iφ =
4πGρχ

3
xi , ξ =

4πGρχ
3

(2.10)

After taking the necessary steps – transforming the surface integrals to volume inte-
grals with Gauss’s theorem, applying the chain rule, using the result from Eq. (2.5)
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and Pik = 0 – equations (2.1) and (2.2) can be represented in the following differential
forms

∂ρχ
∂t

+∇iρχvi = −
2(σv)Aρ

2
χ

mχ

,

∂

∂t
(ρχvi) + ρχ∇k(vivk) = −ρχ∇iφ− b

(σv)Aρχ
mχ

vi −
2(σv)Aρ

2
χ

mχ

vi ,

∆φ = 4πGρχ ,

(2.11)

where
∂ρχ
∂t

=
dρχ
dt
≡ ρ̇χ ,

∂vi
∂t

= v̇i − vk(∇kvi) , (2.12)

An intermediate step is shown for convenience where the second term in Eq. (2.11)
is further simplified using Eqns. (2.7), (2.8), (2.10) and the chain rule

∂ρχ
∂t

vi+
∂vi
∂t
ρχ+ρχ [(vk∇k)vi + vi(∇kvk)] = −ρχ

4πGρχ
3

xi−b
(σv)Aρχ
mχ

vi−
2(σv)Aρ

2
χ

mχ

vi.

(2.13)
Now the first term in Eq. (2.11) is used in Eq. (2.13) along with Eq. (2.12) to obtain
the first simplified resulting differential equations

ρ̇χ + 3Hρχ = −
2(σv)Aρ

2
χ

mχ

,

Ḣ +H2 = −4πGρχ
3
− H

τdis
, τ−1

dis = b
(σv)Aρχ
mχ

.

(2.14)

where τ−1
dis , as mentioned earlier in the previous section, is equivalent to the

collision frequency term νdis (the “friction” term). Since the latter grows linearly
with the clump density ρχ(t), the “friction” becomes increasingly important over
late stages of the collapse. It is equally important as the energy dissipation rate
due to annihilation and should thus not be neglected in studies for the DM subhalo
dynamics.

When multiplying a factor of 8πG/3 to the first term in Eqns. (2.14), a factor of
2H to the second and transforming them together leaves the following expression

d

dt

(
H2 − 8πGρχ

3

)
+2H

(
H2 − 8πGρχ

3

)
+

2(σv)Aρχ
mχ

(
bH2 − 8πGρχ

3

)
= 0 . (2.15)
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At this stage, it is clear that if b = 1, the system becomes completely integrable
which generates a new system of equations with initial conditions. If a function f is
chosen such that f = H2 − 8πGρχ/3 then Eq. (2.15) becomes

ḟ

f
= −2H − 2(σv)ann

mχ

ρχ . (2.16)

After dividing the first term Eq. (2.14) by a factor of ρχ it is substituted into
Eq. (2.16) in order to obtain

ḟ

f
= H +

ρ̇χ
ρχ

(2.17)

which is integrated over time from an initial time t0 to any time t∫ t

t0

ḟ

f
dt =

∫ t

t0

Ṙ

R
dt+

∫ t

t0

ρ̇χ
ρχ

dt

f

f0

=
R0

R

ρχ0

ρχ

(2.18)

here, R0 is the initial radius of the subhalo, ρχ0 the initial energy-density and f0

is expressed through those terms. The result in Eq. (2.18) is combined with the
definition of f in order to obtain the latter of the following important relations
where the former came from transforming the first term in Eq. (2.14) in terms of the
subhalo’s radius R(t) and mass M(t);

dM

dt
= −3(σv)A

2πmχ

· M
2

R3
,

(
dR

dt

)2

=
2GM

R

(
1− β2 R

R0

)
. (2.19)

Here β2 ≤ 1 is a constant fixed by initial subhalo contraction conditions which can
be found from the relation Ṙ2

0 = 2GM0(1−β2)/R0. From the last term in Eq. (2.19)
it is evident that the subhalo will contract faster as its size decreases, leading to an
aggressive annihilation; Ṙ ∼ R−1/2, Ṙ(t)→∞ as R(t)→ 0.

It turns out that the system of equations in Eq. (2.19) does not have a simple analyt-
ical solution for R(t),M(t) and then t itself. That is why a parametric representation
of those parameters as functions through ζ is needed. dR/dζ was conveniently chosen
to solve the following differential equation

dR

dt
=
dR

dζ

dζ

dt
. (2.20)

17



2.3. ANALYTICAL ANALYSIS CHAPTER 2. MODELLING THE COLLAPSE

The results are presented below

R(ζ) = R0(ζ2 + β2)−1,

M(ζ) = M0

[
1 +

(σv)A

mχ

(
3ρχ0

2πG

)1/2(
ζ3

3
+ β2ζ

)]−2

,

(
8πGρχ0

3

)1/2

t(ζ) =
1

β2

(
ζ

ζ2 + β2
− (1− β2)1/2

)
+

1

β3

(
arctan

ζ

β
− arctan

(1− β2)1/2

β

)
+

+
(σv)A

3mχ

(
3ρχ0

2πG

)1/2(
ln(ζ2 + β2) +

2β2(ζ2 + β2 − 1)

ζ2 + β2

)
(2.21)

where M0 ∼M� = 2 · 1033 g, ρχ0 ∼ 10−4 g/cm3 could be realistic initial values of the
mass and density of a Solar-type DM subhalo. By looking at Eq. (2.21) it is evident
that the collapsing subhalo will be completely annihilated at sufficiently large time
scales, i.e. M(t)→ 0, R(t)→ 0 at t→∞. The time dependence of such a subhalo’s
annihilation rate is given by the following generic expression

−dM
dt

= M0ρχ0 ·
2(σv)A

mχ

· (ζ2 + β2)3[
1 +

(σv)A

mχ

(
3ρχ0

2πG

)1/2(
ζ3

3
+ β2ζ

)]4 . (2.22)

Since a subhalo has such a static life before its supposedly inevitable collapse, plots
are only presented in the vicinity of such a collapse, where most of the mass is radi-
ated away. The following section will contain models for analysing the dynamics of
the subhalo in the vicinity of the annihilation process.

In dimensionless variables µ(t) = M(t)/M0 and a(t) = R(t)/R0, the terms in
Eq. (2.19) take the form

µ̇+ λ
µ2

a3
= 0 , H2 =

8πG

3
ρχ(1− β2a) , H =

ȧ

a
, λ =

2(σv)A

mχ

ρχ0 . (2.23)

For a late stage subhalo, a scenario where its density is very high and a(t)� 1 is
considered. The solution of the first term in Eq. (2.23) together with the expression
in Eq. (2.22) gives the dimensionless radiation intensity rate |µ̇| which is represented
as a function of the scale factor a = a(t) as follows:

|µ̇|(a) =
12πGmχg

2

(σv)A

· a3

(g + (1− g)a3/2)4
, g =

(σv)A

mχ

(
3ρχ0

2πG

)1/2

< 1 . (2.24)
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The solution for the real time as a function of a is then given by

t(a) =
(σv)A

4πGmχg

[2

3
(1− a3/2)(1− g)− g ln a

]
. (2.25)

where a typical weak-induced WIMP annihilation cross section would be (σv)A ∼
α2
W/8πm

2
χ, αW ∼ 1/30. The position of the peak can be found from the extremum

condition for the function µ(a(t)) as

dµ(a(t))

dt
=
dµ(a)

da
· ȧ = 0 → dµ(a)

da
= 0 , ȧ 6= 0 . (2.26)

Solving this equation leads to the peaked value of the scale factor a, namely

a∗ = a(t = t∗) =
( g

1− g

)2/3

, (2.27)

where t∗ is the time of maximum in the intensity of radiation counted from the
initial moment t0. Dimensionless time η is introduced along with other convenient
parameters

y =
( a
a∗

)3/2

, η =
t− t∗

τ0

, τ0 =
(σv)A

3πGmχ

, (2.28)

with τ0 = 15 seconds if mχ = 100 GeV. Now, the radiation intensity rate |µ̇| can be
represented in the simple form∣∣∣dµ

dη

∣∣∣ =
4

(1− g)2
· y2

(1 + y)4
, η(y) =

1

2
(1− y − ln y) . (2.29)

In a small vicinity of the peak, |dµ/dη| takes the form∣∣∣dµ
dη

∣∣∣
t∼t∗
' 1

4(1− g)2

(
1− η2

2

)
' 1

4

(
1− (t− t∗)2

2τ 2
0

)
. (2.30)

From this relation it is seen that the time dependence of the annihilation rate, in a
vicinity of the peak, depends only on fundamental DM particle constants.
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Figure 2.1: The dimensionless mass
change rate |dµ/dη| as a function of
dimensionless time η.
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Figure 2.2: The dimensionless mass
µ(t) = M(t)/M0 as a function of di-
mensionless time η.

The annihilation rate |dµ/dη| is shown in Fig. 2.1. From Fig. 2.2 it is noticed
that about 80% of the subhalo mass is lost during the time interval

tA = 6τ0 =
2(σv)A

πGmχ

=
α2
W

4π2Gm3
χ

. (2.31)

The effectively intensive annihilation happens during t
(−)
A = 4τ0 before maximum and

t
(+)
A = 2τ0 after maximum. The other physical quantities – the radius a(t) = R(t)/R0

and the density r(t) = ρχ(t)/ρχ0 of the DM subhalo – are shown in Figs. 2.4 and 2.3
respectively.
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Figure 2.3: The dimensionless energy-
density r(η) = ρχ(η)/ρχ0 as a function
of dimensionless time η.
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Figure 2.4: The dimensionless radius
a(η) = R(η)/R0 as a function of di-
mensionless time η.
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Chapter 3

Conclusions

In this thesis I have proposed an exactly solvable model for total annihilation of DM
subhalos. Such a subhalo can live for billions of years but will, supposedly, eventually
annihilate. If DM particles would annihilate into SM fermions, multi-GeV gamma
ray bursts are expected to be observed in the short time interval of ∼ 90 seconds.
Two important parameters for the search of such gamma-ray signatures (peak burst
time and energy rate) can be determined with DM parameters only. This result po-
tentially allows one to distinguish a whole class of catastrophic astrophysical events
with universal characteristics independent of the formation history of such objects.
These characteristics can then be used to constrain the most important DM proper-
ties like WIMP mass and DM couplings to ordinary matter particles in the Standard
Model.

Fig. 2.1 shows an anticipated rapid annihilation as predicted by Eq. (2.29). The

time intervals (t
(−)
A and t

(+)
A ) could in principle be extracted from observational data.

A characteristic feature of this function is its strong asymmetry with respect to the
maximum which again, could be extracted from data. They are determined by the
fundamental constants only and does not depend on initial density and the initial
contraction rate of the DM subhalo. The shape of the curve after the peak could be
understood by the trivial fact that the subhalo simply looses particles as it annihilates
off in the collapse process.

Fig. 2.2 shows the shape of the mass distribution of the collapsing subhalo. The
rapid loss in mass is understood through the rather steep slope towards the end. The
steep slope is in congruence with what was discussed after Eq. (2.19) which was the
ever increasing contraction rate of a given subhalo. This is shown by the the change
in radius curve in Fig. 2.4. To emphasize the point further, the growth in density

21



CHAPTER 3. CONCLUSIONS

seen in Fig. 2.3 shows how fast the annihilation process occurs. The density grows
by an order of magnitude during the accelerating contraction. The curve strongly
depends on the initial energy-density of the subhalo.

In this model, the DM particles were assumed to have zero angular momentum.
This allows the subhalo to collapse into a singularity, as no particles would rotate
around the central mass. Due to the effective ”friction” term in Eq. (2.2) the mo-
mentum of falling DM particles are converted into radiation, in this way, angular
momentum is not conserved and one arrives at an annihilating subhalo scenario. If
angular momentum is conserved, then the subhalo would never had collapsed into
a singularity. In that scenario, it would just form a DM core of fixed radius at the
end of the collapse. However, this does not happen due to an expected loss of the
total angular momentum by radiation due to small, but finite, DM self-interaction
and self-annihilation rates.

What could be done next is to add a baryonic core to a subhalo such that it could
resemble reality more. It would interesting to see what happens if the angular mo-
mentum is added. One could study other DM candidates and see how their parame-
ters, such as mass and annihilation cross-section compares with observed gamma-ray
signatures. On that note, it would be great to search for the signature time scales
as well as the energies of the gamma-ray bursts with Fermi.

Lastly, the effective ”friction” term is often overlooked but, as mentioned, the
linear dependence νdis has on the density ρχ, makes it increasingly important as the
subhalo contracts and should thus not be neglected in future models of collapsing
DM subhalos.
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