
Packet Ray Tracing with the ARM 
NEON Architecture

Gustaf Waldemarson

MASTER’S THESIS | LUND UNIVERSITY 2014

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884 
LU-CS-EX 2014-34



 



Packet Ray Tracing
with the

ARM NEON Architecture

Gustaf Waldemarson
ada09gwa@student.lu.se

October 7, 2014

Master’s thesis work carried out at ARM Sweden AB.

Supervisor: Johan Grönqvist, Johan.Gronqvist@arm.com

Examiner: Michael Doggett, mike@cs.lth.se

mailto:ada09gwa@student.lu.se
mailto:Johan.Gronqvist@arm.com
mailto:mike@cs.lth.se




Abstract

The ray tracing algorithm has long been used to create near photorealistic im-
ages and even simple ray tracers can simulate effects such as shadows, reflec-
tions and refractions where other methods struggle. Today, the state-of-the-art
CPU ray tracers are typically those that are able to efficiently leverage data-
level parallelism at the instruction level by using SIMD extensions to allow
the processor to trace multiple rays simultaneously, rather than one at a time.

Within the ARM processor, the SIMD architecture is known as NEON and
it is used to speed up data-parallel applications such as multimedia decoding
and computer graphics. Thus, in this thesis we have investigated the imple-
mentation and performance of a ray tracer that utilizes the NEON architecture
to trace packets of rays similar to modern ray tracing frameworks. To deter-
mine the efficiency of it we also developed a single-ray tracer as a reference
and compared them in regard to both runtime and power consumption. In the
end, we found that the optimized ray tracer scales better and performs around
150 – 300% better than the reference single-ray tracer.

Keywords: Packet Ray Tracing, ARM, NEON, SIMD
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Chapter 1
Introduction

1.1 Outline
Ray tracing has been used for a long time to generate images that closely mimic what
happens in nature and can thus create almost photorealistic images. This imaging process
is however often very slow when compared to the rasterization algorithm and has thus
almost exclusively been used in offline rendering pipelines.

Despite the recent trend of using GPU:s to accelerate the computations, the most com-
mon compute unit in ray tracing pipelines is still the CPU. There are many reasons for
this e.g., The ease of programming, GPU memory bottlenecks or high price per unit.
Among the CPUs the x86 architecture is currently the dominant processor architecture,
thus performance-oriented applications such as ray tracers are almost always optimized
for this architecture.

One of the more powerful optimizations provided by modern processors are the so
called SIMD extensions. These extensions allow users to issue special instructions that
will operate on multiple values at once, greatly increasing performance if used correctly.

Modern designs of the ARMprocessor now includes SIMD extensions. Still, the ARM
architecture is generally not regarded as a powerful one but its performance has greatly in-
creasedwith the introduction of theCortex-series CPUs. The availability of these chips has
also improved; many development boards such as the Pandaboard [25] or smaller laptops
such as the Samsung Chromebook [28] are readily available and cheap for the developers.

These platforms were not originally intended for heavy computing but the modern
ARM processors inside many of them are often very powerful and many also include
the ARM counterpart to SSE: NEON [23]. With this extension, ARM processors can
be heavily optimized for a wide variety of applications including video decoding, image
processing and computer graphics.

While Ray tracing is a type of computer graphics, no public effort have yet been made
to create a ray tracer optimized for the ARM architecture. With this thesis we attempt to
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1. Introduction

create such a ray tracer and evaluate its possible advantages.
We will begin with introducing the reader to the background of both ray tracing and

accelerated computing here in chapter 1. Following in chapter 2, we describe some im-
plementation specific details of the ray tracer created during the project. In chapter 3, we
describe our methods used to evaluate the runtime-performance and power-consumption
of the ray tracer on a selection of ARM platforms. Our expectations and hypotheses are
then outlined in chapter 4 and the actual results are compiled in chapter 5. A discus-
sion of the results follows in chapter 6 and our conclusions and future work are outlined
in chapter 7. In addition, some extra notes regarding the ARM hardware design and the
differences between SSE and Neon can be found in the appendices A - B.

1.2 Background

1.2.1 Ray Tracing
Ray tracing is not a new method of rendering graphics. It is even arguably the oldest
method of generating accurate perspective-correct images. Historical records show us
that mechanical analogues to ray tracing were used as far back as in 1525, as seen in the
woodcut in figure 1.1.

Figure 1.1: Awoodcut by Albrecht Dürer. Aman uses amechani-
cal analogue to ray tracing to generate a perspective-correct image
of a lute.

One of the earliest examples of using computers to render images with ray tracing
techniques is with the so called ray casting algorithm, originally presented byArthurAppel
in 1968 [1]. The idea behind this algorithm is to trace rays from a virtual camera (with at
least one ray for each pixel) into the scene and compute the color of the object closest to
it. This simple algorithm could then be used to apply simple shading to the objects, but

8



1.2 Background

lacked many of the features found in ray tracers today such as shadows, reflections and
refractions.

These limitations were however fixed by Turner Whitted [34] who introduced the first
true ray tracing algorithmwhich is today commonly referred to asWhitted style ray tracing
algorithm. Whitted’s method works similarly to the ray casting algorithm but the major
difference is that it works recursively. Rays are still traced from the camera but at the
intersection point, new rays are generated in the reflecting or transmitting directions. This
addition will give us perfect reflections and refractions but to also get the shadows, some
more work is needed. At each intersection point we also trace new rays toward each light
source in the scene. If that ray hits the light source, or more accurately; if it does not hit
anything in the scene, the point should be shaded normally. Otherwise it is in shadow and
should not be shaded.

Distributed Ray Tracing

Whitted’s extension added many pleasing aestethic effects, but they were in a sense too
perfect. Since only hard shadows and perfect specular effects are generated, many of the
‘softer’ effects such as glossy reflections or soft shadows cannot be simulated with Whit-
ted’s approach.

One way to add these softer effects is to attach distributions to each effect, as suggested
by Cook with his Distributed Ray Tracing algorithm [8]. This way we can get soft shadows
by generating a number of rays in the general direction of the light source and then average
the resulting shading over the rays that actually hit the source. Repeating this over several
points can thus create accurate penumbras for the shadows. Similarly, glossy reflections
and translucency can be simulated by sampling distributions of rays in the reflecting and
transmitting directions respectively.

Path Tracing and the Rendering Equation

The additions provided by Cook takes us a long way, easily achieving effects that are
difficult to re-create in a rasterization pipeline.

Cook’s approach suffers from a very drastic drawback however: at each point we must
generate a number of rays toward the light and in the specular directions. This means that
after only a few recursive steps, we have generated so many rays that the image will take
a very long time to render. In addition, effects which require slightly more recursive steps
can be missed entirely, and effects such as indirect lighting, color bleeding and caustics are
not easily integrated in Cook’s algorithm. Thus, in order to improve both the quality of the
images and possibly improve the rendering speed, a more complicated model is needed.

One such model is provided by the so called Rendering Equation shown in the equation
below and was originally presented by Kajiya [18]. By approximating the solution to this
equation, we can create increasingly better and more photorealistic images. It should be
noted however that the equation shown here is just one variant of the rendering equation,
there are several more complex ones that can simulate additional phenomena. E.g. wave-
length information can be added to account for diffraction, fluorescence and scattering.

9



1. Introduction

Lo(x, ωo) = Le(x, ωo) +
∫

Ω
fr(x, ωi, ωo)Li(x, ωi)(ωi · n) dωi

where
x = The point hit by a ray of light.
ωi = The incoming direction of ray hitting the point.
ωo = The outgoing direction of ray hitting the point.
Ω = The hemisphere centered around the point.
n = The surface normal at the point.

Lo = The amount of light leaving the point.
Li = The amount of light arriving at the point from the given direction
Le = The amount of light emitted by the point.

Over the years, several algorithms have been developed to approximate this equation.
When Kajiya presented it however, he also presented the so called Path Tracing algorithm
he used to approximate it. This algorithm is a Monte Carlo method; it uses random values
in an input domain to approximate the result, which in this case is the integral shown in
the equation above.

The general idea behind the algorithm is to re-use Whitted’s ray tracing algorithm.
Instead of tracing the reflected and refracted directions however, we randomly decide if
we should trace them, or a completly random direction using pseudo-random numbers.
Furthermore, at non-specular points, we still generate a new ray in a random direction on
the hemisphere centered around the normal of the intersection point. Doing this in several
steps creates a single path for the ray, giving the algorithm its name. In order for this
algorithm to generate truly realistic images however, often several thousands of ray paths
must be traced per output pixel in the image.

Acceleration Data Structures
Regardless of the ray tracing algorithms used, each time we generate a ray we must per-
form intersection tests with all the primitives in the scene to determine if it will in fact
hit anything and if it does, which of them is the closest one. With this naive approach we
easily see that the complexity of the algorithms are proportional to:

O(#Rays · #Primitives)

It is however possible to drastically reduce the number of tests that are required, to around
the order of

O(#Rays · log(#Primitives))
by using special data structures that order the scene data prior to the rendering. There are
a large variety of ways this can be done but some of the more popular algorithms used
are Uniform Grids, Binary Space Partitioning Trees (BSP-trees), and Bounding Volume
Hierarchies (BVH). Detailed explanations and implementations of all of these algorithms
can be found in e.g., [26].

10



1.2 Background

Each of these work in different ways and have potential advantages or disadvantages
depending on the given scene. In general terms, all of them attempt to subdivide the scene
so that each time we trace a ray, we only have to query a subset of all primitives.

1.2.2 Single Instruction Multiple Data
In Flynn’s taxonomy [12], SIMD is a class of parallel processing computer architecture.
Computers processing vectors of data has been around for a long time. Many of the first
supercomputers, such as the CDC STAR-100, could process vectors of data with a single
instruction. These kinds of architectures are regarded as different ones compared to SIMD
architectures, since these vectors are processed one word at a time whereas SIMD process
all elements simultaneously, as illustrated in 1.2.

Qm

Qn

Qd

Lane 

Source Registers

Destination Register

Operation

Figure 1.2: An illustration of how most SIMD-instructions work.

The SIMD architectures seen today grew out of a demand of real-time processing in
the desktop-computer market. To meet this new requirement, processor vendors began to
implement instruction set extensions to their processors to allow users to process vector
elements in a SIMD fashion.

The first available SIMD instruction set extension was the UltraSparc Visual Instruc-
tion Set [19], with other vendors such as MIPS and Intel quickly following suit with the
MIPS Digital Media eXtension and MMX respectively.

Some time later, Motorola introduced AltiVec as a much more powerful SIMD pro-
cessing extension for the PowerPC architecture. Intel responded to this by developing the
Streaming SIMD Extensions, which along with its successor, the Advanced Vector Exten-
sions, has become the most widely available and used SIMD extensions to this date and
compiler intrinsics are available from several of the most important compiler develop-
ers. [13, 15, 20]. ARM processors are however also becoming increasingly common and
now also offer a SIMD extension of their own, known as NEON1, offering much the same
functionality as SSE.

1The official name for NEON is actually Advanced SIMD Extension but in the interest of brevity and
readability, we will reduce the name to Neon instead, with a single capital letter.
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1. Introduction

1.3 Related Work
All rays in a ray tracer are inherently computationally independent from one another, mean-
ing that the ray tracers are amenable to most kinds of parallelization. It is thus very easy
to extend the ray tracing algorithms to multicore architectures and even to multi-program
systems.

Rays that travel in roughly the same direction often take the same way through the
acceleration data structure and often hit the same or adjacent primitives in the scene. By
grouping adjacent rays into packets and tracing them simultaneously, it might be possible
to improve the performance. Ingo Wald showed in his thesis [32] that such a grouping
greatly improved the ray casting and ray tracing performance when using SSE intrinsics
and carefully cache aligned structures.

Wald’s work has lead to further research into ray tracing algorithms using packets of
rays rather than single ones. Typically, this kind of ray tracing algorithms are called packet
ray tracing, or simply packet tracing. So far however, almost all research has been done
using SIMD as a general term, but in practice, they are often only implemented with SSE
in mind, despite having several competing technologies available, such as Neon.

Furthermore, there have not been many attempts to estimate the performance of mod-
ern ARM processors with the Neon extension. Two comprehensive comparisons with a
wide variety of synthetic benchmarks do however give a clue of how well they perform, in
particular they show us that these platforms might be well suited for ray-tracing [24, 27].

There has also been some study on the comparative performance between several
highly optimized ray tracing frameworks [31]. These comparisons were however per-
formed on Intel CPUs and Nvidia GPUs, using software technologies and frameworks
unavailable in ARM CPUs. Thus it is difficult to use these results as a comparison.

1.4 Problem Formulation
So far, almost all research on ray tracing has been performed on GPUs, Intel CPUs, or
a combination of these. It is however worth noting that Intel:s x86 architecture is far
from the only CPU architecture. With the introduction of the Neon SIMD architecture
in modern ARM CPUs, it is of interest to see if it can be used to create high-performing
ray tracers, similar to how frameworks such as Embree [35] and RTRT/OpenRT [32] are
constructed.

We will investigate how such a system could be constructed and how the Neon archi-
tecture could be utilized to improve the ray tracing performance by exploiting the inherent
coherency of primary, shadow and first specular rays. Since we are primarily interested
in the direct ray tracing performance, we will limit ourselves to a Whitted style ray tracer
and only consider simple materials and light sources. Moreover, exotic features such as
texturing and instancing are outside the scope of this project.

This ray tracing application will be developed with the ISO C++11 standard [16] but
in order to efficiently access the Neon architecture we will also make use of compiler
specific extensions. The ambition is follow the standards as closely as possible to make
the framework portable and potentially extendable to other SIMD architectures.

Finally, we will attempt to estimate the energy consumption of the application and,
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1.4 Problem Formulation

when possible, both the runtime and energy consumption will be compared with prior
research on x86 CPUs and GPUs.
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Chapter 2
Implementation

The Neon architecture has previously, and successfully, been integrated in the software
libraries such as ffmpeg [11] and Eigen [10] where it has provided various speedups. In,
e.g., ffmpeg the performance increase with Neon was around a factor of 2 for one plat-
form [30].

In order to make sure our ray tracing application performs as well as possible, we
carefully design it with performance in mind. Since there has been little to no work on
creating a Neon accelerated ray tracer in the past, we will develop parts of it based on
how other SIMD frameworks such as Embree [35] and RTRT/OpenRT [32] have been
developed.

The ray tracing system itself is made up of two distinct parts: the ray tracer itself and a
SIMD Mathematics Library that is configurable at compile time. In order to make the ray
tracer as portable as possible, only the ARM Neon extensions are used beyond the normal
capabilities of the compiler. The system also makes full use of the ISO C++11 standard
to access the cross-platform memory alignment and threading models and thus require a
rather modern compiler, such as GCC-4.8 [13] or LLVM-3.4 [20].

2.1 The SIMD Library
The mathematics library provides the basic vector operation tools used throughout the
system, including optimized vector and matrices types. Among the vector types, three
basic vectors are used frequently throughout the system:

neon4f A vector with four 32-bit floating point values.

neon4i A vector with four 32-bit signed integer values.

neon4b A vector with four 32-bit unsigned integer values interpreted as a boolean vector
mask.

15



2. Implementation

These types are wrapper classes around the data types provided by the Neon extension.
These classes also overload all relevant arithmetic operations as well as providing addi-
tional functionality needed for vector calculations.

The ray tracer is designed to be able to switch between the SIMD mathematics library
and a second, strictly floating point library, implementing the same functionality with ar-
rays of values rather than SIMD data types. This abstraction is done to easily compare the
performance with a non-Neon-enabled ray tracer. This switch is performed at configura-
tion time, so no run-time performance is lost through the abstraction. This also makes the
system portable to platforms and compilers without Neon support, albeit with potential
performance reductions. It should however be noted that even in the non-Neon-enabled
ray-tracer, Neon may still be used by the compiler to try to optimize the application.

In order to implement the grouping of adjacent rays into packets [32], the library also
contains vector types with arrays of three basic vectors. Where each vectors represents a
single dimension for 4 separate vectors; a layout typically called Structure of Arrays. This
layout is illustrated in figure 2.1. With these vector types, the normalization, dot-product
and cross-product operations are very cheap to perform, since no expensive horizontal
movement across the vector is required.

s t r u c t Vec4x3 {
neon4f x ;
neon4f y ;
neon4f z ;

} ;

x

y

z

x0

y0

z0

x1 x2 x3

y1 y2 y3

z1 z2 z3

Figure 2.1: One example how 4 vectors with 3 elements each can
be constructed in a structure of arrays format.

2.1.1 Memory Alignment
Compared to conventional programs, SIMD enabled algorithms and data structures often
have very strict memory alignment requirements. The Neon architecture, e.g., can allow
unaligned access by setting some bits in a system register, but the unaligned access will
still be slower than a properly aligned accesses [4, A3-108].

Thus, in order to use our Neon vector types, it is important to ensure their memory
alignment on both the stack and the heap. The ISO C++11 standard introduced alignment
specifiers that could be used to enforce an over-alignment of objects [16]. However, this
specifier only applies to the stack alignment of objects and the standard does not specify
how these over-aligned objects should be stored when stored on the heap.

To ensure that these objects are also properly aligned on the heap, we implemented cus-
tom memory allocation algorithms that exclusively allocate aligned memory.1 With these
we could overload the member functions operator new and operator delete to

1The C++11 library function, align can handle this, but at the time of this writing, it is unimplemented
in GCC-4.8, thus a custom one was implemented to make the system more portable.
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2.2 The Neon Ray Tracer

ensure objects could be allocated directly on the heap. To also be able to use the C++ stan-
dard library containers, we implemented a custom allocator class for these containers.2

2.2 The Neon Ray Tracer
The system is designed towards performance and is thus not as versatile in some regards
compared to other ray tracing systems such as PBRT [26]. For instance, this ray tracer
exclusively uses triangles as the basic primitive and only renders using Whitted style ray
tracing.

2.2.1 Whitted Ray Tracing
The basic ray tracer design is based on the algorithm outlined by Turner Whitted [34].
Pseudocode of the algorithm used in our project can be be seen below in listing 2.1.

Listing 2.1: Pseudocode for Whitted style ray tracing.
1 Color WhittedTrace(Ray r, int depth) {
2 if (depth > max_depth)
3 return Color (0.f, 0.f, 0.f);
4
5 if (ray intersect anything in scene) {
6
7 Color surface_color = DirectIllumination(r);
8 Color reflective;
9 Color transmissive;
10
11 if (intersected object is reflective)
12 reflective = WhittedTrace(r.ReflectedRay(), depth + 1);
13
14 if (intersected object is transmissive)
15 transmissive = WhittedTrace(r.RefractedRay(), depth + 1);
16
17 return Weight(surface_color, reflective, transmissive);
18 } else {
19 return Color (0.f, 0.f, 0.f);
20 }
21 }
22
23 Color DirectIllumination(Ray r) {
24 Color color(0.f, 0.f, 0.f);
25 for (each light in the scene) {
26 Ray shadow_ray = CreateShadowRay(light);
27 if (shadow_ray is not occluded))
28 color += ShadePoint();
29 }
30 return color;
31 }

2Hopefully, these heap alignment issues should be fixed in a future revision of the C++ standard. [22]
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2. Implementation

2.2.2 Acceleration Data Structure
Today, there are many data structures that can be used to accelerate the intersection testing
in ray tracers. Some of the more common ones include the universal grid, Kd-tree and
bounding volume hierarchy algorithms. While they all work differently, they share a com-
mon goal of reducing the number of primitives that have to be tested each time we trace a
ray. For this project, we decided to use the bounding volume hierarchy, or BVH-algorithm,
since it is a popular choice in many modern rendering pipelines.

To construct this structure, we begin with iterating over all primitives in the scene,
creating a single axis aligned bounding box, or AABB that encapsulates all of them. This
box is then recursively subdivided, until only a small number of primitives are stored in
the final box. This way, a ray need only query a small number of bounding boxes and an
even smaller number of primitives to determine if anything was actually hit.

Movement within an acceleration data structure is typically called traversal and this
terminology will be used frequently later on.

2.2.3 Whitted Packet Tracing
In a regular ray tracer, at each intersection it is easy to compute which primitive was hit,
what material said primitive has, what properties it has, which direction we should recurse
toward if reflective, etc. Such decisions are much more complicated for a packet tracer,
since at each intersection, more than one primitive might be hit. Even worse, the rays
might hit different meshes or not hit anything at all! This causes the ray packet to have to
traverse a considerably larger amount of BVH-nodes before it can exit, and for each node,
all rays must be tested. These scenarios are illustrated in figure 2.2.

(a) A ray-packet hitting several
different primitives.

(b) A ray-packet hitting and
missing different objects.

Figure 2.2: Some examples of plausible scenarios that can occur
in a packet-tracer.

There are several ways to correct these scenarios. For instance, at each positive prim-
itive intersection we can compute and store all data necessary for shading and generating
secondary packets and mask away the results for the rays not hitting that particular primi-
tive.

This works just fine for smaller scenes with few primitives and only a small number of
effects to account for. It is however worth noting that this storing and masking of results
occurs in one of the innermost loops of the ray tracer where we typically want to reduce
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2.2 The Neon Ray Tracer

the number of instructions as much as possible. Furthermore, when we start to scale the
ray tracer with effects such as texturing, we have to compute additional data for that inside
the loop as well. Thus, this approach will not scale very well and can quickly become a
bottleneck.

A different approach solves these issues: After the intersection test, only compute and
mask away the data necessary to return to the primitive after the traversal. Then afterwards,
compute all necessary data needed for the shading and generation of secondary rays. This
reduces the number of computations required in the inner loops and makes it easier to add
more effects to the packet tracer later on with a minimal performance impact.

Despite these differences in the packet tracer, the actual packet tracing algorithm is
almost the same as the single-ray one, as seen in listing 2.2. It also shows us a potential
issue with packet tracing: When only a few rays in a packet intersects specular objects,
a whole new ray packet must be generated and traced. For coherent rays, such as those
generated by Whitted’s algorithm, this is usually not an issue, but must be handled to
avoid artifacts.

Listing 2.2: Pseudocode for Whitted style packet tracing.
1 Color4 PacketTrace(Ray4 &rp, unsigned depth) {
2 if (depth > recursions)
3 return Color4(0.f, 0.f, 0.f);
4
5
6 if (Any(ray in rp intersect something)) {
7
8 HitData hd = ComputeHitData(packet);
9 Color4 surface_color = hd.surface_color();
10 Color4 reflecive;
11 Color4 transmissive;
12
13 if (Any(ray in rp hit a reflective object))
14 reflective = PacketTrace(rp.ReflectedRayPacket(), depth + 1);
15
16 if (Any(ray in rp hit a transmissive object))
17 transmissive = PacketTrace(rp.RefractedRayPacket(), depth + 1);
18
19 return Weight4(surface_color, reflective, transmissive);
20 } else {
21 return Color4(0.f, 0.f, 0.f);
22 }
23 }

2.2.4 Parallelization
Each ray or ray-packet in the renderer is computationally independent from one another.
Only the scene data is shared between the rays, but the accesses are read-only, so no syn-
chronization is required. It is however desirable for the same threads to access memory
which are spatially close to potentially improve the number of cache hits.

To do this, we implement a simple image traversal scheme for the tracing threads.
First, we make sure the image dimensions are rounded to even numbers, then we divide
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the image into tiles with a user specified size. Finally, each thread will atomically3 select a
tile-index, and trace all pixels, or packets inside the tile before requesting a new tile-index.
This subdivision is shown in figure 2.3.

Packet

Pixel

Tile

Figure 2.3: An illustration over the image tiling and thread traver-
sal used in this ray tracer.

2.2.5 Runtime
The system executes four basic stages during each rendering, they are:

1. Parsing

2. Preparation

3. Ray Tracing

4. Output

We will describe each of these stages in greater detail in the following sections.

Parsing
When execution begins, the application first parses the user-input command-line options.
One of these specifies a scene description file that will be parsed and all objects contained
therein such as the cameras, lights and meshes are created and placed in the scene. Cur-
rently, the application supports some hard-coded, built-in scenes as well as a subset of the
PBRT scene description format.4

Due to the limited amount of time and scope for the project, some of the features we
removed from the PBRT format included: Instancing, complicated materials and light
sources and texturing. Some non-triangle primitives used in the PBRT are also supported,

3This is the only synchronization required within this part of the ray tracer.
4The full format specification is available here: http://www.pbrt.org/fileformat.php
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2.2 The Neon Ray Tracer

they are however converted to triangles through tessellation rather than used as they are.
Still, some scenes that use these unsupported features can be used, but will receive place-
holders values when used.

Even with these limitations the PBRT format gives us access to a wide range of scenes,
from rather simple ones such as single spheres and point-light, to relatively complicated
ones, such as the YeahRight sculpture which can be seen later on in section 3.5.

Preparation
During the preparation stage, various computations are performed:

• Point- and vector-data in meshes, cameras and lights are transformed to their final
location or direction respectively.

• The acceleration data-structure is constructed. In this project, the so called Bound-
ing Volume Hierarchy is used as an accelerator [29, p.131].

• Various values are cached to avoid costly re-computations.

Ray Tracing
In this stage the actual ray tracing is done. Looking closer at how this step works, we can
break this particular step down some more:

1. First, we generate either one ray per pixel for single-ray tracing, or a bundle of rays
in a ray-packet from a 2x2 packet of pixels if we are packet tracing.

2. Traverse the bounding volume hierarchy with the ray or ray-packet until we can
conclude that either rays missed the scene, or that the closest hit points can be deter-
mined. At each positive primitive intersection, store only the data that is necessary
to return to this particular primitive later, if the current one turns out to be the closest
one.

3. Once the closest primitive is found, compute the hit-point and normal directions,
and optionally compute the transmitting or reflecting directions depending on the
material the rays hit.

4. Finally, shade the current pixel and optionally use the colors from additional rays
from the reflecting and transmitting directions.

These steps are repeated for all pixels or 2x2 tiles of pixels, generating our ray traced
image.

Output
Among the last things the application does is write the final image to disk in the PPM
format5 and write statistics generated from the rendering phase to standard output.

5A description of this format is available at: http://netpbm.sourceforge.net/doc/ppm.
html
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Chapter 3

Approach

Looking at some previous results of ray tracing on some ARM platforms, it does not seem
to be possible to do it in real-time yet [24, 27]. Thus, we restrict the project to measure
the performance for the generation of a single frame.

To evaluate this performance we will estimate the scalability, runtime performance and
the energy consumption for each possible configuration of the ray tracer. These measure-
ments will also be carried out on a few different hardware platforms as listed in section 3.1.
Due to the varied construction of the platforms however, we must use different methods to
estimate the power performance for each of them.

3.1 Test Platforms

The application will be evaluated on several different ARM based platforms, with the prin-
cipal CPUs being the Cortex-A15 and Cortex-A9. A slightly more in-depth comparison
between these processors and their respective features is included in appendix A.

The Cortex-A15 is estimated by ARM to perform roughly 50% better than the Cortex-
A9 chip for the same core and frequency [17]. The A15 chip can however also operate at
higher clock frequency, resulting in an even greater performance at the expense of the en-
ergy consumption. All this must be factored in when we make our assumptions regarding
the expected performance.

Below we list the hardware platforms used for our measurements, including clock tim-
ings and cache sizes.
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Platform Pandaboard Rev. A3 Samsung Chromebook (XE303C12)
SoC Texas Instrument OMAP 4430 Samsung Exynos 5250
CPUs Cortex-A9 × 2@1.0 GHz Cortex-A15 × 2@1.7 GHz.
L1 Cache 32 KB instruction, 32 KB data 32 KB instruction, 32 KB data
L2 Cache 1 MB shared 1 MB shared

Platform CoreTile Express (V2P-CA9x4)
SoC ARM development reference
CPUs Cortex-A9 × 4@400 MHz
L1 Cache 32 KB instruction, 32 KB data
L2 Cache 512 KB shared

3.2 Configurations
The performance of the ray tracer is estimated in four different configurations:

• Scalar Single Ray Tracing

• Scalar Packet Ray Tracing

• Neon Single Ray Tracing

• Neon Packet Ray Tracing

The Neon configuration activates the Neon extensions defined in the SIMD library and
uses them to attempt to accelerate the application. In the scalar setup the vector libraries
are replaced with the floating point equivalent, which perform the same operations as the
SIMD instructions but executes them serially. The single ray tracer will also be used as
the reference when comparing to the performance of the rest of the ray tracers.

3.3 Render Settings
In order to ensure consistent and comparable results between the different scenes and con-
figurations, we will keep all rendering parameters fixed. That means that:

• All frames are rendered at 1024x1024 pixels

• Only a single sample is taken per pixel

• A maximum of 3 recursive calls are allowed for reflection/refraction

• The thread count is set to match the number of cores in the processor
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3.4 Measurements
3.4.1 Scalability
It is well known that each ray is computationally independent from one another, and thus
the ray tracer should scale linearly with the number of available compute units. We will
test this on each platform by running our application with a varied number of threads up
to the maximum number of cores available among the platforms. In the interest of brevity
however, we will only include the results for a single scene.

3.4.2 Runtime Measurements
The performance of the platforms will be estimated in a number of ways. Internally, the
ray tracer keeps track of some statistics, such as the time to render the frame or number of
rays generated per second. Externally however, we use a variety of operating system tools
and extra hardware to estimate the energy usage.

During runtime, the follow metrics are gathered inside the ray tracer:

• Time to render the image

• Time to build the bounding volume
hierarchy

• Generated primary rays per second

• Generated shadow rays per second

• Generated secondary rays per second

• Bounding box Intersection tests per
second

• Triangle intersection tests per second

3.4.3 Power Measurements
To begin with, we have no physical access to the the CoreTile Express platform, so no
power data will be obtained from it. For the remaining platforms, we will use different
methods for each one of them. Before we gather any measurements we will compute a
baseline energy consumption during idle for the platforms to reduce the impact of noise
coming from various unrelated sources, such as the network chips. To further reduce such
noise, all unrelated hardware is shutdown when physically possible. E.g. the screen on
the Chromebook is powered down during all tests. Finally, to account for noise and input
errors in the power data we will repeat the experiment a number of times to compute an
average and confidence interval.

Measuring Power on the Pandaboard
For the Pandaboard, we will use an oscilloscope to measure the drawn current from the
board directly. The oscilloscope we will be using is a Tektronix TDS3034. This oscillo-
scope can however only retain data for the last 100 seconds, which is not enough for some
of the scenes we have chosen.

As a workaround, we will connect it to the Instrument Control Toolbox within Matlab
and successively save the data until the ray tracer finishes executing. When it finishes, we

25



3. Approach

can compute the energy consumption using the known constant 5V input voltage and the
Power Rule (3.1). Finally, we use the trapezoidal rule to approximate the total amount of
energy used to run the application.

To also retrieve the energy consumed to rendered the actual frame, we will repeat the
computations noted above but change the start time and end time to account for time spent
parsing, building the BVH before rendering and deallocating resources afterwards.

P = U · I
P = Consumed power (W).
U = Input voltage (V).
I = Input current (A).

(3.1)

Measuring Power on the Chromebook
The modern Linux distribution all include synthetic file systems that allow applications to
easily access kernel information. Some such information include current power manage-
ment information and settings. This means that e.g. laptops can use these ‘files’ to access
battery data.

In our case, we can access battery information for the Chromebook from various files
in the /sys/class/power_supply/sbs-4-000b directory. By regularly polling
these files, we can estimate the present voltage, current, charge, etc. from the battery.
With these, we can once again use the Power Rule (3.1) to compute the power, and the
trapezoidal rule to estimate the energy consumption.
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3.5 Test Scenes
A variety of scenes are used to estimate the performance of the ray tracer, each with a
triangle count varying between 4000 to around 190, 000 triangles. An exact number of
triangles for each scene is shown in Figure 3.1.

(a) The Cornell Box scene – 3978 triangles.
Courtesy of Cornell University.

(b) The Sponza scene – 66,454 triangles.
Courtesy of Marko Dabrovik.

(c) The Sibenik scene – 80,479 triangles.
Courtesy of Marko Dabrovik.

(d) The YeahRight scene – 188,678 triangles.
Courtesy of Keenan Crane.

Figure 3.1: The scenes used to evaluate the ray tracers.

• The Cornell box model is available at:
http://www.graphics.cornell.edu/online/box/data.html

• The YeahRight model is available at:
http://www.cs.columbia.edu/~keenan/Projects/ModelRepository/
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Chapter 4
Hypothesis

Considering some previous benchmarks [24], the Chromebook seems to have a floating
point performance of around 3-5 times higher than that of the Pandaboard. The same test
suite also contains results from the smallpt-benchmark1, where the Chromebook perform
around 3 times better than the Pandaboard, giving us an estimate of how well ray tracing
might be on these platform. If we account for the clock speed being around 70% higher
on the Chromebook however, the clock for clock performance is reduced to around 1.5–2
times instead.

Based on these results, we hypothesize that the Cortex-A15 will render scenes roughly
3 – 5 as fast as the Cortex-A9 when including the clock rates. All other runtime metrics are
expected to follow this with some variations based on the materials in the scene. Moreover,
we expect all variants of the ray tracer to scale almost linearly with the number of available
processing cores.

Based on Wald’s results [32, p.122], we also expect the packet-ray-tracers to perform
around 2-3 times better than the equivalent single-ray-tracers for all the scenes we have
chosen to test on. Among all configurations, we believe that the Neon accelerated packet-
tracer should be the fastest one.

Finally, we believe that the energy consumption should be rather small, and should
scale about as well as the runtime performance.

1http://www.kevinbeason.com/smallpt/
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Chapter 5
Results

All results we have gathered during this project are compiled in this chapter. Similarly to
the earlier chapters, the results are divided into 3 sections:

• Runtime Performance

• Scalability

• Power Performance

It should be noted that the packet tracer algorithms generate rays and perform tests on
groups of 4 rays at a time. Thus, each time a packet tracer is executed the corresponding
tally is increased by 4 rather than 1, even if some of the rays were invalid inside that
particular packet.

The bar graphs shown here represent the average over a number of runs and the black
caps on the top of each bar represent the confidence interval. This cap is however often
very small and might not be seen in many of the plots.

For a more thorough discussion of the results in this chapter, see the discussion chap-
ter (6). Some additional data collected during the course of this project can be found in
appendix C.
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5. Results

5.1 Runtime Performance
The various runtime measurements are summarized in the figures below.
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Figure 5.1: The computed time it took to render a single frame
for each of the scenes.
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Figure 5.2: The computed time it took to build the BVH for each
of the scenes. There is no difference between single-ray and packet
tracing, thus only a single plot is used.
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5.1 Runtime Performance

5.1.1 Relative Performance
Using the ‘naïve’ ray tracer implementation, i.e. the scalar single-ray tracer as a reference
we compute the relative improvement for each configuration and platform.
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Figure 5.3: The relative improvement in render times for each
configuration.
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Figure 5.4: The relative improvement in build time of the BVH.
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5.2 Scalability
The scalability for each of the three platforms on the YeahRight scene is depicted in the
plots in figure 5.5.
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(a) Samsung Chromebook

1 2 3 4
Number of threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
rf

or
m

an
ce

vs
.S

in
gl

e
C

or
e

CoreTile Scalability - YeahRight Scene

Single Neon
Single Scalar
Packet Neon
Packet Scalar

(b) CoreTile Express
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Figure 5.5: The scalability of the ray tracer(s) on the various plat-
forms. The solid lines depict the average and the transparent areas
visualizes our confidence interval.
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5.3 Power Performance
Many of the power results were created as plots, many of these are however very noisy
and do not provide very detailed information of the actual energy consumption, thus we
leave the majority of them out of the report. Some examples of this output are provided in
figures 5.6a and 5.6b. Note however that the proper results are summarized in the tables
below.

(a) Pandaboard example
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Power Consumption - yeahright-packet-neon-0

Battery Current (A).
Power (W).

(b) Chromebook example

Figure 5.6: Examples of the plots with the energy consumption
output using the various methods. Do note how noisy the signal
received from the oscilloscope is.

5.3.1 Baselines
The baseline energy consumption in idle mode for both the Pandaboard and the Chrome-
book are summarized in table 5.1.

Table 5.1: Power consumption baseline for the Pandaboard and
Chromebook respectively.

Platform Energy Consumption

Pandaboard 2.8224 ± 8.3 · 10−2 W
Samsung Chromebook 2.6362 ± 7.5 · 10−2 W

5.3.2 Energy Consumption - Pandaboard
Our estimate for the energy consumption for the whole application running in either single-
ray- or packet-ray-tracing mode are summarized in table 5.2. The energy consumption
relative to the scalar single-ray tracer can be seen in table 5.3.
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Table 5.2: The computed energy consumption for the Pandaboard
during runtime of the whole application.

Scene Single-Ray-Tracing Packet-Ray-Tracing
Scalar Neon Scalar Neon

Cornell 17 ± 0.60 13 ± 0.86 14 ± 0.10 7 ± 0.72 J
Sponza 266 ± 32.05 238 ± 1.76 182 ± 0.48 105 ± 0.32 J
Sibenik 164 ± 1.34 163 ± 1.18 128 ± 0.49 75 ± 1.66 J
YeahRight 75 ± 1.59 74 ± 0.29 75 ± 0.97 46 ± 0.86 J

Table 5.3: The energy consumption for the Pandaboard during the
whole run of the application relative to the scalar single-ray tracer.

Scene Single-Ray-Tracing Packet-Ray-Tracing
Scalar Neon Scalar Neon

Cornell 1.00 1.27 1.23 2.44
Sponza 1.00 1.12 1.46 2.52
Sibenik 1.00 1.00 1.28 2.19
YeahRight 1.00 1.02 1.00 1.64

5.3.3 Energy Consumption - Chromebook
Estimates for the energy consumption for the whole application for the Chromebook are
compiled in table 5.4 for both single-ray and packet-tracing modes. Likewise, the relative
energy consumption is compiled in table 5.5.

Table 5.4: The energy consumption for the Chromebook.

Scene Single-Ray-Tracing Packet-Ray-Tracing
Scalar Neon Scalar Neon

Cornell 57 ± 3.41 53 ± 0.86 39 ± 1.07 27 ± 2.07 J
Sponza 696 ± 4.60 656 ± 5.05 444 ± 2.89 258 ± 8.52 J
Sibenik 349 ± 1.13 334 ± 0.70 218 ± 1.48 138 ± 0.29 J
YeahRight 275 ± 1.59 261 ± 2.04 217 ± 1.76 137 ± 1.16 J

Table 5.5: The energy consumption for the Chromebook for the
whole run of the application relative to the scalar single-ray tracer.

Scene Single-Ray-Tracing Packet-Ray-Tracing
Scalar Neon Scalar Neon

Cornell 1.00 1.08 1.46 2.10
Sponza 1.00 1.06 1.57 2.69
Sibenik 1.00 1.04 1.60 2.52
YeahRight 1.00 1.05 1.27 2.00
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Chapter 6
Discussion

6.1 Runtime Performance
The most important result in this thesis is undoubtedly the rendertime but as seen among
the results the scalability and BVH build time also contain interesting deviations that we
will discuss to some extent.

6.1.1 Render Times
While it is possible to create a ray tracer that uses the SIMD vectors directly as the ba-
sic vector types, it is often not very effective in improving performance. This can easily
be seen from our Neon accelerated single-ray tracer. In most cases the improvement is
marginal at best and several times it even reduces the performance. Notably, the CoreTile
and Pandaboard consistently perform a few percent worse, while the Chromebook perform
a few percent better. This may be because the more powerful out-of-order execution in the
A15 core can optimize the ‘bad’ code in hardware better than the A9 can. This kind of
small performance dicrepancies are however very hard to find a reliable cause of and thus
we will not look into it further.

It is possible that other ray tracer implementations or SIMD extensions can improve
this but on the other hand, there are other ways to improve the performance already. This
is shown with our packet tracer implementations: in almost all cases it can improve the
performance by a factor between 2.0 - 3.5.

In raw rendering performance however, the Chromebook provides an additional 100%
improvement over the CoreTile and Pandaboard. This is easily explained by the additional
SIMD width of the A15 processor: The Cortex-A15 processor can compute the result of a
128-bit vector directly, while the A9 has to split up the computations in two intermediate
64-bit vectors instead.
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6.1.2 BVH Build Time
During this project, we knew we needed an acceleration data structure to achieve re-
spectable speeds for larger scenes. Due to the limited time however, our implementation
of the BVH build algorithm is in fact mostly unoptimized.

Therefore it is quite surprising to see a 20-25% improvement in the build time when
enabling the Neon architecture. Looking into it however, there is a major loop inside the
build algorithm which constructs a single AABB to encompass a number of primitives.
This algorithm loops over all primitives, gathering their individual bounding-boxes and
includes them with element-wise min/max operations. In our system, this particular loop
can be seen in listing 6.1.

Listing 6.1: The code accelerating the BVH with Neon enabled.
1 AABB BVHAccelerator : :MakeAABB(vector<Triangle > : :const_iterator it0 ,
2 vector<Triangle > : :const_iterator it1 ) {
3 AABB bb ;
4 wh i l e (it0 != it1 )
5 bb . Inc lude ( (∗ it0++) .GetAABB ( ) ) ;
6 r e t u r n bb ;
7 }
8
9 / / . . .
10
11 vo id AABB: : Inc lude ( c o n s t neon4f& p ) {
12 bounds [ 0 ] = min (bounds [ 0 ] , p ) ;
13 bounds [ 1 ] = max (bounds [ 1 ] , p ) ;
14 }

There is no difference between the various configurations for this code, yet Neon accel-
erates it anyways thanks to the efficient min/max SIMD operations. Given time however,
it should be possible to accelerate the BVH build algorithm considerably more than this.

6.1.3 Scalability
Theoretically the ray tracer should scale linearly with the number of available compute
units. On our platforms, this seems very accurate from our result on the CoreTile Express,
as seen in figure 5.5b. It still scales slightly worse than expected, with an increase of a
factor of around 1.8-1.9 when doubling the number of threads on the CoreTile and Pand-
aboard, yet it is sufficiently close to the theoretical limit. For some reason, the Chromebook
scales notably worse, only increasing the performance with around 60% when activating
both cores. So far we have not found a reliable answer to why this happens but a qualified
guess is that the memory-system bottlenecks the CPU. That is, the memory cannot provide
the CPU with enough work to keep it busy.

Interestingly enough, the different configurations of the ray tracer scales slightly dif-
ferently, with a clear edge towards packet-tracing. Yet, it is not enough to make any larger
impact with so few cores available. With the advance of ARM server processors with a
significantly larger amount of cores, such as the Cavium ThunderX ([7]) with up to 48
cores, this might play a larger role in the future.
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6.2 Power Performance
Obtaining reliable power measurements are often difficult and this project was no excep-
tion. The methods we used ended up yielding consistent results, yet they could likely
have been more efficiently implemented. It is also possible that other methods could have
yielded better and more accurate results.

On the other hand, the methods we used were simple – in particular for the Chrome-
book, and could easily be repeated or integrated into a script.

6.2.1 Scalar versus Neon
As we saw in the runtime section, performance-wise, there is no point in implementing a
single-ray tracer with Neon. Judging from the results in tables 5.2 – 5.5 however, Neon
can apparently save more energy than runtime.

Still, while the runtime performance for the packet tracer improved with a factor of
around 2.0 - 3.5, going from the single-ray tracer to the packet tracer, the power consump-
tion did not scale as well. Still, it is not bad, the scaling is just reduced to around 1.6 - 2.5
for the Chromebook and 2.0 - 2.7 for the Pandaboard.

6.2.2 Pandaboard versus Chromebook
Often, the energy consumption follow the runtime rather closely, since the longer it takes
to run an application, the more energy it must consume. However, as can be seen in the
examples in figures 5.6a and 5.6b, the Chromebook consumes almost three times as much
power in full load than in idle. compared to the Pandaboard, which barely doubles the
power going from idle to full-load. If we also factor in the baseline for each of the plat-
forms, the Pandaboard once again consumes far less than the Chromebook.

There are several possible reasons for this, most importantly the power consumption in-
creases greatly with higher clock speeds, and the Chromebook runs at a 70% higher clock
frequency than the Pandaboard. Furthermore, the Cortex-A15 is known to use consider-
ably more power than the Cortex-A9 processor due to the different underlying hardware.

This does not necessarily mean that the Pandaboard is better than the Chromebook. It
simply means that if we need to balance cost and power consumption against performance,
the A9 will come out on top. On the other hand, if runtime performance is more important
than the power consumption, the A15 might be a better match.
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Chapter 7
Conclusions

During the course of this project we have created two different ray tracing implementa-
tions: A single-ray tracer and a packet tracer, each capable of running with or without
Neon acceleration. This has shown us that the ARM Neon architecture is a very capable
extension to the ARMv7 ISA and as we have shown in appendix B, it is functionally sim-
ilar to the Intel SSE architecture. The most important discrepancy between them is the
lack of full IEEE-754 floating point support in Neon, but in many applications, such as ray
tracing, that is not important.

While it is currently slightly more difficult to develop for ARM platforms due to differ-
ent architecture, it is rapidly getting easier as the demand increases and the development
tools matures. At the same time the platforms become more readily available and more
powerful. Performance-wise however, the Neon optimized packet ray tracer improved the
rendering speed with around 300% compared to our reference implementation, matching
our earlier hypothesis and the ones Wald presented in his thesis [32].

Among our platforms, the SamsungChromebookwith the Cortex-A15 performs around
100% better than the CoreTile Express and Pandaboard with their Cortex-A9 CPUs. On
the other hand, the Chromebook consumes on average almost twice as much energy as the
Pandaboard in the same configurations (See section 5.3). This simply means that they are
optimized for different applications: If speed is required the A15 might be more suitable,
otherwise the A9 might be sufficient.

7.1 Future Work
This project ended up generating a large amount of data, and a lot of it made it into this
report. Ray tracing is however a huge subject and this thesis has barely scratched the
surface. There are still many things that may be interesting to investigate further.

First and foremost, Whitted’s algorithm is just among the first of many ray tracing
algorithms and it only provides the most basic lighting effects. It would be very interesting
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to see if packet tracingwith Neon could improve the performance in a path tracer or photon
mapper. In general, the coherency among the rays in a packet is lost after a couple of
recursive bounces and after a long path of them, the rays will often travel in very different
directions, greatly reducing the effectiveness of the packet tracing. Other algorithms such
as the Instant Global Illumination algorithm [32, 33] can keep the coherency among the
rays and still provide believable indirect illumination.

Another aspect that should be considered are various other acceleration data structures.
In this project we only used a fairly unoptimized BVH implementation, in practice there
might be other data structures that might be better suited for acceleration with Neon. In
particular, Wald recommended Kd-Trees [32] while the Embree project often use a kind
of optimized BVH structure. Which of these might benefit the most from the Neon archi-
tecture remains an open question.

Also, in order to gain further insight into the performance of the ray tracer, amuchmore
thorough investigation should be done on the assembly level of the code. In particular, it
may be of interest to implement a complete packet tracer in assembly as a reference.

Finally, ARM recently introduced heterogeneous computing into the mobile comput-
ing segment with their so called big.LITTLE technology. This particular technology pairs
one or more power-efficient but low-speed CPU cores with larger more powerful ones in
order to provide a better compromise between speed and power consumption. This system
does however come in various configurations, and in one of them the operating system gets
full access to all underlying cores and can schedule whatever it deems useful to them. It
would be very interesting to see how such a platform would scale going from a single core
to using all of them. In theory it should still scale piecewise linearly.
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Appendix A
ARM CPU Architectures

The two main CPUs used during this project are the ARM Cortex-A15 and Cortex-A9.
They were chosen since, at the time of writing, they are the two best performing ARM
processors that are widely available in many developer and consumer products alike.

Design-wise however, the instruction pipeline of these processors are rather similar
but differ significantly with the more modern but simpler and power efficient Cortex-A7,
as can be seen in Figure A.1.

All of these chips are however developed with different intents: The A7 is supposed
to have superior power efficiency, the A9 provides a compromise between energy con-
sumption and speed, while the A15 is the most powerful one at the expense of energy
consumption.
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Figure A.1: Comparison of some modern ARM CPU pipelines.

Some of the major architectural features of each of these processors are summarized
below in table A.1. For a brief explanation of the various hardware features, please see
the glossary in the back. Much more detailed explanations can be found in e.g. Patterson
& Hennessy [14].
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A. ARM CPU Architectures

Table A.1: A brief comparison of the various hardware features
incorporated in the various CPUs. Do note however that these are
values presented by ARM based on their IP and in many cases
these can be often be customized or improved by the vendor im-
plementing the design.

Cortex-A7 Cortex-A9 Cortex-A15

ISA ARMv7 ARMv7 ARMv7
Processor type Superscalar Superscalar Superscalar
Execution order In-order Out-of-order Out-of-order
Pipeline length 8-stage 8-11-stages 15-stage
Clock rates 1.2 – 1.6 GHz 0.8 – 2.0 GHz 1.0 – 2.5 GHz
Multiprocessing 1-4 SMP Cores 1-4 SMP Cores 1-4 SMP Cores
Branch Prediction No Yes Yes
SIMD width 64-bit 64-bit 128-bit
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Appendix B
SSE versus NEON

Over the years many different SIMD technologies have been developed and today some
of the more notable ones are Intel x86 SSE and ARM NEON. Both SSE and NEON are
technologies intended to allow vector processing of up to 4 scalar values simultaneously,
due to the underlying processor design however, they have evolved quite differently. In this
appendix we will briefly describe how these hardware technologies can be used in high-
level programming languages such as C and C++ using so-called compiler Intrinsics.

We will however mostly limit the comparison to versions 1-4.2 of SSE, since after-
wards Intel introduced the so called Advanced Vector Extensions, which doubled the vec-
tor widths to 256-bits. Since Neon is still only 128-bit, we will leave a comparison of these
newer intrinsics for a potential future comparison

B.1 Compiler Support
The first thing that must be noted regarding compiler intrinsics: As the name suggest, they
are internal to the compiler, and may not be portable. The intrinsics in both SSE and Neon
are however well defined, with official naming schemes by Intel and ARM respectively, so
compiler implementation of them should be consistent.

Officially, the LLVM [20], GCC [13] and The ARM Compiler [6] support the same
Neon intrinsics, as they are defined by ARM C Language Extensions [3].

SSE has been around for far longer; it is also supported in LLVM and GCC, and in
addition, it is supported in the Microsoft Visual C++ Compiler [21] and the Intel C++
Compiler [15].

Activating the SIMD intrinsics differs between the compilers and SIMD architecture
however, most of them require a specific command-line flag to be activated during com-
pilation. Table B.1 show some examples of compiling a simple test file with either Neon
or SSE intrinsics.
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Table B.1: Some examples of different command-lines used for
compiling code with SSE or Neon intrinsics.

Compilers SIMD Command-line

MSVC SSE cl /arch:SSE /c /FA test.c
ICC SSE icc -msse test.c -o test.c
GCC SSE gcc -msse test.c -o test.c
Clang SSE clang -msse test.c -o test.c
ARMCC NEON armcc -mfpu=neon test.c -o test.c
GCC NEON gcc -mfpu=neon test.c -o test.c
Clang NEON clang -mfpu=neon test.c -o test.c

B.2 Version Fragmentation
There has been many SIMD extensions added to the x86 ISA over the years. The MMX
where the first one which added support for 64-bit wide SIMD vectors, with either 8x8,
16x4, 32x2 or 64x1 integer vectors. The MMX extension did however have several major
architectural flaws: It had to share registers with the stack-based FPU and required user
assisted register-flushes going between FPU andMMX processing [15], making it difficult
to use and error prone. These shortcomings were rectified with the introduction of SSE,
which introduced dedicated registers for all vector operations.

Over the years, additional versions of SSE were created, adding more intrinsics and
versatility with each successive version. This fragmentation does however make it difficult
for software vendors; they have to maintain separate code paths for new and old intrinsics
if the code is going to be portable to older x86 platforms that do not support all SSE
versions.

For ARM it is somewhat easier since there are currently only a few versions of Neon
available. It does however seem like it might change with the introduction of the ARMv8
ISA which adds several new intrinsics that cannot be used on ARMv7 products.

B.3 SIMD Data Types
The compiler extensions provide several new base data types for working with the SIMD
vectors. Neon and SSE uses these types very differently however: SSE have the same
base type for several kinds of different vectors, while Neon have dedicated types for each
different kind of vector. The SSE data types are described in greater detail in section B.3.1,
and the Neon types are described in section B.3.2.

B.3.1 SSE Types
The SSE data types typically represent the bit-sizes of the Intel SIMD registers. Several
kinds of vectors are however shared between a single data type, as described in table B.2:
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Table B.2: A description of the different types available for SSE.

Name Description

__64 Vector type with either 8 8-bit, 4 16-bit or 2 32-bit signed or unsigned
integers.

__int64 Signed or unsigned integer type with 64-bits.
__128 Floating point type with four 32-bit floating point values.
__128i Vector type with either 16 8-bit, 8 16-bit, 4 32-bit, or 2 64-bit signed or

unsigned integer types.
__128d Floating point type with two 64-bit floating point values.

B.3.2 Neon Types
Neon provides new base types for each possible vector type and follows the predictable
naming scheme as seen below:

<type><size>x<number of lanes>_t

All of the possible data types are listed in table B.3.

Table B.3: A description of the different types available for Neon.

64-bit types 128-bit types

int8x8_t uint32x2_t uint8x8_t int8x16_t uint32x4_t uint8x16_t
int16x4_t uint64x1_t uint16x4_t int16x8_t uint64x2_t poly8x16_t
int32x2_t float16x4_t1 poly8x8_t int32x4_t float16x8_t uint16x8_t
int64x1_t float32x2_t poly16x4_t int64x2_t float32x4_t poly16x8_t

B.3.3 Comparing the Data Types
Comparing just the available vector types for the SIMD extensions, we can see some dis-
tinct disadvantages to both approaches:

• Neon does not have any support for vectors of 64-bit floating point types.

• For SSE, integer vectors share base types which requires the user to keep track of the
actual type inside the vector by herself. With Neon, some of this work can be off-
loaded to the compiler instead. Creating typedefs might make the type management
easier with SSE, but that can lead to namespace issues instead.

• Neon has the binary polynomial (poly) data-types and SSE has no direct equivalent
to these. The behaviour can however be simulated with a mix of other intrinsics.

1The half precision float is only a data type. There are no operations that can be performed on it [3].
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B.4 The Intrinsics
Most of the intrinsics available for both technologies follow a set of naming schemes to
make them easier to remember. For SSE, most intrinsics use the following naming con-
vention.

_mm_<intrin-op>_<sse-type-suffix>

Neon on the other hand, uses a different naming scheme:

<intrin-op><flags>_<neon-type-suffix>

For a more detailed explanation of the each item, see the following table:

Item Description

intrin-op Special op-code name for the intended operation. E.g., add
to add two vectors, or and to perform bit-wise AND on two
vectors. Note however that SSE and Neon frequently use
different names for the same operation.

sse-type-suffix Suffix used by SSE to define the actual data-type inside the
available data-types (Table B.2). The first one or two letters
determines whether the data is packed (p), extended packed
(ep), or scalar (s). If the types are any kind of a packed type,
we operate on all elements. If it is scalar, we only operate
on the first one. The remaining letters denote the data type
of the vector content, see table B.4 to see which ones are
available.

neon-type-suffix Suffix used by Neon to determine which data type we will
operate on. The suffix available can be seen in table B.4.

flags This Neon specific flag determines whether we will operate
on a 128-bit vector or a 64-bit one. This flag can also specify
extra operations such as double the content, or widen the size
bit-size of the element afterwards.

Table B.4: Table over the various suffix used for Neon and SSE
intrinsics.

Vector Type SSE Neon

Signed integer i<#bits> s<#bits>
Unsigned integer u<#bits> u<#bits>
Float s f32
Double d —
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Both SIMD extensions provide most of the common arithmetic operations one would
expect for working with vectors, such as element-wise addition, subtraction and multi-
plication. A complete reference over all x86 intrinsics available, if implemented by the
compiler can be found in the Intel Intrinsics Guide [9]. For the Neon intrinsics, refer to
the ARM Architecture Manuals [4, 5] or ARM C Language Extensions [3].

There are several discrepancies between the different extensions and their intrinsics, in
particularly regarding the integer intrinsics. The full list of discrepancies would however
be far too long and not provide much insight; instead we will only look at some of the
more interesting ones in the following sections.

B.4.1 Vector Permutations
One of the greater strengths in the SSE is the fast shuffle instruction: _mm_shuffle.
This operation can then quickly create an arbitrary combination of elements from the given
vector. It does however work slightly differently for floating point and integer types: The
float variant takes two (possibly different) vectors, and blends the content based on an bit-
mask. The integer variants only accept a single vector. The whole operation is explained
with pseudocode and illustration in figure B.1.

_mm_shuffle(vec a, vec b, int imm) {

SELECT4(src, control) {
switch( control [1:0]) {

0: tmp[31:0] := src [31:0]
1: tmp[31:0] := src [63:32]
2: tmp[31:0] := src [95:64]
3: tmp[31:0] := src [127:96]

}
return tmp[31:0]

}

dst [ 31: 0] := SELECT4(a[127:0], imm[1:0])
dst [ 63:32] := SELECT4(a[127:0], imm[3:2])
dst [ 95:64] := SELECT4(b[127:0], imm[5:4])
dst [127:96] := SELECT4(b[127:0], imm[7:6])

}

x0 x1 x2 x3

y0 y1 y2 y3

2 3 1 0 ...

x2 x3 y1 y0

Figure B.1: Illustration of how the mm_shuffle intrinsic works.
Note that indices are on the bit-level.

Neon has no equivalent to these intrinsics. Instead it provides a variety of instructions
to rearrange some of the contents e.g., the vrevq and vextq reverses and circularly
rotates the contents respectively. Combining these and other such intrinsics can always
yield the wanted combination, but there is no intrinsic that can do an arbitrary shuffle with
a single instruction.

B.4.2 Arithmetic Intrinsics
Most basic arithmetic intrinsics are practically equivalent among the SIMD architectures.
SSE does however provide somemore exotic operations. E.g., it has dedicated instructions
for computing the square root, division and dot-product.
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Meanwhile Neon has some dedicated instructions to partially compute the next itera-
tion step for Newton-Raphson approximation for the reciprocal and reciprocal square root.
Neon also has a plethora of operations for extracting a single element from a vector to e.g.,
multiply all elements of another vector with. Finally, some Neon implementations also
have a wide variety of fused multiply accumulate instructions. These operations are how-
ever available in the more recent x86 extensions: AVX2 and XOP for Intel and AMD
respectively.

B.4.3 Load/Store Intrinsics
Neon and SSE both provide intrinsics to load/store a vector from a (possibly) unaligned
memory location. They also both provide operations to load a value from memory, and
‘splat’ it across the vector. In Intel terminology, this is usually called a broadcast operation,
while ARM typically call it duplicating operation.

Neon does however also provide a large amount of multi-register load and store opera-
tions, that can optionally interleave/deinterleave the contents into the registers. This makes
it possible to rapidly separate e.g. colors into separate registers and operate on them di-
rectly. SSE has no direct equivalent but can often use the inexpensive shuffle operation to
separate the values after a load instead. Although this is often more expensive than having
it done directly in the memory pipeline.

B.4.4 Miscellaneous Intrinsics
Another interesting intrinsic in SSE is the _mm_movemask instruction. Given a float
vector it can quickly extract the sign bits for each individual element and reduce it to a 32-
bit integer bit-mask from these. Since comparison operations create vector bit-masks, it is
possible to use this operations to quickly perform binary decisions based on the returned
mask. E.g., one can query the returned bit mask for if all, any or none of the elements in
a vector are set.

For some applications, such as ray tracing, this is very valuable since we will often
make a decision based on if any, or none of the contents in a vector comparison is true.
Neon has no direct equivalent to this operation, and to simulate it, costly vector- to regular-
registers has to be performed.

Other than the above masking intrinsic, SSE also provide many types of string compar-
ison instructions, such as the _mm_cmpistra. These are however very limited to small
strings but can in series provide reasonable acceleration for longer strings as well.

B.5 Assorted Notes
Below is a small assortment of notes regarding some limitations and pitfalls with the var-
ious architectures.

• Neon floating point vectors are not fully compliant with the IEEE-754 standard:

– Denormals are flushed to zero.
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– Rounding is fixed to round-to-nearest with the exception of the explicit round-
ing intrinsics.

• The scalar floating-point instructions are completely separated from theNeon pipeline
andmixing regular floating point- andNeon-instructionswill trigger expensive pipeline-
flushes [2].

• Neon does not support double Precision floating point operations.

• In SSE, vectors with just 2 32-bit elements can use the legacy MMX operations but
those can be error prone to use. Often it is possible to utilize the SSE intrinsics
instead but then two elements might be wasted inside the SSE registers.

B.6 Conclusions
As can be seen above, formodern processors with at least SSE 4.2, Neon and SSE are pretty
much equivalent in most regards. There are however notable discrepancies. Neon i.e., has
a greater plethora of load/store operations, but SSE can quickly shuffle the loaded vectors
around instead. A potentially larger pitfall is the lack of IEEE-754 compliance in Neon,
which might make it less useful for scientific computations, but for media acceleration it
makes almost no difference.

On the horizon however, Intel have already developed the so called AVX extension,
working with 256-bit vectors fragmented into various different versions similar to how
SSE is fragmented. Furthermore, theMany Integrated Core orMIC architecture, marketed
as Xeon Phi, which provide an even wider SIMD architecture, with vectors up to 512-bits.

Meanwhile, ARM has developed the ARMv8 ISA which adds several improvements
to the existing Neon architecture such as new reduction intrinsics, full IEEE-754 floating
point support and double precision floating point data types. The vector-width does not
seem to increase for a while yet however.
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Appendix C
Additional Data

This chapter contains some additional data gathered during the course of the project but
is not thouroughly analysed or discussed. In particular, the number of AABB and triangle
tests per second as well as the number of primary, secondary and shadow rays generated
per second are compiled here. In addition, some derived plots such as a measurement of
power efficiency and acceleration data structure utilization can be found here.

C.1 Intersection Tests
This section contains the number of intersection tests executed per second as well as the
results relative to the scalar single-ray tracer.
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Figure C.1: The estimated number of triangle intersection tests
per second during packet and single-ray tracing for each of the
scenes.
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FigureC.2: The estimated number of AABB intersection tests per
second during packet and single-ray tracing for each of the scenes.
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Figure C.3: The relative performance between the number of tri-
angle tests done by the single-ray tracer and the other configura-
tions.
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Figure C.4: The relative performance between the number of
AABB tests done by the single-ray tracer and the other config-
urations.
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Figure C.5: The computed number of primary, secondary, and
shadow rays generated per second during runtime. Note that
Sponza and Sibenik do not contain any specular surfaces, and thus
no secondary rays are generated in those scenes.
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Figure C.6: The relative performance between the number of
primary, secondary and shadow rays generated by the single-ray
tracer and the other configurations.
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C.3 Derived Computations
This section contains some derived results such as a measurement of the power efficiency
and acceleration data structure utilization.
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Figure C.7: A measurement of a compromise between run-time
and power, for both the full application and for just the rendering.
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Figure C.8: A measurement of the effectiveness of our bounding
volume hierarch. This measurement gives us an idea where the
acceleration data structure itself bottlenecks the ray tracers and
where a different one might improve performance. Derived from
dividing the number of AABB intersection tests by the number of
triangle intersection tests.
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Glossary

AABB An Axis Aligned Bound Box (AABB) is an object that is intended to wrap one
or more primitives inside very basic three dimensional structure that is aligned with
each of the primary axes. 18

Alignment The way memory is arranged and accessed. E.g., when an address is a multi-
ple of 4, it is aligned to 4-byte boundary. 16

ARM A family of instruction set architectures based on the RISC architecture developed
by the British company ARM Holdings. 11

AVX Advanced Vector Extensions. 11

Branch Prediction A hardware feature which tries to guess which branch will be taken
during execution, which can reduce the number of costly pipeline flushes. 48

BSP Binary Space Partitioning. 10

BVH Bounding Volume Hierarchy. 10

CPU Central Processing Unit. 7

FPU A Floating Point Unit (FPU) is a hardware component dedicated to floating point,
i.e., ‘decimal’ arithmetic. 50

GCC The GNU Compiler Collection [13]. 15

GPU Graphics Processing Unit. 7

In-Order Processor A processor that processes one instruction after another in the order
they are received. Contrasts with out-of-order processors. 48
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Glossary

Intrinsics A term referring to a compiler specific, or non-standardized extension that give
users access to low-level, processor specific instructions in high-level programming
languages, such as C or C++. E.g. SIMD intrinsics allows us to use SIMD instruc-
tions directly without writing assembly code. 49

ISA An Instruction Set Architecture (ISA) describes all available instructions available
for application and system programmers for a given platform. 50

LLVM/Clang The LowLevel VirtualMachine (LLVM) is a compiler infrastructure project.
Clang is the C/C++/C# frontend of LLVM. LLVM/Clang is often used interchange-
ably to refer to the whole compiler infrastructure [20]. 15

Mesh A collection of triangles, structured in some way. 18

NEON Marketing name for the SIMD extensions available to ARMv7 processors. Offi-
cially, it is known as the Advanced SIMD Extension. 7

Out-of-Order Processor A processor that can rearrange instructions based on dependen-
cies at the register level in order to improve the instruction level parallelism. These
processors can potentially increase the instruction throughput of the processor but
often require larger areas of silicon and consumemore power than an in-order equiv-
alent processor. 48

Primitive Any basic object that can be visualized with computer graphics algorithms.
The most commonly used primitive is the triangle. 17

Shade A colloquial term for applying colors, effects or textures to objects, altering their
appearance. 9, 21

SIMD Single Instruction Multiple Data (SIMD) is a part of Flynn’s taxonomy where a
single instruction can work on multiple individual pieces of data. 7, 8

SMP Abbreviation for Symmetric Multiprocessing, a hardware feature that allows a num-
ber of physical processor cores to share the same main memory. 48

SoC A System on Chip (SoC) is a term used to describe a complete hardware platform,
typically for embedded systems. 24

SSE Streaming SIMD Extensions. 11

Superscalar Processor A processor that can forward more than single instruction along
the processor pipeline at once. 48

x86 A family of backward compatible instruction set architectures, primarily of CISC
design. 7
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EXAMENSARBETE VID INSTITUTIONEN FÖR DATAVETENSKAP, LTH | PRESENTATIONSDAG: 29 AUGUSTI 2014

Introduktion
På senare år har datorgrafiken utvecklats enormt, framförallt 
på mobila enheter som smartphones och tablets. Förut kunde 
man knappt surfa på dem, men numera klarar dessa enheter 
mycket grafiskt krävande spel.
 Processorn som finns i dessa enheter, ARM-processorn, kan 
göra betydligt mer. Den har funktioner som till exempel vektor-
processering vilket gör det möjligt att accelerera mer generella 
applikationer såsom ray tracing.
 Just ray tracing används flitigt för att skapa realistiska bilder, 
men denna metod tar ofta mycket lång tid. Detta gör att varje 
förbättring som påskyndar metoden är mycket värdeful. I detta 
examensarbetet har jag utvecklat en enkel men väloptimerad 
ray tracing-applikation för några ARM-processorer och analy-
serat dess prestanda med hänsyn till både renderingstid och 
strömförbrukning.

Ray tracing
Ray tracing har länge varit den metod man använt för att skapa 
näst intill fotorealistiska bilder. Dessa bilder skapas genom 
att man följer fiktiva strålar från kamerans pixlar ut i scenen. 
Strålarna registrerar vilket objekt de träffat och väljer sedan 
antingen att använda objektets färg eller skapa en ny stråle. 
Den nya strålen kan till exempel ta den reflekterande riktningen 
för att också använda färgen från objektet därifrån. Denna 
metod är dessvärre oftast mycket långsam och lämpar sig ännu 
inte för realtids-applikationer. Trots det vill man självklart att 
applikationen ska vara så snabb som möjligt.

SIMD och NEON
Beräkningstunga applikationer kan ofta gå mycket snabbare 
om man utför samma operation på all data samtidigt. Av den 
anledningen utvecklades tidigt så kallade Single Instruction 
Multiple Data-instruktioner. Med dessa kan man samla ihop 
data i så kallade SIMD-vektorer, på vilka man sedan kan utföra 
samma operation på alla element samtidigt. I dagsläget är det 
vanligast att arbeta med vektorer som har fyra vektorelement. 
Processortillverkare kan tillhandahålla olika SIMD-teknologier 
med olika vektorlängder, operationer och datatyper, men 
addition och multiplikation på flyttals-vektorer finns i princip 
alltid tillgängliga. I ARM-processorer kallas dessa för Neon-
instruktioner och de har tillgång till de flesta vanliga datatyper 
och operationer.

Ray-packet-tracing
Strålar från fyra närliggande pixlar går i många fall åt ungefär 
samma håll. Ofta går de samma väg genom scenen och kanske 
till och med träffar samma objekt. En effektiv optimering är 
då att paketera dessa strålar tillsammans och sedan använda 

SIMD-instruktioner för att göra beräkningar på alla strålar sam-
tidigt. Just detta är tanken med så kallade ray-packet-tracers. 
I denna typ av ray tracer skapar man paket av strålar som är 
lika stora som vektorlängden för SIMD-teknologin, och följer 
således alla strålar i paketet samtidigt. Detta kräver i vissa fall 
att enstaka strålar i ett paket måste specialbehandlas, men 
generellt kommer de flesta strålar i paketet att träffa samma 
objekt vilket gör att prestandan ofta flerdubblas.

Utvärdering och resultat
För att bedöma hur väl vår packet-tracer presterar har vi tes-
tat den på ett par olika ARM-plattformar och på ett urval av 
scener. En av scenerna vi testade vår optimerade packet-tracer 
på kan ses i figur 1. Renderingstiden och strömförbrukningen 
för denna scen på en Samsung Chromebook (XE303C12) kan 
ses i tabellen nedan. 
  Referens Packet-tracer
Renderingstid 32.6 s 12.6 s
Strömförbrukning 225 J 100 J

Slutsats
Resultat på denna scen visar att ray-packet-tracern ger en för-
bättring på ungefär 250% för renderingstiden jämfört med vår 
referens-ray-tracer, vilket i många fall mer än väl gör skäl för 
den större komplexiteten i en packet-tracer.
 Den procentuella strömförbrukningen är något sämre än 
renderingtiderna men den är fortfarande ganska bra, med en 
förbättring på mellan 150-200% i genomsnitt i de scener vi 
testade.

Ray-packet-tracing med ARM:s 
NEON-arkitektur
POPULÄRVETENSKAPLIG SAMMANFATTNING
GUSTAF WALDERMARSON

Handledare: Johan Grönqvist (ARM) 

Examinator: Michael Doggett (LTH)

Exempel på hur ray-packet-tracing går till

Figur 1 YeahRight-skulpturen, skapad av Keenan Crane
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