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Abstract

ADHD is a psychological disorder which has become significantly
more prevalent and much debated in the last decades. This study
investigates the possibilities in developing quantitative diagnostic tools
for psychiatric assessment of ADHD based on spectral representations
of Auditory Brainstem Responses (ABR). Two different approaches
to data pre-treatment are adopted, followed by estimates of power
spectral densities, cross power spectral densities and time-frequency
distributions. From these, features are extracted and examined on
their merit as disorder-specific traits. The subject sample consists of
ABR:s from 69 individuals; 36 of which are diagnosed with ADHD and
33 healthy controls. Using a band-pass pre-processing method, some
significance in difference between disease groups is found for females in
terms of dominant frequency∗, bandwidth∗∗∗∗, spectral purity∗∗∗ and
spectral slope∗ in the power spectral density estimate.
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List of Notations

Glossary

ABR - Auditory Brainstem Response.

ADHD - Attention Deficient Hyperactive Disorder.

CPSD - Cross power spectral density.

EEG - Electroencephalography.

ERP - Event related potentials.

PSD - Power spectral density.

TFD - Time-frequency distribution.

Mathematical quantities

f - Absolute frequency in Hz.

Sx(f) - Power spectral density of a signal xt.

t - The intra-observational time, in sampled data points.

T - The global time, in sampled data points.

u - The global time, in number of observations.

Wz(n, k) - The discrete time-frequency distribution of an analytic signal zt.

xt - An ABR-observation (discrete time).

xt,T - A full set of ABR-observations with observations as column in a
matrix with t rows and T column.

x̄t - The mean over some number of observations.

zt - Analytic signal, the Hilbert transform of a signal xt.

Γx1,x2(f) - Cross power spectral density of signals x1,t, x2,t.

ΘM,Λ,',�,ℎ - Feature of type ' = {ℋ1,ℋ2, ℐ,K, ℰ1, ℰ2,P} from
Λ = {PSD,CPSD,TFD} using data-treatment methodM = {win, b-p},
test subject � and cerebral hemisphere ℎ = {L,R,B} (Left, Right, com-
parison between Both)

� - Test subject or group given by F for female, M for male, A for ADHD,
C for healthy control, and a number within this set. e.g. � = FA12
for the 12th female in the ADHD-group, � = M for all males or � = C
for all persons in the control group.
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1 Introduction

1.1 Neuroscience and its Impact

It is safe to say that the scientific fields that in any way involve the
human brain are at the forefront in today’s technological landscape. The
evolution, workings and possibilities of our very own cognitive apparatus
poses thrilling questions that have been, and will be, around for centuries.
Although it could be said that few other sciences have been as revolutionized
by recent technological progress, much remains to be understood and gained
by treating neuroscience as a branch of engineering.

The brain marks a starting point, not only for the way we all think and per-
ceive the world, but for several branches of scientific inquiry. Related sub-
jects extend from questions previously only regarded as philosophical, e.g.
those of free will [1] and what constitutes spiritual experiences [2], to more
practical issues such as understanding the connection between neurophysi-
ology and emotional behaviour [3] or drawing inter-species comparisons [7].
In terms of applications, emerging fields are neural prostheses; replacements
for impaired parts of the nervous system [4], and neurorobotics; controlling
machinery [5] or prosthetic limbs [6] by thought alone.

The many branches of neuroscience involve medically complexity, engineer-
ing challenges and socio-societal ramification of vast proportion. Advances in
brain research determine the way we understand cognition, something which
is indispensable in an age where everyday computing more and more takes
the shape of machine-human interaction1, and they help us understand our-
selves in terms of conscious tasks [9] and spontaneous, innate behaviours [10]
alike. As diverse topics as political attitudes [11], [12] and food preferences
[13] are now studied with the aid of neural correlates; linking brain with
behaviour using neuroimaging techniques, there have even been stunning
examples of court case verdicts reliant on such technology [14]. Lastly and
perhaps most importantly, many questions concerning mental illnesses and
conditions that affect millions worldwide remain unanswered. With today’s
progress in data analysis in mind, the domain of psychiatric diagnostics faces
radical new possibilities in screening for and understanding such illnesses us-
ing quantitative methods, the topic to which this master’s thesis attempts to
contribute.

1ERP, Event Related Potentials, is the technique considered in this study. ERP is not
rarely used as, or in assesment of, brain-compter interfaces [8].
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1.2 ADHD in Psychiatry and Society

The treatment of data in the present study is aimed at finding traits
for ADHD (Attention Deficit Hyperactivity Disorder), a disorder impairing
a persons ability to give everyday tasks undivided attention. Short-term
memory as well as impulse control is affected, in some sub-types of ADHD
other symptoms that might arise are aggression [15] and excessive attach-
ment [16]. ADHD in individuals is commonly discovered during childhood,
making its assessment vulnerable to confusion; that between ’deficit’ impulse
control and normal childlike playfulness, curious nature and ’bouncyness’.
This difficulty along with the fact that the prevalence of ADHD has risen
significantly in the past decades [17], [18] has spurn a hot debate [19], [20],
[21] around the validity of the diagnosis altogether, and certainly about the
prescribed medication2 as well as on the topic of child psychology as a whole.

Evidently, there is a great deal of motivation for studying this type of mental
disorder, and put its current application into question. Naturally, settling
the concerns around ADHD would be much helped by quantitative reasoning
with a firm foundation in neurophysiology. It is certainly not beneficial for
children, parents or the confidence put into the psychiatric community if an
issue as widely disputed, and crucial for social- and learning conditions dur-
ing childhood, as ADHD be subject to guessing and practices that are left
unquestioned. This is not only true for ADHD, but for any field of neuro-
science where we have only scratched the surface in terms of how quantitative
methods may assist clinical judgement. To follow, in Sections 1.3 and 1.4, is
some background on the brain’s electrical properties and how these are mea-
sured using neuroimaging techniques. In Section 1.5, research questions and
hypotheses are found, describing the possible link between such techniques
and diagnostics and providing some justification for the features considered
as potential ADHD-traits.

1.3 Electrophysiology of the Brain

All neural communication, and thus any cognitively planned and several
unconscious physiological processes, is transmitted electrically in our bod-
ies. In the brain, this feat of biological ingenuity is performed by means of
ion channels containing, among others, sodium

(
Na+

)
and potassium

(
K+
)

ions. These ions fluctuate in and out of the cell membrane creating changes
in electrical charge, which travels to neighbouring neurons along axons if
certain voltage thresholds are exceeded. These travelling charges are called
action potentials, the sum of which make up the electrical activity measured
and considered in this study. A brief account of neural anatomy and these
potentials is found in Figures 1 and 2.

2Most commonly Methylphenidate (Ritalin), controversial for its side effects [22], [23].
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Figure 1: Depiction of a neuron with the cell body, soma (1) which like
any bodily cell contains a nucleus (2). The dendrites (3) are responsible
for recieving input from connected neurons. The output is in turn carried
through the axon (4). This output are the action potentials that make up
the vast majority of the electrical activity seen in the brain. The axon hillock
(5) , where the soma extends to the axon, encompasses a voltage threshold
(c.f. Figure 2), preventing ’false firings’. The action potential are generated
and propagated by charge-carrying ions, mentioned above. For purposes of
metabolic optimization, myelin cells (6) insulate the axons partially. These
leave room, the so called nodes of Ranvier (7), between which ions may
travel; a process known as saltatory conduction. The axon terminal (8)
contains synapses (9) that, as an effect of the action potential, emit neuro-
transmitter chemicals (10). These carry instructions to the receiving neuron
across the synaptic cleft (11). Neural resources: [33], [24]. Image source:
[60].

An illustration of an action potential is seen in Figure 2. These potentials
activate the receiving neuron, and ’cascades’ of such activation and deactiva-
tion, along with the specific neurotransmitters emitted at the axon terminals,
is what comprises neural communication.
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Figure 2: The mechanics of neuroelectircal transmission is highly binary;
failing to exceed the threshold (∼ −55 mV) at the axon hillock (c.f. Figure
1), yields no potential. Furthermore, action potentials from a given neuron
are more or less constant in voltage. The action potential can be divided into
three main phases. The first phase, depolarization, stems from a rapid change
in membrane potential from resting potential (∼ −70 mV) or just above it
to, commonly, +40 mV. Here, certain voltage-gated ion channels in the cell
membrane see increased permeability and thus an influx of

(
Na+

)
ions.

The second phase, repolarization, is a return towards the resting potential
of the membrane and occurs when all sodium ions have been absorbed by
the soma, after which

(
K+
)
channels activate that let these potassium ions

out through the membrane. The third phase, hyperpolarization, is a slight
and slowly re-establishing undershoot of the resting potential, due to the
potassium channels not closing entirely abruptly. The depolarization of the
cell membrane generates currents that, in turn, depolarise adjacent parts
of the axon membrane, and the action potential will propagate along down
the axon so long as it exceeds local thresholds (that are typically lower that
the one at the axon hillock.) Sources on action potentials [35] [33]. Image
source: [61].
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Single neuron action potentials of the brain are very rarely shorter than 1
ms, amounting to a lower limit for the region of interest in terms of wave-
length, or an upper limit in terms of frequency. At a higher, neuronal cluster
level, information is transmitted by propagation and intercommunicating
between several neurons, and the collected activity recorded over large cere-
bral regions are typically much longer in duration3. However, the ’primitive’
processes of the brainstem, and other ’old’4 cerebral structures are faster, in-
herent of their relatively low complexity and neuronal density. For instance,
as we shall see in Figure 3, the ABR typically comprises ∼ 7 waves during
10 ms.

1.4 Neuroelectrical Imaging: EEG, ERP, ABR

EEG, electroencephalography, is the technique of measuring electrical
properties of the brain using extra-cranial5 electrodes. More specifically,
when EEG is conducted so that the recorded neural activity is limited as
to correspond to a specific, repeated stimulus6, this is called Event Related
Potentials (ERP). In ERP, it is assumed that the stimulus is distinct enough
to give rise to more or less identical neural responses with each repetition.
Hence, one may perform some form of averaging over these ERP-observations
as a way to reduce noise and arrive at a characteristic response, the quantity
we shall attempt to extract from data as described in Section 3.

Auditory Brainstem Response (ABR) refers to the particular kind of ERP
where the aforementioned stimulus is sound, usually and in the case at hand,
in the shape of distinct ’clicks’ at given intervals, and where electrodes are
placed and calibrated so as to study the processing that occurs in the basic
auditory pathways, situated in the brainstem, Figure 3. That is to say, the
later responses from cerebral clusters of higher processing complexity7 are
left out. Indeed, Auditory Evoked Potentials are sometimes studied up to half
a second post-stimuli, capturing the later, cognitive auditory processing. As
an example, this has been used to show differences in the brains of musicians
and non-musicians [26]. In the following, only wanting brainstem activity, the
available data extends to only 15 ms post stimuli. In this way, the obtained

3For instance terminology in EEG talks about ’alpha’, ’beta’, ’gamma’ waves, and so
forth. These are in the range of [Delta waves: (0.1 – 3 Hz) , Gamma waves: (32 – 100 Hz)]
and primarily say something about various levels of wakefulness or physical and mental
activity [55], [56]

4In terms of natural evolution. There is well-established evidence to suggest that our
brain has not so much evolved as seen the addition of superstructures [25].

5Electrocorticography, (ECoG) is the name given to neural measurements from inside
of the cranium, although this technique is far more accurate it is, for obvious reasons,
more complex, expensive and uncomfortable for the test subject or patient.

6Rather than monitoring brain activity as a whole over a longer period of time, which
is the primary usage of standard EEG.

7In particular the primary auditory cortex of the temporal lobe.
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signals are less affected by a test subjects concious thoughts, memories or
preferences attached to the induced sound. It is assumed throughout ABR-
analysis that this exclusion of post-brainstem responses provides a clearer
picture of the deeper cerebral functions more inherent to the individual sub-
ject.

At least since the 1960s, ABR has been applied to paediatrics [27]. Hereby,
quality of hearing in infants can be determined, as it is a hard fought task
to ask newborns about their auditory experiences. However, new areas of
application have emerged in later years, among them the questions simi-
lar to the that posed by this study, namely within psychiatric diagnostics.
Possibly, ABR could help to determine what illness or condition a patient
has or is about to develop. For instance, there is strong evidence to suggest
that ABR is reliable in diagnosing subjects with schizophrenia [28], a disease
whose characteristics do include elements of auditory hallucinations [29], as
well as Asperger syndrome [30].

From a physiological viewpoint, one is often interested in relating the peaks
that can be seen in the ABR with actual regions in the brainstem. A timeline
of an ABR, with the corresponding regions and pathways in the central
auditory system, can be seen in Figure 3 below.
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Figure 3: Timeline of an idealized ABR aligned with the regions in the
brainstem auditory pathway from which waves labeled I-VII are understood
to arise. Note that this only extends to 10 ms, whereafter responses from
higher order cerebral structures are usually seen in the recording. The cochlea
is part of the inner ear, containing the perilymph, a liquid set in motion
by vibrations having passed through the early mechanical sound processing
of the outer- and middle ear. In turn, the moving fluid affects hair cells
that encode the vibrations into electrical communication. This is passed
through the acoustic, or vestibulocochlear, nerve to the cochlear nucleus,
whose primary function is preserving timing information of the incoming
sound, for purposes such as source location. Further along is the superior
olivary complex, acting as the primary site for auditory information from the
left and right ears to start converging partially. The lateral lemniscus is a
belt of axons of which relatively little is known, it does however transmit the
auditory information maintaining good temporal resolution. The inferior
colliculus in the midbrain has many purposes in auditory processing, among
them pitch detection, amplitude modulation and further auditory pathway
convergence. The medial geniculate body, part of the thalamus which acts
as the brains major ’switchboard’, relays the auditory information from the
brainstem to the auditory cortex. Sources on auditory pathway: [31], [32],
[33, ch.10], [34]. Image source: [59].
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1.5 Outline and Hypotheses

Investigating time-dependent phenomena is the most common way to
establish neurological traits from ABR for diagnostic purposes, and makes
it possible to quantify latency shifts between test subjects or observations
from a single test subject. In association with clinical research, it is then
possible to make claims about delays in given peaks (I-VII), i.e. a delay
from a given ’link’ of the brainstem auditory pathway illustrated in Figure
3. Aside from latency, it is also possible to study the amplitude of one or
more of the peaks in order to judge whether the physiological functionality
of any corresponding link may be impaired, signified by distinctly larger or
smaller local amplitude. This study, however, will adopt an approach of trait
extraction from ABR:s, founded in spectral analysis. This is seen more rarely
for ABR, or in other applications of ERP for that matter, but for instance in
[41], [42]. In the following, we will work under the premise that examining
frequency content in the ABR-data renders it possible to draw assumptions
about the synchronicity of the brainstem neural communication, as well as
the diversity of the spectral content, i.e. the variation in action potential
duration among brainstem auditory pathway neurons. As an illustration,
consider Figure 4 below.

Shown in Figure 4 are some coarse simulations made to demonstrate addi-
tions of simultaneous action potential firings. The various stages in the audi-
tory pathway is made up by nothing other than action potentials firing more
or less synchronized. As can be seen from Figures 4 a, b, c, difference in the
delay between two action potentials gives rise to different wavelengths (fre-
quencies) and for that matter number of wavelengths (bandwidth) present.
We may thus draw the assumption that a lower dominant frequency in the
ABR-response correlates with a less distinct response, and thus less syn-
chronicity, and that a greater diversity in synchronicity is marked by greater
bandwidth. By this reasoning, measures of dominant frequency and band-
width are chosen as features. Specifically, the estimators of these two quan-
tities used here are the so called Hjorth descriptors ℋ1 and ℋ2 respectively.
For the reason mentioned above - ERP:s are rarely studied with the aid of
spectral representations - Hjorth descriptors are uncommon in analysis of
ERP, but have found wide usage within the EEG- [43] and ECG8-techniques
[44]. Furthermore, we will look at the spectral purity index, ℐ, a measure of
the degree to which a signal is described by a single sinusoid. We shall also
consider the spectral slope, K, which will tell us something about he ratio
between low- and high frequency content within the signal. Further, we will
make use of two kinds of generalized Rényi entropies, ℰ1 and ℰ2, and finally,
we shall consider power in frequency bands, P (Section 2.2.1. This is a more
adapted approach which is designed after spectral analysis.

8Electrocardiology, measuring the hearts electrical activity.
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Figure 4: (a) Simulations of an action potential (without hyperolarization),
c.f. Figure 2, using a Gaussian windowed sinusoid with peak value 40 mV
and width at half maximum 0.5545 ms. (b) The same type of simulation,
with peak 40 mV, but width at half maximum 1.0196 ms. (c) In blue, the
sum of two potentials from (a). In green the sum of one potential in (a) and
one in (b). (d) In blue, the sum of a potential in (a) and an identical such
potential shifted +0.4883 ms. In green the sum of a potential from (a) and
an identical such potential shifted +0.6836 ms. It appears that neurons that
fire in parallell will give rise to different frequencies, and indeed number of
frequencies, dependent on their synchronization as well as with dissimilarity
in basic wavelengths.

Mentioned above are the seven features implemented with diagnostic objec-
tives in mind. They are defined and accounted for in Section 2.2 and will,
with various selection for each type of spectra, be applied to estimates of
power spectral density (PSD), Sx(f) and time-frequency distribution (TFD)
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Wz(t, f) from the ’signature’ ABR of each person. This will be done sepa-
rately for each cerebral hemisphere. In addition, we shall consider features
of the cross power spectral density (CPSD), Γx1x2(f), between the hemisphe-
real channels, making it possible to quantify the simultaneousness, i.e. the
phase-shift, and the equivalence in spectral content between the brain-halves.
When referring to the feature space, particularly in figure captions, this will
assume the notation:

ΘM,Λ,',�,ℎ. (1.1)

Here, type of feature ' = {ℋ1,ℋ2, ℐ,K, ℰ1, ℰ2,P} from estimation Λ =
{P,C,TF} (for PSD, CPSD, TFD) using data-treatment methodM = {win, b-p}
(window and band-pass respectively), and cerebral hemisphere ℎ = {L,R,B},
L for Left, R for Right and B for a comparison between Both. As for �,
throughout this study this will signify either a test subject or a group of
such with F for female, M for male, A for ADHD and C for healthy con-
trol. In the case of a specific test subject, a number will be added as the
index within the group. Examples are � = FA12 for the 12tℎ female in the
ADHD-group, � = M for all males or � = C for all persons in the control
group.

When comparing features between disease-groups, data will be divided with
respect to gender. There are three main reasons for this: i) There is a
significant gender difference in skull size. In general, men have 10% larger
skulls, while women’s skulls are thicker [36], introducing possible biases in
terms of signal strength or other characteristics. ii) In some aspects [37], [38],
[39] there are confirmed gender differences also in cerebral functionality. iii)
ADHD as a diagnosis is much more common [40] among boys/men, lending
relevance to a gender division in any study of the disorder. For illustrative
purposes, the course of action in this study is outlined graphically in Figure
5.
In evaluating the performance for each method and feature let

A = ΘM,Λ,',FA,ℎ,

C = ΘM,Λ,',FC,ℎ

(1.2)

be the sets containing each persons value for a given method, feature
and cerebral hemisphere in the female ADHD group (� = FA) and control
(� = FC) groups respectively. It is hypothesized that for A and C, and anal-
ogously for the corresponding male groups, the ADHD and control groups
might differ, yielding hypotheses:

H0 : �∗A = �∗C ,

H1 : �∗A ∕= �∗C ,
(1.3)

14



Examine raw data
and establish model

Process data us-
ing window† and

band-pass methods

Spectral Analysis
Ŝ, Ŵ , Γ̂

Feature extraction
Θ

Results: Method and
feature evaluation
and comparison

Figure 5: Flow chart describing the working stages of this study. Ŝ, Ŵ
and Γ̂ are estimates of the PSD, TFD and CPSD respectively. Θ are the
collection of spectral estimate features (Equation 1.1) to be extracted and
evaluated. † - note that this method will also require selecting a sub set of
the subject sample.

meaning that rejection of H0 points in the direction that the given feature '
in cerebral hemisphere ℎ using methodM could serve as a relevant frequency-
based trait for ADHD-diagnostics. Here, �∗ is an estimation of the ’center
of gravity’, �, in a distribution of persons in disease group in a given feature.
�∗ will be estimated using the Wilcoxon rank-sum test9, to be described in
Section 3.3.1.

9Known in many applied sciences as the Mann-Whitney test.
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2 Theory

The PSD, CPSD and TFD are the spectral representations used in this
study. Section 2.1 below contains a presentation of the non-parametric esti-
mators of the PSD, CPSD and TFD to be implemented for all subsequent
purposes, [48]. This study is not aimed at finding ’best in show’ estimates,
hence Section 2.1 is purposefully brief and to the point. For a more thorough
presentation of stationary processes, spectral estimation and time-frequency
distributions, the reader is advised to consult [46], [48]. Rather than focusing
on different methods of spectral estimation, our focus lies more in investi-
gating the features, Θ, outlined in Section 1.5. The features, to be extracted
from the PSD, CPSD and TFD, are accounted for in Section 2.2.

2.1 Spectral and Time-Frequency Analysis

Consider a sampled signal in discrete time:

xi, i = 1...N (2.1)

for some signal length N . First, let us make the assumption that xi is an out-
come of a stationary process, that is: it’s mean and correlation function are
independent of time i. Further, consider the power spectral density (PSD)
estimate of xi by means of a Hanning windowed periodogram, according to:

Ŝx(f) =
1

N

∣∣∣∣ N∑
k=1

xkℎk e
−i2�fk

∣∣∣∣2 (2.2)

with

ℎ(k) = 0.5

(
1− cos(

2�k

N − 1
)

)
, k = 1...N. (2.3)

As a second spectral representation, we shall consider the cross power spec-
tral density (CPSD), a spectral measure of correlation between signals. Con-
sider signals x, y as in 2.1. Now, let us form the cross-covariance estimate
between these as:

r̂x,y(k) =
1

N

N∑
t=k+1

(xt − m̂x)(yt−k − m̂y) (2.4)

The CPSD may then be estimated as

Γ̂x,y(f) =
N∑
k=1

r̂x,y(k)e−i2�fk (2.5)
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with r̂x,y from Equation 2.4. In this study, the periodogram will be estimated
for both cerebral hemispheres separately, thus representing the spectral con-
tent in each. The CPSD estimate of Equation 2.5, however, will be used to
compare hemispheral correlation with x and y in Γ̂x,y being the mean obser-
vational signals from a test subject’s left and right cerebral hemispheres.

Apart from Ŝx(f) and Γ̂x(f), we shall take on a non-stationary approach
to spectral estimation, i.e. time frequency distributions (TFD:s). We shall
utilize the so called windowed (or pseudo) Wigner-Ville distribution (WVD)
seen in Equation 2.6 below. When computing TFD:s, one is advised always to
transform the signal under consideration by means of the Hilbert transform,
thus yielding an analytic (discrete) signal zi for which Z(f) = 0 for f < 0
[48, ch.3.2]. In discrete time, any TFD is thus applied to a signal zi. We
may form the discrete WVD[49, p.235] as

Ŵz(n, k) = 2
∑

∣m∣<M/2

gm zn+m z∗n−m e
−i2�mk/M , (2.6)

where we will use M = N/10 and N as before is the signal length, zi is
the analytic signal, n = 1...N and m ∈ ℤ . The function g is a so called
doppler-independent kernel, and will take on the form of a Hanning window
according to:

gj =

{
ℎ̃(j) if ∣j∣ < M/2
0 otherwise,

(2.7)

with ℎ̃(j) is a Hanning window as in Equation 2.3, but centered at zero and
with length M instead of N , and j ∈ ℤ. Ŵz is the TFD-estimation from
which certain features, described below, are to be extracted.

2.2 Features of Spectral Estimates

Concentration measures are features of a given distribution, theoretical
or empirical, and a common way to describe its dispersion or shape. For
instance, some well known such measures from the field of statistical infer-
ence are10 the variance, skewness and kurtosis. Far from being limited to
these quantities, any moment or function thereof can serve as a feature and
may well reveal and describe some property of given data or a distribution
function. Spectral estimations, examples of which are seen above in Section
2.1, are indeed ways to describe frequency content or distribution in a given
signal, and it is hypothesized that the features specified below are ways to
capture possible differentiated and disease-specific neural synchronization as

10The mean, or expected value, is a measure commonly considered for data and theoret-
ical distribution functions respectively. This does not, however, contain any information
about concentration as such
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outlines in Figure 4. The features chosen for this study are picked on merits
of being well established in information theory or bioelectrical signal pro-
cessing.

For a given spectral estimate Ŝ (or Γ̂) we may define the ntℎ moment as

Mn =

∫ ∞
−∞

fnŜx(f)df (2.8)

Using combinations of such moments, we may define a set of measures com-
monly used in bioelectrical signal processing [50, p. 99-103]. Namely, the
Hjorth descriptors and spectral purity index. The 0tℎ Hjorth descriptor

ℋ0 = M0. (2.9)

, also called activity, is nothing but the first moment, or in the terminology
of the correlation function we have ℋ0 = rx(0), with the same x denoting an
arbitrary signal as in 2.8. As we shall see, all PSD estimates to be derived will
be normalized, hence ℋ0 will be identical for all spectra and lack meaning for
these. This is not true for the CPSD estimates, Γ̂, where ℋ0 will certainly
be used and seen as a measure of total correspondence between hemispheres.
The 1st Hjorth descriptor is defined as the square root transformed ratio,

ℋ1 =

√
M2

M0
, (2.10)

which is also called mobility, and is an estimate of the dominant frequency.
Alternatively, one could say that ℋ1 describes a center of mass in frequency.
The 2nd Hjorth descriptor,

ℋ2 =

√
M4

M2
− M2

M0
, (2.11)

is referred to as complexity and is an estimate of the spectral bandwidth.
Alternatively, this may be seen as a variance measure in frequency. Finally,
among the moment-based measures we have the spectral purity index,

ℐ =
M2

2

M4M0
. (2.12)

The name reflects the fact that this measure conveys how ’well’ data is mod-
elled by a single sinusoid, with ℐ = 1 for a perfect such fit. Hence, it is
suggested that ℐ is also a measure on (lack of) complexity in the ABR-
spectra, and is assumed to correlate negatively with ℋ2.

As to adopt an alternative approach, independent of the moments in 2.8,
consider the PSD or CPSD estimates from Equations 2.2, 2.5. Disregard-
ing the peaks in the spectra, these estimates are typically monotone and
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decreasing for the types of data here considered, with higher magnitude in
lower frequencies. Applying a log-transform to Ŝx(f) renders this decrease
sufficiently linear [50, p. 99], and a first degree polynomial function ℎ(f ;�)
may be fitted by:

�̃ = arg min
�

∞∫
−∞

(ℎ(f ;�)− log Ŝx(f))2df. (2.13)

Thus, ℎ(f, �̃) = �̃0 + �̃1f provides the best fit in a least-squares sense and the
linear parameter is taken to be a feature describing, albeit rather crudely,
the ratio between high and low frequencies present in the signal, i.e.

K = �̃1 (2.14)
is the slope feature used in the continuation.

The two last features used for Ŝ, and the only two used for Ŵ , are renditions
of Rényi entropy with two different parameter values. Entropy is a measure
on uncertainty or disparity, i.e. higher entropy means, in this case, a more
widespread spectrum.

Rényi entropy takes the following shapes for spectral estimates,

RŜ(�) =
1

1− �
log2

(∫ ∞
−∞

Ŝ�(f) df

)
(2.15)

and time-frequency distributions,

RŴ (�) =
1

1− �
log2

(∫ tN

t0

∫ ∞
−∞

Ŵ�(t, f) dtdf

)
(2.16)

respectively. As features, we shall consider

ℰ1 = lim
�→1

R(�) (2.17)

and

ℰ2 = R(2) (2.18)
with R from Equation 2.15 or 2.16. ℰ1 is the so called Shannon entropy, well-
established as a measure of disparity or complexity in information theory and
bioinformatics, e.g. [51], [52]. Since ℰ1 and ℰ2 are not normalized, as are ℋ1,
ℋ2, ℐ, these will not be used for the un-normalized cross spectral estimate Γ̂.

In summary, for the PSD estimate (Equation 2.2) we shall consider features
ℋ1, ℋ2, ℐ, K, ℰ1, ℰ2 for both hemispheres. For the CPSD estimate (Equation
2.5) we shall consider ℋ1, ℋ2, ℐ, K for the comparison between hemispheres,
and for the TFD estimate we shall consider ℰ1, ℰ2 for both hemispheres.
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2.2.1 Power in Frequency Bands – An Additional Feature

As work progressed, an additional feature was brought into consideration.
This method is based on power in frequency band, common in biomedical
signal procesing [50, p. 98-99]. This feature is treated as additional in the
sense that it is to be used only for the band-pass method, and also for the
fact that it is not completely impartial. Rather, it is conditioned on the
findings of the spectral analysis. Power in frequency bands, to be labled P,
is simply:

P =

∫∞
f0
Ŝx(f)df∫∞

−∞ Ŝx(f)df
. (2.19)

Here, two main approaches as to find the limit frequency f0 may be adopted:
i) An empirical approach, viewing spectra among the persons and estimating,
roughly by inspection, a common break point between peaks. ii) Optimizing
by, for instance, looking for best clustering properties (in our case between
disease groups) with different choices of f0. For simplicity, we shall choose
option i, while choice of f0 and the results in the feature spaces obtained by
use of Equation 2.19 can be seen in Section 4.2.3.
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3 Data and Methods

3.1 Hardware and Measurement

The ABR-measurements used in this study were carried out by personnel
at SensoDetect11 using their patented BERA12-system. The complete system
is shown in Figure 6.

Figure 6: The BERA-equipment setup. The frontal electrodes of the two
channels, left in black and right in yellow, are here seen. The correspond-
ing opposite pole of each are located right behind each ear. The channels
are attached to ground separately. The AD-conversion is performed with a
resolution of 0, 05 mV using 16-bit hexadecimal conversion. Image source:
[59].

The induced sound stimuli consist of square shaped pulses with duration
0.136 ms with a rise and fall time of 0.023 ms. The square shape charac-
teristic means that the test subject will experience a short pulse, or ’click’,
of white noise13. The clicks used here come with an interstimulus interval
from onset to onset of 0.192 ± 0.012 seconds. The variability between each
click is assigned as drawn from a normal distribution, but each test subject
is presented with the same ’stimulus train’, i.e. ’soundtrack’. There are two

11SensoDetect AB is company which carries out statistical analysis with objectives sim-
ilar to this study, namely to create reliable diagnostic tools for psychiatry. The company
have previously focused research and product development on the aforementioned case of
schizophrenia [28], and are currently distributing a solution for diagnostic support covering
this disease.

12Brainstem Evoked Response Audiometry, another abbreviation for ABR
13i.e containing ’all frequencies’. This is only one of many sound profiles which has been

used in ABR-applications, one may for instance consider different kinds of chirps [42] or
an addition of masking sounds [28], [30].
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main reasons behind this random shift in time. One is noise cancellation;
with a varying interstimulus time, ’unwanted’ neural activity of far lower
frequency present in the recording as well as possible other artifacts ought
to be reduced when applying averaging over the observations. The other
reason is to inhibit habituation; the repetitiveness of an equidistant stimulus
train could well affect the brainstem14 in ways which produces unwanted
habituation-related alterations in the ABR [28].

3.2 Test Subject Data

The collected data consists of measurements from 69 subjects divided into
groups as in Table 1 below. In using the window method, Section 3.4, we shall
consider a sub division of these subjects selected based on certain criteria.
With the adoption of the band-pass method, all subjects are included in the
study.

Group\Gender Female Male

Healthy controls

nFC = 19 nMC = 17
�FC = [26, 62] years �MC = [21, 65] years
mFC = 40 − ”− mMC = 43.81 − ”−
sFC = 11.27 − ”− sMC = 12.69 − ”−

ADHD

nFA = 18 nMA = 15
�FA = [17, 52] years �MA = [16, 59] years
mFA = 28.44 − ”− mMA = 30.33 − ”−
sFA = 12.81 − ”− sMA = 11.16 − ”−

Table 1: Here, n - number of subjects, � - age range, m - mean age, s
- standard deviation in age, for each group. Concerning the age of test
subjects, it should be noted that for two test subjects, one in each control
group, the age is unknown to the author. This study, however, does not
attempt to model for or capture any age dependency.

Each test subject included in the study has gone through the same procedure,
with the exception of some variation in the exposure time. For most subjects,
measurement consists of around 2750 observations, 1375 on each side. Each
observation includes 15 ms of recorded brainstem activity, made up of 256
samples equalling a sampling rate of fs ≃ 17 kHz. It is of interest to make
each persons ABR-recording fully comparable15. With this in mind, every

14The individual degree of habituation may very well be a trait worthy of study, but
for our purposes we wish to be able to consider the individual ABR-observations to come
from as similar a neural process as possible

15We may not want to compare cerebral activity which for some reasons tends to appear
after recording times not reached during measurement on all test subjects
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persons recording will be cut as to match the length of the shortest recording.
This was for � = MC16 and consisted of 2478 observations. Measurements
are taken on each side of the brain and these two hemisphereal channels will
in all following analysis be considered separately. We may then form two
matrices:

xLt,T , t = 1...N, T = 1...M,

xRt,T , t = 1...N, T = 1...M,
(3.1)

containing the recorded raw data for the left and right hemisphere respec-
tively. Here, t is the intra-observational time and T the observation number
and N = 256, M = 2478/2 = 1239. In the following, when talking about a
given observation from either hemisphere, i.e. a column in xt,T from Equa-
tion 3.1, this will be denoted

xt, t = 1...N. (3.2)

Examining the raw data is a natural first step, and is aimed at discover-
ing occurrence and characteristics of artifacts, ’broken’ samples and other
anomalies in the data. In Figure 7 below, the mean observation in raw data
for persons � = MA4, FA11, FC9 are seen.
Figure 7 shows artifacts of various types occurrent in the data, which are
to be dealt with by processing the signal. i To follow in Section 3.3 are the
assumptions made for the purpose of modelling and treating data.
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Figure 7: Mean observations from raw data and 3 persons. (a) and (b) are
from person MA4, left and right hemispheres respectively. (c) and (d) are
left and right hemisphere mean observations from person FA11. Finally (e)
and (f) come from person FC9, left and right hemisphere.
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3.3 Model for Data

In all following analysis, based on examination of the raw data, it is as-
sumed that no trend in the global time T of observation number can be seen.
That is, we regard the ABR to be suffiently deterministic and identical be-
tween observations. As mentioned in 1.4, this is the common way to regard
any kind of ERP:s. The variability between observations is thus considered
to arise from noise assumed to be independent to the brainstem activity.
This noise will typically be of the following origins: i) The ’EEG’: That is,
lower frequency modulations coming from all other cerebral activity but the
ABR as picked up by the electrodes. ii) Muscular noise from cranial and
ocular muscles contracting and relaxing throughout the recording procedure.
iii) Hardware disturbances from the equipment and power-lines, the familiar
50/60 Hz will here be examined. iv) Electrode motion artifacts: disturbances
arising from movements of the electrodes or variations in connectivity with
the skin.

As mentioned in Section 1.4, ABR:s are commonly assumed to be identi-
cal between observations. The variation between observations is therefore
considered to spring from the noise as described above. In all, we assume
the underlying ABR to be constant in global time T , we may model a given
observation with:

xt = vt + �t, (3.3)

where �t is the noise in the particular observation stemming from physical
and technical sources mentioned above. For the reason mentioned above in
3.1, that the inter-stimulus time interval is varied, �t is assumed to be iid16.
Further, vt in Equation 3.3 is the assumed ’true’, or characteristic, individual
ABR we wish to capture and study. We can conclude that if we consider a
zero-mean signal and with the assumption of a vt constant in observational
time T , i.e. V (vt) = 0 then.

D(xt) = D(�t)
⇒

D(x̄t,T ) =
D(�t)√
M

.
(3.4)

With V and D being the variance and standard deviation respectively. As
we shall see, the number of observations M available for each person is
M ≃ 1200⇔

√
M ≃ 35. For all practical purposes, it is assumed that with

the model in Equation 3.3 and the averaging over (assumed) iid noise �t in
Equation 3.4, the noise is sufficiently reduced. That is, we expect to obtain

16identically and independently (between observations) distributed
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the characteristic ABR by taking the mean over all observations, i.e. for left
and right hemispheres, the mean observations

x̄Lt , t = 1...N,
x̄Rt , t = 1...N

(3.5)

are the quantities from which we wish to make spectral estimates; Equations
2.2, 2.5, 2.6.

It is thus established that we shall consider the mean hemispheral observa-
tions, x̄L, x̄R, as the characteristic ABR-responses from each person. The
two data pre-processing methods, the window method and the band-pass
method, are presented in Sections 3.4 and 3.5 respectively. These are to be
applied to each observation of data prior to forming the means in Equation
3.5. Before describing these methods, a brief word on the statistical testing
used to study significance between disease-groups in feature spaces follows
in Section 3.3.1.

3.3.1 Statistical Testing: Wilcoxon rank-sum test

When comparing groups with the objective of finding significant inter-group
differences, c.f. Equation 1.3, we shall utilize theWilcoxon rank-sum test [58],[47,
p.121]. This test makes no assumption about normality, which is particu-
larly appropriate with relatively small data sets17 that appear not to be
normally distributed. The test does however demand that compared data
comes from distributions of equal variance. For the purpose of this study,
we shall assume that any outcomes of features from an ADHD-group and a
control group respectively are indeed equal in variance18.

The (doble-sided) Wilcoxon rank-sum test operates in the following fashion:
Consider two ranked, i.e. sorted in order of magnitude, data sets !i, �j ,
i = 1...n, j = 1...m, n ∕= m whose means are to be tested with a hypothesis
such as Equation 1.3 in mind. Consider further a quantity T defined as:

T =
n∑
i=1

(# of values in �j smaller tℎan !i). (3.6)

Now, we define U as:

U = n ⋅m+
n ⋅ n+ 1

2
− T. (3.7)

17As we shall see, the smallest disease-gender-group will be as small as 7 using the
window method, and 15 using the band-pass mathod.

18Certainly, we could here utilize some form of analysis of variance (ANOVA), however
an assumption of equal variance is common practise in dealing with this form of human
individual measurement, and the reader is kindly asked to hold this to be true.

26



Under certain conditions19 U is normally distributed with expected value
and variance:

U ∼ N
(
n ⋅m

2
,
n ⋅m ⋅ (n+m+ 1)

12

)
. (3.8)

Thus, from the assumption of normality, Equation 3.8, we may construct
and use a test statistic z ∼ N (0, 1) according to.

z =

(
U − n⋅m

2

)√
n⋅m⋅(n+m+1)

12

. (3.9)

In turn, z may be subject to a standard two-sided t-test, which constitutes
the last step in the procedure of the Wilcoxon rank-sum test. Being that
this test considers ranks, comparison with this test does not say anything
about whether mean values between groups may differ, but rather whether
their medians do. i.e., the median is the ’center of gravity’, �, mentioned in
1.3. However, under the assumption that the distributions of disease-group
feature outcomes are symmetrically distributed, which is feasible, the mean
and median are equal.

3.4 Window Method

As this algorithm for data pre-treatment here is highly specific for the
study at hand, no in-depth theory is included20. Instead, each data treat-
ment step is here accounted for independent of any derivations.

As to make data, as demonstrated in Figure 7, more apt for spectral estima-
tion, the following steps of signal pre-processing were employed.

Step 1 Firstly, there is good reason to omit some samples from the be-
ginning of the measurement. Test subjects here tend to react very
differently in the habituation process, i.e. when getting used to the
click-sound exposure [28]. Thus, the 50 first observations from each
cerebral hemisphere are withdrawn from any further analysis

Step 2 Let xt be a given ABR-observation, i.e. column in xt,T of length
N = 256. As a first observation-wise procedure, we try to mitigate the
apparent artifactal spikes seen for all test subjects in Figure 7. This

19Requirements are, loosely, n, m > 20. As we shall see, this demand not met using the
window method (as this entails a sub selection of the subject sample), but almost with
the complete subject sample used with the band-pass method

20A more rigorous, and introductory, account of signal processing is given in for instance
[45].
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is done by employing a median value window of length 11 which, for a
given observation yields

x̂i = med([xi−5 . . . xi+5]), i = 6 . . . N − 5. (3.10)

Step 3 Since we are at most interested in wavelengths up to 1 ms it is of clear
interest to reduce high frequency noise, some of which is introduced by
the median window21, and some of which may be attributed to AD-
resolution round-off errors. In order to obtain a smoother signal, we
use a mean value window of length 7, i.e.

˜̂xi = mean([x̂i−3 . . . x̂i+3]), i = 4 . . . N − 3. (3.11)

Step 4 As to remove any ’DC-level’ from subsequent spectral estimation,
mean values are subtracted from each corresponding observation, i.e.

˜̂xt = ˜̂xt −mean(˜̂xt) (3.12)

Step 5 Lastly, in wanting the characteristic ABR of a person we normalize
all observations to contain the same energy, i.e. we normalize such
that,

N∑
i=1

˜̂x2
i = N. (3.13)

The interpretation of characteristic ABR employed here is thus that
we let spectral content of observations contribute equally and not in
proportion to energy within the observation.

As a comparison with Figure 7, these three observations can now be seen,
filtered, in Figure 8.

As seen in Figure 8, the window method is unable to take care of low un-
wanted frequencies. In Figure 8, these are marked by possible prominent
EEG disturbances or power line noise (c,d) and possible early onset cogni-
tive responses (e,f). Based on this fact, a subset was selected for usage with
the window method from the subject sample in 1. In this subset, subjects
are selected only if they do not exhibit the low frequency noise as seen in
Figure 8 (c,d,e,f). This new subject sample set can be seen in Table 2 below.
Using these persons, we form the mean observation according to Equation
3.5. Having done this, we form the spectral estimates from Equations 2.2
(PSD), 2.5 (CPSD), 2.6 (TFD). Here, Ŝx(f) and Ŵz(t, f) are normalized,
i.e. the reassignments

21As this samples from existing values
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Figure 8: Mean observation in data filtetred by the window method from
the same 3 persons as in Figure 7, MA4 (Left hemisphere in (a), right
hemisphere in (b)) FA11 (Left hemisphere in (c), right hemisphere in (d))
and FC9 (Left hemisphere in (e), right hemisphere in (f)). It appears that
there are possible early onset cognitive EEG in (c) and (d), as well as some
low frequency disturbance in (e), (f) which are not properly filtered by the
window method here used.

Ŝnx (f) = Ŝx(f)∫∞
−∞ Ŝx(f)df

Ŵn
x (t, f) = Ŵz(t,f)∫∞

−∞
∫∞
−∞ Ŵz(t,f)dfdt

(3.14)
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Group\Gender Female Male

Healthy controls

nFCS = 10 nMCS = 7
�FCS = [27, 62] years �MCs = [21, 60] years
mFCS = 41.55− ”− mMCS = 37.14− ”−
sFCS = 12.34− ”− sMCS = 13.42− ”−

ADHD

nFAS = 9 nMAS = 7
�FAS = [17, 52] years �MAS = [16, 59] years
mFAS = 27.55− ”− mMAS = 32.14− ”−
sFAS = 13.14− ”− sMAS = 14.48− ”−

Table 2: The selected subject sample for which the window method is
used. These are chosen on basis of not showing the characteristics of Figure
8 (c,d,e,f). As before, n - number of subjects, � - age range, m - mean age,
s - standard deviation in age, for each group, with indexation denoting F -
female, M - male, C - healthy control, A - ADHD. S denotes belonging to
the selected subject sample.

are applied. This is not done for Γ̂ as we wish to study the magnitude of the
CPSD; the magnitude of correlation between brain hemispheres measured
here by ℋ0.

Having established the subject sample, features from Section 2.2 are applied
to estimates, and results of feature performance with the window method
are seen in Section 4.1.
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3.5 Band-Pass Method

The window method algorithm developed above was intra-observational
and designed with the characteristics of the raw data in mind, the method
was also limited in the sense that a sub-selection of subjects (2) had to be
made.

As a second method, we shall consider an approach, described below in steps,
including the familiar linear band-pass filter. The steps of this method are
outlined below.

Step 1 For the same reason mentioned in the Steps of 3.4 of wanting to cut
observations from the beginning of the the recording, 50 observations
from either side, xLt,T ,x

R
t,T are withdrawn. Also, each observation has

16 samples from the beginning and 41 samples from the end cut off.
These limits are chosen empirically and aimed at capturing the ’worst’
of early spike artifacts and higher cognitive responses showing up at
the end of some persons observations. This yields observations now of
length 200 samples, or 11.7 ms.

Step 2 The matrices containing observations on each side are converted
into vectors, with each observation following the next. For this all-
observation vectors, a linear band-pass filter with 3 dB cutoff frequen-
cies f = [250, 1000] Hz and length 1000 in global sample time u, i.e.
a time of length t ⋅ T covering all observations, was applied. This
was to mitigate both high frequency artifacts and the lower frequency
’EEG’-noise from extra-brainstem activity.

Step 3 Due to filtering deterioration at the beginning and end of the all-
observational vector, 5 observations ≃ 1000 samples are withdrawn
from each of xLt,T ,x

R
t,T .

Step 4 The same procedures of de-meaning and energy-normalization as
Steps 4, 5 in 3.4 are undertaken.

Just like with the window method, the mean observations, x̄Lt,T ,x̄
R
t,T , are

produced, examples of which are seen in Figure 9 below, and estimates PSD,
CPSD, TFD computed. Also as with the window method, the PSD and TFD
estimates are normalized according to Equation 3.14. The performance of
features produced from these estimates are found in Section 4.2.
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Figure 9: Mean observation in data filtetred by the window method from
the same 3 persons as in Figure 7, MA4 (Left hemisphere in (a), right hemi-
sphere in (b)) FA11 (Left hemisphere in (c), right hemisphere in (d)) and
FC9 (Left hemisphere in (e), right hemisphere in (f)). It appears that the
problems not dealt with by means of the window method are here miti-
gated by the band-pass method. It also appears that although we can make
no claims on an exact number of peaks present, this treated data certainly
resembles an ’idealized’ ABR as shwon in Figure 3

,
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4 Results

Some examples of the spectral estimates with basis in the window and
band-pass methods are presented in Sections 4.1.1 and 4.2.1, while results
of the feature analysis are found in Sections 4.1.2 and 4.2.2. These results
consist of Tables 4 to 14 encompassing the p-values, i.e. the feature per-
formance in distinguishing between disease groups, using all methods and
features. Plots of how subjects fall out in certain features are presented
in Sections 4.1.2 and 4.2.2 whenever significance is reached between disease
groups, or when there are other reasons to look more closely at the fea-
ture performance graphically. However, as we shall see, no such plots are
presented for the window method, as there is very little of interest in this
respect.

Throughout all graphical representaions, blue circles (o) will denote control
subjects and red crosses (+) those diagnosed with ADHD. Section 4.3 in-
cludes some analysis of how outcome between some features correlate, while
Section 4.4 uses the significant results found for a brief endeavour into clas-
sification. Section 4.2.3 presents results from the ’additional feature’, power
in frequency bands (P).
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4.1 Window Method

4.1.1 Spectral Estimates
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Figure 10: Figures showing spectras estimation from mean observations
obtained using the window method shown in Figure 8 (a) and (b), i.e from
person MA4. In the present figure, (a) are the left- and right hemisphere
PSD:s, (b) is the CPSD between hemispheres. (c) and (d) are the left-
and right hemisphere TFD:s respectively. It should be noted from all these
plots that a considerable amount of low-frequency ’noise’ is present, as the
method used was not designed to deal with this problem in mind.
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4.1.2 Feature Performance

Tables 3 and 4 below shows the performance of features obtained via the
window method and PSD estimate for females and males respectively. No
significance was found between disease groups, and no plots are presented.

Feature & hemisphere p Significance

ℋ1, Left 0.5490 -
ℋ1, Rigℎt 0.0535 -
ℋ2, Left 0.7197 -
ℋ2, Rigℎt 0.6607 -
ℐ, Left 0.7802 -
ℐ, Rigℎt 0.2110 -
K, Left 0.1823 -
K, Rigℎt 0.0535 -
ℰ1, Left 0.8421 -
ℰ1, Rigℎt 0.1564 -
ℰ2, Left 0.9048 -
ℰ2, Rigℎt 0.1564 -

Table 3: Feature performance using the window method and PSD estimate,
females. No significant disease-group difference was found.

Feature & hemisphere p Significance

ℋ1, Left 0.6200 -
ℋ1, Rigℎt 0.4557 -
ℋ2, Left 0.9015 -
ℋ2, Rigℎt 0.9015 -
ℐ, Left 0.3829 -
ℐ, Rigℎt 0.3829 -
K, Left 0.1649 -
K, Rigℎt 0.3176 -
ℰ1, Left 0.2086 -
ℰ1, Rigℎt 0.9015 -
ℰ2, Left 0.2086 -
ℰ2, Rigℎt 0.7104 -

Table 4: Feature performance using the window method and PSD estimate,
males. No significant disease-group difference was found.
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For the cross spectral estimates estimates, Tables 5 and 6 show feature per-
formance from features of CPSD for females and males respectively. As with
the case of PSD, no significance was attained and no plots are shown.

Feature p Significance

ℋ0 0.3562 -
ℋ1 0.7197 -
ℋ2 0.4967 -
ℐ 0.3562 -
K 0.3154 -

Table 5: Feature performance using the window method and CPSD esti-
mate, females. No significant disease-group difference was found.

Feature p Significance

ℋ0 0.2086 -
ℋ1 0.7104 -
ℋ2 0.5350 -
ℐ 0.7104 -
K 0.4557 -

Table 6: Feature performance using the window method and CPSD esti-
mate, males. No significant disease-group difference was found.

Lastly, in Tables 7, 8, follow the results using TFD for females and males
respectively.

Feature & Hemisphere p Significance

ℰ1, Left 0.8421 -
ℰ1, Rigℎt 0.0789 -
ℰ2, Left 0.8421 -
ℰ2, Rigℎt 0.0653 -

Table 7: Feature performance using the window method and TF estimate,
females. No significant disease-group difference was found.
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Feature & Hemisphere p Significance

ℰ1, Left 0.8048 -
ℰ1, Rigℎt 0.9015 -
ℰ2, Left 0.8048 -
ℰ2, Rigℎt 0.9015 -

Table 8: Features performance using the window method and TF estimate,
males. No significant disease-group difference was found.
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4.2 Band-Pass Method

4.2.1 Spectral Estimates
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Figure 11: Figures showing spectral estimates from mean observations
shown in (a) and (b) of Figure 9. The figure here at hand shows: (a) the
left- (red) and right (blue) hemisphere PSD:s, (b) is the CPSD between
hemispheres. (c) and (d) are the left- and right hemisphere TFD:s respec-
tively.

Figure 11 shows spectral estimates from � = MA4. It is interesting to note
that there seems to be no significant time-dependency of the frequency in
(c) and (d), thus we may conclude that working under the assumption that
the ABR is stationary is valid for, at least, this person. Other individual’s
TFD:s tell the same tale. Compared to 10, it is evident that the band-pass
filtering has done its job: no low frequencies remain. It is also interesting to
note, in the PSD and CPSD, that one peak has been ’lost’ as compared to
the window method.
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4.2.2 Feature Performance

Using the band-pass method, consider first Table 9 below with the female
group and PSD estimate. Here, certain significant disease-group differences
were found. Consider results of ℋ1 in Figure 12 and ℋ2, Figure 13, below.
Comparing results in these figures, it could be argued that the ADHD group
has more content in the lower frequency range, affecting both dominant fre-
quency and bandwidth.

Table 10 shows the PSD features in the male group. Here, no significance
was reached and no graphic result is shown. Moving over to the CPSD,
p–values as given by Table were found for the female group, Table 11, and
make group, 12 respectively. Here, no significance was achieved, but we shall
take a closer look at the ℋ0 feature in the male group, Figure 14. The results
from the TFD are seen tables 13 and 14. Here, no significant disease group
difference is seen or presented.

Feature & Hemisphere p Significance

ℋ1, Left 0.0276 *
ℋ1, Rigℎt 0.1489 -
ℋ2, Left 0.0009 ****
ℋ2, Rigℎt 0.9879 -
ℐ, Left 0.0028 ***
ℐ, Rigℎt 0.4384 -
K, Left 0.3540 -
K, Rigℎt 0.0322 *
ℰ1, Left 0.5333 -
ℰ1, Rigℎt 0.8912 -
ℰ2, Left 0.4566 -
ℰ2, Rigℎt 0.9394 -

Table 9: Features performance using the band-pass method and PSD es-
timate, females. Significant disease-group difference found using ℋ1 on left
hemisphere (*), ℋ2 on left hemisphere (****), ℐ on left hemisphere (***)
and K for the right hemisphere (*).
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Figure 12: Θb−p,PSD,ℋ1,F,L against Θb−p,PSD,ℋ1,F,R. ADHD in red, con-
trols in blue. p = 0.0276 for this feature for the left hemisphere mean
observation. It appears that the ADHD group has a significantly (***) lower
dominant frequency on the left side ABR.

Feature & Hemisphere p Significance

ℋ1, Left 0.4967 -
ℋ1, Rigℎt 0.5457 -
ℋ2, Left 0.2269 -
ℋ2, Rigℎt 0.1740 -
ℐ, Left 0.1623 -
ℐ, Rigℎt 0.5970 -
K, Left 0.1863 -
K, Rigℎt 0.5209 -
ℰ1, Left 0.5209 -
ℰ1, Rigℎt 0.3079 -
ℰ2, Left 0.5209 -
ℰ2, Rigℎt 0.2573 -

Table 10: Feature performance using the band-pass method and PSD esti-
mate, males. No significant disease-group difference was found.
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Figure 13: Θb−p,PSD,ℋ2,F,L against Θb−p,PSD,ℋ2,F,R. ADHD in red, con-
trols in blue. p = 0.0009 or this feature for the left hemisphere mean ob-
servation. It appears that the ADHD group has significantly (****) larger
bandwidth on the left side.

Feature p Significance

ℋ0 0.6595 -
ℋ1 0.3087 -
ℋ2 0.6161 -
ℐ 0.4384 -
K 0.8673 -

Table 11: Feature performance using the band-pass method and CPSD
estimate, females. No significant disease-group difference was found.

Feature p Significance

ℋ0 0.1740 -
ℋ1 0.5209 -
ℋ2 0.7340 -
ℐ 0.7340 -
K 0.7057 -

Table 12: Feature performance using the band-pass method and CPSD
estimate, males. No significant disease-group difference was found.
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Figure 14: Person index within each group and their respective
Θb−p,CPSD,ℋ0,M,B. ADHD in red, controls in blue. No statistical signifi-
cance was achieved, but aside for a few outliers, a vague trend of ADHD
subjects displaying lower hemispheral correlation, resulting in lower energy
in the CPSD which is precisely ℋ0, can be seen.

Feature & Hemisphere p Significance

ℰ1, Left 0.2545 -
ℰ1, Rigℎt 0.0806 -
ℰ2, Left 0.2420 -
ℰ2, Rigℎt 0.0755 -

Table 13: Feature performance using the band-pass method and TF esti-
mate, females. No significant disease-group difference was found.

Feature & Hemisphere p Significance

ℰ1, Left 1.0000 -
ℰ1, Rigℎt 0.5970 -
ℰ2, Left 0.9699 -
ℰ2, Rigℎt 0.5711 -

Table 14: Feature performance using the band-pass method and TF esti-
mate, males.

42



4.2.3 Power in Frequency Bands

Here we shall, separately, consider the adapted approach of power in fre-
quency bands. p-values for this analysis using band-pass method and the
PSD are shown in Table 15. The frequency f0 from 2.19 was chosen, em-
pirically to be 365 Hz. This empirical selection was a simple case of ’band-
finding’ by visual inspection.

Feature & Hemisphere p Significance

P Left, Females 0.0034 ***
P Rigℎt, Females 0.2545 -
P Left, Males 0.0192 *
P Rigℎt, Males 0.5970 -

Table 15: Using proportion of spectral energy > 365 Hz as P, p-values
separating disease-groups were found in the left hemispheres of both genders.

As seen in Table 15, some significant results were found, and these are ac-
counted for graphically in Figures 15 (females) and 16 (males) below.
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Figure 15: Feature space P for females. p = 0.0034 (***) in left hemisphere.

It is interesting to note, judging by Figures 15, 16, and to be discussed in
Section 5.1, that whereas there appears to be less power in spectral bands
for females diagnosed with ADHD, the reverse is true for males.
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Figure 16: Feature space P for males. p = 0.0192 (*) in left hemisphere.
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4.3 Feature Correlation

Having established features for each person, method and spectral repre-
sentation, it may be of interest to compute somecorrelations between fea-
tures. This is done for the female group and PSD estimate, and herein
Θb−p,PSD,ℋ1,F,L,Θb−p,PSD,ℋ2,F,L,Θb−p,PSD,ℐ,F,L on merit of these yielding
significant results and on the same brain hemisphere. Consider the matrix
� in Equation 4.1.

� =
1 −0.5261 0.8625

−0.5261 1 −0.8675
0.8625 −0.8675 1

(4.1)

These are the correlations between, in order, ℋ1, ℋ2 and ℐ, both disease-
groups have been used. Evidently, and as hinted at in Section 2.2, there is
strong negative correlation between ℋ2 and ℐ, -0.8675. Indeed, this needs
to be taken into consideration when using both in a common classification
space, such as below.

4.4 Classification in Feature Space

Having achieved the four instances of significance using PSD with the
band-pass method in the female group (seen in Table 9) we may make an at-
tempt at classification using these. Simple k-closest neighbour classification
is adopted with k = 1, 3, 5 in the space

{Θb−p,PSD,ℋ1,F,L,Θb−p,PSD,ℋ2,F,L,Θb−p,PSD,ℐ,F,L,Θb−p,PSD,K,F,R} (4.2)

as these are the features giving rise to significant results in Table 9. The re-
sult of the classification attempt can be seen in Table 16 below.

k = 1 k = 3 k = 5
Sensitivity 72.22% 61.11% 66.67%
Specificity 63.16% 78.95% 78.95%

Table 16: Sensitivity (the number of females with ADHD correctlty clas-
sified) and Specificity (the number of females in the control group correctly
classified) by means of k-closest neighbour algorithm with k = 1, 3, 5 in the
space in Equation 4.2.

As an alternative, we may work under the assumption that results with rela-
tively low significance may be coincidental due to the great number of tests.
Then these, Θb−p,PSD,ℋ1,F,L,Θb−p,PSD,K,F,R, ay be considered not viable as
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traits to be used in a classification context and could be excluded from the
space in Equation 4.2, rendering a new feature space for classification:

{Θb−p,PSD,ℋ2,F,L,Θb−p,PSD,ℐ,F,L} . (4.3)

The same k-closest neighbour algorithm as above is applied, rendering results
seen below in Table 17.

k = 1 k = 3 k = 5
Sensitivity 61.11% 61.11% 66.67%
Specificity 78.95% 47.37% 47.37%

Table 17: Sensitivity (the number of females with ADHD correctlty clas-
sified) and Specificity (the number of females in the control group correctly
classified) by means of k-closest neighbour algorithm with k = 1, 3, 5 in the
space in Equation 4.3. Evidently, downsizing the dimension of the classifica-
tion space produces results that are, in the most part, not as good as keeping
all significant features.

These classification attempts certainly do not perform an astonishing degree
of accuracy, and can be viewed as a sketch for how classification may be
conducted, given better traits than the ones here considered.
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5 Conclusions

5.1 Discussion and Research Suggestions

From a clinical viewpoint, a primary problem using ADHD disease group
data is the vagueness of the disease itself. As described in Section 1.2, there
is much concern around mis- and over-diagnosis. Also, since the condition is
far from life-theatning or indeed particularly critical, we can never be sure
that any person partaking as a ’control’ would not be diagnosed with ADHD
if establishing contact with a psychiatrist. In all, this complication might
imply that even if ADHD is a completely valid diagnosis and any quanti-
tive method using existing features is optimally proficient at capturing some
neural activity central to the disease, it will find similarities between control
subjects with ADHD-like traits, as well as between the ’mis-diagnosed’ and
the non-carriers.

For all purposes, especially when computing the mean over observations, in
3.5 we made the assumption that v from Equation 3.3 is essentially equal
between observations. This needn’t be the case. In fact, it is not uncom-
mon practise to model ERP-observations as a sum of signal and noise where
both are realizations of stochastic processes. Here, amplitude, frequency and
latency (i.e. phase) of the signal may all be stochastic. The case of am-
plitude is not relevant to this study, as all observations are normalized (c.f.
Section 3). In the cases of variable frequency and latency, this will cause an
averaging to act as a low pass filter [50], introducing potentially ’false’ lower
frequencies for subjects displaying great variations in these respects. Indeed,
such an effect could indeed serve as a measure of frequency and/or latency
shift but as this is not discernible from more constant low frequencies it is
not a recommended marker for these effects. To mitigate the problem of vari-
able latency between observations, a common technique is aligned averaging
[50, p. 207], whereby observations are shifted in time based on optimization
of correlation between them. When studying only spectra, such as in this
study, this is certainly a viable approach to consider.

Indeed, another vital aspect overlooked with regards to the averaging is the
distribution of the noise, which is not necessarily independent nor identically
distributed between observations. Although this assumption is common and
convenient it certainly needn’t be the case, limiting the stringency and rel-
evance of any mean valueing for noise-reduction. However, as noted in 3.1,
the time between stimuli are varied in such a way that, from a viewpoint of
measurement, a most vital action has been taken as to improve the indepen-
dence between non-ABR activity between observations.

The window method was suggested by the author as a way to empirically

47



study the raw data material and try to filter the higher frequencies. It was
later realized that lower frequency disturbances were prominent, and this
method did not perform well. Perhaps, in order to remove spike artifacts,
c.f. Figure 7, some form of median windowing is still of relevancy in combi-
nation with band-pass filtering.

Since P was not implemented until late in the working stages of this project,
it has not been included as a dimension in 4.4, or in the correlation analysis
of 4.3. Such an inclusion may well be interesting, and is indeed a suitable
’first continuation’ if only taking off from this study alone. In which ever
case, there was a certain gender discrepancy seen in P, namely that females
with ADHD tended to display lower energy in the high spectral band, while
males with ADHD saw higher energy in this band. Maybe, people are being
diagnosed with un-gender-like behaviour? This is certainly as far-fetched as
any type of interpretation made here will be.

It was as noted in Section 2 that we are less interested in finding particu-
larly well-resolved and leakage-free spectral components and more concerned
with examining feature performance. Naturally, improving on the spectral
and time-frequency estimates is, as always, advisable. Some suggested im-
provements are adopting more sophisticated stationary techniques, such as
Welch’s method [46]. In the case of TFD:s, an exciting continuation could
be the reassignment method [48].

The ’ideal’ ABR shown in 3 is the established way of regarding ABR:s. In
terms of time-span, it can be concluded that this study has considered data
up to 15 ms instead of 10, as can be seen in Figure 7 (c,d). This means
that what is believed to be cognitive auditory processing responses show up
within the time-span, which has evidently complicated matters. In using the
band-pass method, time was limited to ∼ 11.7 ms. For reasons mentioned;
the foundation of ’10 ms ABR’ in clinical theory, and the subjects seen whose
raw data mean observations resembled those of Figure 7, it is strongly sug-
gested for any further study to consider only 10 ms post-stimuli.

There are good reasons to chose 1000 Hz as a good upper cutoff frequency in
band-pass filtering ABR-data. This is due to the fact that, as mentioned in
1.3, 1 ms is a commonly accepted lower limit for action potential duration.
The lower cutoff frequency used as described in 3.5 is however in no way
obvious. Indeed, it has been suggested by personnel at SensoDetect (c.f.
Section 3.1) that such a frequency ought to be lower. However, such a high
frequency as 250 Hz was chosen as to reduce the later ’cognitive’ responses
as shown in Figure 7 c,d. If one considers less data than, as became the
case with the band-pass filter method 11.7 ms (perhaps down to10 ms) one
could consider lowering this cutoff frequency as not to lose potentially vital
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information.

One interesting aspect of the results presented above is that, almost exclu-
sively, significant differences between disease-groups were found in the left
hemisphere. The well established findings regarding the lateralization of
brain function[57]22, i.e. how some tasks are carried out by primarily one
or the other, could perhaps serve as part of an explanation. Possibly, if the
findings of more apparent group-differences in the left hemisphere is consid-
ered important, lateralization could come into play here. Two conceivable
effects might then be that the left hemisphere is more ’accesible’, in gen-
eral, to examination for individual hearing characteristics or that there are
specific abnormalities in the functions particular to the left hemisphere that
correlate with ADHD as a disease.

Lastly, it is important to note that any of the low significance levels (*,
� < 0.05, and potentially (**), � < 0.01) obtained should be put into great
question. Based on the sheer number of statistical tests, we can expect false
positives in our outcome. It can however be deemed quite possible to be
confident with findings on higher levels than (**).

5.2 Summary

This study has sought to find traits for ADHD among features of Audi-
tory Brainstem Response spectral representations. Data from any type of
purpose-specific cerebral measurement, such as ERP/ABR, is always haunted
by artifacts and noise in different frequency ranges, and this case has been
no exception to that rule. With the need of data pre-processing, a window
method proposed by the author was implemented. This was based on some
curiosity around sliding windows in individual observations, and an empirical
outlook on early visual inspection of data. However, it was quickly gathered
that low-frequency noise was present in the data, either in the shape of cross-
observational EEG- or circuit-noises, or by what was assumed to be larger
auditory responses from higher cerebral structures appearing at the end of
the observations in some test subjects. The sample space of test subjects
was reduced as to only contain subjects with relatively low such disturbances
in data, but even with this limitation no significant results were found by
means of the window method. It can however be argued that limiting the
sample sizes naturally diminishes the possibility of achieving significance,
whether the groups cluster relatively well or not.

A later adopted band-pass approach performed better; both on an initial
stage where produced mean observations (Figure 9) that looked as if the

22Indeed, there is also evidence that the brains of men and women differ in some aspects
of lateralization, for instance concering language processing.
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problems seen in Figure 8 (c,d,e,f) were mitigated, but also in the sense that
some significant results were in fact obtained, Section 4.2. In the female
group, we saw particularly high significance using measures of ℋ2 and ℐ
from the power spectral density, both on the left brain hemisphere. Natu-
rally, these two measures are heavily (negatively) correlated, Equation 4.1,
and it should come as no surprise that they perform well simultaneously.
Hence, it is also important to note this dependency when considering any
form of classification.

To examine ABR-spectra in terms of the power in frequency bands, P, was
a method implemented at a later stage, and certainly holds some promise

In summary, the author sees no reason whatsoever for abandoning time-
dependent techniques when evaluating ABR for purposes of ADHD diagnos-
tics, or any other disease for that matter. There are, however, some findings
to suggested that features in ABR-spectra could serve as an extension of
some decision-space or -algorithm based, as of now, solely on, for instance,
latency. This statement, that some spectral features may well contribute to
further understanding of ABR as a diagnostic tool, may be stated primarily
due to the low dependency between measures of latency shifts and spectral
content.
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