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Abstract

A multi-antenna base station (BS) can spatially multiplex a few terminals over
the same bandwidth, a technique known as multi-user, multiple-input multiple-
output (MU-MIMO). A new idea in cellular MU-MIMO is the use of a large
excess of BS antennas to serve several single-antenna terminals simultaneously.
This so-called "massive MIMO" promises attractive gains in spectral efficiency
with time-division duplex operation. Within a cell, the BS estimates the channel
from mutually orthogonal reverse-link pilot sequences to formulate a receiver for
the reverse link and (assuming reciprocity) a precoder for the forward link. The
channel coherence is typically constrained in time as well as frequency, leading
to a trade-off between the resources spent on pilots and those available for data
symbols. This pilot overhead can be reduced by reusing pilot sequences in nearby
cells, however this potentially introduces interference in the channel estimation
phase, the so-called "pilot contamination" effect.

In this thesis, we study the impact of pilot contamination in realistic environ-
ments and investigate schemes to mitigate it. We evaluate the mean squared error
(MSE) of channel estimates in case of a plain-vanilla least-squares (LS) estimator
and a minimum MSE (MMSE) estimator that exploits prior knowledge of second-
order channel statistics. Next, we introduce a pilot open-loop power control (pilot
OLPC) scheme to improve the SINR-fairness of received pilot signals at the BS.
We evaluate the effect of relaxing the pilot reuse factor and also implement a soft
pilot reuse (SPR) scheme to distribute pilot sequences efficiently. To study the
trade-off between pilot and data symbols, we evaluate the achievable rate in for-
ward link with maximum-ratio and zero-forcing precoding at the BS. We evaluate
an inter-cell coordination scheme that exploits prior knowledge of all cross-channel
covariance matrices to reuse pilots among spatially well-separated terminals.

We simulate a 21-cell MU-MIMO setup with up to 100-antenna BSs and up
to 24 single-antenna terminals per cell in an outdoor urban macro environment.
We find that pilot reuse 1 causes severe impairment of the channel estimates,
which can be improved with pilot OLPC. Pilot reuse 1/3 effectively mitigates pilot
contamination, and can improve the achievable rate in the forward link. SPR also
mitigates contamination but with a smaller increase in pilot overhead. Inter-cell
coordinated pilot allocation, implemented using a greedy approach, provides gains
over random allocation only for the initial few pilots. In general, maximum ratio
precoding is more robust against pilot contamination than zero-forcing.
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Chapter 1

Introduction

Wireless technology has become the primary enabler of mobility and ubiquitous
network access over the past decade. The demand for higher peak data rates
and anytime, anywhere connectivity has been driving the rapid developments in
cellular technology. There is a need to serve a host of data-intensive applications
dominated by video streaming, real time services like navigation, and graphics-
heavy social media interfaces on hand-held devices. Over the past decade multi-
input, multiple-output (MIMO) has emerged as one of the prime technologies
for achieving high data rates and spectral efficiency in wireless communication
systems. The latest wireless communication standards rely on MIMO air interface
to achieve cost-effective deployment of gigabit links in wireless local area networks
as well as commercial cellular networks. However, the gains with MIMO are
achieved at the cost of increased processing complexity and hardware costs. The
rapid developments in hardware technology over the past decade have acted as
enablers for MIMO by facilitating large-scale production of low-cost chips with
small form factors. The current state of the art in cellular technology (LTE Release
10) allows for 8 antenna ports at the base station (BS) and an equal number of
antenna ports at the terminal. Research efforts to develop a technology that
increases spectral efficiency while the bulk of processing complexity is handled at
the BS has led to the evolution of massive MIMO. This solution aims to scale
the BS array size to hundreds of antennas and spatially multiplex a few tens of
terminals, which can increase cell throughput by an order of magnitude while
improving energy efficiency and simplifying radio access.

1.1 Background

Two major challenges to communication over a wireless channel of given bandwidth
are: fading, the variation of signal power over time and interference caused by other
devices transmitting over the same bandwidth at the same time. These factors
affect the signal to interference-and-noise ratio (SINR) at the receiver and place
an ultimate limit on the achievable rate (R) with an arbitrarily low error rate. In
case of Gaussian distribution of the thermal noise and interference power, R has
been shown to increase linearly with the bandwidth and logarithmically with the
SINR.

The rate of information transmitted per unit bandwidth is known as the spec-
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4 Introduction

tral efficiency of a link. Since spectrum is a limited and expensive resource, spec-
tral efficiency is one of the most important metrics to keep in mind while deploying
a cellular system (another crucial metric being energy efficiency which we discuss
briefly later in the thesis). Since spectral efficiency only grows logarithmically with
the SINR, a large increase in signal power might result in only moderate gains in
the spectral efficiency of the link. Furthermore as signal power increases, the inter-
ference caused on other links increases proportionally, limiting the improvement
of spectral efficiency of the overall system. Clearly, we need alternate means to
improve the spectral efficiency, either by reducing the interference or by creating
additional orthogonal channels within the given spectrum.

The key approach used by MIMO to improve spectral efficiency is by (i) pro-
cessing signals coherently at multiple transmitter/ receiver ports to improve the
received signal power (array gain, diversity), (ii) interference cancellation, or (iii)
transmitting independent data streams over spatially separate links (spatial mul-
tiplexing) [1]. These approaches are complementary, and the optimal approach
in terms of maximizing R depends on the several factors. In a cellular scenario
where the BS serves a multitude of UEs over the same time-frequency resources,
spatially separated streams can be used to transmit/receive data to/from each
terminal. This technique is termed multi-user MIMO (MU-MIMO), also known
as space division multiple access (SDMA). With excess degrees of freedom at the
BS array, spectral efficiency of MU-MIMO can increase linearly with the number
of terminals served under the usual channel conditions.

To achieve gains in R with MU-MIMO, the BS requires fairly accurate knowl-
edge of the forward- and reverse-link channels for each terminal. A common ap-
proach for estimating a channel is by transmitting a known sequence of symbols
(a "pilot sequence") and noting the effect of the channel on this sequence at the
receiver. The channel estimate is useful only over limited time and frequency in-
terval over which the channel can be assumed constant, known as its coherence
interval. Obtaining channel state information (CSI) constitutes an overhead, since
the resources spent on obtaining CSI limits the amount of resources available for
receiving or transmitting data within the coherence interval. This trade-off be-
tween pilot and data resources is an important research problem to determine the
optimal parameters for maximizing the cell throughput.

The addition of more antennas at the BS enables it to focus the signal into
smaller regions of space at the location of desired terminal, thus improving the re-
ceived signal power and mitigating interference. This motivates the investigation
of asymptotically infinite number of antennas at the BS in a multi-cell system,
and evaluation of its impact on the R [2]. It is found that in the case of infinitely
many antennas, the system throughput and energy efficiency increases dramati-
cally. The effects of noise and interference vanish with simple linear processing,
and theoretically the performance is only limited by the contamination of channel
estimate as a result of reusing the pilots across cells.
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1.2 Thesis Contributions

The problem of pilot contamination has received widespread attention within the
ongoing study of massive MIMO [3][4]. Theoretical analysis has identified pilot
contamination as the fundamental limit on the throughput of massive MIMO sys-
tems [2]. With this thesis, our aim is to evaluate the scenarios under which pilot
contamination becomes a significant problem in realistic systems, and study tech-
niques that mitigate its impact. We simulate a multi-cell network in an urban
layout, where the elevated BS in each cell serves a number of outdoor terminals
moving at vehicular speeds.

First, we investigate the worst-case pilot contamination scenario, when the
same set of mutually orthogonal pilot resources are reused in each cell. We evalu-
ate a least-squares (LS) channel estimator that allows for simple implementation
and does not require any prior knowledge of channel statistics. We observe that
this approach leads to significant contamination of channel estimates. Next, we
investigate a minimum mean square error (MMSE) channel estimator assuming
perfect knowledge of channel covariance matrices. We find that the MMSE esti-
mator improves the channel estimates, albeit with significantly higher complexity.

Next, we implement a pilot open loop power control (pilot OLPC) scheme to
improve the SINR-fairness of received pilot signals at the BS. We observe that this
scheme improves LS channel estimates for several terminals, while also reducing the
total transmit energy. A simple technique to further mitigate pilot contamination
is to use orthogonal pilot sequences in nearby cells. We find this scheme provides
nearly contamination-free channel estimates, at the cost of higher pilot overhead.
The trade-off between using more resources for pilot-based channel training versus
data is evaluated in terms of per-cell sum rate. To reuse pilot resources more
efficiently, we develop a soft pilot reuse scheme and note the impact on the rate.

Finally, the performance of MMSE channel estimator can be improved by
reusing pilots among spatially well-separated terminals. This can be accomplished
by exploiting the information in channel covariance matrices and slow-rate inter-
cell coordination. We investigate this technique in context of a greedy allocation
algorithm, and observe that it surprisingly does not provide overall rate gain when
compared with random pilot allocation.

1.3 Thesis Organization

In Ch. 2, we describe the cellular model in the context of this thesis and present
an overview of the wireless channel and multiple antenna techniques. Also, we
describe MU-MIMO operation and summarize the theoretical underpinnings of
massive MIMO. In Ch. 3, we discusses pilot-based channel estimation techniques
and describe the issue of pilot contamination in multi-cell systems. We investigate
the pilot-data trade-off and arrive at an expression for the achievable rate per
terminal and the per-cell sum rate. In Ch. 4, we describe methods to combat pilot
contamination and the conditions under which each technique is expected to give
most gains. Ch. 5 presents the simulation setup and numerical results of proposed
methods. The thesis concludes with key takeaways and discussion of potential
future work in Ch. 6.
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Chapter 2

Cellular Communication with Multi-user

MIMO

In Sec. 2.1, we introduce the wireless propagation environment in context of an
urban macro setup (elevated BS in an urban area serving terminals located upto
several hundred meters away) that is studied in the rest of the thesis. We observe
that with multiple scatterers and mobile terminals, the channel may be assumed
approximately constant only over a limited time and bandwidth. We discuss the
standard channel models that are used for simulation studies, and discuss the
channel correlation at elements of an antenna array. Next, in Sec. 2.2 We sum-
marize multiple antenna techniques to improve spectral efficiency, and explain
the MU-MIMO setup. Moreover, we present expressions for linear, forward- and
reverse-link processing at the BS. Finally in Sec. 2.3 we introduce the concept of
massive MIMO as an natural extension of the MU-MIMO setup. We conclude this
chapter with an outline of the challenges with massive MIMO and the practical
scenarios where it might be feasible to implement such a system.

2.1 The Wireless Channel

Radio signals propagate through space in the form of electromagnetic waves. The
radio wavefront spreads out with distance, attenuating the power density of the
signal. In addition, outdoor channels contain several interfering objects (scatter-
ers) such as trees, buildings and vehicles that cause the signal to be absorbed,
reflected, or diffracted (Fig. 2.1). The interaction of scatterers with radio signal
leads to multiple propagation paths between the transmitter and the receiver, with
each path having a different propagation delay and attenuation.

In free space, the attenuation of signal power is solely on account of expan-
sion of the signal wavefront and is known as free-space pathloss. In the far field
of the transmitting antenna, the free space pathloss is described by an inverse
square law, which implies that the power density of the signal decreases with the
square of distance from transmitting antenna (pathloss exponent of 2). During
transmission over a ground plane, as is normally the case with cellular systems,
part of the radio signal gets reflected by the earth’s surface and interferes with
the primary wavefront. For such a scenario, the power density decreases with a
pathloss exponent of 4. In practical urban environments, the pathloss exponent is
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8 Cellular Communication with Multi-user MIMO

found to be between 2.5 and 6, depending on the topography and environmental
factors such as foliage, moisture content etc. [5]

Large scatterers like buildings, hillocks etc severely attenuate the radio signal,
creating shadow zones that span an area much larger than the wavelength of the
signal carrier. This phenomenon of shadow fading causes large-scale attenuation
for the duration that the terminal remains within the shadow of the scatterer.
However, the wavefront undergoes diffraction at the edges of the scatterer, and
some fraction of signal power is available to the terminal even when the primary
wavefront might be completely obstructed. In a typical urban setup, the are
several large structures that might cause this kind of fading during communication
with a mobile terminal. Practical measurements have found that the logarithm
of attenuation caused by shadow fading from several scatterers closely follows a
normal distribution, so it is also known as lognormal fading.

Figure 2.1: Radio Propagation

Scattering causes the signal to arrive at the receiving antenna via several paths,
with each path having a unique attenuation and phase shift. These multipath com-
ponents (MPCs) add up constructively or destructively at the receiver, depending
upon their path length. The fading due to superposition of multipath components
varies with distances of the order of a few wavelengths and is therefore called
small-scale fading. If there is a large number of uncorrelated scatterers and no
line of sight, as is usually the case in heavily built-up urban areas, the in-phase
and quadrature components of the received signal with small-scale fading can
be assumed to follow independent zero-mean Gaussian distributions, also called
Rayleigh fading.

The received signal power varies significantly with different spatial locations
on account of fading. In an urban setup, the scatterers or the receiver might be in
motion with respect to the transmitter, causing variations in the received signal
with time. This movement causes Doppler shift in the frequency of MPCs, which
is discussed in the next section. The combined effect of pathloss, large- and small-
scale fading, and Doppler shift is the primary challenge in communication over a
wireless channel. Several techniques have been devised over the past decades, and
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intense research is ongoing for improving the throughput and reliability. We study
a promising technique that, under certain assumptions and channel conditions,
promises attractive gains over existing wireless systems.

Channel Coherence

The small-scale fading introduced above is caused by superposition of MPCs which
interfere constructively or destructively depending upon their phase at the receiver.
The phase shift of the ith multipath component from initial phase ψ0 is directly
proportional to its path length ∆i and the frequency of operation fc,

ψi − ψ0 =
2π∆ifc

c
, (2.1)

where c is the speed of light in air.
It follows that in a multipath channel, the instantaneous phase shift of MPCs

and hence the small scale fading varies with frequency. The bandwidth over which
the channel can be assumed approximately constant is called its coherence band-
width Bc. If Bc is less than the signal bandwidth, the channel is said to be
frequency selective, otherwise it is frequency flat. The coherence bandwidth is in-
versely proportional to root mean square (RMS) of path lengths, ∆, and can be
approximated as

Bc ≈
c

∆
. (2.2)

If a scatterer or the receiver is moving relative to the transmitter, the fre-
quency of the corresponding MPC undergoes a Doppler shift. The magnitude of
Doppler shift depends upon the carrier frequency and the velocity of the receiver
relative to the incoming wavefront. Superposition of components with independent
Doppler shifts results in broadening of the spectrum of the received signal. This
phenomenon, known as frequency dispersion, causes the channel response to vary
with time (time-selective fading). The channel can be assumed approximately con-
stant only over a coherence time Tc that is inversely proportional to the velocity
v and can be approximated as

Tc ≈
c

4vfc
. (2.3)

In outdoor urban environments the channel between a BS and a mobile ter-
minal suffers from both frequency and time selectivity. This places limits on the
duration and bandwidth over which the channel can be assumed approximately
constant, known as its coherence interval (Fig. 2.2). The channel estimates ob-
tained via training are valid only within this interval, and can be the exploited by
the multi-antenna BS for improving the SINR at the receiver. For communication
over the Long-Term Evolution (LTE) forward-link grid, the coherence interval can
be measured in terms of coherent time-frequency elements. A single element in
this grid consists of a symbol of duration 71.4 µs and a bandwidth of 15 kHz. The
number of coherent time- and frequency-resources τc is then obtained as

τc =

(
Bc

15kHz

)(
Tc

71.4µs

)
. (2.4)
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Figure 2.2: Coherence interval over a LTE forward-link grid

We approximate the value of τc for some usual and extreme scenarios in Ta-
ble 2.1. In case of an urban macro environment, typical distance between the BS
and the cell border is of the order of several hundred meters. We Assume that the
worst-case difference in path length of MPCs is due to reflections at the cell border,
causing frequency selectivity as discussed above. We assume a ∆ of 1667 m for our
analysis, which gives an integral value of Bc = 180 kHz at an operating frequency
of 2 GHz. We evaluate τc at several terminal speeds, ranging from pedestrian
(5 kmph) to vehicular (50 kmph), and extreme speeds (250 kmph). We observe
that at 2 GHz, τc is expected to be approximately 500 and 250 resource elements
for medium and high vehicular speeds respectively. This is relevant from an ur-
ban macro scenario, to set conservative limits on the assumed channel coherence
interval.

In the LTE forward-link grid, the symbols for each terminal are stacked onto or-
thogonal subcarriers using a N = 12-point IFFT operation, generating an OFDM
symbol that spans N subcarriers and in frequency 71.4 µs in time. A set of 7
consecutive OFDM symbols is known as a resource block (RB). Communication
with each terminal is scheduled by allocating them one or more RBs in a given
time interval [6]. An RB pair therefore comprises 14 OFDM symbols spanning
14 × 12 = 168 time-frequency elements, which is that largest number of RBs for
which channel can be assumed coherent at 2 GHz and vehicular speeds. In the
rest of this thesis, we assume forward- and reverse-link transmission over a channel
coherence interval of a LTE RB pair.

fc = 1GHz fc = 2GHz fc = 6GHz fc = 15GHz

pedestrian τc = 10000 τc = 5000 τc = 1600 τc = 600

10 km/h τc = 5000 τc = 2500 τc = 800 τc = 300

50 km/h τc = 1000 τc = 500 τc = 160 τc = 60

100 km/h τc = 500 τc = 250 τc = 80 τc = 30

250 km/h τc = 200 τc = 100 τc = 32 τc = 12

Table 2.1: Impact of carrier frequency and terminal speed on channel coherence



Cellular Communication with Multi-user MIMO 11

Channel Models

Actual wireless channels are complex and difficult to represent accurately. For
simulation studies, empirical models have been developed based on extensive mea-
surements that approximate the most common communication scenarios. In gen-
eral, the channel coefficient between a transmit and receive antenna is modeled
by a complex random variable that models pathloss, shadowing and small-scale
fading effects described previously. The instantaneous magnitude and phase of
the channel coefficient represents the amplitude and phase of channel’s frequency
response respectively.

For simulation studies, spatial channel models (SCMs) have been developed by
the 3rd generation partnership project (3GPP) and international telecommunica-
tion union (ITU) that model various urban and rural propagation scenarios. The
ITU-R IMT-Advanced channel model is a stochastic model based on the scenario
geometry [7]. The model includes information about angle of arrival (AoA) as well
as angle of departure (AoD), the so-called double-directional channel model [8].
It specifies the directions, amplitudes and phases for several rays (plane-waves)
instead of spatial location of the scatterers. The instantaneous parameters are
determined stochastically based on statistical distributions extracted from actual
channel measurements for several well-known scenarios. The location, geometry
and pattern of antennas can be decided according to specific scenario of the sim-
ulation study. These rays are superimposed at the location of antennas in the
simulation setup, and the effects of delay, power, and angular parameters are eval-
uated to obtain the channel coefficients at several instants in time. Moreover, the
superposition of rays produces the effects of correlation between antenna elements,
temporal fading and Doppler spectrum at the transmitter as well as at the receiver.

The urban macro model (UMa) targets coverage for pedestrian and vehicular
users, with non-line of sight (NLOS) as the dominant mode of propagation. The
predominant scatterers are buildings, which are usually assumed to be placed in
a Manhattan-grid layout. The mobile terminal is assumed to be located outdoors
at ground level, while the BS is elevated to a height greater than the buildings in
the vicinity. The detailed expressions for pathloss are provided by the ITU model
in [7], and are used to simulate the scenario along with other parameters in Ch.
5.

We consider a setup with L time-synchronized cells containingK single-antenna
terminals each. The BS in each cell is equipped with an M -antenna array that
communicates with the terminal using N -subcarrier OFDM over the same time-
frequency interval. The mathematical analysis is independent of the BS array
geometry. Later, we simulate a uniform linear array (ULA) as a suitable can-
didate for deployment in an urban macro scenario. The complex propagation
coefficient for nth subcarrier between mth BS antenna in the jth cell and kth ter-
minal in lth cell can denoted as gnmjkl, where n = {1, 2, ..., N}, m = {1, 2, ...,M},
j = {1, 2, ..., L}, k = {1, 2, ...,K}, and l = {1, 2, ..., L}.

Spatial Correlation

The complex channel coefficient between mth BS antenna in the jth cell and kth

single-antenna terminal within the same cell can be simplified to gmjk, where we
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drop the dependence on subcarrier index n for simplicity. We denote the M ×K
channel matrix between the BS and terminals of the jth cell by Gj ,

Gj = [gj1,gj2, ...,gjK ], (2.5)

where gjk = [g1jk, g2jk, ..., gMjk]
T ,

and gjk is the M × 1 channel vector between the BS and the kth terminal within
that cell. The channel characteristics described in Sec. 2.1 present Rayleigh dis-
tribution as a model for small scale fading. If the conditions for this model are
valid, gmjk can be modeled as a zero mean, circularly symmetric complex Gaussian
(ZMCSCG) random variable. Additionally, if the signal at each antenna is uncor-
related, the elements of gjk are independent and identically distributed (i.i.d.) and
the channel is said to be spatially white.

E{gmjkgnjk} = 0 if m 6= n, (2.6)

gjk = gw,

where gw is the spatially white channel.
The correlation of the signal across an antenna array depends upon the angular

spread of its MPCs and the antenna spacing. If the angular spread is large, a
smaller antenna spacing is sufficient to ensure uncorrelated signal at each antenna
element. A mobile terminal in a typical urban setup receives signal from scatterers
located in several directions. Therefore, antenna spacing as low as 0.5λ might be
enough to ensure uncorrelated signals, but the number of antennas is limited by
the terminal size. For an elevated BS, the required spacing is usually of the
order of several tens of wavelengths due to narrow angular spread [9]. The spatial
correlation between elements of gjk can modeled using its M × M covariance
matrix Rjk,

gjk = R
1/2
jk gw, (2.7)

Rjk = E{gjkg
H
jk},

where H represents conjugate and transpose (Hermitian) operator. The off-diagonal
elements of Rjk model the correlation between the antenna elements, while the di-
agonal elements model pathloss. The covariance matrix varies slowly as compared
to small scale fading and can be approximated from the channel estimates. The
knowledge of spatial channel correlation can be exploited for improvement in sev-
eral areas such as channel estimation [10], cell selection [11] and transmit/receive
beamforming [12].

2.2 Multi-user MIMO

In the first three generations of cellular technology, the BS served multiple termi-
nals by separating them in time, frequency or code. Each terminal was assigned
a unique fraction of spectrum resources for communication over the forward- and
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reverse- links, to minimize intra-cell interference. A multi-antenna BS opens up
the spatial dimension that allows it to discriminate the signals to/from each ter-
minal based on its location, known as MU-MIMO. This enables each terminal to
use all available spectrum resources, improving the throughput without the need
for additional (expensive) resources. The hardware cost involved with MU-MIMO
is the need to place additional BS antennas at the locations where we wish to
transmit/receive the signal. Thus, the available spatial degrees of freedom at the
BS are limited by the number of antennas.

A multi-antenna transmitter can precode the signal with a complex weight
vector such that the radiated energy from each antenna adds constructively or de-
structively in desired directions. This approach, called transmit beamforming, can
be used to maximize the signal power at the receiver or place nulls in the direction
of interferers. The optimal beamforming weights depend on the instantaneous
amplitude and phase of the channel. Analogously, a multi-antenna receiver may
exploit channel knowledge for receive beamforming to maximize signal power and
minimize the interference power.

The MU-MIMO setup of interest consists of a BS with M antennas serving
K single-antenna terminals (K ≤ M), over the same time-frequency resources.
The BS exploits channel knowledge for transmit and receive beamforming to cre-
ate spatially separate data stream for each terminal. The data streams function
as independent SISO links under favorable channel conditions, and can linearly
increase the spectral efficiency with the number of terminals served. However, the
benefits of this spatial multiplexing in terms of spectral efficiency critically depends
on the array size and the accuracy of channel estimates at the BS. We consider
a multi-cell time-synchronized network where the BS in each cell spatially mul-
tiplexes several single-antenna terminals. We assume that the jth BS has access
to channel estimates ĝjk for all the k terminals it serves, k ∈ {1, 2, ...,K}. The
techniques to obtain these estimates are the subject of Ch. 3. We consider only
linear precoders/receivers within the context of this thesis.

(a) SISO (b) MU-MIMO

Figure 2.3: Forward-link data transmission
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Forward-Link Data Transmission

In the forward link, the BS broadcasts the signal to each terminal over a shared
channel, leading to intra-cell interference. The degrees of freedom at the BS can
be exploited to increase the received signal power at each terminal, or reduce the
interference. The forward link of the MU-MIMO cell is characterized by an M×K
channel matrix Gj introduced in Sec. 2.1. The BS constructs its (noisy) version

of the channel matrix, Ĝj = [ĝj1 ĝj2 ... ĝjK ] using the channel estimates. The
data symbols to be transmitted to each terminal are denoted by a K×1 vector aj .
The BS precodes the data vector with a weighing matrix Wj as shown in Fig. 2.4.
The signal transmitted from the BS can then be expressed as

yj =

√
PBS

MK
Wj




aj1
aj2
...

ajK


 , (2.8)

where Wj = [wj1 wj2 ... wjK ],

K∑

k=1

‖wjk‖ = 1,

and PBS is the total BS transmit power over the channel bandwidth. The data
symbols are assumed to be unit-power and ‖ ‖ denotes the Euclidean norm of a
vector, and the Frobenius norm of a matrix.

The weight vectors are designed to satisfy some requirements on the received
signal power or interference at each terminal. Maximum ratio transmission (MRT,
also known as conjugate beamforming) is an approach that focuses transmitted
signal power to the location of desired terminal, while not considering its impact
on interference at rest of the terminals. MRT is therefore an SNR-maximizing
technique. On the other hand, zero-forcing (ZF) design places nulls at the location
of rest of the terminals to minimize interference at those terminals. However, it
transmits the signal in all other directions, a fraction of which may be received by
the desired terminal. In general, MRT is preferable for noise-dominated regime,
while ZF is preferred for high-SNR regime where interference dominates the SINR.

The weight vectors for MRT transmission are given by Eq. 2.9, where ∗ denotes
complex conjugation. This design matches the kth weight vector to the channel
between the BS and the corresponding terminal, thus maximizing the received
signal power. A fraction of the transmitted signal power also appears at the
lth (6= k) terminal, depending on the inner product between the kth weight vector
and the channel for the lth terminal. The power allocated to each link is normalized
such that the total BS transmit power remains unchanged. The terminals close
to the BS have significantly stronger links and are therefore allocated a higher
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fraction of the total transmit power, compared to cell-edge terminals.

wMRT
jk =

ĝ
∗
jk

‖Ĝj‖
, (2.9)

wZF
jk =

ĝ
†
jk

‖Ĝ
†

j‖
. (2.10)

The ZF weight vectors are described by Eq. 2.10 where ĝ
†
jk is the kth column

of the pseudo-inverse matrix Ĝ
†

j given by Ĝ
†

j = (Ĝ
H

j Ĝj)
−1Ĝ

H

j , and −1 denotes

matrix inversion. With this design, the kth weight vector steers nulls to the location
of each lth (6= k) terminal to minimize interference, while transmitting everywhere
else. If the kth terminal is located close to any lth terminal, the received power is
small compared to spatially separate terminal placement.

Figure 2.4: Forward-link data transmission with precoding in MU-MIMO

The received signal at a terminal suffers from intra- and inter-cell interference.
As discussed above, the magnitude of intra-cell interference depends on the precod-
ing technique. Also, a larger M implies a more number of elements in the weight
vector and consequently, more effective precoding. We stack the data symbols
received by the terminals of jth cell in a K × 1 vector xj ,

xj = GT
j yj +

L∑

l=1,l 6=j

GT
jlyl + nj , (2.11)

where T is the transpose operator, Gjl is the M ×K channel between terminals of
the jth cell and the lth BS, and nj is the thermal noise at each terminal. The first
term in Eq. 2.11 includes the desired signal as well as the intra-cell interference
and the second term accounts for inter-cell interference from the L− 1 other cells.

In Eq. 2.12, we present the forward-link SINR ΓFL
jk at kth terminal of the

jth cell. The numerator is proportional to the received signal power. The first
and second terms of the denominator are proportional to intra- and inter-cell
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interference respectively. The last term corresponds to for thermal noise at the
terminal, and accounts for the proportionality constant PBS

MK for all terms.

ΓFL
jk =

|gT
jkwjk|2

∑
i6=k |g

T
jkwji|2 +

∑
l 6=j

∑K
i=1
|gT

lkwli|2 +
σ2
n
MK

PBS

. (2.12)

Reverse-Link Data Transmission

The reverse link of a MU-MIMO setup is a multiple access channel, since all
terminals transmit data over co-channelly. The BS separates the combined signal
from all terminals by their spatial signatures. In case of synchronized multi-cell
transmission, the signals from other cells contribute to the interference at every
BS. The signal received at jth BS is given by

xj =
√
PTGjaj +

√
PT

L∑

l=1,l 6=j

Gjlal + nj , (2.13)

where PT is the transmit power assumed equal for all the terminals, al is the vector
of symbols transmitted by terminals in the lth cell, and nj is the thermal noise at
the BS. The first term in Eq. 2.13 models the composite signal from all terminals
received at the BS, and the second term corresponds to the inter-cell interference.

The BS processes the received signal to maximize the SNR over each link
(maximum ratio combining, MRC) or reject the interference from other links in
the cell (zero forcing, ZF receiver). The formulations for these receivers is given
by Eq. 2.14 and Eq. 2.15 respectively.

ZMRC
j =

Ĝ
H

j

‖Ĝj‖
, (2.14)

ZZF
j =

Ĝ
†T

j

‖Ĝ
†

j‖
. (2.15)

The advantages and drawbacks of each technique are analogous to the forward-
link transmission. The schematic for reverse-link data transmission is shown in
Fig. 2.5. It is worth noting here that the receiver noise at the BS is usually less
compared to the terminals, because of higher precision components and better
control over the ambient temperature. In this thesis, we focus on the forward-link
data transmission in terms of effective SINR and throughput. The extension to
reverse-link is straightforward and left for further work.
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Figure 2.5: Reverse-link data transmission and decoding in MU-MIMO

Note that we have assumed perfect reciprocity of the channel in the preced-
ing discussion of forward- and reverse- link data transmission. The propagation
channel fulfills reciprocity in the absence of scatterers with unusual magnetic prop-
erties. However, the receiver chains at the BS and the terminals are not reciprocal
in general, and have to be calibrated to satisfy this condition.

In addition to the linear processing techniques discussed above, there exist
non-linear methods like successive interference cancellation, dirty paper coding,
etc. that have been shown to improve the performance for small MU-MIMO
systems at the cost of additional complexity.

2.3 Massive MIMO

The MU-MIMO technology has been incorporated in LTE Release 8 and further
standards, with a maximum of 8 BS antennas expected to serve roughly an equal
number of terminals with FDD operation [13]. The overhead of channel estimation
in such a system grows rapidly with the number of BS antennas, making it non-
scalable. A recent proposal in MU-MIMO research is the deployment of a large
excess of BS antennas as compared to the number of terminals served, termed
"massive MIMO" [14]. This technique promises spectacular gains in spectral and
radiated energy efficiency over the traditional point-to-point MIMO systems. Un-
der TDD operation and the assumption of channel reciprocity, the BS can estimate
forward- and reverse-link channels using reverse-link pilot sequences. The num-
ber of orthogonal pilot resources scales as the number of terminals served, and
is independent of the BS array size. Extra BS antennas are cost-free in terms of
pilot resources, and have been shown to always improve the channel estimates in a
single-cell setup with linear MMSE estimation [2]. However in a multi-cell setup,
the pilot sequences need to be reused by terminals in nearby cells and potentially
contaminate the channel estimates.

The BS in a massive MIMO system exploits the large number of degrees of
freedom to focus sharp beams towards the terminals using simple linear processing.
As the size of BS array increases without bound, the channel vectors for the
terminals become asymptotically orthogonal. Optimal performance can then be
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achieved with maximum ratio transmission/combining in the forward/reverse links
respectively. The narrow beams to each terminal suppresses intra-cell interference,
so the required transmit energy per bit vanishes. The dominant impairment to
communication is the inter-cell contamination of channel estimates during pilot-
based training [14].

A practical massive MIMO system is expected to have up to several hundreds
of BS antennas serving a few tens of terminals [15]. The envisioned of the BS
is to spatially multiplex the terminals over all available time-frequency resources,
increasing the spectral efficiency by an order of magnitude over current systems.
The burden of processing complexity lies with the BS that allows high data rates
to be achieved even for cheap, single-antenna terminals. The universal time and
frequency reuse reduces the overhead of scheduling, simplifying the multiple-access
layer. At the same time, the energy efficiency increases by an order or more
of magnitude. The low transmit power at the BS antennas can be served by
hundreds of low-cost linear amplifiers instead of the traditional high-cost, ultra-
linear amplifiers operating at relatively high output powers. The additional degrees
of freedom at BS can be used to place nulls in the direction of interferers, improving
the SINR.

The massive MIMO system faces several challenges in its implementation,
though the solutions for most of them are available at least in theory. The ma-
jority of current LTE systems rely on FDD operation, which is intractable from
the perspective of massive MIMO. Even with TDD operation, channel reciprocity
is a simplifying assumption that is not expected to hold in practice. However,
calibration methods exist that can make the forward and reverse links approxi-
mately reciprocal and facilitate massive MIMO. The gains with MRT/MRC de-
pend on the orthogonality of channel responses to different terminals, which set
the conditions for favorable propagation. Recent studies point out that favorable
propagation might be achievable even for moderate antenna sizes in practice [16].
The resources available for channel estimation are fundamentally limited by the
coherence interval. In a multi-cell setup, these resources have to be reused across
cells, leading to pilot contamination. The impact of pilot contamination on real
systems is hotly debated, and is the topic of this thesis.



Chapter 3

Pilot-Based Channel Estimation

In a MU-MIMO setup, the BS jointly precodes data for all served terminals in
the forward link, and jointly decodes the reverse link. The BS relies on good
channel knowledge to create spatially multiplexed data streams for each terminal
for joint encoding/decoding. In Sec. 3.1, we introduce the concept of pilot symbols
and note their use in context of current LTE systems. We study frequency- and
time-division duplex (FDD and TDD) operation in the context of the LTE frame
structure, and its impact on the overhead of channel estimation. Next, in Sec. 3.2
we study common channel estimation techniques while employing reverse-link pilot
sequences. We investigate the LS and MMSE approaches in a multicell MU-
MIMO setup and develop metrics for comparing their performance. In Sec. 3.3,
we introduce the problem of pilot contamination and its impact on forward-link
MU-MIMO transmission. We derive the expression for achievable rate for forward-
link transmission assuming a finite channel coherence interval, while taking into
consideration the overhead of channel estimation.

3.1 Channel Training Using Pilot Symbols

A common technique for channel estimation is to transmit a known sequence of
symbols (pilots) and evaluate the effect of the channel on these symbols at the
receiver [17]. In LTE, these symbols are known as reference symbols. In the
forward link, the BS periodically transmits cell-specific reference signals (CRS)
that are used by terminals for initial acquisition, CQI measurement and channel
estimation for coherent detection. These CQI values may be reported to the BS
over a control channel which uses it for closed-loop power control, rate adaptation
and scheduling [6]. The terminals may transmit reference signals as well, for
coherent demodulation of the reverse link at the BS. In case of MU-MIMO, the
BS requires fairly accurate channel estimates for coherent processing of the forward
and reverse links.

19
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FDD vs TDD operation

The forward- and reverse-link transmissions in current LTE systems are duplexed
over time (TDD) or frequency (FDD) to minimize self-interference1. In TDD
mode, the links occupy the same frequency band but are assigned different slots
in time, while in FDD they occupy non-overlapping frequency bands that allows
simultaneous transmission and reception at the BS.

In the reverse link of both TDD and FDD, each terminals transmit pilot sym-
bols that is orthogonal to other terminals within the cell to minimize intra-cell
interference. The channel between a terminal and each BS antenna is estimated
using the received pilot symbols from the corresponding terminal. Therefore, the
required pilot resources depends on the number of terminals, but is independent
of the number of BS antennas. This is particularly attractive for massive MIMO
systems, where the BS array size is expected to be an order of magnitude larger
than the number of terminals (M >> K). Moreover, TDD offers a distinct ad-
vantage: the estimates in the reverse link are valid for the forward link as well,
albeit with some calibration [19]. However in FDD, the BS has to obtain forward
link estimates separately, that increases the channel estimation overhead.

Figure 3.1: Forward-link channel estimation overhead for FDD and TDD operation
modes

The forward-link channel may be estimated at the terminals using mutually
orthogonal pilot transmissions from each BS antenna. The number of required

1Recently, a so-called "full duplex" technique for simultaneous transmission and re-
ception over the same frequency band has been proposed and demonstrated, though it is
still far from standardization [18]
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time-frequency indices is therefore proportional to M . Each terminal reports the
M × 1 channel vector over the (spatially multiplexed) reverse link, consuming ad-
ditional resources proportional to M . The estimation and feedback adds latency
before the BS can use them for multiplexing the forward-link data, which scales
proportional to M . Therefore in a massive MIMO system, FDD is generally infea-
sible using the pilot-based training schemes. Some alternative methods have been
proposed that estimate the forward link from the eigenvalues of the reverse-link,
which are untested in practical systems as yet [20][21].

3.2 Channel Estimation in the Reverse Link

We assume that the kth terminal in every jth cell, j ∈ J synchronously transmits
a pilot sequence sk comprising τ pilot symbols,

sk = [sk1 sk2 ... skτ ]
T , (3.1)

∑

i

‖ski‖ = τPT.

The M × τ signal received at the jth BS due to transmission of the kth pilot
sequence is given by

Xjk =
∑

l∈J

gjkls
T
k + Nj , (3.2)

where gjkl is the M × 1 channel vector between jth BS and the kth terminal in

lthcell, and Nj is thermal noise at the BS, modeled as white Gaussian. Since we
assume the pilot signals within a cell to be mutually orthogonal, we can safely
ignore the reception of all other pilot sequences si, i 6= k at the BS during this
analysis.

3.2.1 LS Estimation

The LS approach to channel estimation seeks to minimize the squared error be-
tween the received pilot sequence and its noise-and-interference free version [22].

The LS estimator determines a channel estimate, ĝ
LS
jk such that its distance from

the actual channel is minimized,

ĝ
LS
jk = argmin

g

‖Xjk − gsTk ‖
2. (3.3)

Let E = ‖Xjk − gsTjk‖
2

, (Xjk − gsTk )
H(Xjk − gsTk )

= (XH
jkXjk − s∗kg

HXk −XH
jkgsTk + s∗kg

HgsTk ), (3.4)

where we have utilized the following vector properties:

(a + b)H = aH + bH ,

abH = bHaH ,

(aT )H = a∗.
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To obtain the LS channel estimate, we can minimize E by setting its partial
derivative with respect to gH to 0. The received signal and the channel are assumed
to be deterministic and hence constant with respect to gH .

∂E

∂gH
= 0

Utilizing the value of E from Eq. 3.4 and taking partial derivative, we get

Xjks
∗
k − gsTk s∗k = 0. (3.5)

ĝ
LS
jk = Xjks

∗
k(s

T
k s∗k)

−1

= gjk +
∑

l∈J ,l 6=j

gjkl +
Njs

∗
k

τPT

, (3.6)

where ĝ
LS
jk is the LS channel estimate for the kth terminal in the jth cell.

The LS estimator has low complexity and treats the channel coefficients as a
deterministic variable to obtain a "best-fit" estimate from the observed pilot signal.
It makes no prior assumption about the channel statistics, and due to its simple
implementation it the most common approach to channel estimation in practice.
Another class of estimators exist that treat the channel as a stochastic variable, and
exploit some prior knowledge of the channel statistics. These so-called Bayesian
estimators have a higher complexity, but potentially perform better than the LS
estimator in terms of the MSE of channel estimation. We study one particularly
common Bayesian estimator, the MMSE estimator, in the next section.

MMSE Estimation

In Sec. 2.1, we described the spatial correlation of a channel across an antenna
array. The spatial information of a terminal, contained in its channel covariance
matrix, varies slowly compared to the small-scale fading. The MMSE estimator
exploits the prior knowledge of covariance matrices to improve the channel es-
timates, by amplifying the signal from spatial direction of desired terminal and
attenuating the interferers [22]. We derive the MMSE estimator in Appendix 7.1,
and just present the final expression here.

ĝ
MMSE
jk = Rjk

(
σ2

nIM + τ
∑

l∈J

Rjkl

)−1

SH
k xjk. (3.7)

where xjk = vec(Xjk),

Sk = sk ⊗ IM ,

and Rjk is the M ×M covariance matrix of the channel between the jth BS and
the kth terminal in corresponding cell. Rjkl is the covariance matrix of the channel
between the jth BS and the kth terminal in the lth cell, and ⊗ denotes Kronecker
product. The rank of the covariance matrices depends upon the angular spread
of corresponding channel. A full-rank covariance matrix corresponds to a wide
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angular spread, implying that the array cannot effectively resolve the angular lo-
cation of the transmitter. On the other hand, a low rank indicates narrow angular
spread. The accuracy of the MMSE estimator depends on the overlap of the an-
gular spread of interfering terminals. In case of large angular spread and several
terminals, there may be significant overlap and the performance of MMSE estima-
tor suffers. However if the angular spreads do not overlap significantly, the MMSE
estimator can be shown to eliminate the pilot interference almost completely [23].

We observe that theoretically, the MMSE estimator has significantly higher
implementation and processing complexity than the LS estimator. It requires the
knowledge of all cross-channel covariance matrices at all BSs, that must be esti-
mated prior to MMSE channel estimation. In practice, this imposes significant
overhead and additional latency on the system. To reduce this overhead, we can
assume that the interference from terminals located more than a few cells away
to be negligible and not estimate the corresponding cross-channel matrices, at
the cost of slightly poorer estimator performance. In terms of processing require-
ments, the complexity of M ×M matrix inversion required during evaluation of
MMSE estimate is proportional to the cube of array size, and may be especially
problematic for massive MIMO systems.

Normalized MSE

In Ch. 5, we evaluate the performance of the LS and MMSE estimators in terms of
the squared error of estimated channel coefficients. A useful metric for this analysis
is the MSE of channel estimates, where the expectation taken over several channel
realizations,

Mjk , E{‖ĝjk − gjk‖
2}. (3.8)

On the one hand as the array size increases, the MSE increases because of
additional channel coefficients that have to be estimated. On the other hand,
additional antennas improve the processing at the BS for forward and reverse
links, even with imperfect channel estimates. It is therefore useful to normalize
the MSE with the BS array size. Moreover, we are interested in the estimation
error as a fraction of the channel gain - a small error for a poor channel is more
significant than a relatively larger error for a strong channel. Combining these two
requirements, we normalize the MSE with respect to expected channel gain and
evaluate the estimators in terms of the normalized MSE (NMSE), ηjk defined as

ηjk ,
E{‖ĝjk − gjk‖

2}

E{‖gjk‖
2}

. (3.9)

3.3 Pilot Contamination

As discussed in Sec. 2.1, the channel estimates obtained above are useful only
within the coherence interval, after which the channel must be estimated again.
Moreover, the maximum number of mutually orthogonal pilot sequences is fun-
damentally limited by τ which must be smaller than number of coherent time-
frequency elements, τ ≤ Ncoh. Within a cell, the K terminals always use orthog-
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onal pilot sequences to eliminate intra-cell pilot interference (τ ≥ K). However
depending on the value of Ncoh, these sequences may have to be reused in other
cells, which leads to inter-cell interference. In Eq. 3.2, we observed the effect of
this interference on the received pilot signal, known as the "pilot contamination"
effect (Fig. 3.2). In particular, we found that the received pilot signal is contami-
nated with the transmissions from terminals in l ∈ J , l 6= j cells reusing the same
sequence. The worst-case pilot contamination occurs when each cell reuses the
same set of mutually orthogonal pilot sequences.

Figure 3.2: Contamination of reverse-link pilot signal due to reuse of pilot
sequences in other cells

During forward-link transmission, pilot contamination adversely affects the
precoding weight vectors for the kth terminal. In case of MRT precoding dis-
cussed in Sec. 2.2, the BS uses the channel estimates to focus signal energy at the
location of the kth terminal. Due to the contaminated channel estimates, some
of the transmit power leaks towards the kth terminals in other cells belonging
to J , attenuating the signal power at the desired terminal. Moreover, this leak-
age appears as focused interference at the these terminals, decreasing their SINR
(Fig. 3.3). Thus, the impact of pilot contamination on forward-link data trans-
mission with MRT precoding is twofold: the signal power lost for desired terminal
appears as sharply focused interference at other terminals that reuse the same
pilot sequence!
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Figure 3.3: Effect of pilot contamination on forward-link data transmission with
MRT precoding

Achievable Forward-link Rate

We have derived the forward-link SINR ΓFL
jk for the kth terminal of the jth cell in

(2.12), assuming TDD operation and perfect channel reciprocity. Here, we derive
the achievable per unit bandwidth over the LTE forward-link grid. We assume
Gaussian data symbols and interference, which implies a rate proportional to the
logarithm of 1+ΓFL

jk . The OFDM symbol duration Ts in LTE consists of the data
symbol and a cyclic prefix TCP that protects against inter-symbol interference.
Assuming Ncoh coherent time-frequency resources, we allow Npilot resources for
channel estimation. The rate can then be obtained as

Rjk =

(
Ncoh −Npilot

Ncoh

)(
Ts − TCP

Ts

)
log

2
(1 + ΓFL

jk ) bits/s/Hz, (3.10)

Rj =
K∑

k=1

Rjk, (3.11)

R̄ =

∑L
l=1
Rj

L
, (3.12)

where Rjk is the forward-link achievable rate for kth terminal in jth cell, R̄j is the
sum rate for jth cell and R̄ is the per-cell sum rate of the network.
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Chapter 4

Techniques to Mitigate Pilot Contamination

In a massive MIMO system, the pilot resources are designed to be orthogonal
within a cell, but are reused by terminals in other cells. The reuse of pilots in
nearby cells causes interference during the channel estimation phase, known as pilot
contamination and has been studied in [24]. We discussed this problem in detail
in Ch. 3, and it has been investigated in the context of massive MIMO systems
in [25]. In this chapter, we study techniques to mitigate pilot contamination in
massive MIMO systems and analyze the scenarios under which they are effective
in improving the channel estimation.

4.1 Pilot Open-Loop Power Control

The average received power of a pilot signal at the BS depends on the pathloss
and transmit power of the mobile terminal. Furthermore, a terminal located closer
to the BS usually has a lower pathloss, and hence a higher signal power at the
BS. The terminals at cell-edge usually have a higher pathloss and therefore a low
signal power even while transmitting at their maximum power. This makes them
susceptible to interference from non-orthogonal pilot transmissions in neighboring
cells. On the other hand, terminals close to the BS enjoy a reduced pathloss,
resulting in a better SINR. The impact of interference on reverse-link pilot signals
is shown in Fig. 4.1.

Transmit power control in the reverse link, commonly known as uplink power
control, is an important technique for the management of shared radio resources.
We study a pilot open loop power control (pilot OLPC) scheme that allows the
terminal to adjust the transmit power of its pilot signal based on its estimate of
the pathloss to its serving BS. The terminal estimates pathloss from forward-link
reference signal and tries to match a network-wide desired pilot signal strength at
the BS [26]. This technique balances the received pilot SNR at the serving BS of a
terminal with the interference generated at neighboring BSs. Pilot OLPC attempts
to maximize SNR fairness of pilot signals for cell-edge terminals by compensating
for their additional pathloss. This pathloss compensation has the intended effect of
reducing overall pilot interference in the network at the cost of SNR degradation
for terminals located close to the BS.

Power control in LTE is a combination of open- and closed-loop techniques
[27]. OLPC provides a coarse operating point for the terminal power in terms of

27
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transmit power per RB. With closed-loop power control, the BS sends periodic
power increment/decrement messages based on the SINR estimates, that defines
a tighter short-term operating point. Power control is dependent only on the
large-scale fading for the corresponding terminal, and hence is quite simple to
implement. The operating points and compensation factor rely on existing and
standardized measurements. Here, we ignore closed-loop power control and focus
on the transmit power set by OLPC. The open-loop operating point for transmit
power per RB depends on two factors: (i) a semi-static base level, P0, assumed to
be same across the network, and (ii) an open-loop pathloss compensation compo-
nent. The kth terminal in the jth cell estimates forward-link pathloss Ljk and sets
its transmit power Pjk according to the formula

Pjk = min(P0 + α · Ljk, Pmax) + 10 log
10
M,

where α is the pathloss compensation factor, Pmax is the maximum terminal power
per RB and M is the number of allocated RBs. α = 1 implies full pathloss
compensation, ensuring maximum fairness for the cell edge terminals. The value
of P0 depends on the SNR target at the BS for channel estimation, usually set
between 5 and 15 dB.

In presence of OLPC, the terminals with strong channel conditions at the BS
back-off their transmit power reduce their SNR to the desired level. In the process,
they reduce their interference power at all nearby BSs by the same factor. The
cell-edge terminals sharing the same pilot sequence continue to transmit at a high
power, improving their SINR as described in Fig. 4.1a. On the contrary, SINR for
a terminal located close to the BS degrades because of the attenuation of its signal
power with OLPC. The SINR of pilot signal depends with the accuracy of channel
estimates at the BS. With ’good enough’ channel estimates, the BS can improve
the per-cell sum rate using spatial beamforming in the reverse- and forward-links.
The gains in rate in a multi-cell setup with OLPC depend on the operating point
P0, the number of terminals in each cell and their distribution within the cells.

For our simulations, we assume that the BS and the terminals have perfect
knowledge of the pathloss and can accurately, independently determine the pilot
transmit power with OLPC. In practice, the terminal averages the pathloss es-
timates from forward-link pilots over 100-200 ms to average out the small scale
fading and calculate its pilot transmit power, which is periodically signaled to the
BS via uplink control channels for channel estimation. We assume the criteria for
goodness of channel estimates for spatial multiplexing as NMSE ≤ 0dB. At NMSE
= 0dB, the mean square error of channel estimation is equal to the average channel
gain, which implies that half of the transmitted signal power with maximum ratio
transmission is expected to be directed away from the desired terminal.
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(a) Pilot reuse at cell-edge and close to BS

(b) Pilot reuse by close cell-edge terminals

(c) Pilot reuse close to serving BSs

Figure 4.1: Reverse-link pilot SINR with all terminals transmitting at maximum
permissible power
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4.2 Less Aggressive Pilot Reuse

Full pilot reuse leads to maximum inter-cell interference during channel estimation,
which can be mitigated using a less aggressive pilot reuse factor. Pilot reuse is
analogous to the traditional frequency reuse in the sense that terminals within the
pilot reuse area can utilize only a fraction of the time-frequency resources, during
the channel estimation phase. However with pilot reuse, each terminal is free to
use all the available resources for communication for the rest of the coherence
interval. The pilot reuse factor 1/U is the rate at which pilot resources may be
reused in the network, where U is the number of cells that are assigned orthogonal
pilots. A factor U > 1 always reduces the pilot contamination effect by assigning
orthogonal pilots to neighboring cells, the next-neighbor cells and so on. The total
number of unique time-frequency elements reserved for pilot transmission are KU ,
where K is the number of terminals per cell.

The trivial case of pilot reuse is full pilot reuse with U = 1. In this case, we
reserve K time-frequency indices for pilot sequences as shown in Fig. 4.2a for K =
12. The indices might be located anywhere within the resource block without loss
of generality. We generate K orthogonal pilot sequences spanning these indices,
that are distributed at random or algorithmically among the terminals within each
cell. Since the cells are assumed to be synchronized, the pilot transmissions are
synchronized across cells as well.

(a) Pilot reuse 1 (b) Pilot reuse 1/3

(c) Pilot reuse 1/3 pattern

Figure 4.2: Time-frequency resources spent on pilots for K = 12 with reuse 1 and
1/3 respectively

Here we consider a less aggressive reuse factor in detail, where orthogonal
pilot sequences are assigned to interfering terminals in the adjacent cells. In case
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of hexagonal network layout, the smallest reuse factor that ensures orthogonal
pilots in adjacent cells is 1/3 using a reuse pattern as described in Fig. 4.2c. To
implement this reuse factor, we require 3K time-frequency resources to generate 3
groups of K mutually orthogonal pilot sequences each. We allocate a pilot group
to each cell according to the reuse pattern, and the pilots within that group are
distributed to the terminals as in the case of full pilot reuse. Similarly, we can
define pilot reuse schemes for U = 4, 7, 9 etc. that successively reduce the pilot
contamination. A larger U implies a larger distance r between cells using the same
set of pilot sequences.

Clearly, a higher value of U improves the channel estimates but at the cost
of an increased overhead of pilot resources, limiting the resources available for
data within a coherence interval. The improved estimates are used for better
forward- and reverse-link beamforming at the BS to serve multiple terminals via
spatial multiplexing. Thus, there exists a trade-off between the accuracy of MU
beamforming and the resources available for spatially multiplexed data. It is worth
noting here that since received interference power varies inversely with rγ , γ > 1,
there is smaller successive gain in terms of pilot contamination as we increase U .
Instead, a larger pool of pilot sequences might be utilized for serving additional
terminals within each cell with a conservative pilot reuse factor, at the cost of
poorer spatial multiplexing.

Soft Pilot Reuse

The received power in the reverse link depends on the transmit power of the ter-
minal and also its location with respect to the BS. A cell-edge terminal usually
has poor SNR at its serving BS and causes higher interference at nearby cells,
than a terminal located far from the cell edge. If two cell-edge terminals from
different cells are located close to each other and share the same pilot sequence,
they suffer from significant pilot contamination (Fig. 4.1b). On the contrary, ter-
minals located close to the BS are robust against interference from other cells
(Fig. 4.1a, 4.1c). The pilot reuse scheme described above, though attractive on
account of simple implementation, gives equal priority to all terminals while as-
signing pilot sequences. We develop a soft pilot reuse (SPR) scheme that mitigates
pilot contamination by assigning additional orthogonal pilot resources to cell-edge
terminals.

We reserve a fraction of pilot resources for the cell-edge terminals in all cells,
that are assigned with a less aggressive reuse factor 1/UE. The terminals close
to serving BS are expected to cause less interference and follow a reuse factor
1/U, U < UE. The BS classifies ρK terminals with the lowest SNR as being at the
cell edge, where ρ ≤ 1 is a network-wide parameter. The remaining terminals are
assumed to be closer to the BS and less sensitive to inter-cell interference. The
total pilot resources spent on cell-edge terminals is therefore ρK · UE. Similarly,
the number of resources utilized for pilot transmission by the rest of the terminals
is (1 − ρ)K · U .

We consider the situation when half the terminals are classified as cell-edge
terminals (ρ = 0.5) that reuse pilots with UE = 3. The other half of the terminals
are assumed better insulated from inter-cell interference and have a pilot reuse
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factor U = 1. The reuse pattern is shown in Fig. 4.3. The total number of time-
frequency indices spent on pilots is therefore 0.5K ·3+(1− 0.5)K ·1 = 2K, so this
scheme can also be described as "1/2 SPR". In contrast, pilot reuse 1 and 3 involve
an overhead of K and 3K coherent resources respectively. During simulations, we
evaluate the per-cell sum rate to benchmark SPR against these (relatively) simpler
schemes while accounting for the pilot overhead.

Figure 4.3: Distribution of pilot sequences with soft pilot reuse (SPR)

We assume that the BS has perfect knowledge of reverse-link SNR for each
terminal it serves. In practice, the terminal estimates the forward-link pathloss
and reports it along with its transmit power to the BS over a control channel. This
adds some amount of inaccuracy and latency during pilot assignment. Moreover
since the terminal positions change with time, the pilots need to be reassigned
based on updated SNR information. These overhead make the SPR scheme less
tractable than simple pilot reuse. However with short coherence intervals or for
a large number of terminals, the pilot resources can become quite expensive, and
SPR can be of advantage. With SPR, the pilot contamination between cell-edge
terminals is effectively mitigated. As such, the terminals close to the BS might
become dominant cause of interference, especially if they transmit at maximum
power. In this case, OLPC can be incorporated to further reduce contamination
as discussed in the previous section.

4.3 Inter-cell Coordinated Pilot Allocation

In an urban macro scenario, small scale fading causes significant channel variation
with time in the order of a few milliseconds. However, a terminal’s angular location
with respect to the BS changes relatively slowly, in the order of a few seconds. The
spatial information of the terminal is characterized by the second order statistics of
its channel vector, known as the covariance matrices and introduced in Ch. 2. The
MMSE estimator discussed in Ch. 3 exploits prior knowledge of channel covariance
matrices to amplify the desired signal and attenuate the interference and noise. If
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the terminals are well-separated in space such that the angular spread of incoming
signals at the BS do not overlap, the MMSE estimator is effective at rejecting the
interference signal with a large enough array. This motivates devising a technique
to assign pilot sequences to spatially well-separated terminals.

A slow-rate, inter-cell coordinated pilot assignment (CPA) algorithm that in-
vestigates this approach has been proposed in [23]. CPA relies on all cross-channel
covariance matrices being available at all BS. This information is used to evaluate
a closed-form expression for the expected channel estimation error when a given
set of terminals reuse a pilot sequence. A greedy algorithm iteratively assigns pi-
lots in every cell to the terminal that minimizes this error. We now describe the
CPA algorithm in detail.

We assume that K orthogonal pilot sequences have to be assigned to the
terminals within a L−cell network with pilot reuse 1. The set of all terminals
reusing the kth pilot sequence is denoted by Uk. We use the network utility function
F (Uk) described in [23] as a measure of the pilot contamination,

F (Uk) =

|Uk|∑

j=1

Mjk

tr{Rjk}
. (4.1)

Mjk = tr

{
Rjk −R2

jk

(
σ2

n

τ
IM +

L∑

l=1

Rlk

)}
, (4.2)

where |Uk| is the cardinal number of the set Uk. Mjk is the expected MSE of
channel estimation for the terminal assigned kth pilot sequence in jth cell. A higher
value F (Uk) implies poor spatial separation of the terminals and consequently
higher contamination using the MMSE estimator. We utilize this property to
assign the pilots in each cell as described in Algorithm 1

Algorithm 1 CPA Algorithm

for k = 1, 2, ...,K do

Uk ← ∅
for j = 1, 2, ..., L do

κj = argmink∈G F (U ∪ {κj})
Uj ← Uj ∪ {κj}

end for

end for

Channel covariance matrices might be obtained in practice by taking expecta-
tion of the outer product of the channel estimate with its conjugate transpose over
several time instants. To obtain good statistics, accurate channel information is
required for tens or even hundreds of time instants. This leads to a significantly
higher overhead for the MMSE estimator as compared to the simple LS estimator.
Recently, methods that multiplex pilots with data have been shown to be efficient
in estimating covariance matrices with relatively low overhead. However, CPA
requires the sharing of all covariance matrices across the network with a slow rate,
adding to the overhead in the backhaul. Under the constraint of this overhead, the
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algorithm has been shown to completely eliminate interference, but only for the
initial terminal in a two-cell network in [23]. We evaluate CPA against random
allocation of pilots and MMSE estimation in a 21-cell network in Ch. 5.



Chapter 5
Simulation Setup and Numerical Results

In this chapter, we evaluate the pilot contamination effect and the performance
of the proposed mitigation schemes in a massive MIMO system. In Sec. 5.1, we
describe the simulation setup and explain the choice of parameters. This setup
is used for the numerical evaluations in Sec. 5.2. First, we investigate the impact
of pilot contamination on channel estimation NMSE in case of full pilot reuse
(U = 1), when LS and MMSE estimators are used. Next, we evaluate the effect of
pilot OLPC on the NMSE at each terminal.

We then use the pilot-contaminated channel estimates for MRT and ZF pre-
coding. We evaluate the forward-link terminal SINR and the per-cell sum rate (R̄),
and compare it against perfect channel knowledge at the BS. Later in this section,
we evaluate the mitigation techniques discussed in Ch. 4 within our setup, and
discuss the results. A summary of evaluated techniques to analyze and mitigate
the impact of pilot contamination, and the performance metrics used, is presented
in Table 5.1. We evaluate the SINR and R̄ with MRT as well as ZF precoding for
all simulated scenarios.

U = 1 U = 3 U = 1/2 SPR U = 1, CPA

NMSE Fig. 5.2, 5.3b 5.9a - 5.14

SINR Fig. 5.5a 5.10a, 5.10b 5.13a -

R̄ Fig. 5.6, 5.8 5.11a, 5.11b 5.13b 5.15a, 5.15b

Table 5.1: Simulated techniques to analyze the effect of pilot contamination and
mitigation techniques on channel estimation and forward-link transmission

5.1 Simulation Setup

We simulate the ITU Urban Macro model described in [7]. The simulation area
comprises 7 three-cell sites, with hexagonally shaped cells. Each of the L = 21
cells is served by a time-synchronized BS with directional antenna array. The cells
at the edge of simulation area experience smaller inter-cell interference, since they
have less number of adjoining cells. Therefore, to approximate similar interference
conditions at all cells, we incorporate a virtual wrap-around of cells while gener-
ating the channel matrices [28]. The terminals are distributed randomly within
each cell except for an exclusion zone around the BS. The exclusion zone is used

35
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to ensure that forward- and reverse-link communication happens in the far field
of transmitting antenna, and plane waves can be assumed at the receiver, for
which the channel model is valid. We assume that the terminals move in random
directions with vehicular speeds.

Figure 5.1: LTE forward-link RB pair

We assume that the channel matrix between a BS and the terminals is recipro-
cal in the forward and reverse links, which are duplexed in time (TDD operation).
All communication is using OFDM symbols over the LTE forward-link grid shown
in Fig. 5.1. This grid comprises OFDM symbols with useful symbol duration 66.7
µs and a guard interval of 4.76 µs. Each OFDM symbol is spread over 12 subcar-
riers spaced 15 kHz apart. We assume that the channel remains constant during
the entire coherence interval (block fading channel).

We now evaluate the coherence interval for our scenario. In Eq. 2.2, the path
length of MPCs is of the order of inter-site distance (500 m). We use conservative
value of ∆ = 1500, that leads to coherence bandwidth Bc = 180 kHz (12 subcar-
riers). In Eq. 2.3, the relative speed of a wavefront with respect to its receiver is
of the order of terminal speeds (60 kmph) since the BS is fixed. We assume con-
servative value of v = 250 kmph at the given carrier frequency of 2 GHz, leading
to a coherence time Tc = 1 ms (14 OFDM symbols). These dimensions of the
coherence interval (14 OFDM symbols × 12 subcarriers) corresponds to a LTE
RB pair [6].

We consider a single drop for each simulation run, implying that except fast
fading, all other random properties do not change during the simulation (e.g.
location of terminals, slow fading, angle of arrival etc) [7]. We obtain the channel
matrices between each BS and terminal at 40 time instants at intervals of 10 ms.
The channel coefficients are obtained at the same frequency, and are assumed to
be constant over the 12 subcarriers of a RB. We use these channel realizations to
estimate the covariance matrices in case of MMSE estimation.

Within a cell, all terminals are assigned an orthogonal pilot sequence, that
might be reused by terminals in other cells. Each pilot sequence is a vector con-
taining τ values that are stacked onto subcarriers of the OFDM symbols discussed
above. We obtain the kth pilot sequence from the corresponding column of a τ × τ
identity matrix. In practice, pilot sequences with good orthogonal separation and
lower peak-to-average (PAR) ratio may obtained from Zadoff-Chu sequences [6].
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The impact of non-orthogonal pilot sequences on contamination of channel esti-
mates is left for future investigation.

The links between the terminals and an elevated BS span a narrow range
of elevation angles, but wide range of azimuth angles. Therefore, we choose BS
antennas with wide horizontal beamwidth and narrow vertical beamwidth to serve
the terminals within its cell. Additionally, we use a uniform linear array (ULA)
geometry to allow good resolution in the azimuth [29]. The carrier wavelength
for our operating frequency of 2 GHz is λc = 15 cm. The corresponding size of a
100-antenna ULA with 0.7λc spacing is about 10 m, much larger than existing BS
deployments. In practice, such an array may be difficult to deploy and maintain.
Instead, we can expect that the physical size of the array might be substantially
reduced with a rectangular/semi-cylindrical geometry or by operating at higher
frequencies.

We assume full buffer operation, i.e. all the terminals have content to trans-
mit/receive at all times. This is a simplifying assumption, to focus on the effect of
pilot contamination on forward-link transmission to few tens of active terminals.
In practice, the traffic may be bursty, that allows the scheduling of additional
terminals. The parameters we use are summarized in Table 5.2. The BS antenna
elements are modeled according to specifications in [30], which may be deployed
in practice using Kathrein antennas.

Scenario ITU Urban Macro [7]

Network Deployment 21-cell hexagonal grid

Inter-site distance 500 m

Exclusion radius 35 m

Terminals per cell (K) {3,6,12,24}

Terminal speed 60 kmph

BS transmit power (PBS) 0.067W per subcarrier

Max. terminal transmit power (PT) 23 dBm over 20 MHz

Carrier Frequency (fc) 2 GHz

Subcarrier spacing 15 KHz

BS array 100-antenna uniform linear array (ULA)

Tilt 11◦

BS antenna Vertically Polarized

BS antenna spacing 0.7 λc
BS max. antenna gain 18 dBi

BS 3dB horizontal beamwidth 65◦

BS 3dB vertical beamwidth 6.5◦

BS antenna noise figure 5 dB

Terminal antenna Omnidirectional, Vertically Polarized

Terminal antenna noise figure 9 dB

Table 5.2: Simulation Parameters



38 Simulation Setup and Numerical Results

5.2 Results and Discussion

Channel Estimation with Full Pilot Reuse

We evaluate the impact of pilot contamination on channel estimation NMSE when
the same set of pilot sequences is reused (U = 1) in each of the L = 21 cells.
In this case, the pilot sequences are columns of a K × K identity matrix. Each
terminal within a cell is assigned a unique sequence randomly, eliminating intra-
cell interference. The terminals transmit at maximum permissible power level.
The BS uses LS/MMSE channel estimators described in Ch. 3 to estimate the
M ×K channel matrix from the received pilot signal.

In Fig. 5.2, we evaluate the NMSE for K = 12 terminals per cell. We observe
that in case of LS estimator (green curve), the NMSE for a large number of termi-
nals is higher than 0 dB. This happens for terminals with poor channel conditions
at the BS (typically cell-edge terminals), when the interfering pilot signal is strong.
In practice, these estimates are too noisy to be used for precoding at the BS, and
the terminals face an outage.

The MMSE estimator has access to spatial information and pathloss for each
terminal from the covariance matrices. It exploits this knowledge to reject inter-
cell pilot interference to improve the channel estimates for desired terminal (red
curves in Fig. 5.2). We observe that if a larger array is used (M = 100, solid
red), the MMSE estimator performs better compared to a smaller array (M = 10,
dashed red) because of increased spatial information. With the MMSE estimator,
the NMSE for most terminals is less than 0 dB, allowing effective precoding and
processing of data signals.
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Figure 5.2: CDF of channel estimation NMSE for all terminals. LS estimator gives
poor estimates for large number of terminals. Performance of MMSE estimator
improves with M (U = 1,K = 12).



Simulation Setup and Numerical Results 39

Next, we implement the pilot OLPC scheme described in Sec. 4.1 to back-off
the transmit power of potentially strong interferers. We keep the desired SNR of
received pilot signal at 10 dB and α = 1 (full pathloss compensation). The revised
pilot transmit powers with pilot OLPC are shown with a blue curve in Fig. 5.3a.
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(a) Pilot OLPC: Terminals with strong channels back-off their transmit powers to
improve SINR-fairness (desired pilot SNR at BS = 10 dB, α = 1)
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(b) CDF of channel estimation NMSE for all terminals. LS estimation with pilot OLPC
(blue) balances the NMSE compared to maximum-power pilots (green).

Figure 5.3: Impact of pilot OLPC on LS channel estimation NMSE (L = 21,M =
100, U = 1,K = 12)
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In Fig. 5.3b, we observe that the NMSE-fairness is improved with pilot OLPC
(blue curve), and the most LS channel estimates are good enough for precoding
(NMSE <0 dB). The corresponding CDF with MMSE channel estimation and
maximum-power pilots is shown with a red curve for reference. In rest of the
simulations, we always use pilot OLPC in case of full pilot reuse and LS estimator,
to ensure that the system is within operating range.

A note about transmit power fairness: while comparing NMSE in presence and
absence of pilot OLPC, we have to be aware of the difference in total power spent
on pilot transmission. With pilot OLPC, the transmit power of several terminals
is reduced, resulting in better energy efficiency and thus longer battery life. For
fair comparison in case of max. power transmission, we should reduce all terminal
powers such that the their sum becomes equal to that with pilot OLPC. However,
since the received pilot signal is limited by inter-cell interference, uniform reduction
of transmit power has little effect on the NMSE. We skip the numerical results
here, while noting the added benefit of energy efficiency with pilot OLPC.

We investigate the impact of BS array size on the linear average of NMSE for
all terminals in Fig. 5.4. We observe that the performance of the LS estimator
is independent of M , and average NMSE is significantly high (≈ 16 dB) in the
absence of pilot OLPC. This is because of the disproportionately large NMSE
for cell-edge terminals that dominates the linear average. We observe that the
performance of MMSE estimator improves withM , by exploiting additional spatial
information contained in larger covariance matrices (red curve).
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Figure 5.4: Linear average of channel estimation NMSE for all terminals. MMSE
estimation improves with M by effectively rejecting inter-cell pilot interference
(L = 21, U = 1,K = 12)
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Forward-link Precoding with Full Pilot Reuse

The channel estimates obtained above are used for precoding at the BS during
forward-link transmission. We assume that transmissions from all BSs are syn-
chronized, which is the worst-case scenario for forward-link SINR at the terminals.
In Sec. 2.2 we derived the weight vectors for two of the most common linear pre-
coders: MRT and ZF. Also, we obtained the expression for forward-link SINR at
the terminal in Eq. 2.12. Here, we evaluate the SINR for our setup, and ana-
lyze the impact of contaminated channel estimates on these precoding techniques.
We investigate the impact of contaminated channel estimates on the forward-link
SINR at the terminal when the M = 100-antenna BSs uses linear precoding in
each of the L = 21 cells. We employ full pilot reuse, pilot OLPC and LS channel
estimation.

In Fig. 5.5a, we compare the SINR for contaminated channel estimates (dashed
curves) with the knowledge of perfect CSI at the BS (solid curves) for different
values of K. In Sec. 2.2 we observed that with MRT precoding, the received signal
power attenuates due to leakage towards terminals reusing the same pilot sequence
in other cells. Moreover, this leakage adds to the inter-cell interference at each
terminal. In Fig. 5.5a, the degradation in SINR due to pilot contamination is
the horizontal distance between dashed and solid curves of the same color. We
observe that for K = {3, 6} (black and blue respectively), pilot contamination
causes a significant SINR degradation. As K increases to {12, 24} (red and green
respectively), the impact of contamination on SINR becomes less pronounced.
This is because for small K, a large BS array effectively mitigates the intra-cell
interference. Therefore, the SINR is dominated by inter-cell interference which is
directly affected by pilot contamination. However for larger values of K, the SINR
is dominated by intra-cell interference, and the effect of pilot contamination is less.

The effect of contaminated channel estimates on ZF precoding is shown in
Fig. 5.5b. Here again, the effect of pilot contamination is large when K is small,
which can be explained using the analysis of ZF precoding in Sec. 2.2. The ZF
weight vector causes the BS to place nulls in direction of interfering terminals, and
transmit the signal in all other directions. With pilot contamination, the channel
estimates contain spatial information of the terminals reusing a pilot sequence
in other cells. Therefore, the BS is implicitly forced to place nulls in direction
of these terminals. This means that the directions in which BS transmits are
reduced, attenuating the received signal power at desired terminal. With perfect
CSI, nulls are placed in K − 1 directions to avoid intra-cell interference. The pilot
contamination in case of small K introduces several ’new’ directions where the BS
places nulls, having a large impact on the SINR.
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(a) MRT precoding
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(b) ZF precoding

Figure 5.5: Impact of pilot contamination on forward-link terminal SINR with pilot
OLPC, LS estimation and linear precoding (L = 21, U = 1,M = 100)

We evaluate the forward-link per-cell sum rate R̄ in Fig. 5.6 using the SINR
values obtained above. As described in Sec. 5.1, we assume coherence interval of
a single LTE RB pair (14× 12 = 168 orthogonal resources). With full pilot reuse,
the number of resources reserved for pilot transmission is equal to K, and the
rest are available for data. In case of perfect CSI, we assume an equal amount of
pilot overhead for fair comparison with pilot contamination case. In Fig. 5.6a, we
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plot R̄ with MRT precoder described in Eq. 2.9 for different values of K and M .
We observe that pilot contamination causes more detriment in R̄ for larger M .
However even in the presence of pilot contamination, increasing the array size is
beneficial as it reduces the intra-cell interference.
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(a) MRT Precoding
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Figure 5.6: Effect of pilot contamination on forward-link sum rate (L = 21, U = 1).
The sum rate with LS and pilot OLPC (solid curves) is significantly lower than
without contamination (dashed curves) for both MRT and ZF. BS transmit power
per subcarrier is fixed at PB = 0.067W for all M and K
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In Fig. 5.6b, we evaluate R̄ with same parameters as above, but now imple-
menting a ZF precoder at the BS. A ZF precoder attempts to exploit the excess
degrees of freedom at the BS to cancel intra-cell interference. Therefore, it per-
forms better than MRT if there are ’large enough’ spatial degrees of freedom
at the BS. With the ZF precoder described in Eq. 2.9, we observe significant
improvement in R̄ when the array size is much larger than the number of ter-
minals served (M > 70). However, for a relatively small array serving a large
number of terminals, it leads to a loss in R̄ as compared to the MRT precoder
(M < 30,K = {12, 24}).

From these figures, we observe that the worst-case pilot contamination con-
sidered here (U = 1, time-synchronized BS) can be a significant impairment to
massive MIMO performance. The contamination-free achievable rate is less for
MRT precoding as compared to ZF. However, pilot contamination causes a larger
impact on ZF than MRT precoding, which results in comparable R̄ with both
techniques. The addition of more terminals allows more spatially multiplexed
data streams, but also increases the intra-cell interference. We observe that in
terms of R̄, increasing K gives progressively diminishing gains.

It is worth reiterating here that ZF performs better than MRT in high SNR
(interference-limited) regime. However, it has higher complexity than MRT since
it involves matrix inversion. In the presence of pilot contamination, simple MRT
processing in a massive MIMO system can effectively mitigate interference, and
approach ZF performance even at high BS transmit powers. The effect of different
BS transmit power levels on sum rate is shown in Fig. 5.7.
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Figure 5.7: Effect of BS transmit power on the performance of MRT and ZF
precoding. MRT performs better than ZF in the low-SNR regime. With
higher transmit power and pilot contamination, ZF slightly outperforms MRT
(L = 21, U = 1,K = 12,M = 100)
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Earlier, we investigated the MMSE estimator in terms of channel estimation
NMSE and found that it provides good channel estimates (NMSE<0dB) for ma-
jority of the terminals even in the absence of pilot OLPC. Here, we evaluate R̄ with
K = 12 and full pilot reuse, when MMSE channel estimates are used for linear
precoding. The R̄ with MRT precoding is depicted with blue curves in Fig. 5.8.
We observe that MMSE almost completely eliminates pilot contamination, and
the slight difference in R̄ as compared to perfect CSI could be because of noise
during pilot reception. On the other hand with ZF precoding (red curves), MMSE
actually leads to a degradation in R̄ as compared to LS estimates.
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Figure 5.8: Effect of channel estimation technique on sun rate. MMSE performs
better than LS with MRT , but under-performs LS with ZF. We use pilot
OLPC with LS to keep channel estimation error below 0 dB. (L = 21, U = 1)

Less Aggressive Pilot Reuse

An intuitive approach to reduce pilot contamination and thus improve channel
estimates is to incorporate a less aggressive pilot reuse scheme as discussed in
Sec. 4.2. The cost of this approach is a higher overhead of pilot resources which
limits the coherent resources available for forward- and reverse-link data transmis-
sion. In Fig. 5.9a, we evaluate the distribution of channel estimation NMSE for
LS estimator with U = 3 and K = 12 (red curve). We compare this against the
full pilot reuse scenario discussed above, with and without pilot OLPC (blue and
green curves respectively).

We observe that even without power control, the NMSE significantly improves
with U = 3. The NMSE for most terminals falls below 0 dB, implying they have
good enough channel estimates to be used for forward-link precoding and reverse-
link processing at the BS. We observe that even for U = 3, there is significant
variation in the NMSE across terminals in the absence pilot OLPC. We observe
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however, that this variation is the logarithmic scale with all values smaller than
0dB. In linear scale, the corresponding values of NMSE are quite small, and the
absolute variation is much smaller compared to U = 1. Thus with a less aggressive
pilot reuse, we might not need pilot OLPC at all, avoiding the associated overhead
described in Sec. 4.1.
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Figure 5.9: Effect of less aggressive pilot reuse on NMSE of LS channel estimation.
The pilot contamination is effectively mitigated, even in the absence of pilot
OLPC (L = 21,K = 12)
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In Fig. 5.10a and 5.10b, we investigate the forward-link SINR at the terminals
with U = 3 and LS channel estimation for K = 12. We observe that in case of
both MRT and ZF precoding, U = 3 almost completely removes the impact of
pilot contamination. This implies that the pilot contamination from adjacent cells
constitutes almost all of the SINR degradation in our massive MIMO setup.
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Figure 5.10: Effect of less aggressive pilot reuse on forward-link SINR at the
terminal. U = 3 almost completely eliminates the impact of pilot
contamination on MRT/ZF precoding (M = 100, L = 21,K = 12)
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Clearly, the gains in SINR with U = 3 are at cost of additional pilot over-
head, and we need to account for this while evaluating the system performance.
We investigate the pilot-data symbol trade-off in Fig. 5.11a and 5.11b, where we
illustrate the achievable rate per terminal with L = 21 and K = 12.
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Figure 5.11: Effect of less aggressive pilot reuse on forward-link rate per terminal.
The rate increases for our assumed coherence interval of 1 LTE RB pair
(L = 21,K = 12,M = 100)
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With U = 3, a total of 3K resources are reserved for pilot transmission, and
the rest are available for data. The first set of K pilot resources is allocated to
terminals within cells {1, 4, 7, ...}, the second set to cells {2, 5, 8, ...}, etc. We ob-
serve that for our assumed coherence interval of 1 LTE RB pair, the rate achieved
by each terminal increases. In other words, the gains of improved channel estima-
tion with U = 3 outweigh the additional pilot overhead. If the coherence interval
is larger, the fraction of resources wasted on pilots is reduced, leading to higher
rates. However for shorter coherence intervals or larger number of terminals, the
pilot-data trade-off may become unfavorable, and lead to a drop in performance.
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Figure 5.12: Per-cell forward-link sum rate for pilot reuse 1/3 with MRT/ZF
precoding (L = 21,K = 12)

In Fig. 5.12, we compare R̄ against different BS array sizes for U = 1 and 3,
and observe that the it benefits from less aggressive pilot reuse for all M .

Next, we evaluate the soft pilot reuse (SPR) scheme described in Sec. 4.2 in
the current setup. We implement a 1/2 SPR scheme that groups the terminals
based on the knowledge of their reverse link SNR while assigning pilots. The
terminals with strong channels to the BS (cell-center terminals) use same set of
pilots in each cell, UC = 1. The cell-edge terminals are expected to be at the risk
of higher pilot interference. Therefore, the terminals with lowest half of the SNR
are assumed to be at the cell edge and assigned a less aggressive pilot reuse factor
of UE = 3. The total number of resources used for pilot transmission are therefore
0.5KUC+0.5KUE = 2K. We evaluate the forward-link SINR at the terminals with
ZF precoding and 1/2 SPR in Fig. 5.13a. We observe that this scheme improves
the SINR as compared to full pilot reuse at the cost of K additional resources.
Also, it underperforms U = 3 scheme, that uses an additional K resources.
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(a) SINR, ZF precoding
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Figure 5.13: Forward-link SINR and rate for soft pilot reuse (SPR) with LS channel
estimation (L = 21,K = 12,M = 100)

To account for the difference in pilot overhead, we investigate the achievable
rate for each technique. In Fig. 5.13b, we compare the per-cell sum rate obtained
with 1/2 SPR against U = 1 and U = 3 with LS channel estimation and ZF
precoding. We observe that for the assumed coherence interval of 2 LTE RBs,
1/2 SPR improves the rate over full pilot reuse. This means that the reduction
in pilot contamination with 1/2 SPR trades off favorable with the increased pilot
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overhead. However, U = 3 provides additional improvement in rates over 1/2
SPR for all M . It must be pointed out however, that the rate depends on the
size of coherence interval and the number of terminals to be served. For a shorter
coherence interval or a larger number of terminals, the additional pilot overhead
with U = 3 might no longer remain favorable in terms of pilot-data trade-off.

Coordinated Pilot Allocation

The discussion till now has utilized random allocation of pilots to terminals within
each cell. With this, we have analyzed the pilot contamination effect and deter-
mined the conditions under which it can be mitigated using simple power control
and pilot reuse schemes. As briefly noted in Fig. 5.3, an MMSE estimator can
be used to obtain improved channel estimates by exploiting spatial information
contained in the cross-channel covariance matrices. Additionally, the covariance
matrices can be exploited for improved pilot allocation as discussed in Sec. 4.3.
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Figure 5.14: Avg. channel estimation NMSE for terminals reusing a pilot sequence.
CPA provides gains over random allocation only for the first few pilots.
(L = 21, U = 1,K = 12,M = 100)

We investigate the efficacy of this scheme in Fig. 5.14 for the L = 21-cell
setup, when the same set of K = 12 orthogonal pilot sequences are distributed
among the terminals within each cell. We plot the average NMSE for all termi-
nals allocated the first pilot sequence with a blue curve. We observe that in this
case, the average NMSE is significantly lower than that for random pilot alloca-
tion (red curve). This is because for the first pilot allocation, the CPA algorithm
scans all terminals and picks the most spatially well-separated terminals that reuse
this pilot sequence. Thus even for smaller array sizes, CPA is able to effectively
eliminate pilot contamination. However, we observe that the average NMSE for
last pilot allocation with CPA (green curve) is actually worse than random allo-
cation. This is because of the ’greedy’ allocation approach that picks the spatially
best-separated terminals in each iteration, leaving poorer choices for subsequent
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pilot allocations. Consequently, the last few pilots are forced to be allocated to
terminals that overlap significantly in the angular domain. We observe that for
larger M , random pilot allocation performs nearly as well as CPA as the channels
between a BS and the terminals become more orthogonal.
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(a) MRT precoding

20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

P
er

−
ce

ll 
su

m
 r

at
e 

(b
its

/s
/H

z)

Number of antennas (M)

 

 

LS: Random pilot allocation
MMSE: Random pilot allocation
MMSE: Coordinated pilot allocation
Perfect CSI

(b) ZF precoding

Figure 5.15: Per-cell forward link sum rate using MMSE estimator and coordinated
pilot allocation (CPA) (L = 21,K = 12)

In Fig. 5.15a and 5.15b, we evaluate the achievable rate CPA with MMSE
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channel estimation. We observe that for both MRT and ZF precoding, the CPA
technique does not provide any gains over random allocation in terms of sum rate.
For the terminals allocated the first few pilots using CPA, the achievable rate
certainly increases. However, these gains are offset by the poor channel estimates
and thus lower rate for terminals assigned the later pilot sequences. Therefore on
average for all pilot allocation in a cell, there is no improvement in sum rate by
using CPA.



54 Simulation Setup and Numerical Results



Chapter 6
Conclusions and Further Work

In this thesis, we investigated the impact of pilot contamination on reverse-link
channel training and forward-link transmission in L = 21 synchronous cells with up
to M = 100 antennas at the BS and up to K = 24 terminals per cell. We used the
LTE forward-link grid while assuming a coherence interval of 14 OFDM symbols
(1 ms) and 12 subcarriers (180 kHz). We evaluated the BS array size and number
of terminals for which pilot contamination may cause a significant impairment
in system performance. We developed low-complexity methods to mitigate this
effect, and compared it with a (high-complexity) inter-cell coordination technique.
The key findings of this thesis are summarized below:

1. The performance of LS channel estimator is independent of M , and aver-
age normalized mean square error (normalized MSE, or NMSE) of channel
estimation is significantly high (≈ 16 dB) in the absence of pilot power
control.

2. With pilot open loop power control (pilot OLPC) the NMSE-fairness is
improved, and the channel estimates for most terminals are good enough
for precoding (NMSE<0 dB).

3. The channel estimation performance of minimum MSE (MMSE) estimator
in terms of average NMSE improves with larger array size M , by exploit-
ing additional spatial information contained in the larger M ×M channel
covariance matrices.

4. For K = {3, 6} and maximum ratio transmission (MRT), pilot contamina-
tion causes a significant impairment in forward-link terminal SINR. As K
increases to {12, 24}, the impact of contamination on SINR becomes less pro-
nounced. This is because for small K, a large BS array effectively mitigates
the intra-cell interference. Therefore, the SINR is dominated by inter-cell
interference which is directly affected by pilot contamination. However for
larger values of K, the SINR is dominated by intra-cell interference, and the
effect of pilot contamination is less.

5. Similar to MRT, in the case of zero-forcing (ZF) precoding the effect of pilot
contamination is large when K is relatively small

6. Even in the presence of pilot contamination, increasing the array size is
beneficial in terms of per-cell forward link sum rate R̄ for both MRT and
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ZF precoding. However, the worst-case pilot contamination (pilot reuse
U = 1) degrades R̄ significantly compared to contamination-free channel
estimates for larger array sizes.

7. With perfect channel estimates, the performance of ZF increases dramati-
cally with the BS transmit power, while the performance of MRT remains
almost constant. However with pilot contamination, the R̄ with ZF satu-
rates quickly with high-enough BS transmit power.

8. The channel estimation NMSE improves dramatically with less aggressive
pilot reuse (U = 3), even in the absence of any pilot power control. The
NMSE for most terminals falls below 0dB, implying they have good enough
channel estimates to be used for forward-link precoding and reverse-link
processing at the BS.

9. In case of both MRT and ZF precoding, U = 3 almost completely removes
the impact of pilot contamination on forward-link terminal SINR, at the
cost of additional resources spend on pilot transmission.

10. For our setup, R̄ increases in case of U = 3 compared to U = 1. In other
words, the gains of improved channel estimation with U = 3 outweigh the
additional pilot overhead.

11. The 1/2 SPR scheme improves the forward-link terminal SINR as compared
to full pilot reuse, at the cost of K additional pilot resources.

12. The 1/2 SPR scheme improves R̄ as compared to U = 1. This means
that the reduction in pilot contamination with 1/2 SPR trades off favorable
with the increased pilot overhead. However, U = 3 provides additional
improvement in rates over 1/2 SPR for all M .

13. For the first few pilots allocations, inter-cell coordinated pilot allocation
(CPA) gives large NMSE gains over random pilot allocation. However for
the last few pilots the average NMSE is severely degraded in case of CPA.
This is because CPA works on a ’greedy’ approach that picks the spatially
best-separated terminals for first pilot allocation, leaving fewer choices for
rest of the pilots.

14. For both MRT and ZF precoding, the CPA technique does not provide any
gains over random allocation in terms of R̄.

Further Work

The study of massive MIMO systems is still in its initial stages, and there are sev-
eral interesting techniques that may be used to improve the system performance/
make it feasible to deploy in practice. We enumerate a few areas that are worth
exploring in the context of the work completed during this thesis.

1. In our discussion, we have assumed perfect orthogonality of the pilot se-
quences, which might not be true in practice. Additionally, it is interesting
to explore the case of non-orthogonal pilot sequences from the perspective
of fewer number of resources spent on channel estimation.
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2. We have identified that for forward-link transmission, the impact of pilot
contamination on rate is most pronounced for small number of served ter-
minals. It is interesting to determine the values of K and M under which
it is beneficial to adopt various mitigation techniques.

3. The current thesis focuses on the impact of pilot contamination on forward-
link transmission. It might be interesting to explore the reverse-link pro-
cessing of data signals at the BS as well, which is expected to have different
SINR characteristics.

4. The mitigation techniques discusses here can be used to formulate improved
receivers in the reverse link, that can be used for better subsequent channel
estimates.

5. We have considered simple MRT and ZF precoders, that are extreme ap-
proaches in the sense of maximizing the signal power or minimizing the
intra-cell interference. A mid-way scheme like regularized zero-forcing can
be explored in the context of massive MIMO as well.

6. CPA gives good channel estimation gains only for the first few pilots on
account of the greedy approach. It might be interesting to explore bet-
ter algorithms for pilot allocation, that give a result closer to the global
optimum.
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Chapter 7
Appendix

7.1 MMSE channel estimator

We assume that a pilot sequence sk of length τ symbols is assigned to the kth

terminal in each of the L cells. The received signal at jth BS due to transmission
of this sequence is given by Eq. 3.2, and can be expanded to

Xjk =
[
gjk1 gjk2 . . . gjkL

]




sk1
sk2
...
skτ


+ Nj . (7.1)

We stack the received signal, the channel and the noise into column vectors xjk,
gjk and nj respectively. The equation can then be represented as

xjk = Skgjk + nj , (7.2)

where Sk is the pilot matrix obtained by taking Kronecker product of the pilot
sequence with an identity matrix of size M , i.e.

Sk = [sk1 ⊗ IM sk2 ⊗ IM . . . skτ ⊗ IM ] . (7.3)

The MMSE estimator for channel in the jth cell is then given by [22][23]

ĝ
MMSE
jk = RjkS

H
k

(
Sk

(
L∑

l=1

Rjkl

)
SH
k + σ2

nIτM

)−1

xjk. (7.4)

Applying the matrix inversion identity A(I + BS)−1 = (I + AB)−1A, we obtain
a simplified expression for the MMSE estimator, we get

ĝ
MMSE
jk = Rjk

(
σ2

nIM + τ
∑

l∈J

Rjkl

)−1

SH
k xjk. (7.5)
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