
Light interaction with
nano-materials

Stylianos Tsopanidis

Supervisor: Prof. Hongqi Xu

Spring 2014



1



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction 6

2 Theory 10
2.1 Fourier Modal Method . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Transfer and Scattering Matrix Method . . . . . . . . . . . . . 18
2.3 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Description of the system . . . . . . . . . . . . . . . . 23
2.3.2 Implementation of the scattering matrix method for

the system . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Boundary conditions of the system . . . . . . . . . . . 32

2.4 Absorptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Computer calculations and programming . . . . . . . . . . . 36

3 Results 38
3.1 Transmittance, Reflectance and Absorptance . . . . . . . . . 38
3.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Electric field distributions . . . . . . . . . . . . . . . . . . . . 48

4 Conclusions-Outlook 54
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2



3



Abstract

”There is a crack in everything. That’s how light gets in.” With two simple
sentences the famous poet Leonard Cohen describes his perception on how
light interacts with matter. This thesis work will try to give a more precise
and detailed description of the interaction between light and nano-materials
that maybe is going to lose some of the magic that poetry has but this will
be compensated by the magic of revealing how nature works through the
physical phenomena.

The system that is studied in the current thesis consists of vertical peri-
odic arrays of core-shell nanowires and the objective of the thesis is to simu-
late how the light interacts with this structure. The way to simulate the light
propagation inside the system is to solve a set of differential equations, the
well-known Maxwell equations. By solving these equations it becomes possi-
ble to calculate very important physical properties of the nano-structure that
are connected to the efficiency of two main applications: the photovoltaic de-
vices and photo-detectors. Moreover, different geometrical properties of the
nano-structure (such as the shape of the nanowires, the diameter and the
length of the nanowires, the periodicity of the arrays etc.) can be altered
and the system can be studied for each different case. The results of the
simulations can give useful information in order to find the structure that
presents higher efficiency for the applications, but also to obtain a better
understanding of the physical phenomena that are connected with light in-
teraction with nano-materials.

It becomes obvious that simulations constitute a cost efficient method to
investigate which structure has the potential to be used in a future application
and to point the direction of a more extensive experimental research for these
particular structures. In this way the experimental research becomes more
effective and focused, with lower consumption of resources and time.
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Chapter 1

Introduction

Optics and, more specifically, Photonics attract a considerable part of the
scientific research, due to the numerous applications that these areas exhibit.
Light interaction with all sort of materials, but mainly with nano-materials,
is at the core of this research and by understanding the mechanism and the
physical phenomena that govern this interaction scientists are in the position
to create innovative efficient devices. Before getting into the applications, it is
useful to start this introductory part with a short description of the process
that is used to study the light interaction with nano-materials and argue
about the advantages of the method.

Light is an electromagnetic wave; hence the study of the light propagation
inside any medium should start by solving the set of Maxwell equations.
Somewhere around 1861 James Clerk Maxwell published an early form of a
set of four equations that became the most important formulae in the field
of electromagnetism and electrodynamics. By solving these equations, for
the boundary conditions of the system that is studied, one can obtain the
values of the electric and the magnetic field in every position and it becomes
possible to calculate very important properties of the system such as the
absorptance, the transmittance, the reflectance etc.

The complexity of the system defines the level of difficulty of the problem.
The system that is studied in this work consists of vertical periodic arrays of
core-shell nanowires, where the light is incident normally on top of them and
propagates until it reaches the SiO2 substrate. The solutions of the Maxwell
equations can only be obtained by employing numerical methods, using com-
puter calculations. The detailed mathematical derivation of the method that
is employed for the current thesis is presented in the theoretical overview
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part of the thesis, using as a reference the scientific paper work of N.Anttu
and H.Q.Xu, that was published on 2011 in the Physical Review B scientific
magazine under the title ’Scattering matrix method for optical excitation of
surface plasmons in metal films with periodic arrays of subwavelength holes’.

A large amount of data should be handled in order to obtain the solutions
of the set of Maxwell equations. Consequently, the numerical calculations
can only be performed by a computer program. Therefore, a big part of this
thesis work is to program an algorithm that manages the heavy calculations
needed to be carried out to solve the set of equations for the particular
system. Computer simulations have always been a very powerful tool for
solving difficult equations and managing challenging theoretical calculations.
The complexity of the system, that is of interest in this thesis, cannot allow us
to solve the Maxwell equations with analytical methods and the numerical
method, that is used instead can only be implemented with a computer
program.

Similar work in simulations has already been done and published for
structures of periodic vertical arrays of normal nanowires[2]. However, there
is not enough information regarding the optical properties of the core-shell
nanowires and this thesis will try to cover this gap. The published papers
on normal nanowire array structures are used as a reference to compare the
results of the core-shell nanowire system with. In addition, the previous
papers are used to check the functionality of the algorithm created for the
current work.

Finally, it is important to explain how this work can contribute to the
improvement of devices such as photovoltaic and photo-detectors.

The main challenge of the scientific research devoted to photovoltaic de-
vices has always been the increase of their efficiency and the goal is to reach
the maximum efficiency with the smallest possible manufacturing cost. The
material resources are finite and the reduction of the production cost is al-
ways a very demanding issue for the scientific research. This is one of the
greatest advantages of the nano-structure that is of interest for this thesis.
It is clear that a structure with periodic vertical arrays of nanowires needs
less material than a thin film structure, that is currently used for the pro-
duction of solar cells. Thus, it is important to know which geometry of the
nano-structure yields high efficiency but also use as least as possible mate-
rial resources. The diameter of the nanowires, the periodicity of the system
and other geometrical properties are altered in order to find which structure
presents higher absorptance with the minimum material usage. Moreover,
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the core-shell nanowires exhibit additional advantages, due to their optical
and electrical properties, and appear promising for these applications.

Furthermore, photo-detectors are sensors of light, with a big variety of
different types and applications. Basically, the incoming light is absorbed by
the detector and this results into a measurable photocurrent. The increase
of the current is proportionally related to the absorption of light. Thus, the
nano-structure of nanowire arrays, which exhibits a very high absorptance,
makes possible to improve the performance of the photo-detectors. In addi-
tion, the system of the periodic nanowire arrays presents higher absorptance
in certain frequencies of incoming light, due to the excitation of specific op-
tical modes, and seems very promising for a chromo-detector, a sensor that
identifies the wavelength or the frequency of the incoming light.

At last, this thesis is a theoretical work and the results of this work may
give useful information for numerous applications and contribute to better
understanding of the physics behind the light interaction with matter. It is
very important, without any doubt, for the scientific research to be oriented
towards to applicable areas, but it is also important to remember that physics
is a science that mainly aims at giving a better understanding of the natural
phenomena.
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Chapter 2

Theory

The main objective of this thesis is to solve the set of Maxwell equations for
a complex system constructed of vertical arrays of shell-core nanowires. By
obtaining the solutions for the electric and the magnetic field, we are in a
position to calculate properties of the system (such as the Transmittance,
the Reflectance, the Absorptance e.t.c), that provide useful information for
various applications of the system. The analytical solution of the equations
is not an option when the system is as complex as the one that is of interest
to the current work. Thus, the Maxwell equations should be solved by em-
ploying numerical computation methods. The most important methods that
usually are used for solving the equations are[6]:

• The Finite Element Method (FEM) and the Finite Difference Time Do-
main method (FDTD) are the most important space domain methods.
The Maxwell equations are represented as partial differential equations
in a space domain and the values of the electromagnetic fields at dis-
crete spatial points are calculated.

• Fourier Modal Method (FMM), which is a spatial frequency domain
method.

The method that is used for this thesis is the Fourier modal method[7],[10],[12].
The Maxwell equations are re-formulated into an eigenvalue matrix equation
and the electric and magnetic fields are expanded onto an orthonormal Bloch
basis. The symmetry of the periodic system allows to represent the electric
and the magnetic field in Bloch eigenmodes, where each eigenmode is an ex-
pansion in pseudo-Fourier series[6]. By using this method it becomes possible
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to obtain the general solutions of the Maxwell equations for the different
areas of the system.

In addition, the transfer matrix method and the scattering matrix method
provide the mathematical formalism that interconnects the solutions from
each individual area in order to calculate the electric and the magnetic field
in every position of the whole system.

In most of the publications, in scientific magazines and journals, the inter-
mediate steps of these methods are not presented rigorously due to the limited
space of a scientific paper or the fact that the author is usually more inter-
ested in presenting the results rather than providing a detailed mathematical
derivation. Therefore, in this chapter the entire mathematical process of the
implementation of these methods for solving the Maxwell equations for this
particular system will be carried out.

Initially, the mathematical formalism for a general arbitrary system is
presented and then the method is implemented on the particular system of
the nano-structure that is of interest for this thesis.

2.1 Fourier Modal Method

First of all, the system is divided into different areas along the propagation
of light. The light is assumed to be a plane wave that propagates along
the z direction and impinges on the left or the right side of the system.
In every slice of the system we consider that the permittivity ε̃ is constant
along the z direction. Since the permittivity is dependent on the material,
it is easy to conclude that the division of the system is done in a way that
every slice consists of the same material along the z direction, even though
it may have different material structure along x or y direction. A schematic
of this arbitrary system can be seen in Fig. 2.1

The Maxwell equations have the following form:

∇× E(r, ω) = −∂B(r, ω)

∂t

∇×H(r, ω) =
∂D(r, ω)

∂t

∇ ·B(r, ω) = 0

∇ ·D(r, ω) = 0
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Figure 2.1: The system is divided into N different slices. In every slice the
permittivity remains constant along the z direction, but it could change along the
xy-plane. Light is incident on the left or the right side of the structure.

where ω is the frequency of the light and E , D , B and H represent
the electric field, the electric displacement, the magnetic induction and the
magnetic field, respectively. If we substitute the electric displacement and
the magnetic induction according to the following:

D(r, ω) = ε̃(r, ω)E(r, ω)

B(r, ω) = µ̃(r, ω)H(r, ω)

we end up with:

∇× E(r, ω) = −∂(µ̃(r, ω)H(r, ω))

∂t

∇×H(r, ω) =
∂(ε̃(r, ω)E(r, ω))

∂t

∇ · (µ̃(r, ω)H(r, ω)) = 0

∇ · (ε̃(r, ω)E(r, ω)) = 0
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Finally, if we consider time harmonic electromagnetic fields, the Maxwell
equations become:

∇× E(r, ω) = iωµ̃(r, ω)H(r, ω) (2.2a)

∇×H(r, ω) = −iωε̃(r, ω)E(r, ω) (2.2b)

∇ · (µ̃(r, ω)H(r, ω)) = 0 (2.2c)

∇ · (ε̃(r, ω)E(r, ω)) = 0 (2.2d)

The calculations will be carried out for a certain frequency ω of the in-
coming light each time, hence, we are allowed to skip ω from the notation.
The permittivity ε̃ can be calculated from the complex index of refraction
(ñ = n+ ik) of the material according to the following formula:

ε̃ = ε0ε̃r = ε0ñ
2

where ε0 is the permittivity of the vacuum. Thus, the relative permittivity
ε̃r is a complex number (ε̃r = ε1 + iε2) with real part: ε1 = n2 − k2 and
imaginary part: ε2 = 2nk.

Given that the permittivity is z -independent, the notation that is used
is ε̃(x, y) and it is clear that the permittivity changes only on the x and y
direction inside each slice.

Moreover, the permeability that appears in Maxwell equations is con-
sidered to be equal to the permeability of the free space µ̃(r, ω) = µ̃ = µ0

because the materials that are of interest for this thesis are non-magnetic
materials.

Since the system is divided into different areas, the electric field in the
jth area is denoted as Ej and the magnetic field as Hj. Starting with the
eq. 2.2a it is easy to obtain the following set of equations:

∂

∂z
Ej
y(r) = −iωµ̃jHj

x(r) +
∂

∂y
Ej
z(r) (2.3a)

∂

∂z
Ej
x(r) = iωµ̃jH

j
y(r) +

∂

∂x
Ej
z(r) (2.3b)

Hj
z (r) =

1

iωµ̃j

(
∂

∂x
Ej
y(r)− ∂

∂y
Ej
x(r)

)
(2.3c)
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Similarly, from the eq. 2.2b:

∂

∂z
Hj
y(r) = iωε̃j(x, y)Ej

x(r) +
∂

∂y
Hj
z (r) (2.4a)

∂

∂z
Hj
x(r) = −iωε̃j(x, y)Ej

y(r) +
∂

∂x
Hj
z (r) (2.4b)

Ej
z(r) =− 1

iωε̃j(x, y)

(
∂

∂x
Hj
y(r)− ∂

∂y
Hj
x(r)

)
(2.4c)

If we substitute eq. 2.4c to the equations 2.3a and 2.3b, we get:

∂

∂z
Ej
y(r) =

(
1

iω

∂

∂y

1

ε̃j(x, y)

∂

∂y
− iωµ̃j

)
Hj
x(r)− 1

iω

∂

∂y

1

ε̃j(x, y)

∂

∂x
Hj
y(r)

(2.5a)

∂

∂z
Ej
x(r) =

1

iω

∂

∂x

1

ε̃j(x, y)

∂

∂y
Hj
x(r) +

(
iωµ̃j −

1

iω

∂

∂x

1

ε̃j(x, y)

∂

∂x

)
Hj
y(r)

(2.5b)

By substituting eq. 2.3c to the equations 2.4a and 2.4b, we end up with :

∂

∂z
Hj
y(r) =

(
iωε̃j(x, y)− 1

iω

∂

∂y

1

µ̃

∂

∂y

)
Ej
x(r) +

1

iω

∂

∂y

1

µ̃

∂

∂x
Ej
y(r) (2.6a)

∂

∂z
Hj
x(r) = − 1

iω

∂

∂x

1

µ̃

∂

∂y
Ej
x(r) +

(
−iωε̃j(x, y) +

1

iω

∂

∂x

1

µ̃

∂

∂x

)
Ej
y(r) (2.6b)

Finally, these four equations (eq. 2.5a, eq. 2.5b,eq. 2.6a and eq. 2.6b) can
be written in matrix form as follows [1],[11]:

∂

∂z

[
Ej
x(r)

Ej
y(r)

]
= T̂

j

1

[
Hj
x(r)

Hj
y(r)

]
(2.7)

∂

∂z

[
Hj
x(r)

Hj
y(r)

]
= T̂

j

2

[
Ej
x(r)

Ej
y(r)

]
(2.8)
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Where the operators T̂
j

1 and T̂
j

2 are :

T̂
j

1 =

[
T̂
j

1,xx T̂
j

1,xy

T̂
j

1,yx T̂
j

1,yy

]
(2.9a)

T̂
j

2 =

[
T̂
j

2,xx T̂
j

2,xy

T̂
j

2,yx T̂
j

2,yy

]
(2.9b)

The matrix elements of the operator T̂
j

1 are :

T̂
j

1,xx =
1

iω

∂

∂x

1

ε̃j(x, y)

∂

∂y
(2.10)

T̂
j

1,xy = iωµ̃j(x, y)− 1

iω

∂

∂x

1

ε̃j(x, y)

∂

∂x
(2.11)

T̂
j

1,yx = −iωµ̃j(x, y) +
1

iω

∂

∂y

1

ε̃j(x, y)

∂

∂y
(2.12)

T̂
j

1,yy = − 1

iω

∂

∂y

1

ε̃j(x, y)

∂

∂x
(2.13)

Similarly, for the operator T̂
j

2 :

T̂
j

2,xx = − 1

iω

∂

∂x

1

µ̃j(x, y)

∂

∂y
(2.14)

T̂
j

2,xy = −iωε̃j(x, y) +
1

iω

∂

∂x

1

µ̃j(x, y)

∂

∂x
(2.15)

T̂
j

2,yx = iωε̃j(x, y)− 1

iω

∂

∂y

1

µ̃j(x, y)

∂

∂y
(2.16)

T̂
j

2,yy =
1

iω

∂

∂y

1

µ̃j(x, y)

∂

∂x
(2.17)

By combining the equations 2.7 and 2.8:

∂2

∂z2

[
Ej
x(r)

Ej
y(r)

]
= T̂

j

1T̂
j

2

[
Ej
x(r)

Ej
y(r)

]
(2.18)
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The possible solutions of this equation are eigenmodes of the form[1]:

Ẽ
α

j (r) = Ẽ
α

j (x, y)e±k
α
j (z−zj) =

[
Ẽα
j,x(x, y)

Ẽα
j,y(x, y)

]
e±k

α
j (z−zj)

Substituting that into the eq.2.18, gives:

−(kαj )2
[
Ẽα
j,x(x, y)

Ẽα
j,y(x, y)

]
= T̂

j

1T̂
j

2

[
Ẽα
j,x(x, y)

Ẽα
j,y(x, y)

]
Now, we can expand Ẽ

α

j (x, y) in a complete, orthonormal basis, {φn(x, y)}
and write the components as :

Ẽα
j,x(y)(x, y) =

∑
m

dαj,x(y),mφm(x, y)

Using this, results in the following matrix eigenvalue equation:

βαj dαj = −Tj
1T

j
2d

α
j (2.19)

Where βαj = (kαj )2. The Tj
1 and Tj

2 are operators of a matrix form. These

operator matrices are the result of the projection of the operators T̂
j

1 and

T̂
j

2 onto the orthonormal basis {φn(x, y)}. Thus, the matrix elements of the
submatrices that the operator matrix Tj

1(2) is constructed of, can be obtained

from: [Tj
1(2),ll′ ]m,n =< φm|T̂

j

1(2),ll′|φn >.
The electric field expansion coefficients that appear in eq. 2.19 are written

in the following vector form:

dαj =

[
dαj,x
dαj,y

]
By solving the eigenvalue equation, it is possible to calculate the eigen-

values and eigenvectors for each area of the system.
The general solution for the electric field Ej(r) of the j th slice is the

superposition of the solutions of all eigenmodes and its components can be
expressed as [9]:
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Ej
x(r) =

∑
α

Ẽα
j,x(x, y)[C+,α

j eik
α
j (z−zj) + C−,αj e−ik

α
j (z−zj)] =

=
∑
α

∑
m

dαj,x,mφm(x, y)[C+,α
j eik

α
j (z−zj) + C−,αj e−ik

α
j (z−zj)]

(2.20)

Ej
y(r) =

∑
α

Ẽα
j,y(x, y)[C+,α

j eik
α
j (z−zj) + C−,αj e−ik

α
j (z−zj)] =

=
∑
α

∑
m

dαj,y,mφm(x, y)[C+,α
j eik

α
j (z−zj) + C−,αj e−ik

α
j (z−zj)]

(2.21)

The wave vectors kαj are complex numbers and they can be calculated

from the eigenvalues (kαj =
√
βαj ) of the eigenvalue equation (eq. 2.19). These

values of the wave vectors should have positive real part, if the imaginary
part is zero, and positive imaginary part, if the imaginary part is non-zero[1].
By applying these conditions, the expansion coefficients {C+,α

j } represent two
types of modes: the modes that are propagating forward or the modes that
are exponentially decaying along the z direction. Similarly, the expansion
coefficients {C−,αj } represent modes that are either propagating backwards
or exponentially growing along the z direction.

Additionally, the general solution for the magnetic field Hj(r) for the j th
slice has components:

Hj
x(r) =

∑
α

∑
m

hαj,x,mφm(x, y)[C+,α
j eik

α
j (z−zj) − C−,αj e−ik

α
j (z−zj)] (2.22)

Hj
y(r) =

∑
α

∑
m

hαj,y,mφm(x, y)[C+,α
j eik

α
j (z−zj) − C−,αj e−ik

α
j (z−zj)] (2.23)

The magnetic field expansion coefficients are:

hαj =

[
hαj,x
hαj,y

]
= ikαj

(
Tj

1

)−1
dαj (2.24)
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In conclusion, by using the Fourier Modal Method it becomes possible to
solve the Maxwell equations and derive an equation for the general solutions
for the electric and the magnetic field inside each slice of the system. For
these solutions, only the expansion coefficients {C+,α

j } and {C−,αj } remain
unknown. By using the Transfer Matrix Method and the Scattering Matrix
Method it becomes possible to calculate these expansion coefficients and
obtain the solutions for the electric and the magnetic field.

2.2 Transfer and Scattering Matrix Method

The expansion coefficients {C+,α
j } and {C−,αj }, that appear in the general

solutions of the electric and the magnetic field, are known for the incoming
light. In order to calculate the expansion coefficients for the rest of the
areas of the system, it is necessary to find a way to connect the expansion
coefficients of each area with the expansion coefficients of the adjacent area.
Consequently, the next step of the calculations is to connect the expansion
coefficients of the slice j ({C+,α

j } and {C−,αj }) to the expansion coefficients

of the next slice ({C+,α
j+1} and {C−,αj+1}).

From Maxwell equations, considering the time harmonic dependence of
the electromagnetic fields, one has that the transverse components of the elec-
tric and magnetic field are continuous at the interface between two adjacent
slices: [

Ej+1
x (r)

Ej+1
y (r)

]
=

[
Ej
x(r)

Ej
y(r)

]
and [

Hj+1
x (r)

Hj+1
y (r)

]
=

[
Hj
x(r)

Hj
y(r)

]
It is possible to write the above equations in a matrix form, using the

expansion coefficients, as follows:

[
Pj+1 Pj+1

Qj+1 −Qj+1

] [
C+
j+1

C−j+1

]
=

[
Pj Pj

Qj −Qj

] [
γj 0
0 γ−1j

] [
C+
j

C−j

]
(2.25)

where

18



(Pj)nα = (dαj )n (2.26)

(Qj)nα = (hαj )n (2.27)

(γj)mα = δm,αe
ikαj (zj+1−zj) (2.28)

By multiplying with the inverse matrices, the previous equation for the
coefficients in the j th slice yields:

[
C+
j

C−j

]
=

[
γj 0
0 γ−1j

]−1 [
Pj Pj

Qj −Qj

]−1 [
Pj+1 Pj+1

Qj+1 −Qj+1

] [
C+
j+1

C−j+1

]
(2.29)

And we end up with:[
C+
j

C−j

]
=

[
M11(j, j + 1) M12(j, j + 1)
M21(j, j + 1) M22(j, j + 1)

] [
C+
j+1

C−j+1

]
(2.30)

where M(j, j + 1) is the transfer matrix, with elements the following
submatrices:

M11(j, j + 1) = γ−1
jT11(j, j + 1) (2.31a)

M12(j, j + 1) = γ−1
jT12(j, j + 1) (2.31b)

M21(j, j + 1) = γjT12(j, j + 1) (2.31c)

M11(j, j + 1) = γjT11(j, j + 1) (2.31d)

with

T11(j, j + 1) =
1

2
(P−1j Pj+1 + Q−1j Qj+1) (2.32a)

T11(j, j + 1) =
1

2
(P−1j Pj+1 −Q−1j Qj+1) (2.32b)

Furthermore, by following the same process it is possible to calculate the
expansion coefficients of the j -1 slice or the j +2 slice and in the end we can
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calculate the total transfer matrix, that is the product of transfer matrices for
all the interfaces between the adjacent slices. We assume that on the left and
the right side of the structure there are two semi-infinite, homogeneous areas.
By denoting as {C+,α

L } and {C−,αL } the expansion coefficients of the incoming
and outgoing light waves of the left side of the system and as {C+,α

R } and
{C−,αR } the expansion coefficients of the incoming and outgoing light waves
of the right side of the system, it is possible to write a matrix equation for
the entire system. [

C+
L

C−L

]
= M(L,R)

[
C+
R

C−R

]
where in this case M(L,R) is the total transfer matrix that couples the

expansion coefficients of the left side with the expansion coefficients of the
right side.

However, the exponential factors inside the γj and γ−1j can possibly cause
numerical instability in the computer calculations. To overcome this one
should approach the calculations using the scattering matrix method, instead
of the transfer matrix method.[15],[16],[18],[17] The difference in the scattering
matrix method is that the coupling is between the incoming light waves
{C+,α

R } and {C−,αL } with the outgoing waves {C+,α
L } and {C−,αR } :

[
C+
R

C−L

]
= S(L,R)

[
C+
L

C−R

]
=

[
S11(L,R) S12(L,R)
S21(L,R) S22(L,R)

] [
C+
L

C−R

]
(2.33)

the S(L,R) is called the total scattering matrix of the system. This
matrix can be obtained from the transfer matrices, by applying an iteration
process similar to the one that we followed in order to get the total transfer
matrix.

Firstly, we assume the subsystem that begins from the left homogeneous
area and finishes to the arbitrary j th slice. The following equation describes
this subsystem :[

C+
j

C−L

]
= S(L, j)

[
C+
L

C−j

]
=

[
S11(L, j) S12(L, j)
S21(L, j) S22(L, j)

] [
C+
L

C−j

]
(2.34)

the S(L, j) is the transfer matrix of the subsystem.
The sub-matrices of the scattering matrix can be derived from the transfer

matrices by combining this equation (eq.2.34) with the equation 2.30. Thus,
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the sub-matrices take the form [15]:

S11(L, j + 1) = [I−M−1
11 (j, j + 1)S12(L, j)M21(j, j + 1)]−1M−1

11 (j, j + 1)S11(L, j)

S12(L, j + 1) = [I−M−1
11 (j, j + 1)S12(L, j)M21(j, j + 1)]−1

× [M−1
11 (j, j + 1)S12(L, j)M22(j, j + 1)−M−1

11 (j, j + 1)M12(j, j + 1)]

S21(L, j + 1) = S22(L, j)M21(j, j + 1)S11(L, j + 1) + S21(L, j)

S22(L, j + 1) = S22(L, j)M21(j, j + 1)S12(L, j + 1) + S22(L, j)M22(j, j + 1)

Substituting the matrix elements of the transfer matrix according the
equations 2.31 and 2.32 gives:

S11(L, j+1) =
[
I−

(
γ−1j T11(j, j + 1)

)−1
S12(L, j)

(
γjT12(j, j + 1)

)]−1 (
γ−1j T11(j, j + 1)

)−1
S11(L, j)

S12(L, j + 1) =
[
I−

(
γ−1j T11(j, j + 1)

)−1
S12(L, j)

(
γjT12(j, j + 1)

)]−1
×
[(
γ−1j T11(j, j + 1)

)−1
S12(L, j)

(
γjT11(j, j + 1)

)
−
(
γ−1j T11(j, j + 1)

)−1 (
γ−1j T12(j, j + 1)

)]
S21(L, j + 1) = S22(L, j)

(
γjT12(j, j + 1)

)
S11(L, j + 1) + S21(L, j)

S22(L, j + 1) = S22(L, j)
(
γjT12(j, j + 1)

)
S12(L, j + 1) + S22(L, j)

(
γjT11(j, j + 1)

)
By using the mathematical properties of inverse matrices :

[AB]−1 = B−1A−1

and
γjγ

−1
j = 1
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we derive:

S11(L, j + 1) =
[
I−T−111 (j, j + 1)γjS12(L, j)γjT12(j, j + 1)

]−1
T−111 (j, j + 1)γjS11(L, j)

(2.36a)

S12(L, j + 1) =
[
I−T−111 (j, j + 1)γjS12(L, j)γjT12(j, j + 1)

]−1
×
[
T−111 (j, j + 1)γjS12(L, j)γjT11(j, j + 1)−T−111 (j, j + 1)T12(j, j + 1)

]
(2.36b)

S21(L, j + 1) = S22(L, j)γjT12(j, j + 1)S11(L, j + 1) + S21(L, j) (2.36c)

S22(L, j + 1) = S22(L, j)γjT12(j, j + 1)S12(L, j + 1) + S22(L, j)γjT11(j, j + 1)

(2.36d)

Hence, it becomes clear that using the scattering matrix method we ac-
complish to do the calculations without the need of calculating the γ−1j ma-
trix which contains the exponentially growing factors that are the source of
the numerical instability for the computer calculations.

The total scattering matrix for the whole system can be derived by an
iteration process, using the set of equations 2.36.

The starting point of the iteration is:

S(L, 0) = 1⇔
[
S11(L, 0) S12(L, 0)
S21(L, 0) S22(L, 0)

]
=

[
1 0
0 1

]
The iteration continues until the total matrix S(L,R) = S(L,N + 1)

is finally obtained. The number of the slices N, that the nanostructure is
divided, defines the number of iteration steps needed for the calculation of
the total scattering matrix.

The boundary conditions of the system, that we study every time, allow
to determine the expansion coefficients of the electromagnetic waves that
are incident on the left or the right side of the nano-structure (

{
Cα,+
L

}
and{

Cα,−
R

}
, respectively). Finally, by inserting the total scattering matrix and

the vectors C+
L and C−R, that contain the known expansion coefficients, to

the eq.2.33 we are able to get the expansion coefficients of the expansion
coefficients

{
Cα,−
L

}
and

{
Cα,+
R

}
. Considering that the eigenvectors dαj for

each area have already been calculated from the eigenvalue equation (2.19),
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it is clear that the total solution for the transverse components of the electric
and magnetic field in the right or the left homogeneous area can be calculated.

In addition, it is possible to obtain the electric and magnetic field for any
of the areas, that the system is divided into, by calculating the scattering
matrices S(L, j) and S(j, R). The scattering matrix S(j, R) is calculated
by an iteration process, using the equations 2.36. The iteration starts with
S(j, j) = 1 and continues until we reach to the S(j,N + 1) = S(j, R). The
expansion coefficients of the transverse components of the electric and mag-
netic field in the j th area of the system are given by the following equations
[1][8] :

C+
j = [1− S12(L, j)S21(j, R)]−1

[
S11(L, j)C

+
L + S12(L, j)S22(j, R)C−R

]
C−j = [1− S21(j, R)S12(L, j)]

−1 [S21(j, R)S11(L, j)C
+
L + S22(j, R)C−R

]
The z components of the electric and the magnetic field can be calculated

from the equations 2.3c and 2.4c, respectively, taking under consideration
that the expressions of the x and y (transverse) components of the electric
and magnetic field are known.

Finally, it is important to mention that the above described methods can
be implemented in periodic structures, where a supercell can be applied. The
methods work more efficiently when the number of the modes is limited and
the structure consists of only few different slices[14].

2.3 System

The mathematical formalism, that has been described in the previous section,
is a general method that can be implemented on any system. In this section
the implementation of this formalism in the particular system of the nano-
structure that is of interest for this work is presented.

2.3.1 Description of the system

The system, that we are interested in studying, consists of periodic vertical
arrays of core-shell nanowires(Fig.2.2).

The core-shell nanowires are radially heterostructured nanowires. They
consist of a core semiconductor material that is over-coated with a shell
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Figure 2.2: Nano-structure of periodic arrays of core-shell nanowires. The space
above the nanowires and between them is filled with air and the substrate is a
thick layer of SiO2.

made by a different semiconductor material. It is important that the lattice
constant of the core semiconductor matches with the lattice constant of the
shell semiconductor material.

In the current work we are interested in core-shell nanowires with InAs
as the core material and InP as the shell material. The low energy bandgap
semiconductor is used as the core material, while the semiconductor with
the higher energy bandgap forms the shell of the nanowires. This decision
is based on the absorption properties of the materials, since in this way the
material that absorbs a larger spectrum of light frequencies is placed outside,
while the less absorbing material is the core of the nanowire. Moreover,
the electrical properties of the semiconductors are taken under consideration
because by creating a heterostructure with the low energy bandgap material
between two higher energy bandgap materials it is possible to collect the
electrons, that are exited from the valence to the conduction band, when
light is absorbed, in the core area.

The volume of the core material and the volume of the shell material
are considered to be equal. This implies the following relation between the
diameter of the shell and the diameter of the core (fig.2.4) :

Dshell =
√

2Dcore (2.37)

The periodic structure of the nanowire arrays is open on the top, assuming
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that the space between the nanowires and above them is filled with air. The
substrate is made of SiO2 and it has thickness much higher than the height
of the nanowires, so as to be considered as a semi-infinite homogeneous area.

The complex indices of refraction, that are used for the calculation of
the relative permittivity, for the SiO2 are taken from the Ref.[5] and for the
semiconductors (InP, InAs) we used the Ref.[3] as a source.

2.3.2 Implementation of the scattering matrix method
for the system

The system is divided into three areas along the z direction(Fig.2.3). The
first area is a semi-infinite homogeneous area of air. The second area is the
slice of the nanowire arrays, where the permittivity is z -independent but it
changes across the xy-plane according to the periodic system of the core-
shell nanowires. The thickness of this slice is defined by the height of the
nanowires, which is 2000nm. Finally, the third area is the substrate, that is
a semi-infinite homogeneous area of SiO2.

The structure of the nanowires is a periodic system, therefore the appro-
priate expansion basis {φn(x, y)} for the eigenmodes in eq.2.19 should satisfy
the Bloch’s theorem.

φn(x, y) =
1√
Lx
e(

2π
Lx
nx+kx)x 1√

Ly
e

(
2π
Ly
ny+ky

)
y

(2.38)

For the numerical calculations the nx and ny are limited inside the in-
tervals (−Nx, Nx) and (−Ny, Ny),respectively. The limits Nx and Ny are
integer numbers and they are very important because the accuracy of the
calculations depends on how large values they get. However, the Tj

1 and Tj
2

matrices have dimensions of 2 (2Nx + 1) (2Ny + 1)×(2Nx + 1) (2Ny + 1) and
if Nx and Ny will be increased very much the computational calculations will
become really heavy. Therefore, we perform the calculations repeatedly with
increased value of these limits until the results converge.

The matrix operators Tj
1 and Tj

2 are the projection of the operators T̂
j

1

and T̂
j

2 onto the orthonormal basis {φn(x, y)}, as it is mentioned before.
Consequently, the matrix elements of the sub-matrices that the operator
matrix Tj

1(2) is constructed of, can be obtained from:

[Tj
1(2),ll′ ]m,n =< φm|T̂

j

1(2),ll′ |φn >
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Figure 2.3: Vertical cross-section of the unit cell of the system along the z-
direction, where the three areas that the system is divided are shown.

More specifically, the matrix elements of the sub-matrix Tj
1,xx could be

calculated as follows:

[T j1xx]m,n =< φm|
1

iω

∂

∂x

1

ε̃j(x, y)

∂

∂y
|φn > (2.39)

[T j1xx]m,n =

∫∫
1√
Lx
e−i

2π
Lx
mxx 1√

Ly
e
−i 2π

Ly
myy

(
1

iω

∂

∂x

1

ε̃j(x, y)

∂

∂y

)
1√
Lx
ei

2π
Lx
nxx 1√

Ly
e
i 2π
Ly
nyydxdy

[T j1xx]m,n =

∫∫
1√
Lx
e−i

2π
Lx
mxx 1√

Ly
e
−i 2π

Ly
myy 1

iω

∂

∂x

1

ε̃j(x, y)

(
i
2π

Ly
ny

)
1√
Lx
ei

2π
Lx
nxx 1√

Ly
e
i 2π
Ly
nyydxdy

The permittivity is a periodic function and it is possible to be expanded
in double Fourier series.

ε̃j(x, y) =
∑
qx

∑
qy

εjqx,qye
i 2π
Lx
qxxe

i 2π
Ly
qyy
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Similarly, the inverse of the permittivity, that appears in the matrix ele-
ment expression, can be expanded as follows:

1

ε̃j(x, y)
=
∑
qx

∑
qy

1

εjqx,qy
ei

2π
Lx
qxxe

i 2π
Ly
qyy (2.40)

where εjqx,qy and 1

εjqx,qy
are the expansion coefficients.

Thus, the matrix elements [T j1xx]m,n become :

[T j1xx]m,n =

∫∫
1√
Lx
e−i

2π
Lx
mxx 1√

Ly
e
−i 2π

Ly
myy 1

iω

∂

∂x

∑
qx

∑
qy

1

εjqx,qy
ei

2π
Lx
qxxe

i 2π
Ly
qyy


×
(
i
2π

Ly
ny

)
1√
Lx
ei

2π
Lx
nxx 1√

Ly
e
i 2π
Ly
nyydxdy

[T j1xx]m,n =
1

iω

1

Lx

1

Ly

∫∫
e−i

2π
Lx
mxxe

−i 2π
Ly
myy

∑
qx

∑
qy

1

εjqx,qy

(
i
2π

Ly
ny

)(
∂

∂x
ei

2π
Lx

(qx+nx)xe
i 2π
Ly

(qy+ny)y

)
dxdy

[T j1xx]m,n =
1

iω

1

Lx

1

Ly

∫∫ ∑
qx

∑
qy

1

εjqx,qy

(
i
2π

Ly
ny

)(
i
2π

Lx
(qx + nx)

)
ei

2π
Lx

(qx+nx−mx)xe
i 2π
Ly

(qy+ny−my)ydxdy

[T j1xx]m,n =
1

iω

∑
qx

∑
qy

1

εjqx,qy

(
i
2π

Ly
ny

)(
i
2π

Lx
(qx + nx)

)(
1

Lx

∫
ei

2π
Lx

(qx+nx−mx)xdx

)(
1

Ly

∫
e
i 2π
Ly

(qy+ny−my)ydy

)

[T j1xx]m,n =
1

iω

(
i
2π

Ly
ny

)∑
qx

∑
qy

(
i
2π

Lx
(qx + nx)

)
1

εjqxqy
δ(qx+nx−mx)δ(qy+ny−my)

Due to the Delta functions it becomes possible to remove the summations
and substitute qx = mx − nx and qy = my − ny. Thus, we end up with:

[T j1xx]m,n =
1

iω

(
i
2π

Ly
ny

)(
i
2π

Lx
mx

)
1

εj(mx−nx),(my−ny)
(2.41)
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The expansion coefficients 1

εj
(mx−nx),(my−ny)

could be obtained by applying

an inverse transform to the Fourier series expansion:

1

εj(mx−nx),(my−ny)
=

1

LxLy

∫ ∫
1

ε̃j(x, y)
e−i

2π
Lx

(mx−nx)xe
−i 2π

Ly
(my−ny)ydxdy

(2.42)
This double integral can be calculated numerically. By discretizing the

sides Lx and Ly of the unit cell of the periodic nano-structure (Fig.2.4) it
becomes possible to convert the double integral into a double summation.

R 

𝑳𝒙 

𝑳𝒚 
𝑹𝒄𝒐𝒓𝒆 

𝑹𝒔𝒉𝒆𝒍𝒍 

x 

y 

Figure 2.4: Horizontal cross-section of the unit cell of the periodic nanowire arrays.
The Lx and Ly define the period of the system.

The lengths Lx and Ly are divided into N discrete intervals and each of
these intervals has length of:

dx =
Lx
N

and dy =
Ly
N
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Moreover, the x and y coordinates should be written as:

x = kdx = k
Lx
N

y = ldy = l
Ly
N

where k and l are the indices of double summation.
In addition, by converting the double integral into a double summation

and taking under consideration the structure of the unit shell, that reflects
the different values of the permittivity of the system across the xy-plane, the
eq.2.42 can be written as:

1

εj(mx−nx),(my−ny)
=

1

LxLy

N∑
l=0

N∑
k=0

1

εair
ei

2π
Lx

(mx−nx)kLxN e
i 2π
Ly

(my−ny)l
Ly
N
Lx
N

Ly
N

+

+
1

LxLy

l2∑
l=l1

k2∑
k=k1

(
1

εshell
− 1

εair

)
ei

2π
Lx

(mx−nx)kLxN e
i 2π
Ly

(my−ny)l
Ly
N
Lx
N

Ly
N

+

+
1

LxLy

l′2∑
l=l′1

k′2∑
k=k′1

(
1

εcore
− 1

εshell

)
ei

2π
Lx

(mx−nx)kLxN e
i 2π
Ly

(my−ny)l
Ly
N
Lx
N

Ly
N

1

εj(mx−nx),(my−ny)
=

1

N2

N∑
l=0

N∑
k=0

1

εair
ei

2π
N

(mx−nx)kei
2π
N

(my−ny)l+

+
1

N2

l2∑
l=l1

k2∑
k=k1

(
1

εshell
− 1

εair

)
ei

2π
N

(mx−nx)kei
2π
N

(my−ny)l+

+
1

N2

l′2∑
l=l′1

k′2∑
k=k′1

(
1

εcore
− 1

εshell

)
ei

2π
N

(mx−nx)kei
2π
N

(my−ny)l

Here εshell and εcore are the values of the permittivity of the shell and core
semiconductor materials, respectively. The limits k1, k2 and l1, l2 define the
external circle of the shell and the limits k′1, k

′
2 and l′1, l

′
2 define the external

circle of the core.
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These limits can be calculated by:

l1 =
Ly
2
−Rshell

Ly
N

l2 =
Ly
2

+Rshell

Ly
N

k1 =
Lx
2

Lx
N −

√√√√(Rshell

Lx
N

)2

−

(
l −

Lx
2

Lx
N

)2

k2 =
Lx
2

Lx
N +

√√√√(Rshell

Lx
N

)2

−

(
l −

Lx
2

Lx
N

)2

Similarly, for the core:

l′1 =
Ly
2
−Rcore

Ly
N

l′2 =
Ly
2

+Rcore

Ly
N

k′1 =
Lx
2

Lx
N −

√√√√(Rcore

Lx
N

)2

−

(
l −

Lx
2

Lx
N

)2

k′2 =
Lx
2

Lx
N +

√√√√(Rcore

Lx
N

)2

−

(
l −

Lx
2

Lx
N

)2
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By following the same derivation the rest of the matrix elements could
be calculated. Hence, the following matrix elements can be obtained.

[T j1xx]m,n =
1

iω

(
i
2π

Ly
ny

)(
i
2π

Lx
mx

)
1

εj(mx−nx),(my−ny)

[T j1xy]m,n =iωµ̃j(x, y)δ(nx −mx)δ(ny −my) +

(
− 1

iω

)(
i
2π

Lx
nx

)(
i
2π

Lx
mx

)
1

εj(mx−nx),(my−ny)

[T j1yx]m,n =− iωµ̃j(x, y)δ(nx −mx)δ(ny −my) +

(
1

iω

)(
i
2π

Ly
ny

)(
i
2π

Ly
my

)
1

εj(mx−nx),(my−ny)

[T j1yy]m,n =− 1

iω

(
i
2π

Lx
nx

)(
i
2π

Ly
my

)
1

εj(mx−nx),(my−ny)

Finally, by using the same derivation we obtain the matrix elements of
the sub-matrices of the operator matrix Tj

2 :

[T j2xx]m,n =− 1

iωµ̃j(x, y)

(
i
2π

Ly
ny

)(
i
2π

Lx
nx

)
δ(nx −mx)δ(ny −my)

[T j2xy]m,n =− iωεj(mx−nx),(my−ny) +
1

iωµ̃j(x, y)

(
i
2π

Lx
nx

)(
i
2π

Lx
nx

)
δ(nx −mx)δ(ny −my)

[T j2yx]m,n =iωεj(mx−nx),(my−ny) −
1

iωµ̃j(x, y)

(
i
2π

Ly
ny

)(
i
2π

Ly
ny

)
δ(nx −mx)δ(ny −my)

[T j2yy]m,n =
1

iωµ̃j(x, y)

(
i
2π

Ly
ny

)(
i
2π

Lx
nx

)
δ(nx −mx)δ(ny −my)

where the expansion coefficients εj(mx−nx),(my−ny) are calculated in the

same way as the expansion coefficients 1

εj
(mx−nx),(my−ny)

are calculated.

The Tj
1 and Tj

2 are non-Hermitian, non-symmetric complex matrices in
the case of the nanowire area, where the permittivity is altered across xy-
plane. On the other hand, for the homogeneous areas on the left and the
right side of the nanowire area, where the permittivity has constant value
everywhere, the matrix elements of the sub-matrices, that Tj

1 and Tj
2 are
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constructed of, are diagonal and their matrix elements can be calculated by:

[T j1xx]m,n =
1

iω

(
i
2π

Ly
ny

)(
i
2π

Lx
mx

)(
1

εj

)
δ(nx −mx)δ(ny −my)

[T j1xy]m,n =iωµ̃j(x, y)δ(nx−mx)δ(ny−my)+

(
− 1

iω

)(
i
2π

Lx
nx

)(
i
2π

Lx
mx

)(
1

εj

)
δ(nx−mx)δ(ny−my)

[T j1yx]m,n =−iωµ̃j(x, y)δ(nx−mx)δ(ny−my)+

(
1

iω

)(
i
2π

Ly
ny

)(
i
2π

Ly
my

)(
1

εj

)
δ(nx−mx)δ(ny−my)

[T j1yy]m,n =− 1

iω

(
i
2π

Lx
nx

)(
i
2π

Ly
my

)(
1

εj

)
δ(nx −mx)δ(ny −my)

and
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)(
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)
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i
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)(
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)
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[T j2yy]m,n =
1

iωµ̃j(x, y)

(
i
2π
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)(
i
2π
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nx

)
δ(nx −mx)δ(ny −my)

2.3.3 Boundary conditions of the system

The polarization and the angle of incidence of the incoming light set the
boundary conditions of the system. We consider that the light is incident
on the left side of the structure, consequently the expansion coefficients of
the electromagnetic waves for the right side incident light (Fig.2.3) should
be zero.

C−R = 0

In addition, the incident light is treated as a plane wave that impinges
normally towards the top surface of the nanowires (normally to the xy-plane),
with direction of propagation the z -direction. As a result the wave vector
k = (kx, ky, kz) should have:
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kx = ky = 0 and kz 6= 0

Finally, the incident light is x -polarized light and it is possible to set:

EL(x, y, zL) = êx

For y-polarized incident light the results would not be different due to
the symmetry of the system. The case of circular (or elliptical) polarized
incident light will have a different outcome, but it is not going to be studied
in the current thesis work.

2.4 Absorptance

The scattering matrix method allows us to solve the Maxwell equations for
the periodic structure of the nanowire arrays and calculate the electric and
magnetic field inside the different areas of the system. In addition, we are in
the position to calculate the Transmittance and the Reflectance of light in
different wavelengths of the incoming light, but also for different geometrical
parameters of the nano-structure.

In fact, we alter the values of the shell diameter, which results in varying
the core diameter, because these two variables are related as the eq.2.37
shows. For each value of the shell diameter we calculate the Transmittance
and the Reflectance for different wavelengths of the incoming light, starting
from 400nm to 700nm.

Moreover, the Absorptance for each wavelength can be extracted from
the Transmittance and Reflectance, using the simple relation:

Absorptance = 1 - Transmittance - Reflectance (2.49)

Firstly, we need to calculate the energy flow through the xy-surface along
the z direction for the left and right homogeneous areas. This energy flow
can be calculated from the time averaged Poynting vector:

IL(R) =

∫
〈S〉 n̂ dA (2.50)

where A is the surface of the xy-plane and the n̂ is the surface normal
vector.
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The time averaged Poynting vector is:

〈S〉 =
1

T

T∫
0

Sdt =
1

T

T∫
0

(Etot ×Htot) dt

where T is the period of the electromagnetic wave. Taking under consid-
eration that the electromagnetic fields have a harmonic dependence on time
the total electric and magnetic fields can be written as:

Etot = Re{Ee−iωt} =
1

2

(
Ee−iωt + (Ee−iωt)∗

)
(2.51a)

Htot = Re{He−iωt} =
1

2

(
He−iωt + (He−iωt)∗

)
(2.51b)

The Etot and Htot have real values, while the time-independent E and H
take complex values.

By introducing the complex expression of the electric and magnetic fields,
we get:

〈S〉 =
1

4T

T∫
0

(
Ee−iωt + E∗eiωt

)
×
(
He−iωt + H∗eiωt

)
dt =

=
1

4T

T∫
0

(
(E×H)e−2iωt + E∗ ×H + E×H∗ + (E∗ ×H∗)e2iωt

)
Calculating the integrals as follows:

T∫
0

(E×H) e−2iωtdt =
T∫
0

(E∗ ×H∗) e2iωtdt = 0

1
T

T∫
0

(E∗ ×H) dt = E∗ ×H

1
T

T∫
0

(E×H∗) dt = E×H∗

the time averaged Poynting vector can be written as:

〈S〉 =
1

4
(E∗ ×H + E×H∗) =

1

2
Re (E×H∗)
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By substituting that in the eq.2.50, we get:

IL(R) =

∫
〈Sz〉 dxdy (2.53)

It is very useful, at this point, to categorise the propagating modes of light
into different groups. When light propagates inside the homogeneous areas,
the light polarization allows us to distinguish the light into three different
types of eigenmodes:

• the transverse electric (TE) modes, where Ẽα
z (x, y) = 0 for every x

and y,

• the transverse magnetic (TM) modes, where H̃α
z (x, y) = 0 for every

x and y,

• and the transverse electromagnetic (TEM) modes, where Ẽα
z (x, y) =

0 and H̃α
z (x, y) = 0 for every x and y.

The eigenmodes are orthonormalized, hence the eq.2.53 can be solved for
each type of eigenmode.[1]

IL(R) =
Re∑
α

γα
L(R),M

L(R)
α

[
|C+,α

L(R)|
2 − |C−,αL(R)|

2
]

(2.54)

where M
L(R)
α denotes the type of mode:

γαL(R),TE =
kαL(R)

2ωµ̃L(R)

, for TE modes

γαL(R),TM =
ωε̃L(R)

2kαL(R)

, for TM modes

γαL(R),TEM =
kαL(R)

2ωµ̃L(R)

, for TEM modes

The summation should include only the modes that have real values for
the wave vectors kαL(R).
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The energy flow in each area could be calculated from the previous equa-
tions, but also the direction of the energy flows could be distinguished. Thus,
it becomes possible to calculate the energy flow for the incident, transmitted
and reflected light, taking under consideration that the light is incident only
on the left side.

Iincident =
Re∑
α

γαL,ML
α
|C+,α

L |
2

Itransmitted =
Re∑
α

γαR,MR
α
|C+,α

R |
2

Ireflected =
Re∑
α

γαL,ML
α
|C−,αL |

2

Once these values are obtained, the Transmittance and the Reflectance
can be calculated by:

T =
Itransmitted
Iincident

(2.57)

R =
Ireflected
Iincident

(2.58)

2.5 Computer calculations and programming

It is obvious from the amount of data that needed to be handled for the
numerical calculations that the solutions can be obtained only by using a
computer program. The algorithm, that is created in order to implement the
mathematical derivation, has been developed with C++ programming lan-
guage. For the linear algebraic operations the algorithm uses the Eigen 3.2.1
library. Eigen is a library for C++ with template headers for linear algebra,
matrix and vector operations, numerical solvers and related algorithms.

The algorithm was initially designed for the system that has already been
studied in the paper of the Ref.[1] by N.Anttu and H.Q.Xu, in order to recre-
ate the results of the paper. By comparing the results that our algorithm
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produced with the results of the paper, it became possible to test the effi-
ciency of the program and verify that it works properly. The next step is to
make a few changes to the code in order to adjust it to the system of the
core-shell nanowires.

As it was mentioned before, the size of the expansion basis defines the
precision of the results. When the value of the parameterNx orNy, which sets
the size of the expansion basis, increases the results become more accurate,
but at the same time the calculations become heavier and the computational
time increases significantly. The reason that the calculations slow down,
when a large basis is used, is that the size of the matrices is directly connected
with the size of the basis. In addition, the matrix, in the eigenvalue equation
2.19, is a non-Hermitian, non-symmetric complex matrix, which means that
the eigensolver, needed to be used, is a general eigensolver and it cannot use
any of the algebraic properties that speed up the calculations. Thus, the
real challenge of this venture is to create an algorithm that is optimized to
handle such a large amount of data requiring as short computational time as
possible.

The calculations are performed with gradually increased basis size and
the objective is to find the basis size where the results converge. The largest
basis size that we are able to use is: Nx = Ny = 27 . By using an expansion
basis with these limits, the error of the calculations is minimized and the
results are very precise, but the computation time is not acceptable for the
limited time of this thesis work. Thus, considering the time limitations, it
is decided that a basis with a smaller size should be used in order to collect
sufficient amount of data and at the same time by calculating the error to put
the results in the right perspective and give a clear picture of the conclusions.

The basis size, that is used, is Nx = Ny = 21 and a typical calculation
time for a certain wavelength of incoming light is approximately 3 hours.
The error is calculated by comparing the results from this basis with the
results obtained with basis size Nx = Ny = 27. It will be clear from the next
chapter of the results that the basis, that is used, allows us to draw important
conclusions regarding the absorbing behaviour of the system and the results
are in agreement with the theory and with previous similar periodic systems
of nanowire arrays. Moreover, it is very important to present the error and
explain the error characteristics in a proper manner, in order to avoid any
misinterpretation of the results.
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Chapter 3

Results

3.1 Transmittance, Reflectance and Absorp-

tance

The previous theoretical derivation is implemented in the system that has
been described. Initially, the period of the nanowire arrays is constant, with
value Lx = Ly = 500nm. The Transmittance and the Reflectance of the
system is calculated for a certain shell diameter of the nanowires, for dif-
ferent frequencies of the incoming light. The light wavelength is varied be-
tween 400nm and 700nm and the two properties are calculated. From the
Transmittance and the Reflectance it is straightforward to calculate the
Absorptance(eq.2.49).

We repeat the calculations for different shell diameters. The shell di-
ameter is changing, starting from 100nm until it reaches the value of the
period of the system. As mentioned before, this change of the shell diam-
eter results in a change of the diameter of the core (eq.2.37), in order to
have the same volume of the shell and the core of the nanowires. Finally,
the Transmittance, the Reflectance and the Absorptance for different shell
diameters and different wavelengths of incoming light is plotted.

The Absorptance diagram for a system with period Lx = Ly = 500nm is
presented in fig.3.1. The Absorptance is generally very high for this system
and this is because of the combination of the two materials with different
energy band gaps in the core - shell nanowires. The other important obser-
vation that is worth-mentioning is that there are certain areas in this plot
where the Absorptance reaches to its peak values. The Absorptance in these
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areas has peak values higher than 0.98. A more profound study of these areas
is necessary, in order to find the mechanisms that can explain this absorbing
behaviour.

Figure 3.1: Absorptance spectrum for different shell diameters. The wavelength
of the incoming light is varied between 400nm and 700nm. The period of the
nanowire arrays is Lx = Ly = 500nm

The first area, where peak values of the Absorptance are observed, is
the area where the shell diameter of the nanowires is between 100nm and
170nm. As the diameter of the shell increases the peak is moving to longer
wavelengths of incoming light. The relation between the shell diameter and
the wavelength of the incoming light, where the Absorptance peak is ob-
served, is almost linear. The peak in the Absorptance for the shell diameter
Dshell = 100nm corresponds to incoming light with wavelength λ ' 550nm
and it is not a sharp peak. As it can be seen in fig.3.2, the peak for diam-
eter Dshell = 100nm is broaden and the highest value of the Absorptance is
0.988. This Absorptance peak corresponds to wavelength λ = 500nm for the
incoming light. Similar behaviour can be observed for all the shell diameters
between 100nm and 172nm and it is obvious from the fig.3.2 that the peak
is moving to longer wavelengths of the incoming light, as the shell diameter
increases.

The width of this area is related to the fact that the peaks in Absorptance
for every shell diameter are broadened. It is also clear from our data that
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Figure 3.2: The plot of the Absorptance with wavelength of incoming light for
different value of the shell diameter. The period of the nanowire arrays is Lx =
Ly = 500nm.

this area of the maximum Absorptance continues to longer wavelengths of
incoming light as the shell diameter increases above the 170nm, however, this
can not be seen in the fig.3.1 because the spectrum of the incoming light taken
under consideration, is between 400nm and 700nm (400nm ≤ λ ≤ 700nm).

The high value for the Absorptance in this area can be explained if we
consider that certain wave modes of light can be trapped inside the nanowires.

Generally, depending on the value of the wave vector k the solutions of the
Maxwell equations can be separated into two basic categories of modes[4],[13]:

1. the guided modes, that propagate inside the waveguide without loosing
energy. These modes correspond to real and discrete values of k. They
cannot be observed in the nanowires of the system that is studied here.

2. the radiation modes, which can be further divided into the following
sub-categories:

• if k takes complex and discrete values, then the modes are called
leaky modes or guided pseudo-modes. These modes propagate
like guided modes, but they are attenuated along the z -direction
because the presence of the imaginary part of k at the exponential
(eikz = eikrealze−kimagz) results in a decrease of the amplitude.
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• if k takes a continuum of real values, the modes attenuate very
rapidly and if k takes a continuum of purely imaginary values,
the modes are evanescent modes along the z -direction and they
do not propagate inside the waveguide, since k does not have a
real part. These last two cases where k takes a continuum of value
cannot be observed in our system, as well.

In conclusion, for certain values of the shell diameter we can explain the
high Absorptance by the excitation of these leaky modes. The leaky modes
are excited when the shell diameter combines with certain wavelengths of
incoming light and results in trapping the light. Hence, certain resonant
states of standing light waves, that we call modes, are formed inside the
nanowires. It is obvious that by increasing the diameter of the shell, the
modes that are trapped inside the nanowires correspond to incoming light
with longer wavelengths. This can explain why the peak of the Absorptance
moves to longer wavelengths, when the shell diameter is increased. The
existence of these modes will be very clear later on in this thesis, when the
electric field distributions along the cross-section of the nanowires will be
presented.

The second area with high Absorptance is the area that is confined be-
tween the Dshell ' 130nm and Dshell ' 340nm and starts with a wavelength
of incoming light λ = 500nm and continues to longer wavelengths of in-
coming light, forming a triangular area of high Absorptance (fig.3.1). The
Absorptance is gradually decreased, as the wavelength increases. The max-
imum values of the Absorptance in this area are observed for λ = 500nm
and they are higher than 0.97. Especially, for shell diameter between 200nm
and 230nm (200nm ≤ Dshell ≤ 230nm) and wavelength λ = 500nm the
Absorptance is slightly higher than 0.99. This peak can also be seen in
figures 3.2 and 3.3, where it is clear that the peak is growing as the shell
diameter takes larger values. When the shell diameter increases above the
value of the 230nm the peak values in Absorptance become smaller (fig.3.3)
and eventually the peak disappears.

The fact that the wavelength of the light, when the highest Absorptance
occurs, coincides with the period of the nanowire arrays (Lx = Ly = 500nm)
indicates that this maximum in Absorptance is probably the result of cou-
pling between different nanowires’ electric fields. More specifically, the elec-
tric field of the light, that leaks out of a nanowire or is reflected upon its sur-
face, interferes with the electric field that comes from the nanowires (again
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Figure 3.3: The plot of the Absorptance with wavelength of incoming light for
different value of the shell diameter. The period of the nanowire arrays is Lx =
Ly = 500nm.

because of the light that escapes or is reflected upon the surface) that exist
in close vicinity. For incoming light with a wavelength equal to the period of
the structure, the structure acts as a Bragg grating and the light is trapped
inside until it is absorbed. This phenomenon is weak when the diameter of
the nanowires is short because the coupling is weak but it becomes more
obvious as the shell diameter increases.

Finally, for large shell diameters it is clear from the diagram in fig.3.1
that the Absorptance becomes weaker. This is because the nanowires cover
almost completely the whole surface of the unit cell and the material behaves
similarly with the bulk material. It can be seen from the Reflectance dia-
gram in fig.3.4, the system for large shell diameters is more reflective, as it
is expected.

To sum up, two very important phenomena of light interaction with nano-
materials can be observed here. The first is the excitation of the light prop-
agating modes at the individual nanowires, that results into high values of
Absorptance and the second is the interference between the electromagnetic
fields of the propagation modes that are excited inside different individual
nanowires. This coupling can be observed not only between neighbouring
nanowires but also between nanowires that are relatively further apart, al-
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Figure 3.4: Reflectance spectrum for different shell diameters. The wavelength
of the incoming light is varied between 400nm and 700nm. The period of the
nanowire arrays is Lx = Ly = 500nm.

beit, the results are weaker and less obvious.
Additionally, in order to verify the above mentioned observations we re-

peat the calculations for different periods of the system. The calculations are
performed for periods Lx = Ly = 410nm and Lx = Ly = 600nm. We choose
to do the calculations for 410nm, instead of 400nm, because in this way a
possible peak that appears at wavelength equal to the period will be more
clearly visible. The results are plotted and shown in figures 3.5 and 3.6.

By comparing the plots in figures 3.5, 3.1 and 3.6 - that correspond to
periods 410nm, 500nm and 600nm, respectively - it is safe to say that we
observe the same pattern. The two areas, with high values of Absorptance,
can be seen very clearly in all the diagrams.

The area, where the high Absorptance is coming from the excitation of
the light propagation modes from individual nanowires, has the same shape
and form, in all three diagrams. The high Absorptance in this area does
not depend on the period of the system, since it is a result of the fact that
the light is trapped inside each individual nanowire. Thus, it is reasonable
that the system exhibits almost identical absorbing behaviour for different
periods, at these values of shell diameter and wavelength, that correspond
to the above mentioned area in the plots. The plot in fig.3.7 supports the
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Figure 3.5: Absorptance spectrum for different shell diameters. The wavelength
of the incoming light is varied between 400nm and 700nm. The period of the
nanowire arrays is Lx = Ly = 410nm

Figure 3.6: Absorptance spectrum for different shell diameters. The wavelength
of the incoming light is varied between 400nm and 700nm. The period of the
nanowire arrays is Lx = Ly = 600nm

previous argument. In this figure the shell diameter of the nanowires is
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constant (Dshell = 100nm) and the Absorptance with the wavelength of the
incoming light is plotted for different periodicities of the nano-structure. The
peak in Absorptance appears at the same wavelength of the incoming light,
for a certain shell diameter, when the period of the system is altered, which
indicates that the peak originates from the absorption of the light by each
individual nanowire.
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Figure 3.7: The plot of the Absorptance with wavelength of incoming light for
different value of the period of the structure. The diameter of the nanowire is
Dshell = 100nm.

The width of this area decreases as the period of the system increases and
this is very clear in the figures 3.5, 3.1 and 3.6. This change of the width
can be explained if we consider that in this particular area the excitation of
the light propagation modes from the individual nanowires is the dominant
absorption mechanism but it is not the only phenomenon that occurs. The
coupling between nanowires, that exist in close vicinity, is also present in this
area, co-existing with the phenomenon of the excitation of the propagation
modes. As the period of the system increases the coupling becomes weaker
and the area becomes narrower.

Furthermore, the next interesting observation from the three plots of the
Absorptance, with different periods of the system, is that all three of them
show a peak in Absorptance when the wavelength coincides with the value
of the period of the nano-structure. This verifies that the structure acts as
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a Bragg grating and traps the light. The most noticeable difference between
the three diagrams, regarding this particular area, is that the position of the
peak values in Absorptance corresponds to different values of the shell di-
ameter of the nanowires, when the period is altered. The peak values of the
Absorptance are observed at higher values of the shell diameter, as the period
increases. More specifically, for the periodicity of 410nm the Absorptance ex-
hibits maximum values when the shell diameter of the nanowires is between
180nm and 210nm(180nm ≤ Dshell ≤ 210nm). For period Lx = Ly = 500nm
the same area moves to higher values of shell diameter and is placed to diam-
eter between 200nm and 230nm (200nm ≤ Dshell ≤ 230nm) and for period
Lx = Ly = 600nm the area moves even more to shell diameter between
252nm and 292nm (252nm ≤ Dshell ≤ 292nm). The same observations can
be made in the triangular area above this line of maximum Absorptance,
where the Absorptance decreases as the wavelength of the incoming light in-
creases. This triangular area also moves to higher values of the shell diameter
of the nanowires, as the period increases. Thus, it is safe to conclude that
the system presents maximum in Absorptance, which originates from the
coupling between the nanowires, when the structure of the periodic arrays of
nanowires is not too dense but also not too sparse.

3.2 Error Analysis

In this section the error that the computational calculations insert in the
results is evaluated. The estimation, on how this error influences the results
and the conclusions, is important for this error analysis. In every case of
numerical computations, one has to take under consideration that a certain
error is unavoidable, hence the reduction of this error to its minimum value
it becomes a crucial point of the calculations. Especially, when the amount
of data that needed to be handled is as large as the amount of data in the
current work, this part of the reduction of the error is a very important and
difficult venture.

On the other hand, apart from the reduction of the error, it is also impor-
tant to estimate the error and describe how this error affects the results. This
way it becomes possible to present the results properly and draw conclusions
that interpret the results in a scientifically correct manner.

The computational calculations for this thesis are performed with a basis
size Nx = Ny = 21 and all the results that are presented come from these

46



calculations. In order to estimate the error behaviour we repeat the calcu-
lations for different basis size and we compare the results. The largest basis
size that we are in the position to use is Nx = Ny = 27 and this provides the
most accurate result for this thesis.

The following figure shows the plot of the Absorptance spectrum, that
corresponds to a nano-structure with periodicity Lx = Ly = 500nm and
nanowire shell diameter Dshell = 100nm, for different basis sizes.
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Figure 3.8: The plot of the Absorptance with wavelength of incoming light for
different expansion basis sizes. The diameter of the nanowire is Dshell = 100nm
and the period of the structure is 500nm.

The error is calculated by subtracting the value of the Absorptance, that
we compute using basis size Nx = Ny = 21, with the value of Absorptance
with the maximum accuracy that we are able to approach, by using basis
size Nx = Ny = 27. This error presents a maximum value of approximately
0.02 A.U in the Absorptance. However, the error is not constant and in some
areas of the Absorptance spectrum the results seem to converge, with very
small deviations. In fig.3.8 it is verified that for some areas of the spectrum
the results almost converge.

Furthermore, it is very important that the position of the peak does not
change when a larger basis is used. This is important because the conclu-
sions, that are presented in the previous section depend in a great extent on
the position of the areas where the peak values of the Absorptance appear.
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Since the results present a scientific consistency and a logical coherence, the
accuracy of the position of the peak values of the Absorptance is a crucial
point.

To sum up, the error inserts a level of uncertainty regarding the abso-
lute values of the Absorptance; nevertheless, the fact that the shape of the
diagrams seems to remain invariable to the change of the basis size allows
us to draw very important conclusions about the mechanism of the light
interaction with the nano-structure, that is studied.

3.3 Electric field distributions

The plots of the electric field distributions across different cross-sections of
the system provide very important information regarding the propagation of
light inside the system. Using these plots it becomes possible to determine
which modes propagate inside the nanowires, how confined the electric field
is inside the nanowires, how strong the electric field is or in which positions
inside the nanowires the absorption of the light takes place.

Initially, the electric field distribution on the horizontal cross-section of
the unit cell is plotted. The electric field is calculated in every position of the
xy-plane of the unit cell and for certain positions along the z -direction. The
objective is to study how the electric field distributions change as the light
penetrates deeper inside the nanowire. It is assumed that the zero in z -axis
coincides with the top of the nanowires, because the light is incident on top
of the nanowire structure from the air, and as the light propagates inside the
nanowire the variable z increases. For shell diameter Dshell = 116nm, period
Lx = Ly = 500nm and wavelength of incoming light λ = 605nm the system
presents very high Absorptance (Absorptance = 0.9974), hence, it is a very
interesting case for studying the electric field distributions. In the following
plots it can be seen how the electric field varies across the xy-plane of the
unit cell, at different cross-sections of the system with the above mentioned
characteristics.

The first set of plots (fig.3.9) shows the distributions of the y component
of the electric field across the xy-plane, for different cross-sections of the
nano-structure’s unit cell along the z direction, at the positions: z=40nm,
z=160nm, z=280nm, z=400nm, z=520nm and z=600nm.

The propagating modes described at the theoretical section of the thesis
can be seen very clearly in these diagrams. The pattern of a superposition
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Figure 3.9: The y component of the electric field (Ey) distributions across the
xy-plane, in different cross-sections of the unit cell, along the z direction. The
structure that corresponds to these plots has a shell diameter of the nanowires
Dshell = 116nm , periodicity Lx = Ly = 500nm and the incoming light has
wavelength λ = 605nm.

of resonant states is distinguishable. It is also obvious that the electric field
is not confined inside the area of the nanowire, but it is distributed across
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the whole area of the unit cell, forming these interference rings around the
nanowire. The area of the nanowire cross-section is the area inside the circle
in the fig.3.9(a).

Additionally, we can conclude that the electric fields of the light waves
is gradually decreased as the light penetrates inside the structure. In figure
3.9(a), that corresponds to z=40nm, the maximum value of the electric field
is Ey,max = 0.0249V/m, while deeper inside the nanowire, at the position
z=160nm (fig.3.9(b)), we get a stronger electric field, Ey,max = 0.0353V/m.
Propagating further inside the nanowire the light mode is losing energy,
either because of the absorption or because it leaks out of the nanowire.
For the positions z=280nm, z=400nm, z=520nm and z=640nm we calcu-
late: Ey,max = 0.029V/m, Ey,max = 0.0246V/m , Ey,max = 0.0216V/m and
Ey,max = 0.0177V/m, respectively. These values of the electric field for the
different cross-sections indicate that it may be a standing wave formation
along the z direction, since the electric field is weaker at the z=40nm cross-
section compared to the electric field at the z=160nm cross-section.

In order to obtain a better understanding of the absorption along the
z direction of propagation, it is very useful to plot the electric field dis-
tributions across the xz -plane (vertical cross-section of the unit cell of the
nano-structure). In fig.3.10 the y component of the electric field distri-
butions across the vertical cross-section of the nanowire, at the position
y=210nm, is plotted. We continue studying the same system as before,
with Dshell = 116nm, period Lx = Ly = 500nm and wavelength of incoming
light of λ = 605nm.

This plot shows that the light is losing energy as it propagates inside the
nanowire and the propagation of the light wave modes inside the nanowire
is very clear. The electric field is gradually reduced as the light penetrates
inside the nanowire, but the formation of the propagation mode seems to be
preserved unchanged. However, after the first half of the nanowire a large
percentage of the light energy seems to be absorbed and it is almost totally
absorbed when the light reaches z=1600nm. These small values of the electric
field are probably the reason why the formation of a standing wave along z
is not clear from this plot.

To sum up, the previous plots allow us to conclude that across the plane
perpendicular to the light propagation direction, the light forms resonant
standing wave sates, that we call propagation modes. More specifically,
these propagation modes are superpositions of these standing wave states
and originate from the fact that the wavelength of the light is comparable
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Figure 3.10: The distribution of the y component of the electric field across the xz -
plane. This vertical cross-section is taken at the position y=210nm. The incoming
light has wavelength λ = 605nm and the period of the system is 500nm. The area
between the two black lines is the cross-section of the nanowire.

to the diameter of the nanowire. The nanowire acts as a propagation wave-
guide for the light. Additionally, the vertical cross-section of the unit cell
provides information on how the light propagates along the z -axis.

Finally, the calculation of the x component of the electric field in the same
nano-structure is performed. In fig.3.11 the electric field distribution across
the xy-plane is plotted, for different horizontal cross-sections of the unit cell
of the system. The plots do not seem to have a similar form with the y
component of the electric field distribution plots. In these plots, we observe
a very focused light beam in the middle of the nanowire. The x component
has much higher value compared to the y component and it decays as the
light penetrates inside the nanowire. The fact that the x component of the
electric field has high values is perfectly reasonable, since the incoming light
is assumed to be an x -polarized plane wave. The reduction of the electric
field in the middle of the nanowire is also expected, due to the absorption of
the light inside the nanowire.
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Figure 3.11: The x component of the electric field (Ex) distributions across the
xy-plane, in different cross-sections of the unit cell, along the z direction. The
structure that corresponds to these plots has a shell diameter of the nanowires
Dshell = 116nm, periodicity Lx = Ly = 500nm and the incoming light has wave-
length λ = 605nm.

The reason that the plots in fig.3.11 do not show the light propagation
modes pattern, as expected, is that the electric field Ex in the middle has
very high values compared to the values that it takes in the rest of the area
of the unit cell. The propagation modes can become visible only if we set
the maximum in the colormap scale of the diagram at a lower value. Hence,
in fig.3.12 we can see the same plots with the fig.3.11, but in this case we
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set the maximum value for the electric field at Ex = 0.1V/m - instead of the
value Ex = 0.8V/m , that is the maximum for the previous plots. This way
we lose the information about the values of the electric field in the middle of
the nanowires but the propagation modes of light become more pronounced
and distinguishable. The same result may be achieved by using a logarithmic
scale plot.

Figure 3.12: The x component of the electric field (Ex) distributions across the
xy-plane, in different cross-sections of the unit cell, along the z direction. The
maximum on the colormap scale is intentionally reduced in order to obtain a
clearer picture of the light propagation modes.
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Chapter 4

Conclusions-Outlook

This thesis work provides a description of the mechanisms that govern the
light interaction with a nano-structure, constructed of periodic arrays of ver-
tical core-shell nanowires. The information provided here allows us to extract
important conclusions that help us to decide what geometrical design of the
nano-structure is the most efficient for photovoltaic applications. Addition-
ally, the results in the Absorptance values, that correspond to the wave-
lengths of the visible light spectrum, could be important for photo-detector
applications.

Two main mechanisms of the light interaction with the nano-materials
have an important impact on the Absorptance of the system. Firstly, the ex-
citation of light propagation eigenmodes by the incoming light is the reason
of the high values of the Absorptance that the system exhibits for certain
wavelengths of this incoming light. This phenomenon originates by the ab-
sorbing behaviour of the individual nanowires and this is very clear from the
plots presented in the results section of the thesis. Furthermore, the coupling
of the electromagnetic field between neighbouring nanowires, or generally be-
tween nanowires that exist in close vicinity, constitutes the second mechanism
responsible for the high values of the Absorptance.

The results regarding these two mechanisms are in agreement with pre-
vious publications on nano-structures consisting of periodical arrays of sim-
ple nanowires. However, the core-shell nanowire structure presents higher
Absorptance values than the simple nanowire structures.

Lastly, another very important conclusion is that the Absorptance of the
structure is decreased when the shell diameter of the nanowires is so large
that the nanowires cover almost the entire surface of the nano-structure.
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Consequently, a nano-structure consisted of nanowires with the shell diameter
considerably shorter than the period of the structure is more efficient for a
photovoltaic application. This conclusion allows us to reduce the material
usage for the manufacture of the nano-structure and reduce the production
cost of the photovoltaic devices.

A future step could be the creation of an improved algorithm, that enables
us to use a larger expansion basis; this will result in an improvement of the
precision of the computer calculations and the reduction of the computation
time. The current results provide information that allows us to be confident
about the above explained conclusions; however, it is necessary to verify the
accuracy of these results by using a larger basis. More specifically, we should
extend our error analysis with results from larger bases and if the results
continue to show small deviations, similar to what we observe in the error
analysis of the current thesis’ results, we will be certain for the convergence
of the results.

A logical continuation of the current thesis work could be to study differ-
ent nano-structures. First of all, the combination of InAs, as the core mate-
rial, and InP, as the shell material, is one of the many different combinations
of semiconductor materials that we are able to choose for the construction of
the core-shell nanowires. Placing the InAs in the core and GaAs at the shell
or InSb at the core and GaSb at the shell could be some of the numerous
material combinations for the structure of the core-shell nanowires.

Moreover, different geometries can be studied. The diameter of the
nanowires could be varied along the arrays and the unit cell could be con-
structed of two or more nanowires with different diameters. It is also possible
to replace the nanowires with nano-cones. All these changes could easily be
done by simply changing a few lines of the algorithm.

It is also interesting if we can expand the Absorptance spectrum to a wider
range of wavelengths of the incoming light. For this thesis the incoming light
is assumed to be in the visible spectrum, with wavelengths between 400nm
and 700nm. By implementing methods such as Fast Fourier Factorization
or re-programming the algorithm in a different way, taking advantages of
a higher level programming features, we could improve the speed of the
calculations and make it possible to get more results.

Finally, the calculation of the ultimate efficiency η of the system in com-
bination with Absorptance results could possibly be a very good suggestion
for a better understanding of the phenomena.
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