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Abstract 

The wide coverage and periodic nature of remote sensing satellites made them a useful tool in 

coastal management during the last two decades. Seagrass species are a powerful indicator of the 

marine environment condition and a main source of primary production in both marine and fresh 

water ecosystems. In this thesis, a study was carried out using Geoeye-1 satellite data acquired on 

July and August 2011 to extract bottom type features, i.e. seagrass (Posidonia Oceanica), sand and 

rock in shallow coastal waters of Losinj Island, Croatia. 

Prior to classification, atmospheric impacts have been removed using the ATCOR atmospheric 

module in ERDAS imagine 2011. But due to quality problems the glint correction using Hedley’s 

method and elimination of the water column effects using Lyzenga’s method to produce depth 

invariant indices for each band pairs was unsuccessful. To improve the spectral distinction of 

bottom features a combination of PCI and visible bands were used to form the basis of Maximum 

likelihood classification. Also to compensate the water column problem, training areas for each 

main class were considered as separate individual classes and then get aggregated to make the 

parent class. Efficiency of the classification was evaluated by assessing the accuracy of the 

generated thematic maps which showed a satisfactory result for the total accuracy of the classified 

images. 
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Chapter 1: Introduction 

1.1 General background on seagrass 

Seagrasses are submerged aquatic flowering plants rooted primarily in soft types of sediment (sand 

and mud) in coastal, estuarine and freshwater habitats all over the world (Dennison et al., 1993; 

West, 1983). Seagrasses are the only flowering plants which are adapted to live under water (Short 

et al., 2007). 

Seagrasses are generally distributed alongside of tropical and temperate climate zones in near 

shore shallow waters between 0-50 meters depth (McKenzie et al., 2003). There are about 58 

species of seagrasses worldwide which are divided to two orders (Hydrocharitales and Najadales), 

four families (Hydrocharitaceae, posidoniaceae, Cymodoceaceae and Zosteraceae) and twelve 

genera including Enhalus, Thalassia, Halophila, Posidonia, Syringodium, Halodule, Cymodocea, 

Amphibolis, Thalassodendron, Zostera, Heterozostera and Phyllospandix (polina, 2011; Kuo et al., 

1989). 

Besides the climate factors, seagrass distribution and growth is affected by other environmental 

factors such as chemical substances in the water, the accessibility to nutrients and turbidity of 

waves. Moreover, sedimentation rates and geological characteristics of the seafloor influence on 

seagrasses distribution (McKenzie, 2003). 

Zostera marina, Zostera noltii, Cymodocea nodosa and P.oceanica are four main European 

seagrass species found in the Mediterranean Sea (Polina, 2011). However, Posidonia Oceanica is 

the dominant seagrass in the Mediterranean Sea, where it covers about 2% (about 50000 km
2
) of 

the seafloor on sandy and occasionally rocky beds (Fornes et al., 2006; Larkum et al., 2006). 

1.2 The importance of seagrass 

The vital importance of seagrass communities which makes them a key factor of coastal 

ecosystems is widely recognized (West, 1983: Polina, 2011). Seagrasses are an important 

component of the marine ecosystem food chain by their high rates of primary production (Hossain, 

2005; Pergent-Martini, 2005). Furthermore, they serve as near-shore protection and nurseries for 

much juvenile marine life (Wabnitz et al., 2008) and their ability to store up to 12% of the total 

oceanic carbon makes them an important carbon sink for the ocean (Bostrom, 2011). 

Also, seagrasses by acting as a barrier against currents and waves provide a natural protection 

against coastal erosion and also by trapping sediments; they keep the water clean and improve the 

quality of water (Larkum et al., 2006). Seagrasses are considered as a reliable indicator and 
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signifier of the environmental health of marine ecosystems and appropriate for the environmental 

monitoring (Polina, 2011; Fornes et al., 2006). 

1.3 Seagrass threats 

Seagrasses are vulnerable to changes in coastal environments and can be easily destroyed or 

damaged. If the degradation is faster than the seagrass adaptation rate, then the result would be a 

reduction in the plants distribution area (Polina, 2011).  

Threats can be due to natural and anthropogenic causes. Infectious diseases, competition among 

species, big storms such as hurricanes and tropical storms that produce both strong waves and high 

levels of turbidity which can destroy seagrass beds, are among the natural causes. But in 

comparison to nature, anthropogenic causes play the most important role in seagrass ecosystem 

degradation (Larkum and West 1990). 

Direct human activities that threaten seagrass habitat include trawling and anchoring, seabed 

mining and dragging for oil, gas or mineral exploration and production, reduction in water clarity 

and quality because of dredge spoil, sewage sludge, industrial chemical waste, agricultural run-off 

and coastal development, anthropogenic noise of commercial and recreational boating (Seruci, 

2010; Hossain, 2005; polina, 2011).  Also indirect stress drivers such as acidification of the 

oceans, changes in ocean circulation, global sea level rise can be considered as the indirect role of 

humans in worldwide seagrass reduction due to increase in the concentration of greenhouse gases 

which lead to global warming (Harris, 2011). 

In response to these challenging threats, policy makers and resource managers are trying to 

prevent, slow or reverse these negative changes by developing strategies introducing marine 

protected areas (MPAs) as a management tool (Aaby, 2004). Understanding the seagrass spatial 

distribution and characterization to create an accurate and up-to-date habitat map is a crucial step 

to the assessment of the ecosystem resource status and functions to reach the sustainable coastal 

zone management (Meyer, 2008). 

1.4 Research problem: A remote sensing perspective 

Traditional methods of mapping seagrass are based mostly on in situ surveys or digitizing the 

seagrass extent from aerial photography which are both time consuming and labor intensive. 

Besides this, the spatial extend of seagrass meadows are highly variable and dynamic which makes 

delineating a hard boundary of their habitat an even more difficult task (Curran, 2011). 

Due to its big scale view which is required to map an extensive area in a cost effective manner, 

many scientists consider remote sensing techniques as the most feasible mean to capture reference 

data for the purpose of map production at a suitable spatial resolution (Pulliza, 2004). Additionally 
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repetitive imagery from satellite sensors allow for routine monitoring of the selected areas and 

provide a cheap and accurate tool for performing a change detection analysis of the habitat. 

Variations in seafloor coverage from seagrass to sand and rock can change the ocean color, 

expressed at the sea surface. These spectral contrasts can be used in an identification algorithm to 

group related spectral patterns into clusters and labeling them will produce a thematic map 

showing the seafloor cover types (Arledge and Hatcher, 2008). But marine remote sensing is very 

different from terrestrial applications and in many cases imposes challenges for benthic habitat 

mapping and requires special techniques to deal with water surface effects, water column 

attenuation and depth variation effects. For instance, IR bands which are commonly used in 

vegetation studies on land are not useful for mapping seagrass because they rapidly get absorbed 

by water column. Marine researchers can just rely on visible bands which can penetrate the water 

column to differentiate seagrass spectral reflectance from its surrounding covers. It means that the 

sensor is just restricted to shallow coastal waters at depths that visible light can penetrate but even 

in the shallow waters the turbidity in the water column and sun glint on the water surface can make 

the mapping process complicated and it some cases even impossible. 

1.5 Research Objectives 

This study aims to explore the spatial distribution of P.oceanica seagrass along the coastline of 

Losinj Island based on remote sensing and GIS techniques. This research tries to evaluate the 

feasibility of employing semi-automatic image processing techniques to satisfy the increasing need 

of periodical seagrass maps in Croatia. Results of this study are expected to provide adequate 

information on both the pre-processing and classification methods which are appropriate to 

produce an accurate quantitative benthic map of seagrass habitats. 

1.5.1 Specific objective 

To apply Geoeye-1 two meter multispectral satellite imagery for monitoring the distribution of 

P.oceanica. 

1.5.2 Research question 

Does broadband Geoeye-1 imagery provide enough spectral and radiometric information to 

accurately distinct P.oceanica seagrass from sand and rocky beds, and therefore can be used for 

mapping of P.oceanica. 

1.6 Study area 

The Adriatic Sea is the northernmost arm of the Mediterranean Sea, separating the Italian 

Peninsula from the Balkan Peninsula. The Adriatic contains over 1,300 islands, mostly located 

along its eastern, Croatian, coast with 1,246 counted (Leder et al., 2004). The sea is geographically 

http://en.wikipedia.org/wiki/Mediterranean_Sea
http://en.wikipedia.org/wiki/Italian_Peninsula
http://en.wikipedia.org/wiki/Italian_Peninsula
http://en.wikipedia.org/wiki/Balkan_peninsula
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divided into the Northern Adriatic, Central (or Middle) Adriatic, and Southern Adriatic (Lipej et 

al., 2004). 

Export of inorganic nutrients and import of organic carbon and nitrogen through the Strait of 

Otranto makes Adriatic a unique water body that gives rise to a rich flora and fauna (Bianchi, 

2007). 

Because of the counterclockwise direction of currents in the Adriatic Sea, it’s eastern coast has 

relatively clearer and less polluted water than the western Adriatic coast. This circulation has 

significantly contributed to the biodiversity of the countries along the eastern Adriatic coast 

(Chemonics International Inc, 2000). 

The North Adriatic basin, extending between Venice and Trieste towards a line connecting Ancona 

and Zadar, is only 15 meters deep at its northwestern end; it gradually deepens towards the 

southeast. It is the largest Mediterranean shelf and is simultaneously a dilution basin and a site of 

bottom water formation (Cushman-Roisin, 2002). 

 

 

 

 

 

 

 

 

 

 

 

Lošinj is a Croatian island in the northern Adriatic Sea, in the Kvarner Gulf (44° 35′ 0″ N, 

14° 24′ 0″ E). It is almost due south of the city of Rijeka and part of the Primorje-Gorski Kotar 

County. The Island of Lošinj is part of the Cres-Lošinj island group that forms the most inland 

point of the Mediterranean Sea. 

 

Figure 1.1) bathymetry of the Adriatic sea with emphasis on Losinj Island 

adopted from http://en.wikipedia.org/wiki/Adriatic_Sea 

http://en.wikipedia.org/wiki/Ancona
http://en.wikipedia.org/wiki/Zadar
http://en.wikipedia.org/wiki/Continental_shelf
http://en.wikipedia.org/wiki/Dilution_basin
http://en.wikipedia.org/wiki/Croatia
http://en.wikipedia.org/wiki/Adriatic_Sea
http://en.wikipedia.org/wiki/Kvarner_Gulf
http://en.wikipedia.org/wiki/Rijeka
http://en.wikipedia.org/wiki/Primorje-Gorski_Kotar_county
http://en.wikipedia.org/wiki/Primorje-Gorski_Kotar_county
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 Figure 1.2) Satellite image of Losinj Island, Croatia adopted from Bing maps 
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Lošinj is the 11th largest Adriatic island by area (75 km²), 33 km long, with the width varying 

from 4.75 km in the north and middle of the island, to 0.25 km near the town of Mali Lošinj. The 

total coastline of the island is 112.7 km. 

The island is formed predominantly of chalk limestone and dolomite rocks. It has a mild climate 

and evergreen vegetation (like myrtle, holm oak, and laurel). The highest elevations in the north 

have more sparse vegetation. Veli Lošinj, Čikat and the south-western coast are ringed by pine 

forests. 

In the waters around the island of Losinj, there are 95 fish species, which is nearly a quarter of the 

total fish species found in the Adriatic Sea. Some of them have been severely depleted, particularly 

species such as the dusky grouper (Epinephelus guaza). Throughout the entire area there are large 

meadows of sea grass (Posidonia oceanica) known to to be important for fish spawning, which 

have not yet been mapped. The area around Ćutin Veli and Ćutin Mali is dominated by coral 

communities characterized by different types of algae, corals and sponges. These corals 

communities live only in areas of high water purity with a small suspension of solid particles, 

many rare species are found here, some of which are protected, in particular the Paramuricea 

chamaelon and the red coral Corallium rubrum. 

1.7 data sources 

1.7.1 Geoeye-1 satellite imagery 

After IKONOS which was the first sub-

meter commercial satellite, on 

September 6 2008, Geoeye-1 was 

launched by Digital globe Company 

from Vandenberg Air Force Base, 

California with takes panchromatic 

images of 0.41 m and multispectral 

images of 1.65 m spatial resolution in 

RGB and NIR from a 684  Km orbital 

altitude in 15.2 Km swaths.  

With its very high spatial resolution, 

accuracy and enhanced stereo for DEM 

generation and capacity to collect up to 

700000 square kilometers of 

panchromatic imagery, Geoeye-1 is 

believed as one of the most 

sophisticated commercial imaging 

satellites launched till now. 

Tables 1 and 2 provide an overview of Geoeye-1 characteristics. 

Figure 1.3) Geoeye-1 satellite in space 

http://en.wikipedia.org/wiki/Mali_Lo%C5%A1inj
http://en.wikipedia.org/wiki/Limestone
http://en.wikipedia.org/wiki/Dolomite
http://en.wikipedia.org/wiki/Evergreen
http://en.wikipedia.org/wiki/Myrtus
http://en.wikipedia.org/wiki/Holm_oak
http://en.wikipedia.org/wiki/Lauraceae
http://en.wikipedia.org/wiki/Veli_Lo%C5%A1inj
http://en.wikipedia.org/wiki/%C4%8Cikat
http://en.wikipedia.org/wiki/Pine
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Table 1.1) Geoeye-1 Satellite platform technical Information 

Name of satellite GeoEye-1 

Operating country United States 

Operating organization DigitalGlobe, Inc. 

Launch Date September 6, 2008 (11:50:57 to 11:52:21 AM PST) 

Satellite manufacturer 
General Dynamics Advanced Information Systems 

(United States) 

Launch Vehicle Delta II 

Launch Vehicle Manufacturer Boeing Corporation 

Launch Location Vandenberg Air Force Base, California 

Satellite Weight 1955 kg/ 4310 lbs 

Satellite Storage and Downlink 
1 Terabit recorder; X-band downlink (at 740 mb/sec or 

150 mb/sec) 

Orbital Altitude 684 kilometers / 425 miles 

Orbital Velocity About 7.5 km/sec or 17,000 mi/hr 

Satellite orbit type/period Polar sun-synchronous orbit/ 98 minutes 

Orbital inclination 98 degrees 

Equator Crossing Time 10:30 am 

Operational Life Fully redundant 7+ year design life; fuel for 15 years 

Table 2.2) Geoeye-1 satellite sensor characteristics 

Imaging mode panchromatic Multispectral 

Spatial Resolution .41 meter GSD at Nadir 1.65 meter GSD at Nadir 

Spectral Range 450-900 nm 

450-520 nm (blue) 

520-600 nm (green) 

625-695 nm (red) 

760-900 nm (near IR) 

Swath Width 

Nominal swath width – 15.2 km at Nadir 

Single-point scene : 225 sq. km (15×15 km) 

Contiguous large area : 15,000 sq. km (300×50 km) 

Contiguous 1° cell size areas : 10,000 sq. km(100×100 km) 

Contiguous stereo area : 6,270 sq. km (224×28 km) 

Metric Accuracy/Geolocation 

CE stereo: 2 m  

LE stereo: 3 m  

CE mono: 3.5 m  

These are specified as 90% CE (circular error) for the horizontal and 

90% LE (linear error) for the vertical with no ground control points 

(GCP’s) 

Off-Nadir Imaging Up to 60 degrees 

Dynamic Range 8 bits/pixel , 11 bits/pixel 

Imaging Direction Capable of imaging in any direction 

Daily Area Collection Capacity 
Up to 700,000 sq. km/day of pan area 

Up to 350,000 sq. km/day of pan-sharpened multispectral area 

Revisit Time Less than 3 day 

File formats GeoTIFF (standard), NITF 2.0, NITF 2.1,JPEG, IMG 

Coordinate system 

UTM (WGS84), Geographic (nominal ARC), Albers Conic Equal 

Area (ACEA), Lambert Conformal Conic (LCC), Transverse 

Mercator (TM) and State Plane projection (US only) 
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1.7.2 Field work 

Field work was conducted by teaching institute of public health from Rijeka University in the 

period between 16
th

 of May to 20
th

 of May 2012. 400 point data were collected by scuba diving or 

using a Calfat viewer based on random stratified sampling design in order to both train the 

classifier and check the accuracy of the classification result. 180 points were used as training areas 

and the rest were used to measure the accuracy of the classification. 

Samples were taken by a Garmin Oregon 450 GPS V with a positional accuracy between 3 and 5 

meters. A depth for each point was collected with a GPS plotter/fish finder Garmin Echomap 50. 

Three main bottom types were selected after studying the area for image classification; seagrass 

communities (P.oceanica), mobile sediments (silt and sand ) and communities of hard subtrate 

(rocks). Besides, shallow waters and deep waters were considered for classification. Unfortunately 

due to the lack of time and utility, the percentage of seagrass cover was not considered in the field 

visit.  

1.8 software 

1.8.1 ENVI 

ENVI is an image processing package produced by ITT Corporation for the purpose of processing 

multispectral and hyperspectral remote sensing data (ITT, 2007). 

ENVI 5 was used in this thesis as complement software besides ERDAS IMAGINE to perform 

atmospheric correction, glint removal and water column correction. 

1.8.2 ERDAS IMAGINE 

ERDAS IMAGINE is developed by Intergraph which is one of the oldest and leading companies in 

geospatial world. The software package contains sophisticated tools for digital analysis of remotely 

sensed data. 

Most of the image processing tasks in this thesis were done with the Imagine 2011 package. 

1.9 Organization of the research 

 This thesis seeks to contribute the use of remote sensing techniques to investigate the spatial 

distribution of P.oceanica as the dominant seagrass species in near-shore coastline of Losinj Island 

in Croatia. 

Though chapter one covers the general background on seagrass, its importance and stress factors 

causing its decline, then explores the study area and the previous studies done on the subject. It 

then after giving the characteristics of the used satellite imagery in this thesis, it goes through a 

very brief explanation of the challenges and difficulties, researchers might encounter trying to 

produce an accurate benthic map.  
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Second chapter tries to widen our knowledge of the required algorithms to make the habitat map 

by going deeper into the concepts of each algorithm. 

And at last in chapter three goes through the implementation of the algorithms and shows the 

results which will be followed by a discussion and a short conclusion at the end of the chapter. 

Due to some problems with image quality which will be discussed in the third chapter, forced us to 

use an alternative methodology to produce the final thematic layer representing seafloor cover 

types. Diagram below is a general illustration of these two different methods. 

 

 

 

 

 

 

 

 

Figure 1.4) General methodological approach for the analysis of satellite images 
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Chapter 2 – Theoretic background of the methods 

2.1 Interaction of light with water body and atmosphere 

In the last two decades satellite remote sensing at visible and NIR wavelengths became a powerful 

tool in studying marine ecology and its conservation. Medium resolution sensors like MODIS and 

MERIS were routinely used to estimate the concentration of chlorophyll and monitor 

phytoplankton activities which improved our understanding of the oceanic productivity. Also with 

the help of high resolution imageries (e.g IKONOS, QuickBird), mapping the benthic habitats even 

at the species level become possible. However, it should be considered that the reflectance which 

reaches the sensor on the satellite platform has both interacted with water column and travelled 

through the atmosphere. 

Absorption and scattering are main processes when electromagnetic radiation passes through the 

atmosphere and water mediums. Actually the majority of the signal received by the sensor is due to 

atmospheric and water column scattering and only about the 10% of the received signal comes 

from the sea bottom (Robinson, 2010). So the sea and air interactions must be taken into account 

when satellite imagery is being used in marine environmental studies such as benthic habitat 

mapping. 

Figure (2.1) shows the complexity of interactions between solar radiance and atmosphere and sea 

which are important in marine remote sensing. 

 

Figure 2.1) illustration of possible pathways of light in the atmosphere and water body. This 

figure is modified from Robinson, 2010. 
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Equation 1 (Robinson, 2010) shows the total radiance (Lt) that reaches the sensor which can be 

defined as: 

                (1) 

Where  

Lp is the total path radiance 

Lr is the total water surface reflection 

Lw is the water leaving radiance 

And T is the beam transmittance of the atmosphere. 

Based on figure (2.1) each of the contributing parameters of equation (1) can further be divided to 

smaller parts. 

                                  (2) 

a: is the bottom radiance which has the most important portion of detector’s receiving radiance for 

benthic classification and mapping. 

b: is the subsurface radiance. This is the portion of Lw which gets scattered in the water column 

and emerged to the sensor without reaching to the sea bottom. 

c: is the sky glint. This is the scattered light from the atmosphere that reaches the sea surface and 

gets reflected to the sensor. 

d: is sun glint. This is the specular reflection of sunlight from the surface of the sea. A detailed 

explanation of sun glint and its correction methods is given in this chapter. 

e: is representing the reflection from white caps on the sea surface. It’s worth mentioning that 

correction of whitecap reflection needs additional data like the wind speed and direction, 

temperature of the near surface water and air temperature in hourly basis as an input for 

sophisticated algorithms to model the wave patterns (Callaghan et al., 2008).  

f: is part of the path radiance that the sunlight directly scattered toward the detector. 

g: is the part of path radiance that the sunlight get directed toward the sensor after several 

scattering in the atmosphere. 

h: is the surface reflectance which is from the outside of the sensor’s field of view but get directed 

toward the sensor because of atmospheric scattering. 
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i: is the reflection from water body which does not belong to the sensor’s field of view but get 

scattered to the sensors field of view. 

Also we should notice that due to the atmospheric scattering (terms l, m) even Lr and Lw will 

attenuate (terms j and k respectively) before they get recorded by the sensor’s detectors. 

Equation (1) clearly shows the big contribution of atmospheric path radiance and water surface 

reflection in the receiving radiance by the sensor and the necessity of removing them for benthic 

habitat studies. 

2.2 Atmospheric correction 

Satellite imagery is largely affected by the absorption and scattering caused by atmospheric gases 

and particles. So the objective of atmospheric correction is to retrieve the surface reflectance by 

removing (or at least greatly reducing) the atmospheric effects from the top of the atmosphere 

radiance which will improve the accuracy of image classification and is a necessary step in many 

multi-temporal, multi-sensor and quantitative analyses (Lillesand and Kiefer, 2007).  

Atmospheric correction methods can be categorized into three groups: 

1. Radiance to reflectance conversion 

2. Relative atmospheric correction methods 

3. Absolute atmospheric correction methods 
 

2.2.1 Radiance to reflectance conversion 

Each pixel in satellite imagery has an integer value assigned to them which is known as digital 

number (DN). Although DNs provide a convenient display and simplify the computation, they do 

not represent the earth surface brightness in physical units (watts per square meter per micrometer 

per steradian) which is necessary for many physical processing models in environmental studies 

(Campbell and Wynee, 2011). The good news is there is a linear relationship between DN values 

and radiance (figure 2.2). So by knowing the sensor’s calibration factors, DNs can be easily 

converted to radiance using equation 3 based on the Geoeye-1 technical report or following 

equations (4 to 6) by Markham and Barker (1986). 

                           ( )          (3) 

  (
         

     
)          (4) 

Where 

Lmin and Lmax are respectively the minimum and maximum spectral radiance at the range of 

rescaled radiance. Rescaled radiance range is referred to the radiometric resolution of the sensor. 

For example for an 8-bit bit image, rescaled radiance range of Lmin would be zero and for Lmax it is 

equal to 255. 
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Reflectance is defined as the relative brightness value of an earth surface object measured for a 

specific wavelength interval. To calculate reflectance we need to estimate the incident radiance 

upon the object at the time of image acquisition. Precise measurements need in situ data and a 

proper knowledge of the atmospheric condition which are not available most of the time 

(Campbell and Wynee, 2011). Equation (5) without going through the precise measurement gives 

us a good estimation of the top of the atmosphere reflectance.  

  
    

        ( )
  (5) 

Where 

   is the top of the atmosphere reflectance. Because reflectance is a ratio, it is unitless and can vary 

between 0-1. 

L: is the spectral reflectance which is the result of equation (3) or (4). 

d: is the earth-sun distance is astronomical unit and can be calculated based on the Julian day of 

the image acquisition from the equation below. 

               [      (            )]  (6) 

ESUN: is the exoatmospheric spectral irradiance which is specific for each sensor and each band. 

This value is provided for the sensor manufacturer. 

   is the sun zenith angle in degree which is usually available in image metadata. 

Conversion of radiance to top of the atmosphere (TOA) reflectance will remove the effects of sun 

elevation angle, different values of the exoatmospheric solar irradiance arising from spectral band 

differences and differences of earth-sun distance at the time of image acquisition (Chander et al., 

2009). This will make the multi-temporal and multi-sensor analyzes possible but it will not remove 

the path radiance (Lillesand et al., 2007). 

Figure 2.2) illustration of the linear relationship between DN and radiance 
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2.2.2 Relative atmospheric correction methods 

Relative atmospheric methods do not evaluate any kind of atmospheric components, instead by 

applying empirical (statistical) models they try to provide a good estimation of the surface 

reflectance. These statistical models are fast, easy to implement and they usually rely on the image 

itself without a need for additional information. Here we try to briefly go through some of the most 

popular empirical models among remote sensing researchers. 

Due to its simplicity, the Minimum Histogram method (also called Dark Pixel Subtraction) is one 

of the most popular relative corrections among remote sensing scientists. This method is based on 

the fact that the reflectance of a very dark target like deep water in infra-red interval of EM or dark 

shadow should be zero or very close to it. So any recorded radiance in those pixels is the result of 

atmospheric path radiance. To perform the atmospheric correction, the minimum value of this 

residual radiance would be subtracted from all the pixels in that band. There are more sophisticated 

varieties of dark pixel subtraction method which combine the dark target radiance with 

atmospheric modelling but with no complex atmospheric measurements (Schowengerdt, 2007). 

For further information see (Chavez, 1989) and (Tanre et al., 1990). 

Another easy to implement technique is the regression method, like DOS (Dark Object 

Subtraction), in this method some samples will be taken from dark pixels both in the infra-red and 

visible bands. Then the spectral values from the two bands would be plotted against each other 

(infra-red band on the Y and the visible band on the X axis). Then, a first order polynomial will be 

fitted to the points using linear regression and the bias on the X axis would be considered as the 

path radiance for that visible band and will be subtracted from all pixels (Kokko, 2008).  

Both DOS and regression method are relying on the image itself to remove the path radiance. And 

they both need the presence of a dark object to do so. Also these models assume that the surface is 

lambertian and the effect of the atmosphere is constant through the whole image which might not 

be the case most of the time. 

Another relative atmospheric correction can be made using the empirical line method. In this 

method two targets would be chosen on the image one dark object and one bright one. The 

reflectance of these two objects will be measured on the ground and would be plotted against the 

spectral radiance value of the same targets on the image. The slope of the line will be considered as 

the atmospheric radiance and the interception would be the path radiance (Kawishwar, 2007). 

2.2.3 Absolute atmospheric correction methods 

Absolute atmospheric correction methods take advantage of using radiative transfer models to 

simulate the process of transferring an EM wave in the atmosphere. The needed parameters to 

make an atmospheric profile can be gathered with in situ measurements at the time of image 

acquisition or can be indirectly based on the image header data. Due to lack of accurate measured 

atmospheric data, radiative transfer codes were developed to work with atmospheric profiles but it 

might cause an un-estimated error in the resultant ground reflectance (Kawishwar, 2007). 
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Since 1972, a great effort was done to develop reliable radiative transfer codes for the purpose of 

making atmospheric correction models for satellite imagery. Now, there are many radiative 

transfer models (RTMs) available such as 5S, 6S/6SV1, MODTRAN, XRTM, FUTBOLIN.  

MODerate spectral resolution atmospheric TRANsmittance algorithm (MODTRAN) is the most 

popular and commonly used radiative transfer code which is developed by US Air Force research 

laboratory. MODTRAN calculates atmospheric transmittance and radiance for frequencies ranged 

from 0 to 200 nm at moderate spectral resolution of 0.0001 µm (Kneizys et al., 1996).  

Atmospheric CORrection Now (ATCOR), Fast Line-of-Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) are the two commonly used atmospheric models based on MODTRAN 4 

to calculate the atmospheric look-up tables.  These models are available as ready-made module in 

ERDAS IMAGINE and ENVI software suits respectively and been used in this thesis to perform 

the atmospheric correction. 

2.3 Sun glint correction 

The surface of open sea is almost always affected by the blowing wind which generate waves with 

the magnitude that is strongly related to the strength of the wind (NASA, 2003). The presence of 

these waves will disperse the reflected solar radiance from the water surface and cause a 

phenomenon called sun glint. 

In technical literature, sun glint is defined as the specular reflection of sunlight directly from a non-

flat water surface (wind driven waves) toward the sensor and is dependent on the state of water 

surface, position of sun and viewing angle of the sensor (Hochberg et al., 2003).  

Unfortunately the effect of sun glint is most obvious in clear, shallow waters when the image has a 

very high spatial resolution and the cloud coverage is minimal (Wicaksono, 2012). 

A big portion of the radiance that reaches the sensor is due to sun glint which makes both the 

visual interpretation and classification of the benthic habitats a very difficult task (Deidda and 

Sanna, 2012). So developing a robust algorithm to remove the effect of glint is a necessity.  

Sun glint correction techniques can be widely categorized in two big groups based on the spatial 

resolution of the imaging sensor. There are many methods (Wang and Bailey, 2001; Montanger et 

al., 2005; Fukushima et al., 2007; Ottaviani et al., 2008; Doerffer et al., 2008) developed to remove 

the glint in coarse resolution satellite imagery with the resolution of bigger than 100m which glint 

is estimated based on the probability distribution of sea surface slopes and depend on the wind 

speed and direction. But in high resolution images with the pixel size of less than 10 m, the pixel 

size is not much bigger than water surface features which make the statistical assumption of 

previous methods about a surface composed of many reflecting facets, invalid (Kay, 2011). 

On the other hand, methods to remove sun glint from high resolution imagery (Hochberg et al., 

2003; Hedley et al., 2005; Philpot, 2005; Goodman et al., 2008; Kutser et al., 2009) are based on 

using the NIR bands to estimate the amount of glint in the receiving signal and then subtract it. 
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Hedley’s method is used in this study which is an update of Hochberg method. Beside a simpler 

implementation steps, Hedley’s method is less sensitive to outlier pixels and it does not require the 

time consuming process of masking out cloud and land pixels prior the de-glinting process but 

both of the methods rely on the same two initial assumptions. (Hedley, 2005). 

Because of the strong absorption of light in 700-1000 nm wavelengths by water molecules, even 

shallow water is relatively opaque to NIR wavelengths regardless of the bottom type (Mobley, 

1994). This will lead us to the first assumption that the brightness values in the NIR band can be 

considered as an offset caused by sun glint and a spatially constant ambient in the case that the 

image is not atmospherically corrected (Hedley, 2005). 

The second assumption is that there is a linear relationship between the amount of sun glint in 

visible bands and the brightness values of the NIR band (Hochberg et al. 2003). The equality of the 

real index of refraction (bending of light when passing through two media with different mass 

which are transmitting light) for both NIR and visible wavelengths is justifying this assumption 

(Mobley, 1994). 

To implement the method, the linear relationship using an empirical model (linear regression) 

would be established between the visible and NIR bands to obtain the gradient of calibration (slope 

of the regression model) of different sun glint intensities occurred on both bands. 

The slope then will be used as a coefficient in the following equation based on Hochberg et al. 

(2003) and Hedley et al. (2005) works to de-glint the pixels in the image. 

  
 
    [  (           )]  (7) 

Where 

  
 
is the brightness of sun glint corrected pixel in band i 

   is the uncorrected pixel value for band i 

   is the regression slope between visible band i and the NIR band 

     is the pixel value in the NIR band 

       is the lowest NIR value in the image (ambient NIR level) 

2.4 Water column correction 

One of the main difficulties of benthic mapping is the influence of variable depth on the 

reflectance of sea bed features (Mumby et al. 1998). It’s because the intensity of the penetrated 

light into water will decrease exponentially with increasing depth. This process is called radiance 

attenuation in literature and it is wavelength dependent. Longer wavelengths like red and infra-red 

part of EM will attenuate more rapidly than shorter wavelengths like blue and green light (Green et 

al. 2000).  
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Therefore attenuation will cause two major effects. 1) By increasing depth, the spectral separability 

of the substrate features would decreases. 2) There would be spectral signature confusion while 

doing the multispectral classification of the habitats. For example the spectral signature of seagrass 

would be much different from 2 m to 20 m depth (big inter-class variance) or the signature of sand 

in 5 meter might be similar to seagrass in 15 meters. 

Decreased intensity of light while passing through the water column is the result of absorption and 

scattering in the water which is caused by the presence of dissolved and organic matter in the water 

like suspended particulate matter and phytoplankton (Arce, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Having optical properties of water in mind Morel and Prieur (1977) classified natural water in two 

groups. Case I consist of phytoplankton dominated waters and in case II water is dominated by 

inorganic particles (Arledge R.K., Hatcher E.B., 2008). A more detailed classification system was 

developed by Jerlov (1976) based on water optical attenuation properties. This system divides 

oceanic water to three main categories. Type I represent the extremely clear water. Type II is the 

clear oceanic water with the attenuation greater than that of low productivity waters and type III 

consist of the most turbid waters which usually found in coastal areas (UNESCO 1999). 

Removing the effect of depth on bottom reflectance would require both a depth value for each 

water pixel in the image with a measurement of the water column attenuation characteristics 

(Mumby et al. 1998).  Due to the absence of bathymetric and water column properties data at the 

Figure 2.3) Diagram showing the probable change of the spectral signature in for different 

regions of the EM. The figure shows both the difficulty in discriminating different 

habitats by increasing depth and different spectral signatures for the same habitat in 

different depths. The picture is modified from (Green et al., 2000).   
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time of imaging, Lyzenga’s (1978, 1981) empirical technique was applied to decrease the 

attenuation effect of water column. Lyzenga’s method tries to compensate the water column 

attenuation effects to produce a depth invariant index from each pair of spectral bands with an 

initial assumption that as long as the attenuation coefficients are the same in each pair of bands 

then the ratio of two distinct substrate cover would not be dependent to water depth (Pahlevan et 

al., 2006). 

Also it’s worth mentioning that almost all of the studies assumed that Kd (local light attenuation) 

values extracted from few samples from an area in the image can be used for other regions too but 

the attenuation coefficient might show high spatial variability especially in tropical areas 

(Karpouzli et al. , 2003). 

The Lyzenga technique can be divided to several steps as follows (UNESCO 1999): 

1- Atmospheric and sun glint correction 

As discussed in the atmospheric correction part, prior to water column correction we should 

remove the path radiance caused by atmospheric scattering and the water surface reflectance 

(sun glint). 

This can be done by using a radiative transfer model or a simple crude correction like dark 

pixel subtraction (DOS). 

Atmospherically corrected radiance = Li – Lsi  (8) 

Where Li is the pixel radiance in band i and Lsi is the average radiance of deep water for band i. 

Because we did the atmospheric correction before for the rest of the steps we consider Li as the 

atmospherically corrected pixel radiance of band i. 

2- Make a linear relationship between radiance and depth 

Lyzenga’s method is based on the assumption that the decrease in the light intensity with the 

increasing depth follows an exponential curve (Mumby et al., 1998). In this step by using the 

natural logarithm (ln), the relationship between depth and radiance becomes linear. 

Xi = ln(Li)  (9) 

3- Calculate the ratio of attenuation coefficients for band pairs 

Attenuation coefficient shows the severity of the decrease of light intensity for each band 

through the water column and can be calculated with the following formula. 

Li = Lsi + a.r. (     )  (10) 

In this formula r is the reflectance of bottom which we seek but the problem is we have many 

unknowns like the constant a; kj which represents the attenuation coefficient for band j and z 

which is the depth value for each pixel. 

The beauty of the Lyzenga’s method is by using the ratio of two bands it cancels out these 

unknown parameters and make the calculations just base on the image itself. 
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The ratio of the attenuation coefficient can be defined with the formula below. 

  

  
   √(    )  (11) 

“a” is based on the variance and covariance of the band pairs i and j and can be calculated as 

follows. 

  
                     

                   
 
       

     
  (12) 

 

    (    )  (     )   (13) 

And X is the natural logarithm of pixel reflectance (L) for each band. 

To implement this part, some pixel samples will be taken for a known substrate type in different 

depths from each band. Then a bi-plot would be made and the slope of the plot shows the ratio 

attenuation coefficient for that pair of bands. 

4- generate a depth-invariant index of bottom type 

Because the samples belong to a unique bottom type and due to the linearization of the 

relationship between radiance and depth, pixel values shape around a line on the bi-plot. By 

adding the reflectance value of different bottom types on the bi-plot based on their reflectance 

they would make several almost parallel lines but the y-intercept would be the same for each 

substrate. 

So the depth invariant index can be build based on the equation of a simple line. 

 

                (14) 

                        (  )  [(
  

  
)     (  )]   (15) 



[20] 

 

 

 

2.5 Principle Component Analysis (PCA) 

Principle component analysis is a multi-variable statistical operation to transform the coordinates 

of the data in multidimensional feature space based on the correlation between bands (Das). In the 

field of digital processing of multi and hyper spectral satellite imagery, PCA can be used to reveal 

the most informative bands and by un-correlating the bands, it can reduce the dimensionality of the 

dataset and compress the image data. Also transforming the DN values and redistributing those 

onto new orthogonal axes might increase the spectral separability of some classes which their 

spectral signatures had partial overlap before the transformation (Gao, 2009). 

Process of PCA can be divided into these steps (Tso and Mather, 2009). 

1. Calculate the mean of all the pixel values in each band. 

2. Subtract the mean value from all the pixel values in that band. This will produce a dataset 

with the mean of zero. 

3. Calculate the variance-covariance (or correlation) matrix. The dimension of the covariance 

matrix should be equal to the number of image bands. 

4. Compute the unit eigenvectors and related eigenvalues for the covariance matrix. If a n×n 

covariance matrix does have any eigenvectors then the number would be equal to n. 

5. Order the eigenvectors by eigenvalues from highest to lowest. Then make a feature vector 

by forming a new matrix from the eigenvectors we want to keep. 

6. Rotating the feature space based on the selected eigenvectors in the feature vector. 

The first principle component image which is derived from the first eigenvector with the highest 

eigenvalue would have the biggest amount of total variance in the dataset. Because in image 

processing variance usually relates to information, PCA1 would contain most of the useful 

information of all input bands. And the variance of the remaining PCA images would decrease in 

correspondence to decrease in magnitude of their eigenvalues (Tso and Mather, 2009). 

Figure 2.4) Illustration of Lyzenga’s method for water column correction. Notice that in step 3, 

depth would decrease from left to right. The picture is adopted from (Green et al., 2000). 
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PCA based on the variance-covariance matrix is called unstandardized PCA in the technical 

literature while the standardized PCA is based on the correlation matrix. If the images are in DN 

values or does not have the same unit then it’s better to use the standardized PCA. Correlation can 

be calculated by subtracting the mean value from all the measurements and then divide the results 

by the standard deviation. This procedure will make each spectral band with a unit variance and a 

mean of zero, hence, normalize the data onto the same scale (Mather, 2011).  

It should be noticed that if the image units are compatible like when the image is converted to 

radiance, then it’s better to use unstandardized PCA because normalization in the correlation 

matrix will cost us changes in the degree of variability between the bands (Tso and Mather, 2009).  

2.6 Classification 

Digital image classification is the process of converting a numerical image data into a thematic 

map. Classification is the an important step in remote sensing and digital image processing because 

in many instances, the resultant thematic map of this process is considered as the final product of 

the analysis but even in the cases that the classification result is an intermediate step in a more 

complex analysis, one cannot ignore the importance of its reliability in the total accuracy of that 

analysis. 

A specific algorithm to perform the image classification is called classifier in the technical 

literature. There are a wide variety of these classifiers and each of them tries to use a classification 

procedure to improve the classification accuracy. Classifiers can be categorized into several groups 

based on different views. 

They can be divided into soft and hard classification methods based on how the feature space 

decision boundary of the classifier is defined. The most common way is to categorize the 

classifiers into two general groups of supervised and unsupervised classification methods. 

Unsupervised classifiers such as ISODATA and K-mean can be defined as finding of the natural 

spectral clusters within the multispectral data without having a prior knowledge in the case of 

representative ground samples to train the classifier but of course we need a general knowledge of 

the area covered by the image scene in order to interpret the results (Campbell, 2011). 

On the other hand, supervised classification use samples with known information class to train the 

algorithm to classify pixels of unknown identity. Most popular supervised classifiers are minimum 

distance, parallelepiped and maximum likelihood. 

Unfortunately selecting the best classification method is not an easy task. Many factors such as the 

source of the image data and its characteristics, chosen classification system, complexity of the 

landscape, quality of the training data and even software availability are among the major factors 

that affecting the choice of a proper classifier (Lu & Weng, 2007). 

This work used Maximum likelihood classification method because among the above mentioned 

classifiers it’s the only one that can consider the spectral variability within each class that might be 

because of atmospheric or mixed pixel effects by using the mean, variance and covariance of each 
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class from the training samples. This means that ML classifier is extrapolating the statistical 

parameters of each class from the training data. This extrapolation is based on two main 

assumptions. First, the training samples must be a good representative of classes and second, they 

should have a multivariate normal frequency (Gaussian) distribution. Violating these assumptions 

may reduce the accuracy of the classification (Campbell, 2011).   

Maximum likelihood (ML) is a statistical supervised classifier which is based on Bayesian 

probability formula to calculate the probability of the belonging of a pixel to a set of pre-defined 

information classes. The pixels will be assigned to a class with the highest probability (Tso and 

Mather, 2009). This can be shown with equation 16. 

         (  | )     [ (  | )  (  | )    (  | )]  (16) 

In the above formula  (  | ) is the conditional probability of pixel X being a member of class Cj 

which can be solved using the Bayesian theory (Eq. 17). 
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 ( |  ) is the probability of  encountering of a specific DN value, given that we have category Cj 

which can be estimated from the training samples. 

 (  ) denotes the probability of occurrence of a specific information class in the image but this is 

impossible to know this value before the classification. To solve this issue we have two options. 

We can assume that the probability is equal for all the information classes or derive the value from 

the results of previous classifications either supervised or unsupervised. 

 ( ) is the probability of occurrence of a specific DN value in the image which is estimated by 

multiplying the probability of finding that DN in a class by the probability of that class and 

summing it up for all the available information classes in the imagery. 

 (  | )  
 ( |  )

∑  ( |  )
 
   

   (18) 

Equation 18 is the simplification of the Bayesian formula which shows that the calculations will 

reduce to estimating  ( |  ) which is justifying the above mentioned assumptions about training 

data (Gao, 2009).  

2.6.1 Post-classification 

Complexity of the earth surface usually causes a spectral confusion among information classes 

which leads to isolated pixels in the classification result of the common supervised classifiers. This 

will make a salt-pepper effect on the resultant thematic map which can be reduced by using a mean 

or majority filter (Lu & Weng, 2007).  
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2.7 Accuracy assessment   

It’s common knowledge among scientists of different fields that it is impossible to find a model 

which is the perfect representative of reality. The same rule applies to the maps generated from 

image classification procedure. So before we can use a map in an application, we should have an 

indication of its quality to see if it meets the requirements of that specific application. 

Accuracy assessment is the procedure to determine the degree of error (incorrect labelling of 

pixels) in the resultant thematic map (Mather, 2011). The most common way to assess the 

classification accuracy can be achieved by using an error matrix which is also known by the name 

of confusion matrix in technical literature (Tso and Mather, 2009). 

Confusion matrix is a square matrix with a dimension equal to the number of classes. The matrix 

represents the relationship between two sample sets, reference dataset which is collected by field 

work or using the existing maps with the pixel labels made by the classifier which is correspond to 

the reference data (Tso and Mather, 2009). The columns in the matrix are showing the reference 

data while the rows are representing the pixel labels assigned by the classifier (Mather, 2001). 

Confusion matrix can be used to derive some statistical parameters to indicate the quality of the 

data. The simplest parameter is the overall accuracy which can be obtained by dividing the major 

diagonal (number of correctly classified pixels) of the matrix by the total number of pixels (total 

row or column sum) (Gao, 2009). 

As it comes from the name, overall accuracy is just giving us a total view of the classes as a whole. 

For computing the accuracy of individual classes we need two other parameters, namely 

producer’s and user’s accuracies. 

Producer’s accuracy (omission error) shows us the probability how correctly a pixel of reference 

dataset can be recognized by the classifier. This parameter is measured by dividing the total 

number of correct pixels in a class by the total number of pixels in that class derived from 

reference data (column sum). On the other hand, user’s accuracy (commission error) will show us 

how well the classified pixel on the image is representing the information class on the ground. This 

parameter can be calculated by dividing the total number of correct pixels in a class divided by the 

total number of the pixels in that class (sum of the row) (Congalton, 1991).  

On the other hand Cohen’s kappa coefficient gives a measure of agreement between the achieved 

model and reality by determining how significantly the result of the error matrix is better than pure 

chance (Jensen, 1996). 

2.8 Previous works 

Various techniques have been developed to assess and monitor the spatial and temporal changes of 

seagrass habitat such as field survey methods consisting of permanent transect monitoring to 

different variations of random sampling design. Also aerial photography has been used extensively 

for developing habitat maps. 
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Seagrass biomass is very sensitive to environmental disturbance and the traditional surveying 

methods are mostly based on sampling small areas and extrapolating the results to a much larger 

area which might not be reliable enough for local and regional studies. On the other hand, satellite 

remote sensing is capable of providing a reliable and consistent database of the benthic habitat 

repeatedly over very large areas and in a cost effective and timely fashion. 

Wabnitz et al. (2008) tried to use Landsat imagery to produce large scale baseline habitat maps of 

the Caribbean Sea. To achieve this goal, they used geomorphological segmentation, contextual 

editing and supervised classification. For accuracy assessment beside using in situ data, they took 

advantage of high resolution IKONOS imagery and previously published habitat maps with 

documented accuracies and reached the overall accuracies of 46 to 88% for about 40 Landsat 5 and 

7 scenes which they concluded to be acceptable for regional baseline maps for large scale 

conservation programs. 

Fornes et al. (2006) used supervised classification technique on multispectral IKONOS imagery to 

monitor P.oceanica in shallow coastal waters around Balearic Islands in western Mediterranean 

Sea. They used maximum likelihood decision rule to classify pixels into four classes: sand, rock, 

P.oceanica and unclassifiable pixels. Then they compared their result with a reference acoustic 

seabed classification and got 84% agreement for chosen sample areas. 

Mumby et al. (1998) did water column correction and contextual editing followed by a supervised 

classification as part of their framework analysis to make benthic habitat maps on various sensors 

including CASI, Spot and TM images of Truks and Caicos islands (British West Indies) and 

concluded that doing water column correction will improve the accuracy of the classification’s 

result by 13% in CASI, up to 6% in TM imagery but it is not significant for sensors which produce 

a single depth invariant band like SPOT-XS and Landsat MSS. 

Sagawa et al. (2010) developed a new index for radiometric correction based on bathymetric data 

and attenuation coefficient to model the relationship between bottom reflectance through the water 

column and radiance level measured by satellite. They tested the model using two case studies: 

Funakoshi Bay in Japan and Gabes Gulf (Mahares), Tunisia representing Jerlov water types II and 

II to III respectively. After applying their new reflectance index on IKONOS imagery, they 

followed the analysis using a maximum likelihood supervised classification to generate a habitat 

map and got the overall accuracy of 83.3 and 90% respectively for Funakoshi Bay and Gabes Gulf 

which shows an improvement in the accuracy of the resultant benthic map in comparison to 

traditional depth invariant index based on Lyzenga’s model. 

Pu et al. (2012) used Landsat 5 TM, ALI and Hyperion satellite imagery, all with 30 meter spatial 

resolution, with regards to two metrics namely percent cover of submerged aquatic vegetation 

(SAV%) and leaf area index (LAI) for monitoring seagrass habitats within shallow coastal areas 

along the central coast of Florida, USA. They did the analysis first by converting the DN values to 
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at-water surface reflectance. Then calculated the depth invariant bands from calibrated reflectance 

for all the three sensors and continued with a supervised classification of SAV cover into two 

classification schemes, one with 3 and the other one with 5 classes. Then both metrics were 

measured in the field using a spectroradiometer and six multiple regression models were developed 

to compare the spectral variability of the metrics from different sensors. Regression models 

showed that Hyperion hyperspectral data produced the best seagrass maps in both of the 

classification schemes which is due to its better spectral and radiometric resolution, the results 

from ALI outperformed the maps from TM data in both classification schemes. Also they found 

that the water depth correction approach effectively improves the classification result of the 

seagrass habitats in all the three sensors.  
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Chapter 3 – Implementation and result 

3.1 Image processing overview 

This chapter goes through the implementation of the processing methods, for a methodology to 

create a seagrass habitat map from Geoeye-1 multispectral satellite imagery and the result of each 

step is included. Methodology is consist of required steps to improve the difference between 

reflectance from other seabed classes by removing path radiance, water surface reflectance and 

correcting the effects of water column which will result in a more accurate map of seagrass 

distribution. 

Losinj Island is covered by four scenes of Geoeye-1 satellite images. The images were received in 

tiff format but converted to img format, bands of each scene were stacked together to make RGB 

color images and the statistics and pyramid layers were built for each scene before further analysis. 

The images were already geometrically corrected and were projected to UTM 33N with WGS84 as 

both its datum and spheroid. Because of the lack of any large scale topographic maps or high 

resolution satellite images with a known RMSE error, image registration was skipped and the 

default registration and map projection by Digital Globe Company were accepted. 

3.2 method one 

3.2.1 Atmospheric correction 

Atmospheric gases, aerosols and clouds attenuate the intensity and composition of both the solar 

radiation and reflected radiation from the earth through scattering and absorption. Therefore, it 

makes atmospheric correction an essential part of processing in applications concerning the 

quantitative studies of the spectral characteristics of the earth surface. 

This study used two different models to estimate and remove the contribution of atmosphere to the 

at sensor measured signal. No atmospheric measurements were available to describe the scene 

specific atmospheric conditions at the time of image acquisition so the extracted parameters from 

image metadata were modeled based on the atmospheric profile of the MODTRAN 4 radiative 

transfer model both in ENVI FLAASH and ERDAS IMAGINE ATCOR modules. 

3.2.2.1 FLAASH 

FLAASH is designed to work with both multispectral and hyperspectral data but it gives the best 

results when applied for atmospheric correction of hyperspectral data. Before using the FLASH 

algorithm all images must be converted to a radiometrically calibrated radiance image in BIP or 

BIL format which was done based on the gain and bias coefficients provided in metadata. 
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Table 3.1) Gain and bias coefficients for Geoeye-1 satellite imagery 

Band Gain (µw/(cm
2
 * nm * sr)) Offset 

Blue 0.014865 0 

Green 0.017183 0 

Red 0.016194 0 

NIR 0.009593 0 

 

Input parameters of the FLAASH module is shown in table 3.1 and the result for one of the scenes 

can be seen in figure 3.1. 

Table 3.2) input parameters of FLAASH module for all the scenes 

Parameters Scene 0000001 Scene 0010001 Scene 0010002 Scene 0020001 

Scene central location 44.67149722 (Lat) 

14.35408333 (Lon) 

44.55809722 

14.40438056 

44.50857778 

14.51917500 

44.46188611 

14.52225278 

Sensor type Geoeye-1 Geoeye-1 Geoeye-1 Geoeye-1 

Sensor Altitude (km) 648 648 648 648 

Ground Elevation (km) 0.1 0.06 0.45 0.30 

Flight date 2011/07/10 2011/08/20 2011/08/20 2011/08/31 

Flight time GMT 10:06 10:00 10:00 10:00 

Pixel size (m) 2 2 2 2 

Atmospheric Model Mid-Latitude 

Summer 

Mid-Latitude 

Summer 

Mid-Latitude 

Summer 

Mid-Latitude 

Summer 

Aerosol Model Maritime Maritime Maritime Maritime 

Aerosol Retrieval None None None None 

Water Column Multiplier 1 1 1 1 

Initial Visibility (km) 60 40 40 60 

 
Figure 3.1) Scene 0000001 before (A) and after atmospheric correction 

with FLAASH (B) 
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3.2.2.2 ATCOR 

ATCOR 2 atmospheric correction algorithm which is most suitable for flat terrain areas was 

applied to each original image scene. Unlike FLAASH, ATCOR performs radiance conversion as 

part of its algorithm but it needs a sensor calibration file to do the conversion. 

Calibration information is available in the metadata of the imagery provided by Digital Globe. 

Other required inputs and their corresponding values can be found in table 3.2. 

Table 3.3) input parameters of ATCOR 2 module for all the scenes 

Parameters Scene 0000001 Scene 0010001 Scene 0010002 Scene 0020001 

Acquisition Date 2011/07/10 2011/08/20 2011/08/20 2011/08/31 

Sensor Geoeye-1 Geoeye-1 Geoeye-1 Geoeye-1 

Calibration file Geoeye.cal Geoeye.cal Geoeye.cal Geoeye.cal 

Solar Zenith 25.68279 34.96368 34.96368 38.12639 

Sensor Tilt 24.33328 19.73519 19.73519 22.05353 

Solar Azimuth 145.8936 151.4109 151.4109 154.9375 

Satellite Azimuth 30 30 30 30 

Elevation 0.1 0.06 0.45 0.30 

Scene Visibility (km) 59 39 39 59 

Model for solar region Maritime 
midlat-summer-marit 

Maritime 
midlat-summer-marit 

Maritime 
midlat-summer-marit 

Maritime 
midlat-summer-marit 

Solar azimuth is directly provided in the metadata of Geoeye-1 imagery. The rest of the geometric 

parameters can be calculated by the following formulas based on the sensor geometric document 

of ATCOR for Geoeye-1 satellite imagery. 

Solar zenith = 90 - Sun angle elevation 

Sensor tilt = 90 – Nominal collection elevation 

Satellite azimuth = Nominal collection azimuth – sun angle azimuth 

Then all the angles will be rounded to the nearest define angle base on the main four direction. 

S = 0˚, E = 30˚, N = 120˚ and W = 150˚ 

Among the parameters for both modules scene (initial) visibility is the only one that cannot be 

obtained from the image metadata and needs additional meteorological data. It refers to the ability 

to distinguish a black object against a white background and its value becomes more important in 

the correction algorithm when the aerosol can not being retrieved. 

ATCOR module has the ability to estimate the visibility value by checking dark pixels values like 

vegetation and water in red and NIR bands respectively and considering the lower bound as the 

visibility value. Also the chosen visibility can be edited repeatedly in the Spectra module to find 

the optimal value.  
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Among the two atmospheric correction modules, results from the ATCOR were chosen for further 

analysis. It’s because of the better contrast of ATCOR in comparison to FLAASH based on the 

visual inspection of both images and their equivalent histogram and its ability to check for the 

negative values in the in the measured spectra. 

3.2.2 Masking 

Sun glint and water depth correction are statistical analysis which are applicable only on substrate 

data and make incorrect result for any land areas in the image.  Thus the aim of land masking is to 

only consider the areas of interest which are water pixels. The masked areas (land, boats) are 

removed from the imagery and water pixels will remain having their original values. 

The process of masking follows these steps: 

1- Select land and boat pixels in the image. This can be done either through a cumbersome 

procedure of digitizing land pixels or applying a threshold value on the image to select pixels 

values that belong to land areas and boats. 

After exploring both the image histogram in the NIR band and some individual pixels, pixel value 

of 200 was chose to separate water pixels from the land pixels and the procedure was done through 

the function below in spatial modeler of ERDAS 2011. 

Figure 3.2) Scene 0000001 before (A) and after (B) atmospheric correction using ATCOR 

module 
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EITHER 1 IF ($n1_atcor_0000001 (4)>200) OR 0 OTHERWISE 

2- Step 1 will result in a raster layer containing land and boat pixels. Then this raster file was 

converted to shapefile. 

3- Then the mask shapefile was edited in ArcGIS 10.0 to remove some isolated pixels and holes in 

the land polygons by using first the union and then eliminate functions. Then by applying the 

dissolve operation a single polygon containing all the land pixels was generated. 

 

Figure 3.3) raster threshold mask converted to shapefile (A), and then manually edited to 

remove isolated water pixels that incorrectly categorized as land (B) and the final result after 

applying union, eliminate and dissolve operations orderly (C). 
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4-  Then the edited shapefile is converted back to an aoi file in ERDAS. 

5- The aoi was used to subset the land mass from the whole image. 

 

 

Figure 3.4) subset of land mass and boats from image 0000001 
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6- The whole image and the land mass subset were used as an input in a model with the function 

below to remove the land from the image and have the water pixels left. 

EITHER 0 IF ($n2_land) OR ($n1_atcor_0000001) OTHERWISE 

  

 

Figure 3.5) final result of masking land and boat areas. 
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3.2.3 Sun glint removal 

Large percentage of coastal shallow waters often suffer from the effects of reflected light from the 

crests and slopes of sea surface waves that compromise the identification of benthic features. 

Hedley, et al. (2005) method was used to de-glint Geoeye-1 satellite imagery scenes based on 

equation 7 in the second chapter. The following steps will outline the process. 

a) Some samples showing a range of sun glint were chosen over the optically deep water 

using the aoi tool in ERDAS. This step was applied on the ATCOR atmospherically 

corrected and masked image. 

b) The samples were converted to ASCII file format and opened for further analysis in 

EXCEL. 

c) Three linear regressions were performed on the pixel values of different bands: Blue vs. 

NIR, Green vs. NIR and Red vs. NIR. For illustration purposes the results for scene 

0000001 is shown in figure 3.6. 

 
Figure 3.6) linear regression of the glint samples between different band pairs which are converted to 

reflectance values (µw/(cm
2
 * nm * sr)). 
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d) After calculation of the required parameters, model builder of ERDAS was used to apply 

equation 7 without the MinNIR on the images and produce a de-glint image. Subtracting the 

minimum NIR value was removed because its purpose is to do a crude linear atmospheric 

correction but the images were already atmospherically corrected.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Water column correction 

As discussed in chapter 2, water column attenuate the reflected light from the sea floor features 

and therefore changing their reflectance which will cause problems in selecting reliable training 

signatures for the required classes. 

To solve the problem the water column correction developed by Lyzenga (1981) was applied on 

the de-glinted and atmospherically corrected Geoeye-1 images which were masked for any land 

and boat pixels. 

Figure 3.7) Scene 0000001 after glint correction.  
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The correction was performed using the following steps. 

a) Samples of sand pixels from different depths were chosen from multiple locations in all 

image scenes using the aoi tool in ERDAS. The reason behind choosing sand to calculate 

the depth invariant index was the ease to recognize it in different depths without prior 

knowledge.   

b) The pixel values of each scene then converted to ASCII format and imported to EXCEL for 

further analysis. 

c) In EXCEL first, natural logarithm of pixel values for each band in each scene was 

calculated. Then by applying equations 13, 12 and 11 respectively on the sample data, the 

attenuation coefficient for each pair of bands (Blue vs. Green, Blue vs. Red and Green vs. 

Red) for all scenes was calculated. 

d) At last Model builder of ERDAS was used to apply equation 15 on band pairs of each 

scene to produce water column corrected bands. 

e) Then bands were stacked together to make a false color composite (figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.8) Scene 0000001 after water column correction.  
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3.3 Method two 

3.3.1 Principle component analysis 

Unfortunately the original Geoeye-1 imagery contained some unidentified quality problems most 

probably due to erroneous sensor calibration. The noise can be seen as very big strips in all the 

bands which caused in very low correlation between bands. These errors prevent the statistical 

algorithms of method one to generate an acceptable result which can be seen in the result of de-

glinting and water column correction in previous sections. 

To reduce the effects of these errors (noises) and improve the spectral separability of benthic 

features an unstandardized PCA was applied on the atmospherically corrected images to 

redistribute the pixels based on eigenvectors and eigenvalues. Then, PCA1 containing 79.75% of 

the variability of the data was chosen and combined with the original atmospherically corrected 

data to make a false colour composite. 

 
Figure 3.9) Scene 0000001 RGB: PCA1, Green, Blue 
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3.3.2 Classification 

Supervised classification is applied to the combination of PCA1 and visible bands for each scene 

to determine different classes bases on the spectral response of the training samples. A total of 200 

points were selected for all the habitat classes at different depths. 

And to compensate the effect of water column, each training sample with a class was considered as 

an individual subclass. After completing the classification for each scene, all the individual 

subclasses were reclassified into the main classes of the classification schema.  

 

Figure 3.10) Chosen training points to train the supervised classifier  
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Different classification methods were tested and the best results with clear delineation of benthic 

features were obtained with maximum likelihood classifier. The classes used for classification are 

deep water, sand, rock, seagrass (P. Oceanica) and land. 

 

Figure 3.11) Maximum likelihood classifier results for scene 0000001  



[39] 

 

 
Figure 3.12) Maximum likelihood classifier results for scene 0010001  
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Figure 3.13) Maximum likelihood classifier results for scene 0010002  
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Figure 3.14) Maximum likelihood classifier results for scene 0020001  
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3.3.3 Post classification 

When applying a classifier algorithm based on a pixel-by-pixel basis, the result usually contains a 

number of isolated pixels due to due to the inherent spectral variability of interclasses (poor 

classification) or unclassified pixels. This will give a salt-and-pepper appearance to the classified 

data. In such cases filtering techniques are mainly used to reassign the isolated pixels to proper 

classes. 

After doing the ML classification, a thematic pixel aggregator was applied on the thematic map to 

remove the isolated pixels by using a 3*3 moving window to replace the central pixel with the 

majority class in a specified neighborhood.  

When post classification and accuracy assessment are done, a mosaic was made from the scenes 

and the overlap was chosen based on the accuracy of each pair of thematic maps (figure 3.15). And 

the area of each bottom type was calculated (Table 3.4). 

 

Table 3.4) Area coverage of each bottom type 

Bottom type Area (km
2
) Area (%) 

Sand 2.38 14.83 

Rock 8.55 53.96 

Seagrass (Posidonia Oceanica) 4.915 31.01 

SUM of bottom types 15.845 

 

 

 

 

 

 
Figure 3.15) Mosaic of the edited classification result to cover whole Losinj Island  
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Chapter 4 – Discussion and conclusion 

4.1 Discussion 

One of the most common methods to measure the accuracy of the classified remote sensing data is 

to generate the error matrix. Error matrix is comparing the classes of the result map with true 

reference classes which are usually obtained through field observations and assumed to have high 

accuracies. By applying the sea truth data of total 340 points, independent of the training samples, 

the habitat map was evaluated for its accuracy over sand, rock and Posidonia Oceanica.  Due to the 

lack of sea truth data, Deep water and Land classes were omitted from the accuracy report. 

Measures of kappa coefficient, total, user’s, producer’s accuracies were derived from the error 

matrixes of each scene and are shown in table 4.1 

Table 4.1) Classification accuracy assessment report: Derived measures from Error Matrix for all 

scenes and the mosaic of scenes 

Image Class Name 
Producers 

Accuracy 

Users 

Accuracy 

Conditional 

Kappa 

Overall 

Accuracy 

Overall 

Kappa  

0000001 

Sand 90% 85.71% 0.8032 

83.56% 0.7576 Rock 86.96% 80% 0.7080 

Posidonia  76.67% 95.83% 0.9293 

0010001 

Sand 60.38% 96.97% 0.9536 

74.51% 0.6272 Rock 88.10% 55.22% 0.3828 

Posidonia 77.59% 91.84% 0.8685 

0010002 

Sand 90.91% 76.92% 0.7073 

84.62% 0.7635 Rock 83.33% 78.95% 0.6780 

Posidonia 82.61% 95% 0.9103 

0020001 

Sand 83.33% 83.33% 0.8155 

79.03% 0.6356 Rock 80.95% 65.38% 0.4765 

Posidonia 77.14% 90% 0.7704 

Mosaic 

Sand 72.83% 93.06% 0.9051 

80.17 0.70 Rock 81.48% 68.75% 0.5439 

Posidonia 83.92% 88.24% 0.7982 

Inspection of table 4.1 reveals that seagrass beds are classified very accurately (more than 90% 

user accuracy in all the scenes). Providing that an overall accuracy of 70% and Kappa coefficient 

of 0.6 is acceptable, the classification result of all the scenes could be considered satisfactory. The 

user’s accuracy showed a little decrease in the mosaic of the scenes but still it’s above the 

acceptable range.  However this is a coarse level classification with just identifying the only major 

seagrass species in the study area and ignoring the patchiness of the seagrass beds. So following a 

more detailed classification schema to identify different species and the percentage cover of the 

patches might not even be possible without considering the required preprocessing steps.  
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Although to do a thorough accuracy test, a big set of sufficient field observation over all the 

homogeneous substrates is a necessity. Using insufficient field observations with poor distribution 

might seriously affect the accuracy estimation results. For instance, in scene 0000001 the sea bed 

between Losinj and Cres Islands is incorrectly classified as rocky bed because of the spectral 

confusion between probable muddy shallow water and the rock signature and due to the lack of 

field data for this specific area, this big misclassification was not included in the accuracy report. 

Based on the visual inspection and talking to the local group that took the GPS recordings, the area 

is mostly made of sandy beds.  

According to the literature, spectral resolution becomes extremely important in detailed level 

classification (>10 submerged habitat classes) and a sensor like GEoeye-1 with few broad band 

might not be able to spectrally discriminate similar habitats with very accurate results.  However 

the high spatial resolution of GEoeye-1 that is usually less than the size of many habitat patches 

enable this sensor to map the boundary of seabed patches with better accuracy than most of sensors 

with better spectral resolution. This ability makes this sensor ideal for the primary studies which 

are just interested in the accurate boundary of the seagrass class for instance to allow the 

permission for building a new recreational pier based on the legal distance to the seabed patches or 

areas with just one major seagrass species like this research. This ability also will become even 

more important in Change detection studies where measuring changes in location and boundary of 

patches is the main concern. 

Another main problem of classifying benthic habitats is the spectral similarity between bottom 

types. This problem even gets more complicated considering the effects of atmosphere and water 

column. Unfortunately the conventional statistical methods to compensate the effects of water 

surface reflectance and water column attenuation applied on the imagery was unsuccessful due to 

the quality problem inherited in the raw imagery data obtained from Digital globe Company (as 

discussed in section …). The source of the error is not identified but most probably it’s because of 

sensor calibration errors which caused very wide strip lines in all the processed scenes (figure 3.8). 

This caused a strangely low correlation among the visible bands and the NIR band and made all 

the analyses based on the regression of these bands produces unexpected results. 

Table 4.2 shows the separability analysis of merged signatures of training samples for each pair of 

sea bottom types. It seems that the high inter class variance caused by water column attenuation 

would decrease the Euclidian distance between cluster centers especially for land & rock and deep 

water & seagrass classes. A major consequence would be the big overlapping of class signatures in 

the feature space which will reduce the ability of the classifier algorithm to correctly assign each 

pixel to its corresponding class. 
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Table 4.2) Average separability among the cluster center of class pairs in the merged training sample signature 

Class Pairs Best Average Separability  
 
 
1: Land 
2: Sand 
3: Rock 
4: Posidonia Oceanica 
5: Deep water 

1: 2 15228 

1: 3 870 

1: 4 10299 

1: 5 5555 

2: 3 14368 

2: 4 4962 

2: 5 9680 

3: 4 9444 

3: 5 4700 

4: 5 2745 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1) Plot of signature separability for merged training signatures for 

different bands (Band 1: Blue, Band 2: Green, Band 3: Red, Band 4: PCA-1) 

used in ML classifier. 
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Besides, plotting the spectral separability of training signature for the four used bands shows that 

the highest separability of signatures is in the fourth band (PCA1). It’s obvious from figure 4.1 that 

the spectral separability of signatures get smaller toward the red band but becomes more distinct in 

the PCA1 band specially between seagrass and deep water which are very hard to draw a boundary 

between them even in visual inspection of the datasets. This justifies using the PCA-1 band in the 

classification. 

To overcome the problem of water column attenuation and reduce the inner variance of the training 

samples for each bottom type it was decided to make several subclasses for each bottom type. The 

best way would be to group training samples of each class based on elevation data but because of 

the lack of accurate bathymetric data, each training sample were considered as a separate class and 

afterwards the subclasses were merged to a single parent class. Using this solution reduced the 

spectral overlap of training samples and improved the classification result dramatically. However 

based on the error matrices in appendix B, the biggest confusion can be seen between rock and 

Posidonia classes with the strongest overlap in scene 0020001. Most probably it’s because those 

rocks are covered with algae or very sparse seagrass species.  

4.2 Conclusion and future work 

The near-shore environment around Losinj Island is complex with rocky, sandy and seagrass 

bottom types in different sizes and depths. The results of this study indicate that despite the 

spectral limitation of Geoeye-1 data, a seagrass distribution map can be produced with a 

reasonable accuracy using this high spatial resolution satellite imagery. Although it’s important to 

notice that the lack of other seagrass species in the study area reduced the spectral separability 

problems in the classification analysis considerably and improved the accuracy of the results. 

The main limiting factors in benthic habitat mapping are water turbidity, cloud cover and depth. In 

this study only the depth factor was the main concern especially that calculating the depth invariant 

index was unsuccessful for the dataset. So each training sample for a certain class was treated as an 

individual class and the areas that were too deep to be distinguished spectrally were classified as 

deep water. 

This research provides the baseline for future benthic habitat studies in Croatian Islands. The data 

and methods used in this study can be used to assist other researchers in the selection of 

appropriate techniques and sensors to produce high quality, cost effective benthic maps.  

For instance, it would be interesting to use both high spatial and high spectral image datasets by 

integrating them in a knowledge-based classification system. Or to compare the results of sun-glint 

removed and depth invariant datasets with the results from just atmospherically corrected datasets 

that are gone through textural editing, used the power of fuzzy evolutionary algorithms or object-



[47] 

 

based methods to improve their classification results. Also besides the spatial extent of the seagrass 

it would be nice to estimate the biomass of the seagrass species.   
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Appendix A- Metadata of the used Geoeye-1 imagery 

Source Image Metadata 

Number of Source Images: 3 

Source Image ID: 2011071010061881603031607487 

Product Image ID: 000 

Sensor: GeoEye-1 

Acquired Nominal GSD 

   Pan Cross Scan: 0.4808705747 meters 

   Pan Along Scan: 0.4622387588 meters 

   MS Cross Scan: 1.9234822989 meters 

   MS Along Scan: 1.8489550352 meters 

Scan Azimuth: 269.7707353658 degrees 

Scan Direction: Reverse 

Panchromatic TDI Mode: 16 

Multispectral TDI Mode13: 10 

Multispectral TDI Mode24: 6 

Camera Cal Creation DateTime: 2011-06-23 12:20:30 GMT 

Ancillary Cal Creation DateTime: 2011-04-29 21:39:10 GMT 

Gain Cal Creation DateTime: 2009-09-18 21:20:33 GMT 

Dark Offset Cal Creation DateTime: 2009-09-21 15:01:37 GMT 

Camera Cal Effective DateTime: 2049-11-30 00:00:00 GMT 

Ancillary Cal Effective DateTime: 2011-03-26 00:00:00 GMT 

Gain Cal Effective DateTime: 2009-07-29 00:00:00 GMT 

Dark Offset Cal Effective DateTime: 2009-07-29 00:00:00 GMT 

Radiometry 

   Panchromatic 

      Gain: 0.017786 

      Offset: 0.000 

   Blue 

      Gain: 0.014865 

      Offset: 0.000 

   Green 

      Gain: 0.017183 

      Offset: 0.000 

   Red 

      Gain: 0.016194 

      Offset: 0.000 

   Near Infrared 

      Gain: 0.009593 

      Offset: 0.000 

Pan Line Rate: 10000 

Nominal Collection Azimuth: 218.5643 degrees 

Nominal Collection Elevation: 65.66672 degrees 

Sun Angle Azimuth: 145.8936 degrees 
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Sun Angle Elevation: 64.31721 degrees 

Acquisition Date/Time: 2011-07-10 10:06 GMT 

Percent Cloud Cover: 0 

-------------------------------------------------------------- 

Source Image ID: 2011082010000641603031602814 

Product Image ID: 001 

Sensor: GeoEye-1 

Acquired Nominal GSD 

   Pan Cross Scan: 0.4617469311 meters 

   Pan Along Scan: 0.4315964580 meters 

   MS Cross Scan: 1.8469877243 meters 

   MS Along Scan: 1.7263858318 meters 

Scan Azimuth: 272.3164766431 degrees 

Scan Direction: Reverse 

Panchromatic TDI Mode: 16 

Multispectral TDI Mode13: 10 

Multispectral TDI Mode24: 6 

Camera Cal Creation DateTime: 2011-06-23 12:20:30 GMT 

Ancillary Cal Creation DateTime: 2011-04-29 21:39:10 GMT 

Gain Cal Creation DateTime: 2009-09-18 21:20:33 GMT 

Dark Offset Cal Creation DateTime: 2009-09-21 15:01:37 GMT 

Camera Cal Effective DateTime: 2049-11-30 00:00:00 GMT 

Ancillary Cal Effective DateTime: 2011-03-26 00:00:00 GMT 

Gain Cal Effective DateTime: 2009-07-29 00:00:00 GMT 

Dark Offset Cal Effective DateTime: 2009-07-29 00:00:00 GMT 

Radiometry 

   Panchromatic 

      Gain: 0.017786 

      Offset: 0.000 

   Blue 

      Gain: 0.014865 

      Offset: 0.000 

   Green 

      Gain: 0.017183 

      Offset: 0.000 

   Red 

      Gain: 0.016194 

      Offset: 0.000 

   Near Infrared 

      Gain: 0.009593 

      Offset: 0.000 

Pan Line Rate: 10000 

Nominal Collection Azimuth: 192.4352 degrees 

Nominal Collection Elevation: 70.26481 degrees 

Sun Angle Azimuth: 151.4109 degrees 

Sun Angle Elevation: 55.03632 degrees 
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Acquisition Date/Time: 2011-08-20 10:00 GMT 

Percent Cloud Cover: 0 

-------------------------------------------------------------- 

Source Image ID: 2011083110005721603031609642 

Product Image ID: 002 

Sensor: GeoEye-1 

Acquired Nominal GSD 

   Pan Cross Scan: 0.4763341844 meters 

   Pan Along Scan: 0.4411546886 meters 

   MS Cross Scan: 1.9053367376 meters 

   MS Along Scan: 1.7646187544 meters 

Scan Azimuth: 270.3075335931 degrees 

Scan Direction: Reverse 

Panchromatic TDI Mode: 16 

Multispectral TDI Mode13: 10 

Multispectral TDI Mode24: 6 

Camera Cal Creation DateTime: 2011-06-23 12:20:30 GMT 

Ancillary Cal Creation DateTime: 2011-04-29 21:39:10 GMT 

Gain Cal Creation DateTime: 2009-09-18 21:20:33 GMT 

Dark Offset Cal Creation DateTime: 2009-09-21 15:01:37 GMT 

Camera Cal Effective DateTime: 2049-11-30 00:00:00 GMT 

Ancillary Cal Effective DateTime: 2011-03-26 00:00:00 GMT 

Gain Cal Effective DateTime: 2009-07-29 00:00:00 GMT 

Dark Offset Cal Effective DateTime: 2009-07-29 00:00:00 GMT 

Radiometry 

   Panchromatic 

      Gain: 0.017786 

      Offset: 0.000 

   Blue 

      Gain: 0.014865 

      Offset: 0.000 

   Green 

      Gain: 0.017183 

      Offset: 0.000 

   Red 

      Gain: 0.016194 

      Offset: 0.000 

   Near Infrared 

      Gain: 0.009593 

      Offset: 0.000 

Pan Line Rate: 10000 

Nominal Collection Azimuth: 196.9274 degrees 

Nominal Collection Elevation: 67.94647 degrees 

Sun Angle Azimuth: 154.9375 degrees 

Sun Angle Elevation: 51.87361 degrees 

Acquisition Date/Time: 2011-08-31 10:00 GMT 
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Percent Cloud Cover: 0 

 

 

 

 

 

Appendix B- Error matrix of each scene 

Table 1) Classification accuracy assessment report: Error Matrix of scene 0000001 

Classified 

Data 
Unclassified 

Lan

d 
Sand Rock Posidonia Deep water 

Row 

Total 

Unclassified 0 0 0 0 0 0 0 

Land 0 0 0 0 0 0 0 

Sand 0 0 18 1 2 0 21 

Rock 0 0 2 20 3 0 25 

Posidonia 0 0 0 1 23 0 24 

Deep water 0 0 0 1 2 0 3 

Column Total 0 0 20 23 30 0 73 

 

 

Table 2)  Classification accuracy assessment report: Error Matrix of scene 0010001 

Classified 

Data 
Unclassified 

Lan

d 
Sand Rock Posidonia Deep water 

Row 

Total 

Unclassified 0 0 0 0 0 0 0 

Land 0 0 0 0 0 0 0 

Sand 0 0 32 1 0 0 33 

Rock 0 0 21 37 9 0 67 

Posidonia 0 0 0 4 45 0 49 

Deep water 0 0 0 0 4 0 4 

Column Total 0 0 53 42 58 0 153 
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Table 3)  Classification accuracy assessment report: Error Matrix of scene 0010002 

Classified 

Data 
Unclassified 

Lan

d 
Sand Rock Posidonia Deep water 

Row 

Total 

Unclassified 0 0 0 0 0 0 0 

Land 0 0 0 0 0 0 0 

Sand 0 0 10 2 1 0 13 

Rock 0 0 1 15 3 0 19 

Posidonia 0 0 0 1 19 0 20 

Deep water 0 0 0 0 0 0 0 

Column Total 0 0 11 18 23 0 52 

 

Table 4) Classification accuracy assessment report: Error Matrix of scene 0020001 

Classified 

Data 
Unclassified 

Lan

d 
Sand Rock Posidonia Deep water 

Row 

Total 

Unclassified 0 0 0 0 0 0 0 

Land 0 0 0 0 0 0 0 

Sand 0 0 5 1 0 0 6 

Rock 0 0 1 17 8 0 26 

Posidonia 0 0 0 3 27 0 30 

Deep water 0 0 0 0 0 0 0 

Column Total 0 0 6 21 35 0 62 

 

 

Table 5) Classification accuracy assessment report: Error Matrix of the mosaic 

Classified 

Data 
Unclassified 

Lan

d 
Sand Rock Posidonia Deep water 

Row 

Total 

Unclassified 0 0 0 0 0 0 0 

Land 0 0 0 0 0 0 0 

Sand 0 0 67 4 1 0 72 

Rock 0 0 24 88 16 0 128 

Posidonia 0 0 0 16 120 0 136 

Deep water 0 0 1 0 6 0 7 

Column Total 0 0 92 108 143 0 343 
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