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Abstract

Multi-atlas segmentation is a widely used method that has proved to work well
for the problem of segmenting organs in medical images. But standard methods
are time consuming and the amount of data quickly grows to a point making use
of these methods intractable. In this work we present a fully automatic method
for segmentation of the pericardium in 3D CTA-images. We use a multi-atlas ap-
proach based on feature based registration (SURF) and use RANSAC to handle
the large amount of outliers. The multi-atlas votes are fused by incorporating
them into an MRF together with the intensity information of the target image
and the optimal segmentation is found e�ciently using graph cuts. We evaluate
our method on a set of 10 CTA-volumes with manual expert delineation of the
pericardium and we show that our method provides comparable results to a
standard multi-atlas algorithm but at a large gain in computational e�ciency.

Keywords: computer vision, medical image analysis, multi-atlas segmentation,
feature based registration, Markov Random Fields, pericardium segmentation.
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Chapter 1

Introduction

According to the World Health Organization cardiovascular diseases are the
number one cause of death worldwide [24]. Visceral adipose tissue, which is
fat surrounding internal organs, may be a marker for greater risk of di↵erent
metabolic and cardiovascular diseases. Epicardial fat is the visceral fat depot
enclosed by the pericardial sac. In other words it is the fat located around
the heart but inside of pericardial sac that surrounds the heart. In Figure 1.1
we see a 2D slice of a CT volume with the pericardium and the epicardial
fat highlighted. In recent years, several studies have shown a relationship be-
tween increased volume of epicardial fat and coronary artery disease, coronary
plaque, adverse cardiovascular events, myocardial ischemia and atrial fibrilla-
tion. Because of this scientific evidence there is a need for further investigation
concerning the prognostic importance of epicardial fat, see [6].

Figure 1.1: a) A slice of a CT-volume of the heart. b) The same slice as in a)
but with a manual delineation done by an expert of the pericardium (green)
and the epicardial fat highlighted (red).

The Swedish CArdioPulmonary bioImage Study (SCAPIS) is a unique re-
search project that started in 2012 in a collaboration between Sahlgrenska Uni-
versity Hospital, the University of Gothenburg and the Swedish Heart-Lung
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1.1. PROBLEM FORMULATION

Foundation. It is a large scale studie which aims at collecting CT, MR and ul-
trasound images form 30 000 men and women between the ages of 50-65 years.
This database, which will be the largest of its kind, will then serve as a national
knowledge base for the study of identifying risk factors that show predisposition
towards heart, lung and cardiovascular diseases [15].

This database is an opportunity for investigating the prognostic importance
of epicardial fat. However, measuring the epicardial fat manually is very time
consuming and especially doing it on 30000 patients. Therefore there is a great
need for a fully automatic method for measuring epicardial fat. The pericardium
is a barely visible thin line in CT-scans. In many parts of the image an expert
needs to rely on knowledge on which other anatomical structures must be inside
or outside the pericardium to be able to guess where the pericardium is located.
This makes delineating the pericardium a non-trivial problem.

1.1 Problem Formulation

An image I is regarded as a set of pixels/voxels P where each voxel p 2 P has an
intensity i

p

. In other words the image is the set of intensities I = {i
p

| p 2 P}.
Given a CT-volume I (this volume will often be referred to as an image but

keep in mind that it is a 3D image) we want to label each voxel p (a voxel will
interchangeably throughout this work be referred to as a pixel in which case of
course we mean a 3D pixel) with a label l

p

2 {0, 1} that should correspond to
if the pixel is either belonging to the region inside of the pericardium (denoted
l
p

= 1) or not belonging to this region, i.e. background (denoted l
p

= 0). A
segmentation, i.e. a set of labeled voxels L = {l

p

| p 2 P}, will be represented
by a binary volume with the same size as I with ones representing voxels labeled
as object and zeros representing background. The boundary of this mask should
correspond spatially to the pericardium.

Given one of these CT-volumes I, we want to estimate a labeling L⇤ that
maximizes the Jaccard index between the estimated labeling and the manual
labeling L (the gold standard).

The Jaccard index measures the similarity between labelings A and B (or
more generally two sets A and B) and is defined as the size of the intersection
between the two sets divided by size the union, i.e.

Jaccard(A,B) =
|A \B|
|A [B| . (1.1)

The Jaccard index takes values 0  Jaccard(A,B)  1 where Jaccard(A,B) = 0
means that there is no overlap between A and B and Jaccard(A,B) = 1 would
mean a perfect segmentation. Hence, we want to estimate a labeling that is as
similar as possible to the labeling done by the expert.

When L⇤ is estimated the epicardial fat volume is easily measured by thresh-
olding. In CT-images the intensities can be directly related to a physical unit
called the Hounsfield Unit (HU) [23] which measures radiodensity. Di↵erent
types of tissue have di↵erent radiodensity and in this work HU between -192
and -30 are considered to be fat. This means that when we have segmented the
pericardium we simply count the voxels inside this area that have intensities
between -192 and -30 and multiply by the volume of each voxel.
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CHAPTER 1. INTRODUCTION

1.2 Data Set

In this work we are given 10 CT-volumes of the heart with corresponding manual
labelings of the pericardium done by an expert. CT, or Computed Tomography
is a method where beams of x-rays are passed from a rotating device through an
area of interest. These x rays are computer processed to a series of consecutive
tomographic images (slices). This stack of 2D images is then used to generate
a 3D image of the object. The patients were given contrast material which
means that the blood and tissue especially around the left atrium and ventricle
become more detailed (see Figure 1.1). Some contrast material also enters the
pericardium itself making it easier to distinguish than if no contrast was used.

The images have resolutions ranging between 512⇥512⇥342 and 512⇥512⇥
458 voxels all with voxel dimensions 0.3906⇥ 0.3906⇥ 0.3000. That means that
for each image there are more than 108 voxels that we need to classify.

The manual labels where done by an expert. The delineation was done on
every 10th slice. But not only in one viewing direction. The same thing was
done in all three viewing directions of each volume meaning that we had a stack
of 2D delineations in each view, namely axial, coronal and sagittal. These where
interpolated into a final volume that was approved by the same expert. We refer
to the manual labelings as the Gold Standard.

1.3 Proposed Solution

In this section we will describe how it is that we propose to solve the problem and
it should be viewed as an overview of this entire work. Everything mentioned in
this proposition will be explained and motivated more deeply in the following
chapters.

We propose to solve the problem of segmenting the inside of the pericardium
by a combination of multi-atlas segmentation based on feature based registration
and integrating this information into a probabilistic framework that is globally
optimized through graph cuts.

Multi-atlas segmentation is based on image registration. An image and its
corresponding manual labeling is referred to as an atlas. By registering the
image of the atlas onto an unlabeled target image we obtain a transformation
that in some sense aligns the image onto the target image. If we apply the same
transformation on the labels of the atlas we align the labels onto the unlabeled
image. This is called label propagation and results in a guess of where the region
of interest is in the target image. Of course, the better the registration problem
is solved, the better the guess.

By doing this for a set of atlases we obtain a good initial guess of where
the pericardium is spatially (see Figure 1.2). These registrations will be done
in two parts. Firstly, an a�ne (rigid) transformation will be estimated. Sec-
ondly, that a�ne transformation will be used as an initialization for a non-rigid
transformation based on B-splines.

Since image registrations can be very time consuming we propose to base
the multi-atlas segmentation on feature based registration (specifically SURF,
Speeded Up Robust Features [1]). Feature based registration is a lot faster
than more widely used (in medical image analysis) intensity based registration
methods. It is not used much since medical images produce a lot of outliers.

3



1.3. PROPOSED SOLUTION

SliceID: 150. WL = −74. WW = 500.

Figure 1.2: A sagittal slice of one of the atlases. By aligning the labels of
several atlases (by estimating a transformation through registration) onto the
target image we get a good estimate of the segmentation. Each red line in
this figure represents the boundary of an aligned labeling using feature based
non-linear registration. The green line corresponds to the boundary of the gold
standard (the manual labeling).

But we propose to handle the outliers mainly using Random Sample Consesus
(RANSAC), [9]. To evaluate this method we compare the results with Niftyreg
which is an intensity based method used widely for medical registration.

The problem remains on how to decide on a final segmentation given the
guesses (votes) from the atlas registrations. The most straight forward way
is to include all voxels which half or more of the atlases label as inside the
pericardium. This is called majority voting (or decision fusion). Sometimes the
feature based registration makes mistakes that are obvious when looking at the
specific intensities of the voxels. For example, this can happen if lung cavity is
included in the segmentation In Figure 1.2 you can see this e↵ect where some of
the red lines pass through the lung meaning that some of the atlases estimate the
lung to be inside of the pericardium. These types of errors are easily corrected
by incorporating the votes into a Markov Random Field (MRF) (see e.g. [4])
together with the intensity information. The MRF has two main advantages. It
is very flexible in the sense that it is easy to incorporate di↵erent information
and it can be optimized in polynomial time by representing the MRF as a graph
and finding the minimal cut through the graph using maxflow algorithms.

The MRF in its most used formulation only regularizes the boundary making
the segmentation surface smooth. We propose an extended formulation that
makes the cost of the boundary data dependent, actively pushing the boundary
towards a probable path. In this work we only use pixel intensity and the
number of multi-atlas votes as observations on which we build the MRF but the
framework is easily expandable to more complex features and classifiers.
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CHAPTER 1. INTRODUCTION

1.4 Contributions and Related Work

Recently a few methods have been developed for fully automated pericardium
segmentation. In [19] Shahzad et al. use multi-atlas segmentation with major-
ity voting. Practically the same method as was used by Kirisly et al. [11] for
cardiac segmentation. Both algorithms were based on intensity based registra-
tion (Elastix). Dey et al. [7] used another intensity based registration algorithm
(Demons) and proposed to speed up the the segmentation time by co-registering
the atlases before hand and given an unlabeled image only performing one atlas
registration. By measuring the di↵erence between each atlas and the target
image a weight was calculated measuring the importance of the atlas for the
decision fusion.

The contributions made by this work is partly that feature based registration
works excellent for registration of medical images and at huge gain in compu-
tational e�ciency. Especially we show that feature based registration proves
considerably more accurate and robust for initialization of the nonrigid reg-
istrations compared to the computationally more demanding intensity based
algorithm Niftyreg. We also propose an e�cient algorithm for pericardium
segmentation based on feature based multi-atlas segmentation that shows sig-
nificantly improved results over previous state-of-the-art-methods.

1.5 Structure of the Report

In Chapter 2 we explain the theory that is needed to follow the what is covered
in this report. The problem of image registration (Section 2.1) Markov Random
Fields (Section 2.2) and graph cuts (Section 2.3) are explained. Everything in
this chapter is frequently used notions in image analysis and computer vision and
can be skipped if the reader already is familiar with these terms. The method
is divided into two parts. In Chapter 3 we begin by presenting multi-atlas
segmentation in general. We continue with presenting two di↵erent registration
methods that we evaluate as basis for the multi-atlas segmentation. One feature
based using SURF, Lowe matching and RANSAC (Section 3.1) and one intensity
based using Niftyreg (Section 3.2). In Chapter 4 we present our method for
fusing the votes from the multi-atlas registrations into a final segmentation by
optimizing an MRF through graph cuts. In Chapter 5 we cover all the details of
the implementation that is needed for reproducibility (e.g. di↵erent settings and
parameters). Thereafter (in Chapter 6) we present the results where we evaluate
the di↵erent steps of the algorithm. The results are discussed in Chapter 7 and
lastly we present the conclusion in Chapter 8.

5



Chapter 2

Theory

In this chapter we will cover some theory that the reader needs to be famil-
iar with to be able to follow the rest of this report. Firstly, the problem of
image registration and two types of widely used transformations that we will
use in this work (a�ne transformation and non-rigid transformation based on
B-splines) will be explained. Using our knowledge of registration we can then
proceed to explain multi-atlas segmentation. After that the theory of Markov
Random fields will be presented and a way to formulate the problem of finding
the maximum a posteriori probability of this Markov Random Field by finding
the minimal cut, or equivalently maximal flow, through a graph (often referred
to as graph cuts).

2.1 Image Registration

This section covers the basics of image registration. For further information see
for example [10, 25, 20].

2.1.1 Problem Formulation

Image registration is the process of spatially aligning two images, i.e. finding
a one-to-one map between one image and another so that the corresponding
points in the images refer to the same point in the object they are depicting.
Formally this can be formulated as:

Given a target image I
t

(also in the literature referred to as reference or static
image) and a source image I

s

(floating or moving image), find the values of the
parameters ✓ of the transformation (mapping function) T(✓) that minimizes a
cost function ⇢, i.e.

argmin
✓

(⇢(I
t

,T(✓) � I
s

)) (2.1)

where the cost function ⇢ is a measure of the accuracy of the registration, i.e.
the similarity between the target image and the transformed source image.

2.1.2 Transformations

There are many ways to define the mapping function T. You want to have a
transformation model that describes the real expected transformation between

6



CHAPTER 2. THEORY

the source and target images as accurately as possible. At the same time you
do not want the model to be too complex. If the model has a lot of parameters
not only will the optimization be computationally more demanding, it will also
be harder to optimize.

To try and avoid the problem of finding local minima the problem is usually
split into two parts. The first part is a rough registration with a simpler a�ne

transformation. Since the a�ne transformation is easier to optimize we use
that as an initialization for the second part, which is a more complex free-form
deformation which allows for local deformations in the image.

A�ne Transformation

The a�ne transformation (here denoted Ta↵) is a composition of a translation
and a linear map and can be represented by a 4⇥ 4-matrix with 12 parameters
(✓ = ✓1, . . . , ✓12) and can be described by

Ta↵(✓) =

2

664

✓1 ✓4 ✓7 ✓10
✓2 ✓5 ✓8 ✓11
✓3 ✓6 ✓9 ✓12
0 0 0 1

3

775 (2.2)

for each voxel the transformation is then defined by


y

1

�
= Ta↵(✓)


x

1

�
(2.3)

where x is the voxel coordinates in the source image and y is the new trans-
formed coordinates.

The intensity based registration method that we evaluate estimate an a�ne
transformation. But the feature based method for e�ciency estimates a rigid

transformation. A rigid transformation is a special case of an a�ne transforma-
tion which only allows for rotation and translation and the number of degrees
of freedom are reduced to 6.

Free-Form Deformation

The a�ne transformation is a global transformation but the anatomical struc-
ture of the hearts that we will try to register will display more complex relations.
This means that we need a transformation that also can handle local deforma-
tions. In this work we will be using two methods which both use a free-form
deformation (FFD) model based on cubic B-splines. The method is by Rueckert
et al. from 1999 [18]. FFD is a method which has got wide acceptance in the
medical image analysis community [20].

A grid of control points is superimposed on the image and the basic idea
is that the image will be influenced by manipulating the control points. The
control points control the B-splines and the resulting deformation will be a
smooth C2 continuous transformation. Another advantage of B-splines is that
they have local support, i.e. a control point will only influence a local region
around that control point which makes the transformation easier to optimize
and compute.

7



2.2. MARKOV RANDOM FIELDS

To mathematically formulate the FFD (following the formulation in [18]) we
define the domain of the (in our case 3D) image as

⌦ = {(x, y, z) | 0  x < X, 0  y < Y, 0  z < Z}

where X, Y and Z define the size of the image. An n
x

⇥n
y

⇥n
z

grid of uniformly
spaced control points ✓

i,j,k

is superimposed on the image. By moving the control
points the image is transformed which means that the set of parameters is the
position of these points. The transformation of a point x = (x, y, z) is defined
as

T↵d(✓) � x =
3X

l=0

3X

m=0

3X

n=0

B
l

(u)B
m

(v)B
n

(w)✓
i+l,j+m,k+n

(2.4)

where i = bx/n
x

c � 1, j = by/n
y

c � 1, k = bz/n
z

c � 1, u = x/n
x

� bx/n
x

c,
v = y/n

y

�by/n
y

c, w = z/n
z

�bz/n
z

c and B
l

represents the l:th basis function
of the B-spline, i.e.

B0(u) = (1� u)3/6

B1(u) = (3u3 � 6u2 + 4)/6

B2(u) = (�3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6.

If you have a 10⇥ 10⇥ 10 grid of control points there are 3000 parameters that
need to be optimized but as is clear from (2.4) the transformation of x is only
dependent of the location of the 27 closest control points. This means that if
you move any of the other control points it will not a↵ect this part of the image
and hence the support for the control points is local which makes the parameters
easier to optimize.

For a deeper read about B-Splines in general see for example [5]. For a
comparison with other methods see [20].

2.2 Markov Random Fields

Probabilistic graphical models combine knowledge from probability theory and
graph theory and are a powerful formalism for a wide range of problems in
various scientific fields. In computer vision (and other fields) one especially
powerful method is regarding the image as originating from a Markov Random
Field (MRF), partially because it can model the underlying quantity to be
smooth (which is often the case in computer vision) and because it is very
adaptive and can handle a wide variety of priors. If the MRF is formulated in
a sensible way it can be formulated as a graph and the maximum a posteriori
distribution can be found using graph cuts, i.e. it can be globally optimized in
polynomial time.

Following the notation in [4], you have a set P = {1, . . . ,m} of sites p
(pixels/voxels). You have a neighborhood system N = {N

p

| p 2 P} where N
p

is the set of pixels that are considered neighbors to p and a field (set) of random
variables F = {F

p

| p 2 P} where each random variable F
p

can take a value f
p

in some set of labels. A joint event {F
p

= f
p

| p 2 P} is abbreviated F = f
where f = {f

p

| p 2 P} is a realization (or configuration) of the random field.

8



CHAPTER 2. THEORY

In the context of segmentation the optimal configuration will be used directly
as labels describing the final segmentation (i.e. f

p

= l
p

). For now we choose to
separate the notation between f

p

(meaning a realization of the random variable
F
p

) and l
p

(representing the label of a voxel in an image). We will abbreviate
Pr(F = f) as Pr(f) and Pr(F

p

= f
p

) as Pr(f
p

). An MRF is a field F with the
property (known as local Markov property) that each random variable F

p

only
depends on its neighbors

Pr(f
p

|fP\{p}) = Pr(f
p

|fNp), 8p 2 P. (2.5)

According to the Hammersley-Cli↵ord theorem any distribution that obeys
the Markov property (2.5) can be written as

Pr(f) /
Y

c2C
exp (�V

c

(f
c

)) = exp

 
�
X

c2C
V
c

(f
c

)

!
(2.6)

where C is the set of all maximal cliques of the MRF. A clique is a subset
of variables that are all connected to each other. V

c

is called the potential

function of the clique c and is a positive real-valued function on the possible
configurations f

c

of the clique. In this work we will only consider the pairwise

MRF in which the probability in (2.6) is factorized into potential functions
defined on cliques of size strictly less than three. Although the MRF can always
be defined by potential functions on the maximal cliques C usually the potential
function is split onto set of unary potentials V

p

which are defined on single
variables and a set of pairwise potentials V

p,q

which are defined on pairs of
variables. The probability of a configuration can then be written

Pr(f) / exp

0

@�
X

p2P
V
p

(f
p

)�
X

{p,q}2N

V{p,q}(fp, fq)

1

A . (2.7)

The realization of the field f is generally not observed directly so it needs
to be estimated through the joint event O = {O

p

= o
p

| p 2 P} referred to
as the observation. In computer vision the realization o

p

can for example be
the observed intensity at the pixel p. In this work the observation will be
a combination of the intensities in the image and vote map from the multi-
atlas segmentation. The probability that we are interested in is the posterior
probability Pr(f |O) which can be defined straight forwardly as

Pr(f |O) / exp

0

@�
X

p2P
V
p

(f
p

; o
p

)�
X

{p,p}2N

V{p,q}(fp, fq; op, oq)

1

A . (2.8)

We are interested in finding the configuration f that maximizes the posterior
probability (2.8). Since the logarithm is a monotonically decreasing function
maximizing the posterior probability is the same as minimizing the posterior

energy function

E(f) = � ln(P (f |O))

=
X

p2P
V
p

(f
p

; o
p

) +
X

(p,q)2N

V{p,q}(fp, fq; op, oq) (2.9)
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2.3. GRAPH CUTS

Of course this energy can be rewritten as functions on the maximal cliques

E(f) =
X

c2C
V
c

(f
p

, f
q

; o
p

, o
q

). (2.10)

For more on MRFs see for example [22] and [21].

2.3 Graph Cuts

2.3.1 Problem Formulation

Consider a weighted graph G = hV, Ei consisting of a set of n nodes V and a
set of m edges E where each edge e 2 E in the graph has a nonnegative weight
(or cost) w

e

. Define two special nodes, usually referred to as terminal nodes or
source s and sink t nodes (there can be more than two terminal nodes but in
this work we will consider the binary problem). A cut through the graph is as
a subset of edges C ⇢ E such that in the graph hV, E\Ci the terminal nodes are
separated, i.e. there are no path from s to t when the edges C are removed from
the graph. The graph is partitioned into two completely separated graphs. The
graph cut problem (also called min-cut/max-flow problem for reasons that will
be clear in a moment) is to find the minimal cut, i.e. find the cut C through the
graph G such that the sum of the cost of the edges that are cut is minimal

argmin
C⇢E

X

e2C

w
e

. (2.11)

According to one of the fundamental theorems of combinatorial optimization
by Ford-Fulkerson the min-cut problem is dual to the max-flow problem. The
max-flow problem is easily understood by considering the edges of the graph as
pipes and the costs of the edges is the capacities of the pipes (i.e. the amount
of flow they can facilitate) the problem is now stated as the maximum flow (of
e.g. water) that can be pushed from the source to the sink. When the maximum
flow is found some pipes will be saturated and the set of saturated pipes will
be equal to the minimum cut. The realization that the min-cut problem and
the max-flow problem are dual is important since the max-flow problem can
be solved in polynomial time by di↵erent algorithms that iteratively push flow
through the edges until the saturated state is achieved. For reference see for
example [3].

2.3.2 Graph Cuts in Computer Vision

To reformulate an image as a graph G, let each pixel/voxel p be a node. A
neighborhood system N is defined by putting an edge (p, q) between each pair
of neighboring voxels p and q. Define two extra nodes s and t and connect
edges from s to each of p and from each p to t. The edges between the pixels
are usually referred to as n-links (for neighborhood) and the edges between the
pixels and the terminals s and t are called t-links. All of the edges are assigned
weights w

e

. For a small 3⇥3 example image the graph will look like Figure 2.1.
To build some intuition about this graph we consider a cut through the graph

separating s and t. We define the set S ⇢ P as the set of nodes connected to
s and the set T ⇢ P as the set of nodes connected to t. If a node p belongs

10



CHAPTER 2. THEORY

Figure 2.1: The grey nodes represent a 3 ⇥ 3 image. the nodes are connected
to its neighbors and all pixels are connected both to the source node s and the
sink node t. All edges have costs w

e

. The cut parts the graph so that no path
exists between s and t and the pixels are separated into two sets: the pixels that
are connected to s and the pixels that are connected to t. The minimal cut is
the cut that separates t and s and has the minimal cost. Figure is found in [3].

to the set S it will be labeled as f
p

= 1 (foreground) and f
p

= 0 (background)
if it belongs to T . In fact we view the graph as describing a second degree
pseudo-boolean function, i.e. a function from the boolean configurations of the
nodes (f

p

2 {0, 1}) to R that can be factorized into

E(f) =
X

8{p,q}

a(f
p

, f
q

). (2.12)

To understand this we look at a small example 2.2. Each edge in the two-node
graph has a weight. We want to cut the graph into two parts where the nodes
connected to 0 will be labeled 0 and the nodes connected to 1 will be labeled
1. We have four possible configurations of this graph. If we want to label
f
p

= 1 and f
q

= 0 the edges w0,q, wp,1 and w
p,q

are cut and the cost of this
configuration hence is a(1, 0) = w0,q + w

p,1 + w
p,q

. In the same way we define
costs for the other configuration a(0, 0), a(0.1), a(1, 1).

Now propose that se defined the costs a of the di↵erent configurations and
we want to set the weights w so that the graph describes these costs. One
formulation is

w
p,0 = a(1, 0)� a(0, 0)

w1,p = a(1, 0)� a(1, 1)

w0,p = a(1, 0) + a(0, 1)� a(0, 0)� a(1, 1)

and setting the rest of the weights to 0. By this convention we can formulate
a graph that describes any quadratic pseudo-boolean function where we have
defined the cost of a configuration of each clique {p, q} as a{p,q}(fp, fq). If we
want the function to be easily optimized there is the criterion that all weights
w in the graph must be non-negative. This is achieved if the following criterion
on a holds (referred to as submodularity):

a{p,q}(0, 0) + a{p,q}(1, 1)  a{p,q}(0, 1)a{p,q}(1, 0), 8{p, q} 2 C. (2.13)
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2.3. GRAPH CUTS

Figure 2.2: The grey nodes represent a small two node graph. Both nodes are
connected to each other and the source (denoted as 0) and the sink (denoted as
1). All edges have defined weights w

e

.

Now we note that the energy function describing the MRF (2.11) is a quadratic
pseudo-boolean function. This of course means that the energy function can be
represented by a graph and as long as it is submodular (which it turns out to be
in our formulation) it can be formulated as graph with non-negative weights and
the minimal cut of the graph corresponds to the configuration f that maximizes
the posterior probability (2.8) of the MRF. For further information see [2].
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Chapter 3

Method: Multi-atlas

Segmentation

Multi-atlas segmentation is a method that has become very popular for many
di↵erent medical applications, including segmenting brain and its internal struc-
tures, lungs, hearts and other internal abdominal organs [8].

An anatomical atlas is an image I = {i
p

| p 2 P} with corresponding manual
labeling L = {l

p

| p 2 P}. In our case we have a CT-volume of a heart and a
binary volume of equal size with the labeling done by an expert. If a voxel p
in the binary volume has value 1 it means that l

p

= 1 and i
p

describes a part
of the image that is inside the pericardium (foreground). If l

p

= 0, i
p

describes
a part of the image that is outside of the pericardium (background). I and L
together will be referred to as an atlas. An example slice of one of our atlases
can be seen in Figure 3.1.

a) b)

Figure 3.1: a) One slice of an CT-volume. b) Corresponding slice of the manual
labeling. Together a) and b) form an atlas.

When given a new unlabeled target image I
t

an atlas image I
s

is registered
to the target image and a transformation T is estimated. This transformation
should align the source image onto the target image. By applying the same
transformation on the labeled volume L

s

, the labels should also align onto the

13



3.1. FEATURE BASED REGISTRATION

target image. This is called label propagation and can be used as a labeling
(segmentation) of the voxels of the target image. The process of registering an
atlas to a target image and segmenting the image through label propagation is
called single-atlas segmentation.

Multi-atlas segmentation registers multiple atlases to the target image and
then combines their segmentation labels. Because of the natural variation e.g.
between di↵erent hearts, one single atlas might fail to accurately classify the
target image. Using multiple independent classifiers and fusing their results
might produce better results.

There are several ways of combining the labels into a final segmentation. The
most straight forward is majority voting (also referred to as decision fusion or
label voting). Each atlas labeling is considered a vote. The label of a voxel in the
target image is selected as the label that a majority of the atlas segmentations
agree on. Majority voting will be used to evaluate the multi-atlas segmentation
based on the di↵erent registration techniques. But the final segmentation will be
found by incorporating the multi-atlas votes into an MRF field and finding the
maximum a posteriori configuration through graph cuts (explained in Chapter
4).

Multi-atlas segmentation is at its core multiple image registrations. There
are a lot of proposed methods for solving the registration problem described in
Section 2.1. In this work we choose to evaluate the performance of two di↵erent
methods. One feature based and one intensity based method. The feature based
methods in general di↵er from the intensity based methods in that they, instead
of directly working with the intensity levels of the pixel/voxel, extract features
that represent the information of the image on a higher level. The problem
reduces to registering the extracted features in the images to each other.

Feature based registration methods are usually recommended when the im-
ages contain enough distinctive and easily detectable objects as is often the case
in many areas of computer vision. In medical images on the other hand, the
objects are often not as rich in detail. Features can be extracted but a large
amount of them will be noise or mismatched between the images and hence
result in a lot of outliers when the transformation between the images is es-
timated. Because of this drawback feature based methods are rarely used in
medical applications, see [25].

However, since we are interested in making multiple registrations for each
new patient for the multi-atlas segmentation and since ultimately this work is
supposed to be used on a very large data set (in connection with the SCAPIS
project), it is of value if we can make it less computationally demanding and
feature based registration is in general much faster to compute. Therefore we
evaluate two methods. One feature based method based on SURF and one
intensity based method named Niftyreg.

For more about registration and the di↵erent methods see for example [25,
20].

3.1 Feature Based Registration

The feature based registration method that we use is based on SURF [1]. SURF
has shown to outperform comparable methods not only in speed but also in
robustness, i.e. it is less sensitive to noise [1]. This is valuable to us since we are
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CHAPTER 3. METHOD: MULTI-ATLAS SEGMENTATION

dealing with a lot of outliers. To further try to cope with the outlier problem we
use RANSAC, which is very robust to outliers, to estimate the transformation
between the features obtained from SURF.

The registration uses SURF for feature detection and feature description, the
matching criterion by Lowe to find correspondences between the detected fea-
tures and RANSAC to estimate a rigid transformation between the two feature
sets. Finally, a B-spline based transformation is used to map the correspon-
dences even closer to each other.

3.1.1 SURF

Speeded-Up Robust Features (SURF) is a method for feature detection and de-
scription developed by Herbert Bay et al. in 2006 [1]. It was originally developed
for images in two dimensions (and so will this explanation be) but the concept
is easily expandable to 3D. It consists of two parts: interest point detection and
interest point description.

Interest Point Detection

Interest points are points in the image that seem more like the center of a blob
than points in its neighborhood. The detection of these points is based on
approximation of the determinant of the Hessian matrix which describes the
curvature of the image. The Hessian matrix H(x,�) of a point x at scale � is
given by

H(x,�) =


L
xx

(x,�) L
xy

(x,�)
L
xy

(x,�) L
yy

(x,�)

�
(3.1)

where L
xx

(x,�) is the convolution of the Gaussian second order partial deriva-

tive @

2

@x

2 g(�) with the image I at x and similarly for L
xy

and L
yy

. If the
determinant is large, the blob response is high and if the blob response is higher
than the blob response in a neighborhood (local maxima) the point is detected
as an interest point. This detection is done for di↵erent scales � with di↵erent
sizes of the convolution filters to be able to detect blobs of di↵erent sizes. The
scale space is divided into octaves (representing an scaling factor of 2) and each
octave is subdivided into a constant number of scales.

The Hessian has been used before as a way to detect interest points but Bay
et al. proposed to speed up these calculations by approximating the convolu-
tion filters L with simple box filters (see fig 3.2) which can be calculated very
e�ciently with use of the integral image. The element at x = (x, y)| in the
integral image I⌃ relates to the original image I as

I⌃(x) =
ixX

i=0

jyX

j=0

I(i, j). (3.2)

This conversion allows for e�cient computation of the sum of all pixel in-
tensities in any upright rectangular area since, regardless of size, it only needs
to evaluate four points in I⌃ (see fig 3.3).
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3.1. FEATURE BASED REGISTRATION

Figure 3.2: From left to right: the discretized second order partial derivative
in y- (L

yy

) and xy-direction (L
xy

), respectively. And the box approximation of
these filters.

Figure 3.3: To evaluate the sum of all pixels ⌃ inside a box you only need to
evaluate and sum four elements in the integral image I⌃

Interest Point Description

To be able to successfully match an interest point in one image to the corre-
sponding feature in another image, each interest point is described with a vector
(a descriptor). The descriptor should be invariant to the transformations that
are expected between one image and the other. If that is the case the descrip-
tors of corresponding points in the di↵erent images would be similar and the
euclidean distance between these descriptors would be small.

The description of the features uses information from the interest points
neighborhood. Firstly, in order for the descriptor to be rotation invariant, a
reproducible orientation for the image point is identified. This is done by cal-
culating the Haar wavelet (see Figure 3.4) responses in x and y direction in a
circular neighborhood around the point. Both the radius of the neighborhood
and the size of the Haar wavelets are scaled according to in which scale the in-
terest point was detected to make the descriptor scale invariant. The response
from the wavelets in the x and y direction are then used to find a dominant
orientation of the neighborhood.

To extract the descriptor, a square region centered at the interest point
and oriented along the dominant orientation is constructed. The size of this
region is again dependent of the scale. This region is divided into 4 ⇥ 4 sub-
regions and for each of these subregions the x and y Haar wavelet responses
are evaluated at the points of a 5⇥ 5 grid inside the subregion. The responses
in the horisontal direction (perpendicular to the dominant direction) are here
denoted d

x

and the the responses in the vertical direction are denoted d
y

, the
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CHAPTER 3. METHOD: MULTI-ATLAS SEGMENTATION

Figure 3.4: Haar wavelet filters in the x- and y directions. Dark areas has weight
�1 and white has weight +1.

intensity structure of that subregion is described by a 4D-description vector
v = (

P
d
x

,
P

d
y

,
P

|d
x

| ,
P

|d
y

|). Concatenating these from all subregions of
the interest point you get a final feature descriptor of length 64.

3.1.2 Matching

For each image (the target and the source) a set of features are extracted. The
next step is determining which features in the source set that are corresponding
to which features in the target set. The most straight forward way would be to
find the feature that is closest (in the descriptor space). However only choosing
correspondences by which features have the most similar descriptors will result
in a lot of bad matches. A more e↵ective method (as shown by Lowe [13]) is to
compare the closest neighbor to its second closest neighbor. Two features are
matched if the ratio between the distance between a features closest neighbor
and its second closest is below a certain threshold. I.e. if the descriptor vector
is denoted d, d1 is the closest feature to d and d2 is the second closest, a match
is found if

|0d� d1|0
|0d� d2|0

 ⇢ (3.3)

where ⇢ is a parameter. In other words a match is found if a feature has a match
that is considerably closer than any other match. The matches are in this work
found by exhaustive search.

As mentioned earlier, medical images are not very rich in detail which results
in there not being many distinct features. If the the matching threshold ⇢ is set
to low we might end up with too few matches to be able to estimate a reliable
transformation. Instead we set ⇢ high, resulting in a larger amount of matches
but also more outliers.

3.1.3 RANSAC

Given the correspondences found from the matching in Section 3.1.2 we want
to find a transformation that transforms the points in the source image onto
the points in the target image. This is done using RANSAC, a method which
is very insensitive to outliers.

Random Sample Consesus (or RANSAC) is a method developed in 1981 by
Fischler and Bolles [9] for fitting a model to experimental data. Fischler and
Bolles recognized that there are two types of errors present in experimental
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3.2. INTENSITY BASED REGISTRATION

data, classification and measurement errors. Classification errors are outliers
that are not captured by the model (e.g. when the detector incorrectly identifies
a feature). Measurement errors occur when the detector correctly identifies a
feature but slightly miscalculates one of its parameters (usually modeled by
a normal distribution). Standard fitting techniques like least squares will fail
since the gross classification errors will have a significantly larger e↵ect than the
measurement errors and the errors will not balance out.

RANSAC handles this by, instead of using all of the data for parameter
estimation, randomly selects a minimum set of features and uses these to esti-
mate the parameters of the transformation. Given these estimated parameters,
find the set of features (the consensus set) that are within some error threshold
of this model and therefore can be considered measurement errors. Iteratively
redo these calculations for new randomly chosen initialization sets and choose
the parameters of the model with the largest consensus set (i.e. the model with
the most inliers).

We were trying to estimate a rigid transformation T(✓) which has 6 pa-
rameters. The minimal random set hence consists of 6 correspondences (6
points x = (x1, . . . , x6) in the source image and their corresponding points
y = (y1, . . . , y6) in the target image). The transformation relating these points
to each other are easily computed explicitly so that

y = T(✓) � x. (3.4)

Now map all points in the source image with this transformation and count
the number of points that are transformed within a threshold distance from its
corresponding point in the target image (i.e. the number of correspondences in
the consensus set).

3.1.4 B-spline registration

The correspondences found by RANSAC are mapped to each other non-rigidly
using a package developed by Dirk-Jan Kroon available freely for MATLAB
called B-spline Grid, Image and Point based Registration. It contains a point
based B-spline registration based on the paper by Lee et al. [12]. It estimates a
B-spline based free form deformation that maps corresponding points onto each
other analogously with the intensity based free form deformation in the Niftyreg
package that will be explained in Section 3.2.

3.2 Intensity Based Registration

Niftyreg is a freely available medical image registration package. It contains
two programs for image registration that we are using in this work, reg aladin
and Reg f3d. Reg aladin estimates an a�ne/rigid transformation and is based
on block-matching. Reg f3d computes a free form transformation based on B-
splines.

Reg aladin

The algorithm, on which Reg aladin is based, was presented in [16] and [17] by
Ourselin et al. Basically, the source image is divided into blocks B0 and each
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of these blocks is compared to blocks in the target image B. The similarity
between a block B0

ab

centered at (a, b) in the source image and a block B
uv

centered at (u, v) in the target image is measured using the normalized cross
correlation of the blocks

C (B
ab

,B
uv

) =
1

N2

N�1X

i=0

N�1X

j=0

�
I
s

(a+ i, b+ j)� µ
s(a,b)

� �
I
t

(u+ i, v + j)� µ
s(u,v)

�

�
s(a,b)

�
t(u,v)

(3.5)
where µ

s(a,b)
and �

s(a,b)
is the mean and standard deviation of the block B

ab

in
the source image and µ

t(u,v)
and �

t(u,v)
is mean and standard deviation of the

block B
uv

in the target image. To reduce computational time only the blocks
with high variability ,which correspond to high contrast regions, are considered.

The block matching provides a set of corresponding points (the centers of
the best matching blocks). Ourselin et al. estimates that 20% of the obtained
matches are due to outliers and notes that the least squares approach to es-
timating the parameters ✓ of the a�ne transformation Ta↵ is unsatisfactory.
Instead they propose to use the L1-estimator. That is find the transformation
that minimizes the sum of the L1 norm of the residuals r

k

= y
k

� T, in other
words, minimizes

P
k

|r
k

|. Since it is a slower growing function than the L2

norm it is less sensitive to outliers. Ultimately they ended up using the man-
hattan distance of the residual instead of the euclidean distance. Although the
manhattan distance is dependent of the particular coordinate system Ourselin
et al. observe that it yields slightly better results compared to the Euclidean
distance.

The source image is transformed using the estimated transform and then
the block matching starts over, iteratively updating the transform until the
variation between the new transform and the previous one gets small enough or
a set number of iterations. Because of the complexity of the algorithm it uses
a multi-scale implementation where it first finds a rough transform at a coarse
scale. When the a transform is found it continues but on a refined scale. The
algorithm stops when the block size becomes so small that the information of
the block is considered insu�cient or after a set number of levels.

Reg f3d

Reg f3d is based on an algorithm presented by Rueckert et al. [18] and the
implementation is by Modat et al. and described in [14]. The algorithm seeks to
minimize a cost function C associated with the control points � of the B-spline
grid (which were covered in Section 2.1.2)

C(�) = �C
similarity

(I
t

,T(I
s

)) + �C
smooth

(T). (3.6)

The first term measures the similarity between the target image I
t

and the
transformed source image I

s

using normalized mutual information (NMI). Mu-
tual information is a concept from information theory and measures how much
of the information in one image A is present in the other image B. More specif-
ically

C
similarity

(A,B) = H(A) +H(B)�H(A,B) (3.7)

where H(A) and H(B) are the marginal entropy of A and B and H(A,B) is the
joint entropy. These are calculated by computing estimations of the histograms
of the voxels in the images.
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3.2. INTENSITY BASED REGISTRATION

The second term describes the smoothness of the transform. Since, in gen-
eral, we know that the transformation will be smooth we can penalize the trans-
formation for bending to much by adding the bending energy of the transfor-
mation to the cost function

C
smooth

=
1

V

Z
X

0

Z
Y

0

Z
Z

0
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@2

T

@x2

◆
+
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@z2
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+

+

✓
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T
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+

✓
@2

T

@xz

◆
+

✓
@2

T

@yz

◆�
dxdydz

(3.8)

The transformation is optimized with a multi-scale approach where the spac-
ing between the control points initially are large (i.e. there are fewer parameters
for the transformation and the possible transformations are on a more global
level). To find the optimal position for the control points the conjugate gradi-
ent descent method is used where the gradient of the cost function is estimated
and iteratively a step proportional to the length of the gradient vector is taken
downwards. When a local optima is found (the length of the gradient gets be-
low a threshold) more control points are added which allows for a more local
transformation and the optimization starts over.
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Chapter 4

Method: MRF

Segmentation

There are many di↵erent segmentation techniques. This work is focused around
multi-atlas segmentation which is based on multiple image registrations (which
was covered in chapter 3)

However, the multi-atlas segmentation will never be perfect. Especially the
feature based method, which works with the images on a higher level (register-
ing extracted features to each other) and with data with a lot of outliers, will
sometimes produce errors which are apparent when taking into consideration
the intensity information (e.g. when lung tissue is classified as inside the peri-
cardium). Therefore we constructed an MRF into which we could incorporate
both the atlas registrations and the intensity information. Another advantage of
the MRF formulation (apart from being very flexible) is that it can be globally
optimized in polynomial time using graph cuts.

4.1 MRF Formulation

What is usually done (for e.g. in [4]) is rewriting the posterior probability using
Bayes’ Theorem as

Pr(f |O) =
Pr(O|f) Pr(f)

Pr(O)
/ Pr(O|f) Pr(f) (4.1)

where the likelihood Pr(O|f) is assumed to factorize as

Pr(O|f) =
Y

p2P
Pr(o

p

|f
p

) (4.2)

i.e. each Pr(o
p

|f
p

) is independent of the rest of the field. Here f on the other
hand is assumed to be a Markov field and according to Hammersley-Cli↵ord
(see Section 2.2) it factorizes to

Pr(f) / exp

0

@�
X

{p,q}2C

V
p,q

(f
p

, f
q

)

1

A . (4.3)
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The pairwise clique potential V{p,q} is usually set to

V
p,q

(f
p

, f
q

) =

⇢
�, f

p

6= f
q

0, f
p

= f
q

(4.4)

where � is a constant which regularizes the segmentation by penalizing making
the boundary of the segmentation too long.

Of course, saying that f is a Markov random field, and that the likelihood
Pr(O|f) is not, is only a trick to divided the problem into parts that are easier
to understand intuitively. We can rewrite Pr(f |O) into a product of functions
a{p,q}(fp, fq) on the maximal cliques {p, q} by collecting (4.2), (4.3) and (4.4)
into
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(4.5) and (4.6) represent the same MRF as above (apart from a constant that is
dependent on the number of neighbors to each pixel p) and both are maximized
by the same configuration f . This formulation will be referred to as the original
formulation.

4.1.1 Expanding the formulation

Formulating the probability as in the original formulation has two main ad-
vantages: it is an easy formulation and it regularizes the segmentation in a
predictable way which means that you have some control over the shape of the
segmentation. The main disadvantage is that, for it to work satisfactory, the
boundary cannot pass through an area where there is an overlap between the
density functions Pr(o

p

|F
p

= 0) and Pr(o
p

|F
p

= 1). If it is, the location of the
boundary will be ambiguous and the regularization will fall back to the shortest
path.

Segmenting the pericardium su↵ers from this drawback. If the pericardium
is located directly between the lung cavity and the myocardium the classification
is straight forward since the air is clearly not inside and the probability of the
soft tissue that constitutes the myocardium is rather likely to be inside. In
theses areas the segmentation using the MRF will show a clear improvement
over the multi-atlas segmentation. But the pericardium often passes through
fat tissue. Fat is likely to be found both outside and inside of the pericardium
and in these areas the multi-atlas segmentation is not likely to be improved by
the MRF.

But there are some indicators of where the boundary should be since the
pericardium is not completely invisible. We want to exploit this fact by making
the cost of the boundary dependent on these observations and we propose to
find a simple and intuitive formulation that can guide the boundary in areas
of ambiguity. We have been experimenting with a lot of di↵erent functions for
the cost of the boundary which all have in common that they are a function of
the negative logarithm of some probability that is dependent on the observa-
tions. We tried a large set of formulations but found the following to be not to
complicated and at the same time work well on our training sets.
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The Hammersley-Cli↵ord Theorem (see Section 2.2) states that
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Since the probability factorizes over the cliques we can split the formulation
onto the sets f= = {{p, q} 2 N | f
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} and
we get

Pr(f |O) / exp

0

@�
X

{p,q}2f

=

V{p,q}(fp, fq)

1

A exp

0

@�
X

{p,q}2f

6=

V{p,q}(fp, fq)

1

A

/ Pr(f=|O) Pr(f 6=|O). (4.7)

Pr(f=|O) will be written straight forwardly as
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which corresponds to a potential function
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Here it is worth noting that all probabilities regarding specific pixels are con-
sidered independent of all other pixels. For example we have
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Pr(f 6=|O) describes the probability of the boundary and we put a little more

thought into formulating this probability. We want to construct a modified
probability distribution g(f

p
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; o
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) that gives us some control over the cost
of the boundary.

In the original formulation g was simply formulated as
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Now we can collect (4.8) and (4.11) into (4.7) and get
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We note that if g

b

equals a constant we have the original formulation which
simply regularizes the segmentation. If we estimate the probabilities in g

b

we
get a cost of the boundary that in a natural way reflects the probability of the
boundary given the observations.

We further introduce two parameters �1 and �2 to control the e↵ect the
boundary cost will have on the segmentation
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Finally, we set

� �1 ln(gb(fp, fq; op, oq) + �2 = �3, 8o
p

, o
q

/2 fat (4.14)

where �3 is some constant. This is done to isolate the peak in g
b

which actually
corresponds to the intensities found on the pericardium when it is visible. If
the observations tell us that the current p and q are fat we will look for the
most probable path through the fat. If p or q are not fat, g

b

is set to a constant
and we are instead falling back to regular regularization. This is motivated
by the fact that it is mostly in fatty areas that this e↵ect is needed. This
also removes some peaks in g

b

that only serve to confuse the segmentation. In
practice we define this fatty peak as intensities between -120 HU and 40 HU.
These intensities correspond to intensities that are a little lighter than dark fat
and a little darker that soft tissue. The intensity of the pericardium when it
is actually visible is somewhere around -35 HU which means that it is in the
center of this window.

Summarizing all this we formulate the MRF as
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CHAPTER 4. METHOD: MRF SEGMENTATION

The configuration f that maximizes the posterior probability (4.15) is the
same as the configuration that minimizes the energy function

E(f) =
X

{p,q}2C

V{p,q}(fp, fq). (4.16)

4.2 Maxflow

By constructing a graph as explained in Section 2.3.2, minimizing the energy
function (4.16) is the same as finding the minimum cut (or the maximum
flow) through the graph. We used the maxflow algorithm by Boykov and Kol-
mogorov [3] which is a widely used method in computer vision. The algorithm
is based on augmenting paths meaning that it pushes flow through the graph
iteratively until no more flow can be pushed. Some of the edges will be satu-
rated and the set of saturated edges will be the same as the set of edges in the
minimal cut. Boykov and Kolmogorov’s algorithm is a variant of this algorithm
which is developed to be more e�cient on the grid like graphs that often arise
in computer vision.

4.3 Training

The algorithm was evaluated by cross validation since we only had 10 labeled
volumes. This means that we had to train 10 instances of our method. One
volume was chosen as validation set V and the other 9 as the training set T .
For each volume in the training set all 8 remaining volumes where registered to
this volume resulting in a vote map M = {m

p

| p 2 P} where each voxel p has
a number of votes m
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2 {0, . . . , 8}.
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In practice we need to put a threshold on Pr(i

p
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|f
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) and Pr(i
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|f
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, p 2 B)
not allowing the probabilities to be zero. In other words we put a probability
on unseen observations.

The probabilities were trained on vote maps consisting on votes from 8 sepa-
rate registrations where m

p

can take one of 9 values between 0 and 8, However,
when the method will be validated on the validation set (the one atlas that is
not in the training set) 9 atlases will have been registered to it. The probability
of a voxel p with m

p

= 9 is zero from the training phase since there only was 8
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atlases voting. This is solved by interpolating the probability distribution to 10
linearly spaced points between 0 and 8 using linear interpolation.

It remained to estimate the parameters of the model � = (�1,�2,�3). The
parameters were estimated as the parameters that maximized the mean Jaccard
index when using the model on the training set

argmin
�

0

@1

9

|T |X

i2T

Jaccard(L⇤
i

(�),L
i

)

1

A . (4.19)

We proposed to to optimize the parameters using a simple greedy approach
where each �

i

was optimized separately using golden section search. This was
not as straight forward as expected. Instead we found a reasonable initialization
for �1 which was then kept fixed. Then �2 and �3 was optimized using the above
method. The impression was that (4.19) varied slowly in the parameter space
and was modestly dependent on which test set we used which meant that we
could have kept �2 and �3 constant as well.
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Chapter 5

Implementation and

Evaluation Details

5.1 Registration

The registration methods were evaluated by registering all atlases to each other
and computing the Jaccard index between the target atlas and the registered
atlas. Since there were 10 atlases we obtained 90 measurements for each reg-
istering method (the registration methods were not symmetric) from which we
calculated the mean and standard deviation.

5.1.1 A�ne Initialization

The a�ne registration is used as an initialization for the non-rigid free form
registration. For the a�ne initialization we evaluated two methods, the feature
based using SURF and RANSAC and the intensity based using Reg aladin from
the Niftyreg package.

Feature Based Registration

The features where extracted using 3 di↵erent octaves and 3 scales per octave
from the target and the source image. Since the source image is part of an
atlas a region of interest in the source image is known. We only used the in-
terest points in the source image that are within a distance of 20 mm from the
boundary of the manual labeling of the atlas, i.e. the pericardium. The mask
corresponding to this region in the source image will be referred to as the source
mask. The points where matched between the images using Lowe’s matching
criterion with the matching parameter ⇢ set to 0.95. With the best correspon-
dences found between the interest points present inside of the source mask and
all the interest points of the target image the optimal rigid a�ne transformation
between the images were estimated using RANSAC. The definition of an inlier
was set to an euclidian threshold of 10 mm, i.e. if an interest point x in the
source image is mapped by the estimated transformation T to within 10 mm of
its corresponding interest point y in the target image it is considered an inlier.
The transformation estimation using 6 randomly sampled points and the com-
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5.1. REGISTRATION

putation of number of inliers of that transformation was iterated one million
times and the transformation with the largest amount of inliers was chosen.

Intensity Based Method

Reg aladin was used to estimate an a�ne transformation between the source
and the target image. It was run with default values of the parameters, i.e. 5
iterations for the transformation estimation on each level and 3 levels. Only the
50% of the blocks that have highest variability are used and when estimating
the transformation 50% of the matches are considered outliers. In the same
manner as for the feature registration a mask is used for the source image so
that only the region within 20 mm of the pericardium is registered to the target
image.

5.1.2 Free Form Registration

Since the feature based rigid registration proved to be more robust than the
intensity based method we used that registration as an initialization for the
nonrigid deformations. For each target image, the a�ne transformation was
already estimated from all the other 9 atlases and by label propagation we had
9 guesses of where the pericardium was in the target image. Using these guesses
we constructed a region of interest in the target image, i.e. a region in which the
boundary of the mask most likely was present, referred to as a target mask. It
was constructed by normalizing the vote map (dividing by #votes) and blurring
with a gaussian kernel with � =

p
5mm. The target mask was then defined as

voxels with values between 10�7 and 1� 10�7 (see figure 5.1).

Figure 5.1: A slice of a vote map constructed from 9 rigid feature based atlas
registrations. The vote map was blurred with a Guassian kernel to extract a
target mask (the boundary of which are shown in red).
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Feature Based Registration

All interest points in the target image that were not in the target mask were
removed and the points were rematched between the points inside of the source
and the target masks. By this procedure a lot of outlier matches were removed.
Again RANSAC was used to find an inlier set that was consistent with a rigid
transformation. Assuming that the nonrigid deformations were small enough
these inliers were considered inliers also for the free form deformation and a
transformation was estimated using the MATLAB package mentioned in Sec-
tion 3.1.4 mapping the interest points onto each other using a B-spline based
transfomation.

Intensity Based Registration

For the intensity based method the a�ne transform obtained earlier was used
as an initialization which meant that the source image was transformed using
the a�ne transformation before the images was registered using the free from
registration. Reg f3d has the ability of specifying a target mask which means
that we tested two methods. Firstly, the image specified by the source mask
was registered to the whole target image and secondly the same thing was done
but also specifying the target mask. The registration without a specified target
mask worked a little better which meant that we only only evaluated theses
registrations. Default values where used for the parameters: 64 bins for the
joint histogram, a final grid spacing of 5 voxels, the weight of the bending
energy penalty term was 0.005 and the optimization was done over 3 levels with
a maximum of 300 iterations per level.

5.2 Multi-atlas Segmentation

To each target image (in the set of 10 atlases) all remaining 9 atlases was regis-
tered and the labels where combined using majority voting. The final segmen-
tation was evaluated by measuring the Jaccard index between the segmentation
and the manual labeling of the target image. This was done for the multi-
atlas segmentation obtained using registrations based on Niftyreg and based on
features.

5.3 MRF Segmentation

5.3.1 Graph Cuts

To make the inference of the minimal cut less computationally demanding we
extracted the part of the target image in which the boundary (the cut) most
likely would be present. This was done in the same manner as when constructing
the target mask for the non rigid registrations. The vote map constructed from
the atlas registrations was normalized (divided by #voters) and blurred with
a gaussian kernel with � =

p
5 mm. The target area was then defined as all

voxels that have intensities between 10�7 and 1� 10�7 (again see Figure 5.1).
2D histograms describing the occurrences of intensities and number of votes

were computed from this target area and used to compute the prior probabilities
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of the MRF. The possible intensities in a CT-volume are i
p

2 [�1024, 3072]. We
divided these into 1024 bins and since we had 9 di↵erent numbers of votes to
each image in the training set, the histograms was of size 1024 ⇥ 9. A typical
histogram can be seen in Figure 5.2
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Figure 5.2: A typical histogram showing number of voxels in the training set
with number of multi-atlas votes on the x-axis and intensity bins on the y-axis.

Parameters

For both the feature based and the intensity based MRF an initialization of
�1 = 20 proved reasonable. The parameter �2 was then optimized on the interval
[�70,�40] and �3 on [100, 140]. The optimizations were done using golden
section search assuming that the optimal value was found after 6 iterations.
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Chapter 6

Results

The results will be presented in four sections. Firstly, the results covering the
di↵erent registration methods are presented together with the multi-atlas seg-
mentations. Thereafter we present the results we obtain by instead of majority
voting incorporating the multi-atlas vote map into the MRF. Results are pre-
sented as MEAN±STD Jaccard index unless otherwise stated. We show the
runtime of our algorithm and lastly we show how well these segmentations mea-
sure the actual fat inside of the pericardium.

6.1 Registration and Multi-atlas Segmentation

All evaluations of the di↵erent registration were evaluated by the Jaccard index
of the single atlas segmentation. The label of the atlas was propagated onto the
target image and the Jaccard index between the propagated segmentation and
the gold standard was measured.

Firstly the rigid a�ne registrations using features (denoted F) and the a�ne
registrations using Niftyreg (denoted as N) where considered. After registering
all atlases to each other we found that the registration accuracy of Niftyreg was
0.75± 0.11 whereas the accuracy of the feature based method was 0.83± 0.04.
On the basis of these results we chose to use the feature based registration as
initialization for all the nonrigid registrations.

The non-rigid registrations are denoted NF (for nonrigid registration using
Niftyreg and feature based initialization) and FF (for feature based nonrigid
registration using feature based initialization). The nonrigid registrations were
then combined into a multi-atlas segmentation through majority voting. The
multi-atlas method based on NF is denoted multNF and the one based on FF
multFF. The results of all of these methods are shown in Table 6.1.

6.2 MRF Segmentation

To improve on the atlas segmentation where there was ambiguity we proposed to
incorporate the votes into an MRF together with the intensity information. We
evaluate both the original formulation which only has regularization (denoted
regMRF) and the extended formulation with a data dependent boundary cost
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(denoted extMRF). Table 6.2 shows the results of the MRF methods applied to
the multi-atlas votes based on FF registrations and NF registrations.

Method Jaccard index (MEAN±STD)

F 0.8149± 0.0384
N 0.7403± 0.1090

FF 0.8788± 0.0313
NF 0.9061± 0.0239

multFF 0.9241± 0.0180
multNF 0.9398± 0.0165

Table 6.1: The mean and standard deviation of the single-atlas segmentations
for method N, F, NF, FF and of the multi-atlas segmentation for method
multNF and multFF after the results of registering all 10 atlases to each other
were collected.

Method FF NF

mult only 0.9241± 0.0180 0.9398± 0.0165
mult+regMRF 0.9321± 0.0181 0.9419± 0.0182
mult+extMRF 0.9379± 0.0186 0.9440± 0.0186

Table 6.2: The mean and standard deviation of the MRF methods applied to
the multi-atlas votes constructed from the FF and NF registrations respectively.

6.3 Runtimes

The runtime of the di↵erent parts of the algorithm are presented in Table 6.3.
The runtimes were evaluated with an Intel Core i7-43930k @3.40GHz with 6
cores and 12 threads. The feature detector and the Niftyreg methods were
implemented to make use of all threads. The maxflow algorithm used 6 threads.
The feature matching algorithm and the feature registration algorithms only
utilized 1 thread in their current implementations.

Method Time [s]

Feature detection 8.7
Feature matching 5.4

Feature rigid registration 36.3
Feature nonrigid registration 27.4

Maxflow 114.7

Niftyreg a�ne registration 678.8
Niftyreg nonrigid registration 1253.1

Table 6.3: Mean runtimes for the the di↵erent parts of our algorithm and for
the Niftyreg based methods.
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For constructing a final segmentation (using 10 atlases), feature detection
and maxflow were run once on the target image and the rest of the methods were
run 10 times. This collects into a total running time of about 13.6 minutes for
multFF+extMRF compared to about 5.4 hours if using Niftyreg for both a�ne
initialization and nonrigid registration. When using feature based initialization
this reduces to 3.6 hours (multNF).

6.4 Fat Estimation

Using the final segmentations from multFF+extMRF and multNF+extMRF
we measured the fat volume through thresholding (as explained in Section 1.1).
The results are presented in Table 6.4 and 6.5.

FF
Method Fat di↵erence [ml] Fat di↵erence [%]

mult only 3.6130± 19.1113 6.17± 20.96
mult+regMRF �0.2344± 20.0538 2.47± 20.17
mult+extMRF �6.9403± 15.6680 �5.77± 14.24

Table 6.4: The mean and standard deviation of the MRF methods applied to
the multi-atlas votes constructed from the FF registrations.

NF
Method Fat di↵erence [ml] Fat di↵erence [%]

mult only �6.1516± 13.4166 �6.04± 12.25
mult+regMRF �4.7326± 14.4616 �4.13± 12.62
mult+extMRF �8.1224± 11.6586 �8.23± 8.85

Table 6.5: The mean and standard deviation of the MRF methods applied to
the multi-atlas votes constructed from the NF registrations
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Discussion

7.1 Registrations

When evaluating the di↵erent parts of the registration we found that the feature
based initializations were considerably more robust than the Niftyreg a�ne reg-
istrations. This might partly be explained by the fact the we only allow for rigid
transformation when using this method which prevents it from making outra-
geous estimations of the transformation. But the huge disparity (0.8149±0.0384
for the feature based compared to 0.7403 ± 0.1090) leads us to the conclusion
that the feature based method is the superior method for initialization of the
registration.

For the nonrigid registration we used B-spline interpolation for both Niftyreg
and SURF. But the feature based method (FF) used an simple algorithm where
the correspondences in the consensus set from RANSAC where mapped directly
on top of each other. No regard was taken to the fact that many of these cor-
respondences should be considered as outliers for the estimation of the B-spline
transformation. Still this method considerably improves the rigid initialization
(again see Table 6.1) but as expected the algorithm used by Niftyreg (NF) pro-
duces better results. We based all of the nonrigid registrations on the feature
based registrations.

This allows for a fair comparison between the nonrigid feature based method
and nonrigid intensity based method where the intensity based proved superior.
What is not clear is what results we would have gotten if we used the inten-
sity based a�ne registration as initialization for the nonrigid intensity based
registration method. Since the intensity based initialization was less robust
than the one we used this would probably have resulted in worse results for the
method based on Niftyreg. This would have been a fairer comparison between
our method and the intensity based method and would be a test for future work.

After combining the single-atlas registrations into a multi-atlas segmentation
through majority voting (multFF and multNF) we considerably improve the
robustness and accuracy of the algorithm. The Jaccard index was 0.9241 ±
0.0180 for the feature based and 0.9398±0.0165 for Niftyreg with feature based
initialization (Table 6.1).
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7.2 MRF

The MRF further improves the accuracy of the segmentation as is clear from
Table 6.2. The extended formulation of the MRF (MRFext) does provide slightly
better results than the MRF formulation that only uses regularization. But
since this improvement mostly is in fatty areas we also see that although it
is a small improvement measured in Jaccard index, it has a nice e↵ect on the
robustness of the fat volume estimation. The standard deviation is lowered by
6.7 percentage points for the FF fat estimation and 3.4 percentage points for
the NF fat estimation (see Tables 6.4 and 6.5). We also note that with the
MRFext formulation the algorithm consistently underestimates the fat volume.
This is an e↵ect inherent to graph cuts since putting a cost on the boundary
means that a short boundary is a cheap boundary. The algorithms we used for
fat estimation where optimized for Jaccard index. By instead optimizing for fat
estimation we would potentially achieve better results.

Especially we note that our method, with feature based multi-atlas segmen-
tation coupled with a data dependent MRF, produces comparable results to us-
ing standard multi-atlas based segmentation based on Niftyreg (0.9379±0.0186
compared to 0.9398± 0.0165) and at a significantly lower computational cost.

7.3 Computational E�ciency

Where the multi-atlas segmentation using Niftyreg would take 5.4 hours to
compute using a standard computer, our method takes 13.6 minutes. This is
of course a huge gain if this algorithm is to be used on a database consisting
of thousands of images where the intensity based method in-fact would prove
untractable.

We have not been experimenting much with the parameters regarding the
the feature registration. For now 1 000 000 iterations were used by RANSAC
but especially for the a�ne initialization this many iterations might be a lot
more than needed. We tried a couple of registrations using 500 000 iterations
which did not seem to a↵ect the success of the registrations and of course cuts
the running times in half. More work would be needed to evaluate and find the
optimal way to handle the number of iterations for speed and accuracy.

In this work the registration algorithm only uses one processor thread. If it
was implemented in parallel (as the Niftyreg baseline) it would potentially have
been 12 times faster reducing the registration time to a few seconds. Also, the
runtime of the maxflow algorithm would be greatly reduced by constructing a
much smaller target mask (as explained in Section 5.3.1) and thereby a much
smaller graph. This is motivated by the fact that the segmentation boundary
is unlikely and therefore never present where the number of votes are too low
or too high. This is especially true where there are no votes and where all the
atlases agree which constitutes a large part of the graph in the implementation
used in this work.

7.4 Comparison to Related Work

The methods proposed by [19] and [7] use di↵erent data sets with CT images
without contrast. This is arguably a slightly harder problem since the di↵erent
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anatomical regions of the heart are not as easy to di↵erentiate. They report
a Dice similarity index for their segmentations of 0.89 ± 0.03 and 0.89 ± 0.01
respectively. The Dice similarity index is similar to Jaccard but it can be shown
that

Dice(A,B)  Jaccard(A,B)

Measured in Dice similarity the result of our algorithm (multFF+MRFext) is
0.9678±0.0100. The conclusion we can draw from this fact is that CTA (i.e. con-
trast enhanced CT imaging) together with our method provides the best results
for fully automatic pericardium segmentation known to the author. But since
not all patients can undergo CTA-scans, future work would include evaluating
this method on non-contrast CT images.

7.5 Review of Algorithm

Figure 7.1 shows an example of a successful segmentation (in fact a slice of a suc-
cessful 3D segmentation). The MRF has the advantage that it directly corrects
not allowed segmentations (as in Figure 7.2). In areas where the pericardium is
visible it also has the ability to fit the boundary onto the true pericardium (Fig-
ure 7.3). When the pericardium is not visible or if the multi-atlas estimation is
not good enough this does not work and the segmentation will fail to represent
the boundary accurately (Figure 7.4).

SliceID: 185. WL = −74. WW = 500.

 

 

Gold Standard

Multiatlas

Multiatlas+MRF

Figure 7.1: An example of a part of a good segmentation. The red boundary
is the boundary of the gold standard. The green line represents the boundary
of the segmentation estimated by the feature based multi-atlas segmentation.
The blue line corresponds to the same feature based multi-atlas segmentation
incorporated into the MRF.
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SliceID: 130. WL = −74. WW = 500.

 

 

Gold Standard

Multiatlas

Multiatlas+MRF

Figure 7.2: Here the MRF corrects the segmentation that is wrongly estimated
to being in the lung cavity. Red is gold standard, green multi atlas segmentation
and blue is the segmentation also using the MRF.

SliceID: 250. WL = −74. WW = 500.

 

 

Gold Standard

Multiatlas

Multiatlas+MRF

Figure 7.3: In this example where the pericardium is visible (the intensities
are slightly brighter under the red line representing the boundary of the gold
standard) we can clearly see the e↵ect of the intensity dependent boundary cost
of the MRF.
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SliceID: 215. WL = −74. WW = 500.

 

 

Gold Standard

Multiatlas

Multiatlas+MRF

Figure 7.4: If the multi-atlas segmentation is not satisfactory and the peri-
cardium is not clearly visible the segmentation will not represent the boundary
accurately.

In this work we have been optimizing the algorithm against the Jaccard
index. This is sometimes a problem since the pericardium is not in fact a
closed object. We have the pulmonary veins and arteries, the aorta and inferior
and superior vena cava that all are considerable objects that pass through the
pericardium. When the expert made the Gold Standard labelings he more or less
arbitrary cut through these objects. This is in general handled by our algorithm
by the fact that the atlas registrations also provides a label propagated guess of
how these areas should be closed. But we see one unexpected e↵ect where this
can fail.

The images series are acquired in a consistent manner. But we see slight
variations. Figure 7.5 shows a slice of a volume where the image series starts
unusually high (i.e. more of the arteries and veins in the top of the image is
visible). Since most of the images of the atlases are cut just above where the
manual labeling starts there is little information in the atlas set of what the
heart looks like above the labeling. We can see this e↵ect by the atlases being
stretched far above the gold standard resulting in a miss aligned segmentation.

Our algorithm can actually be summarized well by Figure 7.5. It shows a
slice of the image on which our algorithm performed the poorest results (Jaccard
index 0.9002) and where most of the e↵ects discussed are visible.
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SliceID: 130. WL = −74. WW = 500.

 

 

Gold Standard

Multiatlas

Multiatlas+MRF

Figure 7.5: This figure shows a slice of the image on which our algorithm per-
formed poorest. In a way it summarizes the advantages and drawbacks of our
algorithm. The segmentation fails in the top of this slice due to the image
stretching further above the pericardium relative to the other atlases. This
has a large e↵ect on the Jaccard index but arguably not as profound on the
fat measurements. To the right and to the bottom left the pulmonary veins
and the inferior vena cava pass through the pericardium and we can see that
our algorithm struggle to close these areas in a way consistent with the the
experts delineation. On the bottom left the multi-atlas segmentation was not
so accurate. The e↵ect of the MRF is clear where it successfully corrects the
segmentation that passes through the lung and half of the fatty area to the left
but not on the bottom left where the multi-atlas registrations were too far from
the correct boundary.
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7.6 Future Work

Although our algorithm is considerably faster than the same method based on
Niftyreg there still is potential and a demand for an even faster method. We
are currently working on a way to combine all the atlases into an überatlas

based on features. One advantage of an überatlas would be to make it possible
to construct a multi-atlas segmentation (or at least a good initialization) by
only doing one registration. This registration could also produce information
about which atlases that are similar to the target image (and therefore should
be carefully registered) and which that should not. This would potentially not
only reduce computational time but also allow for a having a much larger atlas
set and more accurate segmentations.

Other improvements that would drastically reduce the time required for
computations include to make our RANSAC implementation parallel and to
use an e�cient approximating algorithm for finding matching features (instead
of brute force which has been used in this work).

One of the big challenges when working with extracted features in these types
of images is handling the large amount of outliers. In this work the approach
has been to use RANSAC and finding the largest consensus set. With this
approach all correspondences within the consensus set are considered perfect
matches (belonging to the model) and all that are not in the consensus set are
given an equal cost. This approach for error modeling is very robust to outliers
but future work would include research on a di↵erent way of modeling these
errors.

The nonrigid feature based registration uses a straight forward approach
which simply maps the corresponding features found by an a�ne initializa-
tion on top of each other using B-splines. By developing a more sophisticated
method for non-rigid 3D registration based on features this algorithm would be
significantly improved.
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Conclusion

We developed a fully automatic method for segmenting the pericardium in CTA-
images that used feature based multi-atlas segmentation. The final segmentation
was found by incorporating the votes into an MRF conditioned on the intensities
of the target image. Further, the MRF was formulated in way that made use of
two simple classifiers. One that classified the probability of pixels either belong-
ing to the inside of the pericardium or background and another that classified
the probableity of pixels being either on the boundary of the segmentation or
not on the boundary.

We showed that our algorithm produced results that are better than state-
of-the-art algorithms for pericardium segmentation and that we could do it in
a computational e�cient manner through the use of feature based registration.
The Jaccard index of the final segmentation was 0.9379 ± 0.0186 after cross
validation (Dice index: 0.9678 ± 0.0100). The running time of our algorithm
was 13.6 minutes compared to about 5.4 hours using Niftyreg. But we note that
there are room for considerable improvements of the running time only through
more e�cient implementation of the algorithm.

We showed that the feature based rigid initialization proved considerably
more robust and accurate compared to the a�ne intensity based method.

The multi-atlas segmentation using feature based registration and simple
majority voting did not provide as good results as the same segmentation based
on the way more computationally demanding Niftyreg (in fact compared to the
nonrigid Niftyreg algorithm based on the more robust feature based initializa-
tion). The main reason for this being that the feature based registration does
not work with the image intensities directly and therefore can make errors that
are apparent if the intensity information of the target image is taken into con-
sideration. We showed that by incorporating the multi-atlas votes into an MRF
that is conditioned on this intensity information (and that can be optimized ef-
ficiently) we obtained comparable results to the multi-atlas segmentation based
on Niftyreg.
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http://www.hjart-lungfonden.se/scapis, 2014. [Online; accessed 30-
Sept-2014].

[16] S. Ourselin, A. Roche, G. Subsol, X. Pennec, and N. Ayache. Reconstruct-
ing a 3D structure from serial histological sections. Image and Vision

Computing, 19:25–31, 2001.
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