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Abstract  

 

The fluctuations of the price in the energy market affect the households, firms and the 

government intuitions. We can perceive the information of the energy market from daily 

economic news. The entire society is concerned for the events that affect the energy market 

and the changing prices of the energy resources. It is thus meaningful and interesting to study 

the risk of the energy market. This paper provides empirical study for three representative 

energy resources from the year 1997 to 2013 by using the value-at-risk (𝑉𝑎𝑅) estimation. The 

representative energy resources are natural gas, (Brent and WTI) crude oil and propane.  In 

order to generate a serious study and consider both calm periods and volatile periods, the 

sample period is divided into 12 subsamples by using “rolling window” method. The 

investigation is designed to select the most adequate 𝑉𝑎𝑅 estimates by applying three types of 

non-parametric approaches, namely the standard historical simulation (HS), the historical 

simulation with ARMA forecasting (HSAF) and the volatility weighted historical simulation 

(VWHS). In light of my empirical study, value-at-risk estimates at the 95% confidence level 

(𝑉𝑎𝑅95%) generally perform poorly in explaining the risk of the three representative energy 

resources, and value-at-risk estimates at the 99% confidence level (𝑉𝑎𝑅99%) are generally 

capable to explain the risk of the three representative energy resources (except for the 

financial crisis year 2008). Meanwhile, the results show that the HSAF approach and the 

VWHS approach perform slightly better than the standard HS approach, and the 𝑉𝑎𝑅99% 

estimates of VWHS approach can explain the risk occurred in natural gas and Brent crude oil 

for all the subsample periods. More importantly, it seems that 𝑉𝑎𝑅99% estimates of student t-

distributed asymmetric VWHS models are qualified for both calm and volatile periods for 

natural gas and Brent crude oil. 
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1. INTRODUCTION 

 

“Economics is the study of how societies use scarce resources to produce valuable 

commodities and distribute them among different people” (Samuelson & Nordhaus, 1992) 

 

This paper aims to investigate the risk of different commodities in the energy market.  More 

specifically, whether the selected risk quantification methods can really describe the risks 

occur in the energy market. The three representative energy commodities investigated in this 

thesis are natural gas, crude oil and propane, which all belong to the set of scarce resources in 

the modern society.  

 

What is an appropriate measure to the risks occur in the energy market? As we know the 

underlying risk in the energy market may lead to economic depression. Sadorsky (1999) 

stated that oil prices and the volatility of oil price show significant impact on the economy, 

but changes in economic activity show limited impact on oil prices. For instance, the 1970s 

energy crisis made the oil price increase dramatically, and individuals and households 

suffered from unreasonable high oil price
1
. As a result, there is an increasing demand for the 

market and stakeholders (investors, regulators and etc.) to seek for the appropriate “risk 

indicators” to manage the risk. Standard deviation is considered as a primary risk 

measurement in financial studies. However, the application of standard deviation is not 

sufficient in some perspectives for the modern risk management, and there exists an 

alternative risk measurement, namely value-at-risk (𝑉𝑎𝑅). Unlike the standard deviation, 𝑉𝑎𝑅 

gives an intuitive explanation that describes the risk of a loss in units, e.g. how much we will 

lose at most at the certain statistic confidence level. In many cases, 𝑉𝑎𝑅 is a more preferable 

risk measurement than the standard deviation, since 𝑉𝑎𝑅 allows for risk aggregation and takes 

an overall perspective on risk and has better explanations in terms of risk quantification
2
.  

 

Does 𝑉𝑎𝑅 risk measurement always provide reliable estimates in practice? According to the 

concept of the 𝑉𝑎𝑅, we know that there are some potential limitations with this measurement 

                                                           

1
 The oil price has increased from $3 to nearly $12 per barrel from October 1973 to March 1974, see 

section 7 REFERENCES. 
2
 The 𝑉𝑎𝑅 definition and its quantification method will be introduced in section 3.1 Value-at-Risk. 
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and its estimation approaches. The concept of 𝑉𝑎𝑅 can be explained by a critical point of the 

amount that we can lose at most at the certain level. In other words, the loss of “tail-events” 

under a certain probability, but value-at-risk does not make any interpretations about the size 

(amount) of these “tail-events”. For example, investors estimate a portfolio’s 𝑉𝑎𝑅 at 95% 

confidence level to be 10 units (can be any currency), and at the same time there is 4% 

probability that 1 billion units loss can happen and it is not detected. Even the realized 

possibility of this 1 billion units’ loss is smaller than 5%, it does not mean that this extreme 

large loss will not happen for sure, and it will cause a serious crisis if it happens. Hence, the  

𝑉𝑎𝑅 estimate is not always reliable, but it does offer a logic way of interpreting risk.  

 

Do 𝑉𝑎𝑅 estimation approaches provide satisfactory performance in the energy market?  This 

paper contributes an answer to this question by implementing the reality check of the 

performance of 𝑉𝑎𝑅  estimates in the energy market. In fact, value-at-risk is the most 

commonly used risk measurement in the energy market
3
, and the application of value-at-risk 

in the energy market becomes more and more interesting and has drawn a lot of attentions 

since mid-1990s. It is thus meaningful and interesting to check the results of the 𝑉𝑎𝑅 

estimates in the energy market during a certain study period
4
, e.g. can 𝑉𝑎𝑅 estimates quantify 

and explain the risk happened in the energy market. 

 

What are the most adequate 𝑉𝑎𝑅 estimates in the energy market? The 𝑉𝑎𝑅 estimation method 

can be classified into a non-parametric approach and a parametric approach, and the main 

distinction between the two approaches is the assumption of the distribution
5
. The non-

parametric approach relaxes the assumption of a pre-determined loss distribution, instead it is 

based on the empirical loss distribution directly. This paper applies three non-parametric 

approaches, which are the standard historical simulation approach (HS), the historical 

simulation with ARMA forecasting approach (HSAF) and the volatility weighted historical 

                                                           

3
 Based on the Energy Risk’s 2009 Risk Management Survey, there are 85% of participants answered 

that they use 𝑉𝑎𝑅  metrics, and those participants are mainly traders, risk managers and senior 

executives from energy producers and energy trading firms. 
4
 The empirical test period is from January 1997 to December 2013, more information of data 

processing procedure will be introduced in section 4.1. DATA. 
5
 The 𝑉𝑎𝑅  estimates are computed by estimating the important moments of the distributions. For 

example, the first moment 𝜇 and the second moment 𝜎2, and the assumed distribution can be normal 

distribution, student t distribution, lognormal distribution and etc. 
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simulation approach (VWHS). There are several merits to use a non-parametric approach 

instead of the parametric approach in my empirical study. First, it is more persuasive and 

trustful to let the historical data speak for themselves, since no matter which instruments we 

want to investigate we can always let the 𝑉𝑎𝑅 estimation reflect its own historical data series. 

Second, by using the historical loss series it is relatively easier to interpret the 𝑉𝑎𝑅 

estimation, e.g. in light of its definition 𝑉𝑎𝑅 is basically the percentile that we can lose at 

most. Third, to consider the investigated market in this paper, it is not clear how the energy 

commodities distribute during my study period and which specific parametric distribution to 

assume for the data series. Hence, it seems more reasonable to use the non-parametric 

approach, where the distributions for the 𝑉𝑎𝑅 estimates are the distributions of the historical 

loss series. 

 

What are the limitations of the non-parametric 𝑉𝑎𝑅  estimation in the energy market? As 

every coin has two sides, there are certainly some disadvantages with the non-parametric 

estimation. For instance, there is no clear rule of how to select the appropriate sample size, 

because there is a tradeoff between 𝑉𝑎𝑅 estimation and relevant information, e.g. a sufficient 

sample size is needed to estimate 𝑉𝑎𝑅, but this sufficient sample size may contain too much 

irrelevant information. More importantly, even if we can decide the appropriate sample size, it 

is difficult to decide which sample periods to use, since sometimes it is hard to distinguish the 

calm period and volatile period, which will affect the estimation results of 𝑉𝑎𝑅. Meanwhile, 

when 𝑉𝑎𝑅  estimates are based on non-parametric historical simulation process, it usually 

takes time to detect shifts
6
 and reflect new major events, and the energy price is very sensitive 

to the change of the macro-conditions, such as government regulations, market failure, and 

politics and wars etc. Can we alleviate the impact of the drawbacks derived from the non-

parametric 𝑉𝑎𝑅 estimation? This paper abates the effect of the above limitations by using 

subsample analysis technique and the composition of the model selection and 𝑉𝑎𝑅 

backtesting procedure
7
. 

 

The main idea of this thesis is to check the performance of 𝑉𝑎𝑅 estimates for the energy 

commodities by connecting different estimated models with the real world 𝑉𝑎𝑅 estimation 

                                                           

6
 For example, change in the market rates.  

7
 Detailed arguments are given in section 4. EMPIRICAL ANALYSIS. 
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results.  According to my empirical study, I found that the VWHS and the HSAF approaches 

perform slightly better than the standard HS approach. More importantly, I found the 𝑉𝑎𝑅99% 

estimates of the VWHS approach are capable to explain the risk of the natural gas and the 

Brent crude oil for both calm and volatile periods
8
. 

 

The structure of the thesis is set as follows: section 2 provides some previous research related 

to the 𝑉𝑎𝑅 applications. Section 3 explains the concept and the quantification method of 𝑉𝑎𝑅 

and the methodology of three non-parametric estimation processes. Section 4 illustrates the 

data processing procedure and presents the empirical results with detailed analysis. Section 5 

summarizes the essential results of the entire empirical study.  

 

 

2. PREVIOUS RESEARCH  

 

From the 1970s, in order to tackle the problem of increasing risk from the financial firms, 

regulators require these firms to maintain a certain level of capital reverses, e.g. capital ratios. 

The process of setting the appropriate capital requirements raises the need of evaluating the 

potential loss of the investments at the certain statistical level with the certain holding periods, 

and this is the prototype of the value-at-risk or capital-at-risk. The concept 𝑉𝑎𝑅 has been 

widely used and applied from the mid-1990s. In 1994, the Bank for International Settlements 

Fisher report required financial intermediaries release their measures of 𝑉𝑎𝑅  publicly. In 

1995, J.P. Morgan developed the “RiskMetrics” system and used this system to explain the 

term 𝑉𝑎𝑅 and quantify the risk. 

 

This paper is inspired by some previous studies of 𝑉𝑎𝑅 in the energy market. Cabedo and 

Moya (2003) gave an example of employing historical simulation approach to estimate 𝑉𝑎𝑅 

for the oil market, and their sample data are the daily prices of Brent Crude Oil from 1992 to 

1998 (in-sample period). Cabedo and Moya also introduced and developed the historical 

simulation ARMA forecasting (HSAF) approach in the same paper as a comparison to the 

standard HS, and they found that the 𝑉𝑎𝑅  estimates with autoregressive moving average 

                                                           

8
 The notation of 𝑉𝑎𝑅99% indicates the 𝑉𝑎𝑅 estimation at 99% confidence level, which is introduced 

in section 3.1.2. Definition of Value-at-Risk. 
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models are more sensitive to the change of the variance in the oil market than the standard 

HS, and the HSAF approach provides efficient risk quantification for the oil market. 

Afterwards, Sadeghi and Shavvalpour (2005) gave elaborate complement of the HSAF 

methodology and GARCH models by using weekly OPEC prices from January 1997 to 

December 2002
9
, and from their research the HSAF approach provides the most efficient 

results that are consistent with the results from Cabedo and Moya. In fact, many researchers 

have started to improve the HS approach by applying different variance-covariance models 

for many years. For example, Boudoukh, Richardson and Whitelaw (1998) studied 𝑉𝑎𝑅 by 

applying the hybrid approach
10

; after that, Hull and White (1998) proposed the HW approach, 

which suggested a GARCH or exponential weighted moving average (EWMA) model to 

stress the volatility property in historical data. Additionally, Andriosopoulos and Nomikos 

(2013) presented the Monte Carlo simulation and hybrid Monte Carlo with the HS approach 

to model 𝑉𝑎𝑅, and they found that these two methods can explain the 𝑉𝑎𝑅 of energy prices 

efficiently.  

 

Previous researches provide two important evidences for the energy commodities, which will 

also be tested in my empirical study. Firstly, estimated models under fat-tailed distributions 

are usually more suitable to explain risk for the energy commodities; secondly, the risks of the 

energy commodities are affected by the asymmetric market information. For example, Hung, 

Lee and Liu (2008) studied five commodities from the energy market
11

, and their results 

suggest that VaR estimates of heavy-tailed distributions are more suitable for the energy 

commodities. And in light of Giot and Laurent (2003) study results, the skewed Student 

APARCH model is the most preferable for all cases in their study
12

, which are 5-year out-of-

sample commodities research. 

 

                                                           

9
 For instance, Sadeghi and Shavvalpour use Augmented Dickey-Fuller unit roots test instead of the 

Ljung-Box test in the ARMA models testing procedure, and present more details implementation of 

the HSAF procedure and etc. 
10

 It is the combination of historical simulation and RiskMetrics approach, and the improvement of 

hybrid approach is to use the decay factor to assign different weights for the realized returns.  
11

 The five energy commodities are WTI crude oil, Brent crude oil, heating oil #2, propane and New 

York Harbor Conventional Gasoline Regular. 
12

 The investigated commodities in their empirical study are aluminum, copper, nickel, Brent crude oil 

and WTI crude oil daily cash prices and cocoa nearby futures contracts. 
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The empirical study in this paper tries to combine some of methodologies from previous 

research, and aims to generate more accurate results by applying more subsample periods and 

the larger sample size. From the perspective of the non-parametric approaches, my empirical 

study models 𝑉𝑎𝑅 estimates from the standard HS approach, the HSAF approach and the 

VWHS approach. From the distribution perspective, this paper estimates variance-covariance 

models by both normal distribution and student t-distribution. From the asymmetric effect 

modeling perspective, this empirical study applies conditional-variance model from standard 

GARCH to Threshold GARCH (TARCH) and Exponential GARCH (EARCH). From the 

view of the sample of my empirical study, this paper investigates the performance of 12 out-

of-samples 𝑉𝑎𝑅 estimates for each commodity, and each out-of-sample forecasting is based 

on 5 years in-sample period
13

. In a word, this paper aims to provide a relatively complete and 

careful empirical study for the 𝑉𝑎𝑅 estimates of energy commodities. 

 

 

3. METHODOLOGY 

 

3.1. VALUE-AT-RISK 

 

3.1.1. The rise of Value-at-Risk 

 

In 1950s, Harry Markowitz developed the mean-variance model, which assumes rational 

investors prefer higher expected return and lower risk (risk averse). After that, the science of 

risk management has been widely studied and has become an important subfield in the 

finance discipline. Variance (or standard deviation) is an important component of the mean-

variance model, and it describes the level of volatility, e.g. does one portfolio yield higher risk 

than another portfolio. Variance is thus considered as the standard measurements to measure 

the risk of assets.  

 

However, because of the randomness and uncertainty of the stock market, variance tells 

limited information about future returns and losses. For example, a high forecasting volatility 

                                                           

13
 In total, there are 48 out-of-samples forecasting periods, and more details are introduced in section 

4.1. DATA. 
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for tomorrow only infers that the future price maybe unusually high or low, i.e. we cannot 

know the accurate stock price and whether it is a return or loss. In addition, because of 

modern firms’ complex structure, we cannot detect all the potential risks by using variance 

measurement. Hence, it’s necessary to come up with a more efficient and intuitive 

measurement, and 𝑉𝑎𝑅 is considered as an established risk measurement in recent decades. 

The 𝑉𝑎𝑅 can quantify the risk in terms of units, and it offers a way to measure the aggregate 

risks, which takes all the risk factors into account. This means that we can estimate what we 

will lose at most simply based on the loss distribution.  

 

 

3.1.2. Definition of Value-at-Risk 

 

The 𝑉𝑎𝑅 is a risk assessment that quantifies loss either in percentage term or in unit term, the 

value-at-risk equation can be expressed as:  

                                                𝑉𝑎𝑅𝛼 = 𝑚𝑖𝑛 {𝑙: 𝑃𝑟(𝐿 > 𝑙) ≤ 1 − 𝛼}                                       (1) 

 

Based on the above mathematical expression, we define 𝑉𝑎𝑅 as the smallest loss 𝑙 that the 

probability of future assets’ (stocks, bonds, derivatives etc.) loss L larger than this smallest 

loss is equal to or smaller than 1 − α within a holding period, and α is the confidence level 

that can be any value between 0 and 1. In a simpler way of explanation, 𝑉𝑎𝑅 is the value you 

expect to lose at most at a certain percentage, e.g. the next year 𝑉𝑎𝑅95% = 1000 indicates 

that there is 95% probability that investment A is expected to lose at most 1000kr in next 

year. Because of its intuitive explanation, the concept of 𝑉𝑎𝑅 is widely implied in the risk 

management, especially in the financial industry.  

 

For a continuous distribution, α is the quantile of the loss distribution and it usually takes 

value as 90%, 95% or 99%. Note that some textbooks and research papers use profit and 

return distributions when estimate 𝑉𝑎𝑅. This paper uses loss distribution directly, since it is 

more intuitive and easier to interpret. For example, if we create a probability distribution 

function for the daily loss of the stock markets (include mean), positive values will indicate 

positive losses, and negative values will indicate negative losses that equivalent to gains. And 

for a commonly used confidence interval α = 99% , if we assume the underlying loss 

distribution follows the normal distribution, and then the corresponding 𝑉𝑎𝑅99% is 2.326. If 
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α = 1%, and then the 𝑉𝑎𝑅1% equals to -2.326. This is a reasonable result and is consist with 

the definition of the 𝑉𝑎𝑅, e.g. the most we can lose at 99% probability must be higher or 

equal to the most we can lose at 1% probability. 

 

 

3.1.3. Value-at-Risk quantification method 

 

Assume under a continuous loss distribution 𝐷, and loss 𝐿 follows loss distribution 𝐷, with 

mean equal to 𝜇 and variance equal to 𝜎2, and the loss can thus be expressed as 𝐿~𝐷(𝜇, 𝜎). 

𝑃𝑟(𝐿 > 𝑉𝑎𝑅𝛼(𝐿)) = 𝑃𝑟 (
𝐿 −  𝜇

𝜎
>

𝑉𝑎𝑅𝛼(𝐿) −  𝜇

𝜎
)

= 𝑃𝑟 (𝑙 >
𝑉𝑎𝑅𝛼(𝐿) −  𝜇

𝜎
) = 1 − 𝑃𝑟 (𝑙 ≤

𝑉𝑎𝑅𝛼(𝐿) −  𝜇

𝜎
) = 1 − 𝛼   

𝑙𝛼 =
𝑉𝑎𝑅𝛼(𝐿) −  𝜇

𝜎
, 𝑉𝑎𝑅𝛼(𝐿) = 𝜇 + 𝜎𝑙𝛼 

 

From the above mathematical expressions, 𝑙 denotes the standardized stochastic variable𝐿, 

and  𝑙𝛼 denotes the 𝛼-quantile of the loss distribution. The above expression can be expressed 

as 𝑉𝑎𝑅𝛼(𝐿) = 𝜎𝑙𝛼 directly if we exclude the mean
14

. 

 

 

3.2. THE HISTORICAL SIMULATION METHODOLOGY 

 

3.2.1. The Standard Historical Simulation Methodology 

 

Historical simulation, also known as the standard (basic) historical simulation is the 

cornerstone of other non-parametric and semi-parametric 𝑉𝑎𝑅  estimation methods. By 

contrast with the parametric approaches of 𝑉𝑎𝑅 estimation, historical simulation does not rely 

on strict assumptions of the distributions like many other financial models, instead historical 

simulation is based on the historical data (e.g. sample of observed losses) to calculate 𝑉𝑎𝑅. 

With this attractive merit, we let the data speak for themselves based on previous data, which 

                                                           

14
 The excluded form of definition will be applied in the historical simulation with ARMA forecasting 

approach.  
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mimic the losses of all the market events. More importantly, we do not need to know the 

relevant parameters of the distribution. 

 

In light of the introduction above, historical simulation is a method that simply uses historical 

data to forecast 𝑉𝑎𝑅  at the certain statistical level. One of the important issues for the 

standard historical simulation approach is to assign equal weights to the historical data, and 

loss distributions are assumed to be independently and identically distributed. By using this 

standard historical simulation approach, the 𝑉𝑎𝑅  estimates are just the percentile of the 

empirical loss distribution. We could implement the 𝑉𝑎𝑅 estimation and backtesting process 

of the standard HS approach by using software MS Excel
15

. For instance, we obtain the first 

out-of-sample 𝑉𝑎𝑅 estimate by using the PERCENTILE() formula in Excel, and the array 

within the parentheses is the first in-sample period data and the percentile applied in this 

paper is 95% and 99%. After obtaining the first out-of-sample estimation, we can then apply 

the rolling window method to compute the rest of the out-of-sample 𝑉𝑎𝑅  estimates. It is 

worth to briefly introduce the process of deciding the in-sample size given the total sample 

size and the confidence level. Assume we have the sample size 𝑁 and the confidence level 𝛼, 

based on the definition of 𝑉𝑎𝑅 from the equation (1), we expect to find 𝑁(1 −  𝛼) number of 

losses that are larger than 𝑉𝑎𝑅𝛼(𝐿), and therefore 𝑉𝑎𝑅𝛼(𝐿) is the 𝑁(1 −  𝛼) + 1 largest loss. 

And no matter 𝑁(1 −  𝛼) is an integer or not, we can always use the definition 𝑃𝑟(𝐿 > 𝑙) ≤

1 −  𝛼 to find the correct 𝑉𝑎𝑅 at the confidence level 𝛼. This paper divides the total sample 

into several subsamples to increase the precision of the empirical test, and the notation of 

subsample size is n (in contrast to the notation of total sample size N)
16

. 

 

 

3.2.2. The Historical Simulation with ARMA forecasting (HSAF) Methodology 

 

Cabedo and Moya (2003) suggested that by embedding the time series model in the historical 

simulation we can generate more accurate estimations of 𝑉𝑎𝑅 , and they introduced the 

historical simulation ARMA forecasting approach that is derived from the historical 

simulation. After Cabedo and Moya (2003) proposed the HSAF approach, Sadeghi and 

                                                           

15
 The backtesting process is introduced in section 3.4. Backtesting. 

16
 More information about sample data will be introduced in section 4.1. DATA. 
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Shavvalpour (2005) made more detailed explanation of the HSAF model. The HSAF model in 

this paper has made minor adjustments in the method implementation procedure
17

. Basically, 

the HSAF approach in this paper consists of several steps and these steps can be classified 

into two parts, which are ARMA generating process and 𝑉𝑎𝑅 estimation process. 

 

As the HSAF approach is the combination of standard historical simulation method and 

ARMA process, it is meaningful to briefly introduce the autoregressive moving-average 

model (ARMA) before we introduce the HSAF approach. The general ARMA(𝑝, 𝑞) process 

can be expressed as: 

𝑦𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1 + 𝛽2𝜀𝑡−2 + ⋯ + 𝛽𝑞𝜀𝑡−𝑞 , or in a more 

compact way: 

                                                   𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖𝜀𝑡−𝑖

𝑞
𝑖=0                                     (2) 

 

The above equation includes three components, which are the intercept 𝛼0 , the sum of 

autoregressive part 𝑦𝑡−𝑖  and the sum of the moving average of error terms 𝜀𝑡−𝑖 . The 

interpretation of the expression is simply the current value 𝑦𝑡 depends on its own lagged value 

and the moving average of current and previous shocks. The notation 𝑝 is the number of lags 

contains in the model, and 𝑞 indicates the number of pervious periods’ shocks that affects 𝑦𝑡, 

and 𝛽0 can take the normalized value 1.   

 

Again, HSAF method stands for the historical simulation with ARMA forecasting, thus our 

primary task is to find the most appropriate ARMA model by applying BOX-JENKINS 

model selection criteria. After that I use the selected model to rescale the loss series and then 

apply historical simulation technique to estimate 𝑉𝑎𝑅. 

 

First, we need to test the stationarity of the data series, since the non-stationary process might 

lead to spurious regression
18

, which make the estimated models meaningless. In order to 

check the stationarity, we need to apply the unit roots testing method. There are four loss 

series tested at this stage, which are natural gas, Brent crude oil and WTI crude oil and 

propane. The common used method of unit roots test is the Augmented Dickey Fuller test, and 

                                                           

17
 The adjustments are introduced in the later part of this section. 

18
 For example, a spurious regression may yield unreliable high 𝑅2 and t-statistics, even the model has 

no economic meaning. 
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in order to strengthen the power of the test, this paper selects more rigorous unit roots testing 

approach which was suggested by Sims, Stock and Watson (1990). This unit roots testing 

approach helps to detect the potential deterministic regressors, which enhance the power of 

the simple Augmented Dickey Fuller test. The unit roots testing in this paper can thus test 

both difference stationarity and trend stationarity. If the results indicate stationarity we can 

then continue to test the autocorrelation of the data series; and if the data series is non-

stationary, we can take the difference of the series until they become stationary series I(0).  

 

Next step is to select the most appropriate ARMA model, which includes the case of no 

autocorrelation. As mentioned above Box-Jenkins model selection criterion is the essence of 

this part, and the ARMA estimation process employs the three-stage model selection method 

(Box and Jenkins, 1976), which is identification stage, estimation stage and diagnostic 

checking stage. 

 

To have an overall inspection about the data series, we need to go through the identification 

stage. And in order to identify the basic condition of the series, we can plot the data series and 

draw the autocorrelation function (ACF) and partial autocorrelation function (PACF). These 

will give us a general idea of whether it includes a deterministic trend and outliers etc.; and by 

comparing the ACF and PACF from Ljung-Boxtest statistic, we can obtain the rough 

information of the possible ARMA process. If there is no autocorrelation then the HSAF 

approach is equivalent to the standard HS approach.  

 

In the estimation stage, we can derive the estimated ARMA process by estimating the 

coefficients of each model. In light of the Box-Jenkins model selection criteria, we need to 

select the most parsimonious model. For instance, the most parsimonious model should 

satisfy some desirable conditions simultaneously: high value of goodness-of-fit and low 

Akaike’s information Criterion (AIC) (Akaike, 1973) value or Schwarz Bayesian Information 

Criterion (BIC) (Schwarz, 1978) value, and the model match the trend found in ACF and 

PACF. Note that, the sample size in my empirical test is considered to be large, and even for 

subsamples
19

. In this case, the Schwarz Bayesian Information Criterion (BIC) punish 

                                                           

19
 As mentioned in section 4.1. Data, each subsample contains approximately 260 observations. 
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parameters more seriously than the Akaike’s information Criterion (AIC), and BIC is a more 

preferable reference in the empirical test as it is more likely to select the correct model.   

 

After generating the ARMA model, we can test the residuals of the selected model, and the 

residuals should follow the white noise process. The detection of the serial correlation can be 

applied by using the Ljung-Box portmanteau test statistic (Q-statistic), and 𝑄𝑘 =

𝑇(𝑇 + 2) ∑  (
1

𝑇−𝑘
𝑟𝑘

2)𝐾
𝑘=1  follows the chi square distribution. If there exists no residual 

autocorrelation the selected ARMA model passes the diagnostic test, otherwise the suggested 

model is rejected. 

 

The second part is to use the historical simulation approach to estimate 𝑉𝑎𝑅 based on the 

selected ARMA model. After estimating the appropriate ARMA process for different 

subsample periods for all energy commodities, I need to rescale the loss distributions of the 

energy resources, and then estimate 𝑉𝑎𝑅 based on rescaled loss distributions. It is worth to 

notice that the rescaling process of the HSAF approach is not the same with the rescaling 

process with VWHS introduced in the section 3.3.4. For example, for AR(1) process I can 

first obtain the estimated losses by using the estimated ARMA models, and then compute 

residuals by using realized loss subtract the estimated loss. After that I compute the percentile 

of the residual distribution at the 95% and 99% level, and then I add the estimated loss with 

the 95% and 99% residual percentile respectively. The summations are thus the estimated 

𝑉𝑎𝑅  at the 95% and 99% confidence level. For MA(1) process, I need to generate the 

estimated losses to calculate the corresponding residuals that is the same with the AR(1) 

process, and the difference here is to calculate the unexpected losses for the last period instead 

of using last period loss directly, and it can be computed by 𝜀𝑡−1 = 𝑙𝑡−1 − 𝑙,̅ 𝑙 ̅is the average 

loss of the subsample. After we get the residuals of MA(1), the 𝑉𝑎𝑅 estimation method is the 

same with AR(1) process. For ARMA(1,1) process, the rescaling method is merely the 

combination of AR(1) and MA(1).  
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3.3. THE WEIGHTED HISTORICAL SIMULATION METHODOLOGY 

 

3.3.1. The Volatility Weighted Historical Simulation-ARCH/GARCH Methodology 

 

As Pritsker (2003) mentioned, age weighed historical simulation based 𝑉𝑎𝑅 estimates are not 

sufficient to reflect the changeable underlying risk in the financial market, which makes it 

necessary to derive time related models to estimate 𝑉𝑎𝑅, such as ARCH and its relevant 

variance models. In the stock market, the variance of data series (such as stock returns) is not 

constant over time, and it is frequently seen that the current period is more likely to show 

high/low volatilities, if its previous periods show high/low volatilities. In 1982, Engle first 

proposed the concept of autoregressive conditional heteroskedasticity (ARCH) model, which 

explains this volatility clustering phenomenon.  

 

As the energy market is affected by market information and shocks, it is natural to suspect 

that the price in the energy market also exhibits volatility clustering phenomenon. To 

elaborate the ARCH model, the essence of this model is to relax the constant variance 

assumption of the white noise process and allows the error term to be conditional on the 

previous error term, which means the volatility of the current shock depends on the volatility 

of previous realized shocks. The ARCH(1) model can be shown as εt = vt√α0 + α1εt−1
2 , 

where vt  should satisfy for certain assumptions and limitations. For example, vt  follows a 

white noise process with variance σvt
= 1 , and vt  and εt−1  are independent, and the 

restriction for lagged parameter 0 ≤ α1 < 1  to be stationary, α0  should be positive. The 

expression of ARCH(1) model is shown as
20

: 

ht =  E[εt
2|εt−1, εt−2, εt−3 … ] = α0 + α1εt−1

2                                        (4a) 

 

Where we denote ht as the conditional variance at time 𝑡, and the more general ARCH(p) 

model can be simply expressed as two following ways: 

           εt = vt√α0 + α1εt−1
2 + α2εt−2

2 + α3εt−3
2 + ⋯ + αpεt−p

2                       (4b) 

           ht = α0 + α1εt−1
2 + α2εt−2

2 + α3εt−3
2 + ⋯ + αpεt−p

2                     (4c) 

 

                                                           

20
 The brief derivation of ARCH(1) model is given in APPENDIX 6.5. 
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In light of the ARCH process, Bollerslev (1986) proposed the generalized autoregressive 

conditional heteroskedasticity (GARCH) process to capture the volatility dynamics. The 

GARCH model suggests that the variance of a shock in the current period not only depends 

on the volatility of previous realized shocks but also depends on the previous conditional 

variance of shocks. The standard GARCH(1,1) model can be expressed as ht = α0 +

α1εt−1
2 + β1ht−1  with εt = vt√ht , which is similar to the ARMA process, the conditional 

variance ht depends on both autoregressive process and moving average process. For a more 

general GARCH (p, q) model can then be expressed as:  

      ht = α0 + α1εt−1
2 + ⋯ + αpεt−p

2 + β1ht−1 + ⋯ + βqht−q  𝑤𝑖𝑡ℎ  εt = vt√ht               (5) 

 

Notice that there is an alternative approach that can take the volatility clustering into account, 

which is the exponentially weighted moving average (EWMA). And EWMA can be 

expressed as a special case of GARCH(1,1) when there is a reasonable large observing 

periods in the sample
21

. 

 

 

3.3.2. The Volatility Weighted Historical Simulation – TARCH Methodology 

 

It is not hard to understand nearly all the markets are affected by the information released 

from their market, the question is how the markets react to this information, and do they react 

similarly to positive and negative shocks? Zakoian (1994) provided the evidence that 

volatility of stock returns react differently to positive and negative shocks by using the 

TARCH model, which proved an asymmetry property in the stock market. Does the energy 

market also react asymmetrically when facing positive and negative shocks? In order to detect 

the asymmetry in the energy market, we need to introduce the TARCH model. 

 

The TARCH stands for Threshold-ARCH model, this model is based on the essence that 

shocks greater than the threshold have different effects than shocks below the threshold. The 

word “threshold” is derived from the leverage effect, as the market is affected by both good 

and bad news, the threshold point is the point where the market is neither affected by good 

                                                           

21
 In that case, EWMA can be expressed as ht = (1 − λ)εt−1

2 + λht−1, which is equivalent to a 

GARCH(1,1) model with α0 = 0, α1 = 1 − λ and β1 = λ . 
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nor bad news. Leverage effect states a phenomenon that volatilities after bad information 

increase more than volatilities following good information. And the TARCH(1,1) model can 

be expressed as  

                                           ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝜆1𝑑𝑡−1𝜀𝑡−1

2 + 𝛽1ℎ𝑡−1                                   (6) 

 

Here, a dummy variable 𝑑𝑡−1 = {
1 𝑖𝑓 𝜀𝑡−1 < 0
0 𝑖𝑓 𝜀𝑡−1 ≥ 0

 is included. From the equation (6) we can see 

𝜀𝑡−1 = 0 is a threshold that partition two different types of shocks. The effect is 𝛼1 + 𝜆1 when 

𝜀𝑡−1 is negative, and the effect is 𝛼1 when 𝜀𝑡−1 is positive. It is worth to notice that given 

𝜆1 > 0, negative shocks will have larger effects on ℎ𝑡 than positive ones. 

 

 

3.3.3. The Volatility Weighted Historical Simulation – EGARCH Methodology 

 

Another model that can explain the asymmetric effect in the market is the EGARCH model, 

and EGARCH stands for Exponential-GARCH model, and the EGARCH(1,1) is expressed as: 

           ln(ℎ𝑡) = 𝛼0 + 𝛼1 (
𝜀𝑡−1

√ℎ𝑡−1
) + 𝜆1 |

𝜀𝑡−1

√ℎ𝑡−1
| + 𝛽1ln (ℎ𝑡−1)                           (7) 

 

There are several merits reveal from the equation (7). Firstly, the model is capable to measure 

the asymmetric effect or leverage effect. As we can see from the equation, if the effect 
𝜀𝑡−1

√ℎ𝑡−1
 is 

negative, the effect of the shock will be −𝛼1 + 𝜆1, and if the past shock 
𝜀𝑡−1

√ℎ𝑡−1
 is positive, the 

effect of the shock will be 𝛼1 + 𝜆1, which also mimic the effect of the threshold. However, 

unlike the TARCH model, coefficients in EGARCH model are not restricted to be 

nonnegative.  Since the equation (7) takes the logarithm of ℎ𝑡 , it can never be negative. And 

also the EGARCH model uses the standardized residuals 𝑠𝑡−1 =
𝜀𝑡−1

√ℎ𝑡−1
, which gives a more 

natural interpretation of the shocks.  

 

 

3.3.4. The Rescaling Method for Volatility Weighted Historical Simulation 

 

Same as the HSAF approach, in order to estimate 𝑉𝑎𝑅 under the volatility weighted historical 

simulation, we should first derive the above ARCH/GARCH family models from the data 
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series, and then rescale the losses by the appropriate volatility models, and the rescaled loss 

series can be shown as:  

                                                                𝑙T
∗ =

√hT+1

√hT
𝑙T                                                                 (8) 

 

Where 𝑙T is the loss from at time T from the original loss series and 𝑙T
∗  is rescaled loss at time 

T from the rescaled loss series; √hT+1 is the forecast volatility for the next holding period 

T+1, √hT  is the conditional variance at time T. The scaling process is completed in the 

software MS Excel, in order to compute the conditional variance, we usually set the initial 

values 𝜀0 = 0 and ℎ0 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑙1, 𝑙2, … , 𝑙𝑇 .  

 

This rescaled loss can simply be interpreted as the standardized loss multiplied by the forecast 

of tomorrow’s volatility. The core concept in this volatility weighted historical simulation 

approach is to derive the forecast volatilities from different variance-covariance models. 

Finally, we can, based on this rescaled loss series, estimate VaR by finding the percentiles of 

the distribution.  

 

 

3.4. The Backtesting Approach  

 

This backtesting procedure uses the standard Kupiec frequency test to detect the stability of 

the 𝑉𝑎𝑅 estimation models. The Kupiec test was presented by Kupiec in 1995, and this test 

aims to test whether the actual frequency of 𝑉𝑎𝑅  violations deviates too much from the 

predicted frequency of violations
22

. The essence of the Kupiec test is a binomial test
23

, which 

we take event as either violation or non-violation. In empirical testing, we code the violation 

as 1, and non-violation as 0. The cumulative probability of a binomial distribution is 

expressed as  

                                     Pr(X ≤ x) = ∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖𝑥

𝑖=0                                                      (9) 

 

In the equation (9), 𝑝  stands for the expected frequency of 𝑉𝑎𝑅  violations that can be 

expressed as 𝑝 = 1 − 𝛼, and 𝛼 is the certain confidence level is given by the equation (1); x 

                                                           

22 A VaR violation is when an actual loss exceeds corresponding VaR estimate. 

23 See APPENDIX 6.3.1. Binomial Distribution. 
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indicates the actual number of 𝑉𝑎𝑅 violations; n is the number of observations of subsamples 

in this paper.  

 

The backtesting procedure in this paper applies the two-sided test at 95% confidence level, 

and the general idea is to compare if the actual number of 𝑉𝑎𝑅 violations is too few or too 

many relative to the expected number of VaR violations at a certain confidence level, e.g. the 

standard confidence level is 95%. This approach consists of four steps: 

First, we can compute the number of expected violations by (1 − 𝛼)𝑛 as a baseline; Second, 

we should count the actual number of 𝑉𝑎𝑅 violations x, and the actual number of violations x 

can either x ≥ (1 − 𝛼)𝑛 or x ≤ (1 − 𝛼)𝑛, since there exist both upper risk bound and lower 

risk bound in the two-sided backtesting process; Third, this step is to calculate Pr(X ≥ x) or 

Pr(X ≤ x) , which depends on whether the actual number of 𝑉𝑎𝑅  violations exceed the 

predicted number of VaR violations or not. Finally, we can compare the above calculated 

probability with the 95% confidence level. 

 

There are mainly two ways to compare the actual frequency of violations with a certain 

confidence level in the two-sided test. 

1. Calculate the probability of actual violation directly by applying the cumulative binomial 

distribution functions, and in this two-sided test we can calculate the upper and lower 

bound of the actual violations within 95% confidence level, and compare if the expected 

number violations falls within this confidence interval. In Excel, we can use the formula 

“BINOM.DIST()” to find the confidence interval or simply use “BINOM.INV()” to find 

upper and lower risk bound at 95% confidence level. 

2. The alternative way is more preferable in this paper. Instead of calculating the confidence 

interval for each actual violation, we could choose to compute the confidence interval for 

expected violations and check if the actual number violations fall within this confidence 

interval. It can simply obtain from Excel formula “BINOM.INV()”.  

 

As we know from the next section, the data in this paper are divided into small subsamples, 

and each subsample contains approximately 260 observations. As mentioned above the upper 

and lower risk bound is computed in Excel by 

x𝑙𝑜𝑤 = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(𝑛, 𝑝, 0.025) 

xℎ𝑖𝑔ℎ = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(𝑛, 𝑝, 0.975) 



 

 

18 

Where 𝑛 = 260 that is the size of the subsample; and 𝑝 = 1 − 𝛼 could be either 5% or 1% 

depends on different VaR’s confidence level 𝛼; and since this is a two-sided test at 95% 

confidence level each side of the test will be 2.5%, then for the lower bound and upper bound 

we use 0.025 and 0.975 respectively. 

 

The result of the backtesting is shown in Table 6.4, from the table we can see that the 

“acceptance interval” for 𝑉𝑎𝑅95%  with two-sided test at 95% confidence level and 260 

observations sample size is [7,20] , and the boundary interval for 𝑉𝑎𝑅99%  with the same 

condition is [0,6], which is very natural that as 𝛼 = 99% is “wider” than 𝛼 = 95% and will 

generate less violations in general. Again,  (1 − 𝛼)𝑛 is the expected number of violations, and 

there are 13 expected violations for 𝑉𝑎𝑅95%, and for 𝛼 = 99% it is 2.6 which can be rounded 

to 3. Based on the result from Table 6, we can compare the performance of different models 

by comparing their violation of the 𝑉𝑎𝑅 estimates. Table 6.4 also illustrates the upper and 

lower bound for the entire sample at 95% and 99% confidence level, and this can give an 

overall inspection of the performance of 𝑉𝑎𝑅 estimates.  

 

 

4. EMPIRICAL ANALYSIS  

 

4. 1. DATA 

 

The empirical data applied in this paper are time series data and consists of three types of 

energy resources, which are natural gas, crude oil and propane. All of the three different types 

of energy data are from the data source THOMSON REUTERS. These resources are the main 

energy for daily production of the households and firms, which plays an important role in 

modern economics.  

 

This paper uses weekly data of four data series from January 10, 1997 to December 27, 

2013
24

, and the sample contains 886 price observations for crude oil and petroleum products, 

and 885 price observations for natural gas
25

. In order to be consistent, the numbers of 

                                                           

24
 The four data series are natural gas, Brent crude oil, WTI crude oil and propane.  

25
 Natural gas missed one observation on the day 30 September, 2005. 
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observations from four data series are set to be equal. The loss observation is generated by 

using the spot price of the previous period subtracts the spot price of the current period, and 

the size of the final loss observations of one loss distribution is 884 for three energy resources. 

The empirical testing uses the rolling window approach, and I divide the sample of loss into 

small subsamples. Each subsample is the composition of five years of in sample loss data and 

one year out of sample loss forecasting, and in total there are 12 in sample periods and 12 out-

of-sample periods. As there are four data series, and each data series contains 12 subsamples, 

and in total there are 48 (12*4) subsamples to analyze, and each subsample contains 

approximately 260 observations to provide more accurate results.  

 

As shown from the table 1, the first out of sample forecasting period is the year 2002, and the 

corresponding in sample period is from January 1997 to December 2001, and then the second 

out of sample forecasting period is the year 2003, and the matched in sample period is from 

January 1998 to December 2002 and so on. And for the last out of sample test, we use the data 

from January 2008 to December 2012 to forecast the loss occurred in 2013. The reason to use 

this forecasting approach is obvious. On the one hand, for this long span of sample period, it 

is more precise to divide the sample into small subsamples, since subsample approach allows 

the estimates respond quicker to recent losses. On the other hand, as this approach views 

specific sample periods for both calm period and volatile periods, e.g. we can generate a 

comparative analysis between the global financial crisis years and other calm years.  

 

After dividing the sample into different subsamples, we can then estimate the value-at-risk at 

95% and 99% for each out of sample time period, and finally compare the performance of 

different models by applying the Kupiec backtesting procedure.  

 

 

4.2. HISTORICAL SIMULATION 

 

4.2.1. Standard Historical Simulation Approach 

 

As introduced in section 3.2.1, the basic historical simulation lets the data speak for 

themselves, and based on the definition of 𝑉𝑎𝑅  we can estimate 𝑉𝑎𝑅  by computing the 

percentile of the subsamples. Table 6 is a summary table that indicates the number of 𝑉𝑎𝑅 
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violations at 95% and 99% significance level, and 𝑉𝑎𝑅 violation can be defined as the case 

when the actual loss exceed the estimated loss. In other words, Table 6.1 is a performance 

indicator for standard historical simulation estimations. From Table 6.1, it seems that the 𝑉𝑎𝑅 

estimates show higher violations in crude oil resources, while natural gas has least number of 

violations under historical simulation. To be more accurate, we need to compare the results 

with the boundary interval derived from the backtesting approach. By comparison with Table 

6.4, we can see that the  𝑉𝑎𝑅95% under historical simulation generally perform poorly, and we 

observe too few observations for all the energy resources. For example, almost all the 

estimates are smaller than lower boundary of the Kupiec frequency test. However, it seems 

like historical simulation model obtains a satisfactory  𝑉𝑎𝑅99% estimation, e.g. only “reject” 

once in the forecast year 2008 for crude oil (both WTI and Brent) and propane, and it 

performs quite well after that. The year 2008 is within the global financial crisis period, and it 

seems like an acceptable result that we get too many violations for only one year.  We should 

thus conclude that the standard historical simulation based 𝑉𝑎𝑅95% is not capable to explain 

risk occurred in the energy market, but 𝑉𝑎𝑅99%estimates provide reliable results for energy 

resources I studied in this paper.   

 

 

4.2.2. Historical Simulation with ARMA Forecasting Approach 

 

As mentioned above (section 3.2.2), the HSAF approach can be divided into two parts. The 

first step of this unit root tests is to use ADF Dickey Fuller test with the trend and intercept, 

and under the null hypothesis the data series contains unit roots and follows Dickey Fuller 

distribution. The result of unit roots testing is shown in table 2, and from the table we can see 

that the probability of the test statistic is statistically significant at 5% significance level of all 

the energy commodities, and we can thus reject the null hypothesis and conclude that there is 

no unit root and all the loss series are stationary. In this case, there is no need to continue 

further tests. It is an advantage to use loss series rather than the price series, price might have 

a tendency to go up or fluctuate depending on the time. Since the energy prices are affected 

by many factors such as the consumption from the market, inflation, wars and etc., which 

means the price series are not stationary (tested).  
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After applying general unit roots testing of the data series, we can then use Box-Jenkins 

model selection approach to determine the most appropriate model. Firstly, we can plot the 

data of all tree energy resources, which are shown from Figure 1 to Figure 3. The graphs 

indicate that all the data series are suspected to have conditional heteroskedasticity, especially 

during the period of financial crisis, and the crude oil shows unusual high volatility. 

Meanwhile, we can see that there is no obvious evidence of the deterministic trend, which is 

consistent with the above section of Dickey Fuller tests. This can only give rough information 

of the data series property, and in order to select the most appropriate ARMA model, we need 

to continue further tests by employing Box-Jenkins model selection criterion. 

 

The Box-Jenkins model selection method is introduced in section 3.2.3, and it can be 

summarized and adapted to five main criteria in this empirical study. The five criteria are 

namely: the correlogram of the data series; the significance of F-statistic of the joint 

regression coefficients, the p-value of coefficients; the AIC/BIC of the estimated models and 

residual autocorrelation of the selected model. Based on these five criteria, I can then select 

adequate models for four data series. The empirical study for HSAF approach is aimed to 

select one or two most preferred models from a set of eight candidate models
26

, namely 

AR(1), MA(1), AR(2), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1), ARMA(2,2). 

 

As mentioned above, the first step is to detect the independence of the series, and correlogram 

is graphed in this step. The correlogram depicts the ARMA(p,q) process by plotting the 

autocorrelation function (ACF) and partial autocorrelation function (PACF), and we can get a 

rough indication of possible process from the ACF and PACF. For instance, the PACF of 

AR(p) process is close to 0 after the pth lag, and the ACF of MA(q) process is close to 0 after 

the qth lag
27

. And the second step is to check the overall significance of the model, and the 

value of the F-statistic is compared with its critical value at 5% significance level. After that, 

we can then inspect the p-value of coefficients, e.g. whether they are significant at 5% 

significance level. Akaike information Criterion and Schwarz Bayesian Information Criterion 

(BIC) are two commonly used criteria in various model selection processes, and since the 

sample size of each loss series is 884, the BIC criterion is considered to be more reliable in 

                                                           

26
 It has been illustrated in Table 3 that two ARMA process models are selected to rescale the loss 

series of the energy resources, which are AR(1) and MA(1). 
27

 More information related ACF and PACF are introduced in APPENDIX 6.4.  
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this case, and the smaller the BIC value, the more parsimonious the estimated models. Finally, 

it is important to test whether the residual follows the white noise process.  

 

After implementing all the above steps, we should be able to choose the most appropriate 

models. The results of ARMA model selection process for four loss series are shown from 

Table 3.1 to Table 3.4. As we can see these tables give ordinal rankings of the estimated 

models, and these rankings mainly depend on five model selection criterion mentioned above. 

According to the results of the tables, we observe that AR(1) and MA(1) are the two most 

preferred models for the four data series, and they are almost equivalently preferable than 

other models. We can thus employ these two models in the 𝑉𝑎𝑅 estimation process, and the 

historical simulation with AR(1)/MA(1) forecasting process can be denoted as HSAF-

AR(1)/MA(1). Additionally, both of the unit root test and Box-Jenkins model selection 

process are implemented by using the software EViews.  

 

Based on the selected ARMA models from Table 3, I can then rescale the loss distribution by 

applying these models and derive the 𝑉𝑎𝑅 estimates. And the results of violations of 𝑉𝑎𝑅 

estimates for three energy commodities are shown from Table 6.2.1 to Table 6.2.4.  These 

four tables depict the violations of 𝑉𝑎𝑅  estimates by using the HSAF-AR(1)/MA(1) 

approach, the number of violations of 𝑉𝑎𝑅99% estimates for almost all resources are within 

the boundary interval, which means the 𝑉𝑎𝑅99%  of HSAF-AR(1)/MA(1) approach is an 

adequate estimation to quantify the risk in the energy market. The tables show that the 

violations only exceed the upper boundary for crude oil (Brent and Crude) and propane in the 

forecasting year 2008. However, the 𝑉𝑎𝑅95% estimates are not satisfactory, and we should 

thus reject the HSAF model for 𝑉𝑎𝑅95%  estimates. Interestingly, HS approach has one more 

qualified 𝑉𝑎𝑅95% estimate than HSAF-AR(1)/MA(1) approach in Brent crude oil, and has 

one less qualified 𝑉𝑎𝑅95%  estimated than HSAF approach in the WTI crude oil, which make 

no big difference in comparing two approaches. From an overall perspective, the  𝑉𝑎𝑅 

estimates of HSAF-AR(1)/MA(1) approach are slightly better than VaR estimates of HS 

approach for the loss series of natural gas, which indicates the HSAF approach is more 

preferable even it is only slightly better. 
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4.3. VOLITILITY WEIGHTED HISTORICAL SIMULATION APPROACH 

 

As mentioned in the HSAF section above, we can see the plotted graphs of the three energy 

commodities exhibit volatility clustering phenomenon from Figure 1 to Figure 3.  

Additionally, there is an interesting fact that crude oil (Bren and WTI) and propane show 

volatility clustering around the 2008 global financial crisis period, but natural gas shows 

volatility clustering before the global financial crisis period. However, graphical observations 

cannot be regarded as a strong evidence of the existence of the ARCH effect. In order to make 

more careful testing, I need to take the heteroskedasticity test, and the heteroskedasticity test 

is based on estimated mean equations. The reason is that ARCH/GARCH family models 

consist of two parts, which are the mean equation and the variance equation. And to detect the 

ARCH effect, I can estimate the mean models first, and then take the heteroskedasticity test of 

the mean models. The mean equations of all the four loss series are AR(1)
28

.  If the results 

support the existence of the ARCH effect, I will then continue to estimate ARCH/GARCH 

family models. Otherwise, it makes no sense to continue further estimations.  The results of 

the ARCH effect test can be seen from Table 4, all the p-value of chi-square statistics are 

statistically significant at the 5% significance level, which means we can reject the null 

hypothesis of no ARCH effect, and conclude that all the loss series of energy commodities 

exhibit ARCH effect. Hence, it seems necessary to estimate the ARCH/GARCH family 

models for our loss series on energy commodities.  

 

The empirical study in this section test 16 models simultaneously, which are ARCH(1), 

ARCH(2), GARCH(1,1), GARCH(1,2), GARCH(2,1), GARCH(2,2), TARCH(1,1) and 

EGARCH(2,2), and all of them are estimated by both normal distribution and t-distribution. 

These models are introduced in the section 3.3, which ordered from the standard conditional 

heteroskedasticity models to asymmetric effect capturing models. Since t-distribution shows 

strong explanatory power in the stock returns of financial market, and it is meaningful to test 

whether the t-distribution can generate better models of the loss series of the energy 

commodities
29

. To employ the ARCH/GARCH family models into the historical simulation 
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 AR(1) model is estimated  and selected from the historical simulation with ARMA process from the 

section 4.2.2. Historical Simulation with ARMA Forecasting Approach. 
29

 More information of t-distribution is shown in section 6.3.3. Student t-distribution. 
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process, I need to estimate these variance-covariance models first, and then I select the most 

adequate models and plug into VWHS process.   

 

Same with the ARMA model selection process in the previous section, the ARCH/GARCH 

model selection procedure consists of several steps. There are basically five criteria to choose 

the most appropriate ARCH/GARCH family models, which are the p-value of estimated 

coefficients, the maximum likelihood value of the estimated models, the AIC/BIC model 

selection criterion, the diagnostic test of the residual autocorrelation and the remaining 

ARCH/GARCH effect. The heteroskedasticity test and model selection stage are processed in 

software EViews 8.1. The results of model selection are shown in Table 5, from the results we 

can see the t-distributed TARCH(1,1) model has the best explanatory power for natural gas; 

and t-distributed EGARCH(1,1) model is the most adequate model for crude oil (Brent and 

WTI) and propane series. I can then denote these two selected VWHS approaches as VWHS-

TARCH(1,1) and VWHS-EGARCH(1,1) in the later analysis. It seems that the risks of energy 

commodities are also affected by market information asymmetrically, since the threshold 

GARCH and exponential GARCH perform better based on the model selection results. And 

according to the test results, the t-distributed estimation models are generally more 

parsimonious and generate better fitness.  

 

In order to check the reliability of the above results and make detailed analysis, I will apply 

the estimated models to the real world case. The empirical study can be done by employing 

the estimated models to rescale losses and estimate 𝑉𝑎𝑅 at the certain percentile, and then use 

the Kupiec backtesting approach to test whether the selected model really explains the risk of 

energy resources. The results of violations of VWHS approach based 𝑉𝑎𝑅  estimates are 

shown from Table 6.3.1 to Table 6.3.4, and each table represents the performance of 𝑉𝑎𝑅 

estimates for one energy commodity. To analyze the performance of each variance-covariance 

model’s 𝑉𝑎𝑅 estimates, we also need Table 6.4 as a “reference table” that is introduced in 

section 3.4.  

 

As we can see from the Table 6.3.1, the 𝑉𝑎𝑅0.99 estimates of VWHS-TARCH(1,1) provide 

reliable estimates for natural gas, and the table shows the number of violations of  𝑉𝑎𝑅0.99 

estimates are all within the backtesting confidence interval at the 95% significance level, 

which generates the same results with the standard HS and HSAF approach. However, the 
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TARCH based historical simulation exhibit weak 𝑉𝑎𝑅0.95estimations, only the number of 

violations of the forecasting year 2008 is qualified, which may indicate  𝑉𝑎𝑅0.95 estimates of 

VWHS-TARCH(1,1) are generally not able to explain the risk occurred in the natural gas 

market, only can explain the risk during the financial crisis period in a small probability. 

Whereas the overall performance of the sample is not as good as the HSAF or the standard HS 

approach.  

 

The number of violations of  𝑉𝐴𝑅  estimates of VWHS-EGARCH(1,1) for Brent crude oil is 

depicted in the Table 6.3.2. The table shows that 𝑉𝑎𝑅0.95 estimates of VWHS-EGARCH(1,1) 

method underestimate the number of violations in most forecasting years except the year of 

2008, and standard HS in fact performs slightly better in the forecasting year 2006. It is less 

useful to apply 𝑉𝑎𝑅0.95 estimates of VWHS approach for the Brent crude oil. It is worth to 

notice that 𝑉𝑎𝑅0.99  estimates of VWHS-EGARCH(1,1) approach exhibit the best 

performance among all the three non-parametric approaches, which qualified for all the calm 

and volatile periods. 

 

The result of VWHS based 𝑉𝑎𝑅 estimation for WTI crude oil is shown in Table 6.3.3, from 

the table we can see that there is no difference of the performance of 𝑉𝑎𝑅 estimation between 

the VWHS approach and the HS approach in WTI crude oil. The 𝑉𝑎𝑅0.95 estimates of HSAF 

approach perform slightly better than other approaches. The violations of 𝑉𝑎𝑅0.99 estimates of 

VWHS-EGARCH(1,1) generally do not deviate too much from the expected violations, but it 

cannot capture the risk for the financial crisis year 2008. Table 6.3.4 illustrates the 

performance of the EGARCH(1,1) weighted 𝑉𝑎𝑅 estimates for propane. According to the 

Table 6.3.4, the VWHS based 𝑉𝑎𝑅 estimation for propane is not as good as the standard HS 

or the HSAF approach, since from an overall perspective 𝑉𝑎𝑅99%  estimation violates too 

much from the expected violations and  𝑉𝑎𝑅95% estimation gives the same result as the HS 

and the HSAF approach. 

 

Based on the model selection process and 𝑉𝑎𝑅 estimation results, it seems that all the student 

t-distributed asymmetric variance-covariance models are more suitable to explain the risk for 

different energy commodities. For instance, the t-distributed VWHS-TARCH(1,1) is the most 

suitable model for the risk estimation of natural gas, and the t-distributed VWHS-

EGARCH(1,1) gives the best  explanation of risk occurred in the Brent crude oil market. 
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5. CONCLUSION 

 

What does this paper study? This paper studies three representative energy resources in the 

energy market by employing the 𝑉𝑎𝑅 estimation technique, i.e. whether 𝑉𝑎𝑅 estimates can 

explain the risk occurred in the energy market. In order to study the performance of 𝑉𝑎𝑅 

estimates, this paper applies different non-parametric approaches, which are the standard 

historical simulation (HS), the historical simulation with ARMA forecasting (HSAF) and the 

volatility weighted historical simulation (VWHS).  

 

How does the study implement? The main idea of this paper is to combine data selected 

models with the 𝑉𝑎𝑅 estimation technique, and then use the backtesting approach to analyze 

the performance of the 𝑉𝑎𝑅 estimates. To be more specific, I select the most adequate models 

from all the candidate models by employing the model selection criteria for the HSAF 

approach and VWHS approach. The selected models are thus based on the data of the loss 

series, and in order to test whether the selected models work in the real word, I then apply the 

selected model to 𝑉𝑎𝑅 estimation procedure. The reason is that data estimated models may 

not be strictly correct, and to implement the 𝑉𝑎𝑅  estimation can in turn strengthen the 

explanatory power of the estimated model. And the performance results are tested by the 

backtesting process. 

 

What are the results of the study? The results of study are shown in Table 6, we can obviously 

detect that 𝑉𝑎𝑅95% estimates are generally not sufficient to estimate the risk in the energy 

market. On the contrary,  𝑉𝑎𝑅99% estimates can explain the risk for three energy commodities 

in almost every out-of-sample forecasting years; except for the financial crisis year 2008 of 

the WTI crude oil and Propane. Hence, it is interesting and meaningful to study the 

confidence level in between for the future empirical study in the energy market, e.g. what is 

the performance of 𝑉𝑎𝑅97.5% estimates in the energy market.  

 

Result 1.1: The  𝑽𝒂𝑹𝟗𝟓% estimates are generally not capable to explain risks of the four 

energy resources, for any non-parametric historical simulation approaches applied in this 

paper. 
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Result 1.2: The  𝑽𝒂𝑹𝟗𝟗% estimates are generally capable to explain risks of the four energy 

resources but not for the financial crisis year 2008, for any non-parametric historical 

simulation approaches applied in this paper. 

 

In light of the empirical study of this paper, I found that the 𝑉𝑎𝑅99% estimates of all three 

estimation approaches can explain the risk happened in the energy market, no matter for clam 

periods or the volatile periods such as financial crisis periods. Moreover, the number of 

violations of 𝑉𝑎𝑅99%  estimates of VWHS-EGARCH(1,1) are all within the “acceptance 

interval” for all the subsample periods
30

. It is worth to mention that all the variance-

covariance models of VWHS approach are proved to be more suitable under the student t-

distribution. We can then denote the two preferred  𝑉𝑎𝑅99% estimates of VWHS models as 

VWHS-fat tailed-TARCH(1,1) and VWHS-fat tailed-EGARCH(1,1). Meanwhile, 𝑉𝑎𝑅99% 

estimates of HSAF-AR(1)/MA(1) give the best performance in estimating the risk of the WTI 

Crude Oil and Propane, and the violation of 𝑉𝑎𝑅99% only exceed once in the forecasting year 

2008. As 2008 is the peak year of the global financial, it is hard to capture the risk happened 

in the market. We can get the Result 2 based on the above statements: 

 

Result 2.1: The  𝑽𝒂𝑹𝟗𝟗% estimates of VWHS-fat tailed-TARCH(1,1) are capable to explain 

risks of the natural gas for all the subsample periods, e.g. both calm periods and volatile 

periods. 

 

Result 2.2: The  𝑽𝒂𝑹𝟗𝟗%  estimates of VWHS-fat tailed-EGARCH(1,1) are capable to 

explain risks of the Brent crude oil for all the subsample periods, e.g. both calm periods 

and volatile periods. 

 

By comparing the violation results of 𝑉𝑎𝑅  estimates across different non-parametric 

approaches, we know the VWHS approach and the HSAF approach perform better than the 

standard HS, but only at an insignificant level. Again, the only distinct point is the Result 2 

that 𝑉𝑎𝑅99% estimates of VWHS are considered as a reliable risk measurement for natural and 

Brent crude oil. 
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 “Acceptance interval” is discussed in the section 3.4. Backtesting Approach. 
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Result 3: The HSAF approach and VWHS approach do generate better results of VaR 

estimation, but only in an insignificant way.  

 

There are some areas left out in this empirical research, and it might be interesting if these 

problems can be studied in future research. Firstly, based on Result 1 it is meaningful to study 

the performance of 𝑉𝑎𝑅 estimates at different confidence level 𝛼; For instance, to find the 

critical confidence level of α∗ that makes 𝑉𝑎𝑅1−𝛼∗  give acceptable estimation result where 

𝛼∗ ∈ (0.01,0.05). Secondly, Result 2 indicates that  𝑉𝑎𝑅99% estimates provide a reliable risk 

measurement for both calm periods and volatile periods, it is interesting to investigate 

whether this result holds by using other backtesting approaches or other time span for the 

same energy commodities I studied.  Finally, it is interesting to investigate which estimation 

methods can give significantly better 𝑉𝑎𝑅95% estimation, the parametric approaches or the 

non-parametric approaches. To evaluate the performance of  𝑉𝑎𝑅95% estimates from different 

approaches, we can then set the 𝑉𝑎𝑅95% estimates of standard HS as a benchmark. 
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6. APPENDIX 

 

6.1. TABLES 

 

Table 1: List of Testing Samples for Empirical Studies 

In-sample period Out-of-sample period 

1997 1998 1999 2000 2001 2002 

1998 1999 2000 2001 2002 2003 

1999 2000 2001 2002 2003 2004 

2000 2001 2002 2003 2004 2005 

2001 2002 2003 2004 2005 2006 

2002 2003 2004 2005 2006 2007 

2003 2004 2005 2006 2007 2008 

2004 2005 2006 2007 2008 2009 

2005 2006 2007 2008 2009 2010 

2006 2007 2008 2009 2010 2011 

2007 2008 2009 2010 2011 2012 

2008 2009 2010 2011 2012 2013 

Each row stands for one testing period that consists of 5 years in-sample and 1 year out-of-sample 

period, and there are in total 12 testing periods.  

 

 

Table 2: Augmented Dickey-Fuller Test for the Loss Series 

Table 2.1: ADF Test for the Loss Series of Natural Gas 

Natural Gas  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -27.13678 0.0000 

Test critical values: 1% level -3.437533  

 5% level -2.864600  

 10% level -2.568453  

*MacKinnon (1996) one-sided p-values.   

 

Table 2.2: ADF Test for the Loss Series of Brent Crude Oil 

Brent Crude Oil  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -23.67996 0.0000 

Test critical values: 1% level -3.437533  

 5% level -2.864600  

 10% level -2.568453  
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*MacKinnon (1996) one-sided p-

values. 

   

 

Table 2.3: ADF Test for the Loss Series of WTI Crude Oil 

WTI Crude Oil  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -24.76207 0.0000 

Test critical values: 1% level -3.437533  

 5% level -2.864600  

 10% level -2.568453  

*MacKinnon (1996) one-sided p-

values. 

   

 

Table 2.4: ADF Test for the Loss Series of Propane 

Propane  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -11.99743 0.0000 

Test critical values: 1% level -3.437558  

 5% level -2.864611  

 10% level -2.568459  

*MacKinnon (1996) one-sided p-

values. 

   

 

 

Table 3: Historical Simulation ARMA Model Selection Process 

Table 3.1: Historical Simulation ARMA Model Selection Process for Natural Gas 

Natural Gas Correlogram F-

statistics 

P-value of 

coefficients 

AIC/BIC Residual 

Autocorrelation 

Rank 

AR(1) significant 7.153481 significant 1.300808 no serial correlation 

exist up to 4th lag 

1 

MA(1) significant 7.394404 significant 1.300246 no serial correlation 

exist up to 4th lag 

1 

AR(2) insignificant 3.996748 insignificant 1.300869 no serial correlation 

exist up to 4th lag 

5 

MA(2) insignificant 3.746721 insignificant 1.307800 no serial correlation 

exist up to 4th lag 

7 

ARMA(1,1) significant 5.506311 significant 1.304140 no serial correlation 

exist up to 4th lag 

3 

ARMA(1,2) insignificant 4.218131 insignificant 1.309965 no serial correlation 

exist up to 4th lag 

8 
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ARMA(2,1) insignificant 5.971897 significant 1.297411 no serial correlation 

exist up to 4th lag 

4 

ARMA(2,2) insignificant 4.475278 insignificant 1.305094 no serial correlation 

exist up to 4th lag 

6 

 

Table 3.2: Historical Simulation ARMA Model Selection Process for Brent Crude Oil 

Brent Crude 

Oil 

Correlogram F-statistics P-value of 

coefficients 

AIC/BIC Residual 

Autocorrelation 

Rank 

AR(1) significant 45.76670 significant 4.527739 no serial correlation 

exist up to 7th lag 

1 

MA(1) significant 42.61502 significant 4.530529 no serial correlation 

exist up to 7th lag 

2 

AR(2) insignificant 22.95379 insignificant 4.536275 no serial correlation 

exist up to 12th lag 

6 

MA(2) insignificant 22.69543 insignificant 4.535151 no serial correlation 

exist up to 7th lag 

6 

ARMA(1,1) significant 23.01905 insignificant 4.535072 no serial correlation 

exist up to 7th lag 

5 

ARMA(1,2) insignificant 16.47831 significant 4.539032 no serial correlation 

exist up to 12th lag 

3 

ARMA(2,1) insignificant 16.35784 significant 4.540487 no serial correlation 

exist up to 12th lag 

4 

ARMA(2,2) insignificant 12.34243 insignificant 4.547796 no serial correlation 

exist up to 12th lag 

8 

 

Table 3.3: Historical Simulation ARMA Model Selection Process for WTI Crude Oil 

WTI Crude 

Oil 

Correlogram F-

statistics 

P-value of 

coefficients  

AIC/BIC Residual 

Autocorrelation 

Rank 

AR(1) significant 29.22777 significant 4.578697 no serial correlation 

exist up to 7th lag 

1 

MA(1) significant 28.73481 significant 4.578309 no serial correlation 

exist up to 7th lag 

1 

AR(2) insignificant 14.55226 insignificant 4.587360 no serial correlation 

exist up to 7th lag 

6 

MA(2) insignificant 14.49446 insignificant 4.585669 no serial correlation 

exist up to 7th lag 

6 

ARMA(1,1) significant 14.59913 insignificant 4.586376 no serial correlation 

exist up to 7th lag 

5 

ARMA(1,2) insignificant 11.63137 significant 4.587769 no serial correlation 3 
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exist up to 7th lag 

ARMA(2,1) insignificant 11.20316 significant 4.590059 no serial correlation 

exist up to 7th lag 

4 

ARMA(2,2) insignificant 8.886975 insignificant 4.595580 no serial correlation 

exist up to 7th lag 

8 

 

Table 3.4: Historical Simulation ARMA Model Selection Process for Propane 

Propane Correlogram F-

statistics 

P-value of 

coefficients  

AIC/BIC Residual 

Autocorrelation 

Rank 

AR(1) significant 10.19579 significant -3.540380 no serial correlation 

exist up to 3rd lag 

1 

MA(1) significant 11.08280 significant -3.540845 no serial correlation 

exist up to 3rd lag 

1 

AR(2) insignificant 5.595307 insignificant -3.534037 no serial correlation 

exist up to 3rd lag 

4 

MA(2) insignificant 5.994067 insignificant -3.534199 no serial correlation 

exist up to 3rd lag 

4 

ARMA(1,1) significant 5.737377 insignificant -3.534147 no serial correlation 

exist up to 3rd lag 

3 

ARMA(1,2) insignificant 3.919534 insignificant -3.526798 no serial correlation 

exist up to 3rd lag 

4 

ARMA(2,1) insignificant 3.874665 insignificant -3.526849 no serial correlation 

exist up to 3rd lag 

4 

ARMA(2,2) insignificant 3.865497 insignificant -3.523484 no serial correlation 

exist up to 3rd lag 

4 

The indication of correlalogram is based on spikes of ACF and PACF; 

F-statistics is compared with 5% significance level; 

P-value of coefficients is tested at 5% significance level; 

The columns under AIC/BIC are mainly use BIC as an indicator; 

Residual correlations are based on the Q-statistic at the 5% significance level; 

Same rank of the models indicates two models are equivalent. 

 

 

Table 4: Heteroskedasticity Test for the Loss Series 

Table 4.1: Heteroskedasticity Test for Natural Gas 

Natural Gas Heteroskedasticity Test: ARCH   

F-statistic 211.9842 Prob. F(1,880) 0.0000 

Obs*R-squared 171.2205 Prob. Chi-Square(1) 0.0000 
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Table 4.2: Heteroskedasticity Test for Brent Crude Oil 

Brent Crude Oil Heteroskedasticity Test: ARCH   

F-statistic 165.7363 Prob. F(1,880) 0.0000 

Obs*R-squared 139.7861 Prob. Chi-Square(1) 0.0000 

 

Table 4.3: Heteroskedasticity Test for WTI Crude Oil 

WTI Crude Oil Heteroskedasticity Test: ARCH   

F-statistic 205.2722 Prob. F(1,880) 0.0000 

Obs*R-squared 166.8246 Prob. Chi-Square(1) 0.0000 

 

Table 4.4: Heteroskedasticity Test for Propane 

Propane Heteroskedasticity Test: ARCH   

F-statistic 245.5218 Prob. F(1,880) 0.0000 

Obs*R-squared 192.3999 Prob. Chi-Square(1) 0.0000 

 

 

Table 5: ARCH/GARCH Family Model Selection for VWHS Approach 

Table 5.1: VWHS-ARCH/GARCH Family Model Selection for Natural Gas 

Natural Gas p-value of coefficients ML AIC/BIC Q1 Q2 selected model 

Normal 

distribution 

All are significant TARCH(1,1) TARCH(1,1) passed passed TARCH(1,1) (N-

dist) 

Student t-

distribution 

All are significant except 

GARCH(2,1) and GARCH(2,2) 

TARCH(1,1) TARCH(1,1) passed passed TARCH(1,1) (t-dist) 

      TARCH(1,1) (t-dist) 

 

Table 5.2: VWHS-ARCH/GARCH Family Model Selection for Brent Crude Oil 

Brent Crude Oil p-value of coefficients ML AIC/BIC Q1 Q2 Selected model 

Normal 

distribution 

ARCH(1); ARCH(2); 

GARCH(1,1); EGARCH(1,1) 

EGARCH(1,1) EGARCH(1,1) passed passed EGARCH(1,1) (N-dist) 

Student t-

distribution 

ARCH(1); ARCH(2); 

GARCH(1,1); EGARCH(1,1) 

EGARCH(1,1) EGARCH(1,1) passed passed EGARCH(1,1) (t-dist) 

      EGARCH(1,1) (t-dist) 

 

Table 5.3: VWHS-ARCH/GARCH Family Model Selection for WTI Crude Oil 

WTI Crude Oil p-value of coefficients ML AIC/BIC Q1 Q2 selected model 

Normal All are significant except EGARCH(1,1) EGARCH(1,1) passed passed EGARCH(1,1) (N-dist) 
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distribution GARCH(2,1), GARCH(2,2) 

and TARCH(1,1) 

Student t-

distribution 

All are significant except 

GARCH(2,1), GARCH(2,2) 

and TARCH(1,1) 

EGARCH(1,1) EGARCH(1,1) passed passed EGARCH(1,1) (t-dist) 

      EGARCH(1,1) (t-dist) 

 

Table 5.4: VWHS-ARCH/GARCH Family Model Selection for Propane 

Propane p-value of coefficients ML AIC/BIC Q1 Q2 selected model 

Normal 

distribution 

All are significant EGARCH(1,1) EGARCH(1,1) passed passed EGARCH(1,1) (N-dist) 

Student t-

distribution 

All are significant except 

GARCH(1,2) and GARCH(2,1) 

EGARCH(1,1) EGARCH(1,1) passed passed EGARCH(1,1) (t-dist) 

      EGARCH(1,1) (t-dist) 

Columns under “p-value of coefficients” indicate the models with significant p-value of coefficients; 

Columns under “ML” are the models with the highest maximum likelihood value; 

Columns under “AIC/BIC” show models with the lowest BIC/AIC (BIC) value; 

“Passed” under column Q1 and Q2 indicate that the selected models (based on previous model 

selection criteria) passed the serial correlation and remaining ARCH effect diagnostic test.      

 

 

Table 6: Summary Table of the Violations of 𝑉𝑎𝑅 Estimates 

Table 6.1: Violations of 𝑉𝑎𝑅 Estimates Based on Standard HS Approach 

  Henry hub 

natural gas 

Crude Oil-

WTI 

Crude Oil-

Brent 

Propane 

In-sample Period Out-of-sample 95% 99% 95% 99% 95% 99% 95% 99% 

1997/1/10-2001/12/28 Year 2002 1 0 4 0 1 0 0 0 

1998/1/2-2002/12/27 Year 2003 6 2 4 1 4 1 4 1 

1999/1/1-2003/12/26 Year 2004 5 0 6 0 5 1 5 1 

2000/1/7-2004/12/31 Year 2005 4 2 5 0 5 1 3 0 

2001/1/5-2005/12/30 Year 2006 4 0 4 0 8 1 3 0 

2002/1/4-2006/12/29 Year 2007 2 0 6 2 4 1 1 0 

2003/1/3-2007/12/28 Year 2008 4 0 18 8 17 8 13 8 

2004/1/2-2008/12/26 Year 2009 1 0 2 0 1 0 2 0 

2005/1/7-2009/12/25 Year 2010 1 0 1 0 1 0 2 1 

2006/1/6-2010/12/31 Year 2011 0 0 4 0 3 0 1 0 

2007/1/5-2011/12/30 Year 2012 0 0 1 0 0 0 3 0 

2008/1/4-2012/12/28 Year 2013 0 0 0 0 0 0 0 0 
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  28 4 55 11 49 13 37 11 

HSAF-AR(1)/MA(1) indicates historical simulation with AR(1)/MA(1) forecasting process. 

 

Table 6.2.1: 𝑉𝑎𝑅 Violations from HSAF Approach - Natural Gas 

Henry  hub natural gas Standard HS HSAF-AR(1) HSAF-MA(1) 

In-sample Period Out-of-sample 95% 99% 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 1 0 3 0 3 0 

1998/1/2-2002/12/27 year 2003 6 2 5 2 5 2 

1999/1/1-2003/12/26 year 2004 5 0 6 0 6 0 

2000/1/7-2004/12/31 year 2005 4 2 5 2 5 2 

2001/1/5-2005/12/30 year 2006 4 0 5 0 5 0 

2002/1/4-2006/12/29 year 2007 2 0 3 0 3 0 

2003/1/3-2007/12/28 year 2008 4 0 3 0 3 0 

2004/1/2-2008/12/26 year 2009 1 0 1 0 1 0 

2005/1/7-2009/12/25 year 2010 1 0 1 0 1 0 

2006/1/6-2010/12/31 year 2011 0 0 0 0 0 0 

2007/1/5-2011/12/30 year 2012 0 0 0 0 0 0 

2008/1/4-2012/12/28 year 2013 0 0 0 0 0 0 

  28 4 32 4 32 4 

HSAF-AR(1)/MA(1) indicates historical simulation with AR(1)/MA(1) forecasting process. 

 

Table 6.2.2: 𝑉𝑎𝑅 Violations from HSAF Approach – Brent Crude Oil 

Brent Crude Oil Standard HS HSAF-AR(1) HSAF-MA(1) 

In-sample Period Out-of-sample 95% 99% 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 1 0 3 0 3 0 

1998/1/2-2002/12/27 year 2003 4 1 4 1 4 1 

1999/1/1-2003/12/26 year 2004 5 1 5 0 5 0 

2000/1/7-2004/12/31 year 2005 5 1 6 0 6 0 

2001/1/5-2005/12/30 year 2006 8 1 4 0 4 0 

2002/1/4-2006/12/29 year 2007 4 1 3 2 3 2 

2003/1/3-2007/12/28 year 2008 17 8 18 7 19 7 

2004/1/2-2008/12/26 year 2009 1 0 3 1 3 1 

2005/1/7-2009/12/25 year 2010 1 0 0 0 0 0 

2006/1/6-2010/12/31 year 2011 3 0 3 0 3 0 

2007/1/5-2011/12/30 year 2012 0 0 1 0 1 0 

2008/1/4-2012/12/28 year 2013 0 0 0 0 0 0 

  49 13 50 11 51 11 

HSAF-AR(1)/MA(1) indicates historical simulation with AR(1)/MA(1) forecasting process. 
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Table 6.2.3: 𝑉𝑎𝑅 Violations from HSAF Approach – WTI Crude Oil 

WTI Crude Oil Standard HS HSAF-AR(1) HSAF-MA(1) 

In-sample Period Out-of-sample 95% 99% 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 4 0 4 0 4 0 

1998/1/2-2002/12/27 year 2003 4 1 4 1 4 1 

1999/1/1-2003/12/26 year 2004 6 0 4 1 4 1 

2000/1/7-2004/12/31 year 2005 5 0 5 1 5 1 

2001/1/5-2005/12/30 year 2006 4 0 7 1 7 1 

2002/1/4-2006/12/29 year 2007 6 2 5 1 5 1 

2003/1/3-2007/12/28 year 2008 18 8 17 8 17 8 

2004/1/2-2008/12/26 year 2009 2 0 2 0 2 0 

2005/1/7-2009/12/25 year 2010 1 0 2 0 2 0 

2006/1/6-2010/12/31 year 2011 4 0 3 0 3 0 

2007/1/5-2011/12/30 year 2012 1 0 0 0 0 0 

2008/1/4-2012/12/28 year 2013 0 0 0 0 0 0 

  55 11 53 13 53 13 

HSAF-AR(1)/MA(1) indicates historical simulation with AR(1)/MA(1) forecasting process. 

 

Table 6.2.4: 𝑉𝑎𝑅 Violations from HSAF Approach – Propane 

Propane Standard HS HSAF-AR(1) HSAF-MA(1) 

In-sample Period Out-of-sample 95% 99% 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 0 0 1 0 2 0 

1998/1/2-2002/12/27 year 2003 4 1 4 1 4 1 

1999/1/1-2003/12/26 year 2004 5 1 5 1 5 1 

2000/1/7-2004/12/31 year 2005 3 0 4 0 4 0 

2001/1/5-2005/12/30 year 2006 3 0 3 0 3 0 

2002/1/4-2006/12/29 year 2007 1 0 1 0 2 0 

2003/1/3-2007/12/28 year 2008 13 8 13 8 13 8 

2004/1/2-2008/12/26 year 2009 2 0 2 0 2 0 

2005/1/7-2009/12/25 year 2010 2 1 1 1 1 1 

2006/1/6-2010/12/31 year 2011 1 0 2 0 2 0 

2007/1/5-2011/12/30 year 2012 3 0 2 0 2 0 

2008/1/4-2012/12/28 year 2013 0 0 0 0 0 0 

  37 11 38 11 40 11 

HSAF-AR(1)/MA(1) indicates historical simulation with AR(1)/MA(1) forecasting process. 

 

 



 

 

37 

Table 6.3.1: 𝑉𝑎𝑅 Violations from VWHS Approach - Natural Gas 

Henry  hub natural gas Standard HS VWHS-TARCH(1,1) t-

distribution 

In sample Period  Out of sample 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 1 0 3 0 

1998/1/2-2002/12/27 year 2003 6 2 4 3 

1999/1/1-2003/12/26 year 2004 5 0 0 0 

2000/1/7-2004/12/31 year 2005 4 2 4 2 

2001/1/5-2005/12/30 year 2006 4 0 0 0 

2002/1/4-2006/12/29 year 2007 2 0 2 1 

2003/1/3-2007/12/28 year 2008 4 0 10 5 

2004/1/2-2008/12/26 year 2009 1 0 3 1 

2005/1/7-2009/12/25 year 2010 1 0 0 0 

2006/1/6-2010/12/31 year 2011 0 0 0 0 

2007/1/5-2011/12/30 year 2012 0 0 1 0 

2008/1/4-2012/12/28 year 2013 0 0 2 1 

  28 4 29 13 

VWHS-TARCH(1,1) t-distribution indicates VaR estimates are estimated based on the TARCH(1,1)  

weight loss distribution, and TARCH(1,1) is estimated under t-distribution.  

 

Table 6.3.2: 𝑉𝑎𝑅 Violations from VWHS Approach – Brent Crude Oil 

Brent Crude Oil  Standard HS VWHS-EGARCH(1,1) t-

distribution 

In-sample Period Out-of-sample 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 1 0 4 0 

1998/1/2-2002/12/27 year 2003 4 1 4 1 

1999/1/1-2003/12/26 year 2004 5 1 4 1 

2000/1/7-2004/12/31 year 2005 5 1 3 0 

2001/1/5-2005/12/30 year 2006 8 1 4 0 

2002/1/4-2006/12/29 year 2007 4 1 4 2 

2003/1/3-2007/12/28 year 2008 17 8 13 6 

2004/1/2-2008/12/26 year 2009 1 0 2 0 

2005/1/7-2009/12/25 year 2010 1 0 1 0 

2006/1/6-2010/12/31 year 2011 3 0 5 4 

2007/1/5-2011/12/30 year 2012 0 0 1 0 

2008/1/4-2012/12/28 year 2013 0 0 2 1 

  49 13 47 15 

VWHS-EGARCH(1,1) t-distribution indicates VaR estimates are estimated based on the 

EGARCH(1,1) weight loss distribution, and EGARCH(1,1) is estimated under t-distribution.  
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Table 6.3.3: 𝑉𝑎𝑅 Violations from VWHS Approach – WTI Crude Oil 

WTI Crude Oil  Standard HS VWHS-EGARCH(1,1) t-

distribution 

In-sample Period Out-of-sample 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 4 0 4 0 

1998/1/2-2002/12/27 year 2003 4 1 1 1 

1999/1/1-2003/12/26 year 2004 6 0 5 2 

2000/1/7-2004/12/31 year 2005 5 0 2 0 

2001/1/5-2005/12/30 year 2006 4 0 3 1 

2002/1/4-2006/12/29 year 2007 6 2 4 2 

2003/1/3-2007/12/28 year 2008 18 8 12 7 

2004/1/2-2008/12/26 year 2009 2 0 0 0 

2005/1/7-2009/12/25 year 2010 1 0 1 0 

2006/1/6-2010/12/31 year 2011 4 0 5 2 

2007/1/5-2011/12/30 year 2012 1 0 0 0 

2008/1/4-2012/12/28 year 2013 0 0 1 0 

  55 11 38 15 

VWHS-EGARCH(1,1) t-distribution indicates 𝑉𝑎𝑅  estimates are estimated based on the 

EGARCH(1,1) weight loss distribution, and EGARCH(1,1) is estimated under t-distribution.  

 

Table 6.3.4: 𝑉𝑎𝑅 Violations from VWHS Approach – Propane 

Propane Standard HS VWHS-EGARCH(1,1) t-

distribution 

In-sample Period Out-of-sample 95% 99% 95% 99% 

1997/1/10-2001/12/28 year 2002 0 0 2 0 

1998/1/2-2002/12/27 year 2003 4 1 4 4 

1999/1/1-2003/12/26 year 2004 5 1 6 3 

2000/1/7-2004/12/31 year 2005 3 0 2 0 

2001/1/5-2005/12/30 year 2006 3 0 0 0 

2002/1/4-2006/12/29 year 2007 1 0 3 1 

2003/1/3-2007/12/28 year 2008 13 8 13 7 

2004/1/2-2008/12/26 year 2009 2 0 1 0 

2005/1/7-2009/12/25 year 2010 2 1 1 1 

2006/1/6-2010/12/31 year 2011 1 0 6 0 

2007/1/5-2011/12/30 year 2012 3 0 4 0 

2008/1/4-2012/12/28 year 2013 0 0 0 0 

  37 11 42 16 

VWHS-EGARCH(1,1) t-distribution indicates 𝑉𝑎𝑅  estimates are estimated based on the 

EGARCH(1,1) weight loss distribution, and EGARCH(1,1) is estimated under t-distribution.  
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Table 6.4: Kupiec Frequency Backtesting Results of 𝑉𝑎𝑅 Estimations 

Subsample VaR95% VaR99% Sample VaR95% VaR99% 

𝒙𝒍𝒐𝒘 7 0 𝒙𝒍𝒐𝒘 32 4 

𝒙𝒉𝒊𝒈𝒉 20 6 𝒙𝒉𝒊𝒈𝒉 57 15 

Expected 

violations 

13 2,6 Expected 

violations 

44,2 8,84 

Expected violations are calculated by (1 − 𝛼)𝑛, and in MS Excel we can compute the lower and upper 

boundary of the two-sided confidence interval at 95% by using formula   

𝑥𝑙𝑜𝑤 = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(𝑛, 𝑝, 0.025), 𝑥ℎ𝑖𝑔ℎ = 𝐵𝐼𝑁𝑂𝑀. 𝐼𝑁𝑉(𝑛, 𝑝, 0.975). In empirical study, we simply 

compare the violations of VaR estimates from different approaches with the interval [𝑥𝑙𝑜𝑤, 𝑥ℎ𝑖𝑔ℎ]. 

 

 

6.2. FIGURES 

 

Figure 1: Loss Series for Natural Gas 
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Figure 1. Loss Series for Natural Gas

 

Figure 1 illustrates the loss series for natural gas, and the series exhibits volatility phenomena after the 

1997 Asian financial crisis and before the 2008 financial crisis. Hence, it is reasonable to first take the 

heteroskedasticity test, and if we reject the null hypothesis of no ARCH/GARCH effect, we should 

then apply the VWHS approach to estimate 𝑉𝑎𝑅 for natural gas. 
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Figure 2: Loss Series for Crude Oil 
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Figure 2.1. Loss Series for Brent Crude Oil
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Figure 2. 2. Loss Series for WTI Crude Oil

 

Figure 2.1 and 2.2 depict the loss series for Crude Oil, and we can detect the volatility clustering 

phenomena around the global financial crisis period. To compare with loss series of natural gas, it 

seems crude oil series are more volatile.  

 

Figure 3: Loss Series for Propane 
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Figure 3. Loss Series for Propane

 

Figure 3 graphs the loss series for propane, the loss series seems less volatile during the financial crisis 

periods, but there are significant volatility clustering exhibit. It is thus necessary to take the 

heteroskedasticity test for the loss series of propane. 
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6.3. DISTRIBUTIONS 

 

6.3.1. Binomial Distribution 

 

The definition of Binomial Distribution is derived from Bernoulli distribution. If we have a 

random variable 𝑋 and it can only take two values 0 and 1, and we set 𝑓(1) = 𝑝 and 𝑓(0) =

1 − 𝑝, and then 𝑋 follows a Bernoulli distribution with parameter 𝑝. It is already obvious to 

see that Kupiec frequency test is basically a binomial test, the way of coding violations and 

non-violations are exactly 0 and 1, and binomial distribution is the set of all Bernoulli 

variables. There are a set of variables 𝑋1, 𝑋2, … 𝑋𝑛, and if these n variables are independent 

Bernoulli random variables with parameter 𝑝, then 𝐵 = ∑ 𝑋𝑖
𝑛
𝑖=1  has a binomial distribution 

with parameters 𝑝 and 𝑛. 

 

 

6.3.2. Normal distribution 

 

Normal distribution is frequently employed in financial models, and it plays a central role in 

the science of financial econometrics. This paper studies few volatility weighted historical 

simulation models, and these models are derived from both the normal distribution and 

student t-distribution. Hence, it is necessary to give some brief information of these two 

models. The normal distribution function can be expressed as f(z) =
1

√2πσ2
e^(−

(z−μ)2

2σ2 ), and 

we say that  Z follows a normal distribution with mean equals μ and variance is σ2, which can 

be written as Z~N(μ, σ2). 

 

 

6.3.3. Student t-distribution 

 

As mentioned above, there is another distribution commonly used in financial models, namely 

student t-distribution. To compare with the case of normally distributed, the financial returns 

usually exhibit fat tails, or excess kurtosis, which are better explained by student t-

distribution. It is thus meaningful to detect whether the loss series of energy resources is more 

likely to follow t-distribution. The student t-distribution function can be expressed as T =
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Z

√ξ/J
. We say that T follows a t-distribution with J degrees of freedom (T~tJ), if ξ follows a 

chi-square distribution with J degrees of freedom ( ξ~χJ
2) and Z follows a standard normal 

distribution (Z~N(1,0)). 

 

 

6.4. AUTOCORRELATION FUNCTION AND PARTIAL AUTOCORRELATION 

FUNCATION 

 

The autocorrelation function (ACF) can be expressed as  𝜌𝑘 =
𝑐𝑜𝑣(𝑌𝑡,𝑌𝑡−𝑘)

𝑉(𝑌𝑡)
=

𝛾𝑘

𝛾0
, where 𝑉(𝑌𝑡) 

is the variance of the 𝑌𝑡, and 𝛾𝑘 is the 𝑘th-order autocovariance that is depend only on the 

distance in time between two observations. Hence, the mathematical expression of the 𝑘th-

order autocovariance can be expressed as 𝛾𝑘 = 𝑐𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝑐𝑜𝑣(𝑌𝑡−𝑘, 𝑌𝑡). And when t=0, 

𝛾𝑘 = 𝑐𝑜𝑣(𝑌𝑡, 𝑌𝑡) = 𝑉(𝑌𝑡). The 𝑘th-order partial autocorrelation function (PACF) for AR(K) 

model is simply the estimated coefficients 𝜃𝑘. 

 

 

6.5. THE BRIEF DEVIATION OF ARCH(1) MODEL  

εt = vt√α0 + α1εt−1
2   

E[εt
2|εt−1, εt−2, εt−3 … ] = E[vt

2(α0 + α1εt−1
2 )| εt−1, εt−2, εt−3 … ]                                         (*) 

E[εt
2|εt−1, εt−2, εt−3 … ] = E[vt

2] ∗ E[α0 + α1εt−1
2 | εt−1, εt−2, εt−3 … ]    (**) 

E[εt
2|εt−1, εt−2, εt−3 … ] = α0 +  E[α1εt−1

2 | εt−1, εt−2, εt−3 … ]                                            (***)  

ht
2 =  E[εt

2|εt−1, εt−2, εt−3 … ] = α0 + α1εt−1
2          (****)         

 

The step * is because of εt = vt√α0 + α1εt−1
2  ; and the next step ** is based on the 

assumption that vt and εt−1 are independent; the third step ***  can be obtained by E[vt
2] = 1; 

and the final step we denote ht
2 as the conditional variance at time 𝑡 for simplicity.  
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