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Populärvetenskaplig Sammanfattning

Den 19e december 2013 skickades satelliten Gaia upp i rymden fr̊an Franska Guyana. Gaias uppdrag
är att mäta position, avst̊and och rörelse för ca en miljard stjärnor och detta kommer den att göra
över de nästkommande 6 åren. Mycket av de primära vetenskapliga uppgifterna är redan avklarade
och h̊aller p̊aatt testas, men Gaia är ett väldigt stort projekt vilket innebär att mycket vetenskap
kan uppkomma vid sidan om det primära. Detta masterprojektet är just det. Det har varit känt i
nästan 100 år att gravitationsfält böjer ljus som passerar förbi och m̊alet med detta projektet var att
utröna huruvida denna effekten g̊ar att använda för att studera Galaxen. Anledningen till att man
vill göra detta är att Galaxen är fylld med mörka kroppar s̊asom bruna dvärgar (stjärnor som inte är
massiva nog för fusion), svarta h̊al och neutronstjärnor (dessa tv̊aär slutprodukter i massiva stjärnors
liv). Dessa kroppar är väldigt sv̊ara, om inte omöjliga att detektera annars vilket är problematiskt
d̊aobservationer av dessa kroppar är viktiga för att först̊aformationshistorian för de minst samt mest
massiva stjärnorna i Galaxen. I detta projektet s̊ahar ramverket AGISLab skapat för att simulera
olika delar av Gaias uppdrag användts för att simulera observationer som p̊averkas av kroppars grav-
itationsfält. I koden s̊alades det till en metod för att simulera ljusavböjning enligt den s̊akallade
ljusavböjningsekvationen. Samtidigt s̊aimplementerades en metod för att återf̊alinsens parametrar
(massa och position) medan Gaia utför en observation. De olika testen som utfördes bestod av 1)
Hur l̊angt ut Gaia kan detektera en lins 2) Om detekterad, hur väl kan man återf̊alinsens parametrar
3) Hur väl kan massan p̊asynliga kroppar bestämmas. När dessa saker testades s̊aanvändes till stor
del modifierade men redan existerande metoder AGISLab. I det frsta testet s̊avisade det sig att v̊ara
antaganden och krav hade varit för strikta, om man gör dem lite mindre strikta s̊akan man komma upp
i ∼5 deteketioner. Resultaten för test tv̊aoch tre visar desvärre att ingen av dessa sakerna fungerar
tillräckligt väl för att vara användbara i realistiska scenarion. Slutsatsen man f̊ar dra är därimot inte
att Gaia inte klarar av detta utan att det m̊aste utvecklas nya verktyg för att dessa effekter ska g̊aatt
detektera.
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Abstract

Context : Data from the recently launched astrometric satellite Gaia will be coming in soon with the
final data release expected in 2022. This will provide a very precise map of the Galaxy. The Solar
system and Galaxy is thought to be filled with invisible bodies (planetesimals, planets, brown dwarfs,
neutron stars, black holes, etc.) and they will affect the observations via gravitational lensing.
Aim: I investigate to what extent it is possible to use gravitational lensing to study the otherwise
invisible bodies. Also investigated is the possibility of determining masses for visible bodies for which
it otherwise is hard to directly determine the mass of.
Method : I utilize the existing Gaia simulation and testing environment to simulate observations which
are perturbed by placing a massive body in the line of sight. Three tests are conducted: In the first
test the observation finishes without trying to adjust for the body, this leaves traces of the lensing in
the observational residuals. This simulation is repeated whilst the body is moved further out in order
to determine at what distance the traces of a body of a given mass no longer appears in the residuals.
In the second test an attempt fit a 3D lensing model to a lens that is detected in the residuals is made.
In the third test the position of the lens is assumed to be known and only the mass is attempted to
be recovered.
Results: I find that the detection scaling for the mass-distance relation is highly dependent on the
chosen line of sight and assumed stellar density. With the assumptions calculations show that there
will be on the order of ∼ 0.004 detections. Doing the fit with both position and mass was found to
be very difficult due to the data reduction utilizing a linear algorithm whereas the problem is highly
non-linear. The mass determination works better but becomes unstable at large distances leaving few
interesting bodies of which mass can be determined.
Conclusions: The detection criterion was strict. Relaxing it and redoing the calculation gives ∼ 4
detections. The predictions is however very sensitive to the assumed density of sources close to the
lens and can thus vary by orders of magnitude. I also argue that one should differentiate between the
detection of a lensing event and the detection of a lens in these discussions as many more lensing events
will be detected than can be confirmed as lenses. For this reason alternative methods of detection are
discussed.
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CONTENTS

Introduction

In this project I investigate the effect of gravitational lensing on the observations made by the Gaia
satellite. The primary application under investigation is the possibility of detecting massive bodies
that are too dim or otherwise impossible to be observed conventionally, by instead looking at their
gravitational deflection of light. This is investigated by simulating the observations that Gaia will do
whilst having a body in the line of sight deflecting light, perturbing the observation.

In the first chapter of this work I discuss how astrometry works. Beginning with some historical
context then moving on to how astrometry works and then finally how Gaia will do preform the astro-
metric measurement. After that comes a description of how the observed data is reduced and solved
for. Finally the simulation framework used is discussed.

The second chapter covers how gravitational lensing works and what kind of lensing is of interest
in this work. Also covered is what types of lenses are of interest for this work, their prevalence in the
Galaxy and what could be learned by studying them. Finally the chapter a secondary application of
gravitational lensing is discussed, the determination of masses of bodies deflecting light.

In chapter three the light deflection equations used in this work are derived and compared with
the existing, more general light deflection equations (they introduce a lot more complexity to achieve
higher accuracy which was not needed for this work). After that their implementation is discussed.

Chapter four starts of by discussing the stability of and the use of certain options in the simula-
tions and shows that they are only stable under very specific conditions. Following that are the
simulations done under these specific conditions because even though the they only work under these
specific conditions they still give useful results. The results of the simulations are presented and then
using those results calculations are made to predict the detection rates for Gaia. The results are then
discussed also discussed is how the results would change under different assumptions. In parallel to
these simulations another set of simulations are run in which mass determinations are attempted.
These simulations are shown to be unstable and in the end alternate methods of determining masses
are discussed.
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Chapter 1

Background

The Gaia satellite was successfully launched on December 19th, 2013, by ESA. Gaia is the successor
to Hipparcos which was launched in 1989. These are both astrometric satellites, i.e. the main science
mission of both satellites was the measure of position, motion and distance to stars. Hipparcos did
this for 120 000 objects at an accuracy of ∼1 milliarcsecond (mas) (Perryman & ESA, 1997), which
is the equivalent of having a 10% error in the distance measure of a star at 100 parsecs. This means
that reliable distance measurements are only available in the Solar neighborhood. But we are about
to enter a new era, the era of Gaia and this will lead to great advances in all fields of Galactic as-
tronomy. This because Gaia will measure 10 000 times as many objects with more than 100 times
greater accuracy up to ∼8 microarcseconds (µas). This means that Gaia will measure the positions
and velocities of 1% of the stars in the Milky Way from which astronomers will be able to extrapolate
a full 6D-map of the Galaxy (6D refers to a map containing x, y and z positions and the velocities
in these directions). When this information is combined with other large surveys currently underway
(such as the Gaia-ESO survey), it will give an even more detailed map; sometimes referred to as a
”12D-map” i.e. a map which includes the 6 aforementioned parameters but also chemical abundances
and stellar parameters such as temperature or surface gravity. This is great in itself, however, as with
any other large scientific endeavor it is impossible to know what other kinds of science will be possible
to do in the peripheries of the main science goals.

The aim of this project is exactly that, to look at one particular effect, see if it can be observed
in the Gaia data and then see if it could give any science. The effect being looked at is the astrometric
shift induced by gravitational lensing, as described in Section 2.2 and the goal is to determine whether
it is possible to use this effect to detect otherwise invisible objects such as planets in the outermost
part of the solar system, nearby stellar black holes and also galactic intermediate mass black holes.
Further, if this astrometric shift is detected in the data the possibility of solving for this kind of body
is explored, i.e. determining its mass and position. From the determination of the lens properties
another possibility arises and that is using the exact same methods but for determining the masses of
visible bodies for which it otherwise is very hard or impossible to directly determine the mass.

1.1 Astrometry, A historical perspective

The positions of stars have been measured and cataloged over many centuries with the first ones
dating back to ancient Greece. It was not until the 19th century that Friedrich Bessel was able to de-
termine the first stellar parallax (the defenition of stellar parallax is shown in Fig. 1.2). Before Bessel
Edmond Halley had noted that stars were not stationary by comparing his measurements with those
by Ptolemy 2000 years prior. This was a phenomenon which had been observed before but only for
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1.2. ASTROMETRY, A BRIEF OVERVIEW

Figure 1.1: Cataloging positions and brightness of stars is one of oldest systematic studies in astronomy.
The figure above shows how this has changed through history, with increasing accuracy and size of
catalogs. It can be seen in the figure that Gaia a jump in accuracy but more notably a jump in the
size of the catalog. It can be seen that Hipparcos also made a significant jump, the jump Hipparcos
made was due to it being the first astrometric space mission combined with the advent of CCDs. The
jump Gaia makes is in large part from the lessons learned during the Hipparcos mission. Image credit:
E. Høg (1995)

the planets (from ancient Greek, άστ ήρ πλανητ ής; astēr planētēs - wandering star). It contradicted
the long standing notion that the stars were stationary. What Bessel then did was to meticulously
measure the motion of a single star (61 Cyg) and when he saw the trajectory of the star he realized
that this was a combination of the star’s own motion and the Earth’s motion around the Sun which
meant that it could be used as a distance measure.

The fact that this had not been measured before is not that strange, the accuracy that Bessel had
to achieve in order to measure the parallax was 0.1 arcsecond. A degree is split up in 60 arcminutes
and an arcminute is in turn split up in 60 arcseconds, which means that an accuracy of ∼ 3 × 10−5

degrees had to be achieved in order to measure this effect. This is equivalent of measuring the size of
a match from a distance of 50 km (in contrast to this, Gaia is able to measure the size of a match on
the Moon from Earth). Figure 1.1 shows the development of astrometry through history.

1.2 Astrometry, A brief overview

The purpose of astrometry is to measure the position on and motion across the sky of a given object.
When applied to a star it will also utilize the Earth’s motion around the Sun to measure the parallax of
the star. This means that as a star is observed it will exhibit elliptic motion as shown in Fig. 1.2. Not
shown in the figure is the radial motion of the star. Gaia will measure radial velocity spectroscopically,
so for the astrometry it can almost always be assumed to be known.
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1.3. ASTROMETRY WITH GAIA

Figure 1.2: α0 and δ0 is the position of the source given at the reference epoch, which for Gaia is the
mid-mission time. The elliptic motion of the source is due to the motion of Gaia around the Sun, the
size of the ellipse that is drawn will depend on the distance to the source, which makes the half-angle
$ (parallax) a distance measure. The source will also have a measurable motion relative to the Solar
system which is separate from the parallax motion. This is called proper motion and the motion in
the two directions are given as µα and µδ.

1.3 Astrometry with Gaia

After the successful launch the rocket placed Gaia in an orbit around the L2 Lagrange point. L2 is
located 1.5 million km from Earth in the anti-direction of the Sun. There are a number of reasons for
having Gaia at L2, one of the primary of which being the fact that a test particle orbiting the Sun
at L2 will complete an orbit at the same time as Earth. This means that the Earth and the Sun will
always be aligned from Gaia’s point of view which in turn means that Gaia’s Sun shield always can
be oriented in such a manner as to block out the light.

Gaia will stay in a Lissajous orbit around L2 for at least 5 years and whilst doing this it will also
slowly rotate around its spin axis and also precess around the Sun. The precession and the rotation
are shown in Fig. 1.3.
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1.3. ASTROMETRY WITH GAIA
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Figure 1.3: The figures depict two components of how Gaia scans the sky. The right panel shows how
Gaia will be scanning the sky due to its own rotation and the motion around the sun. The rotation
axis of Gaia is angled with respect to the Sun it will precess with a period of around two months. The
left panel shows the scanning with the precession included, because of the precession the scanning will
not be done in closed circles but instead it will do spirals meaning it will cover a larger part of the
sky. The combination of these two things is known as the Nominal Scanning Law. Credit: ESA

The combination of the rotation, precession and orbit results in a complex coverage of the sky, which
is shown in the middle panel of Fig. 1.4. In the top panel a simulated stellar density of the Galaxy
is given and in the bottom panel the combination of the two is given. This figure is quite important
because as it will become apparent later on, the observed source density assumed and the direction
one looks in in the various tests are important parameters.
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1.3. ASTROMETRY WITH GAIA

Figure 1.4: All-sky projections of (from top to bottom) the source density using 2 million sources
(actual density will thus be a factor ∼500 greater), the number of observations per source and complex
sky coverage, and the resulting spatial density of observations. Image credit: Lindegren et al. (2012)

1.3.1 Astrometric Global Iterative Solution (AGIS)

In the following section a description of the the global solution, AGIS (Astrometric Global Iterative
Solution) will be given; for a more in depth review see Lindegren et al. (2012). One of the key lessons
learned from Hipparcos was that when attempting to construct a global reference frame, having simul-
taneous measurements of sources separated by a large angular distance greatly increases the accuracy
of the reference frame. For this reason Gaia observes in two fields of view separated by a large angle
which we refer to as the basic angle. The observations are then put in the reference frame which is con-
structed by selecting a subset of ∼ 108 ’well-behaved’ sources. In this case well-behaved simply means
that the proper direction of the source is accurately modeled by the astrometric model outlined in
Fig. 1.2; i.e. we assume uniform space motion of a single source, neglecting binary systems and Galac-
tic acceleration. Once the subset, also known as the primary sources, has been selected it can be used
for the astrometric core solution. The core solution is in essence a multivariate least square optimiza-
tion for all the parameters used to model the observations. The parameters are divided in four groups:

• The astrometric parameters, representing the position of the observed sources as a function of
time.
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1.3. ASTROMETRY WITH GAIA

• The attitude parameters, representing the orientation of the satellite in the reference frame as a
function of time.

• The calibration parameters, which are used to correct errors of the instrument with respect to
the ideal geometry.

• The global parameters, representing things that affect all observations, such as hypothetical
deviations from general relativity.

These parameters are all in some way dependent on each other. Combining this with the fact that
data from ∼ 1011 observations (amounting to ∼ 70 TB of data) will be used for the solution makes
finding a direct solution impossible. Thus the problem was formulated in such a manner that an
iterative solution could be found. Generally, any least-squares optimization problem can be written
as:

min
s
||fobs − fcalc(s)||M (1.1)

Here s is a vector of the unknown parameters that are of interest. In this case s includes both the

astrometric parameters and the other, so called ”nuisance parameters”, described previously. fobs

represents the observed data as mapped by the detectors at a specific time and fcalc(s) is the modeled
observation, e.g. how we expect the detectors to map the observation as a function of astrometric and
nuisance parameters. M represents the metric defined by the statistics of the data in which the norm
is calculated.

The main concern for solving Eq. 1.1 is the modeling of fcalc(s). Figure 1.5 shows the steps taken
in modeling f. Appendix B briefly shows how the normals are determined which then are used in the
solution.

Reference system

Before discussing how the astrometric model is constructed we must specify in which reference system
we want to construct it. The high astrometric accuracy aimed for with Gaia necessitates the use of
general relativity when modeling the data. This means that we need to be precise in our descriptions
of the motion of Gaia, the source and the path traveled by the light and we also need to be specific
in the transformation between the different reference frames. The relativistic framework Gaia utilizes
(Klioner, 2003, 2004) is described further in Appendix A, but there are some concepts which the reader
should be aware of.

The light propagation and the motion of Gaia are modeled in the Barycentric Celestial Reference
System (BCRS). This is a reference system with its spatial origin in the barycenter of the solar system
whilst aligned with the International Celestial Reference System (ICRS, Feissel & Mignard, 1998) and
the temporal axis centred on the mid-mission time (2017.0, given in barycentric time, TCB). However,
in order to properly model the attitude and the celestial direction in which the source is observed it
is also necessary to introduce a reference frame which is co-moving with, centered on and uses the
proper time (TG) of Gaia. Klioner (2004) shows how such a reference system, which is also aligned
with ICRS and kinematically non-rotating can be constructed; we refer to this as the Centre-of-Mass
Reference System (CoMRS).
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1.3. ASTROMETRY WITH GAIA

Astrometric model

The astrometric model is what we use in order to model the coordinate direction ûi(t) of source i at
time t (TCB) using the astrometric parameters si. When modeling the position of the star we assume
it to be moving with uniform space velocity relative to the solar system, this means that we can model
their position (in the BCRS) as:

bi(t) = bi(tep) + (t− tep)vi (1.2)

where tep is the reference epoch and b(tep), vi define the kinematic parameters of the source. How-
ever, for convenience sake we use the transformation of these parameters (as shown in Fig. 1.2) to
describe the position of a star. They are contained within si and are:

• αi the barycentric right ascension at the reference epoch

• δi the barycentric declination at the reference epoch

• $i the annual parallax (see Fig. 1.2)

• µα∗i = ∂αi
∂t cos δi the proper motion1 in right ascension at the reference epoch

• µδi = ∂δi
∂t the proper motion in the declination at the reference epoch

• Finally, we have µri = vri$/Au which is the radial proper motion at the reference epoch ex-
pressed in the same unit as the transverse components of proper motion (Au is an Astronomical
Unit). However as stated before, this quantity will in general be ignored as it is hard to mea-
sure accurately using astrometry. Instead, this quantity will be considered to be known from
spectroscopy if the star is bright enough, otherwise it will be set to zero when setting up the
astrometric model.

To get ûi(t) out of these parameters, the same equation is solved as that for Hipparcos (Lindegren
et al., 1992):

ûi(t) = 〈ri + (tB − tep)(piµα∗i + qiµδi + riµri −$bG(t)/Au〉 (1.3)

Here bG(t) is the barycentric position of Gaia at the time of observation and tB is the barycentric
time, given by correcting for the Römer delay, calculated using: tB = t + ri · bG(t)/c where c is the
speed of light. The angular brackets represent vector normalisation, and [pi, qi, ri] is the normal
triad of the source with respect to the ICRS (Murray, 1983). ri is the barycentric coordinate direction
at the reference epoch, pi = 〈Z × ri〉 and qi = ri × pi. Their components in the ICRS are given by
the matrix:

[pi, qi, ri] =

 − sinαi − sinαi cosαi cos δi cosαi
cosαi − sinαi sin δi cos δi sinαi

0 cos δi sin δi

 (1.4)

This model is derived in a purely classical framework using Euclidean coordinates and besides the
Römer delay, light propagation is not considered. It has been shown that this is sufficient to model
the observations at a sub-microarcsecond accuracy. The transformation of the observation to the
CoMRS and the modeling of light deflection as light enters the Solar system requires the use of
general relativity, this is described in Appendix A.

1Angular velocity over the sky, usually given as mas yr−1. The cos δi comes from the fact that α is the longitudinal
coordinate and the size of each step in α will vary with the latitude, δ
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1.3. ASTROMETRY WITH GAIA

Attitude model

The attitude model is what we use to model the instantaneous position, orientation and direction
of the spacecraft. The craft is designed to follow a specific attitude, in this case it is the Nominal
Scanning Law, as shown in Fig. 1.3. This is defined analytically for an arbitrarily long time, but
there will be deviations from this attitude by up to one arcminute in all three axes and depending
on the type of perturbation on the craft the duration of deviation will vary from seconds to minutes.
Te CCD integration time is 4.42 s this means that the physical attitude will not be measurable, only
a smoothed version of it which depends on the CCDs. This means that for the desired accuracy to
be achieved the attitude must be possible to model whilst computing the astrometric model; this is
achieved by modelling the attitude using a finite number of attitude parameters. For the mathematical
description of this modeling see Lindegren et al. (2012) since it will not be detailed here, as for this
project the attitude was always assumed to be known. How and why this works is discussed later.

Calibration model

The calibration model is used to express the precise locations of the CCDs as a function of the
field angles (η, ζ). Several different factors contribute to how this will look, including: the physical
geometry of each CCD, their positions in the focal-plane assembly, distortions due to slight variations
in the basic angle Γc, etc. Most of the variations that will arise during the mission are expected to
be smooth functions of the field angles, however some effects (such as geometry of the pixel columns)
will be irregular and evolve on varying time scales. So the calibration model has been constructed in
such a manner that it can take both of these into account.

Global model

In the solution we can incorporate an arbitrary number of global parameters. These are parameters
that affect all of the observations but are not directly related to the spacecraft nor the astrometric
model. An example of such a parameters is PPN-γ (Eq. 3.8), which is a parameter that measures how
much light is deflected by rest mass. The effect they represent is then included when simulating the
observations and the task of the global block is to match this effect using the partial derivatives of
the equations in which the parameters appear in order to recover them. During the real mission the
same equations can be used to test general relativity.

Velocity model

When doing the transformations and calculations in the data reduction it is important the barycentric
position and velocity of Gaia is known to a high precision. These things will be monitored with radio
interferometry and optical telescopes. However, the observations might not be sufficient in all cases
and for those cases this block has been developed. It takes the observations and data and models the
velocity and position of Gaia.
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1.3. ASTROMETRY WITH GAIA

Figure 1.5: A simple schematic representation of the main steps needed in order to model the observed
data.

1.3.2 AGISLab

AGISLab is a platform that has been developed for and is being used for development and testing of
AGIS. It is a scaled down version of AGIS, which means that the number of sources required to do
the data reduction can be much smaller than the 107 − 108 primary sources used in the actual solu-
tion. This makes the testing of new ideas and algorithms much more manageable as they are developed.

The way AGISLab works is summarized briefly in the bullet points below; following them is a more
detailed description.

1. A set of true sources is generated, which can be seen as a noiseless stellar background; depending
on what is being tested different stellar backgrounds can be generated.

2. Noise is added to each source, giving us the so called (initial) running sources.

3. The same thing is done in the other blocks: a true value is generated to which noise is added

4. The observation of the sources and the behavior of Gaia is simulated.

5. All of the parameters are then given to the corresponding processor which sets up the least-
squares problem discussed in the previous section.

6. The least-squares problems of each block are combined and given to the main algorithm which
iterates the solutions to convergence. If the problem is sufficiently linear (which the main data
reduction problem is) a conjugate gradient algorithm is turned on, which greatly increases the
speed at which you reach the solution. Otherwise, simple iterations are used.

7. If the solution converges then we can find the error in each parameter. The error is the difference
between the running source and the true source. Of course the error will not be known in the
real mission, but for testing purposes it is quite useful.

Figure 1.6 outlines how these steps work in greater detail. The first thing we see in each block are the
true values for the parameters in the blocks. The true values are the input values and the purpose of
AGISLab is to give us the tools required to investigate how we can best recover the true values.
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Figure 1.6: A schematic representation of the different parts of AGISLab.
Credit: Holl (2009)

The reason we use AGISLab and not AGIS for testing was touched upon in the beginning of this
section. The whole process described previously could just as easily be done using AGIS as long as
a generator for observations was added to it. As stated previously, AGIS was designed to reduce the
real Gaia data which means that it has to use some ∼ 108 primary sources. This makes AGIS bad for
testing purposes, since we are interested in running the simulations many times over whilst varying
different conditions and parameters. If we were using AGIS this would be very time consuming and
that is where AGISLab comes in.

AGISLab is designed in such a manner that it only needs ∼ 106 sources to fully reconstruct the
attitude of the satellite. Even though we can work with a factor of 100 less sources, running the
simulations multiple times is still time consuming. That is why there exists a scale factor, S, which
is used to set what fraction of primary sources to be used in a run. For example if S = 1 then 106

primary sources are used and if S = 0.1 then 105 primary sources would be used. However, we cannot
expect to simply scale down the number of primary sources and in doing so recover the same results
which means that the scale factor has to do more than simply scale the number of primary sources
(see Holl, 2012, for full discussion).

In order to scale down the simulation whilst maintaining the validity of the observation other properties
that are affected by the scaling must be looked at. These include the number of transits for a given
primary source, number of primary sources in a field of view at a given time and the mean number
of transits. All of them can be resolved by changing a single factor, as we scale down the number of
sources we also scale up the field of view. To illustrate this we can look at Fig. 1.7, which shows a
single source crossing the focal plane. In reality there would of course never be a single source on each
CCD but a large number of them. The number of sources per CCD at a given time is one of the the
things that we aim to keep constant as we scale the simulation up and down. This could of course be
done by scaling the size of the CCDs as we scale the simulation but that would bring with it other
complications such as affecting the speed at which a source moves across a given CCD. If instead we
change the focal length of the observation, the speed at which sources move across the CCD, how
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often it crosses and how many crossings are done in a given time span remain unaffected.
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Figure 1.7: A schematic representation of the CCDs in the focal plane of Gaia. Depending on the
attitude of Gaia a source will enter on the left at some across scan (AC) position. They will first
be picked up by the skymappers (SM1 and SM2) which are responsible for the selection process, i.e.
whether the source will be tracked as it moves in the along scan (AL) direction. If selected the source
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Credit: Holl (2012)
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Chapter 2

Gravitational Lensing

2.1 History

Gravitational lensing is a phenomenon predicted by general relativity; it states that a gravitational
field will bend the path of a photon propagating through it. This was one of the bolder statements
made by general relativity since it had been known for a long time that light always travels the quickest
path between two points in space (first proposed by Alhazen 1021 AD, later generalized by Fermat).
However, gravitational lensing does not contradict Fermat’s principle since the light does travel in a
straight line, but in the presence of a gravitational field, the space in which the light travels is bent,
changing the path of the photon. This was the second prediction by general relativity that was vali-
dated experimentally (first one being the precession of Mercury), it was done by Arthur Eddington in
1919 (Eddington, 1919) in an experiment where he observed the position of stars at night and then
observed the same stars as the Sun was passing close by them during a Solar eclipse. He found that
the position of the stars had changed as predicted by general relativity.1

Up until 1979 gravitational lensing had been viewed as a peculiar but not so useful result of general
relativity. Zwicky (1937) did however suggest that distant galaxies could be viewed using this method,
but his suggestion went unheard by most. The discovery of the doubly imaged quasar Q0957+561 in
1979 not only sparked an interest for gravitational lensing amongst astronomers but it also spawned
an entirely new branch of observational astronomy.

2.2 Overview

Normally, gravitational lensing is modeled using the so called thin lens approximation. In this ap-
proximation one uses the fact that the extent of the lens along the line of sight is so much smaller
than the distance between the observer and the background source that the lens can be considered a
point along the line of sight. One also assumes that all the lensing occurs when the light passes by the
lens. This is not fully representative of what actually happens, but it is still useful to look at when
considering lensing because of its simplicity and accuracy. Figure 2.1 depicts this approximation, in
it some angles and distances have been marked, which are used for the mathematical formulation.
Here follows a derivation of the deflection equation. From the figure it can be seen that in a circularly
symmetric case it would be, given by the gravitational influence from a point mass on the trajectory

1To be exact, his findings were not in full agreement with general relativity but the predictions of general relativity
were within his margins of error.
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2.2. OVERVIEW

Figure 2.1: An illustration that depicts the thin lens approximation. Besides the varius lengths and
angles marked, O shows the position of the observer and L the position of the lens. S and S’ are the
true and apparent positions of the source being lensed.

of a light ray:

α̂(ξ) =
4GM(ξ)

c2
1

ξ2
(2.1)

where M(ξ) is the mass enclosed within the so called impact parameter, ξ. In the figure, one can
easily see that the relation shown below must hold for small angles (which is the case for almost all
astrophysical applications):

θDS = βDS + α̂DLS (2.2)

Then, expressing the deflection angle as:

α = (DLS/DS)α̂ (2.3)

From Fig. 2.1 we see
β = θ − α (2.4)

Rewriting Eq. 2.4 using the Eq. 2.3 equation gives the so called lens equation:

β = θ − DLS

DLDS

4GM

c2θ
(2.5)

We can now define the so called Einstein radius,

θE =

√
DLS

DLDS

4GM

c2
(2.6)

which is the characteristic lensing angle and most lensing events will be in the same order. Using this,
Eq. 2.5 can be simplified to:

β +
θ2E
θ

= θ (2.7)
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which then is further simplified by normalizing all the angles with θE , so that β ≡ rsθE and θ ≡ rθE ,
which gives:

rs +
1

r
= r (2.8)

Since the equation has two solutions, this means that for every case except perfect alignment (rs = 0)
two images will appear. In most cases however only one image can be seen, this is described further
down on this page. The two images will be located at:

r± =
rs ±

√
r2s + 4

2
(2.9)

In the case of rs = 0 we get a so called Einstein ring, as shown in Fig. 2.3. Equation 2.9 shows that
one of the images, which will be called the ’+’ image, will appear outside the Einstein radius, shifted
outward in the lens-source direction (rs > 1) and the ’-’ image will appear on the inside of the Einstein
ring on the opposite side of the lens.

2.3 Different types of lensing

Gravitational lensing is categorized in three different types of lensing, dependent on the line of sight
density, i.e. the enclosed mass within an area on the sky of the lens and the types of lensing are briefly
discussed here:

• Strong lensing
Strong lensing occurs when the surface density of the lens is above the so called critical density
in combination with the lensed source being sufficiently bright, when this is the case, one of
two things can occur. If the lens and source are perfectly aligned the source will be completely
distorted and a so called Einstein ring will appear, if they are not perfectly aligned the source
will be multiply imaged. These cases are shown in the figures below.
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Figure 2.2: Depicted above a
twicely imaged quasar(SDSS
J0919+2720) and it a behavior
very similar to that described in
the previous section. The difference
is that the shape of the sources
look distorted, this is because
the gravitational field of the lens
(foreground galaxy) is not perfectly
spherically symmetric.
Credit: ESA/NASA & Hubble

Figure 2.3: Depicted above is the
special case in which the lens and
the source (Horseshoe galaxy - LRG
3-757) are perfectly aligned. And as
described in the previous section, an
Einstein ring appears.
Credit: ESA/NASA & Hubble

• Microlensing
Microlensing can refer to one of two things. Astrometric microlensing which is the focus of this
work or photometric microlensing which refers to the magnification of sources which is discussed
briefly in the next section. Microlensing occurs when the lensing effect is not sufficiently strong
to produce two distinct images which could be because the secondary image is too faint or that
they cannot be resolved as two separate images. This means that what one instrument may
perceive as microlensing another may perceive as strong lensing. The same thing can be said
about photometric and astrometric microlensing, what is seen depends on what the instrument
is sensitive to. They are governed by different equations, but if one happens so does the other.
Unlike strong lensing however, microlensing requires variability to be detected. Detecting a
multiply imaged and/or deformed galaxy in your data immediately tells you that it has been
strongly lensed. If it is microlensing that is happening, all that happens is that something is
being shifted and magnified which means that if the lens has no relative motion to the source
then it is impossible to know that the magnified/shifted source is not the true source. Luckily,
the lenses we are interested in for this work have larger parallaxes than most stars so there will
always be relative motion.

• Weak lensing
There are cases when the effect of a lens cannot be seen when it lenses a single source. It was
mentioned in the part about microlensing that if the lens is static it would be impossible to say
whether it is a lensed source being observed. However, if there are a lot of sources being lensed
very specific patterns will appear in them which can identify the presence of a lens. When that
is the case it is called weak lensing.
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2.3.1 Magnification

The reason for magnification occurring during gravitational lensing is that surface brightness is a
conserved quantity.2 It can be shown that the magnification is given by the ratio of the image area
and the source area. Here follows a simple derivation of it.

For a point-like source the source annulus can be considered with a small angle (∆ϕ) and for a point-
like lens this annulus will mapped into two annuli, one inside the Einstein ring and one outside. The
area of the source annulus is given by the product of the radial width and the tangential length
drs × rs∆ϕ and the area of each image is then given by dr × r∆ϕ (with rs and r defined as in the
previous derivation). Thus, the magnification, µ, is given by:

µ =
drs × rs∆ϕ
dr × r∆ϕ

=
rdr

rsdrs
(2.10)

inserting the values from Eq. 2.9 we find:

µ+ =
(rs +

√
r2s + 4)2

4rs
√
r2s + 4

, µ− =
(rs −

√
r2s + 4)2

4rs
√
r2s + 4

(2.11)

The total magnification can then be written as:

µ = |µ+ + µ−| =
r2s + 2

rs
√
r2s + 4

(2.12)

2.3.2 Lensing in this project

Since Gaia is so much more sensitive to changes in astrometry than it is to photometry the focus
of this work is on the astrometric part of the lensing. It is not referred to as microlensing because
the lensing studied here will not always be producing microlensing events, in some cases we end up
working in the weak lensing regime. Thus it is referred to in a more general sense as astrometric
lensing. For the purpose of this work we have chosen to ignore the magnification and the reason for
this is twofold. Firstly, as just mentioned, Gaia is a lot more sensitive to changes in astrometry, this
can be illustrated by some simple calculations. The sky is 5.3 × 1011 as2 and out of the 109 sources
that will be observed Gaia, 108 sources will have sufficiently high accuracy in their astrometric pa-
rameters to be used in this project. This means that the average distance between sources will be 41.2
as. This distance can be used to estimate the average distance between lens and the nearest sources.
Using this distance as the distance between the source and the lens and having the lens be a 1 M�
body at 1 pc (θE ≈ 90 mas); we find that the average magnification will be ∼ 1.00000000005, which
is far too small to be measured. Whereas if the astrometric shift is calculated in a similar manner
we get an average deflection of ∼ 200 µas, within the sensitivity of the bright sources observed by Gaia.

Secondly, the luminosity of a source is something that is directly measured, whereas the position
is measured and then calculated and put into a model. It is far easier to include and fit a model for
a lens which causes an astrometric shift into the existing scheme than it would be to create a whole
new infrastructure for such measurements.

There will of course be photometric lensing events, their potential use is discussed in Section 4.3.4.

2If an object appears to be deformed due to it being gravitationally lensed the total surface brightness will be the
same as if it was not being deformed
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2.4 Detecting invisible objects

The following section describes the types of objects that are investigated in this project, and the
motivation for looking for them. What characterizes these objects is that they are too faint to be
directly detected by Gaia or any other current survey. Then one must ask, what types of objects could
this include? This project will explore objects in three mass ranges:

• Planetary to brown dwarf masses (up to 80 Jupiter masses, Mj) in the Solar system and neigh-
borhood. The types of bodies in this category includes hitherto undetected planets in the outer
Solar system and the possibility of a brown dwarf companion to the Sun. There are also objects
not bound to the Sun in this mass range that should be considered, such as: nearby brown
dwarfs that otherwise would be too faint to be discovered 3.

• A few to a few tens of Solar masses (M�), the types of bodies in this category are primordial
(e.g invisible) neutron stars and stellar mass black holes

• A hundred to a few tens of thousands Solar masses. The only type of body that falls in this
category is intermediate mass black holes.

In the following sections it will be motivated why these objects might exist and the parameter-space
to explore will be discussed.

2.4.1 Planetary mass companion

A strong case for the existence of a nearby invisible body can be made for the existence of one in or
near the so called Oort Cloud. The Oort cloud is a spherical cloud of comets surrounding the Solar
system. Its existence was first suggested by Jan Oort in 1950. Oort studied the trajectories long-
period comets in the Solar system and found that these comets all have an aphelion of 2000− 100000
AU, whilst many of them had a perihelion of a couple of AU.

In the same paper Oort argued that there must be some mechanism to perturb the cloud to cause the
observed stream of comets coming into the inner Solar system from the cloud for the first time. The
mechanism suggested by Oort was perturbations by passing stars. Since then different mechanisms
have been explored as an explanation, such as galactic tidal effects (Byl, 1983) or an unseen bound
Solar system object (”Nemesis”, Davis et al., 1984).

The geological argument

Davis et al. (1984) made a case for the existence of an unssen bound Solar system object by looking
at the geological record for mass extinctions which had been analyzed the same year by Raup &
Sepkopski (1984). In their study they found a strong periodicity (Fig. 2.4) of ∼ 26 Myrs which was
then used to support the hypothesis of a bound Solar companion.

To this day this has remained a controversial subject and papers are continually published that support
and rebuke the various hypotheses. Recently a major revision was done to the geological time scale
which means that the main argument for a bound Solar companion might have been invalidated in
the process. Melott & Bambach (2013) re-examined their re-examination (Melott & Bambach, 2010)
of the findings in Raup & Sepkopski (1984). The re-examination they did in 2010 expanded the time

3Brown dwarfs do not have any internal energy generation and they radiate as black bodies the flux will thus depend
on their radius squared whereas the mass and therefore amount of energy depends on radius cubed. So more massive
brown dwarfs cool more slowly.
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span of the analysis to 500 Myrs which resulted in two thing; firstly the periodicity was modified
by ∼ 3% to ∼ 27 Myrs which was expected due to changes since 1984 and secondly they found an
even stronger periodicity. In their 2013 analysis they find that the change in geological time scales
increases the spectral power of the periodicity slightly. However they argue that this points against
the Nemesis hypothesis because the periodicity is too strong, since such a bound companion would
have been perturbed by the Galaxy over 500 Myrs.

Figure 2.4: The figure above is the famous plot from Raup & Sepkopski (1984) which shows extinction
fraction as a function of geological time. Time series analysis gives a periodicity of ∼ 26 Myrs with
P < 0.01.

The cometary argument

There are also astronomical cases to be made for the existence of large bound bodies beyond the
Kuiper belt. In an analysis of the distributions of aphelia and other orbital elements of outer Oort
Cloud comets anomalies were found (Matese et al., 1999). In a more recent study (Matese & Whitmire,
2011) they redid the analysis in the previous study but with a sample size almost double that of the
original one. The anomaly persisted even in their larger sample, what they found was that ∼ 20% of
new comets (first time entrants in the solar system) have an originating aphelion along a great circle
roughly centered at the on the galactic longitudinal bins 135◦and 315◦, these can be seen in Fig. 2.5
whilst Fig. 2.6 shows the great circle drawn on the skymap. Statistical analysis showed that it was
unlikely for such an anomaly to arise simply from galactic perturbations. This lead to the conclusion
that these anomalies would be best explained by a bound solar companion in the inner outer Oort
Cloud, which they dubbed Tyche (Tyche is the good sister of Nemesis, the name was given to avoid
confusion with Nemesis).
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Figure 2.5: The histogram shows the origin in
galactic latitude of comets
Credit: Matese et al. (1999)

Figure 2.6: The origins of comets plotted on
the skymap with a great circle drawn on top
of them. The black dots show origins within
±9.6◦of the circle, whilst grey ones show out-
liers that still have statistical significance
Credit: Matese & Whitmire (2011)

It should be noted that a Jovian mass gas planet will capture a significant amount of heat during
its formation, which will not have been fully radiated away in the lifetime of the solar system (∼ 4.5
Gyrs). Taking this into account, in the final data release of WISE (Wide-field Infrared Explorer, ?)the
authors of that study conclude that no planet more massive than Saturn could exist within 10 000 AU.
This means that Tyche as suggested in Matese & Whitmire (2011) most likely does not exist. The
apparent overabundance of comets along the great circle in Fig. 2.6 can still be seen as an indication
of there being something out there, just not what the authors imagined.

Dwarf planet orbits

In a recent study (Trujillo & Sheppard, 2014) the discovery of a new Sedna-like object was presented.
The authors noted that this new body has a similar perihelion argument ω4 to other dwarf planets.
Not only that, they found that most objects with a semi-major axis greater than 150 AU shared this
similarity. Simulating the inner Oort Cloud they found that the distribution of ω should be random,
which it clearly is not. One proposed possible solution to this is having a low albedo, ∼ 10 M⊕
Super-Earth located at ∼ 250 AU or something more massive farther away.

2.4.2 Relic neutron stars and black holes

These bodies are the end product of massive star evolution. Relic refers to the fact that these objects
have been created continually through the lifetime of the Galaxy, and stayed there. They both share
two qualities which make them good candidates for lensing studies: they have high masses and are in
most cases virtually undetectable. Besides that their relic population in the Galaxy is quite numer-
ous. Currently there are about 2000 known neutron stars in the Galaxy and most of them are young
compared to it (. 100 Myr). The relic population is ∼ 109 (Sartore et al., 2011). The large difference
between these numbers come from the fact that they are hard to detect and that they only can be
detected for a relatively short time. They can either be seen in an X-ray binary which has a relatively
short lifetime and most of these bodies will never end up in an X-ray binary as their formation has
a very high probability of disrupting the binary. Or they can be seen if their narrow radio beam
happens to be pointed towards us. This also does not last long because they will spin down and as

4The orbital element ω describes the angle between the point of perihelion and where a bodys orbit crosses the
celestial plane.
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they do the radio beam fades away. There are about 20 known stellar mass black holes (found in X-ray
binaries) with a relic population 3-10 times lower than the neutron stars, depending on the initial mass
function (IMF) used to calculate them (see Fig. C.1). The fact that there exists this big difference in
the predicted number of bodies due to the choice of IMF is what makes these so interesting to look at.
If the population of relic black holes and neutron stars can be probed by Gaia it would mean that we
constrain the top half of the IMF, where the different models differ the most (as seen in Fig. C.1 in the
Appendix). Not only would this tell us about the massive star formation history of the Milky Way but
it would also be useful for cosmology since the models of the early galaxies are based on the Milky Way.

Knowing the number of relic bodies in each population we can use this to estimate the average distance
to either of the bodies. This is done by assuming that the bodies are homogeneously distributed in
a cylinder which is 2 kpc thick and has a radius of 15 kpc. This assumption is made based on two
things: the progenitor stars have to be very massive and thus are likely located near the Galactic
plane, but when a star goes supernova the remain will receive a kick. Having a height of 2 kpc thick
cylinders assures that these kicked bodies are included. This is also the scale height of the thick disk,
which is the old stellar population of the Galaxy so to get the Brown Dwarfs accurately as well. The
distance to the closest body from each population is then given roughly as:

R ≈ 3

√
V

N
(2.13)

Where V is the volume of the assumed cylinder and N the number of members in each population.
For neutron stars we find RNS ≈ 8 − 11 pc and for black holes RBH ≈ 14 − 24 pc. These numbers
are only meant to be used as a benchmark for when making rough approximations.

2.4.3 Relic brown dwarfs

Brown dwarfs have already been mentioned in the context that the Sun might have a binary companion
brown dwarf but this is not the only way in which the brown dwarfs should be considered as there
is a lot of them allover the Galaxy. Just as the heavy bodies they are also hard to detect since they
are very faint from the beginning and then they cool and become even fainter. Obviously, unlike the
neutron stars and black holes brown dwarfs are not very massive; which makes them worse candidates
for lenses. However if we look at the Kroupa (2001) IMF we see that it predicts ∼ 1010 brown dwarfs
in the Galaxy which means that they on average will be nearer than the heavy bodies so they are still
viable candidates. Because as Eq. 3.1 shows the Einstein radius depends on both mass and distance
and Eq. 2.9 shows that the deflection only depends on the Einstein radius and angular separation.
Repeating the exact same procedure as before we get RBD ≈ 5.2 pc. A value comparable to the
closest discovered brown dwarf, WISE 08550714 which is located at 2.2. pc (Luhman, 2014).

2.4.4 Intermediate mass black holes

The existence of intermediate mass black holes (IMBHs) has not yet been confirmed though there is
some evidence pointing towards their existence. These include dynamical measurements of globular
clusters (Noyola et al., 2010) or ultra-luminous X-ray sources in nearby galaxies (Farrell et al., 2009).
Rashkov & Madau (2014) predict the number of IMBHs that could exist in the Milky Way and ends up
with 70−2000 distributed in the Halo. Them being so few makes the approximation made in Eq. 2.13
pointless, they should still be considered since the large concentrated mass makes them interesting
objects for this work.
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2.5 Mass determinations

Besides looking for invisible bodies, the effect of weak lensing can be used to weigh visible objects.
Because if the position of the lens is known, the only free parameter which determines the magnitude
of the lensing is the mass of the lens. Determining positions is exactly what Gaia does, which makes
this test a viable thing to do with Gaia. Also, this test has two inherent advantages over the detection
and determining the position and mass of invisible bodies. Firstly, only determining the mass and not
the position at the same time makes it a lot easier to solve. Secondly, the need to find lensing events
disappears because when Gaia measures the position of the lens it will also measure the position of
all its neighbors. There are types of bodies which this method could be applied to are listed below:

Stars

Currently the only stars for which the mass can be directly measured is the Sun and eclipsing binaries.
The mass determination of every other star is based on stellar evolution model or astroseismology which
are all mostly based on the Sun. This makes the possibility of determining the masses of nearby stars
important as it will help constrain the models used for mass determination.

Brown Dwarfs

The newly discovered brown dwarf mentioned in section 2.4.3 has been determined to have a mass of
3 − 10 Mj and be 1 − 10 Gyrs old (Trujillo & Sheppard, 2014). This large uncertainty comes from
the fact that there exists a degeneracy between age and mass. The mass of the brown dwarf will
determine the amount of energy it captures at its formation and the age will determine how much
energy has been radiated away. Therefore being able to determine its mass in an independent manner
would help further understand brown dwarfs.

Asteroids

Besides determining the position of stars, Gaia will determine the position of tens of thousands of
solar system objects. For most of these objects (all except the planets, their moons and a few of the
major asteroids) the masses are not well determined. Currently, their masses can be determined by,
fitting their trajectory to the solar system potential, determining their topology by imaging them with
a telescope and then by assuming some type of internal density or by visiting them with an orbiter.
The estimates produced by the first two models do not produce accurate mass determinations and
the last one is a very expensive and inefficient way of determining their masses. These types of bodies
have very low masses, which at first makes it seem impossible for the method to work. However, they
are located nearby, which means two things; their Einstein radius will still be non-negligible (for 1022

kg body at one AU, θE = 300µas and they will also have a very large parallax motion which greatly
increases the chance that they give a detectable deflection. A similar argument can be made for the
more massive Kuiper belt objects.
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Chapter 3

Using gravitational lensing

3.1 Estimating the detectability

The astrometric shift as described in Eq. 2.9 can be rewritten in a more convenient form (Gaudi &
Bloom, 2005) as:

∆θ =
θsl(

θsl
θE

)2
+ 2

(3.1)

where θsl is the angular the separation between the source and lens, θE is the Einstein radius of the
lens, given by Eq. 2.5 and ∆θ corresponds to α, i.e. the deflection angle in Fig. 2.1. However in most
cases the source will be significantly more distant than the lens meaning that the Einstein radius can
be written as:

θE ≈
√

4G

c2
M

d
(3.2)

Where d is the distance to the lens. Further, assuming that the average distance between source and
lens is given by the average distance between stars which is given by dividing the angular area of the
sky by the number of sources: √

41253/108

π
≈ 40as (3.3)

and that ∆θ needs to be greater than 30 µas1 an approximation can be made for the minimum size
of the Einstein radius that the lens needs to have in order for it to give detectable deflections.

θsl(
θsl
θE

)2
+ 2

= ∆θ ⇒ θsl = ∆θ

((
θsl
θE

)2

+ 2

)
(3.4)

Now, inserting the values of ∆θ and θsl in arcseconds we get:

40 = 3× 10−5
((

40

θE

)2

+ 2

)
⇒ 40 = 0.048/θ2E + 6× 10−5 ⇒ 40 ≈ 0.048/θ2E (3.5)

Rewriting this as an inequality we now find the minimum required Einstein radius that on average
will be detected.

θ2E ≥
0.048

40
⇒ θE ≥ 3.5 mas (3.6)

1Approximately the sensitivity of Gaia for the bright stars for a single set of measurements, i.e. 10 CCD crossings.
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3.2. LENSING MODEL USED IN THIS PROJECT

Meaning that every body with an Einstein radius greater than 3.5 mas in theory should give at least
one detection. Using the approximative θE given in Eq. 3.2 we can plot the mass-distance relation:

Figure 3.1: The plot shows at what distance a body of a given mass will have an Einstein radius of
3.5 mas and on average give a detectable deflection as shown in Eq. 3.6.

The assumptions made in order to get the prediction in Fig. 3.1 is rather simplistic and probably too
optimistic which can be deduced by simply looking at the skymaps shown in Fig. 1.4. Not only that,
but the area swept by the parallax motion will go down as the distance increases, meaning the scaling
will not be as simple as it is assumed to be here. What this figure should be considered is a zero order
approximation of what distance astrometric lensing events should be detectable by a body of a given
mass.

3.2 Lensing model used in this project

We work with a simpler, geometrical model of general relativity, but this model must be equivalent
with the Gaia relativistic model (GREM) shown in Appendix A, so the first thing to do is to show
that we can rewrite A.8 as:

−n =

〈
−σ + r0L

(1 + γ)GMLc
−2

roA(roA − σ · r0L)

〉
(3.7)

What this equation shows is explained after Eq. 3.8 is presented as it is the same equation as the
one above but using the vectors that will be used throughout this work. The nomenclature for
gravitational lensing varies depending on which literature one looks at. So for the sake of clarity
Fig. 3.2 and table 3.1 are included.
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3.2. LENSING MODEL USED IN THIS PROJECT

Figure 3.2: Gravitational lensing as described by Murray (1983). The black letters are the different
vectors. The red letters denote the different objects, (G) Gaia, (L) Lens, (S) Source, (S’) Apparent
position of Source. dL was added in the figure to help show the equivalence between this model and
GREM.

Murray (1983) Klioner (2008) Lindegren (1992) AGISLab

〈x− x0〉 −k ≈ −σ ū ū
r̂ −n û û

u0 r̂oA ĥ r̂ = 〈r〉
x0 roA h r
|x0| roA h r
u N/A N/A N/A

Table 3.1: Comparison of literature

Using Table 3.1 we can write Eq. 3.7 as:

û =

〈
ū + r

(1 + γ)GMLc
−2

r(r − ū · r)

〉
(3.8)

Before we move on, let us take a look at what this equation shows û is a unit vector which gives the
measured direction to a given source, ū is the so called proper direction to the source, i.e. where it

would appear if it was not being lensed. The lensing is added to ū with r (1+γ)GMLc
−2

r(r−ū·r) which gives the
deflection from a lens with mass M located at r. Now we want to show that this equals Eq. A.8. We
start by looking at the vector dL:

dL = σ × (roA × σ) = ū× (r× ū) = ū · ūr− ū · rū (3.9)

since ū is a unit vector this equals:

dL = r− ū · rū = r− ūū · r = r− ū(ū · r) (3.10)
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3.2. LENSING MODEL USED IN THIS PROJECT

Here we can see that dL · ū = r · ū − (ū · ū)(ū · r) = 0, it follows that dL ⊥ ū. This means that
ū + dL · k where k > 0 cannot be a unit vector, which is what we have constructed û to be.
Now, if we look at Eq. A.8 we see that

δσ = û− ū. (3.11)

which we now can rewrite as, using table 3.1

û = ū + dL
GMLc

−2

|dL|2
(1− ū · r) (3.12)

Since we just showed that this cannot equal unity, it means that the two models will not be strictly
equivalent. However, to first order they are, as shown below. We introduce the parameter ε:

ε =
(1 + γ)GMLc

−2

r(r + r · ū)
(3.13)

Which means that we can rewrite Eq. 3.8:

û = 〈ū + rε〉 =
ū + rε

|ū + rε|
=

ū + rε√
(ū + rε) · (ū + rε)

(3.14)

Then we do some approximations in the denominator, we say that:

(ū + rε) · (ū + rε) = 1 + 2εū · r +O(ε2) (3.15)

An inverse square root can be Taylor expanded as:

√−1 ≈ 1− εū · r +O(ε2) (3.16)

This means that we can write û as:

û = ū + (r− ū(r · û))ε+O(ε2) (3.17)

Now it is easy to show that this model, to the first order, is strictly equal to GREM by rewriting
Eq. 3.12 using Eq. 3.10:

|dL|2 = dL · dL = |r|2 − 2(ū · r)2 + (ūū)(ū · r)2 = r2(1− (ū · r̂)2) (3.18)

Since r = r̂r Eq. 3.12 becomes:

û = ū+(r−ū(r·ū))
GMLc

−2

r2(1− (ū · r)2)
(1−ū·r) = ū+(r−ū(r·ū))

GMLc
−2

r2(1 + (ū · r̂))
= ū+(r−ū(r·ū))ε (3.19)

QED. We have thus shown that the geometric model used in this work is equivalent to GRM to an
accuracy on the order O(ε).

3.2.1 Deriving the partial derivatives

In order fit the model to the observation and recover the lens parameters (ML, rx, ry, rz), we need
the partial derivatives of û with respect to them. We use the approximative û given in Eq. 3.17.
The derivative with respect to mass is straight forward to calculate, however the r-derivatives are
calculated component wise as shown below:

∂ûj
∂ri

(3.20)

25 (69)



3.2. LENSING MODEL USED IN THIS PROJECT

Due to symmetry, all the r-derivatives of û will be the same. The derivative will be a vector of which
two of the components will be the same. So we only need to look at the two cases, case 1 when i 6= j
and case 2 when they are equal.
We can view û as one function f divided by another function g:

û =
f

g
(3.21)

so the derivative is then given by:
∂û

∂r
=
f ′g − g′f

g2
(3.22)

Where

f =
GML(1 + γ)

c2
(r− ū(ū · r)) (3.23)

and
g = r(r + r · ū) (3.24)

Note that g is a scalar and the derivative will be the same in both cases. The derivatives of are:
Case 1

f ′ = −GML(1 + γ)

c2
(uiuj) (3.25)

g′ =
ri
r

(r + ū · r) + r(
ri
r

+ ui) (3.26)

Case 2

f ′ =
GML(1 + γ)

c2
(1− u2j ) (3.27)

g′ =
rj
r

(r + ū · r) + r(
rj
r

+ uj) (3.28)

Now by combining these we get:

∂ûj
∂ri

=
GML(1 + γ)

c2
−(uiuj)r(r + r · ū)− (rj − uj(ū · r)) (

rj
r (r + ū · r) + r(

rj
r + uj))

r2(r + r · ū)2
(3.29)

∂ûj
∂rj

=
GML(1 + γ)

c2
(1− u2j )r(r + r · ū)− (rj − uj(ū · r)) (

rj
r (r + ū · r) + r(

rj
r + uj))

r2(r + ū · r)2
(3.30)

Of course the mass derivative is also needed, but that is trivially obtained as:

∂û

∂ML
=
G(1 + γ)

c2
r− ū(ū · r)

r(r + ū · r)
(3.31)

3.2.2 Testing the partial derivatives

Once the derivatives had been obtained two tests were preformed, the first of which was to test how the
approximation propagated through to the derivative with regards to ε. We used Mathematica to take
the analytical derivative of û (which is a horrendous expression) and determined its numerical value
for randomly selected vectors ū and r. For every generated analytical value from the approximation
was also generated, this was done for a range ε. What we found is shown in Fig. 3.3
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3.2. LENSING MODEL USED IN THIS PROJECT

Figure 3.3: The plot shows ∆∂û, which is the absolute difference between the analytical and numerical
derivative plotted in a log-log scale against the value of ε. It has a slope of 1, which means that
∆∂û ∝ ε. This means that the accuracy of the approximative derivative is the same as the accuracy
of the deflection model, meaning we do not lose any information by utilizing it.

To preform the second test, a lens had to be implemented in AGISLab. Since a deflection equation
already existed for Solar system bodies, this code was modified to work for an arbitrary lens. Once
this was implemented, the validity of the partial derivatives could be tested using a simple central
difference method. The method was set up in such a manner that for each of the partial derivatives
being tested three identical observations were generated but the parameter of the lens being tested
was varied for each observation. This perturbs the three different source directions differently, this
perturbation can be used to take the central difference. Preforming this test we found a four digit
accuracy which is what we expected for a first order central difference method.
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Chapter 4

Results

Simulation setup

Once the partial derivatives of the lens equation had been derived and tested (as described in the pre-
vious chapter) they were implemented as part of the global block in the source direction calculation.

This means that the algorithm can attempt to recover the lens parameters whilst doing the optimiza-
tion of the stellar parameters. It does this by taking the true (input) values of the lens parameters and
then using them in the deflection equation (Eq. 3.8) to apply a perturbation to every the observation
of each source. Then, the update algorithm will use the partial derivatives (Eqs. 3.29, 3.30, 3.31) to
attempt to reduce the observational residuals as much as possible. This will be when the running
(optimized) values are close to the true values. The entire perturbation will not be recovered as there
is observation noise to realistically simulate the real Gaia mission, (de Bruijne, 2009).

The sources in the simulation are all set up to be of magnitude 13. What this means for the purpose
of this simulation is simply that this is within the region where Gaia is as most accurate, i.e. the
stellar parameters will be determined to an accuracy of ∼ 8µas. At this magnitude each of CCDs
are accurate to ∼ 100µas, however in each observation the source crosses 10 CCDs. Combining the
10 crossings with the astrometric solution leads to an accuracy of ∼ 100/

√
10 ≈ 30µas, combining

the measurements during the span of the mission further increases the accuracy. It is the astrometric
solution which combines the multiple observations which makes Gaia achieve the accuracy it does.
This is reflected in the simulation by the adding random noise to the observations.

To simulate the high source density observed by Gaia a simple method was implemented which
placed all of the sources near the lens in a small circular container because that is where the ef-
fect is greatest. The reason for this is that at that small radius is the place where the induced
astrometric shift would be most significant (as shown in Fig. 4.5). Firstly, the source density was set
as 108/41253 = 2424 deg−2 = ρ̂, which is simply the number of square degrees in the sky1 divided
by 10% of sources observed by Gaia which we assume to be the number of sources to have its astro-
metric parameters determined to an accuracy equivalent of a 13 mag source. The source distribution
is however far from homogeneous on the sky so ρ̂ was only used as a reference and for tests in the
beginning. In the later simulations three different densities were used: 2000 deg−2, 10000 deg−2 and
30000 deg−2 .

When setting up the simulation there are a few settings that can be turned on or off that are not

1The number comes from the area of the surface of a unit sphere, 4π square radians converted to square degrees
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of direct interest for our testing. The three different settings considered here are the source errors
induced by the attitude (uncertainty in the pointing of Gaia, ”attitude noise”) and the random noise
mentioned previously. Also of interest is the need to solve for the attitude and source parameters or
whether the simulation can simply start from the true values. The effect of turning off errors is inter-
esting because it allows for the running of simulations in which the only uncertainty in the astrometric
parameters come from the lens, which means that one does not have to be concerned with whether
the lensing signal is sufficiently strong and can test the fitting without considering this. Being able to
turn off initial source errors without affecting the simulation speeds up the simulation by not having
to wait for the parameters to converge. Being able to turn off the attitude solution greatly speeds up
the simulation because it allows us to turn of an entire block as described in section 1.3.1 and it allows
to only include the sources in the small circular container mentioned in the previous paragraph and
still attain a good solution.2

Figure 4.1: The figure above shows the convergence of the global parameters, which are ML, xL, yL,
and zL with x, y, z being the BCRS position of the lens. The true values of these parameters are:
ML = 1.25MJ , x = 6 AU, y = 17 AU and z = 22 AU. and the initial errors are: ML = 0.02MJ ,
x = 0.06 AU, y = 0.17 AU and z = 0.22 AU or 1% for distances and a bit more for the mass. The
dashed lines in the figure show the value of the error for each parameter and the solid lines show the
update in each parameter. The S at the top of the figure is the scale factor of the simulation, with
S = 1 meaning a full attitude fit and the simulation uses 5 000 sources. The figure here shows that
the solution converges easily, after only 5 iterations.

Figure 4.1 shows a run where the initial source error is set to zero, likewise is the initial attitude error.
There is also no source nor attitude noise. This means that the only error in the source parameters
arise from the lens. Which means that Fig. 4.1 shows the most efficient, fastest and accurate simulation
that can be done. The following three figures show simulations where the initial source error is turned
on, initial source error and noise is turned on, source errors on and attitude being solved for.

2In order to properly model the pointing of the spacecraft one would need to populate the entire celestial sphere
with sources when doing the solution.
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Figure 4.2: The panels show the convergence of a run with initial source errors of 100 mas, but no
attitude nor source noise.

Figure 4.3: The panels show the convergence of a run with initial source errors of 100 mas, and
standard source noise and no attitude noise
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4.1. INITIAL SIMULATIONS

Figure 4.4: The panels show the convergence of a run with initial source errors of 100 mas, and
standard source noise and attitude update with initial attitude error of 100 µas resulting in final
attitude noise of ∼ 10 µas

The four plots above being virtually identical means that the aforementioned properties can be toggled
either way and the simulation will be reliable nonetheless. Most important of this is the fact that
solving for the attitude does not affect the solution, because it allows us to: 1) Assume the attitude
to be known and not solve for it, which greatly increases the speed of the solution and 2) Only use
the small circular source container in the line of sight of the lens that was mentioned before.

4.1 Initial Simulations

Detectability

The first thing that needs to be determined is what is meant by detecting a body. How do we see the
body in the data? As discussed previously, the bending of light will depend on the angular separation
between lens and source. Since the parallax of the lens will be different than the stars it is lensing,
the lensing magnitude will vary with each observation. This will result in having unexpectedly large
observational residuals for certain sources, the observational residuals are simply a measure of how
good a fit of parameters to a model is. The lens will give rise to specific patterns in the residuals,
which is what we are looking for in the data. In this work we have chosen a Gaussian representation
called Gaussian goodness of fit (henceforth, Gaussian GoF) for the residuals, the Gaussian GoF is
given by first looking at the sum of squared residuals:

ssr =
N∑
i

(xi,obs − xi,model)
2

σ2i
(4.1)

The expected value of the ssr is ν, where ν = number of degrees of freedom (Nobs − Npar where

Npar = 5) and the expected standard deviation is
√

2ν. The Gaussian GoF is then calculated from
this approximately as3

GoF =
(ssr− ν)√

2ν
(4.2)

3The actual calculation is more complex than shown in Eq. 4.2, it involves some integral transformations which are
numerically solved using the error function. The solution in the end is however very close to Eq. 4.2
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4.1. INITIAL SIMULATIONS

The Gaussian GoF is expected to be Gaussian with zero mean and unit standard deviation. What
the Gaussian GoF gives is the probability of a data point randomly having the value that it has
(probability given by a N(0, 1) normal distribution). Figure 4.5 shows the Gaussian GoF of each
source plotted on the sky from a simulation perturbed by a lens.

Figure 4.5: The figure shows the Gaussian GoF for the sources when having a the simulation setup
described for the previous simulations but not removing the effect of the lens. The figure shows that
there is a strong, > 6σ signal that something is not as it should be, such a strong signal is expected
for such a massive body inside the Solar system. Two things should however be noted, the signal is
averaged over pixel density in this plot, so the area in which the effect of the lens appears is larger
because more stars have been placed in that line of sight. Also, the code does not return values greater
than ∼ 6σ, it instead returns infinities because the transformation from ssr to Gaussian GoF involves
putting the ssr in an exponent which in some cases can return values too large for the code to handle
so it puts them to be infinite. Thusly all the sources that get an infinite GoF have their GoF set to
equal 6

Zooming in on the area of the sky where the lens is located a particular pattern appears in the
residuals, the figure below shows three different cases, the first one being 90◦ relative to the ecliptic,
second one 45◦ and the third in the ecliptic.
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Figure 4.6: The figure above shows a field of sources being lensed by a Jupiter-mass body located at
50 AU, 45◦ relative to the ecliptic. Each source has been given a color corresponding to their Gaussian
GoF which means that the colors show how perturbed the astrometric parameters for each source are.
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Figure 4.7: The figure above shows a field of sources being lensed by a Jupiter-mass body located at
50 AU in the ecliptic. Each source has been given a color corresponding to their Gaussian GoF which
means that the colors show how perturbed the astrometric parameters for each source are
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Figure 4.8: The figure above shows a field of sources being lensed by a Jupiter-mass body located at
50 AU, 90◦ relative to the ecliptic. Each source has been given a color corresponding to their Gaussian
GoF which means that the colors show how perturbed the astrometric parameters for each source are.

The figure shows the residuals of a Jupiter-mass planet at 50 AU. The pattern seen in the residuals is
the parallax motion of the lens. A symmetry appears in both Fig. 4.6 and 4.7 in that the sources in
the middle of the ellipse appear not to be as perturbed. This is because on the sides of the ellipse is
where the lens will be spend most of its time as it is there it moves ’inwards” and ’outwards’ in the
projection. Also, it will spend an equal amount of time on each side of the unperturbed sources which
results in them being perturbed in the exact opposite direction an equal amount of time; resulting in
their mean positions being well defined and close to their true positions. This pattern will however
not be seen for lenses that have a small parallax, as there will not be enough stars that are lensed for
the pattern to appear.

Another interesting thing this simulation shows is what happens to the parallax errors, Fig. 4.9 shows
the parallax error for the same run as Fig. 4.6.
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Figure 4.9: The error in parallax induced by a Jupiter-mass body located at 50 AU, 45◦ relative to
the ecliptic.

Of course, the error presented in this way will never be available since the true value is never known.
However, knowing the parallax error can still be useful as Gaia will observe some so called zero-parallax
sources, such as galaxies, quasars and (very) distant halo stars. Because when the data is reduced,
AGIS will still fit a parallax to these sources, and these parallaxes will be distributed around zero. This
means that if a negative shift is seen in the parallax-distribution of these objects in a certain region
of the sky, it could indicate the presence of a lens. Interestingly the negative shift is only seen inside
the ellipse drawn by the parallax motion which means that this way of finding bodies will be a lot
more useful for nearby bodies as the probability of having a zero-parallax object inside the ellipse will
be significantly higher. This effect is explained and discussed in Section 4.3.4 (”Zero-parallax objects”).

Finally, in the initial detectability simulations we also notice that it is nearly impossible to detect
nearby bodies that are not very massive. This is likely due to a dilution of lensing events and is
discussed in detail in the Section 4.3.1 (”Detecting Solar system objects”). The effect is also shown
in the Fig. 4.10:
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Figure 4.10: The left panel shows the Gaussian GoF of the stars being perturbed by a Neptune mass
body at 100 AU whereas the right panel shows a Jupiter mass body also at 100 AU. The parallax
motion of the Jupiter mass body is clearly visible in the observational residuals and around the outline
of how the lens is supposed to move one can barely make out a similar pattern in the left panel. It
would however be nearly impossible to infer the existence of a lens in the left panel without knowing
exactly where to look.

Determining all the lens parameters

When checking the different simulation setups when doing the initial simulations we saw that it was
quite hard to find fits which converged correctly. Figure 4.1 shown before shows an attempt to fit the
lensing model to a 1.2 Jupiter-mass planet at ∼ 30 AU, which should be easy since the signal from the
lens is very strong. However, when testing we saw that achieving convergence is hard even without
source errors. Figure 4.11 is one example of how a slight change in the simulation setup can affect the
outcome, in this case the initial errors were doubled from 1% to 2% and it did not converge.
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Figure 4.11: The figure shows a simulation set up as and with the exact same parameters and conditions
as the simulation in Fig. 4.1 but with doubled initial errors and in this case the algorithm cannot find
the correct fit.

Another thing that was found which makes the algorithm to fail to converge is shown below, all that
was changed in this simulation was that the scaling parameter S was set to 0.025 instead of 0.005.

Figure 4.12: The figure shows a simulation set up as and with the exact same parameters and conditions
as the simulation in Fig. 4.1 but with a scale factor of 0.025 instead of 0.005 and in this case the
algorithm cannot find the correct solution.
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The reason for this behavior can be seen by looking at Eqs. 3.29, 3.30, 3.31, the system of equations
is highly non-linear, i.e. the update in each of the components of will be dependent on the other
components. This means that it will be hard for an algorithm to find its way out of a local minimum,
which is problematic because we know there to be many degeneracies in the problem (can be seen
easily in Eq. 2.6 which shows that θE ∝ M/d). The simulations also showed that the algorithm only
finds the correct fit for the position if the relative initial errors are equal, i.e.

rx,error
rx

=
ry,error
ry

=
rz,error
rz

(4.3)

and when this is the case the simulations show that the relative updates are also equal. What this
means in physical terms is that the algorithm is able to move the lens back and forward in the radial
direction (change all components of a vector relatively equally and only the length of the vector
changes) yet it has a hard time moving the lens transversely. The only plausible explanation for this
is the non-linearity of the problem and looking at Fig. 4.13 further shows that the non-linearity is
the problem. Because in this figure the initial value of the position is off-center (the algorithm has to
move the lens in the transverse direction) and also so small that non-linear effects should not matter,
and in this case it converges in only six iterations.

Figure 4.13: The figure shows a run in which the initial values are so small that non-linear effects do
not matter.

Besides this, the denominator of each positional derivative contains a r4-term which means that the
initial errors will be magnified as they propagate through the algorithm. Combining these facts leads
to the conclusion that that when the updates in the fitting go towards zero, it will be impossible to
determine whether it is in the global minimum or a nearby local minimum.

After thoroughly testing every other possibility we could think of we come to the conclusion that
this method of determining positions and masses of bodies is not feasible, since the initial guess has
to be so near the true values for the algorithm to have a chance of convergence. And all the tests are
consistent with non-linearity being a large part of the problem.
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4.1.1 Mass determinations

The discussion regarding the simulation setup in the previous section is also valid here. Yet the
problems with non-linearity are not expected to arise because unlike in the previous test this is only
solving for a single parameter using a single equation. The linearity can also easily be demonstrated
by setting up a run which starts far away from its true value. Solving for the mass of the lens in the
previous section (Jupiter located at ∼30 AU) with an initial guess of 11 Jupiter-masses the fitting is
shown in 4.14.

Figure 4.14: Convergence plot when solving for a Jupiter mass planet with known position, located
at 30 AU and an initial guess of 11 Jupiter-masses.

As expected, the algorithm behaves well. Not only was this expected by looking at the equation
(Eq. 3.31) but it is also expected due to the fact that the equation in principle is the same as the
partial derivative for PPN-γ, which has been tested extensively (Hobbs et al., 2010). The only thing
different in the two partial derivatives is that where the mass-derivative has (1 + γ) the PPN-γ one
instead has ML (can be seen by looking at Eq. 3.8 for our model and Eq. A.8 for GREM) and this
means that if it is shown to be possible to solve for masses using this method, even higher accuracy
should be achievable using the already existing GREM framework for PPN-γ with slight modifications.
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4.2 Realistic simulations - Exploring the mass-distance parameter
space

4.2.1 Detectability

This test is done in the same way as described in Section 4.1, except that in this case both attitude
noise and source noise was turned on. The detection criterion used is; if the three most nearby sources
to the lens had a Gaussian GoF with a σ ≥ 3, it is counted as a detection; the selection of and
motivation for this criterion is discussed extensively in section 4.3.1. The simulation was repeated
whilst the lens kept being moved farther away, until the detection criterion was no longer met. This
was done for bodies of different masses, for three different background source densities and at three
different inclinations relative to the ecliptic (these inclinations correspond to the declination, δ since
y = 0 in the BCRS in the test cases). This was done for a few reasons such as: the size of the parallax
motion depending on δ, the number of measurements at different positions on the sky varying and the
source density being drastically different in different regions of the sky. The table below shows the
different simulations:

Source density Declinations

2000 deg−2 δ = 0◦ δ = 45◦ δ = 90◦

10000 deg−2 δ = 0◦ δ = 45◦ δ = 90◦

30000 deg−2 δ = 0◦ δ = 45◦ δ = 90◦

Table 4.1: The table shows the different simulations done, they were done in three different sets
grouped according to their source densities and will be referred to as set 1, 2 and 3 with set 1 being
the lowest source density. Figure 4.22 shows where each of the simulations are valid.

For each set the simulation was done for seven different relevant masses for bodies described in Sec-
tion 2.4.
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Mass Maximum distance

0◦ 45◦ 90◦

1 Mj 400 AU 740 AU 780 AU
10 Mj 1850 AU 3 300 AU 3 900 AU
80 Mj 4 700 AU 9 300 AU 12 000 AU
1 M� 19 000 AU 34 000 AU 40 000 AU
20 M� 0.4 pc 0.68 pc 0.82 pc

1 000M� 2.6 pc 3.1 pc 4.0 pc
10 000M� 12.1 pc 19.9 pc 20.4 pc

Table 4.2: The results from the first set of simulations. The table shows the range at which the
criterion for detection is no longer met.

The figure below shows the data plotted
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Figure 4.15: The results from the first set of simulations, done with a source density of 2000 deg−2.
Fitting straight lines to each of the curves we get the following:
Black: M = 1.91d− 11.7
Blue: M = 1.97d− 13.4
Red: M = 1.97d− 13.7

The simulations were then repeated with a higher source density.
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Mass Maximum distance

0◦ 45◦ 90◦

1 Mj 1 000 AU 1 500 AU 1 500 AU
10 Mj 3 600 AU 6 400 AU 7 200 AU
80 Mj 11300 AU 16 200 AU 18 000 AU
1 M� 40 000 AU 70 000 AU 70 000 AU
20 M� 0.82 pc 1.1 pc 1.2 pc

1 000M� 4.4 pc 8.2 pc 9.7 pc
10 000M� 72.7 121.2 pc 169.7 pc

Table 4.3: The results from the second set of simulations. The table shows the range at which the
criterion for detection is no longer met.

Plotting the data we get
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Figure 4.16: Results from second set of simulations, done at a source density of 10000 deg−2. Fitting
straight lines to each of the curves we get the following:
Black: M = 1.78d− 12.0
Blue: M = 1.76d− 12.6
Red: M = 1.71d− 12.3

Then the simulations were repeated once again for the highest source density.
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Mass Maximum distance

0◦ 45◦ 90◦

1 Mj 1 400 AU 1 700 AU 1 800 AU
10 Mj 4 600 AU 9 600 AU 11 500 AU
80 Mj 24 000 AU 47 000 AU 55 000 AU
1 M� 0.6 pc 1.1 pc 1.3 pc
20 M� 2.2 pc 4.6 pc 4.9 pc

1 000M� 21.8 pc 43.6 pc 48.5 pc
10 000M� 266.6 pc 727.2 pc 969.6 pc

Table 4.4: The results from the third set of simulations. The table shows the range at which the
criterion for detection is no longer met.

The figure below shows the data from the table below plotted

Figure 4.17: Results from second set of simulations, done at a source density of 30000 deg−2. Fitting
straight lines to each of the curves we get the following:
Black: M = 1.58d− 11.2
Blue: M = 1.51d− 11.3
Red: M = 1.49d− 11.3

It is apparent the estimation made in in section 3.1 was far too optimistic. How the detection criterion
affected it is discussed in Section 4.3.1 but it is not the only thing that affects it, other factors which
were ignored in the initial estimation are also important. In the estimation, the parallax motion of
the lens was ignored and it is important because it is what enables us to make a detection. The fact
that the lens has a different parallax than the source it lenses means that the source will appear in a
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different position, depending on when it is observed. This is what gives rise to the bad fits which are
seen in the Gaussian GoF, if the lens and source did not have a different parallax motion it would mean
that the source always would appear in the same ’wrong’ place. In that case the source will always be
lensed in the same way and we would not be able to tell the difference. The fact that the area cov-
ered by the parallax motion scales as 1/d2 could help explain why the curve does not have a slope of 1.

There is also the fact that the mass-distance relation is shifted to lower values. This can be explained
by considering that it was estimated at what distance a single deflection would be detected. But in
order to have a significant effect on the Gaussian GoF there has to be a lot of lensing events measured
for each source. Requiring more deflections per source in the estimation would yield a similar result
in shifting the relation. With these relations we can calculate the number of expected detections of
different bodies. This calculation is done in Section 4.3.1.

4.2.2 Mass determination

For the determination of masses the same sets of simulations were done as shown in Table 4.1. The
same masses were also tested for in each set except that the lowest mass tested was that of Neptune
(≈ 0.054 Mj). The difference from the previous simulation is that here the algorithm is trying to solve
for the mass. The simulations were set up such that the initial guess on the mass differed from the
true mass by 50%. How good convergence the simulation gives will depend on the strength of the
lensing, so two different results are presented in this section; the limits at which you get 1% and 10%
accuracy. The accuracy for each run is given by looking at two different things, the formal error which
is given by taking the square root of the diagonal element from the inverse matrix corresponding to
the mass-derivative in Eq. B.6 in Appendix B. The formal error is given directly from the solution and
is a measure of how well-determined the solution is. It was then compared to the true error which is
simply the true value minus the running value, this will of course never be known in the real mission.
Table 4.5 shows the result from the first set of simulations.

Mass Maximum distance

0◦ 45◦ 90◦

Neptune 270 AU 350 AU 350 AU
1 Mj 1 800 AU 2 200 AU 2 400 AU
10 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
80 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
1 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU
20 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU

1 000M� Simulation unstable
10 000M� Simulation unstable

Table 4.6: This table shows the 10%-limit for the lowest source density, 2 000 deg−2. For an expla-
nation on the ∼10 000 AU and Transit error, see the caption of table 4.5.

The tables below show the results for the second set of simulations.
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Mass Maximum distance

0◦ 45◦ 90◦

Neptune 170 AU 230 AU 230 AU
1 Mj 350 AU 430 AU 430 AU
10 Mj 1 300 AU 2 100 AU 2 500 AU
80 Mj 3 100 AU 5 500 AU 6 000 AU
1 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU
20 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU

1 000M� Simulation unstable
10 000M� Simulation unstable

Table 4.5: This table shows the 1%-limit for the lowest source density, 2 000 deg−2. There are two
things in this that will be immediately noticed, the first is the ∼10 000 AU. What that means is that
the algorithm works just fine and we get 1% fits up until ∼10 000 AU but then the simulation will
start to diverge on a regular basis. It does not mean that it is impossible to determine masses at
greater distances though, what it means is that for most initial conditions the simulation will diverge.
This is likely a purely numerical effect and comes from the way Eq. 3.31 is set up. This is discussed
in detail in section 4.3.2. When it says that the simulation is unstable in the table it means that the
simulation crashed due to it being unable to determine the transit. This means that the lens is so
massive that it cannot be determined when sources cross the CCDs because they are being deflected
too much in the region where it should be possible to get reliable determinations of their mass, i.e. at
d < 10000 AU.

Mass Maximum distance

0◦ 45◦ 90◦

Neptune 330 AU 540 AU 540 AU
1 Mj 750 AU 1 100 AU 1 100 AU
10 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
80 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
1 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU
20 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU

1 000M� Simulation unstable
10 000M� Simulation unstable

Table 4.7: This table shows the 1%-limit for the middle source density, 10 000 deg−2. For an expla-
nation on the ∼10 000 AU and Transit error, see the caption of table 4.5.
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Mass Maximum distance

0◦ 45◦ 90◦

Neptune 490 AU 690 AU 690 AU
1 Mj 4 100 AU 6 800 AU 6 900 AU
10 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
80 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
1 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU
20 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU

1 000M� Simulation unstable
10 000M� Simulation unstable

Table 4.8: This table shows the 10%-limit for the middle source density, 10 000 deg−2. For an
explanation on the ∼10 000 AU and Transit error, see the caption of table 4.5.

Mass Maximum distance

0◦ 45◦ 90◦

Neptune 400 AU 730 AU 730 AU
1 Mj 900 AU 1 400 1 400 AU
10 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
80 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
1 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU
20 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU

1 000M� Simulation unstable
10 000M� Simulation unstable

Table 4.9: This table shows the 1%-limit for the highest source density, 30 000 deg−2. For an
explanation on the ∼10 000 AU and Transit error, see the caption of table 4.5.

Mass Maximum distance

0◦ 45◦ 90◦

Neptune 600 AU 950 AU 950 AU
1 Mj 6 100 AU ∼10 000 AU ∼10 000 AU
10 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
80 Mj ∼10 000 AU ∼10 000 AU ∼10 000 AU
1 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU
20 M� ∼10 000 AU ∼10 000 AU ∼10 000 AU

1 000M� Simulation unstable
10 000M� Simulation unstable

Table 4.10: This table shows the 10%-limit for the highest source density, 30 000 deg−2. For an
explanation on the ∼10 000 AU and Transit error, see the caption of table 4.5.

From the simulations it has become apparent that there are two different ways in which the simulation
becomes unstable and diverges. The first one, shown in Fig. 4.18 is as we expect the simulation to
behave. The left panel shows a converging fit when the signal is very weak, in this case it is a Neptune
located at 500 AU. The weakness of the signal is evidenced in the fact that it takes 150 iterations for
the solution to converge. The right panel shows the same setup except that in this case the lens has
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been moved to 1 000 AU and here the signal is too weak, which means that the algorithm will not be
able to reach convergence and it does not.

Figure 4.18: The left panel shows the convergence of the fit for a Neptune mass lens located at 500 AU.
The lensing signal is weak, which means that the update will be small, so it takes a lot of iterations to
reach convergence. The right panel shows an attempted fit to a Neptune mass lens located at 1 000
AU. At that distance the signal from the lens is too weak to be solved for, which is shown by the fact
that the update is close to zero. There is a small update, which goes in the wrong direction indicating
that it is dominated by numerical noise.

Why this happens can be seen in the Gaussian GoF in the Fig. 4.19. The left hand panel shows the
500 AU, converging run. Whereas the right hand panel shows the diverging run.
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Figure 4.19: The left panel shows the Gaussian GoF of the stars being perturbed by the Neptune mass
body at 500 AU in the run that converged. The right panel shows the diverging run with a Neptune
mass lens at 1 000 AU. The plot only shows sources with σ > 2 and it is hard to make out just by
looking at it, but if one looks carefully at the center of both plots it can be seen that there are slightly
more sources that are more perturbed in the left panel than in the right. This is sufficient to achieve
convergence.

Figure 4.20 shows the second type of divergence. For this particular set of initial conditions the
divergence occurs at 11 500 AU. The left panel shows a converging run and the right panel shows the
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exact same setup except that lens has been moved out to 11 500 AU, this is only an increase by 4.5%.
Yet it results in a rapidly diverging run, because the divergence in the end is as large as it is; it cannot
be resolved in the figure that it starts diverging from the first iteration. But it does.

Figure 4.20: The left panel shows a converging run when solving for a 100 Mj lens at a distance of 11
000 AU, The right panel shows the same simulation but the lens moved to 11 500 AU, in the second
case it rapidly diverges.

This can be further exemplified by looking at the Gaussian GoF of the two runs. Figure 4.21 shows
the converging 11 000 AU run on the left side and the diverging 11 500 AU run in the right panel.
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Figure 4.21: Unlike Fig. 4.19 which shows that the simulation diverges because the signal from the lens
becomes too weak this figure shows the other kind of divergence. The left panel shows the converging
run whereas the right panel shows the diverging run. The only thing different between the two runs
is that the lens in the left panel is located at 11 000 AU whereas the one on the right side is located
at 11 500 AU. The signal from the lens is very strong in both cases and the simulation still diverges
as explained in the text.
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4.3 Conclusions & Discussion

4.3.1 Detectability

The patterns discussed and shown (Figs. 4.6, 4.7, 4.8) will almost never actually appear in the good-
ness of fits. This is because the source density is simply too low. The three different densities give an
average angular separation of 45.4, 20.3 and 11.7 arcseconds. For the pattern to be seen the lens must
cross several sources. Let us assume that for the pattern to be seen the lens parallax must be & 100
as, this would mean that the patterns only would appear for bodies within 2000 AU. Considering what
was shown in Fig. 4.10 and discussed in at the end of this section (”Detecting Solar system objects”)
we know that bodies that are too near become nearly undetectable by looking at the Gaussian GoF.
This means that in no part of the mass-distance parameter space will there be a body that would be
hitherto undetected which would give rise to the patterns.

So, why use the Gaussian GoF as a detection criterion? The primary reason for it is that it is a readily
available statistic for every source in the vast Gaia catalog. It has not yet been mentioned, but finding
a signal from a lens in the Gaia catalog will not be a trivial task, which makes using something as
straight forward as the Gaussian GoF desirable. Another thing to be mentioned regarding the criterion
is that we use three stars with bad fits. Why three? Looking at single stars, there will be bad fits on
stars. These bad fits could be due to a variety of reasons, including having a planetary system, being a
wide binary or the star having some sort of variability. If we were to look at two stars there will also be
a lot of bad fits, in fact there might be even more double bad fits than there are singles. This because a
large fraction of stars are in binary systems which will cause the fit to be bad. Finding three adjacent
stars with bad fits would be highly unlikely barring there being something, such as a cloud of gas
obscuring that particular line of sight or they could of course be in a triple star system. These systems
are far less common than the binaries and it would warrant further study either way. Another reason
for having three perturbed sources is the degeneracy of the lensing equation that was mentioned previ-
ously. Having at least three sources that are highly perturbed will make fitting a lensing model to the
observation more likely as compared to having only one or two sources. Combining these two criterion
makes for a strict definition of detection and with this criterion in place we find the following relations:

For ρ = 2000deg−2 at 0◦, 45◦ and 90◦ above the ecliptic

M = 8.29× 10−6d1.91

M = 1.67× 10−6d1.97

M = 1.12× 10−6d1.97
(4.4)

For ρ = 10000deg−2 at 0◦, 45◦ and 90◦ above the ecliptic

M = 6.14× 10−6d1.78

M = 3.37× 10−6d1.76

M = 4.55× 10−6d1.71
(4.5)

For ρ = 30000deg−2 at 0◦, 45◦ and 90◦ above the ecliptic

M = 1.37× 10−5d1.58

M = 1.27× 10−5d1.51

M = 1.27× 10−5d1.49
(4.6)

The reason for testing at three δ is two fold. Firstly, the area covered by the lens’ parallax motion
will increase with an increasing δ. Secondly, if we look at Fig. 1.4 which depicts the scanning law
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of Gaia we see that the number of measurements vary by up to a factor of five with position on
the sky. The least amount of measurements will be done in the ecliptic and there is an over-density
of measurements at 45◦ which makes the number of measurements there roughly double that of the
number of measurements that will be done at 90◦. From the results we can see that there is almost no
difference between the tests done at 45◦ and 90◦ even though the projected area that the lens sweeps
across differs by a factor of two and since the number of scans between the two positions also differ
by a factor of two; we can conclude that the area covered by the parallax motion and the number of
scans scales our detection equally. Looking at the difference between 45/90◦ and 0◦ we see that larger
number of measurements and larger area covered done appear to improve the scaling. The differences
are however on the same level as the uncertainty in these tests.

With the scaling relations we can now do some predictions on the number of detections. Here follows
a prediction for the number of detections of various kinds of bodies, based on the approximations
made in sections 2.4-2.6 and the scaling relations given in this section. The first thing to do is to see
which of the relations should be used where. Figure 4.22 shows the same thing as Fig. 1.4 except that
the region which is valid for each density and δ is highlighted.
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Figure 4.22: This figure shows the same thing as Fig. 1.4 and just like in that one it should be noted
that the skymaps come from a simulation with 2× 106 sources, to match our assumption we scale up
the density by a factor of 50. Unlike Fig. 1.4 in this figure the the three different densities tested have
been highlighted in the top panel. They are as follows: Red ≥ 30000 deg−2,Blue = 10000−30000 deg−2

and Black= 2000− 10000 deg−2. The middle panel shows the zones in which the three different
inclinations tested will be used. in the calculation, there are areas in each zone where there will
be more scans and areas where there will be less. Considering the fact that was discussed on the
previous page, i.e. that the area covered by the parallax motion scales the same way as the number
of measurements. The average of covered area by the parallax and number of scans on that area will
be roughly the same in each region and thus the scaling will be roughly the same. The bottom panel
shows the two outlines overlaid on each other. There will be a large fraction of the sky that is not
included in the calculation as the source density was too low to be tested.
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2000 deg−2 10000 deg−2 30000 deg−2

0◦ 8% 2.5% 1.5%
45◦ 6.5% 5.5% 1%
90◦ 5.5% 1.5% -

Table 4.11: The fraction of sky covered by each of the derived relations.

The last thing needed to calculate the number of detections is the mass distribution of a given body.
Then the detection rate can be given by:

n =
9∑
i=1

fi

∫ Mmax

Mmin

(
di
R

)3(dN
dm

)
dm (4.7)

where n is the number of expected detections, the sum is over each region as shown in the bottom
panel of Fig. 4.22, fi is the fraction of the sky that each region covers. The integral goes from the
minimum and maximum mass the given body can have, di comes from the relations shown before, the
R is from Eq. 2.13 which means that the fraction of the two cubed gives the number of ’unit volumes’
a body of a given mass fills. The second fraction is the mass function of the selected body.

The mass function used to calculate the different rates are:

• Black Holes
The mass function used is given by Özel et al. (2010). The mass distribution is stated to be well
represented by a Gaussian distribution with µ = 7.8M� and σ = 1.2M�. Putting in the numbers
we get that the expected number of detections to be 1−6×10−5 depending on the value of R used.

• Neutron Stars
The mass function used here is given by Kiziltan et al. (2013). The study shows that there
are two distinct mass distribution, depending on the companion of the neutron star as they are
mostly found in binaries. Two different distributions are presented, one for double neutron star
systems and one for neutron star - white dwarf systems. For the calculation the neutron star
- white dwarf mass distribution of neutron stars will be used as they are far more prevalent in
the Galaxy. The mass distribution is well modeled as a Gaussian distribution with µ = 1.55M�
and σ = 1.35M�. Putting the numbers in we get a value of 2− 5× 10−5.

• Brown Dwarfs
The mass function used for the calculation here is the same as the one that was used to calculate
the number of brown dwarfs in the Galaxy, i.e. the Kroupa (2001) IMF. The reason we can use
the IMF here and not for the heavier bodies is simple, their progenitors undergo stellar evolution
whereas the brown dwarfs are the progenitors themselves. Brown dwarfs do not undergo any
stellar evolution, thus their mass function should be identical to their IMF. The distribution given
is dN/dm ∝ mα where α = 0.3± 0.7. Doing this, we get the expected number of detections to
be 1−3×10−5. Seeing as how the R calculated in section 2.4.3 probably was significantly larger
than what it is in reality because of the assumed distribution of brown dwarfs the number of
detections should probably be even lower.

We have to point out that the simplistic approximation for R in sections 2.4 are quite pessimistic.
Taking the black holes as an example, more detailed studies such as Fender et al. (2013) or Maccarone
(2005) which give the most conservative estimates of R gives a value of 7.6 pc. Redoing the calculation
for black holes we instead see that there instead will be ∼ 4×10−4 detections. Assuming neutron stars
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follow the same distribution but there just being more of them, we get that there will be 0.001−0.003
detections of neutron stars.

We now have to consider the fact that the mass-distance relation that was predicted in Section 3.1 and
what was tested are not the same thing. The prediction shows at what distance a single lensing event
from a given body should be detectable whereas what we tested shows the probability of detecting a
given body. Detecting a lensing event and detecting a lens are two different things as the latter should
allow for a lensing model to be fit to the observation. This means that the predictions made from
studies such as Belokurov & Evans (2002), which put the number of predicted lensing events in the
thousands, do not contradict our findings. But finding a single lensing event amongst the Gaia data
will be a difficult thing, besides the pure size of the catalog is also the fact that there will be many
outlier measurements even without lensing. Then there is also the question of how much information
can be gotten from finding a single lensing event.

The aim of this test was to investigate whether there existed a comparatively simple, reliable and sta-
tistically significant method of searching for lenses in the Gaia data. From the results and predicted
detections it is evident that looking for lenses with the method tested in is unlikely to yield positive
results. It does not mean that Gaia will not be able to detect lenses, it does not even mean that using
the Gaussian GoF of the sources is the wrong way of looking for lenses. The simulations consistently
showed that what would happen as the lens was moved farther out was that the nearest of the three
sources to the lens would remain highly perturbed (σ & 6) as the Gaussian GoF of the adjacent two
would go under 3 σ causing the criterion no longer to be met. If one kept moving the lens farther
out the central source would generally remain highly perturbed at much farther distances. Frequently
up to ten times farther and even more in some cases. Knowing this, one can estimate the number of
detections for only using a single highly perturbed source as detection criterion by just scaling up the
distance at which a given body can be found by a factor of 10 (this is a rough approximation so we
just scale it up linearly, in reality changing the criterion would probably affect the exponent as well,
bringing it closer to 1). Redoing the calculations we now find that we can expect to detect ∼ 0.4 black
holes, 1− 3 neutron stars and 0.01− 0.03 brown dwarfs.

Now, purely from a statistical point of view ∼ 400 out of 108 sources will have σ & 6. These will all
be investigated in some way and a variety of different models will be attempted to be fit to them such
as planetary orbits or wide binaries. If no other model fits it is likely that the bad fit could be due
to the presence of a lens since 1% of these bad fits could be due to lenses. In that case one would
have to try to reduce the residuals by applying a lensing model, not the one presented in this work
as it has been shown to be unstable due to the non-linear effects. The fact that it is only one highly
perturbed source makes it even harder. Some other model would have to be developed for this, likely
using the 2D lensing equations along the lines of what was proposed in Belokurov & Evans (2002)
which is discussed in Section 4.3.3. What this shows however is that a significant fraction of sources
with large Gaussian GoF values could be the result of lensing.

The number of detections is equally sensitive to the value of d. As an example, the value of d given
by Fig. 3.1 larger by a factor of 103 − 104 for Solar mass bodies. As it has been discussed we know
that the estimation made there is not representative of reality but we also know that lensing events
can be detected at those distances. This suggests that there should be a better statistic to use in the
search for lenses than the Gaussian GoF. One potential statistic to look at is the variability of α and
δ measurements for specific sources. Exactly how this would be done is not self-evident, the point is
however that this kind of variability will be measured for many sources which will not be considered
to be bad fits by looking at their Gaussian GoF.
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Detecting Solar System Objects

The reason that masses lower than a Jupiter mass were not tested for is the large parallax motion such
a body would have at a distance where its Einstein radius is sufficiently large for it to induce large
deflections. This seems counterintuitive at first, yet it is actually quite simple. The large parallax
motion will mean that more stars are lensed, which one might think is good but in this case it is not.
What happens is that the deflections become diluted amongst more sources since the lens wont be near
the same sources when the area is revisited and the source update will treat the lensed measurement
as an outlier. Those measurements will be weighted when calculating the Gaussian GoF which means
that if a source only has one or a few such outlying measurements it will show up as a ’good’ source in
the reduced data. If the aim is to find nearby massive bodies then instead of looking at the Gaussian
GoF of the stars in particular regions, one could look for regions of the sky where there are more
outliers in α and δ measurements than the average (or a region in which the outliers are unusually
large), yet not enough for there to be a significant change in their GoF. In this region, if an ellipse could
be traced in the outliers, it would indicate a body lensing these sources. Also, because of the large
ellipse being traced one could look for effect shown in Fig. 4.24, this effect however is not sufficiently
studied.

Detecting intermediate mass black holes

Drawing conclusions regarding these are nigh impossible even if they are assumed to exist. The
predictions of the amount of them that exist in the Galaxy put the count to be low, as one would
expect. But besides that they are also thought to have Halo-like orbits, making it hard to predict
how many of them and how they would be distributed in the Disk; as it is the only place in which
the stellar density is sufficiently high for them to be detected at large distances. Also, validity of the
geometric model we use for light deflection becomes questionable for such high masses which could
explain the behavior seen in Figs. 4.15, 4.16, 4.17 for high masses at large distances. The behavior
that the curve starts flattening out, scaling better for some reason. This could also be due to the fact
that at those distances the parallax motion of the lens will be much smaller than the distance between
the sources meaning that the scaling could be much more similar to what is predicted in Fig. 3.1.

4.3.2 Mass determinations

The simulations show no clear systematic behavior when it comes to the determination of masses at
least not in the same manner as when looking at the detectability. In fact, one can get very different
results by just changing the random seeds which determine things such as source distribution. The
method for determining masses used in this work has three potential uses:

• There is mounting evidence for the existence of a large body in the inner outer Solar system.
This is the one region in which the mass determination works reasonably well. If such a body
ever is discovered one could potentially determine its mass in a similar manner as shown here.
The nice thing is that this will be possible to do even if the body is discovered long after Gaia
has finished its mission since the information will be stored in the residuals.

• The mass of the Solar system ice giants is already well known. However, if this method of
mass determination was implemented using GREM one could possibly determine the mass even
better. Which in turn could lead to more science or it could just be the novelty of slightly
improving upon the current mass estimation.

• The possibility of determining the masses of the nearby, large asteroids still exists as it has not
been sufficiently explored. For the Kuiper belt objects it will however be impossible to determine
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the mass in this manner. If it is possible to determine the mass of the nearby asteroids, it is
because of the fact that their parallax motion will be large and they will cross a lot of sources.
This is something that should be investigated more.

The reason for the exhibited divergent behavior is twofold. Firstly, the partial mass derivative given
in Eq. 3.31 is independent of mass. This means that for the sake of the fitting it does not matter
whether it is a Jupiter mass being solved for or 104 Solar masses. Secondly, the derivative scales as
1/r which means that the derivative becomes smaller the farther away the lens is placed. This means
that for a given stellar background, the type of critical distance described in the previous paragraph
will always appear no matter how massive the lens is and how strong the signal is. To understand why
this happens we need to look at the least squares method described in Appendix B. It shows the basic
principle behind solving a linear system of equations, i.e. the inversion of the matrix A. In the global
block this A matrix consists of the partial derivatives of û with respect to the global parameters,
transformed using the field angle calculator to the appropriate astrometric derivatives. As the lens is
moved farther away, these derivatives will start approaching zero (numerical noise) and when they do
the update will diverge, because it is calculated from the inverse of the A matrix (Eq. B.6).

A method for determining masses of brown dwarfs was proposed by Smart (2012) in a Gaia technical
note. Instead of incorporating the lens mass-solution into AGIS, the proposal was to monitor brown
dwarfs as they move across the sky and as they approach stars use Gaia to see how much the star
deviates from its track (Fig. 1.2). There are however two problems with this proposal that makes it
practically unfeasible to do.

• The assumed astrometric precision is that of the background star, not of the brown dwarf. The
two will be equally important and the maximum achievable precision for the brown dwarfs will
be a lot lower than that of the brighter stars.

• The duration of each lensing event (and thus the number of measurements) has been overesti-
mated. All the detected brown dwarfs are within a sphere of ∼100 pc, with most of them being
around ∼30 pc. Most stars will be much farther away than that, which means that the parallax
motion of the brown dwarf will be much greater and the close encounter will not last as long as
the author suggests.

However, just because this method is not applicable for brown dwarfs does not mean that it is useless.
As discussed previously the direct determination of stellar masses is quite important for astrophysics
and also impossible with the method tested in this work. This method offers a way of doing things
that could be better than doing it in the direct solution. Figure 4.23 shows a so called optical binary,
the probability of having such a configuration can easily be calculated. Each ’good’ star will occupy
an area of:

41253

108
× 36002 = 5346 as2 (4.8)

And the area occupied by two stars will simply be twice that. Now, for this to work we assume that
the stars have to be within 0.1 as of each other. The probability of that occurring is given by:

0.12π

10692
= 2.94× 10−6 (4.9)
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Figure 4.23: The figure shows an optical binary. The black line represents the motion of the fore-
ground star and the blue line represents a background star. The red and green crosses are individual
measurements done by Gaia. Each loop represents a years time, which means that the measurements
on each of the loops are done at the same time. The figure shows that at the time during which they
are close together the background star will be offset from its optimal fit. This offset could be used to
directly determine the mass of the foreground star.

Considering there are 108 of these stars means that there will be ∼294 of these optical binaries ob-
served by Gaia. Fig. 4.23 shows a case with one of these optical binaries where the proper and parallax
motion will bring them closer and farther apart at different points in time. The advantage here is that
because of the way Gaia works it will always measure the two stars at the same time. As an example,
let us assume the foreground star to be a 1M� star located at 100 parsec with a distant background
star it will have an Einstein radius of ∼ 9 mas. Them being within 0.1 as of each other will result in
the deflections being & 0.8 mas. In a case such as this several measurements will have been made of
the background star, in some cases the effect from the lens will be lower than the precision in the mea-
surement whereas in a some other cases the lensing will be noticeable. The measurements in which the
lensing is noticeable will be considered outliers and will be weighted to not affect the fit of the stellar
parameters as much. This means that by finding a relation for the deviation from the fit as a function of
angular separation between the two sources will be a direct measure of the mass of the foreground star.

This way of determining masses was not tested as part of this work and requires testing to see if it
works better or worse than solving for the mass as part of the full solution.

4.3.3 Fitting the lensing model

The problems regarding fitting the 3D lensing model to the observation was discussed in detail in
section 4.1 in regards to the initial simulations. It was shown to require very precise initial guesses
to be able to reach convergence, which makes it unreasonable do the fit for bodies detected in the
residuals; it could however be used for visible bodies. If there is a visible body whose mass is not well
determined and position known to a somewhat high precision. One could attempt to determine the
mass to as high a precision as possible given the uncertainty. Then, given the fact that the position is
already well known one could attempt to determine it improving upon the old value. This will allow
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for an even better determination of the mass and if this process is carefully repeated one could end
up with a better determination of the mass than by just fitting the mass. Or rather than doing it this
way one could implement an algorithm that is better at dealing with non-linear problems, how well
either would work is not yet known.

It could be possible to get around the non-linearity of the problem all together. Belokurov & Evans
(2002) put forward a way of fitting a lens to an observation in a nearly linear fashion in the same
manner as solving for the astrometric parameters. The problem is however that this method utilizes
the so called proper motion angle (as defined in Gould & Salim, 1999). This method of solving for
lenses with Gaia was derived at a time when Gaia still was supposed to have an interferometer and
the SIM mission was supposed to compliment the measurements. But SIM never happened and Gaia
never got the interferometer making this way of doing things impossible. But something similar could
be developed.

4.3.4 Additional comments

Using a stationary lens

The only case where having a lens in motion would make things worse is when a fit to the observation
is attempted, as it would introduce even more complexity to the problem. Even in that case, the
motion of the lens is simply the time derivative of the position which is being determined and with
a 5+ year baseline, including it might not be that problematic. For the sake of detectability, it
could on the other hand make things better because as discussed in the previous section it is the
differences in angular separation between lens and source that gives rise to the bad fits that we use as
detection criterion. For a lens in motion the differences will almost always be greater and also more
sources would be perturbed and this might improve the detectability. As for the patterns shown in
Figs. 4.7, 4.6 and 4.8, these patterns would be broadened by having a moving lens. We have however
showed that these patterns will not be seen in Gaia data so this can be ignored. When it comes to
determining masses we assume the position of the lens to be known which would mean that we also
assume the motion to be known.

Zero-parallax objects

The observed effect is easily understandable and explained is explained in the figure below.

Figure 4.24: The panel above depicts how the effect observed in Fig. 4.9 arises. L is the lens and S is
the true position of the source. S′1 is the position of the Source as seen by Gaia from G1. Likewise for
S′2 and G2. $ is the true parallax (twice the parallax to be precise) and $′ is the resulting measured
parallax. The schematic illustration clearly demonstrates that $ > $′, i.e. that a lensed source will
appear to be farther away.

This effect could be useful in confirming suspected lenses as it would be hard for any other thing to
replicate the effect of shifting zero-parallax objects to negative values. It is however unlikely that Gaia
will be able to utilize this effect since the zero parallax objects do not have a parallax of exactly 0.
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These objects consist of galaxies, quasars and faint halo stars. The precision on the measurements
determines the width of the distribution of parallaxes around zero of the objects. Figure 4.9 shows
the change in parallax induced by a Jupiter at ∼ 50 AU and it is ∼ 40µas. This is lower than
the precision of the measurements for faint objects and what is shown in that case is an unrealistic
situation. Besides that, there are not that many of these objects so having one close enough to a
suspected lens is not probable.

Combining astrometric and photometric lensing

The relationship between astrometric and photometric lensing is quite interesting. There are few things
that can cause such a characteristic increase and subsequent decrease in flux as a lensing event whereas
the positional measurement of a source being off its expected value can caused by a variety of different
reasons. On the other hand, detecting a photometric lensing event gives less information about the
lens than an astrometric measurement.4 Gaia however will be a lot more sensitive to astrometric shifts
(∼ 10−9) than it will be to photometric shifts (∼ 10−3) and the two effects scale in a similar manner
with angular separation between source and lens. This means that every photometric lensing event
measured by Gaia also will measure the astrometric shift occurring at the same time. This is good
because Gaia is designed to focus on sources that exhibit a rapid change in flux. That means that
these lensing events will be fairly easy to detect and when they are, the patterns in the astrometric
measurements can be studied. As stated, the astrometry is a lot more sensitive than the photometry
which will result in a lot of astrometric lensing events being measured by Gaia during which there will
be no detectable change in photometry. However, by studying the astrometric measurements done
during photometric lensing events one could learn how to better identify purely astrometric lensing
events using methods.

4.4 Summary

In this work three things have been explored; A somewhat direct method of detecting lenses in the
Gaia data, if it is possible fit a lensing model to the lens detected in the observed data (i.e. determine
its mass and position) and if it is possible to determine the mass of known bodies using their grav-
itational deflection of light. We have shown that with the selected criterion for what constitutes as
a detection, having three adjacent sources with a large deviation from the expected errors (3σ), it is
unlikely that any detections will be made. It must however be stressed that this criterion is for the
detection of a lens and not a single lensing event. Having three sources with such large perturbations
would mean that there would have to have been many measured lensing events for each source. This
means that the number of predicted detections (∼ 0.004) is not the same as the number of predicted
lensing events (Belokurov & Evans, 2002). These events will be hard to find in the data as there will
be some 1011 measurements to look through and one also has to be able to determine whether a given
outlier is due to a lensing event and not something else. Besides that the predictions have been shown
to be sensitive to many different factors, including assumed source density, line of sight density of
lenses and the direction (and thus number of scans and size of the lens’ parallax motion) one choses
to look in. As an example, by relaxing the detection criterion to only needing one highly perturbed
source we get the number of detections to be ∼ 4.

If a lens is discovered in the data fitting the model attempted in this work will not be possible and
that is primarily due to the problem being highly non-linear as can be seen in Eqs. 3.29, 3.30 and 3.31.

4A photometric lensing event can not tell more than the magnitude of the event, whereas an astrometric measurement
gives both the magnitude and the direction to the lens relative source. Not only does one get extra information by knowing
the direction to the lens, but being able to combine the two quantities allows for even more information to be deduced.
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Solving the non-linear system of equations is not the problem in itself, the problem is the manner in
which it has to be solved. In order to accurately fit the model, especially in the case where the signal
is weak, a lot of sources have to be used as part of the fitting. Using a non-linear algorithm with as
large a data set as one would like to use for this problem is computationally unfeasible.

Solving for the mass of visible bodies is probably one of the things which will be the most straight
forward uses of lensing once the Gaia data comes in. However the mass will in all likelihood not
be determined with the method tested in this work as the solutions tend to become unstable due to
numerical effects. Either the algorithm used here could be redesigned in order to be able to better
solve for distant bodies or methods such as the one discussed in section 4.3.2 can be used. As it
stands, the only interesting realistic body for which the mass could be determined is the hypothesized
massive planet in the inner outer Solar System, albeit solving for masses of bodies in the inner Solar
system such as asteroids, planetesimals and dwarf planets warrant more investigation.

4.5 Future prospects

An immidiate followup to this work would be to investigate the possibility of direct mass determina-
tions in optical binaries as it is the only thing that can be done that would not be heavily reliant on
assumptions at the moment. As it stands, Gaia is in all likelihood precise enough to detect a lot of
bodies by looking at the induced astrometric shift. The problem now however is that how this should
be done in the best possible manner is not known yet. It is however nearly a decade until these kinds
of studies will be doable with the real data so there is plenty of time to develop and test the tools.
During this time the preliminary data releases of Gaia will be made available, the precision in these
will not be sufficiently high to find anything but the strongest lenses. What this data will be useful for
is making predictions and testing whatever statistical tools are being developed for the detection of
lenses and lensing events. This work has shown that what can be seen in the observational residuals
is heavily dependent on the assumptions made about the sources and the Galaxy. Thus, the first data
releases will provide a sound basis for making these assumptions and will be useful when attempting
to predict what can be seen in the final data release.

In the future if there ever is an astrometric mission which is meant as a lensing survey it does not have
to be more precise than Gaia. The precision is sufficient, what would be needed is similar precision
for the dim sources as Gaia currently has for the brightest sources and it should be designed in such a
manner that most measurements are done in the direction of highest source density. This will allow for
significantly more detected lensing events than Gaia and even stronger constraints on the population
of invisible bodies.

If an astrometric mission aiming for nanoarcsecond accuracy is ever presented it will have to be able to
account for these invisible bodies as they will perturb the observations significantly. Even the smaller
bodies in the outer Solar system should be seen in the observational residuals of such a mission and
the different patterns discussed in the Section 4.1 will likely appear. In addition to the even more
detailed map of the visible part of the Galaxy than we will get from Gaia such a mission would also
give a detailed map for the invisible part of the Galaxy.
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Özel, F., Psaltis, D., Narayan, R., & McClintock, J. E. 2010, The Astrophysical Journal, 725, 1918

Perryman, M. A. C., & ESA, eds. 1997, ESA Special Publication, Vol. 1200, The HIPPARCOS and
TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPAR-
COS Space Astrometry Mission

Rashkov, V., & Madau, P. 2014, The Astrophysical Journal, 780, 187

Raup, D. M., & Sepkopski, J. J. 1984, Proceedings of the National Academy of Sciences, 811, 801

Sartore, N., Ripamonti, E., Treves, A., & Turolla, R. 2011, Advances in Space Research, 47, 1294

Smart, A. 2012, Gaia Technical Note OATO-RLS-005-1

Trujillo, C. A., & Sheppard, S. S. 2014, Nature, 507, 471

Zwicky, F. 1937, The Astrophysical Journal, 86, 217

62 (69)



Appendices

63



Appendix A

Gaia Relativistic Model (GREM)

In our tests we use a model based on the model developed for the Hipparcos mission Lindegren
et al. (1992). Gaia itself uses a more rigorous model for light deflection, but for modeling the lens
the Hipparcos model is sufficient. The model Gaia uses is the so called Gaia Relativistic Model
(GREM) and is based on the model proposed by Klioner & Kopeikin (1992) and then later refined
by Klioner (2003). First, a brief overview will be given of GREM and then a more detailed description
of the model used in this project will be presented starting with showing its compatibility with GREM.

Figure A.1 shows everything that is going on. A source sends out light in the direction σ at negative
infinity1, as this light enters the Solar system its trajectory gets bent. Gaia, which is looking in
the direction s observes the light coming from the source in the direction n. Then, by knowing the
ephemeris of the Solar system objects we can calculate the proper direction to the source, k. After
this it is only a matter of a simple transformation to the barycentric celestial reference frame (BCRS)
and getting the direction, l to the source. It should be noted that all of these vectors are 3D unit
vectors, i.e. n · n = n1n1 + n2n2 + n3n3 = 1 and their only purpose is to point in a specific direction.
The steps Gaia takes are s→ n→ σ → k(→ l)

• s→ n
The transformation is done by:

s′ = −n +O(c−4) (A.1)

s =

(
s′ +

{
Γ

c
+ [Γ− 1]

v · s′

|v|2

}
v

)
1

Γ(1 + v · s′/c2)
(A.2)

where

Γ =
1√

1− |v|2/c2
(A.3)

and

v = ẋ0

(
1 +

1

c2
(1 + γ)w(x0)

)
+O(c−4) (A.4)

in which

w(x) =
∑
B

GMB

r0B
(A.5)

here, B is the index of the solar system objects and MB is their corresponding mass. r0B =
x0(t0) − xB(t0) where |r0B| = r0B and xB(t) is the position of body i at time t taken from

1Since the position of the source is not known a priori the construction of having the vector point from an infinite
distance is used.
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Figure A.1: Path of a light ray hitting Gaia
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the solar system ephemeris. γ is the parameter from the PPN-formalism which determines how
space-time is curved by mass, in general relativity it is set to 1. Equation 4 shows the so called
velocity normalization, for moderate observer velocities (∼ 10km/s) the effect is on the level of a
few µas. Thus, we generally only consider the solar potential in (5) when calculating (4) unless
a greater accuracy than ∼ 10µas is desired.

• n→ k
The transformation is

n = σ + δσpN + δσQ (A.6)

Here the δσpN is the gravitational deflection due to the monopole gravitational field of the solar
system bodies, and δσQ is the deflection due to their quadrupole gravitational field. Higher
order terms are not of interest for Gaia unless the accuracy is to go down below 1 µas.
Assuming the source is farther than 1 pc away, one gets a simple relation between k and σ:

k = σ + terms less than 0.1 µas (A.7)

The total monopole deflection is given by:

δσpN = −
∑
B

(1 + γ)GMB

c2
dB
|dB|2

(1 + σ · r̂oi) (A.8)

Here, a hat denotes normalisation, i.e. r̂ = r/|r| and:

dB = σ × (r0B × σ) (A.9)

where the ’×’ of course is the vector product. What is important here is that the position each
body i is calculated at a retarded∗ moment of TCB:

roi = x0(t0)− xB(t∗) (A.10)

t∗ = t0 −
1

c
|x0(t0)− xB(t∗)| (A.11)

Eq. A.11 we can calculate as:

t∗ = t0 −
|p|2

c|p| − ẋB(to) · p
, p = xo(to)− xB(t0) (A.12)

This makes the calculation a lot easier.

In the steps described above we have to evaluate the ephemeris of the deflecting bodies at three
separate occasions (twice for position and once for velocity). This is a time consuming process
and it would be optimal to reduce the number of evaluations. Klioner & Pip (ref) have shown
that the same monopole deflection can be calculated using another set of equations, which only
requires two evaluations of the ephemeris and gives a higher accuracy. This monopole deflection
is given by:

δσpN = −
∑
B

(1 + γ)GMB

c2

(
σ × (ρoi × gB

δ2B
(1 + ĝB · ρ̂0B)− σ × (kB × σ

|ρ0B|

)
(A.13)

In which:

kB =
1

c
ẋ(t0) (A.14)
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gB = σ − kB (A.15)

ρ0B = x0(t0)− xB(t0) (A.16)

Once again, a hat means normalization. And δ is the impact parameter, analogous to the one
discussed in section ??? when talking about the thin lens approximation. Which means that it
is the minimal distance between the light ray and the body, given by:

δB = |ĝB × ρ0B| (A.17)
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Appendix B

Linear least squares

Some of the problems that arise when trying to determine masses of lenses arise due to the way in
which linear systems of equations are solved, because of that a short explanation is given in this
Appendix. The method works as follows:
Given:

A ∈ Rm×n (B.1)

we want to find a solution for
Ax ≈ b (B.2)

If m = n and non-singular the problem is invertible and we can find an exact solution for Ax = b
which then simply is x = A−1b. Otherwise, if m > n the problem is said to be overdetermined or
underdetermined if m < n. We attempt to find a solution by finding vectors in x that minimize the
norm of squares of the residual Ax− b, which solves:

min
x∈Rn

||Ax− b||2 (B.3)

A way of directly solving this problem is to find the directional derivatives of x in the directions δx,
it is given by:

∇||Ax− b||2δx = 2〈Aδx, b−Ax〉 = 2δxT (AT b−ATx) (B.4)

The minimum is found when all the directional derivatives are zero, this gives the normal equations

ATAx = AT b (B.5)

This rearranged gives:
x = (ATA)−1AT b = A†b (B.6)

Where (ATA)−1AT is known as the pseudoinverse of A.
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Appendix C

Initial Mass Functions (IMFs)

The figure below shows a variety of different initial mass functions plotted on top of each other:

Figure C.1: The figure shows the different initial mass functions plotted together. The IMF tells us
how stellar masses are distributed when stars form. All of the models are fairly similar in the mass
range where we find the most common stars yet differ greatly for higher masses.
Image Credit: Ivan Baldry - http://www.astro.ljmu.ac.uk/ ikb/research/imf-use-in-cosmology.html
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