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Abstract

Tendons connect muscles to bone and consist of a complex structure
of almost parallel collagen fibres embedded in a hydrated matrix. The
mechanical behaviour of tendons is viscoelastic and highly non-linear.
The Achilles tendon is the largest tendon in the body and it is essential
for walking and jumping. It is the most frequently ruptured tendon
in humans and today there is no consensus on what is the best treat-
ment. To be able to improve and develop suitable treatments for tendon
injuries more knowledge in tendon mechanics is necessary.

Computational models can increase the understanding of tendon
mechanics and also be used to predict tendon rupture or the mechani-
cal response in unknown loading situations. There are different models
used for tendons today but most of them provide a mathematical de-
scription of the mechanical behaviour without any direct coupling to
the physiological structure of tendons.

In this study, a structural fibre-reinforced poroviscoelastic finite el-
ement model is developed for the Achilles tendon, based on a model
for articular cartilage. It is assumed that the collagen fibres, the non-
fibrillar matrix and the fluid flow contribute to the total stress in the
tendon and specific constitutive models are used for the different com-
ponents. The fibres are modelled as non-linear viscoelastic one dimen-
sional units, the surrounding matrix is modelled as a neo-Hookean ma-
terial and the permeability is assumed to be strain-dependent.

The model is curve fitted to experimental test data from rat Achilles
tendons subjected to cyclic loading by optimizing nine material param-
eters. In total, the model is curve fitted to 21 specimens from two
different data sets and two average tendons representing each set.

It was found that an exponential stress-strain relationship for the
collagen fibres was necessary to capture the non-linear behaviour of the
Achilles tendon. With this exponential formulation, very good curve
fits were obtained for all specimens from both groups and for the av-
erage tendons. Statistical analyses show that the optimized material
parameters from the two data sets are not significantly different.

The proposed model can accurately simulate the Achilles tendons
under cyclic loading and it identifies the collagen fibres to be the most
important load bearing structural parts in tensile loading. This model
also looks promising for predicting the general mechanical behaviour of
the Achilles tendon under other similar loading conditions.
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1 Introduction

Tendons connect muscles to bone and transmit forces from muscle con-
tractions, producing joint movement. Tendons also improve joint sta-
bility and act as shock absorbers and energy storage sites (Nordin and
Frankel, 2012). The tendon is a complex structure of collagen fibres em-
bedded in a hydrated matrix, built to withstand high repetitive loads
and large deformations. It is a highly non-linear viscoelastic material
that can be compared to a fibre-reinforced composite.

There are different families of tendons, grouped according to their
functionality. Here, the focus will be on the Achilles tendon, which is
subjected to high tensile loads. The Achilles tendon connects the calf
muscle gastrocnemius, to the heel bone calcaneus, see figure 1, and it is
essential for walking and jumping. It is the most frequently ruptured
tendon in humans and today there is no consensus on what is the best
treatment (Holm et al., 2014). Improved knowledge in tendon mechan-
ics is necessary so that treatments and rehabilitation protocols can be
properly designed.

Figure 1: The Achilles tendon.
Picture taken from http://www.arthroscopy.com/sp09009.htm

Computational modelling can help us to better understand the me-
chanics of tendons and also predict the mechanical response at different
loading situations. A mechanical model for healthy tissue can be de-
veloped to predict failure and later on also be the starting point for
modelling tendon healing.

An appropriate tendon model requires large strain theory and must
be able to capture the viscoelastic properties at different loads. Many
tendon models are phenomenological, providing a mathematical descrip-
tion of the mechanical behaviour without any direct coupling to the
physiological structure.
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1.1 Aim

The aim of this thesis is to develop a material model for the Achilles
tendon based on an existing model for articular cartilage. The tendon
model proposed here is a structural model considering collagen fibres,
solid matrix and fluid flow as contributors to the total stress. This model
tries to address the importance of each of the different structural parts.
The model will be validated against experimental data from Eliasson et
al. (2007).
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2 Background

2.1 Tendons

Tendon is a highly organized tissue with closely packed parallel fibres
aligned with the long axis of the tendon. The arrangement of the fibres
makes the tissue almost uniaxial which allows the tendon to efficiently
transfer tensile forces from muscle to bone. In unstretched tendons, the
collagen fibres appear as wavy structures, called crimps (Franchi et al.,
2007).

Tendons can be described as a composite of collagen fibres embed-
ded in an extracellular matrix composed of proteoglycans, cells, elastin
and water. Collagen makes up 65 - 80 % of the dry weight, mainly type
I (O’Brien, 2005). The collagen molecules (tropocollagen) are organized
into fibrils and held together and stabilized by chemical cross-links (Ker,
2007). Groups of parallel fibrils form a fibre, where a bundle of fibres
constitute a fascicle, see figure 2. Fibrils and fibres are surrounded by
endotenons, a loose connective tissue containing blood vessels, lymphat-
ics and nerves. Groups of fascicles are bound by a similar connective
tissue, called the epitenon, to form a tendon unit (Wang, 2006). The
outermost layer is called the paratenon, which is a loose fatty tissue that
reduce friction again surrounding tissue (Wang, 2006; O’Brien, 2005).

Figure 2: Schematic picture of tendon, recreated from Ker,
(2007).

The matrix is often referred to as the ground substance and 60 -
80 % of the wet weight is water. Less than 1 % of the tendon dry
weight consists of proteoglycans. These compounds bind to the water
molecules, giving the matrix a gel-like texture (O’Brien, 2005). The
proteoglycans are orthogonally connected to the collagen fibrils, which
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is believed to increase the tendon strength. They are probably also im-
portant for the orientation and ordering of the collagen fibrils (Franchi
et al., 2007).

The cell density in tendons is low, and the cells are embedded in the
extracellular matrix, aligned in rows in between the fibres. The cells
are primarily tenoblasts and they synthesize the collagen molecules,
proteoglycans and other proteins to build up the extracellular matrix
(Wang, 2006). The cells are also functioning as sensors and adapt the
extracellular matrix to changes in mechanical loading (Franchi et al.,
2007).

2.1.1 Mechanical properties of tendons

A typical stress-strain curve from a tendon loaded in tension is shown
in figure 3. For low strains, the stiffness is very low and this part of
the curve is called the toe-region. When the tendon is subjected to
load the crimps are stretched out, which corresponds to the toe-region
in the load curve. When all the fibres are straightened, the load curve
enters the linear region which corresponds to the physiological range of
the tendon (Wang, 2006). For higher loads, the tendon starts suffering
from microscopic failure where smaller fibril units rupture before the
entire tendon breaks.

Figure 3: Schematic picture of stress-strain curve from
tendon loaded in tension, from Wang, (2006).

The elastic modulus of tendons in adult vertebrates vary from 800
to 2000 MPa and tendons from animals that are not fully grown are
generally less stiff (Ker, 2007). Tendons fail earlier under cyclic load-
ing compared to static loading at the same level and time-to-rupture
decreases with increased loading frequency (Ker, 2007). Tendons are
highly anisotropic tissues. For example, mechanical testing of porcine
tendons show that Youngs modulus is about 1000 times higher in the
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fibre direction compared to the transverse direction (Von Forell et al.,
2014).

Tendons are viscoelastic and their mechanical response is time de-
pendent. If a tendon is subjected to a constant strain, the stress level
will decease with time. This phenomenon is called stress-relaxation.
Instead, if a constant load is applied, the sample length will increase
with time. This is known as creep. Tendons exhibit creep for both
static and cyclic loading (Ker, 2007). Both stress-relaxation and creep
are illustrated in figure 4.

Figure 4: Stress-relaxation (left) and creep (right).

Moreover, the mechanical properties of tendons are strain rate de-
pendent. At high strain rates the tendon stiffness is high and the tissue
gets more brittle compared to lower strain rates where tendons are more
compliant and absorb more energy (O’Brien, 2005).

The mechanisms behind stress-relaxation are not completely under-
stood, but stress-relaxation tests on different length scales (on tendon
fascicles, fibres and fibrils) show that stress-relaxation occur at differ-
ent structural levels simultaneously. Fibers sliding relative each other is
believed to be the major contributor to stress-relaxation (Gupta et al.,
2010; Screen, 2008). The proteoglycan bonds in between fibre units at
different levels and their tendency to break are therefore assumed to
be important for the stress-relaxation response. As most of the stress-
relaxation was noted as fibre gliding, these bonds may not be as strong
as those at smaller length-scales (Screen, 2008). Stress-relaxation tests
done in the transverse direction show that relaxation occur also in the
ground substance and that the non-fibrillar matrix thereby also con-
tribute to the viscoelastic behaviour of tendons (Yamamoto et al., 2000).

Creep in tendons is believed to be due to structural rearrangement
and fibre recruitment that occur when tendons are loaded (Gupta et al.,
2010). Tendons exhibit both primary and tertiary (accelerating) creep.
In the primary creep stage, the strain rate is decreased with time until
the tertiary creep begins and the strain rate increases radically. This is
when the stiffness decreases and the tendon finally breaks (Ker, 2007).

Loading and unloading of viscoelastic materials follow different paths,
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forming a loop in the stress-strain curve, see figure 5. The area formed
inside the loop is called hysteresis and represents the energy loss. The
hysteresis is sometimes given as percentage of energy loss between the
loading and unloading curve. In tendons, the hysteresis is usually be-
tween 5-10% and the energy is lost as heat due to internal friction
(Screen, 2008).

Figure 5: Hysteresis

2.2 Constitutive models for soft fibrous tissues

There is a variety of different models that have been used for modelling
biological soft tissues and the choice of model depends on what biological
and mechanical features that are investigated. There are two main types
of models used for soft tissues: the continuum models and the structural
models. In the continuum approach the material models are applied
on tissue level while in the structural models the tissue properties are
determined by the mechanical properties, structures and interactions of
the different components (Lanir, 1979).

2.2.1 Continuum approach

The simplest model is Hooke’s linear elastic model that can be used to
describe isotropic or anisotropic linear materials (Korhonen and Saarakkala,
2011). This model is only valid for small strains and it is often insuf-
ficient when it comes to modelling biological soft tissues as they are
subjected to large deformations.

Another group of materials are the hyperelastic materials with a
non-linear stress-strain relationship appropriate for modelling large de-
formations. There are several different hyperelastic material models,
e.g. the Neo-Hookean material and Moonely-Rivlin (Korhonen and
Saarakkala, 2011). A hyper-elastic formulation was used to model the
human Achilles tendon during running (Anitas and Lucaciu, 2013).
Even if hyperelastic models can handle large deformations, they still
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provide a simplified picture of tendons acting as nonlinear springs with-
out taking the viscoelastic properties into consideration.

To capture the viscoelastic features of tendons (creep, stress relax-
ation and hysteresis), time-dependency needs to be included in the ma-
terial model (Bergström and Boyce, 2001). This can be done by intro-
ducing viscous components, such as dash pots, and combine them with
elastic springs. There are three classic viscoelastic solid material mod-
els; Maxwell, Kelvin-Voigt and the standard linear solid (SLS) model
(Korhonen and Saarakkala, 2011). These can be combined to form more
complex models.

The quasi-linear viscoelastic (QLV) theory was developed by Fung
in the 60’s and it has been used with success for tendons and ligaments
(Screen, 2008). It is based on linear viscoelasticity, where a Boltzmann
integral can be used to describe stress-relaxation. The time-dependent
stress is calculated as a convolution of a relaxation function, E(t), and
strain ε, given in equation (1).

σ(t) =

∫ t

0

E(t− τ)
dε(τ)

dτ
dτ (1)

These models are called phenomenological, as pure mathematical func-
tions are used to describe a certain behaviour. In quasi-linear viscoelas-
ticity the relaxation function is separable and both time and strain
dependent, E(t, ε) = Et(t)g(ε). The QLV model has been criticized
as it predicts the rate of stress-relaxation to be independent of strain
(Provenzano and Lakes, 2001; Davis and De Vita, 2012). Several models
have been proposed to improve this shortcoming, for example by intro-
ducing non-separable relaxation functions (Davis and De Vita, 2012).

An important feature of soft tissues is the high water content. Poroe-
lastic or biphasic models are used to describe a porous solid saturated
with fluid. The basic idea is that the total stress in the tissue is a sum
of the stresses from the solid matrix and from the fluid flow

σtot = σs + σf = σs − pI (2)

where p is the fluid pressure, I the unit tensor and σs is the stresses in
the solid (Korhonen and Saarakkala, 2011). The frictional drag caused
by the fluid flow gives the models a viscoelastic, time-dependent be-
haviour. As a result, the models will predict stress-relaxation if sub-
jected to constant strain (Mak et al., 1987). The friction depends on
the permeability of the solid matrix. For poroelastic models, Darcy’s
law

q = −k∇p (3)

relates the fluid flow q to the permeability k and the pore pressure
gradient∇p. The permeability k can be defined as strain-dependent and
isotropic or transversely isotropic. Apart from the equations describing
the flow, a constitutive model describing the solid matrix is needed. For
biphasic models, the governing equations look slightly different, but the
idea is the same.
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An advantage with these models is that they can be used to de-
scribe fluid flow and fluid velocities, in contrast to the previously de-
scribed viscoelastic models. They are also more accurate in predicting
local stresses, which is interesting when simulating failure and damage
(Freutel et al., 2014).

Biphasic models have been widely used to model articular cartilage
(Mak et al., 1987; Wilson et al., 2004; Julkunen et al., 2008) but the
models have not been frequently used for modelling tendon behaviour.
However, there is one example where stress-relaxation of mouse tail
fascicles was quite successfully modelled with a biphasic, transversely
isotropic model (Yin and Elliott, 2004). The solid matrix was assumed
to be piecewise linear so that strain dependent parameters (elastic mod-
ulus in fibre direction E3 and permeability k) had to be calculated in
each strain increment. The disadvantage with the piecewise linear ap-
proach was that it did not provide globally valid parameters.

2.2.2 Structural approach

Some of the first structural models describing tendons contained a sys-
tem of wavy collagen fibres that were attached to straight elastin fibres
at numerous points. All constituents were assumed to be linear elastic.
The model prediction agreed well with experimental data, but was only
tested in tension (Lanir, 1978). The model was further developed for
modelling skin where the fibre distribution and geometrical structure
were found to be the reason for anisotropy and non-linear behaviour in
the tissue (Lanir, 1979).

One important group of structural models are the fibre-reinforced
models where fibres and ground substance are handled separately. By
splitting the solid matrix into a fibrillar and a non-fibrillar part different
constitutive models can be used for the different components. The stress
in the solid matrix is then given by

σs = σnonfibril + σfibril (4)

Fibre-reinforcement can also be included in the biphasic framework by
combining equations (4) and (2), giving the total stress as

σtot = σnonfibril + σfibril − pI (5)

The main advantage of these models is that they represent all the
main components in soft fibrous tissue (ground substance, collagen fi-
bres and water) so that they can be used to investigate the structure,
function and importance of each of them.

There are just a few structural models developed for tendons (Sverd-
lik and Lanir, 2002; Einat and Lanir, 2009). In these models, collagen
fibres are considered to be the only load-bearing structures and con-
tributions from the matrix and the fluid flow are neglected. So far,
fibre-reinforced structural models have mainly been used to model artic-
ular cartilage (Wilson et al., 2004; Julkunen et al., 2008). The research
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group where this thesis work is carried out has earlier started to im-
plement the model developed by Wilson and Julkunen to tendons in a
simplified unpublished work. In this project, a biphasic fibre-reinforced
structural model is proposed for the Achilles tendon, considering both
fibres, ground substance and fluid flow. It is the first structural model
applied to the Achilles tendon, the largest tendon in the body.

2.2.3 Biphasic fibre-reinforced structural models

A previously published model for articular cartilage consisted of a bipha-
sic, linear elastic solid matrix reinforced with viscoelastic fibres (Wilson
et al., 2004). The fibres consisted of large primary fibres, arranged
in an archade like formation, and secondary smaller fibres randomly
distributed. All collagen fibres were assumed to be one dimensional,
viscoelastic structures that only could carry load in tension (Wilson
et al., 2004). The fibres were represented by unit vectors, ef , that de-
scribed the current direction of the fibres. Since the fibres underwent
large deformations, logarithmic strain was used to calculate the strains
in the fibres

εf = log(λ) (6)

where λ is the fibre stretch, calculated as the ratio between the current
and initial fibre length ef,0

λ =
|ef |
|ef,0|

(7)

A standard linear solid model was used to capture the viscoelastic
features, see figure 6, where a linear spring was used parallel with a
non-linear spring and a dashpot in series (Wilson et al., 2004, 2005b).
Later, exponential functions were used to include a non-linear stress

Figure 6: Schematic figure of the standard linear solid model
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strain relationship in the springs (Wilson et al., 2006). Due to the
large deformations, the stresses were expressed as the first Piola-Kirchoff
stress P

P1 = E1

(
ek1εf − 1

)
for εf > 0 (8)

P1 = 0 for εf ≤ 0

and
P2 = E2

(
ek2εe − 1

)
for εe > 0 (9)

P2 = 0 for εe ≤ 0

where the stress is zero for zero strain, to ensure that the fibres only
carry load in tension. The total fibre stress was

Pf = P1 + P2 (10)

As the first Piola-Kirchoff stress always is calculated with respect to
the reference configuration and the Cauchy stress σf is calculated with
respect to the current configuration the following transformation was
used

σf =
λ

J
Pfefe

T
f (11)

where J is the Jacobian of the deformation tensor F. A complete deriva-
tion of the equations can be found in Wilson et al. (2006).

The main advantage with the exponential formulation was that the
collagen stiffness was strain dependent (Wilson et al., 2006), unlike the
first versions where the collagen stiffness was assumed to be strain-
independent (Wilson et al., 2004).

Even the model for the non-fibrillar part of the matrix was further
developed to include large deformations. The solid matrix was assumed
to be compressible and modelled with a neo-Hookean (hyperelastic)
formulation (Wilson et al., 2005a). The energy function (van Loon
et al., 2003; Krenk, 2009) was

Wnf =
Km

2

(
1

2
(J2 − 1)− ln(J)

)
+

1

2
Gm

(
tr(C)− 3det(C)1/3

)
(12)

where the first part is the compressible part. J is the Jacobian of the
deformation gradient and C the right Cauchy-Green tensor. The bulk
modulus Km is defined as

Km =
Em

3(1− 2νm)
(13)

and the shear modulus Gm is defined as

Gm =
Em

2(1 + νm)
(14)

where Em is Young’s modulus of the matrix and νm is Poisson’s ratio.
The Cauchy stress in the matrix was given by

σnf =
Km

2

(
J − 1

J

)
I +

Gm
J

(
B− J2/3I

)
(15)
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where B is the left Cauchy-Green tensor.
The permeability, k, was assumed to be strain-dependent and was

given by

k = k0

(
1 + e

1 + e0

)Mk

(16)

where k0 is the initial permeability, Mk a positive constant and e and
e0 the current and initial void ratios (Wilson et al., 2004). The void
ratio in a porous medium is defined as the volume ratio between fluid
and solid

e =
nf
ns

(17)

The total water volume fraction, nf , was estimated from the water mass
fraction nf,m (Julkunen et al., 2008) as

nf =
ρsnf,m

1− nf,m + nf,mρs
(18)

where ρs is the assumed solid tissue density.

2.3 Mechanical testing of rat Achilles tendons

To evaluate if this mechanical model can capture the behaviour of
the Achilles tendon, it is important to compare its behaviour to well-
controlled experimental data. This was obtained from collaborators
(Eliasson et al., 2007) from a study where Achilles tendons from rats
were tested under cyclic loading. Two groups from the study are used
in this project. The first data set consists of nine tendons from 16 weeks
old normal rats, forming the control group in the study. These rats had
intact Achilles tendons that were loaded as normal under daily activity.
The second data set is from a group of twelve 10 weeks old rats that
had botulinum toxin injected in their calf muscles to unload the Achilles
tendon through muscle paralysis. This is a common model in rats that
is used for hindlimb unloading. The tendons were harvested and tested
one or six weeks after the injection (Eliasson et al., 2007). Only tendons
from week six are used as references for the computational model.

The tendons were harvested together with the calcaneal bone, figure
1, and kept moist with physiological solution during the entire sample
preparation. The muscles were scraped off the tendon end that was
clamped between sandpaper to avoid sliding. In the other end, the bone
was fixed in a clamp. The mechanical test were realized with a testing
machine (100R, DDL, Eden Praire, MN) that pulled at a constant speed
of 0.1 mm/s. Load control was used to subject the samples to cyclic
loading. The tendons were loaded from 1 to 20 N for 20 cycles.

The three first load cycles from the control group (specimen 1265 -
1277) are showed in figure 7 and from the paralysed group (specimen
1209 - 1247) in figure 8. The results from both groups show great
variability over time and very distinct toe regions. In figure 7 and 8,
two extreme samples are marked with colour and the remaining samples
are found in between.
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Figure 7: Force vs time for the control group, specimen number
1265 - 1277.

Figure 8: Force vs time for the paralysed group, specimen num-
ber 1209 - 1247.

In the study, the unloaded lengths and cross-sectional areas of all
specimens were measured, see Appendix A. Moreover, elastic modulus,
stiffness, peak force, peak stress and hysteresis were measured from the
mechanical testing. The results showed that creep and hysteresis were
significantly decreased in the paralysed group compared to the control
group and that the modulus was increased (Eliasson et al., 2007).
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3 Methods

3.1 Constitutive model for the Achilles tendon

The constitutive model for the Achilles tendon is based on the model
described in section 2.2.3, previously used to model articular cartilage.
The Achilles tendon is assumed to be biphasic and the porous solid
phase is fully saturated with water. The non-fibrillar matrix is modelled
with a compressible and isotropic neo-Hookean material given by the
energy potential W in equation (12). The Cauchy stress is derived from
the energy potential as

σnf =
2

J
F
∂W

∂C
FT (19)

where the full derivation can be found in Appendix B. The collagen
fibres are assumed to run parallel with the long axis all through the
tendon and only primary fibres are considered.

The viscoelastic collagen fibres are modelled with the standard linear
solid (SLS) model pictured in figure 6, where a spring is connected in
parallel to a Maxwell element (a spring and a dash pot connected in
series). Two different versions of the collagen model are derived, first
with linear elastic springs and then for springs with an exponential
stress-strain relationship. E1 and E2 are the spring stiffnesses, where
the subscript 1 corresponds to the spring connected in parallel with the
Maxwell element, see figure 6, η is the damping constant and k1 and
k2 are two additional spring constants for the exponential model. The
total fibre strain is denoted εf , εe is the strain in spring 2 and εν is the
strain in the dash pot.

3.1.1 Standard linear solid model with linear springs

In the linear model, the stress in spring 1 is

σ1 = E1εf (20)

The stress in the Maxwell element equals the stress in spring 2 or the
stress in the dash pot

σ2 = E2εe = ηε̇ν (21)

The fibre strain equals the sum of the strains in spring 2 and the dash
pot

εf = εe + εν (22)

and the total stress of the entire system is the sum of the two parallel
systems

σf = σ1 + σ2 (23)

Inserting equations (20) and (21) into equation (23) results in

σf = E1εf + η (ε̇f − ε̇e) = E1εf + η

(
ε̇f −

σ̇2

E2

)
(24)
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σf = E1εf + η

(
ε̇f −

(σ̇f − E1ε̇f )

E2

)
(25)

σf +
η

E2
σ̇f = E1εf + ηε̇f +

ηE1

E2
ε̇f (26)

Time integration of (26) with an Euler backward step gives

σt+∆t
f +

η

E2

(
σt+∆t
f − σtf

∆t

)
= E1ε

t+∆t
f +

(
η +

ηE1

E2

)(
εt+∆t
f − εtf

∆t

)
(27)

and the total stress can be expressed as

σt+∆t
f =

(
σtf

η
∆tE2

+
(
E1 + η

∆t + ηE1

∆tE2

)
εt+∆t
f −

(
η

∆t + ηE1

∆tE2

)
εtf

)
(

1 + η
∆tE2

)
(28)

3.1.2 Standard linear solid model with exponential springs

The derivation of the equations describing the SLS model with expo-
nential springs follow the same procedure as for the linear model in the
previous section. The exponential stress-strain relationships in equation
(8) and (9) are repeated here

P1 = E1

(
ek1εf − 1

)
(29)

P2 = E2

(
ek2εe − 1

)
= ηε̇ν (30)

The total stress is the sum of the two parallel systems

Pf = P1 + P2 (31)

The following relationships are used below when deriving the stresses

εe =
1

k2
ln

(
P2

E2
+ 1

)
(32)

ε̇e =
Ṗ2

k2(P2 + E2)
(33)

Inserting equation (22) into equation (31) gives

Pf = P1 + P2 = P1 + η (ε̇f − ε̇e) (34)

and with the use of equations (33) and (31) the stress Pf can be ex-
pressed as a function of εf only

Pf = P1 + η

(
ε̇f −

Ṗ2

k2(P2 + E2)

)
= P1 + η

(
ε̇f −

Ṗf − Ṗ1

k2(Pf − P1 + E2)

)
(35)
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Some rearrangements give the quadratic equation

P 2
f +Pf (E2−2P1−ηε̇f )+

η

k2
Ṗf−(P1 + ηε̇f ) (E2−P1)− η

k2
Ṗ1 = 0 (36)

and time integration with an Euler backward step results in(
P t+∆t
f

)2

+ P t+∆t
f

(
E2 − 2P1 − ηε̇f +

η

k2∆t

)
(37)

− η

k2∆t
P tf − (P1 + ηε̇f ) (E2 − P1)− η

k2
Ṗ1 = 0

where

ε̇f =
εt+∆t
f − εtf

∆t
(38)

and
Ṗ1 = E1k1e

k1εf ε̇f (39)

Finally, this can be written as a quadratic equation on standard format(
P t+∆t
f

)2

+ bP t+∆t
f + c = 0 (40)

where
b = E2 − 2P1 − ηε̇f +

η

k2∆t
(41)

c = − η

k2∆t
P tf − (P1 + ηε̇f ) (E2 − P1)− η

k2
Ṗ1 (42)

The total stress is found as the positive root of equation (40)

P t+∆t
f = − b

2
+

1

2

√
b2 − 4c (43)

3.2 Finite element implementation and optimiza-
tion

3.2.1 Average tendon

Due to the large variations in both geometry and load response in both
groups, it was of intrerest to create an average tendon representing
each group. It was not possible to just take the average of all data, due
to the large spreading over time, see figures 7 and 8. A reasonable
average tendon must have the same strain rate as the samples, 0.1
mm/s and the load cycles must vary between 1 and 20 N. To meet
these requirements, the cyclic loading was transformed to the frequency
domain, by interpolating the force values for each cycle over 2π, see
figure 9 and 10. Then the average force could be calculated for each
cycle. To transform the average force vector back to the time domain,
the force in each load cycle was interpolated over the corresponding
average period (time duration for one cycle). The same procedure was
used to take the average of the displacements.
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Figure 9: Force vs time. To trans-
form the force to the frequency
domain each load cycle must be
interpolated over 2π.

Figure 10: Schematic picture of
cyclic loading showing that one
cycle equals 2π.

The average tendons from the control and paralysed group are shown
in figure 11 and 12 respectively. The red lines show the created average
tendons and the grey lines are all the samples from the corresponding
group. The shapes of the average tendon force curves are consistent
with the experimental data and they appear to give a reasonable average
description of each group.

Figure 11: Force-time relationship for the created average ten-
don from the control group (red line) together with all the con-
trol samples (grey lines).

Average unstretched geometries were created by taking the mean
values of the lengths and radii in each group, see Appendix A. The
dimensions for the average tendon from the control group were 8.74
mm by 0.695 mm and the corresponding values for the average tendon
from the paralysed group were 8.51 mm by 0.730 mm.
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Figure 12: Force-time relationship for the created average ten-
don from the paralysed group (red line) together with all the
samples from the paralysed group (grey lines).

3.2.2 Geometry and mesh

Sample specific finite element models were created for all specimens (9
from the control group, 12 from the paralysed group and one average
sample for each group) based on the length and cross-section area of
each sample.

To reduce the computational cost, the cross-sectional area was as-
sumed to be circular and quadratic, axisymmetric, poroelastic elements,
CAX4P, were used. With axisymmetric elements the cylindrical domain
is reduced to a rectangle, with the same height as the cylinder and the
width of the radius. The rectangle is cut out from the cylinder at an
angle that equals zero, see figure 13. All elements and nodes on the
rectangle then represents the circle that is created if the element or
node is rotated 360◦ around the z-axis. In this way, a 3D geometry can
be represented by a 2D domain.

The mesh size was chosen so that there were four elements in each
row to simplify the coding and the average mesh size was 0.18 mm. The
number of elements varied between 180 and 236 elements, depending on
the size of the geometry and a mesh dependency study was carried out
to check that the number of elements was sufficient. An example of a
mesh is shown in figure 13. A complete list of the sample geometries
and meshes is found in Appendix A.

3.2.3 Boundary conditions

A schematic picture of the boundary conditions is shown in figure 13.
The bottom side of the domain was clamped and the nodes on the z-axis
were fixed in the radial direction. The pore pressure was set to zero at
the right edge.

Displacement controlled loading was used in the numerical calcula-
tions, mimicking the experimental data during the first three load cy-
cles. The loading scenario was divided into seven steps, first a preload
and then six steps with loading and unloading corresponding to three
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Figure 13: The rectangular 2D domain is marked with grey in-
side the cylinder (left) and a typical mesh with applied bound-
ary conditions (right).

whole cycles. The loading time for each step was determined by find-
ing maximums and minimums in the time-displacement curve from the
experiments, see figure 14. This was done with the function findpeaks

in Matlab. The time for the preload was calculated based on the dis-
placement at time zero divided by 0.1 mm/s.

Figure 14: Time-displacement curve from mechanical testing
used to determine the time intervals and displacements for each
step.
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3.2.4 Porosity

The tendon dry weight from the experimental study was 19 mg, the
water content 63 mg and the water mass fraction 76 % (Eliasson et al.,
2007). The assumed solid tissue density is calculated as the fraction of
dry weight and volume (Appendix A), ρs = 1.4g/ml. The total water
volume fraction is calculated with equation (18) to be 0.82.

3.2.5 Numerical implementation

The finite element model was implemented in Abaqus (v6.12-4, Dassault
Systems, France). A subroutine for user-defined materials (UMAT) was
used to define the material model of the solid matrix (ground substance
and collagen fibres) described in section 3.1.

To account for the large deformations an updated Lagrangian for-
mulation was used. The updated Lagrangian formulation is appropri-
ate for large deformations as the reference configuration xn is continu-
ously updated instead of keeping the initial configuration x0 as reference
throughout the calculations. With the updated Lagrange scheme, the
deformation gradient is defined as

F =
∂xn+1

∂xn
(44)

where xn is a line element in the last converged iteration n and xn+1

the current deformed state. The equivalence in one dimension is the
stretch

λ =
dxn+1

dxn
(45)

In Abaqus, the updated Lagrangian formulation was specified in the
input file with the keyword NLGEOM (geometric non-linearities). For the
subroutine to be consistent with the functions in Abaqus, the same
updated formulation had to be used in UMAT (user defined material)
for the fibre stretch.

The fibres were represented by direction vectors, where en corre-
sponds to the reference configuration and en+1 the deformed configu-
ration. The fibre stretch was defined as the length ratio between the
direction vectors

λ =
|en+1|
|en|

(46)

The strain increment was calculated as the logarithmic strain from the
stretch

∆ε = ln

(
|en+1|
|en|

)
= ln (λ) (47)

and the total strain in increment n+ 1 was

εn+1 = εn + ∆ε (48)
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In each iteration the fibre direction vectors had to be updated and
the deformed direction vectors were calculated from the deformation
gradient as

en+1 = Fen (49)

3.2.6 Note on permeability

The concept of permeability can easily lead to confusion when turning
to literature, as there are three slightly different parameters that all are
called permeability. The first one, denoted K, is often used in biome-
chanical literature and has the unit [m4/(Ns)]. The second one, k̂, with
unit [m2], is sometimes called intrinsic permeability as it only depends
on the solid matrix and not on the fluid phase. Finally, there is k, also
called hydraulic conductivity, with unit [m/s]. This is the parameter
used in Darcy’s law in ABAQUS and further on the word permeability
refers to this parameter k. The following conversion formula holds

k =
k̂ρg

µ
= Kρg (50)

where µ is the fluid viscosity, ρ the fluid density and g is the standard
gravity.

3.3 Optimization

The mechanical model was fitted to experimental data by optimizing
nine parameters (E1, E2, k1, k2, η, k0,Mk, Em, νm). A schematic picture
of the curve fitting procedure is shown in figure 15. The objective
function, o(p) = min(f) in figure 15, was the minimum of the mean
squared error between experimental and simulated reaction forces, see
equation (51). The curves were locally optimized for each of the six load
steps (the preload was excluded from the optimization) by calculating
the mean squared errors separately. All steps were weighted equally
and averaged, see equation (51) (Heuijerjans, 2012).

f =
1

6

6∑
i=1

1

n i

 ni∑
j=1

((Fmod)j − (Fexp)j)
2

 (51)

Fmod is the simulated reaction force, Fexp is the experimental reaction
force and ni the number of data points in each load step. A non-linear
unconstrained optimization algorithm (fminsearch) in Matlab was used
to minimize (51), starting from an initial guess.

The fitting procedure was iterative and in every iteration step in the
optimization Abaqus was called from within Matlab so that a new fi-
nite element simulation was run with updated material parameters. The
optimization stopped when the convergence criteria, given as numeri-
cal tolerances, were fulfilled or when it reached the maximum number
of 2000 iterations. The tolerances for the optimization algorithm were
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Figure 15: Flow chart of the curve fitting procedure.

specified using the optimset function. Both the tolerance on the ob-
jective function (TolFun) and the step size tolerance (TolX) was set to
10−5.

Non-linear finite element simulations in Abaqus also involve iterative
processes and for the optimization to function the finite element simula-
tions had to converge. The minimum allowed time step in Abaqus was
set to 10−5 seconds. The convergence in Abaqus depended heavily on
the material parameters in the initial guess. Therefore, finite element
simulations were run for different initial parameters beforehand, to find
good starting points for the optimization. All optimizations were run
several times with different initial values to avoid bad fits corresponding
to local minima.

Finally, the curve fits from the optimizations were evaluated by tak-
ing the root mean square (RMS) of the differences between the reaction
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force from the model, Fmod, and the experiment,Fexp, at n data points

RMS =

√∑n
i=1 ((Fmod)i − (Fexp)i)

2

n
(52)

The RMS is a standard method for evaluating curve fits and equation
(52) is a measure of the global fit, as opposed to equation (51) where
the errors are calculated locally.
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4 Results

The suggested model with an exponential stress-strain relationship for
the collagen was able to accurately capture the mechanical behaviour
of rat Achilles tendons subjected to cyclic loading, while the model
with linear spring was found to be inadequate to describe these large
deformations. Figure 16 show one curve fit done with linear springs on
sample 1267. It is clear that the strict exponential behaviour of the load
curve could not be captured with the linear springs. For this reason, the
linear springs were abandoned in favour of the springs with exponential
stress-strain relationship.

Figure 16: Curve fit with SLS model with linear springs.

The nine material parameters in the exponential model was fitted to
21 samples (9 from the control group and 12 from the paralysed group)
and two additional average tendons. The overall fit was good for all
samples with root mean square errors (RMS) between 0.66 and 1.2.
The curve fit for the average tendon from the control group is shown
in figure 17 and the result for the average paralysed tendon is shown in
figure 18. The remaining curve fit plots are found in Appendix C.

Figure 17: Curve fit of the av-
erage tendon from the control
group. RMS = 0.856

Figure 18: Curve fit of the av-
erage tendon from the paralysed
group. RMS = 0.854
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There are a few regions in the loading curves where the model pre-
dictions are inferior, namely the toe-region and the extreme points of
the loading curve. In general, the fit in the toe region was worse for
those samples with a long first load step. The model predicted the force
at the end of the unloading steps to be slightly too high in almost all
samples. There were also overshoots at the force peaks, mainly in the
first and third loading. The average error was 5% at the force peaks
and the worst prediction was approximately 13 % too high.

The material parameters from the optimizations of control tendons
are presented in table 1 and those of paralysed tendons in table 2. The
mean values in the tables are the mean parameter values of all tendons
in each group and SD is the corresponding standard deviation. Tendon1

is the average tendon created based on the control group and Tendon2

is the average tendon created based on the paralysed group.
An analysis of the material parameters with a students t-test showed

that there are no significant differences between the two groups. There
are large variations in the optimized parameters, which reflect the vari-
ability in the data, see figure 11 and 12.

Table 1: Parameters from optimization of tendons from control group.

sample RMS E1 E2 k1 k2 η k0
∗ Mk Em νm

(MPa) (MPa) (MPa s) (mm/s) (MPa)

1265 0.724 0.038 0.145 32.5 35.7 364.3 1.39E-09 0.82 0.75 0.31
1267 0.877 0.143 0.351 38.0 44.3 863.6 1.28E-09 1.27 0.98 0.31
1268 0.963 0.041 0.325 37.3 41.2 417.7 1.05E-07 0.61 1.12 0.37
1269 0.659 0.425 0.327 28.2 41.8 399.8 1.00E-07 0.68 1.09 0.18
1270 0.952 0.052 0.107 40.5 51.8 765.9 1.00E-07 0.67 1.62 0.27
1272 1.166 0.006 0.134 31.8 31.9 368.4 1.94E-10 1.01 1.00 0.30
1274 0.830 0.036 0.540 39.3 34.8 415.3 8.40E-12 1.22 0.93 0.30
1275 1.102 0.009 0.112 32.9 36.3 358.0 9.67E-10 0.99 0.74 0.26
1277 0.865 0.069 0.312 34.6 41.1 481.9 1.00E-07 0.85 1.15 0.27

mean - 0.091 0.261 35.0 39.9 492.8 4.55E-08 0.90 1.04 0.29
SD - 0.13 0.15 4.04 6.00 187.97 5.30E-08 0.24 0.26 0.05

Tendon1 0.856 0.031 0.396 37.0 32.4 482.9 9.37E-10 0.95 1.03 0.29

∗The large spread in the permeability values is due to different initial parameters.
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Table 2: Parameters from optimization of tendons from paralysed group.

sample RMS E1 E2 k1 k2 η k0
∗ Mk Em νm

(MPa) (MPa) (MPa s) (mm/s) (MPa)

1209 0.896 0.100 0.284 43.6 51.8 446.8 5.24E-08 1.28 0.57 0.31
1210 0.743 0.145 0.540 32.2 33.1 493.7 7.20E-08 0.40 1.12 0.19
1211 0.908 0.057 0.206 33.6 38.9 416.1 1.00E-07 0.96 1.01 0.30
1215 1.146 0.080 0.309 29.4 48.2 598.1 1.20E-09 1.04 0.99 0.32
1218 0.826 0.032 0.195 42.4 41.3 581.0 9.59E-08 0.98 0.96 0.30
1219 0.702 0.073 0.720 38.0 28.2 953.4 8.27E-08 1.33 0.57 0.34
1223 1.061 0.038 0.210 37.9 37.7 521.8 1.01E-09 1.01 1.02 0.31
1224 0.856 0.109 0.201 37.6 45.6 999.0 4.94E-08 0.29 0.70 0.03
1241 0.969 0.061 0.255 44.0 45.5 415.7 5.40E-08 1.75 0.60 0.20
1242 0.983 0.081 0.096 39.0 53.1 814.3 5.86E-09 1.39 0.98 0.05
1246 0.871 0.058 0.251 39.5 45.0 737.7 9.88E-08 0.99 1.06 0.27
1247 0.868 0.038 0.326 37.9 37.6 553.5 1.87E-09 0.31 0.71 0.38

mean - 0.073 0.300 37.9 42.2 627.6 5.13E-08 0.98 0.86 0.25
SD - 0.03 0.17 4.44 7.43 202.50 4.00E-08 0.45 0.21 0.11

Tendon2 0.854 0.094 0.305 34.7 40.6 578.0 7.70E-10 0.92 0.93 0.33
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5 Discussion

The proposed fibre-reinforced poroviscoelastic finite element model suc-
cessfully predicted the overall response of the Achilles tendon subjected
to cyclic loading. However, the model slightly over-estimated the reac-
tion force in between the cycles and also sometimes incorrectly predicted
the toe-region. There was a clear trade off between the fits in these ar-
eas, where a well pictured toe-region lead to worse predictions of the
force levels at the dips and vice versa. Sample 1269, see figure 7, did
not have a very pronounced toe-region which probably is the reason for
why the fit is very good even at low forces, see figure 22. The mean
values of the optimized parameters are slightly different from the op-
timized values for the average tendons, see table 1 and 2. This is not
very surprising as there is a large variability among the samples which
is also seen in the optimized parameters.

For viscoelastic materials, loading and unloading does not follow
the same curve (hysteresis) and therefore it is important that a finite
element model can capture this behaviour. In this project, three entire
load cycles were used for the curve-fitting to make sure that both load
types were captured accurately. Three cycles correspond to about 40
seconds and the simulations therefore also give a hint of the model’s
behaviour over time. Ideally, the model should work for a large number
of consecutive cycles but due to computational costs and numerical
instabilities three cycles were considered enough. Also, during the first
load cycles the viscoelastic behaviour changes the most which is another
reason for why the first three load cycles were used.

As the models used for tendons look very different, it is often difficult
to compare material parameters with other studies. However, parts of
the model or single parameters can still be compared. One study that
is based on the Zener model (another name for the Standard Linear
Solid model) and used for the Achilles tendon on rabbits found damping
coefficients of 377.3± 88.7 MPa s (Kahn et al., 2013). Those values are
of the same magnitude as the ones found in this study.

One main difference between this model and Kahn’s model is the
interpretation of the viscous model. In their case, the fibres are rep-
resented by a non-linear spring in parallel with a Maxwell element,
containing one linear spring and one damper, representing the matrix.
Thus, their entire model correspond to the collagen part in this model.
It is not surprising that both models give accurate results, as the col-
lagen fibres carry most of the load in this model, but it illustrates the
difficulties in telling what biological feature each part of the model ac-
tually represents. As several studies show that individual collagen fibres
show viscoelastic behaviour (Gupta et al., 2010; Gautieri et al., 2013)
and transverse loading experiments report the matrix to be about 1000
times weaker than the fibres (Von Forell et al., 2014), it is reasonable
to let the SLS-model represent the collagen fibres only and let a much
weaker hyper-elastic material represent the matrix.

There are several ways used in literature to address the non-linearities
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in the tendon stress-strain curve. One approach is to use different
Young’s modulus for the toe-region and the linear region. This is
avoided in this model, as the exponential springs are able to capture
the entire stress-strain curve with the same material parameters for all
strains. E1 and E2 determine the shape of the curve for low strains.
For example, by looking in table 1 and in figure 7, it is clear that ten-
dons with a long toe-region (sample 1272 and 1275) have lower E1. In
one study, mouse tail fascicles were modelled with the following stress-
strain relationship in the fibre direction: σ = A(eBε − 1) (Yin and
Elliott, 2004). That is very similar to the stress-strain relationship used
for the non-linear springs in this model, σ = E(ekε− 1). They reported
A = 1.06± 1.31 and B = 28± 12.5 (Yin and Elliott, 2004). A is higher
than E1,2 and B is a bit lower than k1,2, but the main feature with a
small coefficient A and a higher exponent B is the same. It is not sur-
prising that one value is higher and the other is lower as the resulting
stiffness is a trade off between A and B.

Another approach is to use several linear Maxwell elements con-
nected in parallel, but that easily leads to a high number of material
parameters. One study modelled the Achilles tendon as a hyper-elastic
material combined with seven Maxwell elements, which resulted in 17
different material parameters that had to be optimized to experimental
data (Tang et al., 2011). However, it is probably wise to try to limit
the number of material parameters, both as the optimization procedure
gets more complicated and as it is more difficult to interpret the physical
meaning of the constants. A draw back for the tendon model presented
in this thesis, when it comes to the physical interpretation of the con-
stants, is the use of springs with exponential stress-strain relationships
that are not so easily visualized compared to linear elastic spring. How-
ever, the use of exponential stress-strain relationships makes it sufficient
with nine constants in total, where each constant is easily related to a
specific part of the model (collagen fibres, matrix or fluid).

Anisotropy is an important property of tendons. In this model, the
anisotropic properties arise from the one dimensional parallel fibres.
They give the tissue strength in the longitudinal direction but not in
the transverse, where only the matrix carry load. Both the matrix and
the permeability are assumed to be isotropic. For the matrix, this sim-
plification is acceptable, as the fibre contribution is highly anisotropic.
For the permeability it is probably a less accurate assumption and a
transversely isotropic permeability would probably be more appropri-
ate. However, the lack of experimental data in combination with the
small influence that permeability has on the current model does not
make it worth while to introduce additional material parameters de-
scribing permeability.

The reason permeability had so little impact on the current model
is most likely due to the fact that the viscous behaviour is already cap-
tured by the collagen model. It is difficult to measure the permeability
of tendons and therefore there is no experimental data to be found.
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Maybe transverse mechanical testing could be used to better optimize
the permeability values, as the viscous impact of the fibres are close to
zero in that direction. The problem with anisotropy still remains, but it
could result in more appropriate values for the permeability coefficient.

The optimization procedure in Matlab was slightly limited by the
numerical instabilities in Abaqus. This meant that all initial parameters
had to be set manually to fairly match the experimental data and that
the optimization algorithm had problems deviating too much from these
values as that lead to divergence in Abaqus and huge residuals. The
resulting material parameters still provide a good fit even though it
cannot be concluded that the solution is a global optimum.

One of the main assumptions made in this model is that the fibres
are longitudinally aligned. This a reasonable assumption for fully pre-
constrained tendons but if that is not the case then there are crimp
formations in the tendon. This model does not model crimp in a struc-
tural way but the behaviour is described by the material parameters. To
improve the model, the fibres could be modelled as wavy in the initial
configuration to mimic the crimps, for example by giving the direction
vectors e0 a random or zig-zag orientation. There are examples in litera-
ture where the structural fibre distribution is considered and the gradual
straightening of the fibres (often called fibre recruitment) is modelled.
The fibre distributions are often modelled with different kinds of prob-
ability functions, see for example (Sverdlik and Lanir, 2002; Einat and
Lanir, 2009). Incorporating the fibre recruitment in this model would
probably improve the ability to predict creep.

6 Conclusions

A new structural finite element model, including collagen fibres, ground
substance and fluid flow, was developed for the Achilles tendon. The
model was successfully fitted to experimental test data from two differ-
ent data sets and no visual differences were found between the sets.

This project shows that it was possible to use a model developed
for articular cartilage loaded in unconfined compression and adapt it
for the Achilles tendon subjected to cyclic tensile loading. This struc-
tural model captures the mechanical behaviour of the components of the
Achilles tendon and indicates that the collagen fibres are the most im-
portant load-bearing structures, which agrees with mechanical testing.
In conclusion, this model can be used to simulate rat Achilles tendons
subjected to cyclic loading and it looks promising for predicting the gen-
eral mechanical behaviour of the Achilles tendon under different loading
conditions.
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7 Future work

The model presented in this master’s thesis can be a starting point
for a more comprehensive model for the Achilles tendon. An improved
description of the collagen fibres is needed to capture the tendon’s creep
behaviour. This could be done by including the gradual straightening
of the fibres when subjected to loading, so called fibre recruitment.

Also, the model needs to be validated against other types of ex-
perimental test data, for example from stress-relaxation tests. Stress-
relaxation data would probably also give more information about the
fluid flow and the permeability in the tendon. Further studies on the
fluid flow is important as the cells, and thereby the mechanobiological
regulation of the tendon, are affected by the flow.

Finally, the greater aim is to apply the model on human Achilles ten-
dons. This structural model, applied on a realistic 3D geometry, would
provide information about both structure and local stresses in the ten-
don that could be a valuable tool for predicting and preventing tendon
rupture and designing appropriate treatments for injured tendons.
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Appendix A - Sample geometries and meshes

In table 3 the lengths and radii are given for all samples. Sample 1209
- 1247 belong to the paralysed group in the study described in section
2.3 and sample 1265 - 1277 belong to the control group.

Table 3: List of all sample sizes and number of elements in each mesh

sample length (mm) radius (mm) number of elements

1209 9.37 0.755 220
1210 7.58 0.744 180
1211 7.63 0.753 182
1215 9.14 0.615 216
1218 8.26 0.717 196
1219 8.58 0.645 200
1223 8.99 0.696 212
1224 10.02 0.671 236
1241 8.20 0.740 192
1242 9.55 0.664 224
1246 8.53 0.635 200
1247 9.07 0.702 212

mean 8.74 0.695 -
SD 0.75 0.05 -

1265 8.24 0.768 184
1267 8.98 0.641 240
1268 9.06 0.779 200
1269 8.14 0.721 192
1270 9.01 0.722 212
1272 8.17 0.781 180
1274 9.23 0.762 216
1275 8.34 0.752 196
1277 7.41 0.644 196

mean 8.51 0.73 -
SD 0.60 0.05 -

The mesh used for the average control tendon contains 200 elements
and the average mesh for the paralysed group contains 204 elements.
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Appendix B - Energy function for non-fibrillar
solid matrix

The solid non-fibrillar matrix is modelled as a Neo-Hookean (hypere-
lastic) material defined by the following energy function

Wnf =
Km

2

(
1

2
(J2 − 1)− ln(J)

)
︸ ︷︷ ︸

W1

+
1

2
Gm

(
tr(C)− 3det(C)1/3

)
︸ ︷︷ ︸

W2

(53)

The Cauchy stress σ is derived from the energy function as

σnf =
2

J
F
∂Wnf

∂C
FT (54)

where J is the Jacobian of the deformation tensor F and C is the right
Cauchy-Green tensor defined as

C = FTF (55)

The following derivatives are useful to calculate (54)

∂J

∂F
= JF−T (56)

∂J

∂C
=
J

2
F−1F−T =

J

2
C−1 (57)

For simplicity, the derivation is carried out separately for W1 and W2,
defined in (53). The derivative of the first part of (53) with respect to
the right Cauchy-Green deformation tensor is

∂W1

∂C
=
∂W1

∂J

∂J

∂C
=

∂

∂J

(
Km

2

[
1

2
(J2 − 1)− ln(J)

])
J

2
C−1 = (58)

=
Km

2

(
1

2
2J − 1

J

)
J

2
C−1 =

Km

4

(
J2 − 1

)
C−1

Inserting (58) into (54) gives

σ1 =
2

J
F
Km

4

(
J2 − 1

)
C−1FT (59)

and with the definition in (55) it simplifies to

σ1 =
Km

2

(
J − 1

J

)
FF−1F−TFT =

Km

2

(
J − 1

J

)
I (60)

where I is the unit tensor.
For the second part the following derivatives of the trace and deter-

minant of the tensor A are useful

∂tr(A)

∂A
= I (61)
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∂det(A)

∂A
= det(A)A−T (62)

The derivative of the second part of (53) with respect to the right
Cauchy-Green tensor is

∂W2

∂C
=
Gm
2

∂

∂C

(
tr(C)− 3det(C)1/3

)
=

Gm
2

(
I− 3

1

3
det(C)−2/3 ∂det(C)

∂C

)
=

=
Gm
2

(
I− 3

1

3
det(C)−2/3det(C)C−T

)
=
Gm
2

I−det(C)1/3C−T (63)

With the following relationship in mind

det(C) = det(FTF) = J2 (64)

the derivative of the second part can be simplified to

∂W2

∂C
=
Gm
2

(
I− (J2)1/3F−1F−T

)
=
Gm
2

(
I− J2/3F−1F−T

)
(65)

Inserting (65) into (54) gives

σ2 =
2

J
F
Gm
2

(
I− J2/3F−1F−T

)
FT =

Gm
J

(
FFT − J2/3I

)
(66)

Equation (66) can be expressed in terms of the left Cauchy-Green de-
formation tensor

B = FFT (67)

so that

σ2 =
Gm
J

(
B− J2/3I

)
(68)

The sum of (60) and (68)give the total non-fibrillar stress

σnf =
Km

2

(
J − 1

J

)
I +

Gm
J

(
B− J2/3I

)
(69)
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Appendix C - Results from optimization

Control group

Figure 19: Specimen 1265 Figure 20: Specimen 1267

Figure 21: Specimen 1268 Figure 22: Specimen 1269
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Figure 23: Specimen 1270 Figure 24: Specimen 1272

Figure 25: Specimen 1274 Figure 26: Specimen 1275
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Figure 27: Specimen 1277
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Paralysed group

Figure 28: Specimen 1209 Figure 29: Specimen 1210

Figure 30: Specimen 1211 Figure 31: Specimen 1215
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Figure 32: Specimen 1218 Figure 33: Specimen 1219

Figure 34: Specimen 1223 Figure 35: Specimen 1224
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Figure 36: Specimen 1241 Figure 37: Specimen 1242

Figure 38: Specimen 1246 Figure 39: Specimen 1247
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