
HIGH DYNAMIC RANGE

IMAGE CONSTRUCTION AND

NOISE REDUCTION USING

DIFFERENTLY EXPOSED

IMAGES

ANTON ÖHRN
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Abstract

This thesis discuss how to use mutual information in di�erently exposed im-
ages to improve noise reduction. It also investigates how one can create an
high dynamic range (HDR) image from multiple di�erently exposed images
taken with a handheld camera while simultaneously cope with the problems
this approach introduces.

The proposed method and workflow in this thesis is based on the non-local
means algorithm that uses both image registration and a intensity transforma-
tion to takes advantage of the mutual information in the di�erent images. It
uses alpha expansion to select contiguous areas for the HDR construction and
image blending to create seamless transitions between the images.

The noise reduction algorithm shows better results with an intensity based
noise level compared to a constant one. The methods used to take advantage
of the mutual information are proven to be inadequate as the result for using
noise reduction in a single image is shown to be just as good. The HDR image
construction using both alpha expansion and image blending works well. For
smaller movements the approach shows good result and even works as an anti-
ghosting algorithm but for larger movements ghosting artifacts are introduced.

Keywords: HDR, HDR construction, Noise reduction, portable device imaging, im-
age analysis.
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Chapter 1

Introduction

1.1 Background
All images taken with a digital camera today contain some kind of noise. Depending on
the hardware used and the light condition in the scenery this noise will be more or less
present. The dominant part of the noise in an image comes from hardware errors which
can be reduced by improving the hardware itself. However, the cost of doing so as well
as the size restriction for smaller devices, such as a smart phone, will inevitably put re-
strictions upon the improvements. These aside it is still impossible to remove all noise
completely on the hardware level. This is due to the nature of light itself which is not that
easily measured. The cause for this is that light can be considered as "packages" of pho-
tons that does not follow a steady stream but are in fact random in their behaviour. This
e�ect is not noticeable for any normal light source as these sends out billions of photons
per second. If one would instead study a source which sends out a very small amount of
photons these fluctuations would be noticed. One must instead rely on di�erent algorithms
in order to reduce the noise and produce an image of good quality.

When it comes to noise reduction in images the state of the art algorithm has been the
same algorithm for a couple of years, namely the Block-Matching and 3D filtering algo-
rithm (BM3D) by K. Dabov et al. [11]. This algorithm will be explained in detail in the
theory chapter 2.

Noise reduction for multiple images is something that is also of interest. One such case is
that of a volume containing multiple images, such as a CT-scan. In this case an algorithm
based upon BM3D is commonly used namely BM4D, [14]. Another multiple images case
is that of a video sequence which has been done in a version of BM4D namely V-BM4D,
[15].

1
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A special case for multiple images is that of a sequence of images with di�erent exposure.
When it comes to same exposure images the mutual information can be used without a
problem, however for high dynamic range (HDR) sequences of multiple images the expo-
sure di�erence can render a normal approach useless. The image does however contain
information that can be used for noise reduction. To take advantage of this information
will require some e�ort and more clever methods. This has been done before by C. Aguer-
rebere et al. [9] which was an insperation for this thesis.

HDR images are images with a higher resolution in intensity space than a standard digital
image. This means that HDR images can more accurately reproduce the scene of which
the photograph was taken. A consequence of this is that one gets more details in both
dark as well as bright areas. These areas would otherwise be completely black (under
exposed) or completely white (over exposed). One way to construct an HDR image is
to take multiple images with di�erent exposure time and then merge them into a single
image. If the images are taken with a non-fixed camera such as a handheld device there
will be movements across the HDR sequence which needs to be accounted for. If there is
also a time di�erence between the images a possibility of ghosting artifacts are introduced.

HDR often gets confused with tone mapping. This comes from the fact that HDR images
are often tone mapped to show the content. Tone mapping is a set of image processing
algorithms that enhances the image in di�erent ways. They alters the content of the image
by for example increasing the intensities of the colors. HDR on the other hand increases
the information in the image by extending the intensities possible. This makes HDR im-
ages impossible to view on a normal monitor as it can not display the intensities that they
contain. In this thesis all intensities witch are outside the boundaries are mapped into the
viewable range to preserve these structures.

A problem when it comes to both noise reduction and HDR image construction is how
to use the di�erent images in a good way. This problem gets even harder when one con-
siders the case of handheld devices such as a smart-phones or digital cameras. For such
devices the images are not stationary but will have di�erences between them. One such
di�erence comes from the movements the photographer might exert the camera to. These
movements must be taken into consideration as the HDR is constructed. One approach
might be to use an image registration algorithm. This will result in potentially smaller
search areas for the noise reduction algorithm as well as making the HDR construction
easier.

The construction of HDR images is another problem which has been looked upon mul-
tiple times. When it comes to a static scene it is something that can be done and the
result is for the most cases good. However when the pictures are taken with a handheld
device they are bound to have, as mentioned before, di�erences between the images from
rotations and movements. Another source of concern is that of moving objects inside the
image sequence such as humans, cars, branches, leaves, etc. these movements can, if not
handled correctly, result in so called ghosting e�ects. Ghosting e�ects are shown in the
final image as areas that becomes blurry.

2
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1.2 Previous Work on the Subject
One of the major inspirations for this thesis project is the paper "Simultaneous HDR im-
age construction and denoising for dynamic scenes", by Cecilia Aguerrebere, Julie Delon,
Yann Gousseau and Pablo Muse. The data used, code as well as the paper can be accessed
at the web page [4]. In the paper it is discussed how HDR construction can be made as well
as denoising. The report simultaneously cops with three problems: irradiance estimation
noise, camera motion (hand-held camera) and multiple objects motion (dynamic scenes).

As for HDR construction there are a lot of papers dealing with it and how to construct
it. For a completely static scene, the camera and the objects in the scene are fixed, there
has been many solutions to this problem. In more recent approaches working with raw
data as well as a known model for the camera, a statistical estimation problem for the
construction based on the maximum likelihood estimation (MLE) is shown to be optimal
[5, 13, 3].

1.3 Aim of the Thesis
The aim of this thesis is to investigate how to use the mutual information that multiple dif-
ferent exposure images contain to improve the noise reduction when producing an HDR
image. The goal is to create an improved image compared to the single image case and to
also compare it to the algorithms used today.

Another goal is to examine how one can create HDR images from images taken with a
handheld device while simultaneously coping with any problems introduced.

1.4 Overview of the Thesis
The thesis start in chapter 2 by introducing the more specific theory needed to understand
the algorithm and general theory related to the problem. In Chapter 3 the Methods and
workflow of the algorithm is introduced and explained. Why a certain algorithm was cho-
sen for a step instead of another is also motivated. In Chapter 4 the results and evaluation of
the result is done. In Chapter 5 conclusions from the results are drawn and improvements
are discussed. Lastly Chapter 6 contains future work to improve the algorithm further.

3
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Chapter 2

Theory

This chapter contains the specific theory needed to understand some of the concepts of
image analysis used in Chapter 3 and 4. The concept of noise, why it exists, were it comes
from and how one can reduce it is stated as well as how to construct HDR images.

2.1 Image Data
Producing high quality pictures with a digital camera is nowadays something everyday
users do not have to think about. However, the amount of e�ort going into the processing
of an image from the sensor to the final image is much more than one might suspect. An
example of an entire image processing pipeline can be seen in Figure 2.1. In this case
shown as a Bayer pattern, the colorful matrix at the top left to the final example image at
the bottom right. An image sensor’s task is capturing light and converting it into electrical
signal. As the image sensor is based upon reading the incoming light one is bound to have
artifacts in the recorded data, and these artifacts are commonly known as noise. The noise
in an unprocessed image comes from many di�erent sources and have several di�erent
characteristics, these will be discussed in more detail in the following sections, [9].

2.2 Noise in Images
Noise in images taken with a digital camera can have several di�erent origins and can
look in many di�erent ways. In this subsection di�erent kind of noise will be described
and in some sense their respective origin will be evaluated. In many cases a common noise
model is a Gaussian distributed noise. This will be a good first approximation but in order
to improve the result one might need to take noise with other distributions into account.
A noisy image as it is from the sensor can be seen in Figure 2.2 and it’s noise reduced
counterpart can be seen in Figure 2.3.

5
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Figure 2.1: Example of a pipeline for a digital camera, from the
sensors Bayer pattern to the final image displayed to the user. [24]

Figure 2.2: Figure showing a noisy image as it is from the CCD.

6
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Figure 2.3: Figure showing a noise reduced image.

2.2.1 Gaussian Noise
Gaussian noise (or Normal distributed noise) is noise having a probability density function
(PDF) equal to that of the Gaussian distribution. In other words the value that the noise
can take follows a Gaussian distribution, which for a gray scale image takes the form of
the following equation

pG(x, µ,�) =
1
�
p

2⇡
e�

(x�µ)2
2�2 , (2.1)

where x is the gray value of the pixel, µ is the expected value and � is the standard devia-
tion, therefore its variance is �2. Gaussian noise in the case of digital images can arise due
to sensor noise caused by one or several of the following, poor illumination, high temper-
ature and electronic circuit noise [6]. A example of Gaussian noise and the corresponding
image histogram can be seen in Figure 2.5. An example of this image without any noise
and its corresponding image histogram can also be seen in 2.4.

2.2.2 Impulse Noise
Impulse noise, also called Salt-and-Pepper noise, is noise that appear as sparsely located
pixels that has an intensity value that deviates a lot from the surrounding. Often seen as
a light pixels (salt) in darker areas, and dark pixels (pepper) in white areas. This type
of noise can be caused by analog-to-digital converter errors, bit errors in transmission or
other type of hardware related errors. If impulse noise is present in an image it is common
that the values of the noise is large compare to the signal strength, [6]. An example of
impulse noise and its corresponding image histogram can be seen in Figure 2.6, here a
noise density d is given which is the approximate number of pixels e�ected by the noise.

7
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Figure 2.4: Noiseless image and its corresponding image his-
togram. Here y-axis contains the number of pixels and x-axis the
value of the pixels (0-255).

Figure 2.5: Figure containing an example of gaussian noise with
expected value µ = 0 and the variance �2 = 3 and its correspond-
ing histogram , y-axis is counted number of pixels with a certain
value that can be read on the x-axis (0-255).

8
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Figure 2.6: Figure containing an example of impulse noise with
noise density d = 0.1, and its corresponding histogram. y-axis is
counted number of pixels with a certain value that can be read on
the x-axis (0-255). Here the axis x-axis has been widen in order
to see the values at the endpoints.

2.2.3 Shot Noise
Shot noise is another type of noise that is of high importance when talking about HDR.
Shot noise exists because of the nature of light itself is random. This randomness is not
something that is easily detected by the naked eye as most light sources emits billions (if
not more) photons each second. The randomness of shot noise makes it closest related to
a Poisson distribution. The Poisson distribution for a discrete random variable X has the
following formula

f (k; �) = Pr(X = k) = �
ke��

k!
, (2.2)

where � is the mean value, � > 0, k are the number of occurrences, k = 0, 1, 2....

2.2.4 Usable Noise
Even though noise is an artifact that almost always is undesirable there are in fact cases
where noise is used to enhance the image. This is of course not in the sense of signal to
noise ratio (SNR) but in the way a human will interpret the image. Noise purposely added
to an image to prevent discretization artifacts is called dither. Noise can also be added to
an image in order to increase the acutance, i.e. the perceived sharpness of the image [20].

9
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2.3 Model for noise
To create a model one can base it of the number of electrons, I , at a specific collection site.

I = T
Z

�

Z

y

Z

x
B(x, y, �)Sr(x, y)q(�)dxdyd�, (2.3)

where T is integration time (in seconds), (x, y) are continuous coordinates on the sensor
plane, B(x, y, �) is the incident spectral irradiance (Watts/unit area), and q(�) is defined
as the ratio of electrons collected per incident light energy for the device as a function of
wavelength �. Sr(x, y) is the spatial response of the collection size. Assuming that the
noise is not wavelength dependent and considering all the noise types that can be present
gives the final model

D = (KI + NDC + NS + NR)A + NQ. (2.4)

The model consists of KI where K is a constant, NDC is the number of electrons due to
dark current which is a small electric current that flows through the device even when no
photons are entering it. NS is the zero mean Poisson shot noise with variance depending
on the number of collected photons KI . NR is static noise from amplifying units inside the
camera, A is the combined gain of the amplifier and the camera circuitry. NQ is a noise
model from quantization process of going from voltage into a digital signal D, [9]. This
model contains multiple sources which depends on each other which makes is unneces-
sarily hard to create a noise reduction algorithm upon. Instead, as introduced in the next
section, a good model does not have to be as complex as shown above.

2.4 Poissonian-Gaussian Noise Model
As suggested by A. Foi et al. in [7], a simple but still fairly accurate model for the noise in
a modern digital camera can be based on a Poissonian part, modeling the photon sensing,
and a Gaussian part, for the remaining stationary disturbances. The reason one chooses
to use both a Gaussian and a Poissonian component comes from the fact that the pixels in
today’s cameras are small and tightly packed to increase the pixel count. This results in
a higher susceptibility to photon noise, i.e. measurement errors on the pixel level. This
source of noise is the single most significant contribution to the overall noise, [7]. Photon
noise varies with the intensity as well, which leaves an approximation out of the question as
one can not make sure there is enough data for any given intensity. The following equations
and assumption upon the data is done in [7], Let us consider the generic signal-dependent
noise observation model of the form

z(x) = y(x) + �(y(x))⇠(x), (2.5)

where x 2 X is the pixel position in the domain X, z : X ! R is the observed (recorded)
signal, y : X ! R is the original (unknown) signal, ⇠ : X ! R is zero-mean independent

10
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random noise with the standard deviation equal to 1, and� : R! R+ is a function of y that
gives the standard deviation of the overall noise component. From E{⇠(x)} = 0 follows
that E{z(x)} = y(x), i.e. the original signal can be defined as the expected value of the
noisy observations. Consequently, one has that std{z(x)} = �(E{z(x)}), i.e. the standard
deviation of the noise is a function, namely �, of the expectation of the noisy signal.
In the modeling, one assumes that the noise term is composed of two mutually independent
parts, a Poissonian signal- dependent component ⌘p and a Gaussian signal-independent
component ⌘g:

�(y(x))⇠(x) = ⌘p(y(x)) + ⌘g(x). (2.6)

In terms of distributions, these two components are characterized as follows,

�(y(x) + ⌘p(y(x))) ⇠ P(�y(x)), ⌘g(x) ⇠ N(0, b),

where � > 0 and b � 0 are real scalars and P and N denote the Poisson and Gaussian
distributions. From the elementary properties of the Poisson distribution, one obtains the
following equation for the mean and variance

E{�(y(x) + ⌘p(y(x)))}) = var{�(y(x) + ⌘p(y(x)))} = �y(x).

Since E{�(y(x) + ⌘p(y(x)))}) = �y(x) + �E{⌘p(y(x))} and �2var{⌘p(y(x))} = �y(x), it
follows that E{⌘p(y(x)))}) = 0 and var{⌘p(y(x)))} = y(x)/�. Thus, the Poissoninan ⌘p has
variance that depends on the value of y(x), var{⌘p(y(x))} = ay(x), where a = ��1. The
Gaussian component ⌘g has instead constant variance equal to b.
Consequently, the overall variance of z in 2.5 has the a�ne form

�2(y(x)) = ay(x) + b, (2.7)

which gives the standard deviation � as the square root

�(y(x)) =
p

ay(x) + b, (2.8)

and, in particular, �(0) =
p

b and �(1) =
p

a + b.

The Poissonian-Gaussian model (2.5 - 2.6) is naturally suited for the raw-data of digi-
tal imaging sensors. The Poissonian component ⌘p models the signal-dependent part of
the errors, which is essentially due to the photon noise, while the Gaussian ⌘g accounts for
the signal-independent errors such as electric and thermal noise. For more information on
the noise model used and the algorithm used to estimate the noise in the images the reader
can look up [7] in the bibliography.

11
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2.5 Exposure
Exposure is the amount of light that hits the sensor, i.e the amount of photons that hits
the sensors per unit area. The exposure is determined by shutter speed (the time in which
one lets the light hits the sensor) and lens aperture (the e�ect of the lens through which
the light travels before it hit the sensor). The exposure is however mostly e�ected by the
luminance of the scene which one tries to capture. This means that if the scene is dark the
exposure will be low and one needs to capture light for a longer time period in order to
achieve the same detail visibility as a well lit scenery.

In the general case one uses the notion of "Exposure Value" or EV to express the di�erence
in exposure. The general equation for this is the following

EV = log2
N2

t
,

where N is the relative aperture (also called the f-number) and t is the exposure time or
shutter speed in seconds. To change the EV of the images in HDR one changes the exposure
time. This is often done in the following way. One takes an ordinary image with standard
settings corresponding to the luminance of the scene. This is referred to as the 0EV image.
Then a set number of images are taken on both sides of the 0EV image, the most common
case are 1 image on each side. This is not a must, one can take multiple images on either
side of the reference one. For the most part the images are taken with the same number of
images on each side of the 0EV image but this can change depending on the light conditions
of the scene. With ±1.0EV is about a factor 2 di�erence of the exposure time, ±2.0EV is
about factor 4 di�erence.

±0.5EV 1
880s 1

1284s 1
1764s

±1.0EV 1
618s 1

1250s 1
2439s

±2.0EV 1
356s 1

1248s 1
4902s

In the table above one can see that the di�erent exposure times correspond to factor men-
tioned above. As for the ±0.5EV case the factor is around 1/3, i.e. 2/3 times the 0EV case
for the �0.5EV and 4/3 times 0EV for the +0.5EV case.

As a part of the algorithm used in this thesis (see Chapter 3 for details on the algorithm),
one wants to map the di�erent intensities to the same intensity in order to use them for
denoising. With too high exposure di�erence this is more or less impossible as too much
of the information is lost. One solution might be to use very low di�erence in exposure say
±0.5EV. The histograms will look much more similar but this will come at the cost of the
dynamic range, i.e. one will not get as great of an improvement in darker and brighter ar-
eas as one wants. In this report a compensation is made by taking all images with ±1.0EV.
Another assumption used is that the number of images are set to 3. For further HDR e�ect
one might consider to change this number to 5 with 0EV,±1.0EV,±2.0EV, this will work
with the same principle, however the computational e�ort will be increased. As of now
the number of images have been fixed to 3.

12
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Figure 2.7: Figure containing the gray version of the 0EV (top),
�1EV (middle) and +1EV (bottom) as well as the corresponding
histogram.

13
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Figure 2.8: Figure containing the gray version of the 0EV (top),
�1EV (middle) and +1EV as well as the corresponding histogram
after the gray level transformation has been done.

14
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2.6 Image Registration
Image registration is the process of finding a transformation that maps di�erent images into
the same coordinate system. The coordinate system is often set to be one of the images
that needs registration. One of the ways you can do this, also the one selected during the
algorithm, is to use image features. The easiest way to illustrate an image registration
using features is by showcasing the work-flow of the algorithm. In Figure 2.10 one can see
the di�erence between two images that one wants to do noise reduction on. But in order
to do so one first need to register, the method of image registration can be seen in 2.10.

2.6.1 The Parallax Error
When using multiple images taken from the same scene the so called parallax error can
arise. The parallax error is the visibility di�erence in a scenery that comes from watching it
from two di�erent viewpoints. An illustration of this phenomenon can be viewed in Figure
2.9. If two di�erent images taken of the same scene but the viewpoint is too di�erent or the
object is very close an image registration might be impossible to perform. In most cases
for this thesis this will not be a problem as both the viewpoint and the "distant background"
usually is stationary. Objects of smaller size will not cause a big problem as one will see.
Larger objects that cover more or less the entire view field that has a larger movement will
make any registration impossible. If the camera center is stationary or if the scene is planar
no parallax error can occur.

Figure 2.9: A simplified illustration of the parallax error. When
viewed from "Viewpoint A", the object appears to be in front of
the blue square. When the viewpoint is changed to "Viewpoint B",
the object appears to have moved in front of the red square, [22].
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Figure 2.10: Image showcasing two images, top left and top right,
that through an a�ne transformation using the featured showed in
the bottom left sub image are registered, bottom right.

16



�.� I���� R�����������

2.6.2 Image Transformation
An image transformation is a function that takes the coordinates of one image, the target,
and maps it to another image, the source, reference frame (coordinate system). This results
in that objects in the both images overlap, the result of such a transformation can be seen
in Figure 2.10. However, the images might have areas that do not overlap even with an
optimal registration. This since part of the image might not even be in the other image due
to moving obejects etc.

The kind of transformation needed to perform to map the target image to the source im-
age depends entirely upon the di�erence between the images. The following are feasible
examples of geometric transformations.

The most simple of transformation is that of a movement in either x, y or a combination
of both. This is called an translation and has the following matrix form,

2
666666664

x0
y0
1

3
777777775 =

2
666666664

1 0 tx
0 1 ty
0 0 1

3
777777775

2
666666664

x
y
1

3
777777775 ,

where x and y are the old coordinates of the target system, tx and ty are the translations
in x and y direction respectively denoted by the subscript. The coordinates are in their
homogeneous form, hence the 1 at the bottom row. This means that the both coordinates
exist in the same plane. A translation preserves the orientation of the image, the image
will in other words not rotate or be scaled in any way.

The second transformation is a so called Euclidean or Rigid transformation. It is the
same as the Translation transformation but with an added rotation resulting in the follow-
ing matrix form, 2
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where ✓ is the angle needed in order to align the images. No lengths are altered by this
transformation.

The third transformation is a so called Similarity transformation, it is the same as the
Euclidean transformation but with an added scaling. This results in that lengths no longer
are preserved but changed according to the scale r, angles are however preserved.
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A�ne transformation preserves parallelism and has the following form
2
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Figure 2.11: Basic set of 2D planar transformations, [19].

The last transformation introduced is a so called Projective transformation and it preserves
straight lines,

�
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2.6.3 Feature-based image registration
The first step of the registration mentioned previously is to find features in both the images.
An image feature can be found in multiple ways, a common way to do this is to search for
edges or corners. This features are then mapped to the most likely corresponding feature
in the other image.

The approach used in this thesis can be seen in Figure 2.10. The features were found using
the MATLAB function detectSURFFeatures and extractFeatures, these are features of
the type SURF(Speeded Up Robust Features), [10]. The process then proceed to map all
the di�erent features, used in this thesis was the MATLAB function matchFeatures. These
features are matched to each other in a most likely correspondence sense using nearest
neighbour ratio, [12]. One problem that can arise in this step is that the mapping also find
features that are very far apart if the features are well matched, such a match can be seen
in Figure 2.10 in the middle right sub image. It is therefore important to set a maximum
distance between the features, the features that exceed this distance can not be used as they
do not correspond to the rest of the features. The features mapped with a larger distance
then the maximum allowed are called outliers, the ones mapped within this distance are
called inliers. The selected inliers can be seen in Figure 2.10 in the bottom left corner.

After the inliers are found the algorithm then finds a transformation matrix that can trans-
fer the images to the same space. This was done using the MATLAB geometric estimation
function estimateGeometricTrans f orm, keeping one of the images stationary and ap-
plying the estimated transform to the other image. This transform is extracted from the
features by estimating values in the image transformation matrix that makes the equation
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add up. The transformation between the images can have di�erent forms but a rotation
and a translation is often the best correction to make, this is as previously stated the a�ne
transformation. If the view-angle is changed between the time the pictures were taken a
projective transformation will add a non-uniform scaling to the transformation matrix and
take care of that distortion as well.

A problem with the feature mapping approach is the importance of well spread features
across the image. If the feature detector fails to find features that cover more or less the
entire image there is a risk that the transformation estimation will be faulty for areas with
unmapped features. In the showcase, Figure 2.10, the features are well spread thus yield-
ing a good transformation which can be seen in the bottom right sub image. The green and
purple parts are parts that di�er in the images, green is in one but not the other and vice
verse for purple. The big colored areas on the edges are areas that is part of the source
image but not in the reference image.

2.7 Bayer Filter
A Bayer filter is a mosaic of color filters placed over the image sensor of a digital cam-
era. By doing so only the intensity of a specific wavelength is measured at each point
of the sensor, see Figure 2.13. This results in gray-color images in the same image which
which can be merged into a single color image. The reason this is beneficial is because one
only needs one sensor for all colors were as one would need multiple sensors if the colors
were to be measured separately. This is the standard way of recording digital color images.

A Bayer pattern is the way the mosaic pattern of the Bayer filter is designed. The most
common Bayer pattern is composed of 3 di�erent colors arranged in a matrix formation.
This can be seen in Figure 2.12. The pattern consists of the upper left 2 by 2 matrix con-
stellation repeated over the entire image sensor. In the general case one has 50% green,
25% blue and 25% red. One reason for using two green channels is that the green color
tends to contain a larger amount of small structures such as leafs or grass, compared to
blue areas that are often larger like for example the sky, and red most likely man made
structures, houses, cars etc. It is therefore helpful to have double the amount of data for
areas more prone to noise. Another reason is that green is in the middle of the visible light
range making it easier to see noise in green areas [17]. This also result in that the human
eye is more sensitive to variation in shades of green as it is more closely correlated with
the perception of light intensity of a scene [18]. The colors in Figure 2.12 are arranged
in a ’BGGR’ pattern. There are however many di�erent kinds of patterns. There are also
di�erent constellations of arrangements as the sensor might not be formed as a square at
all.
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Figure 2.12: Bayer pattern arranged on top of a sensor, [18].

Figure 2.13: Bayer pattern profile showing how the di�erent color
channels are produced [21]
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2.8 Noise Reduction Algorithms
The following sections contain theory of both the non-local means (NLmeans) and the
Block-Matching and 3D Filtering (BM3D) algorithms. These algorithms work upon the
principle of finding similarities in the images using so called block matching which will
also be discussed.

2.8.1 Block Matching
The basis of both BM3D and the non-local means algorithm is to find similarities in the
image. This is done by searching the areas surrounding the current pixel one is looking at.
This method is usually referred to as block matching or patch matching. One would like
to find a 2D neighborhood of a given size that matches the 2D area surrounding the pixel
currently being noise reduced.

To be able to evaluate the similarity between the signal fragments the inverse of a distance
measurement is often used. This results in a high similarity if the distance (the di�erence)
between the signals is small. Various distance measurements can be used, such as the
weighted Euclidean distance used in [1]. Grouping using patch matching is based upon
the assumption that one has a lot of self-similarity in the viewed signal. For the image
case this is often true when viewing anything man-made. This comes from the fact that
humans tends to build straight buildings, roads, furniture, etc. If one has an object, it is
likely that this object and the edges of said object is going to be extended over an area, thus
making many matches possible. Patch matching can be used over the entire image but the
computational cost will increase as one increases the search area.

2.8.2 Non-Local Means
One basic model for image denoising can look as the following one,

v(x) = u(x) + n(x), (2.9)
where v(x) is the observed noisy image, u(x) is the true valued image and n(x) is the noise.
The noise will in most cases consist of several di�erent distributions based on the pixel
value x. It is often single or few pixels that alternate from the overall surrounding that
one wants to get rid of but still keep structures that varies on a pixel to pixel basis. The
denoised value at x is a mean of the values of all pixels whose Gaussian neighborhood
looks like the neighborhood of x. The non-local means algorithm is based upon the pre-
viously mentioned block matching, in the way that one searches for similar blocks in a
surrounding. The similar blocks are then used to reduce noise. This idea is more or less
based on the principle of taking multiple measurements. In this case however, one use
multiple similarities in the same measurement to reduce the noise, [1].

Given a discrete noisy image v = {v(x)|x 2 X}, the estimated value NL[v](x), for a pixel
x, is computed as a weighted average of all the pixels in the image,

NL[v](x) =
X

j2 X
w(x, j)v( j), (2.10)
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Figure 2.14: Scheme of NL-means strategy. Similar pixels neigh-
borhoods give a large weight, w(p, q1) and w(p, q2), while much
di�erent neighborhoods give a small weight, such as w(p, q3), [1].

where the family of weights {w(x, j)} j depends on the similarity between pixel x and j,
and satisfies the conditions 0  w(x, j)  1 and

P
j w(x, j) = 1. The similarity between

two pixels x and j depends on the similarity of the intensity gray level vectors v(Nx) and
v(N j), where Nk denotes a square neighborhood of fixed size and centered at a pixel k.
This similarity is measured as a decreasing function of the weighted Euclidean distance,
kv(Nx)�v(N j)k22,a, where a > 0 is the standard deviation of the Gaussian kernel. The appli-
cation of the Euclidean distance to the noisy neighborhoods raises the following equality

Ekv(Nx) � v(N j)k22,a = ku(Nx) � u(N j)k22,a + 2�2.

This equality shows the robustness of the algorithm since in expectation the Euclidean
distance conserves the order of similarity between pixels.

The pixels with a similar gray level neighborhood to v(Nx) have larger weights on the
average. An example can be seen in 2.14. These weights are defined as,

w(x, j) =
1

Z(x)
e�

kv(Nx )�v(N j )k22,a
h2 ,

where Z(x) is the normalizing constant defined as

Z(x) =
X

j
e�

kv(Nx )�v(N j )k22,a
h2 ,

and the parameter h acts as a degree of filtering. It controls the decay of the exponential
function and therefore the decay of the weights as a function of the Euclidean distances.

22



�.� N���� R�������� A���������

2.8.3 Block-Matching and 3D Filtering algorithm
The Block-matching and 3D filtering algorithm as presented by K. Dovan et al. in [11],
is one of the most widely used denoising algorithms today. It is based on block-matching.
The similarity between signal measurements is computed as the inverse of some distance
measure. Hence, a smaller distance implies higher similarity. In the case of images these
signal fragments are typically 2D neighborhoods. The blocks are then stacked into a 3D
structure which can be processed. This concepts is denominated as grouping. The main
principal of grouping is to enable the use of a higher-dimensional filter of each group,
which takes advantage of any potential similarity between the blocks in the group to esti-
mate the true signal in each of them.

The workflow of the algorithm, which can be seen in Figure 2.15, consists of 2 steps.

step 1: Basic estimate

a) Block-wise estimates: For each block in the noisy image two major operation are
performed

i) Grouping: Search the image for matching blocks with block matching, then
group all the matched blocks into a 3D array, a so called group.

ii) Collaborative hard-thresholding: Apply a 3D transform to the formed group,
attenuate the noise by hard-thresholding of the transform coe�cients, invert
the 3D transform to produce estimates of all grouped blocks, and return the
estimates of the blocks to their original position.

b) Aggregation: Compute the basic estimate of the true-image by weighted averaging
all of the obtained block-wise estimates that are overlapping.

step 2: final estimate: Using the basic estimate a second run of the algorithm is per-
formed. with an added collaborative Wiener filtering.

a) Block-wise estimates: similarly to step 1 the blocks are processed, this time however
using a collaborative Wiener filtering instead of the collaborative hard-thresholding.

i) Grouping: Again using block-matching this time within the basic estimate
to find the locations of the blocks similar to the currently processed one.
Using these locations, form two groups (the stacked 2D blocks), one from
the noisy image and one from the basic estimate.

ii) Collaborative Wiener filtering: Apply a 3D transform on both groups. Per-
form Wiener filtering on the noisy one using the energy spectrum of the
basic estimate as the true (pilot) energy spectrum. Produce estimates of all
grouped blocks by applying the inverse 3D transform on the filtered coe�-
cients and return the estimates of the blocks to their original positions.

b) Aggregation: Compute a final estimate of the true image by aggregating all of the
obtained local estimates using a weighted average.
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The two main reasons for using the second step is firstly that the basic estimates improve the
grouping by block-matching. Secondly, using the basic estimate as a pilot signal for the em-
pirical wiener filter is much more e�ective and accurate than the simple hard-thresholding
of the 3D spectrum of the noisy data. The mathematics behind the BM3D algorithm is not

Figure 2.15: Flowchart of the BM3D denoising algorithm. The
operations surrounded by dashed lines are repeated for each pro-
cessed block (marked with ’R’). [11].

part of this thesis as the whole article would be needed to be included. To read the BM3D
article as a whole see [11].

2.9 High Dynamic Range Construction
The following two sections are dedicated to the HDR construction portion of this thesis.
The use of these algorithms will be clarified and explained in more detail in chapter 3.

2.9.1 Alpha Expansion
↵ � expansion is an algorithm used to categorize or assign a pixel p 2 P to a certain label
f in a finite set L of labels. The way this is done is to create an energy function and
minimizing it by re-assign the labels to the pixels.

E( f ) = Esmooth( f ) + Edata( f ). (2.11)

This will create coherent areas of same labeled pixels but keep pixels that deviate too much
from the surrounding as the energy it takes to convert these would be too large. The used
energy expression usually consist of a Edata part that has the following form

Edata( f ) =
X

p2P
Dp( fp),

where Dp measures how well label fp fits pixel p given the observed data. An example
of Dp( fp) is ( fp � Ip)2, where Ip is the observed intensity of pixel p, and fp is the label
intensity. Normally one works with quadratic smoothing terms

Esmooth( f ) =
X

{p,q}2N
Vp,q( fp, fq),
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Figure 2.16: Figure comparing how the resulting image change
depending on the selection of weight between Edata and Esmooth.
Top right is the input image which, in this case, consists of a mean
RGB of the 0EV picture. Top right is the result if two much em-
phasis is put on the Edata term, the images is put into the labels
but do not change. Bottom left has the opposite problem, to much
weight emphasis on the Esmooth term. The bottom right result is
what can be considered as more balanced.

where N is the set of interacting pairs of pixels. In order for the energy minimization to
converge constraints need to be put on how one picks the smoothing term. In this thesis
the Potts interaction penalty Vp,q( fp, fq) = �( fp 6= fq) · � is used. This interaction will
introduce a penalty for neighboring pixels having di�erent labels.

The two expressions, Edata( f ) and Esmooth( f ) are balanced in order to get the desired result.
If all weight is put towards Edata( f ) the image will keep the structure and only label the
pixels to the appropriate label depending on Dp. On the other hand if all emphasis is put
on the Esmooth( f ) part one will create an image of only the dominant label in accordance to
Vp,q( fp, fq) over the image. An example of how the output changes depending on the term
favored in the weighting can be seen in 2.16. In the article, [23], a detailed description of
how this type of algorithm works and what kind of result it produces.

2.9.2 Image Blending
The concept of image blending is to seamlessly create transitions between images or areas
which have been inpainted into an image. The di�cult task when it comes to blending
is to keep a good balance between smoothing out low-frequency variations and retaining
sharp enough transitions to prevent blurring. There are several di�erent kinds of methods
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used but recently studies have focused on using the image gradient.

In order to be able to use the gradient for multiple images with di�erent intensity the pre-
viously mentioned intensity transformation is performed before the image blending. This
will make sure that the gradients are of the same magnitude and thus preventing lowering
the contrast in areas picked from the low exposure image.

The Image blending algorithm used in this thesis have three main steps. The first step
is to calculate the image gradient for all the images. One then select the gradients accord-
ing to the map selected by the ↵�expansion and integrate the image again. This integration
can however not be done unless the function is a conservative field. In other words

@2I
@x@y

=
@2I
@y@x

,

this is however most likely not the case since the gradients are from multiple images. To be
able to solve this one instead search for a function I whose gradient minimizes the integral

ZZ
F(rI ,G)dxdy, (2.12)

where G is the gradient map from the ↵ � expansion and F(rI ,G) = krI � Gk2 =
⇣
@I
@x �

Gx
⌘2
+

⇣
@I
@y � Gy

⌘2
. According to the variation principle, a function I that minimizes the

integral must satisfy the Euler-Lagrange equation
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� d
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which is a partial di�erential equation in I . Substituting F one obtains the equation
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@2I
@x2 �

@Gx

@x

!
+ 2

 
@2I
@y2 �

@Gy

@y

!
= 0.

Dividing by 2 and rearranging the terms gives the Poisson equation

r2I = div G,

where r2 is the Laplacian operator r2I = @2I
@x2 +

@2I
@y2 and div G is the divergence of the

vector field G, defined as div G = @Gx
@x +

@Gy
@y , [16].

To be able to integrate one also needs boundary conditions. The boundary condition cho-
sen are of Neumann type and are put at the end of the image in the gradient direction. The
boundaries are set so that the image gradient is zero at these edges.
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Chapter 3

Methods and Approach

3.1 Overview
In this chapter a step-by-step description of the algorithm will be given according to the
workflow which can be seen in figure 3.1. The chosen algorithm to deal with each of these
tasks is discussed as well as some alternative algorithms.

Figure 3.1: The steps that the algorithm takes to achieve the HDR
noise reduction.

The first step is the noise reduction. This step is performed early in the algorithm as one
wants to work with as unaltered data as possible. In this thesis one works with multiple
images which in the raw format share some common characteristics that will get modified
if any processing were to be done before the noise reduction step. Another motivation to
do noise reduction early in the algorithm is that if one alters the information in the image
before the noise reduction one will also alter the noise. This would create even more de-
pendencies in the noise, which will in return e�ect the noise reduction.

The second step is to process the images into the final viewable images. This step is
done before the HDR construction as it was found to produce better results for the total
workflow of this thesis.
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The third step consists of merging the images into an HDR image by using the↵�expansion
and image blending algorithms.

To simplify the work the following assumptions were made. The algorithm was fixed
to take 3 input images taken with di�erent exposure time. To be able to both incorporate
the dynamic range but also be able to use the mutual information the input images were
taken with taken with �1EV ,0EV and +1EV .

3.2 Noise Reduction
The first step in the workflow of the proposed algorithm is that of noise reduction. This
step includes several sub-steps, which can be seen in 3.2.

Figure 3.2: The noise reduction step broken down into a step-by-
step overview

To take advantage of the mutual information in the di�erent images it was concluded that
searching through the vicinity of the pixel in each of the di�erently exposed images should
be beneficial. The big concern is that when the intensity transformation is done not only the
wanted information will be mapped but also the noise. This means that the darkest image,
the image taken with the �1EV setting, will have its noise increased by the corresponding
factor k that mapped it to the 0EV image. When searching through the other images for
corresponding patches and more importantly when information is used from these image
this needs to be compensated for. Therefore an alternation to the weight function between
patches were made which will be described in the section 3.2.5.
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3.2.1 Demosaic
As mentioned in the theory section the sensor is arranged in a Bayer pattern. If one wants
to access the four di�erent color channels that lies within the Bayer pattern one can extract
every other element according to the pattern constellation. This can, in the case of an
’grbg’ pattern, be done with the following MATLAB code:

% Bayer p a t t e r n e x t r a c t i o n from t h e p a t t e r n t ype � grbg � .
Green1 = raw ( 1 : 2 : end , 1 : 2 : end ) ;
Red = raw ( 2 : 2 : end , 1 : 2 : end ) ;
Blue = raw ( 1 : 2 : end , 2 : 2 : end ) ;
Green2 = raw ( 2 : 2 : end , 2 : 2 : end ) ;

This approach will reduce the image resolution as the channels are treated separately and
then merged. It can also su�er from artifacts along edges of objects in the image as the
Bayer pattern does not have overlapping channels. The channels are instead slightly shifted
which can result in small color errors were any edges are in the image.

These errors can be prevented by using a more advanced demosaic algorithm such as
Hamilton Adams, [2]. The Hamilton Adams algorithm is based on an an interpolation
method in order to keep the resolution of the raw image. This will however slow down the
computations as more data needs to be handled. This can be prevented by down scaling
the interpolated result from the Hamilton-Adams when doing computations.

In order to leave the noisy data as unaltered as possible one wants to work with the four
di�erent channels from the Bayer pattern individually. The reason four di�erent channels
are used and not three is because the two di�erent green channels in the mosaic pattern
shows a larger di�erence than expected. It was therefore chosen to keep the data unaltered
during this step and only after the noise reduction take a pixel-wise mean to create a single
green channel.

3.2.2 Dynamic Noise Estimation
As intensity varies over the image so does the noise. It would therefore be wrong to assume
a constant noise level over the entire image. As described A. Foi et al. in [7] a noise model
can be based on two di�erent key components. Firstly a Poissonian part that models the
photon sensing, and secondly a Gaussian part which models the remaining constant distur-
bances. The algorithm result in two parameters which corresponds to a linear estimation
of the noise:

�(x) = c · x + m,

where � is the standard deviation for the pixel, c is a positive scaling factor, x is the pixel
value and m is a constant. If applied to all possible pixel values in the image one gets
the corresponding noise variance curve, an example of this can be seen in figure 3.3. The
actual noise level may very well fluctuate around this noise level curve leaving the some
pixels either too much noise reduced or too little noise reduced. The code used is available
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Figure 3.3: example of three di�erent noise estimation levels.
�(y) is the linear estimation and �̃(ỹ) are the clipped values, [7].

at the web page [8] and is based on the article [7]. To implement this kind of method from
scratch was to time demanding and thus the code was used as a step in the algorithm
instead. This approach was chosen as it gave considerable better result then the evaluated
alternatives as one can see in chapter 4.

3.2.3 Image Registration
Image registration, as introduced in the theory section, is the method of aligning images.
This is mainly done in the algorithm to reduce the needed search area for the noise reduc-
tion algorithm, as well as making the HDR construction easier. The reason the images
are not aligned in the first place comes from the fact that they were taken with a handheld
device. This can result in movement in both x and y direction, rotations both clockwise
and counter-clockwise (in case of 3 or more images) and a scaling compared to the chosen
reference image. The scaling is in most cases relatively small compared to the rotation
and global movement so a similarity transformation might be enough. It is however easier
to go with a higher order homography then needed to assure a better registration and thus
estimate a projective transformation instead.

This is done using the MATLAB function estimateGeometricTrans f orm which takes as
input the matched features for both images as well as an string specifying which transfor-
mation should be used. The output of the algorithm are the matched inlier features and a
transformation matrix T according to the input. The transformation matrix T is used in
two di�erent ways in this thesis. The first case is that of noise reduction. For this case
one does not apply the transformation to align the images as that would alter the image
information. Instead one changes the search area according to the transformation for the
corresponding image. The second case is the HDR construction which needs the images
to be registered in order to choose the correct image at the correct place.

One major flaw with the feature estimation of the transformation matrix is that enough
features might not be found and therefore result in a faulty transformation. This will e�ect
the result in the noise reduction part of the algorithm as it will not find the corresponding
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areas to take advantage of the mutual information. More importantly is the HDR construc-
tion part. If the images are not registered the seamless transition between the images will
be lost as a faulty part of the other images will be in-blended. These parts might not even
be producing an HDR image at all as the selection to create it are based on the reference
image. This e�ect will be more clearly seen in the result chapter.

3.2.4 Intensity Transformation
To be able to compare the di�erent images, not only a registration is needed to have over-
lapping images, but one would also like to have the same values in corresponding pixels
across the images. As mentioned in the theory section an intensity transformation can be
done. To do this one could normalize the images with the exposure time as suggested and
also done in [5]. In this thesis another approach was used instead, namely that of mapping
the images channel-wise to the same gray scale by finding a linear transformation of the
form

Itrans = k · Inormal + m, (3.1)

where Inormal is the image one wants to map to, Itrans is the mapped image, k is a global scal-
ing factor and m is a constant. This transform is found by searching for correspondences
between the two images. To find the best match an area is selected in the target image,
another smaller block is then selected from the source image within the area selected from
the target and a convolution is performed in order to find the best match. This procedure
is performed over the entire image resulting in a number of corresponding blocks from
which one can then estimate a transform of the above type.

3.2.5 Non-Local Means 3D
To do noise reduction using multiple di�erently exposed images an algorithm based on
the non-local means is suggested, the non-local means 3D.
Step 1: Patches for each pixel: For each pixel in the image an area corresponding to the

2 · z + 1 neighborhood is selected.
Step 2: Search for corresponding patches: Corresponding patches for the pixel are searched

for within a maximum distance d between the pixels. This is done by transforming the
pixel and the search area according to the transformation matrix found by the image
registration.
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Step 3: Calculating weights: The weight of the pixel to noise reduce the pixel is created
similarly to the normal non-local means but modified to handle multiple images.

w(x, j, n,m) =
1

Z(x)
· k(n,m) · e�

kv(Nx )�v(N j )k22,a
h(x)2 , (3.2)

x is the pixel one is currently noise reducing by comparing the gray level vector v(Nx)
for the patch surrounding it with the gray level vector v(N j) which surrounds the
pixel j.

k(n,m) is the intensity transformation factor between the image n which is the image
one is currently noise reducing and m which is the image one is searching for
similarities in. In the case were n = m) k(n,m) = 1.

Z(x) is the normalizing constant defined as
P

j kne
�
kv(Nx )�v(N j )k22,a

h(x)2

h(x) is the intensity depend noise standard deviation and a is the standard deviation of
the Gaussian kernel.

The weights used consists of a k(n,m) part mapping the image to the same intensity
by keeping one image stationary and scaling the other with a linear factor, a decaying
exponential part which makes the weight small when the di�erence is large between
the patches, a Gaussian kernel to normalize and an intensity based noise level h(x) to
make appropriate noise reduction based on the intensity. The noise reduced pixel is
then calculated as the weighted average over all pixels and their surrounding patches
compared with.

3.3 Image Processing
In this section most of the methods used have a main purpose to step-by-step take the
image from the noise reduced raw type format that the sensor read and make it viewable in
a way that the user expects it to be. These methods are not within the frame of this thesis
but were incorporated to make the result more easily understood and viewable. The main
workflow can be seen in 3.4. All of these steps were made by the help of a guide by Rob
Sumner at the Department of Electrical Engineering, UC Santa Cruz, [18].

3.3.1 Linearizing
To ensure that the full dynamic range of the image is used a linearization can be done.
This is also done to remove any non-linear transformation done by the camera for storage
purposes. To linearize an image is to ensure that the maximum and minimum correspond
to the limits allowed in the current format. For example, if the image is in the double range
one will have a black level of 0 and a white level of 1. This is simple to do with only the
values in the matrix that makes up the image. However a more accurate way of doing it
is to take advantage of the metadata stored in the DNG file. A DNG file is information
about how the image was taken and also contains information helpful in order to process
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Figure 3.4: Step-by-step overview for the processing of an raw
image.

the image. In some cases one can take advantage of a linearization table stored in the DNG
file, if no such table is present one can instead base it as mentioned above on the stored
white level and black level. In MATLAB this can look as follows:

i f isfield (meta_info . SubIFDs{1} , � L i n e a r i z a t i o n T a b l e � )
ltab = meta_info . SubIFDs{1} .LinearizationTable ;
im = ltab (im+1) ;

end
black = meta_info . SubIFDs{1} .BlackLevel ( 1 ) ;
saturation = meta_info . SubIFDs{1} .WhiteLevel ;
lin_im = (im�black ) / ( saturation�black ) ;
lin_im = max ( 0 , min (lin_im , 1 ) ) ;

Here im is the read image file, meta_info is the metadata file read from the DNG data and
lin_im is the linearized image data.

3.3.2 White Balance
To be able to white balance the image one might again take advantage of the metadata.
Since only the ratio of the three colors matters in the final image, one can set one channel
to have the multiplier 1. The MATLAB to perform white balance on the image can look as
follows:

wb_multipliers = (meta_info . AsShotNeutral ) . ^ �1 ;
wb_multipliers = wb_multipliers / wb_multipliers ( 2 ) ;
wblin_im ( : , : , 1 ) = wb_multipliers ( 1 ) . � lin_im ( : , : , 1 ) ;
wblin_im ( : , : , 2 ) = wb_multipliers ( 2 ) . � lin_im ( : , : , 2 ) ;
wblin_im ( : , : , 3 ) = wb_multipliers ( 3 ) . � lin_im ( : , : , 3 ) ;
wblin_im = wblin_im / max (wblin_im ( : ) ) ;

Here AsShotNeutral contains the inverse ratio of the three di�erent color channels when
the image was taken, and lin_im is the previously linearized image. The white balance
multipliers are channel-wise applied to the image.

3.3.3 Color Space Conversion
After the current processing the image is in some sense already viewable and in RGB
colors but not in a general RGB space. The colors are in the camera color space and
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therefore needs to be corrected to a common RGB space to be viewed on a monitor. To
get a more accurate and general color content in the image a color space conversion can
be done. This can be done with two separate matrices, one that maps the image from
current camera color basis to XYZ coordinates and another that maps from XYZ to the
desired sRGB space. The multiplication of the matrices can of course be done first saving
computation and resulting in an matrix with the following map.

AsRGB Cam = (ACam XYZ AXYZ sRGB)�1.

This can however result in that the colors are non-uniformly multiplied which can lead to
a ruined white balance. To solve this issue one can make sure that matrix multiplication
holds true

2
666666664

1
1
1

3
777777775
Cam

=

2
666666664ACam sRGB

3
777777775

2
666666664

1
1
1

3
777777775
sRGB

,

this can be done by normalizing the rows of ACam sRGB.

The matrix ACam XYZ can be found from the metadata at meta_ info.ColorMatrix2. For
the AXYZ sRGB there are many di�erent options that might work depending on how the
picture is going to be viewed, but the most common is

AXYZ sRGB =

2
666666664

0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

3
777777775 .

This one is used in particular because it is adapted to a common viewing environment such
as an computer monitor.

3.3.4 Brightness and Gamma Correction
The image is still a linear image with values relating to what the sensor read. This may not
be in a range appropriate for being displayed, often it is to dark to be able to see anything.
To make the image look better a non-linear transformation may be performed. This can
be done by using a power function on the pixel values, a so called gamma correction. A
common gamma correction is pnon�linear = p�linear where � = 1

2.2 .

The dark areas in the image might still be too dark. This can be dealt with by using a
brightening measure. As a brightening measure one can for example, increase the mean
luminance of the image. A fairly arbitrary scale is to scale it so that the mean luminance
is 1/4 the maximum. This will ensure that darker areas are more viewable but it will also
e�ect the HDR construction.
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3.4 High Dynamic Range Construction

Figure 3.5: HDR construction step-by-step overview

The last step the proposed algorithm is that of HDR image construction. In this case
the steps can be seen in Figure 3.5. Working with the assumption of three image that are
all noise reduced and has been processed according to the previous section the HDR steps
can be performed. The reason that the images are processed before constructing the HDR
image is that one has di�erent white balance for the di�erently exposed images. That is,
one can not apply one white balance but would have to apply it to the areas separately ac-
cording to map produced by the ↵ � expansion algorithm. There were also problems with
the final image becoming gray and not at all as colorful as one would want. This mainly
from the previously mentioned ↵ � expansion but probably also from the image blending
algorithm. It was thus deemed easier to just process the images then and then do the HDR
construction after that.

3.4.1 Alpha Expansion
When it comes to choosing areas suitable to create an HDR image with there are a bun-
dle of approaches that might be considered. The first one that comes to mind might be
to simply set three labels in di�erent gray colors and then assign each pixels to the clos-
est labels. This approach su�er from one major drawback. At each place were one has
a transition between the labels there will be pixels fluctuating between two labels. This
comes from the fact that the boundaries are not exact and if the values are on the edge the
labels will change on a pixel-to-pixel basis. These fluctuations can reduce the result for the
image blending as the gradients will shift more frequently. This can be worked around by
smoothing out these areas, on way to do so is to use the concepts of erosion and dilation.
This will take care of fluctuation of the labels and create a more solid edge between the
areas. One drawback with such a solution is that all areas are of equal importance and it
will thus not take into consideration how big the di�erence in intensity is of neighboring
areas. The chosen approach in this thesis is to pose the problem as a multi-label optimiza-
tion problem and minimize it using the ↵� expansion method. This approach copsed with
the mentioned problem. The higher the intensity di�erence is between two areas the more
energy it takes to convert it into a single one. To be able to perform the ↵ � expansion one
needs to have a gray color map which indicates the starting weights for each pixel. To do
this the mean of the RGB channels of the 0EV image was used.

The result of the ↵ � expansion can be seen in Figure 3.6. Here the gray levels in the
produced image (the right figure) corresponds to the image that should be selected when
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Figure 3.6: The input produced by taking the mean(R,G,B) of the
image to the left, and the corresponding produced image by the
↵ � expansion to the right.

constructing the HDR. The black color is the darkest image, i.e. the �1EV image, the dark
gray color corresponds to the 0EV image and the bright gray corresponds to the +1EV im-
age. The result is on the smooth side which will ensure a small amount of shifts for the
gradients. Another major improvement with a smooth map is that some ghosting e�ects
will be dealt with. This in the sense that areas that have many small structure di�erences
will be selected from the same image. An example of this is grass or leaves which can
have a brighter background that in some areas shines through. A large portion of these
areas will be selected from the same area given a su�ciently high smoothness term.

Larger movements in the image can not be handled with only an ↵ � expansion. This
as the ↵ � expansion will produce an image that has to be su�ciently smooth to handle
any possible ghosting. To ensure no ghosting with large move across the sequence one
would have to increase the smoothness term even more. This would lead to areas covering
almost the entire image and would result in reduced dynamic range in the image. To solve
this another approach, though not implemented, is to detect movement of larger type be-
tween the image and then select the 0EV image in these areas. Even though the produced
image will su�er from lower dynamic range, having severe ghosting artifacts would be
worse.

3.4.2 Image Blending
The created smooth gray color map with anti-ghosting as described in the previous section
is now going to be used in order to create the final HDR image. The map indicates where
each noise reduced image should fit in. To simply check the images pixel-wise choosing
the corresponding image to the map will result in big edges and an image that is hard to
correct. Instead the same image histogram transformation and image registration as before
can be executed thus having the image in same color space and reference system. Now a
pixel-wise selection based on the ↵ � expansion might work but in order to get a seamless
transition between the images the mentioned image gradient approach is used instead.
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The gradient solution is done channel-wise on the three RGB channels for simplicity. A
solution that is depending on the gradients in all the images keeping the ratio can also
be implemented. A problem when it comes to the gradient solution is that integrated im-
age will not be inside the range of the inputs image but can be well outside it. A simple
linearization can however be done to solve this.
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Chapter 4

Result and Evaluation

In this chapter the result of the algorithm will be evaluated. The chapter is divided into
three steps, noise reduction, image processing and HDR construction which will be eval-
uated separately.

4.1 Noise Reduction
In this section the images were processed according to the guidelines in image processing
section, section 3.3. This was done to better represent how the final result would look like.

A common problem when it comes to noise reduction is that fine structures are smoothed.
This is especially true for the non-local means algorithm as it is based on working with
weighted means. In Figure 4.1 one can see the comparison between four di�erent im-
ages. The top image is the noisy input image, the top-middle image is the non-local means
3D algorithm (NLM3D) which uses three di�erently exposed images for denoising, the
bottom-middle one is the non-local means 1D (NLM1D) which uses only the image itself
for denoising and the bottom image is the BM3D algorithm which was extended so that
it searches over all three images to find matches. Worth noting is that BM3D algorithm
took the mean of the noise as input but the other two algorithms work with intensity de-
pending noise reduction. One can see that the structure are kept in all three images, the
BM3D algorithm does however create some artifacts which makes straight lines appear in
the mortar and the bricks in the wall, these lines make the image look unnatural but can
be caused by an over smoothing in this area as it might have a lower noise level compared
to the mean of the image.

An easier noise reduction case is that of larger areas with the same color. In Figure 4.2
one can see a part of the sky as well as the wall of the cathedral in Lund. Again the two
non-local means algorithm performs well and not much noise can be noticed. In this case
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the BM3D leaves noise after the process which indicates that this part contains more noise
than the mean of the image does. This is as expected from the dynamic noise estimation
which for higher intensities expects more noise than for lower.

The overall result is the same for the other cases of noise reduction. The most impor-
tant part when doing noise reduction is to use a intensity based noise model to prevent
over-smoothing in darker areas and a lack of noise reduction in bright ones.

4.1.1 High noise level reduction

If one instead looks upon the case were an unusual amount of noise is present one can
see that the NLM3D algorithm will keep noise as it is interpret as pixel structures. Where
as the NLM1D will smooth these out, an example of this can be seen in Figure 4.3. In
this case the BM3D leaves artifacts in the image and some noise from the presumed faulty
noise level. There is however a problem with using dynamic noise level in the NLM1D
case. This can be seen in Figure 4.4 as a faulty color in the result image. This is not only
true for this part of the image but the color tone of the image changes overall. The BM3D
preforms well with keeping the text structure despite the di�erent noise level.

4.2 Image Processing
In this section a step-by-step result will be shown for the process that the image goes
through after the noise reduction step. Starting by showing an unprocessed image from
the sensor top left corner of the Figure 4.5. In the top right corner the produced image after
and the image has been linearized. The small di�erence between the images indicates that
the image was already more or less linear. The second step is white balance, which can
be seen to the middle left in the figure. Here the green color artifact has been taken away
and the image as a whole look more natural. the image is now correct in the camera space
colors but to be able to view it with an external monitor without loss of colors another step
is needed namely the color conversion. This step can be seen in the middle right of the
figure. Color Conversion takes the image from camera space to the "sRGB" space which is
a common color space for monitors. The image is now processed and can be viewed with
correct white balance and in the right color space. However one can do two additional
process to enhance the image and brighten it, brightness correction to the bottom left and
gamma correction to the bottom right. These two steps can be left out and a tonemapping
can be performed instead to brighten the image. It was however beneficial for the HDR
construction to use gamma corrected images. The brightness correction did not e�ect the
result as a intensity transformation is already performed in the HDR construction steps.
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Figure 4.1: Noise reduction comparison for a high noise image.
Top is the noisy image, upper middle is the NLM3D algorithm,
Bottom middle is the NLM1D algorithm and at the bottom is the
BM3D with a constant noise level.
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Figure 4.2: Noise reduction comparison for a high noise image.
Top is the noisy image, upper middle is the NLM3D algorithm,
Bottom middle is the NLM1D algorithm and at the bottom is the
BM3D with a constant noise level.
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Figure 4.3: Noise reduction comparison for a high noise image.
Top is the noisy image, upper middle is the NLM3D algorithm,
Bottom middle is the NLM1D algorithm and at the bottom is the
BM3D with a constant noise level.
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Figure 4.4: Noise reduction comparison for a high noise image.
Top is the noisy image, upper middle is the NLM3D algorithm,
Bottom middle is the NLM1D algorithm and at the bottom is the
BM3D with a constant noise level
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Figure 4.5: Images showing the workflow according to the image
processing seen in 3.4, Top right shows the raw image from the
sensor, the only processing done is that of noise reduction. Top
right shows the Linearized data, i.e the darkest value is 0 and the
brightest one is 1. Middle left image shows the image after white
balance on each respective channel has been performed. Middle
right image shows the image after the color has been corrected to
the "right" space, i.e more suitable to be viewed from a computer
screen. Bottom left image shows the image after brightness cor-
rection has been made. Bottom right shows the final image after
another correction has been made in form of gamma correction.
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4.3 High Dynamic Range Construction
The result from the HDR image construction algorithm can be seen in the Figures 4.6 -
4.10. Here the 3 di�erently exposed images, the ↵�expansion map and the resulting HDR
image can be seen.

In Figure 4.8 one can see the larger ghosting e�ects from the time di�erence between the
images. This can be dealt with but as it is outside the scope of this thesis these areas were
edited manually in the ↵ � expansion map. The result can be seen in Figure 4.11.

In Figure 4.11, two di�erent kind of ghosting artifacts are shown. The image at the top
left showcase a person whom the ↵ � expansion map did not capture entirely. This results
in areas which are cut o� and only half the person is shown. This can be avoided by either
selecting the entire person to be in the final image or select so that he is not in the image
at all. The former was implemented by editing the ↵� expansion map manually, the result
can be seen in the top right image.

The second type of ghosting artifact can be seen in the middle left image. Here the person
has moved not only between the images but also between the mapped areas in the images
resulting in a cloning artifact. To avoid this one can change the map for one of the areas
and thus removing the clone. Once again the ↵ � expansion map was edited manually
before the HDR construction.

Smaller artifacts are partly taken care of by the ↵ � expansion, but for smaller movements
which cover larger portions of the image one need to select the area from the same image
to avoid ghosting. An example of this are the branches in the top right of the bottom image.
This artifact can be harder to deal with as one has a dark object which one would like to
choose from the +1EV image and a bright object in the background which one would like
to choose from the �1EV image. In top image of Figure 4.12 one can see that the branch
is smoothed out by the ↵ � expansion that instead selects the +1EV for the building and
0EV for the sky in the background. This does however not help as there are two di�erent
images selected in the area which the branch extends. To avoid this ghosting altogether
this entire area is selected from the 0EV image. The resulting image can be seen as the
bottom image in Figure 4.11. The editing of the ↵ � expansion map can be seen in 4.12
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Figure 4.6: The image showcases the selection of the three noise
reduced and processed images to make the HDR image. The
Top left shows the processed 0EV image. Top right shows the
processed �1EV image. Middle left shows the processed +1EV
image. Middle right shows the selection corresponding to the
↵ � expansion map, see 3.4.1. The bottom image shows the fi-
nal HDR image result.
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Figure 4.7: The image showcases the selection of the three noise
reduced and processed images to make the HDR image. The
Top left shows the processed 0EV image. Top right shows the
processed �1EV image. Middle left shows the processed +1EV
image. Middle right shows the selection corresponding to the
↵�expansion map. The bottom image shows the final HDR image
result.
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Figure 4.8: The image showcases the selection of the three noise
reduced and processed images to make the HDR image. The
Top left shows the processed 0EV image. Top right shows the
processed �1EV image. Middle left shows the processed +1EV
image. Middle right shows the selection corresponding to the
↵�expansion map. The bottom image shows the final HDR image
result.
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Figure 4.9: The image showcases the selection of the three noise
reduced and processed images to make the HDR image. The
Top left shows the processed 0EV image. Top right shows the
processed �1EV image. Middle left shows the processed +1EV
image. Middle right shows the selection corresponding to the
↵�expansion map. The bottom image shows the final HDR image
result.
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Figure 4.10: The image showcases the selection of the three noise
reduced and processed images to make the HDR image. The
Top left shows the processed 0EV image. Top right shows the
processed �1EV image. Middle left shows the processed +1EV
image. Middle right shows the selection corresponding to the
↵�expansion map. The bottom image shows the final HDR image
result.
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Figure 4.11: The images showcase some larger ghosting e�ects
and how they look after they have been manually corrected. The
top left and top right images shows how a person has been severely
cut from the image as the ↵ � expansion cut into this area. In the
pair of images in the middle a "cloning" type of artifact can be
seen and the result of removing it. The bottom picture shows the
result after the anti-ghosting has been done.
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Figure 4.12: Image showing a map which introduces ghosting
(top) and an image showing the manually edited map to prevent
these artifacts (red circles) in bottom picture.
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Chapter 5

Conclusions

When it comes to noise reduction the use of mutual information for di�erently exposed
images is hard. Not only are the areas for which the mutual information can be used limited
but it also requires a good intensity transform to be able to benefit from it. The intensity
map used in this thesis is a linear one thus errors can be introduced as it might not be a
linear intensity di�erence between the images, an example of this is areas which are over-
or under-exposed. Another problem with applying a transformation is that it is impossible
to map a single intensity into multiple ones. This from the fact that one does not know
what pixel should get what value. This results in a faulty map with a risk that the map
e�ects the noise. An approach which reduces this risk is to transform the images to a
common intensity level by using information in the DNG file such as the exposure time.
This combined with a dynamic noise estimation on the mapped data would most likely
result in a more consistent noise reduction.

A su�cient approach when it comes to the case of HDR image construction is to noise
reduce the part of each image that is going to be used according to the ↵� expansion map.
This both speeds up the algorithm by using a faster noise reduction method but also only
reduce the noise in used areas. As the least noise is found in the +1EV image so to use that
to a larger extent would probably be beneficial. The most important part when it comes to
noise reduction however is to have an intensity based noise model that can adept and not
over-smooth or leave noise unprocessed.

When it comes to HDR construction the method performs well. It is beneficial as it reduces
smaller ghosting artifacts by using the ↵ � expansion. For larger movements across the
image sequence it performs poorly but in order to handle these types of movements more
advanced methods are needed. One drawback is that the method is dependent on a good
registration or errors will be introduced where the images change. The algorithm can be
made to work completely automatically which makes it beneficial for any implementation
purposes.
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To use HDR construction when it comes to dynamic scenes or with a handheld device
which moves between the images should be avoided if possible as the result will su�er. To
instead have a static scene and stationary camera will create a better result.
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Chapter 6

Future Work

As this thesis covers multiple areas there are many things that can be improved and devel-
oped, both when it comes to the mutual information in the HDR image sequence and also
for the image gradient solution for the HDR construction. As mentioned throughout the
report each step selected is done in none optimized code. The steps were often chosen to
get the work done prior to selecting an optimal solution. Hence most of the implementa-
tions are based around MATLAB implementations. This provides a good base with general
methods that work well, but for the purposes used in this thesis other more problem spe-
cific methods should be investigated.

By starting instead with the ↵ � expansion calculation one could reduce the computa-
tion time of the noise reduction by only reducing the areas which would be used in the
final HDR construction. To take care of ghosting artifacts multiple approaches would be
interesting to investigate. One discussed during the work of the thesis was to make mod-
ification to the ↵ � expansion algorithm so that the weight take care of some ghosting.
Another approach would be to use a movement detection between the images an select ar-
eas were movement is detected from the 0EV image or even select the image which alters
the ↵ � expansion the least to preserve as much dynamic range as possible.

One ideas which was not implemented due to time duration of the thesis was that of a
BM3D algorithm with a similar workflow used in this report. Implementing a BM3D al-
gorithm from scratch and alter it to fit the needs in this report was simply not feasible.

Another future work that would be of interest is to noise reduce with more images and
compare the result. How does it overall compare to multiple images taken of the same
scene and same exposure. Perhaps is another noise reduction algorithm more appropriate
when working with di�erently exposed images compared to the single image case.

Doing a tonemapping in the gradient domain on the merged gradient would be benefi-
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cial as one might still do this on the final image. This would save computational time as a
derivation and integration is removed. It would also be interesting to see how a tonemap-
ping algorithm can take advantage of the ↵ � expansion map to perform an even better
tonemapping on the image.
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