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Abstract

When designing control systems for real applications, it is important to first do test-
ing in a simulated environment, to ensure adequate performance. This is especially
important when designing control systems for applications that have high operation
costs, e.g., submarines, since late errors in the development can be extremely costly.

Saab develops steering systems for submarines. Prior to this thesis, testing for
those have been performed in an open-loop environment, where only static test cases
could be examined. Saab therefore identified the need to implement a dynamic test
simulator, which could react to the different signals from the steering system, i.e.,
act as a real submarine.

In this thesis, such a simulator was developed. It consists of two parts, a physical
model of a submarine, and a control system for motion control. As for the physical
submarine model, it can be approximated from mechanical data of a submarine that
the user provide, such as dimensions and weight. The second options is for the user
to explicitly supply the simulator with hydrodynamic coefficients.

The control system was derived to control a model of a demo submarine. Saab
is also involved in submarine navigation systems and saw the need to, in the future,
also have the possibility to test those products. A navigation system assumes an
autopilot exists, hence, an autopilot control system was developed.

In the end, the control system consisted of a two-level cascade controller of
mixed LQG- and PID-control, along with a Kalman estimator for estimating un-
known states.

The results were overall satisfactory. The performance of the control system is
well within usual customer specifications and the main problems in this thesis lay
in getting a proper model.



Sammandrag

Nir styrsystem utvecklas for dyra applicationer, dr det ofta viktigt att forst ufora
simulerade modelltester for att tidigt hitta fel och testa prestanda. P& en ubat &r
detta extra viktigt, eftersom fel som uppstar sent i utvecklingen kan bli vildigt kost-
samma.

Saab utvecklar styrsystem till ubatar. Innan detta examensarbete utférdes alla
tester pa dessa produkter i en statisk miljo, didr en anvindare kunde skicka in
insignaler till styrsystemet och studera utsignalerna fran detta. Men anvindaren var
sjidlv tvungen att dndra pa alla insignalerna for att studera ett annat fall. Saab sag
dérfor behovet av en dynamisk simulator som kunde reagera pa utsignalerna fran
styrsystemet, det vill siga, replikera en riktig ubat.

I det hir examensarbetet utvecklades en sadan simulator. Den bestar av tva delar,
en fysikalisk modell av en ubat och en autopilot for att styra dess rorelser. For den
fysikaliska modellen finns mojligheten att fa en approximerad modell av en ubét
utifran fysiska matt. Den andra majligheten ér att anvindaren forser simulatorn med
alla hydrodynamiska koefficienter.

Autopiloten utvecklades att styra en demoubat. Saab dr ocksa involverade i navi-
gationssystem till ubatar, och sag dérfor behovet av att i framtiden ocksé kunna testa
sadana produkter. Ett navigationssystem antar att det finns nagot som styr ubatens
rorelser, dirfor utvecklades ocksa en autopilot.

Till slut bestod autopiloten av en kaskadregleringsdesign, didr bade LQG- och
PID-reglering anvinds, tillsammans med en Kalmanestimator for att skatta de
okénda tillstanden.

Resultaten var 6verlag goda. Prestandan pa styrsystemet lag vil inom normala
kundkrav, och de storsta problemen 1ag i att fa fram en god modell.
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Table 0.1: List of variables

symbol explanation unit
o hydroplane mechanical angle rad

o water inflow angle rad
O 8 — &y, effective rudder angle rad

n rotor RPS /s

T torque Nm

p water density kg/m?

F force N

a acceleration m/s?

X position m

v velocity m/s

0} angular velocity rad/s
xG = (x6,YG,z6)  center of gravity m
xp = (xp,yB,z8)  center of buoyancy m
o origin of coordinate system A -

) submarine roll rad

0 submarine pitch rad

v submarine yaw rad

u velocity submarine x direction m/s

v velocity submarine y direction m/s

w velocity submarine z direction m/s

p angular velocity about submarine x axis rad/s

q angular velocity about submarine y axis rad/s

r angular velocity about submarine z axis rad/s

X force component in submarine x direction N

Y force component in submarine y direction N

Z force component in submarine z direction N

K torque about the submarine x axis Nm
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XHPk
Vrks Vrk
Vreks Vrek
Ly,
Dy,

A
N

RSNl el

torque about the submarine y axis
torque about the submarine z axis
gravity force

buoyancy force

(u,v,w)

(p,q,7)

submarine mass

submarine length

submarine moment of inertia matrix

submarine moment of inertia about the x axis
submarine moment of inertia about the y axis
submarine moment of inertia about the z axis

cross product, moment of inertia
cross product, moment of inertia
cross product, moment of inertia
mass matrix

drag coefficient

lift coefficient

local height at position x

local width at position x

rudder k position

local water velocity at rudder k
projected water velocity at rudder k
rudder lift force

rudder drag force

rudder aspect ratio

rudder k midline vector

state feedback gain

state feedforward gain

rotor force coefficient

rotor torque coefficient

rotor diameter

advance ratio

List of Tables
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kg m
kg m
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List of Tables

subscript  explanation

hs hydrostatic
hd hydrodynamic
p propulsion
c control
1 lift
d drag

Table 0.2: List of subscripts

subscript/superscript  explanation acronym

TG gravity G
B buoyancy B
W water AW
R reference REF
L earth LL

HP; hydroplane k HP;,

Table 0.3: List of coordinate systems

Abbreviation Explanation

RPS Revolutions Per Second
RPM Revolutions Per Minute
INS Inertial Navigation System
HP hydroplane(s)
DOF Degrees Of Freedom
SASS Submarine Steering System
FF Feed Forward
FB Feedback
LQG Linear Quadratic Gaussian
CFD Computational Fluid Dynamics
CAD Computer Aided Design
TCL Tool Command Language

Table 0.4: List of abbreviations
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1

Introduction

1.1 Submarines

Concepts of Military Submarines

Modern submarines are one of the most complex types of machines that exists today,
only beaten by space shuttles. Submarines, i.e., underwater vehicles, come in many
shapes, depending on if they are intended for underwater research, maintenance, or
military purposes. This thesis will deal with the latter.

The historical intentions of military submarine are attacking enemy surface
ships or other submarines. Today they also serve as portable missile launchers and
their subtle nature, makes them suitable for surveillance and reconnaissance mis-
sions. Submarine are also used for deployment of special forces in enemy territory
and other covert operations. All these advantages make submarines very popular for
the world’s military powers.

To properly serve these purposes, submarines naturally come with a number of
desired features:

o Long operation endurance Submarines should be able to operate close to
enemy borders, possibly far from own territory. Hence, long endurance is a
very desirable feature since resupplying, e.g., from surfaced ships, could draw
attention.

o Long submerged endurance The advantage with submarines over other mil-
itary vessels, is the possibility to operate in stealth under water. Long under-
water endurance is therefore a must. This have been an issue historically due
to the crew’s and combustion engines’ need for oxygen.

e Low signature A submerged submarine can not be spotted by traditional
means, e.g., radars. The historical way of finding submarines is instead by
the sound they produce underwater, hence low noise levels are desired.

15



Chapter 1. Introduction

Operator
interface

[

FEC, .
. —>| Servo controller - - -»] Submarine
Auto pilot actuators

l

Actuator
Sensors

Operator

v

l Sensors

Navigation
system

Figure 1.1: Submarine steering system.

Submarine steering system

Figure 1.1 shows a simplified structure of a submarine steering system and how
it is integrated with other parts. Dashed lines are not signals, but rather physical
feedbacks. The operator can chose between an autopilot, or manual steering. In the
latter he/she could for example use a joystick/wheel to give references to the servo
controller. To steer, the operator naturally needs the values from the different sensors
displayed in some fashion (operator interface).

The navigation system is a device for high end navigation. A position could for
example be given to the navigation system and it should generate a desired heading
to reach the destination. Traditionally, the navigation system is a human navigator
with a compass and sea charts.

The FEC (front end computer) handles the interface between the sensors and the
operator displays. The servo loop serves as an inner loop to the actuators, improving
the outer interface by allowing, i.e., rudder angles and propeller RPM' requests.

Steering actuators

In order to manoeuvre a submarine, a number of different steering actuators are
needed. For a a surface going vessel, i.e., a boat, these could include the rudder and
the propeller. A submarine typically also has additional steering actuators, some
which will now be presented.

Sail The sail is not an actuator itself but will here be presented for future reference.
The typical submarine hull consist of, in addition to the main hull, a so called tower

! Revolutions per minute

16



1.1 Submarines

or sail. This serves as a centerboard that increases the submarines stability when
manoeuvring through water. It is also the place for a number of masts and periscopes
and usually also has a hatch for the crew.

Propeller A submarine is propelled forward by a propeller in the stern. For a sub-
merged submarine, it is powered by a nuclear reactor in nuclear submarines or by a
sterling engine, as in the Swedish submarines. The design of the propeller itself is
quite complex and not seldom classified.

Bow propeller This is a propeller at the bow which creates a transverse propulsion
and is used for docking at quay (this propeller will be excluded in this thesis).

Hydroplanes Water vehicles are steered with the means of rudders, submarines
are no exception. The difference between submarines and surfaced vessels is that
they have additional degrees of freedom (DOF). Traditional surface going ships
include three means of control freedom, to steer (two DOF) and forward propul-
sion (one DOF). A submarine needs the ability steer in a upward/downward motion
which adds additional two DOF. Most rudder configurations will also add roll as a
control DOF.

All the different rudders and fins on submarines share the name hydroplane. A
typical modern submarine includes 6 different hydroplanes, four in the stern and
two at the bow or on the sail. When changing or keeping depth, this thesis will refer
to two modes, the sledge and the elevator. The sledge mode is common in large
depth changing manoeuvres and at higher speeds, while at lower speeds or in depth
keeping situations, the elevator is preferred. They are both illustrated in Figure 1.2.
There is also a tendency that in a middle velocity region, a combination of sledge
and elevator manoeuvres are used.

When the hydroplanes are placed on the tower instead of at the bow, they can
more or less alone be used to elevate the submarine. As they are located closer to
the midship, i.e., closer to the center of the ship, the submarine will not suffer from
the same kind of pitching movement as it would if the hydroplanes were placed at
the bow. See Figure 1.3 for roll, pitch, and yaw definitions.

The stern hydroplanes are used as rudders and pitching fins. The classic configu-
ration has been to place them as a + (Figure 1.4), with the lower vertical hydroplane
slightly smaller to allow the submarine to move closer to the seabed. However, this
will lead to a decreased manoeuvrability when surfaced. Another downside to the +
configuration is that if one hydroplane has malfunctioned, the submarine will face
considerable decreased manoeuvre performance in the direction the hydroplane was
meant to work in. And in the case that two fins malfunction, there is the risk to com-
pletely lose manoeuvrability in a certain direction.

Another stern hydroplane configuration that is becoming popular on modern
submarines is the x- configuration (Figure 1.4). With this configuration every aft
fin will create both horizontal and vertical force, which means they can all work
together to create a yawing or pitching moment. It is then possible to manoeuvre

17
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Figure 1.2: Submarine sledge and elevator movements.
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Figure 1.3: Roll pitch and yaw definitions.

well, even if two hydroplanes are out of service. And since they can all work to-
gether, they can be made smaller, which will decrease the drag force when moving
forward. They will also be angled, which means the submarine can move closer
to the seabed or quay without the hydroplanes getting in the way. The downside,
however, is when in, for example, a yawing motion, one hydroplane will also cre-
ate a pitching force that has to be cancelled by another hydroplane, which in turn
will create unnecessary drag. Manoeuvring will also be more complex, i.e., it is less
straight forward how to slant the hydroplanes to create the desired motion.

Tanks A submarine typically include four different types of water tanks:

e Ballast tanks
e Compensation tanks

e Trim tanks

18



1.1 Submarines

N |

Figure 1.4: x and + rudder configuration.

e Balance tanks

The purpose of the ballast tanks is to make the submarine float or sink. These are
typically huge and have just two modes, filled or empty. The compensation tanks are
used to trim the weight so that the submerged submarine is weightless, i.e., hovers
in the water. The trim tanks are basically one tank at the bow, and another in the
stern, connected with a tube and a pump. Pumping water from one tank to another,
moves the center of gravity, and can thus be used to make the submarine balanced
in the water. The balance tanks are the same as the trim tanks, with the difference
that they are instead used to achieve balance port relative starboard, rather then bow
relative stern.

Sensors

Submerged submarines in northern waters have no means to with human eyes spot
its surroundings due to the shallow water, even if a window would exist on the
submarine which is rarely the case. A submarine must therefore include numerous
sensors in order for an operator/autopilot to figure out what is going on. These
sensors typically include:

e Log
e Depth sensor
e INS?
e GPS
e Water density sensor
Together, they measure:
e Attitude The current roll, pitch and heading, measured by the INS.

o Attitude rate Measure the current angular velocities of the magnitudes above.
Also measured by the INS.

2 Inertial navigation system
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Chapter 1. Introduction

e World position Current longitude, latitude position, and the depth. The first
two could be from a GPS system or from an INS. The GPS position is natu-
rally more exact, but when submerged, the GPS will not be able to connect
to satellites, hence, an INS is necessary. The depth is measured with, e.g., a
pressure depth sensor.

o World velocities The velocities of the magnitudes above.

e Log velocities The current speed forward. Traditionally measured by log pro-
pellers/impellers, but modern submarines uses, e.g., pressure or acoustic logs.

e Current actuator state Naturally, it should possible to measure the current
hydroplane angles and rotor RPM. In case of a, e.g., hydroplane malfunction,
the operator or autopilot should notice if the hydroplane angle is not what it
is set to be.

o Water density This is a vital measurement for the tank control, especially the
compensation tank.

Manoeuvre a submarine

Historically, submerged submarine manoeuvring was performed by an officer giving
commands to an operator, which angles to slant the different hydroplanes®. Modern
techniques allows more sophisticated ways of manoeuvring. An operator, can today
simply use a joystick to angle the hydroplanes. The joystick could more or less be
directly connected to the hydroplanes, e.g., in the case of x rudder configuration,
there is preferably a transformation between joystick movements and hydroplane
angles to counter for the non straightforward nature of x rudder configuration ma-
noeuvring.

Today’s knowledge also allows for well performing autopilots. In this case, ref-
erences could (and will, later in this thesis) be the desired depth, heading, and in
some cases pitch.

1.2 Background
Submarine Steering System SASS

Saab develops steering systems for submarines. These steering systems typically
includes autopilot computers, console for operator display, and control devices, in-
terfacing to several steering actuators and steering and navigation sensors. Saab
steering systems are currently used by submarines in Sweden, Australia, Norway,
and Singapore. Saab is also involved in navigation system development.

3 The reliability of this fact is the historical accuracy of the German film Das Boot from 1981.
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1.3 Thesis concepts

1.3 Thesis concepts
TCL

TCL* is a very powerful but easy to learn dynamic programming language, suitable
for a very wide range of uses, including web and desktop applications, networking,
administration, testing and many more. Open source and business-friendly, TCL is
a mature yet evolving language that is truly cross platform, easily deployed and
highly extensible [Tool Command Language].

Matlab

The reader is assumed to have Matlab knowledge and experience, hence the pro-
gram will not be extensively discussed here. In short, Matlab is a software devel-
oped by Mathworks, extensively used in the academic world and in industry to do
mathematical calculations and simulations. [Matlab]

Simulink

Simulink is an extension to Matlab. It is a graphical programming tool often used
to simulate dynamic systems and interconnection of multiple such. Matlab and
Simulink were extensively used in the development of this thesis. [Simulink]

1.4 Scope of Master thesis

Purpose of the thesis

Submarines are generally very expensive in operation. As for a steering system, fault
detection and controller autopilot tuning should therefore preferably be performed
in advance, as far ahead of any real testing on-board as possible.

Prior to this thesis, the only means Saab have had for testing the steering sys-
tem, before installation and on board test runs, were to simulate certain static cases
with limited capability of verifying dynamic characteristics. The main part of the
dynamic testing and verification had to be postponed to the end of the product de-
velopment, when the system is installed in the submarine. In order to expand the
means of testing, Saab therefore wanted to develop a simulator system, where hard-
ware could be tested early in the production stage, thus minimizing the sea tests.

The purpose of this thesis is therefore to implement a submarine simulator, and
thus make it possible to perform as much testing and tuning of new products as
possible prior to target system implementation. This can be used for evaluating new
hardware, tuning of autopilots or investigating how different sensor errors will affect
performance.

4Tool Command Language
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Chapter 1. Introduction

Thesis tasks and objectives

For a new product, it could be desirable to test the navigation system independently
of the product’s autopilot, hence the ability to test on an, already functional, autopi-
lot should exist. Therefore, the simulator should consist of two separate parts, one
submarine model and an autopilot to control the submarines movements.

From this point, the model simulator itself will be referred to as the submarine
simulator. The autopilot part will be referred to as the control system or autopilot
and them combined, submarine simulator together with the control system, as the
simulator system. The submarine model will be the analytical model itself.

Submarine model The submarine model should naturally correspond to an actual
full scale submarine as well as possible. It should include most of the hydrodynamic
effects from the surrounding water and should at least include the rotor and the
hydroplanes as actuators. All hydroplanes shall have the possibility to be controlled
individually, except for the bow/tower hydroplanes.

When an external autopilot shall be tested on the submarine simulator, it should
provide desired values for the mechanical angles of the hydroplanes, and perhaps
the rotor RPM. Future work could include additional means to actuate the submarine

simulator, this will be discussed later.

Submarine simulator The submarine simulator is the computer implementation
of the submarine model. Naturally the simulation shall not be overly inefficient.

Autopilot The autopilot should include three different regions for different veloc-
ities and each region will be controlled differently. In the low velocity region, depth
control shall solely be using elevator motion. In the high velocity region, depth
control shall instead be performed in sledge mode, and the bow/tower hydroplanes
shall be used at a minimum, or not at all. Depth changing in the region in between,
shall be a combination of the two modes. The overall control performance shall be
satisfying, i.e.,

e Reference tracking, no stationary errors.

e No extensive overshoots. A typical submarine performance requirement is an
overshoot of maximum a few meters when changing depth.

e The measured signals shall be according to the listed sensors in section 1.1,
i.e., the controller should not need internal values in the submarine simulator.

In the case of navigation system testing, references in submarine heading, depth and
pitch will be given. The submarine autopilot should hence answer to references in
those three.

5 Which is often the case in real submarines
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Figure 1.5: Simulator system block diagram overview.

Test rig implementation The simulator system must be compatible with an exist-
ing Saab test rig, and will therefore be implemented in C on a Linux platform. It
should be able to run with the existing SASS product or another external device. To
emulate the autopilot as an external device, it will be implemented separately from
the submarine simulator.

Both the submarine simulator and the control system will run in real time, but
asynchronous since they will run independently, and possibly on different Linux
systems. The submarine simulator will be updated with 20Hz and control system
with 4Hz°. The emphasis of this thesis should, however, be on modelling and control
design.

Simulator Block diagram

Figure 1.5 shows the idea behind the simulator system as presented by Saab at the
start of the thesis. This proved to be, at this stage of the simulator development, a to
complex description, and had to be simplified.

6 Which has been the case in the SASS
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Chapter 1. Introduction

Delimitation

The following delimitations will be assumed:
e Completely submerged submarine.

e The submarine will be in an infinitely large ocean to avoid near surface and
near bottom effects.

e No wave effects or irregular currents.

e Ideal sensors, i.e., measured value equals true value.
e Limited speed range, 4-16 knots.

e Incompressible hull.

e No tank systems (water pumping) will be modeled.

With these delimitation, Figure 1.5 could be simplified to Figure 1.6. The control
part has been separated from the simulator itself, communication between them is
now through the data and control layer. The sea current in Figure 1.6 is limited
to constant currents that will only affect position/velocity relative earth. Also the
sensor models have been removed as well as the submarine water tank actuators.
The servo controllers for the hydroplanes and the propulsion will not be modeled as
control loops, but rather dynamics systems with unity gain.

1.5 Individual contribution

The the physical modelling and the model implementation in Simulink was per-
formed by Erik Lind. Magnus Meijer was responsible for porting the model into C
code and, hence, the model and controller interaction in the C environment. Magnus
also worked together with a consult as Saab to interface the thesis implementation
with the existing program structure in the test rig. The controller was designed by
Erik, but the dimensioning and weighting was performed by Magnus.

The introduction, development, and method chapters were written by Erik. Mag-
nus wrote the theory, result, and discussion chapters.

1.6 Thesis Outline

This report consists of five Chapters, and can be summarized as follows:

Method In Chapter 2, the methods and the coordinate system notations and struc-
tures used, will be presented. This Chapter will also explain how the model was
implemented in Matlab and ported to the target language C.
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Figure 1.6: Tuned down simulator block diagram.

Theory Chapter 3 consists of theory and background of hydrodynamics and some
hydrodynamic modeling. After this, equations for a six degrees of freedom dynamic
body will be derived and, finally, a short collection of control designs and strategies
will be presented.

Development Firstly, Chapter 4 will explain how the known hydrodynamic rela-
tions were applied to submarines, and how a model for a generic submarine model
can be derived. This is followed by an introduction to a demo submarine, Finally,
Chapter 4 will consist of the complete control system derivation.

Results / Simulation Chapter 5 presents the final model and autopilot, as well as
plots from different simulated manoeuvres.

Discussion / Summary Chapter 6 consists of a discussion of the submarine model
and control system performance. The controller itself is also analyzed, with possible
oscillation and other issues. At last, ideas for future work is presented.

25



2

Method

2.1 Coordinate System notation

This thesis will deal with numerous different coordinate systems. In this section, the
sub- and superscript notation will be shortly described.

Positions, velocities and acceleration in (x,),z) are denoted x,v, and a respec-
tively. For increased clarity what a vector describes and in what coordinate system
itis currently expressed, sub- and superscripts will be added. Generally, vectors will
be written:

XA 2.1

where X is a vector, in this case a position vector. It could also be a velocity or
acceleration vector. A is always a coordinate system abbreviation while B and C are
points or coordinate systems (in such case the point will be the coordinate system
origin). Equation (2.1) will thus describe the vector from point B to C expressed in
the coordinate system A. For example, let A and B be two coordinate systems, x55 is
then the position of OF relative 04 expressed in the coordinates of B. And similarly,
afy is the acceleration of O® relative 0" expressed in the coordinates of B, which
can also be expressed as —ab,, etc.

As for angle vectors (¢, 0, ) (roll, pitch, yaw), they are defined as the rotation
between two coordinate systems. Figure 2.1 describes the rotation of the blue frame
with respect to the black frame. The rotations are defined in the order: yaw, pitch,
and roll.

2.2 Simulator development

Matlab/ Simulink

The submarine simulator and the control system will both be implemented and
tested in Matlab/Simulink due to the many advantages these software provides for
this kind of task. The Simulink implementation will then be ported to C code, which
is already supported. Read more about porting Simulink models to C code below.
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2.2 Simulator development

7’ pitch

Figure 2.1: Coordinate system rotation definition, defined in the order: yaw, pitch,
roll.

Submarine
Simulator

i

| Data and Control Layer |

i i i

Operator Testoperator
console interface

SASS

Figure 2.2: Test rig communication overview, with a SASS.

The controller and model simulator will not be updated simultaneously (20Hz
vs 4Hz). Since Simulink does not support different step lengths in the same model,
the dynamic parts of the controller were chosen to be implemented in discrete time
to simplify the simulation in Simulink.

Communication

The idea of the final implementation structure in the test rig is illustrated in Figure
2.2. All the parts are connected through a data layer. The test operator will commu-
nicate with the submarine simulator with telnet through TCL.

If the test system is a navigation system, the test rig setup should look more
like in Figure 2.3. The SASS has been replaced by a navigation system, and an au-
topilot has been connected. The fest operator will communicate with the submarine
simulator and autopilot in the same fashion as above. Communication between the
autopilot and submarine simulator will be through TCP.

Code generation

Simulink features code generation for models, which produces C code that exactly
represents the model simulation. If the model has inputs and outputs, they will ap-
pear as C structs in the generated code. There is also a feature to save the simulation
output as a .mat file, which will be used to log data.
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Figure 2.3: Test rig communication overview, with navigation system.

Code generation does not support variable step size simulations, but since there
is a well defined update frequency, this will not be a problem. In the C code, the
Simulink code generation produces a function one_step(), which takes the model
inputs, iterates a time step, and updates the model outputs. A main() function is also
produced by the code generation, that initializes the model and creates a for-loop
that calls one_step() as many times as necessary for the simulation time. This is
not something that will be used in this thesis, instead the one_step() method will be
used by a scheduler that will guarantee that the model is updated with 20Hz, hence,
the simulation will be in real time.

Code for the submarine simulator and the control system will be generated sim-
ilarly, but with different time steps, 0.05s and 0.25s respectively. A separate sched-
uler for the autopilot will update the controller with 4Hz.

The two schedulers will not be synchronized, the submarine simulator and con-
trol system will operate asynchronously. But as the simulator system should corre-
spond to a real submarine, this is actually preferred.

2.3 Schedulers

As described in Section 2.2, the simulator system will feature two schedulers for the
submarine simulator and controller system. Their workflow is presented in Figure
??. Since the submarine scheduler will update more frequently than the controller
scheduler, it will call sub,nestep()evenifnoT CPconnectionisestablished.
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3
Theory

3.1 Hydrodynamics

Hydrodynamics is the study of liquids in motion. A body traveling through a fluid
will be exerted to a number of forces and moments, which is a result due to the
physical characteristics of the liquid medium. In this section some of the different
effects will be discussed and shortly explained in general, i.e., not explicitly for
submarines.

Hydrostatics

Archimedes’ principle states that a submerged body will experience a lifting force
equal to the gravitational force of the displaced water. This force will act through the
center of buoyancy [Fossen, 1994], which is the center of gravity of the displaced
water, hence, this force is usually referred to as the buoyancy force. The gravity
and buoyancy force will always be opposite in direction, which will cause the body
to strive towards balance, i.e., when the center of buoyancy is vertically aligned
with the center of gravity (Figure 3.1). The magnitudinal difference between the two
forces will determine if the body will sink or float.

buoyancy
force

>

gravity
force

buoyancy
force

gravity
force

Figure 3.1: Buoyancy and gravity force.

29



Chapter 3. Theory

—_— Free Stream —_—
_—> _—>
_— > /I\ e
_—>
Boundary Layer >
—>
S S>>
I

Laminar, Steady Flow Turbulent, Unsteady Flow

Figure 3.2: Turbulent and laminar flow.

Hydrodynamic Damping
A body traveling through a fluid will experience a drag force parallel to the incom-
ing flow, known as hydrodynamic damping. This force is a result from numerous

effects and are divided differently throughout literature and previous work. This
thesis will divide the forces according to [Fossen, 1994] and [Fossen, 2011 ].

Pressure Drag Pressure drag is the force normally thought of as drag. As a body
travels through water, it has to suppress liquid at the front in order to move forward.
This is largely dependent on the shape of the body, a more streamlined body will
experience less pressure drag.

A common way to interpret this is to view it as a pressure difference. At the
front, where fluid is displaced to make room for the body, there will be an increased
pressure. At the aft, the fluid will be replaced into the space the body left behind, the
pressure instead will be lower. This pressure difference will induce a force, similar
to a airplane wing or sail lifting forces. A less streamlined aft will also create tur-
bulence which will further decrease the pressure at the aft and thus further increase
the drag force.

Friction Drag Friction drag arises from friction between the body and the sur-
rounding fluid. When a body travels through water, it will accelerate the fluid clos-
est to its surface. This flow can be seen as parallel layers of fluid with friction in
between. This will cause the different layers to have different velocities, decreasing
with the distance from the body, as seen in Figure 3.2.

The flow may be laminar or turbulent, or a combination of the both. Laminar
flow is when there is no disruption between the parallel layers flowing past the bodly.
This occurs at low velocities and gives rise to very low friction and noise. As the
velocity increases the different layers of fluid overturns and causes turbulence, see
Figure 3.2. This is very energy consuming, and causes high friction and noise.

Wave Damping Wave damping is the resistance experienced by the body when
advancing through waves on the surface. This effect is the most important damping
contributor in rough seas, due to the fact that the forces from the waves are pro-
portional to the square of the wave height [Fossen, 2011]. This effect is neglected
in this thesis due to the delimitation presented in Section 1.4, i.e., the body will be
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3.1 Hydrodynamics

completely submerged at a great depth, and therefore not affected by surface waves.

Potential Damping Potential damping refers to the energy loss when a body is
forced to oscillate up and down with the surface waves. Due to the same reasons as
for wave damping, this effects is not taken into account in this thesis.

Drag coefficient

The effects of drag, at a certain velocity, is usually described by a non-dimensional
drag coefficient, defined as:
—F

Ci=1—

3.1
where F is the drag force, p is the density of the fluid, A is the area shown to the
flow and u the velocity of the body. For certain applications it is more common to
normalize with the area of the submerged hull, referred to as the wetted surface. In
a velocity interval, the drag coefficient is only marginally changing and Equation
(3.1) can instead be used to calculate the resistance for a given velocity:

1
F:—Cd-i-p-A-uz (3.2)

Reynolds number Reynolds number is the relation between the inertial- and the
viscous forces of a fluid. It is defined in open sea situations as [Fossen, 2011 ]:

D
g, =D
\%

(3.3)
where D is the characteristic length of body, u is the velocity and Vv is the kinematic
viscosity coefficient of the fluid. A high Reynold’s number means the flow is mainly
turbulent, while a lower generally corresponds to a more laminar flow.

Lift When an object is traveling through a medium, it will experience lift forces
perpendicular to the incoming flow. This effect is caused by pressure changes be-
tween the top and bottom surfaces. The classical example is an airfoil traveling
through air, see Figure 3.3. When the air is deflected it will have to travel around
the airfoil. Since the air above the wing will have to travel further than the air be-
low, the pressure will decrease on the top surface, and create a lift force on the
airfoil.

The lift generated is highly dependent on the angle of attack, i.e. the angle of the
velocity vector of the incoming flow. A perfectly symmetrical airfoil will produce no
lift if the angle of attack is zero, but if it is tilted, there will be a pressure difference
and a lift force is generated.

All bodies moving through a medium will experience this effect. The hydroplanes
can be compared with airfoils and will produce a great amount of lift when actuated.
When manoeuvring the submarine, the incoming flow will change, and thus the
submarine tower and hull will also generate lift forces.
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Lift

Figure 3.3: Flow past an airfoil.

Added mass When a body travels through water, the hull friction will accelerate
the water closest to the hull, creating a layer of moving water. The closest layer will
in turn accelerate the next layer of water and so on. Hence, there will be an region
of moving water around the body.

When the body accelerates, it will also have to accelerate the water closest to
the hull. When it turns, it will have to turn the water that is traveling with the body.
This effect is called the added mass effect since the body will appear heavier than it
is. This will effect both the apparent mass and inertia of the body.

The added mass effect does also affect bodies moving through the air, but since
the mass of the accelerated air is often negligible compared to the body mass, this
is rarely accounted for. The accelerated water, however, does have a considerable
mass and will have to be taken into account when modelling bodies in water.

It is difficult to calculate how large this effect will be, since it heavily depends
on the shape and roughness of the submarine, it is therefore usually analyzed with
experiments.

Control Surfaces

To be able to control the attitude of a submarine, several control surfaces are used
as described in Section 1.1.

Hydrodynamic Forces A hydroplane will both experience a drag force opposite
to the direction of the incoming flow, and a lift force perpendicular to it. [Toxopeus,
2011] proposes a way to calculate the drag and lift forces, D,, and L,,, see Figure
34,

1
L., = 3 p- Vr2 AR -Cj-cos 0, -sin b, (3.4)

1
D=5 .p-V?-Ag-Cy-sin’§, (3.5)

where V, is the velocity of the inflowing water, A is the area of the rudder, C; is
the lift coefficient, 8, is the so called effective rudder angle, and Cy is the drag
coefficient. [Toxopeus, 2011] defines two angles, the hydrodynamic rudder angle,
Oy, and the effective rudder angle J,. 0y, is the angle between the ship longitudinal
axis and the incoming flow, the effective rudder angle &, is the angle between the
mechanical rudder angle & and &, see Equation (3.6). As the name suggests, 8, is
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3.1 Hydrodynamics

Figure 3.4: Rudder forces according to [Toxopeus, 2011]. Note that D,, is opposite
the direction of the incoming flow, and that L,, is perpendicular to it

the rudder angle for which a force is generated, i.e., when d, is zero, no force is
created.

6. =06—-0, (3.6)

In equation (3.6), &, = arctan( ") where vy and vy are the x and y components of
the water velocity at the rudder. This translates to the body longitudinal and lateral
forces and yaw moment:

F,=—-D,,-cos8, —L,,-sin§, (3.7)
Fy =L, -cos8, — Dy, -sing, (3.8)
T=xx (F,F,,0) (3.9

where x is the position of the rudder. The rudder drag and lift coefficients are usu-
ally experimentally determined, but [Toxopeus, 2011] refers to previously derived
empiric formulas for calculating them.

6.13-A
C=3257A (3.10)
G
— 3.11
o=~ (3.11)

where Cj is the llft coefficient, C; the drag coefficient, and A the so called rudder

length
aspect ratio, A = =2 =.
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Flow Straightening When a submarine is moving, the water flow vortex along the
hull will alter the water flow at the rudders. [Toxopeus, 2011] suggests a method
to compensate for this phenomena by adding a flow straightening coefficient for
the hydrodynamic rudder angle 0y, i.e., decreasing it. This will be neglected in this
thesis.

Flow straightening is enhanced by the propeller, greatly so when it is placed in
front of the rudders. Although, for modern submarines, propellers are most often
placed behind the hydroplanes, in order to decrease noisy turbulence around the
rudders.

Propulsion

The propeller converts rotational motion into forward/backward thrust. To calcu-
late the thrust F, and torque Ty, [Toxopeus, 2011] and [Watt, 2007 ] among others,
suggests calculating dimensionless thrust and torque coefficients which only depend
on the advance ratio J:

Fp
K(J) = i (3.12)
K,(J)= —2 (3.13)
A pn2D;, '
_
=0 (3.14)

where F), is the force exerted by the propeller, T, is the torque generated, n is the
RPS', D » is the diameter of the propeller, and v, is the velocity of the incoming flow.
The functions K;(J) and K,(J) are determined by water tests or advanced computer
calculations, when the propeller is operating at different advance ratios. Equation
(3.12) and (3.13) can then be used for determining the thrust and torque.

F,=K,-pn’D}, (3.15)

1, =K, pn°D) (3.16)

The propeller on a submarine is operating in a wake from the hull which reduces
the average inflow to the propeller. This is usually corrected with a one-dimensional
correction factor wr: [Toxopeus, 2011]:

vp=(1—wr)-u (3.17)

where wr if the so called Taylor wake fraction, and u the forward velocity of the
submarine. Since the propeller accelerates water backwards, it generates a nega-
tive pressure on the hull upstream from its position. This will increase the drag force

I Revolutions Per Second
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3.2 6 degrees of freedom dynamics

on the hull, negating some of the propeller thrust. This can be corrected with an-
other constant, also suggested by [Toxopeus, 2011], known as the thrust deduction
fraction t:

Fres=(1—1)-F, (3.18)

To determine wr and t, model experiments must be performed on the hull alone
to determine the wake fraction, as well as the hull with the propeller attached to
determine the thrust deduction factor.

Cavitation Cavitation is caused when forces acting on a liquid forms small cav-
ities or bubbles. This is usually a result of rapid pressure changes, for example
around a propeller. If the small cavities implode, they will generate an intense
shockwave. This is an undesired behaviour since repeated implosions are noisy and
causes heavy wear on materials.

3.2 6 degrees of freedom dynamics

A rigid body’s movement and position in a three dimensional space can uniquely
be described using six states. Its position can be determined with Cartesian (x,y,z)
coordinates, and its turn by three angles (¢,0,y) (which are the rotations around
the x-,y- and z- axes respectively). These six coordinates result in a system with six
degrees of freedom. In this section the dynamics of such a system will be derived.
Consider a space-fixed coordinate system W and a body-fixed frame REF with
the origins OV and OR respectively. Let ag be the acceleration and x¢ the position
of the the center of mass. Let v be the velocity and ® the angular velocity of Og
expressed in the body-fixed coordinates REF. The acceleration ag is given by the
Newton-Euler equations from classic mechanics: [Fossen and Fjellstad, 1995]

d
aG:8—:+wxv+d)><xG+w><(w>< xG) (3.19)

In order to simplify the readability of Equation (3.19) the standard vector notation
was circumvented and will instead be presented in Table 3.1.

With forces (Fy, Fy, F,); acting on the origin OR, the movement of the body will
be:

Y (Fi,Fy,F.); = mag (3.20)

where m is the mass.
Angular momentums t; around OR results in the movements:

Ytu=Jo+oxJo+xsxac (3.21)

where J is the moment of inertia matrix. Equations (3.19) and (3.21) will be com-
bined, i.e., substitute ag from (3.19) in (3.21), to create the angular acceleration.
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XG XRG
acg aIREG
\4 VIWz R
(0] CO]W2 R

Table 3.1: The vectors in Section 3.2 written with the standard notation

3.3 Control designs

In this Section a very short summary of a few different control designs used in this
thesis are discussed. For more information, see [Glad and Ljung, 2003].

PID

The PID-controller is the most common type of feedback controller throughout in-
dustry. It consists of three parts, the proportional part P, the integral part I, and
the derivative part D. The controller tries to minimize the control error, that is, the
difference between a desired setpoint and the measured output of the process. The
PID-controller output u(t) is defined as>.

! d
u(t) = K, -e(t) + K; - / e(t)dr+ Ky oelt) (3.22)
0
where K,,, K; and K; are the tunable gain parameters for the proportional, integral
respective the derivative parts and e(t) = r(t) — y(t), is the control error.

PID Tracking Switching between multiple PIDs in a controller system is not un-
common. The different controllers are most certainly dimensioned differently, hence,
the control signal will suffer a step at the time of the switch. In order to avoid be-
haviour like this, it is possible to implement PID tracking, where the non active con-
trollers follow the output of the active one. PID tracking is implemented in Simulink
as in Figure 3.5

State Feedback

A system on standard state space form is written as in Equation 3.23.

x =Ax+Bu

3.23
y=Cx+Du (3:23)

When controlling a system on state space form, a popular control method is the
so called state feedback control, where the control signal u is the state vector x
multiplied by a feedback gain matrix L. This allows the control engineer to place

2 This is the most basic of PID controller definitions, other variants do exist
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Figure 3.5: PID tracking implementation.

the closed loop poles freely in the s-plane’. This is desirable since the poles greatly
influence the response of a system.

The poles of an open loop system are given by the roots of characteristic equa-
tion |sI — A| = 0. With state feedback, the control signal u takes the form u = —Lx,
the system in Equation (3.23) can then be written as:

=(A—BL)x
(3.24)
=(C—-DL)x
The new characteristic equation
det(sI — (A —BL)) (3.25)

The new characteristic equation takes the form in Equation (3.24), where L is cho-
sen to place the poles at the desired locations.

Observer

When using state feedback controllers for system control, all the states have to be
known. This is often not the case, since rarely all are measured. Some states might
not even have a direct physical interpretation, which complicates measuring further.
A state feedback controller therefore has to be complemented with an observer. An
observer estimates the unknown states* from the input to the system and the known
(measured) output signals, and feeds them to the controller (Equation (3.26)).

(3.26)

* =A% +Bu+K(y—Cx)
u=—-Lx

31f the system is controllable.
4 This is possible if the system is observable.
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where X is the observed state vector and K the observer gain matrix, which will be
dimensioned to create the desired observer dynamics. A common way of doing this is
by letting the observer gain matrix be a Kalman filter, which is an optimal observer
with respect to measurement noise and process disturbances’. As the name suggests,
the Kalman filter is not only an observer, but a filter, that prevents measurement
noise to be fed back into the system.

Optimal control - LQG

A method of dimensioning the state feedback control of a system, is by using Linear
Quadratic Gaussian control theory. The idea of LOG is to minimize a quadratic cost
function, which will yield an optimized controller with respect to certain weights on
the controlled variables and control efforts:

min(el[3+ ||| [) = min / eT (1)Qe(t) +u” (1\Ru(t)dt (3.27)

where Q and R are the weight matrices for the error e(t) and control signal u(t).
These are used to weigh the control effort against the control error, i.e., how to
penalize the different control errors, and the different control signals.

To determine the optimal controller, the system is written on the general state
space form used in [Glad and Ljung, 2003 ]:

x =Ax +Bu+ Nv;
z=Mx (3.28)
y=Cu+v,

where vy is a white Gaussian disturbance vector and z are the controlled variables.

vy is the measurement noise, also of white Gaussian characteristic. Consider the

. . o . [R R
system above, where |,}] are stochastic noise with intensity { erlz Rﬂ. The sought

feedback, upp = —Lx will minimize the expression [Glad and Ljung, 2003 ]:
2l + [l I (3.29)

The feedforward control part upr = L,r will be dimensioned to ensure that the
closed loop gain is identity:

M(BL—A)B-L,=1I (3.30)

The observer gain matrix K will create the perfect trade off between the system
model and the measured output.

5 The Kalman filter assumes white Gaussian noise and disturbances.
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Development

4.1 Modelling of a submarine

The dynamics of a body with six degrees of freedom where presented in Section 3.2.
This Section will apply those equations to a submarine submerged in water and try
to model the external forces F; = (Fy,Fy,Fy, Tx, Ty, T;)i which are hydro-static and
hydro-dynamic forces and torques, as well as propulsion and hydroplane forces and
moments.

Coordinate Systems and notation

The following coordinate systems will be extensively used:

Name abbr.' | subs.*> | explanation X,,Z corresponds to
Lon/lat LL L Earth fixed longitude, latitude,
depth
Water w w Water fixed north, east, down
Reference REF R Body fixed in the bow, starboard, down
center of buoyancy
Center of gravity | G G - bow, starboard,
down
xRe = (x6,Y6,26)

Earth frame A position in LL is given by (longitude, latitude, depth), which will
be denoted by (x,y,z)~.

Water frame The (x,y,z)" axes corresponds to (north, east, down)-directions. The
origin of W moves with the water currents which means that the relation between W
and LL is a simple translation in the (x,y)"- plane that varies with time.

! abbreviation
2 subscripts
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Figure 4.1: Reference frame velocity notation.

Reference frame The REF frame is submarine-fixed and the origin is placed in the
center of buoyancy. This is preferable since the center of buoyancy rarely changes
while the center of gravity depend on load and the condition of the different tanks. As
for the REF coordinate system, the axes will be denoted (x,y,z)R and the velocities
according to the standard convention used in literature® (u,v,w), i.e. (x,y, )R o and
(p,q,r) for the angular velocities, see Figure 4.1. For the forces and moments, F =
(Fe, Fy, Fy, T, Ty, T)R g = (X,Y,Z,K,M,N) will be used, as is also the standard.
The relation between (p,q,r) and (¢,0,V) are:

¢ = p+qsingtan @ +rcos ¢ tan O

0 =gcos¢ —rsing 4.1
sin @ cos ¢

V= qcos 7] rcos 0

Submarine six degrees of freedom

The W and REF frames in Section 3.2 will indeed be the water and body frames.
With this notation, Equation (3.20) and (3.21) correspond to:

m(i—vr+wq—x6(q" +r°) +yo(pg—F)+z6(pr+4)) =Y. Xi  (4.2a)
m(v —wp +ur —yg(r* + p*) +z6(qr— p) + x6(qp + 7)) ZY (4.2b)
m(w —uq+vp—z6(P*+ ") +x6(rp—q) +yo(rq+p) =Y, Z  (420)
Lp+ (L= L)ar = (F+ pg)l+ (P =)+ (pr—ly =Y K (4.2d)
L+ (L—L)rp—(p+qr)ly+(p* =)+ (gp— . =Y Mi  (4.2¢)

L+ (Iy _Ix)Pq - (q + rp)lyz + (‘12 - pz)lxy + (rq - P)sz = ZNz (4.21)

3 defined by SNAME (1950)
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4.1 Modelling of a submarine

The Equations (4.2) are nonlinear and quite complex, neither do they explicitly
state expressions for (u,v,w, p,q, 7). However, Equations (4.2) are linear in sense of
(11,v,W, p,q,7) and can thus be solved by a matrix inversion. Modeling a submarine
is now divided into modeling the different forces and moments in the 6 directions.

External Forces

The effects and forces from Section 3.1 are summarized as:
Y Fi=Fps+Fup+Fp+Fc (4.3)

where Fys are the hydrostatic forces and moments, i.e., gravity and buoyancy
forces, Frp are the hydrodynamic forces from added mass and inertia, drag and
cross flow, Fp are the propulsion forces, and F¢ are forces from the control sur-
faces, i.e., the different hydroplanes. The forces and moments are now collected in
the Equations (4.4).

Y Xi =Xus+Xup +Xp+Xc (4.4a)
Y Y =Yus+Yup+Ye (4.4b)
Y Zi =Zus+Zup+2c (4.4c)
Y Ki = Kys+Kup +Kp+Kc (4.4d)
Y Mi = Mys+Myp +Mc (4.4e)
Y Ni = Nys+Nup +Ne (4.41)

This is a common way of interpreting and dividing forces acting on a submarine
in papers and literature. The extra terms in the xR- direction and rotation about
the xR- axis are due to the propulsion and induced torque from the propeller. This
assumes that, that the rotor is perfectly aligned with the center of buoyancy x’,SB in
the (y,2)R- plane which is rarely true. More accurate would be to also introduce a
pitch moment due to rotor propulsion, however, this lever arm would probably be
small and therefore, this effect is therefore not accounted for.

Hydrostatic forces

For a 6 DOF body, the hydrostatic forces in Section 3.1 are calculated as: [Feldman,
1979].

XHS 7(W*B) sin @

Yus (W —B)cosOsin¢

Zus | (W —B)cosBcos¢ 4.5)
Kus | | bgW —yg)cosOcosd — (zgW — zpB) cos Osin ¢ :
Mys —(xgW —xpB) cos O cosp — (zgW — zgB) sin O

Nus (x¢gW —xpB) cos 0sin¢ — (ygW — ypB) sin0

where W is the gravity force and B is the buoyancy force.
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Hydrodynamic derivatives

Hydrodynamics is a very complex phenomena and physically very hard to model.
Most of the formulas derived are empirical and they should thus be used with cer-
tain care. Many authors deal with the subject of hydrodynamics by replacing Fyp
with a coefficient based model, with terms like Xu|u‘u\u|, cross terms like X,,,uy and
derivative terms like X;it or X4q. For example. the forces in xR- direction could look
something like this: [Ridley et al., 2003]

Y Xi =Xps + Xp + Xc + Xy u|u] + Xtk + Xy + Xopow + X, vy |+

4.6

Xorvr 4 Xy VIW| 4 Xigwq + Xgqqq + Xorrr (4.6)
The equations for (X,Y,Z,K,M,N); differ slightly throughout previous works. Xul
and X,),| describes how movement in X- and Y- direction creates a longitudinal
force, which will be relative to the signs of u and v. X, is the induced force in x~-
direction due to acceleration. X, describes a force along x® due to combined u and
v movement. Similarly, X,,, models how a combined movement in v and w creates
a force in xR- direction etc. The terms including an absolute value of a velocity is
interpreted as a drag term, since they are quadratic and relative to the direction. The
derivative subscript terms, e.g., Xy, try to model the apparent increased mass due
to water acceleration around the hull, as described in Section 3.1. The cross terms,
e.g., Xuy, are forces from combined movements in different directions which arise
due to the accelerated water around the hull. The sum of the different terms can
be seen as a Taylor expansion and the coefficients are often called hydrodynamic
derivatives, i.e.:

X
X, = 5 4.7
Because of this, one could of course model a submarine with a Taylor expansion
of higher order. However, this is unusual in previous works in this subject in order
to avoid unwanted behaviour to far from the operating point, i.e., outside some
interval of validity. The reader will probably notice that the Taylor expansion in
Equation (4.6) does not include all the possible combinations of (u,v,w, p,q,r), this
is because some are considered zero, or at least small, which will be shown.
The added mass terms add additional u,v, ..., terms to Equation (4.2), which

are collected into the symmetric added mass matrix [Fossen, 2011]:

Xi X0 X Xy X5 X\ [u
Yo Y5 Yo Y, Y5 Yol
Zi Zi Zo Zy Zy Zi||W
Fup=| 3" ' vt 1 ! N 4.8
HD K,;, Kv Kw Kp Kq K; P ( )
My, My M, M; M; M;||q
Ny Ny Ny Ny N; N:iJ \r
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4.1 Modelling of a submarine

Rearranging Equation (4.2) with only derivative terms on the left hand side yields:

m 0 0 0 mzg —myg u
0 m 0 —mzg 0 mxg Y

0 0 m myg —mxg 0 w _ 4.9)
0 —mzg  myG I _Ixy —Ix p
mzg 0 —mxg  —Iy I, —1, g
—myG mxg 0 —I —1I, I, F

Moving the added mass term in Equation (4.8) to the left hand side and combining
with Equation (4.9) gives:

m— Xl-, —XV‘ —XW —Xp mzGg — Xq —myG — Xr'
7Y,;, me‘; 7Yw fmz(;—Yf, 7Yq mefyi«
—Zu —Z\; m— Zw myGg — Zp —mxG — Zq —Z,:
—Ku —mzg —Kv myg —Kw IX —Kp _Ixy —Kq _sz —Kr'

mZG—Mu _MV —m.XG—MW —Ixy—Mp Iy—Mq' _Iyz_Mr‘
—myg —Nu mxg —N\; —Nw —sz —Np —Iyz—Nq IZ —N;
(4.10)

which is the so called mass matrix, which will be denoted M. Since the submarine
accelerates water around its hull, the apparent mass will increase which means
that at least the diagonal elements of Equation (4.8) should be negative, in order to
increase the diagonal elements in Equation (4.10).

Due to hull symmetry, many of these added mass coefficients are zero. For sub-
marines, it is common to assume symmetry about the xz- plane which leads to the
following terms being zero, some of these due to symmetry in the added mass matrix
[Watt, 2007]

XV7Xp7Xf7YIlaYW7anZWaZ[JaZ47KIl7KWaanMV7Mq7MfaNﬂaNW’7Nq =0 (41 1)

Determine hydrodynamic coefficients

Model testing A common method of determining hydrodynamics coefficients is to
experiment on a small replica of the vessel in a laboratory pool. This method can be
considered to be the most accurate since there are no assumptions or simplifications
involved. The coefficients derived for the model will then be scaled to fit a full scale.
These coefficients may be accurate for the model, but some accuracy is lost due to
nonlinearity in the equations, and non scaling water viscosity [Larsson and Raven,
2010]. During the testing, the model is forced into certain manoeuvres and the
forces on the hull are measured [fistrb’m and Kdllstrom, 1976].

Real testing Another alternative is to derive the coefficient through actual full
scale testing, as previously done in [Astrom and Killstrom, 1976], where the coef-
ficients for a freighter and a tanker where derived through actual testing. An issue
with this is the cost, especially for submarines where the operating costs are huge.
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As also pointed out by [Astrém and Killstrom, 1976], for a full identification to be
possible, information about the motion in all the possible degrees of freedom is nec-
essary. For a surface going vessel this means you need to measure, u, v, and r, and
for a submarine with 6 DOF you need to measure all the six movements u,v,r, p,w,
and r for a proper system identification.

Computational fluid dynamics (CFD) Computational fluid dynamics, is the
generic name for software used to simulate fluid motion and force on submerged
or partly submerged bodies. They have not yet been fully accepted in the scientific
community and pool testing is still preferred when designing hulls. However, with
increased computational capacity in the every day computer, CFD softwares are
becoming more and more popular in prediction of ship motion. This can be seen by
the numerous reports in the last years where authors simulate ship motion or derive
the hydrodynamic coefficients through a CFD software, .e.g., [Toxopeus, 2011].

Prediction formulas Despite the lack of manageable analytic theory in the subject
of hydrodynamics, there do exist some partly analytic, partly empirical, formulas in
predicting added mass terms for submarines.

Ship manoeuvring forces

One of the difficulties with hydrodynamic modelling, is to model hydrodynamic
forces when turning, i.e., drifting. Hydrodynamics coefficients in steady state are
somewhat constant but when the state change, the water flow around the hull
changes direction and with that the hydrodynamic derivatives. As for the hull drag,
a simple way of tackle this is to divide the flow into components and let the drag
force in the different directions act on the water’s relative inflow speed. That is, the
drag force in YR is a function of the sway v and the yaw r, and correspondingly,
the force in the xR- direction is a function of the surge u. The problem with this
method is that the inflowing water sees a different shape and effective area in case
of a drift, which means that the drag coefficients do in a way change with the angle
of drift. A submarine will also be exerted to lift forces due to hull bound vortexes
which is described in Section 3.1. Even more complex, typically for 6 degrees of
freedom systems, is combined movement, e.g., a pitching movement while yawing.
In the case of submarines, these motions will be handled separately as suggested by
[Fossen, 2011], that is, the model will not explicitly account for combined yaw and
pitch movements.

[Feldman, 1979] proposes a way to model hull drag by applying strip theory,
i.e., split the hull in multiple sections and then, the drag force on a section will be a
function of the local velocity. For example the integral term in the Yyp- expression
withw = 0:

—%Cd/h(x)(v+r~x)|v+r-x|dx 4.12)
L
where h(x) is the local hull height and L is the hull length. Correspondingly, the
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4.1 Modelling of a submarine

yaw moment due to a turning motion will be:

fng/x-h(x)(v+r-x)|v+r~x\dx 4.13)
L

Hydrodynamics in literature

[Feldman, 1979] provides a complete notation and collection of the David W. Taylor
naval ship research and development center standard equations of motion for sub-
marines. These equations are widely quoted and referred to in submarine modelling
papers and is, according to FOI*, still the standard way of modelling underwater
vehicles with six degrees of freedom. In addition to the hydrodynamic derivative
terms, Feldman includes integral terms to model drag while turning and flow vortex
lift effects. These equations will be extensively used in this thesis.

[Humphreys and Watkinson, 1978] provides analytical expressions for approxi-
mating added mass terms. This is done by collecting work from [Lamb, 1932] and
approximating the bare hull of a submarine as an ellipsoid. In addition, the paper
includes semi-empirical added mass and inertia effects due to the flow around the
hydroplanes. Finally, the validity and problems with the formulas are discussed.

[Ridley et al., 2003] uses a simplified version of Feldman’s standard equations
to simulate a torpedo. The coefficients are derived through physical model testing
in a pool. From Feldman’s equations the integral terms due to turning drag and
hull vortexes are excluded. This is instead modeled by letting the force always be
directed opposite to the inflow of the water with a drag coefficient that increases
quadratically with the angle of attack and drift. The drag force is then divided into
components in the different directions and will serve as drag when the model is
turning, i.e., drifting.

[Watt, 2007] uses a CFD software to derive the hydrodynamic derivatives for a
submarine computer model. However, he uses a distinct way of calculating the drag
where coefficients are functions of the sway and heave drifts, e.g., the drag in xR-

direction:
Xp = X (1,v,w) - (V2 +12 +w2)? (4.14)

This is a way to model the change of flow around the hull while manoeuvring.

[Toxopeus, 2011] simulates a number of surface vessels with the hydrodynamic
forces and moments computed through a CFD software, unlike the more common
way of a coefficient based prediction. He finds that this is a more accurate approach
in simulating water going vessels.

[Fossen, 2011] and [Fossen, 1994] are extensive works that collects a great deal
of the current knowledge in the subject of hydrodynamics. The author compiles a
number of different models that have been used in predicting ship motion through
water over the years and refer to [Humphreys and Watkinson, 1978] for discussion
and prediction of submarine hydrodynamic derivatives.

4 Totalforsvarets forskningsinstitut, (Swedish defence research agency)
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4.2 Generic submarine model

In this Section a model for a generic submarine will be derived. The equations in
[Feldman, 1979] will serve as a template. The hydrodynamic added mass terms will
be approximated according to [Humphreys and Watkinson, 1978].

As for the rudders, the equations proposed by [Toxopeus, 2011] will be used and
modified for three dimensions and for the rotor propulsion and torque, the model in
[Watt, 2007] will be used.

Hydrodynamic derivatives

The hydrodynamic derivatives will be calculated by approximating the submarine
as an ellipsoid. The hydroplanes are seen as flat plates as suggested by [Humphreys
and Watkinson, 1978]. The added mass effect from the sail will be calculated by
approximating the sail as a huge hydroplane.

Cross flow drag
The cross flow drag was modelled according to [Feldman, 1979].

Y- gcd /L R0/ (w(x)? + v(x)2)dx (4.15a)
Z:—- %Cd /L b(x)w(x)y/ (w(x)2 +v(x)2)dx (4.15b)

M:—%Cd /L x-b(E)w(x) 1/ (w(x)? + v(x)2)dx (4.15¢)
N:—%Cd / x- By (w(0)2 +v(x)2)dx (4.15d)
L

where b(x) and i(x) are the local width and heigh at x. w(x) and v(x) are the local
velocities at x:

v(ix)=v+r-x 4.16)
wx)=w+gq-x
C, in (4.15) is the cross flow drag coefficient. For accurate prediction, C; will have
to be specified separately for each Equation in (4.15). Since the hull has different
shape over the body, and the local velocities are different over the hull according to
Equation (4.16), an even more accurate prediction will be to also let C; be a function
of the position x and the local velocity.
When specifying a submarine model, the functions %(x) and b(x) will have to
be provided. When not specified, the model will use the value C; = 1.19 for all
equations in Equation (4.15) as suggested by [Hickey, 1990].
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4.2  Generic submarine model

Figure 4.2: Rudder angles in three dimensions.

Control surfaces

[Toxopeus, 2011] presents formulas for rudder forces and moments for a surface
going vessel. These equations, modified to fit three dimensions, will be presented
in this section. As described in Section 3.1, the formulas need the hydrodynamic
rudder angle &;.

The water velocity vector at a rudder at the position x, (w/o hull and rotor ef-
fects) is calculated in Equation (4.17).

Vr:—(Vl—FVgXXr) “4.17)

vi = (u,v,w)
V2 =(p,q,r)

This velocity will be projected on a plane orthogonal to the rudder, with normal N,
see Figure 4.2.

(4.18)

NNT

NN )
Note that V, and v, is the same vector, only that V, is the vector expressed as a
column matrix. &, will be the angle between V,, and [—1 0 0]T. The drag and lift
forces D,, and L,,, are calculated according to Section 3.1. The direction for D,
will be the same as V,.. L,,, will work in the direction NxV,..

Vee=(I v,? (4.19)
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Each hydroplane will have a specific direction in which it operates, i.e., a normal
rudder could have the direction (0,1,0) and a horizontal hydroplane could have
the direction of operation (0,0,1). As for an x configuration, the force directions
could be (0,41/v/2,41/+/2). Apart from that, the user will have to specify the
hydroplane positions X;,,1—¢, the hydroplane area and the lift and drag coefficients
C; and Cy. With this data, the lift and drag forces and moments for each hydroplane
are calculated.

An issue with the equations presented by [Toxopeus, 2011], is that they do not
deal with cross flow and coupled motion in 3 dimensions. For a + rudder config-
uration and no combined pitch/yaw motion, this would not be a problem. But for
x rudder configurations, the rudders will experience coupled motion even when
combined pitch/yaw motion is avoided.

Tower drag and lift

An attempt to model the tower lift and drag was done by using the same equations
as for the hydroplanes, applied to the tower dimension and position. It is difficult to
study the validity of this method. The only validation performed, was to study the
directions of the forces, but not the magnitude. This suggest that this approximation
should not be used in a simulation before this method is verified. This will not be
further discussed.

Propeller propulsion and force

Equations for forces and torques created by the propeller, were presented in Section
3.1, where Xp and Kp depend on the coefficients K; and K, which in turn are func-
tions of the advance ration J. These two coefficients depend heavily on the shape
of the propeller and have to be derived through actual testing or CFD calculations,
which is outside the scope of this thesis. As for the generic model, the user has
to specify how K; and K, are functions of J. However, the model will provide a
suggested relation according to previous works.

[Watt, 2007] presents two eighth-order polynomial interpolations for K; and K,
as functions of the advance ratio J, derived through CFD calculations. Other rela-
tions have been derived, e.g., by [Toxopeus, 2011], but [Watt, 2007] also deals with
the subject of submarines, hence, this was chosen. The coefficients K; and K as
functions of the RPS n at two different speeds are plotted in Figure 4.3. The in-
terpolating polynomials can be found in Appendix A.l. The reader will probably
notice the RPS » in the denominator for the advance ratio, this function is there-
fore not valid for close to zero RPS. At some points, K; and K, are negative, which
mean that the force/torque from the propeller is negative, which of course is not
at all impossible, since slow RPS at high velocities could produce more drag than
propulsion.

48



4.2  Generic submarine model

0.5 T T T T T T T T T 0.2

u=2
0.4 u=8

0.3

0.2

0.1

=0.1

0,2

0.3

-0.4

0.5

L L L L L L L » L L L L L L L L
1 2 H 4 & 7 8 El 10 ” 1 2 H 4 & E 7 8 El 10
n / RHS n / RHS

(a) Ky, u fixed. (b) Ky, u fixed.

0.8 L L L L L L L L 0,15

u /s u /s n's

(c) K;, n fixed. (d) Ky, n fixed.

Figure 4.3: K;(J) and K, (J) relation.

Hydroplane dynamics

The submarine model is manoeuvred by slanting the hydroplanes, i.e., specifying
mechanical angles &;. However, positioning the hydroplanes are control problems
themselves. An accurate dynamic model description for the different hydroplanes
is outside the scope of this thesis, although it could be desirable to include some
hydroplane dynamics.

For the generic model, the positioning of the hydroplanes is approximated by a
simple first order system where it is possible for the user to specify a time constant
for each control surface.

1

S=——
ST+ 1

Orefk (4.20)
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Figure 4.4: Submarine demo model.

Rotor dynamics

Similarly to the hydroplanes, the rotor dynamics is approximated by a simple first
order system with a user defined time constant.

1

= 4.21
n S/T+1nref ( )

4.3 Submarine demo model

During the literature study for this thesis, the authors came into contact with FOI.
They confirmed the difficulties in modelling water crafts but provided a full model
of a demo submarine derived through CFD calculations of a CAD model of a sub-
marine (Figure 4.4). The mathematical model was according to Feldman’s equa-
tions. Table 4.1 shows the mechanical data for the demo submarine. The complete
set of hydrodynamic coefficients can be found Section 6.1, and compared with the
coefficient derived from mechanical data according to the approximation method
by [Humphreys and Watkinson, 1978].

General features of the demo model Some general features of the demo subma-
rine are presented in the list below.

6 Relative the aft of the submarine, expressed a as positive oriented orthonormal coordinate system
(x,y,z) with z- axis upwards.
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Control design

4.4
unit data
surfaced mass [ke] 1942.3 -10°
submerged mass | [kg] 1942.3 -103
I [kg-m?] | 1.3 -107
I, ; 43.7-107
I " 43.2-107
Ly " -99.103
I " -7478-10°
Iy, " -56-103
L (Iength) [m] 6.23
max height [m] 11.9
max with [m] 6.20
rotor diameter [m] 3.40
aft HP area [m?] 6.08
tower HP area [m?] 3.41
xg0 [m] (32.61,0.000, —0.067)
Xp [m] (32.61,0.000,0.136)

Table 4.1: Main data of the demo submarine.

4.4 Control design

The submarine has x aft rudder configuration.

The submarine has tower hydroplanes instead of bow hydroplanes.

No propulsion was modeled by FOI, instead the method described in Section
4.2 will be used.

Rudder forces have a linear relation to the rudder angles, except for drag
in xR direction which will have a quadratic relation, according to Feldman’s
equations.

Rudder forces have a quadratic relation to the forward speed u, as is also
according to Feldman’s equation.

The aft hydroplanes are numbered as: 1- upper starboard, 2- lower starboard, 3-
lower port, and 4- upper port. The mechanical rudder angles are oriented such that
a positive rudder angle results in a positive roll moment.

The submarine demo model was chosen to be the final model for which an autopilot
were designed.

This section does not present numbers or controller parameters, but rather a
thorough explanation of the controller design.
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Model I0s

The control signals to the submarine at the current state’ are the requested hy-
droplane positions and rotor RMS. The outputs are the signals measured by the
INS and the control efforts, i.e. actual hydroplane positions and rotor RMS, see
Figure 4.5. The possibility to view the true states of the process will also exist for
validation purposes.

N HP INS P

ctrl efforts P»

> BES true states [
Submarine

Figure 4.5: Submarine simulator IOs.

Controller task

With the controller requirements from Section 1.4, the final system should take the
form as in Figure 4.6. Since there are no requirements for velocity control, this
will not be included in this thesis, i.e., the control system’s means to actuate the
submarine will be through the hydroplanes.

M desired heading
INS P
) desired depth
ctrl efforts P
> desired pitch
yrps true states [»

Submarine system

Figure 4.6: Simulator system IOs.

Controller hierarchy

The submarine has a number of different modes, but not all are required to follow a
reference. When linearized, the system was chosen to have the states X in Equation
4.22.

X=[00080,0304050uvwpqr|’ (4.22)

7 Future work could include including the condition of the different tanks as control signals.
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A vaw rate, roll, pitch reference e NSh

NS HP 4| ctrl efforts

N ctil efiorts ARPs true states P
Inner controller Submarine

Figure 4.7: r, ¢, 6 controller.

Depth and heading are not included in the state vector. They do however have a
dynamic relation to the state vector. With zero roll (¢ = 0), the change in depth can
be expressed as z =w —u-sin(0). In a sledge mode depth changing manoeuvre, w is
not accounted for, and for small 8 the equation falls down to a first order integrator
at a certain speed (u constant):

i=u-0 (4.23)

As for the elevator depth changing manoeuvre, the pitch will stay zero and the
relation becomes instead:

i=w (4.24)

With zero roll and pitch, the change in yaw will also be of first order integrator
characteristics, { = r. The natural choice for a controller structure would then be
to, at first, stabilize and control ¢, 0, and r (Figure 4.7). With this, controlling the
depth and yaw becomes a simple task.

Inner controller

The inner loop r, ¢, -controller was chosen to be of LQ? state feedback character-
istic. An integrator for each controlled mode was added to remove stationary errors
caused by simulated stationary disturbances and model inaccuracies due to the lin-
earization. The system on state space form becomes, with the notation in 3.3, as in
Equation (4.25).

(4.25)

o O O

1
0fx
0

In order to allow state feedback, an observer had to be added since only the INS
and control effort signals can be measured. The final inner loop control structure
can be found in Figure 4.8.

8 Linear Quadratic Control, i.e., linear system with quadratic criteria
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@ o[

yaw rate,
roll, state FF
pitch
reference P reference up @ aD
—| states
HP
- integrators
INS
P NS J
states L
ctrl efforts [~
ctrl efforts observer state FB

Figure 4.8: Inner loop controller structure.

State feedback The state feedback gain L was calculated with the Matlab com-
mand /gry(sys,Q,R,N), which computes the optimal state feedback controller of
system sys with the weight function, see Section 3.3:

J=1727Q z+618fR Oref +2™N Oof (4.26)
State feed forward The feed forward gain L, is given by Equation 3.3
[M(BL —A)B] L, = L3 (4.27)

M(BL — A)B has the size 3 x 6, and L, the size 6 x 3. Equation (4.27) is therefore an
underdetermined system of equations, i.e., we have a total of 18 unknown variables
but only 9 equations. This was expected, since there are more than one way to
operate the hydroplanes to create a certain movement. In addition to this, a change
in roll reference will probably never occur. This means that the second column in
L, is of no interest. The second row of M(BL — A)B and the second column of L,
are therefore removed, and form I and f,r.

'L, =Ly (4.28)

The result is a system of equations with 12 unknown variables but only 4 equations.
This meant that it was possible to add more constraints on the solution. To begin
with, there is no need for the bow/tower hydroplanes to answer to a reference change
in r, which means IA_,,5.1 = I:,(,J = 0. The bow/tower HPs are also often connected,
ie., I:rs,z = I:r572. Equation (4.28) becomes:

A A

I:rl,l ];4r1,2
Lio1 Lyaa
L1 L3 [1 0}
o Lk (4.29)
Lragp Ly 0 1
0 Ly
0 I:r5.2
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Equation (4.29) is still an underdetermined system of equations. Consider instead
the optimization problem of solving (4.29) with the least possible control effort. The
HP angles § at a reference change relate to the values in L,. With L, = [L,; L,2],

X = [If:”} is defined.

r2
min  XTHX
X A (4.30)
S.t. I''L, =Ly

With H in Equation (4.30) it is possible to weigh certain HPs, to create the desired
reference tracking control. It is also possible to add additional constraints to the
problem (4.30), e.g., if one hydroplane has malfunctioned it is possible to add this
as a constraint to the optimization problem.

Observer The state feedback controller requires the state vector

X=[¢ 0 6 8 8 04 65 O uvw p q r]T. From Section 1.1 the measured states could
include y = [¢ 0 6; 8, 03 84 05 O u p q r]T. However, as for u, the observer would
naturally believe that u is constantly decreasing due to the rotor RPS is not included
as a model actuator. This would probably result in a stationary error in the log ve-
locity u. To counter this, a new system model was derived for the observer where the
rotor RPS was included as a system actuator together with the hydroplane angles.
To simplify the observer, the actual hydroplane angles and rotor RPS served as the
input signals since they were all measurable. This resulted in the state space system
in Equation (4.31) for the observer with the states X' = [¢ 8 uvw p g r], and system
matrices A’, B/, and C'.

=l Alst / 1)
X =AX+B {n

“4.31)
1 Bk 03x2 03x3 <
03,3 032 I3x3
with:
x=[y] v5 6" y5 - ' (4.32)

A Kalman filter was used to estimate the states in Equation (4.31). Assume that
model disturbances and measurement noise 1; and 1), act on the system (4.31) as
X' =...+Nn, andy' = ... +1,. n, was chosen to be external force and torques.
Hence, N ~ ML If it is necessary to account for model inaccuracies due to lin-
earization of a nonlinear model in the Kalman filter, it too has to be included in the
correlation matrix for 1.

Integrators The integrators simply continuously integrate the control errors in
r,¢, and 8. These are added to the controller output after being multiplied by tun-
ing constants. According to the hydroplane orientation in Section 4.3, the integrators
will be added to the HP angles as in Figure 4.9.
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Figure 4.9: Integrator signs.

Heave controller

The inner control loop does not include elevator mode control since it only allow ref-
erences in r, ¢, and 6. Another controller was added parallel to the inner controller
for this purpose, named the heave controller, see Figure 4.10. In an elevator mode
manoeuvre, this controller use the tower HP to heave the submarine, i.e., change
the depth. Meanwhile, the pitch reference is kept zero and the inner controller will
work to keep the submarine at zero pitch.

Controller type The heave controller was chosen to be of PID type with control
signal saturation and integrator anti-windup. To improve performance, a second or-
der prefilter F(s) was added to smooth out reference steps.

F(s) >

= 4.33
s24+20s+5 ( )

Reference saturation A linear system with a linear controller acting on different
reference changes will scale the controller effort linear with the reference changes.
That is, let u(r) be the initial controller output from a reference change r(z). If the
reference change is scaled by a constant C, i.e., r2(¢t) = C - r(t), the control effort
will be up (1) = C-u(z).

For a submarine, as for many other practical control problems, it is not possible
to always linearly scale the controller effort with the reference change, due to actu-
ator saturations’. With anti-windup properly implemented on the controller I part,
this does not have to be a problem. But the submarine autopilot should be able to
answer to a wide range of reference changes, e.g., a depth change of a few meters
to perhaps 200m, both which should be performed in a similar manoeuvre.

9 In the case of submarines, the hydroplanes angles have a mechanical limit.

56



4.4  Control design
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Figure 4.10: Heave controller in parallel with the inner controller.

Assume a submarine in an elevator depth changing mode. In the case of a huge
reference change, the P part in a PID controller would immediately saturate the
tower hydroplanes. Compare this to a lower reference change, low enough for the
P part to not saturate the hydroplanes. Perhaps the integrator part will saturate the
hydroplanes after some time, but in either case, the responses will initially look
different.

In Figure 4.11, a system is simulated with with two different reference steps.
The saturation on the control effort is 1. As can be seen, the control effort with the
larger step is immediately saturated while for the smaller, it is saturated only after
some time. This effect will show up when changing submarine depth in an elevating
fashion. In order to make the two step responses look more alike, a saturation on
the control error was added for the depth. The PID was tuned for a certain step
response, e.g., 10m, and then the control error was saturated to not make larger
steps then that, i.e., £10m, see Figure 4.12. Two different step responses will now
look somewhat alike, apart from that that the big reference step (blue line in Figure
4.11) will raise further than the small step (red), before flattening out. This will
make depth changing look something like in Figure 4.13.

Gain scheduling

According to the controller task in Section 1.4, the controller was chosen to include
three different modes for different regions of velocity (Figure 4.14), with borders 6
and 13 knots. To avoid back and forth switching close to a border, a hysteresis on
0.3 m/s was added. Controller options are found in Table 4.2.

Three different controllers were derived, one for each velocity region. Since the
submarine has quadratic dynamics, the controllers were designed at the velocities
3, 6 and 8 m/s, i.e., in the upper half of the regions. Due of the quadratic behaviour,
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Figure 4.12: Control error saturation.

the dynamic mean in each region should be at a velocity closer to the upper end of
each region.

Integrators To achieve bumpless control, the integrators had to include tracking
(see Section 3.3), i.e., the non-active integrators will follow the output of the active
one.

Observers In order to allow different observers for the three different regions, it is
possible to individually activate and deactivate the observers. The switching should
be performed with minimal bump, hence, the output from the last active observer
serves as an initial state to the activated one.
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Figure 4.14: Velocity regions, the shaded part is the hysteresis.

region 1 2 3

tower HP on on off
depth k. mode | elevator mode | elevator mode | sledge mode
depth c. mode " sledge mode

Table 4.2: Controller features in the regions.

State FF and FB  The submarine was numerically linearized at the three different
velocities (3, 6, and 8m/s). State FB gains were derived with different weighting

As for the lower region, the tower HP are used to elevate the submarine in depth
changing and depth keeping manoeuvres which are not explicitly accounted for
in the state FF and FB. The tower HP were hence greatly weighted in order to

59



Chapter 4. Development

minimize interference between the controllers, i.e., the FB should not use the tower
HP to control the pitch since they are extensively used by the heave controller. As
for the state FF in the low velocity region, the tower HP angle = 0 was a condition
to the optimisation.

The medium velocity region features a combined elevator and sledge depth
changing mode. Depth changing manoeuvres are performed in sledge mode, while
depth keeping are performed in elevator mode. Here the tower HP are weighted less
compared to the low and high velocity regions.

In the high velocity region, again, the tower hydroplanes are heavily weighted
even though they are not used by another parallel controller. This is to satisfy the
controller task in Section 1.4. To keep the tower HP mechanical angle zero was a
condition to the FF optimization, as in the lower region.

Since the state FB and FF gains are different in the regions, the controller will
suffer a slight bump at the moment of the switch.

Outer loop

depth reference
HP
INS

Heave controller

W desired heading ;
yaw rate, roll, pitch reference
depth reference HP INS
) desired depth
r—p INS HP
N desired pitch Clllsfons
yaw rate, roll, pitch refe
INS clrl efforts ArPs true states
Outer controller Inner controller Submarine

Figure 4.15: Inner and outer loop control.

The outer loop controller will be the interface between depth, pitch, and head-
ing references from the operator, and yaw rate, pitch, and roll references to the inner
loop controller. It is integrated in the control system as shown in Figure 4.15. The
outer controller will see the inner loop, as simple first order integrators K /s as ex-
plained in Section 4.4. First order integrator control, can be achieved by simple P
controller. However, the inner loop can only be seen as first order integrators below
its bandwidth @p. This gives us a fundamental limitation on the speed of the closed
outer loop, i.e., P- K << wp (Figure 4.16).

Heading control Figure 4.17 shows the structure for the outer loop heading con-
troller. It is of simple P characteristic with a saturation to avoid huge r reference
signals. The saturation is dynamic, i.e., different in each velocity region, higher
speeds allow higher yaw rate r.
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Figure 4.16: Integrator controller bandwidth.
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Figure 4.17: Outer loop heading controller structure.

The heading measurement from the INS is in the interval 0 —360°. Such a non-
linearity will cause control problems. Assume that the current heading is 10° and
a new reference is given to 350°. The favourable choice of turning, is of course to
steer port 20°, but the controller will steer the submarine the other way. Instead, if
the new reference should be —10°, the submarine will turn to port, but will not stop
at 350°. The heading from the INS will therefore be unwrapped from the interval
[0,360) and instead € R. This means that if the submarine has started facing north,
spun around two turns to end up facing north again, this unwrapped heading will be
720°. With this, in the example above, the reference signal can indeed be -10° and
the submarine heading will end at 350° (unwrapped heading will be -10°).

It is now a simple task to perform different turning manoeuvres, e.g., if the
submarine should make the shortest turn, longest turn, make the turn port/starboard,
etc. Assume that the current unwrapped heading is 730° (INS heading is 10°) and
a new heading reference is given to face east (wrapped heading ref 90°). If the
submarine should take the closest path, the new unwrapped heading reference will
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Figure 4.18: Outer loop depth control structure.

be 720° 4+ 90° = 810°. To make the submarine take the longer way the reference
should be set to 720° — 270° = 450° etc.

Depth control The depth controller (Figure 4.18) will provide a pitch reference
to the inner loop in the high velocity region and, while in depth changing mode, in
the medium velocity region. While in depth keeping mode (medium velocity region)
and in the low velocity region, the heave controller will control the depth, hence, the
pitch reference to the inner controller, will be the external pitch reference from the
operator (at most times zero). The selection input block in Figure 4.18 will choose if
the operator pitch reference shall be passed to the inner loop, or the pitch reference
from the outer loop depth controller, in the latter case the heave controller should
not operate. This selection will also be a part of the outer loop controller. A control
signal saturation is added to avoid huge pitch references to be passed to the inner
loop controller.

Controller enabling and resetting The outer loop controller is a more sophis-
ticated controller than the inner loop controller. It does more logical decisions,
e.g., determines the current velocity region and switches between depth keep-
ing/changing mode. To accomplish this, it needs the possibility to turn off the heave
controller. The inner loop and heave controller therefore need to support more util-
ities in form of switching (between regions) and integrator enabling/disabling and
reset. To simplify, all integrators/PIDs are reset when disabled.

o All the integrator are disabled (and reset) during a corresponding manoeuvre,
i.e., the pitch integrator is disabled during a sledge depth changing motion
and the yaw rate integrator is disabled when initiating a heading change. The
roll reference is always zero, hence the roll integrator will not be disabled due
to a reference change.

e All integrators are disabled when the corresponding control effort is higher
than a certain threshold, e.g., 90% of the maximum control effort.
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e The heave PID is disabled when in:

1. sledge mode in the medium region
2. high velocity region

Outer loop controller structure Figure 4.19 shows the complete structure for the
outer loop. The different part will be summarized in the list below.

o determine velocity region. This block simply determines which is the current
velocity region according to Figure 4.14.

o determine manoeuvring. If a new reference larger than a certain threshold has
been given, this block sets manoeuvring to true. Observe, manoeuvring is a
vector with two elements for heading and depth respectively. manoeuvring is
set to false when nearing the reference.

o determine mode. This block determines if the submarine currently should
move in a sledge or elevating fashion. Naturally, it needs the region and if
the submarine is in a manoeuvre.

When in the low velocity region, as seen in Table 4.2, the submarine controller
will always stay in elevator mode.

In the medium velocity region, the submarine will be in elevator mode when
manoeuvre is false and switch to sledge mode, when manoeuvre turns true.

In the high velocity region, sledge mode is always chosen.
e P controllers. This block contains the P controllers for depth and heading.

e controller enable/ disable. This block turns on/off the heave PID and the inner
loop controller integrators.
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Results

5.1 Time constants and saturations

This is a collection of the time constants and submarine actuator saturations, that
was used in the submarine simulator.

e Time constants for all the hydroplane was chosen to 3s.
e Time constant for the rotor was chosen to 6s.
e Hydroplane angle saturation was chosen to £30°.

e Rotor RPS was saturated to [0.6,2.4]/s to fit the velocity interval 4- 16 knots.

5.2 Final controller

Inner loop controller

State FB  The state feedback gain was calculated with the weights for the different
regions as presented in Table 5.1.

State FF  Table 5.2 displays the weights and conditions used to calculate the feed-
forward gain L, in the three regions, see Section 4.4 for information how this was
calculated.

region 1 2 3
500 0 0 100 0 0 100 0 0
Q 0 10 0 0 10 0 0 10 0
0 010 0 010 0 010
010 0 0 0 0 010 0 0 0 0 0.1 0 0 0 00
00100 0 0 0010 0 0 0 0010 000
R 0 0010 0 0 0 0010 0 0 0 001000
0 0 0010 0 00 0010 0 0 0 00100
00 0 0100 00 0 0100 0 0 0 0100
00 0 0 010 00 0 0 010 00 0 0010

Table 5.1: State FB weights.
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region 1 2 3
r HP
towe” off does responq off
conditions to reference in O
r10000000000 07
01000000000 0
00100000000 O
00010000000 0
0000—000000 0
H 00000 —-00000 O " "
00000010000 O
00000001000 0
00000000100 0
00000000010 0
000000000050 0
LO0O00O0 00000 0 50

Table 5.2: State FF weights and conditions.

Integrators The numerical values will not be presented, see Section 4.4 for infor-
mation about the integrators. The integrators were implemented in discrete time as
mentioned in Section 2.2.

Observer The observer was also implemented in discrete time by sampling the lin-
earized model. The observer gains were then calculated with white noise intensities
presented in Equation (5.1).

[10* 0 0 0 0 0
0 104 o4 0 0 0
T™N_| 0 0100 0 o0
E(nln])_ 0 0 0 106 0 0
0 0 0 0 10° 0
Lo 0 0 0 0 10°
- 5.1
10-183 o 0 0 0 0 G-
0 10783 o 0 0 0
Ty 0 0 10711 o 0 0
E(nznz)— 0 0 0 10712 0 0
0 0 0 0 10712 o
L o 0 0 0 0 10712

Heave controller

Again, the authors see no point in presenting the numerical values of the PID con-
troller. As for the control error saturation, it was chosen to =5m. The output from
the PID saturated at +=20°. Also the heave controller was a discrete controller.

Outer loop controller

Saturations As mentioned in Section 4.4 the P controllers for references in r and
0 to the inner loop were saturated to avoid huge reference signals. The final results
from these are presented in Table 5.3.

Switching To summarize, the conditions for the different outputs from the block
in Figure 4.19 are presented in Table 5.4.
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section | 1 2 3
r +0.6°/s +1.2°/s +£3°/s
0 +15° +15° +15°

Table 5.3: Outer loop controller saturations.

5.3 Simulation plots

In this Section, a number of plots from different simulated manoeuvres will be pre-
sented to verify that the control system works as intended. Three different test ma-
noeuvres will be presented along with some of the most interesting plots.

When control efforts are plotted, they are normalized to be a percentage of the
maximum control effort, i.e., fit in the interval [—1, 1]. For example, the roll effort
is 1 if all the rudder are saturated to maximum positive angle, see rudder orientation
for the demo submarine in Section 4.3.

Test Case One

The first manoeuvre will be testing reference changes in heading and depth. This
test will be performed in the middle velocity region, around 6 m/s. The first change
in reference will be a change in heading, 90° starboard followed by 90° port. After
stabilizing, a reference change in depth will be performed, starting at a depth of
100m. First the submarine will dive to 120m, and then ascend to 80m. The results
of the simulation are presented in Figures 5.1-5.4.

Heading Change As seen in Figure 5.1, a heading change of 90° takes approxi-
mately 120 seconds in the current mode. This might not seem very fast, but as seen
in Figure 5.4, the yaw effort is relatively low, which means that a faster turn is pos-
sible. It can also be seen in Figure 5.3 that the submarine will pitch slightly positive
when initiating the turn. Real submarines do also have a tendency to lower their afts
when turning!. Figure 5.4 proves that the control system compensates for this.

Depth Change Figure 5.2 displays the depth. During the veer (0-500s), the depth
alters slightly, which of course is an effect of the pitching motion. As seen in the
figure, a change of reference in depth of 20m as well as 40m takes approximately the
same time. According to Table 5.3, the pitch reference from the outer controller is
saturated at +=15°. The P part is for the current controller set to 0.3, which gives the
references to the inner loop controller: 0.3 -20 = 6°, 0.3 -40 = 12°. Hence the pitch
reference will not be saturated and the controlled system should follow somewhat
linear behaviour, i.e., double reference change = double control signal (Figure 5.4)
but the same rise time.

It should also be pointed out that the depth change is in sledge mode, since the
reference changes was greater than the threshold (Table 5.4). During the turn, the

! The authors learned this fact from a co-worker at SAAB who have attended SASS product testings

67



Chapter 5. Results

60 > § MOIJo [110 29 21ANI0UDUL]

6°0 > @ MO [110 29 2.LAN20UDUL]

6'0 > § HOR2 110

0 10J 2]qvua 401D.1821U1

6°0 > ¢ 110330 [11D

¢ 10J 2]qpU2 10ID1323U1

6°0 > - HI0JJQ [110 29 24AN20UDU]

4 10§ 2]qDUa 10JD1 323Ul

Ho

24aNn20UDUL]

uo

12]qDUa 1419 24D2Y

Jpow 23pa[s

9pOW IOJBAJ[Q IS0
‘244n20upU J1 Ipow 9Ipafs

PO JOJBAQ[Q

apout 101paa]a J23pals

w¢ > 10119 Yydop uaym uo suimy
wg < 93UBYD UL © I JJO suIn}

o1 > @ pue wg > 10110 ydop
Uy UO SuIn} ‘WG ¢ < d3ueyd
90UQIRJAI B J JJO suIn)

folg Surianaouvu

s/peizo’Q > 4 pue

wy > Jold Suipeay

uaym os[ey

‘.1 < 93ueyd 90UAINJAI B JNnI)

Jo44 Suraanaounw

$1't 9In314 03 SuIpIodoe

uo13a.4

uo13a1

Table 5.4: Switching conditions for the outer loop controller.
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controller is in depth keeping, i.e., elevator mode, which is seen in Figure 5.4 where
the heave controller is compensating the depth error during the turn.

Test Case Two

In this simulation the submarine will accelerate through all three velocity regions
while given a reference change in depth. This will show how the control system
handles the transfer between the different controllers. The results can be seen in
Figures 5.5-5.8.

Depth change A reference change is ordered at T = 100s, at the same time the
rotor RMS is increased and starts accelerating the submarine, see Figure 5.5. The
velocity region changes are marked with red rings, and occurs according to Figure
4.14 around 6 and 13 knots, or approximately 3.2 and 7 m/s.

Figure 5.7 displays the pitch, which in the first region is kept low. Figure 5.8
shows that the bow plane heave effort is large, meaning that the submarine changes
depth in an elevating fashion, as ordered by the outer controller.

In the second region, depth changing should be performed in a sledge fash-
ion (Table 4.2), meaning that it should pitch to change depth. This is confirmed in
Figure 5.7, where the submarine starts to pitch after the region change. Figure 5.8
shows how the aft and the tower hydroplanes work together to pitch the submarine.
Worth pointing out is the acceleration of the depth change when entering the second
region, i.e. changing from elevator mode to sledge mode. Depth changing seems to
be slower in elevator mode.

In the top speed region depth should, according to Table 4.2, only be controlled
by the stern hydroplanes. This means that the control effort from the bow planes
should be zero, which can clearly be seen in Figure 5.8.

During the moments of the switches, bumps in the control efforts are distin-
guishable, i.e., an effect from the gain scheduling explained in Section 4.4. This is
an undesirable behaviour, but fortunately, a manoeuvre like this is probably rare.

Test Case Three

Test case three will be similar to the previous one, except that the submarine will
turn two full laps while accelerating, instead of diving. This will illustrate how the
heading controller performs in the different regions. The results are shown in Fig-
ures 5.9-5.12.

Heading change As in the previous test case, the changes of regions are marked
with red circles in the figures. According to Figures 5.9 and 5.10, the max speed at
the final RPS of the propeller is apparently around 7.5 m/s when turning and 9 m/s
when traveling straight.

Figure 5.11 contains an xy position graph relative to the initial position. Figure
5.12 shows the control efforts and Figure 5.10, shows the heading.
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As for the control effort in Figure 5.12, the controller is more aggressive in the
high speed region than in the low and medium speed regions. This is preferred since
often when travelling at slow speed, the submarine should produce minimal noise.

In Figure 5.10, a noticeable increase in heading derivative takes place at the
change between the low and medium velocity region, even though the control effort
is about the same. According to Section 4.3 the forces from the hydroplanes depend
on the velocity u squared, it is therefore expected that the submarine will turn faster
at higher speeds.

It is worth pointing out that the roll and pitch efforts increase in magnitude as the
speed gets higher. This is noted especially for the roll effort, where it is more than
50% of maximum control effort during T=400-600s. Figure 5.13 displays zero roll.
The controller is apparently compensating for huge hydrodynamic forces acting to
roll the submarine. The turn is to starboard, and the roll effort says the rudders want
to roll the submarine anti-clockwise seen from behind. Thus, the forces acting on
the submarine during the turn seems to tend to roll the submarine inwards.

Rotor

This is just a brief Section of how the rotor RPS translates to the submarine velocity.
As seen in Figure 5.14, the relation seems to be linear, or at least affine.
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6

Discussion

6.1 Hydrodynamic Coefficients discussion

Hydrodynamic coefficients can be analytically approximated with empirical formu-
las according to [Humphreys and Watkinson, 1978]. This method was applied to
the demo submarine received from FOI, and the results were compared with FOIs
hydrodynamic coefficients. They are both presented and compared in Table 6.1.
Some coefficients differ by up to 450%, however, it can be discussed how important
accuracy is for these coefficients.

[Humphreys and Watkinson, 1978] claims that there are 15 coefficients that are
more important than others. In Table 6.1, the error percentages between the ap-
proximated and received coefficients are calculated and presented in the right most
column. Some of the coefficients with the highest error percentage are not among
the 15 most important coefficients, however, the results are still differ by large val-

ues. This inaccuracy is probably the reason why this method is not commonly used,
since model tests or advanced CFD calculations are much more accurate.

Table 6.1: Hydrodynamic coefficients, Measured vs. Calculated.

Coefficient | FOI Measured Calculated Difference (%) | Humphrey difference (%)
Xy —5.8503-10* | —3.8999.10% 33.33 11.5
Xelul —2.1638-10° | —1.0567-10* -388.35 -
Xy 2.2024-10* - - -
Xor 1.9609 - 10° 2.057-10° -4.9 8.0
Xy 7.2193-10° - - -
Xing —1.4999-10° | —1.8898-10° -26 0.1
Xpr 3.7801-10° 1.0718-10% 71.65 -
Xyq 6.0774-10° | —3.6633-10° 106.03 -
Xpr 8.5083-10° 1.7035-10° 79.98 -
Y, —2.1199-10% | —2.0570-10° 297 8.0
Y, —3.7801-10% | —1.0718-10° 71.65 -
Y; —1.2619-107 | —1.7035-10° 86.50 -
Yo —1.2348-10° - - -
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Yo —1.1988-10° - - -
Yup —1.5497-10° - - -
Y. 1.0018-10° | —3.8999.10% 138.93 -
Yop 1.6215-10° 1.8898-10° -16.55 0.1
Y g 1.5436-10° | 3.6633-10° 76.27 -
Zy —1.6215-10° | —1.8898-10° -16.55 0.1
Z; —1.5436-10° | —3.6633-10° 76.27 65.0
Zuow —4.6835-10% - - -
Zug —4.8830-10° | 3.8999.10% 107.99 -
Z, —2.1199-10% | —2.0570-10° 2.97 8.1
Zop - -1.0718-10° - -
Zpr - —1.7035-10° - -
Zoow 6.5568 - 10° - - -
K, —3.7801-10° | —1.0718-10° 71.65 44.0
K; —1.3637-107 | —7.1006- 10° 47.93 93.0
K; —2.7968-107 | —1.4349-107 48.69 -
Ky, —8.8960- 103 - - -
K —4.3689-10° - - -
Kup —5.0448 - 10° - - -
Kur —5.6544-10° - - -
Ky - 1.6722-10° - .
Kyg - —2.0698 - 10° - -
Kyp 3.7801-10° 1.0719- 106 71.64 -
Ky - 2.0698 - 10° - -
Kgr ~7.5-107 -3.33-107 55.6 -
M,; —4.2177-10° | —3.6633-10° 91.31 64.0
M, —3.9850-10% | —3.6229-108 9.09 10.0
M,y -4.4401-10 - - -
My 5.4147-10° 5.5523-10° -2.54 -
Mg —2.3875-107 | 1.8898-10° 107.92 -
M, - 1.7035 - 10° - -
M, - —1.0718-10° - -
M, - 1.4349- 107 - -
M,, 4.5986-10% | 3.8849-10% 15.52 114
M,, - 1.4349 - 107 - -
Ny 4.8619-10° | —1.7035-10° 450.38 -
N —2.7968-107 | —1.4349-107 48.69 -
N; —4.7351-10% | —3.9559.108 16.46 10.7
Ny 9.7812- 10 - - -
N —2.2747-10° | —2.0180-10° 11.29 -
Nup ~1.6776-10% | —1.0718-10° 36.11 -
N —3.4493.107 | —1.7035-10° 95.06 -
Nyg - 1.0718 - 10° - -
Nup - —3.6633-10° - -
Npg ~3.8486-10% | —3.5519-10% 7.71 10.7
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Ngr \ - 1.4349 - 107 - -

6.2 Linearised state space model

A total of three linear state space system were derived in this thesis. A short discus-
sion of the third model, i.e., the high velocity region, is presented here. The model
itself is presented in Figure 6.1. Some parts of the state space system is what can
be expected. The hydroplanes follow a first order characteristics with time constant
T = 3. The system was linearised with no roll/pitch, hence ¢ and 6 are the integrals
of p and ¢. As for the u characteristics, rudder angles J;, 0>, 05 and & give a pos-
itive addition to z. This appear as strange at a first glance, and the Coriolis effect
from the six degrees of freedom dynamics is most likely the source of this.

How rudder angles influence the acceleration, e.g., 7, differs between the rud-
ders. This does also seem strange and is most likely also caused by the Coriolis
effect.

6.3 Controller issues

The control system contains numerous numbers of nonlinearities in forms of satu-
rations and logical switches, especially in the outer loop. Nonlinearities in the loop
can be a source of possible oscillations. These can be difficult to locate, but in this
section a few possible origins for oscillations and other controller problems will be
discussed.

Sledge mode depth control

Depth control in sledge mode is performed by a P controller in cascade with an inner
loop state feedback/feedforward controller with an integrated I part. The I part is
disabled at the moment of a reference change and reenabled when the control error
is less than 3m and the pitch is less then 1°, see Table 5.4. The reason to include
an [ part is to remove stationary errors, but a stationary error greater than 3 meters
from the reference point will not enable the I part, hence, continue to exist.

Since the pitch has to be less then 1° to enable the I part, this could be a source
of oscillations around a reference depth.

These effects have at this point not yet shown up. Either do they not exist at all,
or perhaps only appear at special cases. Introducing disturbances could perhaps also
make these effects show up.

Course control

Analogous with the sledge depth control, the course control could experience the
same problems, although, has not at this point.
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Overly complicated controller

The final control structure can feel a bit overambitious. The controller could have
been simplified by adding PID controllers in the r,¢ and 8 directions. This would
remove the state FF, FB and the observer part and turn the I parts controller into
PIDs. Hopefully, however, this would result in a poorer performing controller but
with increased simplification.

An LQ controller relies on the state space model to be relatively accurate. If the
controller presented in this thesis would be implemented in a real submarine and
turn out to be inadequate, tuning it, is not straightforward since it requires tuning
of the model itself. A PID however, is simpler to tune on spot. The PIDs in the
submarine could, e.g., be based on a PID design derived in the lab, and then tuned
by changing the P, I, and D gains'.

6.4 Future Work

This master thesis is only the start of a project that could be developed much further.
This means that there are lots of room for future work and improvements.

Model

Sensor Models Measured values from sensors always come with an uncertainty.
Adding noise to measured signals in the submarine simulator, is a step closer to test
how the controller will perform in an actual vessel.

On a submarine, some sensor errors will differ depending on where the sensor
is placed. For example, the velocity sensor is often a pressure sensor placed on the
submarine hull. If the flow around the hull is turbulent, this could cause large noise
levels to the log.

The water pressure due to the suppressed water by the submarine bow can also
change over the hull. Multiple pressure sensors placed at different locations are
therefor often used. The measured log velocity is then a function of measured values
from each sensor.

In Section 3.1, the added mass effect was explained, i.e., the water closest to the
hull travels with the submarine, hence, increasing the apparent mass. This could be
another source of a velocity log sensor inaccuracy. The sensor could measure the
submarine’s velocity relative the water closest to the hull, which is lower then the
velocity relative the unaffected water, further away from the hull.

Currently, the measured depth is the depth of the submarine-fixed frame’s origin.
It can be discussed if this is the actual depth of the submarine. Perhaps the subma-
rine’s depth is the part of the submarine, that is deepest, which could be preferred
when manoeuvring close to the seabed.

! There are more complex PID designs than the one presented in this thesis. A more complex PID
design could include additional tuning parameters.
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Tank System A submarine includes a number of different tanks which are used to
control whether to sink or float, as well as the attitude of the submarine. Adding the
tanks as possible actuators is a step closer to a perfect submarine simulator.

A simple way to model the effects from the tanks, is the possibility to affect the
position of the center of gravity, and the weight of the submarine. A more accurate
model of the tank system, could be to model the pump dynamics as well as the flow
characteristics in the tanks and tubes.

Additional Hydrodynamic Effects There are more hydrodynamic effects that
need to be taken into account for a complete simulator system. Among them are
different effects that occur near the surface or near the bottom.

At the moment, it is only possible to specify a linear current in a specific di-
rection in the simulation. It might be useful, to also be able to simulate irregular
currents and turbulence, to see how the controller handles these conditions, since it
is closer to the reality.

Simulating Alarms An important duty of the SASS, is error detection and alarm
presentation. This indicates to the helmsman if anything has malfunctioned on the
submarine, for example a hydroplane angle fault or pump malfunction. It would
therefore be useful to be able to simulate these alarms, and present them to the user
of the simulator system. These errors should also be sent to the autopilot, if, for
example, a hydroplane is not responding, the autopilot should take this into account
when steering the submarine.

Implementation

The focus of the thesis have been mostly on physical modelling and controller de-
sign, and less on the program for target system, i.e., the test rig. This means that
there is a lot of room for improvement here, especially within usability.

User Interface The test rig has a software version of a hardware console in a
submarine. The original goal was to implement the simulator system with the in-
terface, but due to the unexpected complexity of hydrodynamic modelling, this was
postponed as a future project.

At the moment, the simulator system is communicated with through the terminal
in Linux. A sensor value or a new reference, has to be explicitly requested by a
terminal command. This is not a user friendly setup, which is the reason why the
simulator system needs to be implemented with the test rig user interface in order
to properly benefit from the submarine simulator.

In a far future, it might also be desirable to implement compatibility with exist-
ing hardware from a submarine, to be able to train personnel on land.

Animation A simple animation of the submarine attitude and hydroplane position
was developed in Simulink. A picture of the animations can be found in Figure 6.2.
At the moment, the animations are only available when simulating the submarine in
Simulink, and not when running the simulator on the target system, hence, a desired
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Figure 6.2: Rudder and submarine attitude animation.

feature could be to implement a TCP communication with the animations and the
submarine simulator.
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A

Appendix

A.1 K; and K, interpolation polynomials
Equations for Kr and Kp:

Kr(J) =0.410758 — 0.115654J — 0.107836J2 +0.0713369.°
—0.00620451J* —0.0127538J° +0.00487893J° (A.1)
—0.000678484J7 4 0.0000333463J%

Ko(J) =0.0690631 — 0.0249658J — 0.00623472J>
+0.00171807J° +0.00579169J* — 0.00559630.J° (A.2)
+0.00178950J° — 0.000246886J -+ 0.0000126029.%
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