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Abstract

Stochastic di�erential equations (SDEs) proved a fundamental mathematical

tool to model dynamics subject to randomness and are nowadays a necessary in-

strument in e.g. �nancial mathematics, neuronal modelling, population growth

and physiological modelling. In realistic applications SDEs parameters are un-

known quantities that have to be estimated from available data. However in-

ference for SDEs is non-trivial and a considerable amount of research e�ort has

been devoted to such problem in the last 20 years. In this work we imple-

ment and compare several parameter estimation methods for SDEs based on

(approximated) likelihood maximization using data collected at discrete times.

The comparison has proved useful to select the most convenient likelihood ap-

proximation methodology for estimating the parameters of mixed-e�ects models

based on SDEs. Such mixed-e�ect models are characterized by the introduction

of random parameters into SDEs: this allow to model the inter-subjects vari-

ability characterising repeated-measurement experiments while simultaneously

accounting for individual stochastic dynamics, thus providing a more precise

estimation for population parameters. Finally a pharmacokinetic application

considering real data from the time-course of theophilline concentrations when

measured on several subjects is presented.
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Chapter 1

Introduction

Parametric inference for stochastic di�erential equations are a rapidly expand-

ing area of research. Stochastic di�erential equations (SDE) are a deterministic

di�erential equations perturbed by a random disturbance that is not necessarily

small. SDE models play an important role in a number of application areas,

including biology, chemistry, epidemiology, mechanics, microelectronics, eco-

nomics and �nance. It is often convenient to model time evolution of dynamic

phenomena in many �elds by using a di�usion process which is characterized by

a stochastic di�erential equation. Each SDE have di�erent parameters, which

are crucial for the characterization of dynamic phenomena considered. It is of-

ten the case that these parameters are not known accurately, while the data for

the particular dynamic phenomena are available. Consequently, the estimation

of the parameters of SDE from discretely - sampled data has received substan-

tial attention. There are mainly two branches in the community of parameter

estimation in stochastic di�erential equations (Hurn et al. (2007)): the branch

adopting the Maximum Likelihood and the branch developing estimation tech-

niques based on moment matching, which are not considered in this thesis. As

for any parametric model, maximum likelihood is preferred method for esti-

mating the parameters of the SDE. Unfortunately, exact maximum likelihood

estimation is possible in a few cases, when the distribution of the discretely

sampled data are known. However it possible to estimate the parameters by

approximated maximum likelihood. The basic idea is construct consistent ap-

proximations of the transition densities of the di�usion and use these to evaluate
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the likelihood function.

The aim of this thesis is investigate among some di�erence techniques of

estimations, and choose one of this to estimate the parameters of a stochastic

di�erential mixed-e�ect model whose transition desities are unknown. Several

approaches to approximating the likelihood function have been suggest in liter-

ature. Lo (1998) proposes numerically solving the forward Kolmogorov partial

di�erential equation, subject to the appropriate boundary conditions, to ob-

tain the unknown transition densities of the di�usion. Ogawa (1994), Hurn and

Lindsay (1999) and Nicolau (2000) apply nonparametric density estimation to

simulated data from the Euler Maruyama discretizations to approximate the

transition densities of the di�usion. In this work we describe and test another

technique: the simulated maximum likelihood. Originally it was developed by

Santa-Clara (1995) in a early version of the paper Brandt and Santa-Clara

(2002) and independently by Pedersen (1995). It has since been implemented

by Honoré (1997), Piazzesi (2000) and Durham (2000) to estimate a variety of

continuous - time term structure models, including models with jumps and with

stochastic volatility. This method has a theoretical appeal, in fact as we show,

under some assumptions the approximated likelihood function converge to the

exact function, but it have been computationally burdensome. To underline the

limits of Pedersen (1995) and Brandt and Santa-Clara (2002) method, we study

its extension of the simulated maximum likelihood method propose by Durham

and Gallant (2002). The numerical study show that the Durham and Gallant

(2002) proposal improve the estimation result, we made our numerical study

using the Cox, Ingersoll and Ross model (CIR) of which the exact transition

density is known. We focus on another technique to approximate the likelihood

function the Hermite expansion propose by Aït-Sahalia (1999). The advan-

tage of analytical expansions is that they are computationally less demanding

then simulation. The disadvantage is that, for the expansions to converge, the

di�usion must �rst be transformed to be su�ciently Gaussian. However our nu-

merical study, made using the Vasicek model, shown that the Hermite expansion

works better than the simulation likelihood estimation proposed by Brandt and
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Santa-Clara (2002). Consequently we decide to apply the hermite expansion

to approximate the probability density for a stochastic di�erential mixed-e�ect

model.

Stochastic di�erential mixed-e�ect models are SDEs system in which one or

more parameters are random variables. These models are useful in biomedical

research, particularly on studies in which repeated measurements are taken on a

series of individual or experimental animals. In this models it is assumed that all

responses follow a similar function but the parameters vary among individuals.

As such they are able to model the variation within-group and between-group.

Pharmacokinetic and pharmacodynamic studies include random e�ects models,

see Donnet and Samson (2008). We consider a SDE that mimic the theophyllin

drug pharmacokinetic, in which we consider a parameter with a normal distri-

bution. Our aim is estimate the parameters involved in the model, the mean

and variance of the random parameter. We make the study using real data and

simulated data.

The work is composed by three chapter. In the �rs we introduce some

important notions about stochastic calculus, the de�nition of the stochastic dif-

ferential equations and other important knowledge which are recalled in the

other chapters. In the second one we describe and compare the estimation tech-

niques: we consider �rst the Brandt and Santa-Clara (2002) and Durham and

Gallant (2002) methods and then we introduce the Aït-Sahalia (1999) Hermite

expansion. The third chapter is focused on the stochastic di�erential mixed-

e�ect models. In the appendix the MATLAB programs that we coded for our

numerical study are reported.
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Chapter 2

Stochastic Calculus

Preliminaries

The development of stochastic di�erential equations theory is strongly connected

with stochastic calculus. One stochastic process in particular, the Brownian mo-

tion, has been fundamental for the development of this �eld. The process takes

the name from Robert Brown, a Scottish scientist that described as random the

motion of pollen particles suspended in a liquid (1927). It seemed natural to

use it as the noise component of a continuous time process in general and for a

stochastic di�erential equation in particular. The work of the Japanese mathe-

matician Kiyoshi Itô, was fundamental for the de�nition of a stochastic integral

and a formula that can be used to solve some types of equations. This class

of mathematically solvable Stochastic di�erential equations (SDEs) happens to

be very narrow and often indirect or approximate techniques are needed. Re-

searching for more accurate approximation and estimation methods has been

one of the most interesting topic in the �eld as well as applications in di�erent

disciplines. In this chapter we introduce concepts and de�nition that will be

used throughout the work.

2.1 Basic De�nitions

In this section we introduce some basic concepts of stochastic process, Markov

process and Brownian motion.

Stochastic processes are sequences of random variables generated by probabilis-
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tic laws. The word �stochastic� comes from the Greek and means �random�.

Stochastic process is a family of random variables {Xt} where t denotes a pa-

rameter running over a suitable index set T. The parameter t usually represents

time, but di�erent situations may be, for example, a distance from the origin in

plane, in which case Xt may represent the number of points randomly scattering

in the plane whose distances from the origin are less than t. However, in this

text we refer to the parameter t as the time and call {Xt} a discrete − time

process, if the index set is T = Z+; and a continuous− time process if the index

set is T = R+. See Capasso and Bakstein (2005)

De�nition 2.1. Let (Ω,F ,P) be a probability space on which a stochastic

process {Xt} is de�ned. For each ω ⊂ Ω, the function Xt(ω) with respect to t,

denoted by {Xt(ω), t ∈ T}, is called a sample path or realization of the process

{Xt}.

De�nition 2.2. The stochastic process {Xt} on (Ω,F ,P), is called a process

with independent increments if for all n ∈ N an for all t1, t2, ..., tn ∈ R+, where

t1 < t2 < ... < tn, the random variables Xt1 , Xt2 − Xt1 , ..., Xtn − Xtn−1
are

independent.

De�nition 2.3. The realization of the process {Xt} up to the time t is {Xs(ω), s ≤
t}.
A stochastic process is strictly stationary if it is invariant under time displace-

ment.

We call a Gaussian process a stochastic process for which any joint distribution

is Gaussian.

A Markov process is a stochastic process that is distinguished by the Markov

property. Markov processes have many applications in operations research, bi-

ology, engineering, and economics.

If t is the present time, any time such that s < t is called a paste time, while

any time such that s > t is a future time. The following de�nitions are taken

from Kijima (1997)

De�nition 2.4. Let {Xt}t∈R be a stochastic process on a probability space, val-

ued in a measurable space (E,B) and adapted to the increasing family (Ft)t∈R+

of σ-algebras of subsets of F . {Xt} is a Markov process with respect (Ft)t∈R+

if the following condition is satis�ed:

∀B ∈ B,∀(s, t) ∈ R+ × R+, s < t :
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P (Xt ∈ B | Fs) = P (Xt ∈ B | Xs).

Shortly we can de�ne a Markov process as a stochastic process whose future

behavior can be determined independently of the past. From the de�nition

follow the properties.

Preposition 2.1.1. Under the assumptions of the previous de�nition, the fol-

lowing two statements are equivalent:

1. for all B ∈ B and all (s, t) ∈ R+ × R+, s < t :

P (Xt ∈ B | Fs) = P (Xt ∈ B | Xs)

almost surely;

2. for all g : E → R, andB BR- measurable such that g(Xt) ∈ L1(P) for all t,

for all (s, t) ∈ R2
+, s < t:

E [g(Xt) | Fs] = E [g(Xt) | Xs]

almost surely.

Theorem 2.1.2. Every real stochastic process {Xt}t∈R+ with independent in-

crements is a Markov process.

The Markov property enables us to develop a rich system of concepts and

theorems and to derive many results that are useful in applications.

Let T = [0,+∞) be the index set and consider a stochastic process {Xt, t ∈ T}

taking values on N = {0, 1, 2, ...}. We say that the process {X(t)} is a Markov

chain if for each t > 0 and each set A,

P (X(t+ s) ∈ A | X(u), 0 < u < s) = P (X(t+ s) ∈ A | X(s)).

More precisely for each s ≥ 0, t > 0, each i, j ∈ N , and every history x(u),

0 ≤ u < s,

P (X(t+ s) = j | X(s) = i,X(u) = x(u), 0 ≤ u < s) =

= P (X(t+ s) = j | X(s) = i),

then this process {Xt} is called a Markov chain in continuous time. In other

word, a continuous time Markov chain is a stochastic process having the Markov

property.
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De�nition 2.5. Let {Xt} be a Markov process and de�ne

pij(n, n+m) = P (Xn+m = j | Xn = i),

with n = 0, 1... and m = 1, 2, ...

The conditional probability pij(n, n+1) is called the transition probability from

state i to state j at time n.

De�nition 2.6. A Markov process is homogeneous if all the transition proba-

bility depend only on time di�erence.

Now we can de�ne the Brownian motion. The botanist Robert Brown in

(1827) observed that a small particle suspended in a liquid is subject to in-

�nitely collisions with atoms, therefore it was impossible to observe its exact

trajectory. With the help of microscope it was only possible to con�rm that

the movement of the particle is entirely chaotic. This type of movement is

called Brownian motion. Brown tried di�erent materials and di�erent solvents,

and still the motion of these particles continued. This was a time when most

scientists did not believe in atoms or molecules, so the underlying mechanism

responsible remained a mystery for nearly a century. In the words of S. G.

Brush �three quarters of a century of experiments produced almost no useful

results in the understanding of Brownian motion because no theorist had told

the experimentalists what to measure�. Its mathematical inventor Einstein al-

ready observed, it is necessary to make approximations, in order to describe the

process. The �rst works on Brownian motion appeared in a paper by Einstein

(1905) and on Bachelier 's thesis (1900). After the Brownian motion was rigor-

ously formalized by Wiener (1923). Next de�nitions are taken from Øksendal

(2005).

De�nition 2.7. The real - valued process {Wt}t∈R+
is a Brownian motion (or

Wiener process) if it satis�es the following condition:

1. W0 = 0 almost surely;

2. {Wt}t∈R+ is a process with independent increments;

3. Wt −Ws is normally distributed with N(0, t− s), (0 ≤ s < t).

Since the law of its increments is Gaussian, the Brownian motion is an

example of Gaussian process.

9



Theorem 2.1.3. Every Brownian motion {Wt}t∈R+
is a Markov process.

2.2 The Itô Calculus and Di�erential Stochastic

Equations

In this section we introduce the Itô formula. In the same way that Lebesgue

developed the ideas of set theory to provide a more general de�nition of Rie-

mann's integral, Itô extended the ideas of Lebesgue to include integration with

the Brownian motion, see van Handel (2007).

Then we will to present the stochastic di�erential equations. The notion

of stochastic di�erential equation (SDE), de�ned as a deterministic di�erential

equation perturbed by random disturbances that are not necessarily small, has

been used pro�tably in a variety of disciplines(Jeisman Lindsay, 2007). SDEs

are central to much of modern �nance theory and have been widely used to

model the behavior of key variables such as the instantaneous short-term inter-

est rate, asset prices, asset returns and their volatility, see Sundaresan (2000).

The SDE are a natural way to model population growth in a randomly variety

environment (Population growth in random environments; Braumann (1983)).

They are also used in neuronal modeling ( Stochastic methods in neuroscience;

Laing and Lord (2010)); computational systems biology ( Stochastic model-

ing for systems biology; Wilkinson (2012)); and physiological models (Modeling

the euglycemic hyperinsulinemic clamp by stochastic di�erential equations; Pic-

chini et al. (2006)). They try to explain the oscillations of glycemia occurring

in response to the hyperinsulinization and to the continuous glucose infusion at

varying speeds, using a system of stochastic di�erential equations. Next de�ni-

tions and lemmas are taken from Øksendal (2005)

De�nition 2.8. Let (Ω,F ,P) a probability space, {Wt} a Brownian motion,

and {Xt} a Ft adapted stochastic process with

P

(∫ T

0

X2
t dt <∞

)
= 1
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for all T <∞. Then the Itô integral:

It(Xt) =

∫ t

0

XsdWs

is uniquely de�ne.

Perhaps the most important topic in stochastic integration is the associ-

ated calculus, which gives us transparent tools to manipulate Itô integrals and

stochastic di�erential equations (SDE).

De�nition 2.9. The Itô SDE for a di�usion process Xt is:

dXt = µ(Xt)dt+ σ(Xt)dWt.

The process is determined by the deterministic scalar functions µ(·) and σ(·),
and the initial condition X0 = x0. In particular µ(Xt) is the in�nitesimal mean

of the Markovian process, de�ned as

µ(xt) = lim
δt→0

1

δt
E(Xt+δt − xt);

σ2(Xt) is the in�nitesimal variance of the process, de�ned as

σ2(xt) = lim
δt→0

1

δt
V ar(Xt+δt − xt).

Note that in all of the above equality we are implicity conditioning throughout

on Xt = xt.

Lemma 2.2.1 (Itô's Lemma). Let dXt = µ(t, ω)dt+σ(t, ω)dWt, be the SDE as-

sociated to the n−dimensional Itô process, where µ and σ are random functions

with values respectively in Rn and Rn×p. Let

f(x, t) : [0,∞]× Rn → Rp,

a C2 function. Then the transformation process Yt = f(Xt, t) is also called a

n−dimensional Itô process that, indicating with superscripts the component of

the vectors, can be expressed as:

dY kt =
∂fk

∂t
(X, t)dt+

n∑
i=1

∂fk

∂Xi
(X, t)dXi +

1

2

∑
i,j

∂2fk

∂Xi∂Xj
(X, t)dXidXj (2.1)

where dW i
t dW

i
t = δijdt and dW

i
t dt = 0.

One of the fundamental theorems of stochastic analysis is Girsanov's the-

orem, which tell us what happens to the Brownian motion under a change of

measure.
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Theorem 2.2.2. Let {Wt} be a n−dimensional Ft− Brownian motion on the

probability space (Ω,F ,P), and let {Xt} be an Itô process of the form

Xt =

∫ t

0

Fsds+Wt,

t ∈ [0, T ]. Suppose furthermore that {Ft} is Itô integrable, and de�ne:

Λ = exp

(
−
∫ T

0

(Fs)∗dWs −
1

2

∫ T

0

‖Fs‖2ds

)
,

where (Fs)∗dWs = F1
s dW

1
s + ...+ Fns dWn

s . If Novikov's condition

EP

[
exp

(
1

2

∫ T

0

‖Fs‖2ds

)]
<∞

is satis�ed, then {Xt}t∈[0,T ] is an Ft− Brownian motion under Q(A) = EP (ΛIA).

Now we can introduce the stochastic di�erential equations.

Let (Ω,F ,P), and let {Xt} be a probability space, and {Ft, t ≥ 0} a non de-

creasing family of σ−algebras in F . Let us de�ne a n−dimensional continuous

and homogeneous in time Itô process which satis�es the following system of n

di�erential equations governed by the p−dimensional Brownian motion Wt:

dXt = µ(Xt, t; θ)dt+ Σ(Xt, t; θ)dWt, (2.2)

where µ(Xt, t; θ) : (Rn× [0, T ]×Rq)→ Rn is the drift function and Σ(Xt, t; θ) :

(Rn×[0, T ]×Rq)→ Rn×p the di�usion function, both depending on an unknown

parameter vector θ ∈ Θ ⊆ Rq.

Theorem 2.2.3. Suppose that

1. X0 ∈ L2;

2. µ and Σ are Lipschitz and continuous uniformly on [0, T ];

3. ‖µ(0, t)‖ and ‖Σ(0, t)‖ are bounded on t ∈ [0, T ].

Then there exist a unique solution, {Xt}, P−almost everywhere to the asso-

ciate stochastic di�erential equation, and moreover for its solution µ(Xt, t) and

Σ(Xt, t) are in L2.

Theorem 2.2.4. The unique solution,{Xt}, of a stochastic di�erential equa-

tions is an Ft Markov process.
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It is helpful to introduce a transition density.

De�nition 2.10. Let t, t′ ∈ T we de�ne the transition density as

p(x, t, x′, t′) =
∂

∂x′
P (x, t, x′, t′),

where P (x, t, x′, t′) = P (Xt+t′ ≤ x′ | Xt = x).

Now we can re-write the properties of a di�usion process in De�nition 2.9

as integrals with respect to the transition density as

µ(x) = lim
δt→0

1

δt

∫
R

(x′ − x)p(x, t, x′, δt)dx′;

σ2(x) = lim
δt→0

1

δt

∫
R
(x′ − x)2p(x, t, x′, δt)dx′.

These properties turn out to be useful for mathematical analysis to write down

the Chapman-Kolmogorov equation for a di�usion process as

p(x, t, x′, t′ + t) =

∫
R
p(z, t, x′, t′)p(x, t, z, t)dz.

Just as for the case of discrete state Markov chains in continuous time,

we can use the Chapman-Kolmogorov equation in order to derive di�erential

equations representing the Kolmogorov backward and forward equations for

di�usion process.

Theorem 2.2.5. Let p(x, xe, t) be the transition density which represents the

density of an endpoint state, xe, as function of an initial state x and the time

prior to the endpoint, t. The Kolmogorov backward equation is:

∂

∂t
p(x, xe, t) = µ(x)

∂

∂x
p(x, xe, t) +

1

2
σ2(x)

∂2

∂x2
p(x, xe, t).

The backward equation can be useful in applications, but is slightly less

useful than the forward equation, and also less intuitive.

Theorem 2.2.6. The Kolmogorov forward equation for the transition density

p(x0, x, t) of a univariate di�usion process governed by an Itô SDE de�ned in

2.9 is

∂

∂t
p(x0, x, t) = − ∂

∂x
(µ(x)p(x0, x, t)) +

1

2

∂2

∂x2
(σ2(x)p(x0, x, t)).

this equation is commonly referred to as the Fokker - Planck equation.

The Fokker - Planck has many important applications in mathematical anal-

ysis of di�usion process, unfortunately it is analytically intractable except in a

few simple special cases.
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Chapter 3

Likelihood Based Inference

for SDE

As consequence of the importance of the stochastic di�erential equations, the

estimation of the parameters of SDEs from discretely-sampled data has received

substantial attention in �nancial econometrics literature, particularly in the last

twenty years. Since a large number of competing estimation procedures have

been proposed, Hurn et al. (2007) propose an evaluation of the various estima-

tion techniques. The estimation procedures could be divided in two branches.

• Likelihood - based procedure to solve Fokker - Planck equation (Jensen

and Pulsen (2002)), discrete maximum likelihood (Elerian (1998)), her-

mite polynomial expansion (Aït-Sahalia (2002b)), simulated maximum

likelihood (Pedersen (1995), Brandt and Santa-Clara (2002)) and Markov

chain Monte Carlo (Elerian et al. (2001)).

• A procedures obtained by aligning user-de�ned features of the model with

those of the data, as general method of moments (Hansen (1982)), in-

direct estimation (Gallant and Tauchen (1996)), characteristic function

(Singleton (2001)), estimating functions (Sørensen (2000)) and match to

marginal density (Aït-Sahalia (1996a)).
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In this chapter we describe some techniques to approximate the likelihood func-

tion. We �rst present the method proposed by Brandt and Santa-Clara (2002)

and Pedersen (1995), and we compare it with the Hermite approximation de-

scribed in Aït-Sahalia (1999), using the Vasicek's model. We try to improve the

Brandt - Santa Clara's method using the variance reduction techniques propose

by Durham and Gallant (2002). Some numerical results are also obtained using

the Cox- Ingersoll - Ross model.

3.1 Monte Carlo Approximations

The continuous-time models has proved to be an immensely useful tool in �nance

and more generally in economics. Continuous-time models are widely used to

study issues that include the decision to optimally consume, save, and invest,

portfolio choice under a variety of constraints, contingent claim pricing, capital

accumulation, resource extraction, game theory, and more recently contract

theory. Many re�nements and extensions are possible, but the basic dynamic

model for the variable of interest Xt is a stochastic di�erential (2.2) whereWt is

a standard Brownian motion and the drift µ and di�usion Σ are known functions

except for an unknown parameter vector θ in a bounded set Θ ⊂ Rd.

One major impediment to both theoretical modeling and empirical work

with continuous-time models of this type is the fact that in most cases little

can be said about the implications of the dynamics in (2.2) for long time in-

tervals. Though (2.2) fully describes the evolution of the variable X over each

in�nitesimal instant, one cannot in general characterize in closed form an object

as simple as the conditional density of Xt+∆ given the current value Xt.

As for any parametric model, maximum likelihood is the preferred method for

estimating the parameters of a di�usion. Maximum likelihood estimates of the

parameters of stochastic di�erential equations are consistent and asymptotically

e�cient. Unfortunately, exact maximum likelihood estimation is only possible

in a few special cases when the distribution of the discretely sampled data is

known. In particular, the distribution is known explicitly for di�usions with lin-
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ear mean and constant or proportional variance; in most cases, however, exact

maximum likelihood estimation is impossible because the likelihood function of

the model cannot be evaluated explicitly, and the alternative of approximating

it has until recently proven di�cult. Simulation of maximum likelihood (SML)

method works as follows: �rst we construct consistent approximations to the

transition densities of the di�usion and we use these approximations to evaluate

the likelihood function. Then we maximize this approximated likelihood func-

tion. Since the approximations to the transition densities are consistent, the

same is the approximation to the likelihood function. This implies that asymp-

totically the SML estimator behaves just like the unattainable exact maximum

likelihood estimator. There are some di�erent ways to approximate the transi-

tion probability, in the next paragraphs we present some of this ways.

3.1.1 Brandt - Santa Clara

We consider a continuous - time process {Xt} described by the following system

of stochastic di�erential equations:

dXt = µ(Xt, t; θ)dt+ Σ(Xt, t; θ)dWt, (3.1)

where Wt denote a r-dimension vector of independent Brownian motions, de-

�ned in a complete probability space (Ω,F ,P); θ ∈ Θ ⊆ Rd is an unknown

parameter; µ(·, ·; θ) : Rk × [0,∞)→ Rk; and Σ(·, ·; θ) : R× [0,∞)→Mk×r.

First of all we assume that the drift µ and the di�usion Σ are in�nitely di�eren-

tiable with continuous and bounded derivatives of all order. This assumption is

stronger than the usual linear growth and uniform Lipschitz continuity condi-

tions that are su�cient to guarantee the existence of a unique strong solution to

the stochastic di�erential equations, see Theorem 2.2.3. The extreme degree of

smoothness is su�cient, but most likely not necessary, to bound the asymptotic

error of the approximations. We suppose, also, that θ ∈ Θ ⊂ Rd, where Θ is a

compact set that contain the true θ0; and the covariance matrix ΣΣT is positive

de�ned. For practical reason, the continuous - time process is sampled only at
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N + 1 equally spaced points in time, denoted t0, t1, ..., tN .

Let p(Xt0 , Xt1 , ..., XtN ; θ) the density of the discrete-time data, generated by

the continuous - time di�usion model. As a function of the parameters θ, this

density represents the likelihood function:

L(θ) = p(Xt0 , Xt1 , ..., XtN ; θ) = p(Xt0 , t0; θ)

N−1∏
n=0

p(Xtn+1
, tn+1 | Xtn , tn; θ).

(3.2)

The equality follows from the fact that {Xt} is Markovian. It shows that, in

order to evaluate the likelihood function, we require the initial unconditional

density p(Xt0 , t0; θ) and the N transition densities p(Xtn+1
, tn+1 | Xtn , tn; θ),

for n = 0, 1, ..., N − 1. The parameter vector that maximizes the log likelihood

function L is the maximum likelihood estimator θML of θ0. We have to make

the follow assumption. (Brandt and Santa-Clara (2002)) to guarantee the usual

desirable asymptotic properties,for example consistency, asymptotical e�ciently

and asymptotical normality:

1. The likelihood function L is twice continuously di�erentiable in θ in a

neighborhood of the true parameter vector θ0.

Furthermore, E
[[

∂L(θ)
∂θ

] [
∂L(θ)
∂θ′

]]
has full rank and is bounded for all pa-

rameters θ ∈ Θ.

2. For every vector λ ∈ Rk, λ′I(θ)λ→∞, where

I(θ) = (3.3)

E

[
N−1∑
n=0

∂

∂θ
ln p(Xtn+1

, tn+1 | Xtn , tn; θ)
∂

∂θ′
ln p(Xtn+1

, tn+1 | Xtn , tn; θ)

]
This assumption is required to establish that the maximum likelihood es-

timator θML is consistent. For it to hold, it is su�cient that the gradients of

the transition densities are bounded. The matrix I is called Fisher informa-

tion matrix. The inverse of Fisher information matrix gives the Cramér-Rao

lower bound on the covariance matrix of any consistent and unbased estimator

of the parameter vector. The maximum likelihood estimator typically attains

this lower bound. Now we construct an estimator based on a sequence of con-

sistent approximations to the likelihood function, of (3.2). We �rst discretize

17



the process Xt between times tn and tn+1 to construct a consistent approx-

imation of p(Xtn+1
, tn+1 | Xtn , tn; θ) for two adjacent discrete time observa-

tions Xtn and Xtn+1 . There exists an in�nite number of discrete-time processes

that approximate the di�usion process in this interval. We choose the Euler

Maruyama scheme because it is computationally convenient. We divide the in-

terval [tn, tn+1] intoM subintervals of length h = tn+1−tn
M . The Euler Maruyama

discretization X̂tn+mh for m = 0, 1, ...,M − 1, is the Gaussian process:

X̂tn+(m+1)h = (3.4)

X̂tn+mh + µ(X̂tn+mh, tn +mh; θ)h+ σ(X̂tn+mh, tn +mh; θ)
√
hεtn+(m+1)h

where εtn has a standard normal distribution. The recursion starts at the ini-

tial condition X̂tn ≡ Xtn . With all this assumptions, the Euler Maruyama

approximation converges weakly to the stochastic process Xt as M → ∞. By

de�nition (3.4), the one-step-ahead transition densities of the Euler Maruyama

discretization are Gaussian. This means that the probability of X̂tn+(m+1)h = y,

conditional on X̂tn+mh = x, is

qM (y, tn + (m+ 1)h | x, tn +mh; θ) =, (3.5)

φ(y;x+ µ(x, tn +mh; θ)h, V (x, tn +mh; θ)h)

where φ(y,mean, variance) denote a multivariate normal density; and V =

ΣΣT . The density qM is an approximation of p(y, tn + (m + 1)h | x, tn +

mh; θ). The accuracy of this approximation depends on how much time h elapses

between the points x and y. In the limit, as h→ 0, the approximation is exact.

The multi-step-ahead transition densities of the Euler Maruyama discretization

are unknown in closed form. However, they can be evaluated through recursive

integration. In particular, the probability that X̂tn+(m+j)h = y, conditional on

X̂tn+mh = x, for j = 2, 3, ..M −m, is :

qM (y, tn + (m+ j)h | x, tn +mh; θ) =

=

∫
R
qM (y, tn + (m+ j)h | z, tn + (m+ j − 1)h; θ)×

18



×qM (z, tn + (m+ j − 1)h | x, tn +mh; θ)dz

From (3.5), the �rst term in the integrand is a Gaussian density and is therefore

known in closed form. The second term is itself a multi-step-ahead transition

density that can be computed again recursively. With y = Xtn+1
, x = Xtn ,

j = M − m, and the previous equations then yield an approximation of the

continuous-time transition density p(Xtn+1
, tn+1 | Xtn , tn; θ). For the Euler

Maruyama discetization, the probability density function of X̂tn+1
= Xtn+1

,

conditional on X̂tn = Xtn , is

qM (Xtn+1
, tn+1 | Xtn , tn; θ) = (3.6)

=

∫
R
φ(Xn+1; z + µ(z, tn + (M − 1)h; θ)h, V (z, tn + (M − 1)h; θ)h×

×qM (z, tn + (M − 1)h | Xn, tn)dz.

The approximate transition density qM (Xtn+1
, tn+1 | Xtn , tn; θ) is still a

convolution of M Gaussian densities that involves solving M − 1 integrals:

qM (Xtn+1
, tn+1 | Xtn , tn; θ) =

=

∫
R

φ(Xtn+1
; zM−1+µ(zM−1, tn+(M−1)h; θ)h;σ(zM−1, tn+(M−1)h; θ)2h)×

×qM (zM−1, tn + (M − 1)h | Xtn , tn; θ)dzM−1 =

=

∫
R
φ(Xtn+1

; zM−1 +µ(zM−1, tn+(M−1)h; θ)h;σ(zM−1, tn+(M−1)h; θ)2h)×

×
∫
R
φ(zM−1, tn+(M−2)h+µ(zM−2, tn+(M−2)h; θ), σ(zM−2, tn+(M−2)h; θ)2)×

qM (zM−2, tn + (M − 2)h | Xtn , tn; θ)dzM−2dzM−1;

and recursively, we obtain:

qM (Xtn+1
, tn+1 | Xtn , tn; θ) =

=

∫
RM−1

M−1∏
m=0

φ(zm+1, zm + µ(zm, s+mh; θ), σ(zm, s+mh; θ)2)dλ(z1..., zM−1)

(3.7)

where z0 = Xtn , zM = Xtn+1
and λ denotes the Lebesgue measure. In gen-

eral, these integrals cannot be computed analytically and quadrature-based
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numerical integration techniques quickly become computationally infeasible as

M increases. This means that the Euler Maruyama discretization by itself

is not su�cient to facilitate maximum likelihood estimation. The innovation

of the SML method is to interpret the integral in (3.6) as an expectation of

the function φ of the random variable z: the distribution of this variable z is

f(z) = qM (z, tn + (M − 1)h | Xtn , tn). Although we cannot easily evaluate

the expectation, we can use the Euler Maruyama discretization to generate a

large number of independent random variables zs; for s = 1, 2, ..., S from the

distribution f(z). Then, we approximate the expectation, and ultimately the

corresponding continuous -time transition density p with a sample average of

the function φ evaluated at these random draws of z. In more detail, the method

works as follows. Starting at time tn with X̂tn = Xtn , we iterate on the Euler

Maruyama recursion (3.4) exactly M − 1 times. This results in a single draw

zs = X̂tn+(M−1)h of the discrete-time process at time tn + (M − 1)h from the

distribution f(z). We repeat this procedure S times. Finally, we average the

function φ over this random sample of z to approximate the expectation. See

Figure 3.1. The �ve lines represent incomplete ten-step discretizations of this

di�usion, which connectX0 andX1. Each discretization is generated by starting

the Euler Maruyama recursion. Formally, our approximation to the transition

Figure 3.1: Approximating of tansition densities
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density qM of the Euler Maruyama discretization is:

q̂M,S(Xtn+1 , tn+1 | Xtn ; θ) = (3.8)

=
1

S

S∑
s=1

φ(Xtn+1
; zs + µ(zs, tn + (M − 1)hθ)h, V (zs, tn + (M − 1)hθ)h),

where the zs, for s = 1, 2, ..., S, represent independent realizations of an

M -step Euler Maruyama discretization after M − 1 iterations, X̂tn+(M−1)h.

Each discretization starts at X̂tn = Xtn . The Strong Law of Large Numbers

guarantees that the approximation qM,S converges to the transition density qM

of the Euler Maruyama discretization as S → ∞. Since the transition density

of the Euler Maruyama discretization converges to the transition density p of

the continuous-time processM →∞, the approximation q̂M,S also converges to

the transition density of the continuous-time process as S →∞ and M →∞.

Lemma 3.1.1. If µ and Σ are di�erentiable and ΣΣT is positive de�ne, as

M →∞,

qM (Xtn+1
, tn+1 | Xtn , tn; θ)− p(Xtn+1

, tn+1 | Xtn , tn; θ) = O

(
1

M

)
The Lemma 3.1.1 shows that as the accuracy of the Euler Maruyama dis-

cretization increases, or formally as M →∞ and thereby h→ 0, the transition

density of the Euler Maruyama discretization converges to the corresponding

transition density of the continuous-time process.

Lemma 3.1.2. Under the hypothesis of Lemma 3.1.1, as M →∞ and S →∞,

q̂M,S(Xtn+1 , tn+1 | Xtn , tn; θ)→ p(Xtn+1 , tn+1 | Xtn , tn; θ),

almost surely.

Proof. Recall the equation (3.8) where we write µ(zs) = µ(zs, tn + (M − 1)h; θ)

and V (zs) = V (zs,+tn + (M + 1)h; θ). The elements of the sum are i.i.d. with

�nite expectation :

E
[
φ(Xtn+1 ; zs + µ(zs)h, V (zs)h)

]
= qM (Xtn+1 , tn+1 | Xtn , tn; θ).

Hence, the Strong Law of Large Numbers applies, and as S →∞,

q̂M,S(Xtn+1
, tn+1 | Xtn , tn; θ) = qM (Xtn+1

, tn+1 | Xtn , tn; θ)

almost surely. Applying the previous Lemma we get thesis.
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Lemma 3.1.3. Under the same hypothesis of Lemma 3.1.1, as M → ∞ and

S →∞, with S
1
2

M → 0,

S
1
2

[
q̂M,S(Xtn+1

, tn+1 | Xtn , tn; θ)− p(Xtn+1
, tn+1 | Xtn , tn; θ)

]
∼

∼ N(0, var
[
φ(Xtn+1 ; zs + µ(zs)h, V (zs)h)

]
).

Proof. Write

S
1
2

[
q̂M,S(Xtn+1 , tn+1 | Xtn , tn; θ)− P (Xtn+1 , tn+1 | Xtn , tn; θ)

]
=

=
1

S
1
2

S∑
s=1

φ(Xtn+1 ; zs + µ(zs)h, V (zs)h)− qM (Xtn+1 , tn+1 | Xtn , tn; θ)+

+S
1
2

[
qM (Xtn+1

, tn+1 | Xtn , tn; θ)− P (Xtn+1
, tn+1 | Xtn , tn; θ)

]
.

Lemma 1.2.1 and the condition S
1
2

M → 0 ensure that as M → ∞ the second

term in the sum converge to zero. We complete the proof applying the central

limit theorem to the �rst term.

If the di�usions are stationary and ergodic, the unconditional density can

also be evaluated with simulations. Under the assumption of stationarity and

ergodicity, the unconditional density does not depend on time, or p(x, t0; θ) =

p(x; θ) with p(x; θ) = limt→∞ p(x, t | y, 0; θ). This implies that we can start

with any initial x and use the Euler Maruyama discretization to simulate a

long continuous sample path of the di�usion. Then, we can approximate the

unconditional probability of x = X0 from the simulated data using standard

density estimation tools. If the di�usions are non stationary, we need to assume

a deterministic X0. Fortunately, this assumption has a negligible e�ect on the

likelihood function for su�ciently large samples.

Given the above approximations of the transition densities and of the initial

unconditional density, we construct a consistent approximation of the likelihood

function L(θ). We de�ne the simulated maximum likelihood estimator θ̂M,S as

the parameters that maximize:

ln L̂M,S(θ) = ln q̂M,S(X0, t0; θ) +

N−1∑
n=0

ln q̂M,S(Xn+1, tn+1 | Xn, tn; θ). (3.9)

We call this method of approximation for a transition density Brandt - Santa

Clara. Some application of this method are shown in section 3.1.3 and 3.3.
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Since the approximations of the unconditional density and of the transition

densities converge to their true counterparts, it follows that this approximate

log likelihood function converges to the true log likelihood function.

Lemma 3.1.4. Under the assumption considered in this section, as N → ∞,

M →∞, and S →∞, with S
1
2

M → 0,

lnL̂M,S(θ)− lnL(θ) = o

(
N

S
1
2

)
.

Proof. Let xn denote the errors of the simulated transition densities:

xn ≡ q̂M,S(Xtn+1
, tn+1 | Xtn , tn; θ)− p(Xtn+1

, tn+1 | Xtn , tn; θ).

Let pn = p(Xtn+1
, tn+1 | Xtn , tn; θ) and write:

1.

ln q̂M,S(Xtn+1 , tn+1 | Xtn , tn; θ)− ln pn =

= ln(xn + pn)− ln pn = ln

(
1 +

xn
pn

)
.

Expanding the last term around xn = 0 for a �xed pn implies that for a su�-

ciently small xn,

ln

(
1 +

xn
pn

)
≈ xn
pn

+ o

(
1

S
1
2

)
The last equality follows from Lemma 1.2.3. Substituting the expansion into

the equation 1 and summing over the N sample points completes the proof.

The asymptotics of the SML method are summarized in the follows theorems.

Theorem 3.1.5. Under all the assumption that we had done in this section,

as M → ∞ and S → ∞, with S
1
2

M → 0, the estimator θ̂M,S converges to the

maximum likelihood estimator θ̂, which in turn converge to the true parameter

vector θ0 as N →∞.

To prove this theorem we need all the lemmas listed in this section and the

follows.

Lemma 3.1.6. Under the hypothesis of Theorem 3.1.5, as N → ∞, M → ∞
and S →∞, with S

1
2

M → 0,

θ̂M,S − θ̂ = o

(
N

1
2

S
1
4

)
,

where θ̂ is the parameter vector the maximizes lnL(θ).
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Lemma 3.1.7. Under the hypothesis of Theorem 3.1.5, as N →∞,

θ̂ → θ0.

Lemma 3.1.8. Assume that the hypothesis of the Theorem 3.1.5 are satis�ed

moreover the gradient
∂p(Xtn+1

,tn+1|Xtn ,tn;θ)

∂θ converges as N → ∞ or diverges

at a rate slower than the rate of convergence of I(θ0)
1
2 to zero, see (3.3). Then

as N →∞, we have

I(θ0)
1
2

[
θ̂ − θ0

]
∼ N(0, 1)

The last lemma and the consistency of our estimator from Theorem 3.1.5

imply the following theorem.

Theorem 3.1.9. Under the hypothesis of the previous lemma, as N → ∞,

M → ∞ and S → ∞, with S
1
2

M → 0 N

S
1
4
→ 0 the asymptotic distribution of the

estimator θ̂M,S is:

I(θ0)
1
2

[
θ̂M,S − θ0

]
∼ N(0, 1).

3.1.2 Durham and Gallant

The simulation approach suggested by Brandt and Santa-Clara (2002) has great

theoretical appeal, but previously available implementations have been compu-

tationally costly. In this section we examine a numerical technique propose

by Durham and Gallant (2002), which claimed to improve the performance of

Brendt-Santa Clara approach. See section 3.1.3 for numerical comparisons.

Let (Ω,F ,P) a probability space, and let {Wt}t≥0 be a Brownian motion de-

�ned on it. Let {Ft, t ≥ 0} be a �ltration generated by {Wt} and augmented

by P - null sets of F . Let Θ be a compact subset of Rd. We are interested in

the parameterized family of scalar di�usion process {W (t; θ), θ ∈ Θ} generated

by time-homogeneous process SDE of the form:{
dX = µ(X; θ)dt+ σ(X; θ)dW ;

X(t0) = X0.
(3.10)

Let {Xi = X(ti), i = 0, ..., n} to be a sample. According to Durham and

Gallant (2002), we make some assumptions.

Assumption 1 For each θ ∈ Θ, (3.10) has a non-exploding, unique weak solu-

tion.
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By non-exploding, we mean that there is zero probability that the process di-

verges to in�nity over any �xed time interval. Explosiveness would preclude the

existence of a transition density and is thus disallowed. The basic idea is quite

simple. We consider t, s ∈ [0, T ] and we suppose s < t. We wish to obtain the

transition density p(Xt, t | Xs, s; θ). We know that the the �rst-order approx-

imation p(1)(Xt, t | Xs, s; θ) de�ned by equation (3.11) will be accurate if the

interval [s, t] is su�ciently short.

Xi+1 = Xi + µ(Xi; θ)∆i + σ(Xi; θ)∆
1
2
i εi (3.11)

where ∆i = ti+1 − ti, and εi ∼ N(0, 1).

So p(1) = φ(Xt, Xs + µ(Xs; θ)∆, σ(Xs; θ)
2∆), where φ is the Gaussian density

φ(x, µ, σ2). Otherwise we may partition the interval in M subintervals of length

h = ∆
M , such that s = τ1 < τ2 < ... < τM = t, so that the �rst-order approxi-

mation is su�ciently accurate on each subinterval. As in (3.7) we have

qM (Xt, t | Xs, s; θ) =

=

∫
RM−1

M−1∏
m=0

p(1)(zm+1, τm+1 | zm, τm; θ)dλ(z1..., zM−1)

where z0 = Xs, zM = Xt and λ denotes the Lebesgue measure. Multiplying and

dividing by q(z1, ..., zM−1), a probability density on RM−1, in (3.7), we obtain:

qM (Xt, t | Xs, s; θ) =

=

∫
RM−1

∏M−1
m=0 p

(1)(zm+1, τm+1 | zm, τm; θ)

q(z1, ..., zM−1)
q(z1, ..., zM−1)dλ(z1..., zM−1).

The di�culty is how to e�ciently evaluate the integral. Monte Carlo integration

is generally the only feasible approach. To perform Monte Carlo integration,

we require an importance sampler. According to Durham and Gallant nota-

tion we let {uk = (uk,1, ..., uk,M−1), k = 1, ..., S} be independent draws from

q(u1, ..., uM−1), by Monte Carlo integration we obtain:

q̂M,S(Xt, t | Xs, s; θ) =
1

S

S∑
k=1

∏M−1
m=0 p

(1)(uk,m+1, τm+1 | uk,m, τm; θ)

q(uk,1, ..., uk,M−1)
, (3.12)

where uk,0 = Xs and uk,M = Xt for all k.

Assumption 2 Let U0 = xs, UM = xt, θ ∈ Θ, and q be �xed, an let (U1, ..., UM−1)
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be a random vector with density q. Then

E

[∏M−1
m=0 p

(1)(Um+1, τm+1 | Um, τm; θ)

q(U1, ..., UM−1)

]
<∞.

Under the Assumption 2, the strong law of large numbers implies that:

lim
S→∞

|q̂M,S(Xt, t | Xs, s; θ)− qM (Xt, t | Xs, s; θ)| = 0.

If we use Euler Maruyama scheme to generate the sampler, as in Brandt - Santa

Clara, we obtain that

q(uk,1, ..., uk,M−1) =

M−2∏
m=0

p(1)(uk,m+1, τm+1 | uk,m, τm; θ),

since the density of the important sampler q is identical to the �rstM−1 factor

of numerator in (3.12), they cancel and we left with (3.8).

Durham and Gallant examine same approach to reducing the variance of Monte

Carlo integration. A basic principle of Monte Carlo integration is that we should

draw points with higher probability in regions where the integrand is large. The

reason why Brandt and Santa Clara method performs so poorly is that most

of the samples are drawn from regions where the integrand has little mass; as

Durham and Gallant (2002) the samplers discussed in this section are designed

to address this shortcoming. The �rst important sampler we consider is based

on the Brownian bridge. A Brownian bridge is a Brownian motion started as

Xs at time s and conditioned to terminate at Xt at time t. The sampler is

constructed in a manner similar to Euler Maruyama scheme. In this case, the

mapping

T (M) : (W1, ...,WM−1; θ)→ (u1, ..., uM−1)

is de�ne by recursion

um+1 = um + µ̃(um, τm)h+ σ(um, τm; θ)h
1
2Wm+1, (3.13)

where the drift is given by

µ̃(x, τ) =
Xt − x
t− τ

.

This is a Brownian bridge if and only if σ is constant. Figure 3.2.

Although it is possible to compute the approximate density directly from (3.12),
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there is an interesting interpretation of this sample based on Girsanov's Theo-

rem. Using this sample we obtain that

q(u1, ..., uM−1) =

M−1∏
m=1

p(um, τm | um−1, τm−1) =

M−1∏
m=1

φ(um;um−1 + µ̃(um−1, τm−1)h;σ(um−1, τm−1; θ)2h).

The second important sampler which we consider draws um+1 from a Gaussian

density based on the �rst order approximation, conditioned on um and Xt. That

is, treating um and uM = Xt as �xed values, one draws um+1 from the density

p(um+1 | um, uM ) =
p(um+1 | um)p(uM | um+1)

p(uM | um)
≈

≈ φ(um+1;um + µ̄h; σ̄2h)φ(uM ;um+1 + µ̄h∗; σ̄2h∗)

φ(uM ;um + µ̄h+; σ̄2h+)
=

= φ(um+1;um + µ̃mh, σ̃
2
mh),

where h = (t−s)
M , h∗ = t− τm+1, h

+ = t− τm, µ̄ = µ(um), σ̄ = σ(um), and

µ̃m =
uM − um
t− τm

, σ̃2
m =

(
M −m− 1

M −m

)
σ̄2.

Note that um+1 is de�ne by recursion

um+1 = um + µ̃mh+ σ̃mh
1
2Wm+1, (3.14)

and

q(u1, ..., uM−1) =

M−1∏
m=1

φ(um;um−1 + µ̃mh; σ̃2
mh).

Note that this importance sampler turns out to be identical to the Brown-

ian bridge sampler except the factor M−m−1
M−m in the variance. According to

Durham and Gallant (2002), we refer to this sampler as modi�ed Brownian

bridge, Figure3.2.

3.1.3 Durham and Gallant vs Brandt - Santa Clara

To compare the results of the di�erent models described in Section 3.1.2 and

3.1.1, we use the Cox- Ingersoll-Ross model (CIR) (Cox, Ingersoll and Ross-

1985). It was suggested as a model of the short interest rate, although the
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(a) Sampler of Brandt - Santa Clara

(b) Modi�ed bridge (c) Brownian bridge

Figure 3.2: Simulated paths drawn using various importance samplers. We use the CIR

model.

mathematical model was originally introduced by Feller (1952). Di�erent pa-

rameterizations have been presented in the literature, and we used the following:

dXt = k(α−Xt)dt+ σ
√
XtdWt (3.15)

X0 = x0 > 0.

By limiting the parameter space Ω = {(α, k, σ) | (α, k, σ) ∈ (0,∞) × (0,∞) ×

(0,∞)}, the state space is given by (Xt, t) ∈ [0,∞)× [0, T ] . The origin (x = 0)

is inaccessible if 2αk ≥ σ2, otherwise it is re�ecting, see Feller (1951). Simi-

larly, the Maximum Likelihood regularity conditions are valid if 2αk ≥ σ2, see

Overbeck and Rydén (1997). The success of this model is due to the fact that

(given the requirements on the parameters):
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• the process is always non - negative;

• the mean converges towards the steady-state mean, α;

• closed form expressions can be derived for a large class of �nancial con-

tracts due to the a�ne form of the drift term and the squared di�usion

term.

Furthermore, the parameters in the model can be estimated using Maximum

Likelihood estimator since the transition probabilities are explicitly known. It

can be shown that the transition probability density is given by:

p(Xt, t | Xs, s; θ) =
∂

∂xt
Pθ(Xt ≤ xt | Xs = xs; θ) =

= c · e(−cxt−cδxs)
(
xt
xsδ

) q
2

Iq(2c
√
xsxtδ), (3.16)

where t, s ∈ [0, T ],with s < t; xt, xs ∈ [0,∞); Iq(z) is a modi�ed Bessel function

of the �rst kind of order q; and

δ = e−k(t−s), c =
2k

σ2(1− δ)
q =

2kα

σ2
− 1.

We will use the Cox-Ingersoll-Ross model to measure the accuracy of the approx-

imation of the transition probability density. We use time series of N = 1000

data simulated by Euler Maruyama scheme (x0 = 0.08):

Xt+1 = Xt + µ(Xt)∆ + σ(Xt)(Wt+1 −Wt); (3.17)

where {Wt}t0≤t≤T are stochastically independent and identically standard nor-

mally distributed random variables. We consider a uniform time discretization,

so ∆ is constant for all t ∈ [0, T ], in particular ∆ = 1
12 . Using the simulations

data we approximate the transition density as Sections 3.1.1 and 3.1.2 describe.

We used the MATLAB function fminsearch to minimize the function − ln(L),

and obtain θ̂, the simulated maximum likelihood estimator. It is particulary

important, during the maximization, to use the same vector {Wt}t0≤t≤T . With

the random generator re-initialized at the constant seed to ensure that the same

integration base is re-simulated in each calculation of the approximate likeli-

hood function, for this reason we use the MATLAB function rng. See Pedersen
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α̂ k̂ σ̂ Log-Likelihood

True density 0.0602 0.5484 0.1525 3.2120×103

Euler 0.0605 0.5200 0.1448 3.2599 ×103

Brandt - Santa Clara 0.056 0.6648 0.1666 7.1195 ×103

Durham and Gallant 0.0635 0.4167 0.1443 3.3126 ×103

Modi�ed Brownian bridge 0.0618 0.4903 0.1503 3.3186 ×103

Table 3.1: Parameters estimate obtain by di�erent approximation of the log-likelihood, using

α = 0.06, k = 0.5, and σ = 0.15.,∆ = 1
12

and x0 = 0.08. For Durham and Gallant, modi�ed

Brownian bridge and Brant-Santa Clara simulation we use M = 16 and S = 50.

(1995). The quality of estimator depends on three quantities: the simple size

N , the number the discratization steps M , and the simulation size S. The pa-

rameters used as starting value of the maximization are:α = 0.06, k = 0.5, and

σ = 0.15. We use also the Euler approximation to estimate the parameter,

pEuler(Xt+δ,∆ | Xt; θ) = (2π∆σ(Xt; θ)
2)−

1
2 exp

[
−(Xt+δ −Xt − µ(Xt; θ)∆)2

2∆σ2(Xt; θ)

]
.

(3.18)

Since the performance of estimators is evaluated by comparing an Euler ap-

proximation, Durham and Gallant simulation, Brandt - Santa Clara method

and Durham and Gallant approximation with a modi�ed Brownian bridge. The

estimates are summarized in Table 3.1.

Table 3.1 suggest that the methods proposed by Durham and Gallant (2002)

lead to better results than Brandt Santa-Clara method. Now we try to test our

approximations as in Lindström (2006). We told about the uniform convergence

of the approximate likelihood to the true likelihood for all values of θ ∈ Θ.

This condition is impossible to test numerically, but it is possible to test the

approximate likelihood converges for a �xed θ. A conservative approximation

of the distance between the approximate and true likelihood function is give by:∣∣∣∣∣
N∑
i=1

log P̂ (Xti , ti | Xti−1 , ti−1)− logP (Xti , ti | Xti−1 , ti−1)

∣∣∣∣∣ ≤
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≤
N∑
i=1

| log P̂ (Xti , ti | Xti−1
, ti−1)− logP (Xti , ti | Xti−1

, ti−1)|.

By weighting the distance by P (Xti , ti | Xti−1
, ti−1) and scaling by number of

observations, we derive the mean absolute error (MAE) of the log-likelihood

function.

MAE =
1

N

N∑
i=1

| log P̂ (Xti | Xti−1)− logP (Xti | Xti−1)| (3.19)

≈
∫
| log P̂ (Xti | Xti−1

)− logP (Xti | Xti−1
)|P (Xti | Xti−1

)dXidXi−1.

We can also measure the convergence as the root mean square error (RMSE)

of the log-likelihood function.

RMSE =

(
1

N

N∑
i=1

(log P̂ (Xti | Xti−1
)− logP (Xti | Xti−1

))2

) 1
2

. (3.20)

In the following we only consider the RMSE.

The �gure 3.3 show that we obtain the worst results applying the Brandt -

Santa Clara method. The simulation-based approach suggest by Brandt-Santa

Clara is appealing from a theoretical and intuitive viewpoint; however we �nd

that it can be prohibitively costly to attain even the accuracy of the simple

�rst-order approximation. Our results, according to Durham and Gallant (2002)

and Lindström (2006), suggest that the best performance is obtained using the

modi�ed Brownian bridge sampler. Using the Brownian bridge largely solves

the main problem associate with Brandt- Santa Clara's method. The modi�ed

Brownian bridge provides a futher dramatic reduction in variance. The number

of subintervals, M , and sample paths, S, must be determined by experimenta-

tions.

3.2 Closed Form Approximations

In this section we would like to consider a di�erent method to approximate the

transition density, it is presented in Aït-Sahalia (1999). This method is based
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Figure 3.3: RMSE calculated using (3.20). N = 1000,α = 0.06, k = 0.5, and σ = 0.15.,∆ =

1
12

and x0 = 0.08. We compere Durham and Gallant, modi�ed Brownian bridge, Brant-Santa

Clara and Euler simulation we use M = 16 and S = 50.

on series of closed form approximations of the density. Numerical results show

that this methodology improves the estimations and it possible to observe a

decreased of computational time, see Section 3.3.

The �rs step toward constructing the sequence of approximations to pX con-

sists of standardizing the di�usion function of X, transforming X into another

di�usion Y de�ned as:

Yt = γ(Xt; θ) =

∫ Xt du

σ(u; θ)
; (3.21)

where any primitive of function 1
σ(u;θ) may be selected. Let DX = (x

	
, x̄) denote

the domain of the di�usion X. Because σ > 0 on the interior of the domain

DX , the function γ in (3.21) is increasing and thus invertible. It maps DX

into DY = (y
	
, ȳ), the domain of Y . For a given model under consideration, we

will assume that the parameter space Θ is restricted in such a way that DY is

independent of θ in Θ. This restriction on Θ is inessential, but it helps keep the

notation simple. Note that in most of �nancial models we will have DX and

DY be either the whole real line, (−∞,+∞) or the half line (0,+∞).

By applying formula (2.1), Y has unit di�usion as desired:

dYt = µY (Yt; θ)dt+ dWt,
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where

µY (Yt; θ) =
µ(γ−1(y; θ); θ)

σ(γ−1(y; θ); θ)
− 1

2

∂σ

∂x
(γ−1(y; θ); θ).

The motivation of the transformation from X to Y is that it is possible to

construct an expansion for the transition density of Y . Of course it would be

a little interest because we only observe X, not the arti�cially introduced Y ,

and the transformation depends on the unknown parameter vector θ. The main

objective of the transformation was to provide a method of controlling the size of

the tails of the transition density. The fact that Y has unit di�usion makes the

tails of the density pY , in the limit where ∆ goes to zero, similar in magnitude

to those of Gaussian variable. So the tails of the density pX are proportional to

exp
(
−γ(x;θ)2

2∆

)
. In other words, while the leading term of expansion for pY is

Gaussian, the expansion for pX will start with a deformed Gaussian term, with

the speci�c form of the deformation given by the function γ(x; θ). However the

transformation is also useful because one can obtain the transition density pX

from pY through the Jacobian formula:

pX(x,∆ | x0; θ) =
∂

∂x
P (Xt+∆ ≤ x | Xt = x0; θ) =

=
∂

∂x
P (Yt+∆ ≤ γ(x; θ) | Yt = γ(x0; θ); θ) =

=
∂

∂x

[∫ γ(x;θ)

y
	

pY (y,∆ | γ(x0; θ); θ)dy

]
=

=
pY (γ(x, θ),∆ | γ(x0; θ); θ)

σ(γ(x; θ); θ)
; (3.22)

where x, x0 ∈ DX and y, y0 ∈ DY . Therefore, there is never any need to actually

transform the data into observations on Y . Instead, the transformation is a

simply a device to obtain an approximation for pX from the approximation of

pY .

As shown in Aït-Sahalia (1999), one can derive an explicit expansion for the

transition density of the variable Y based on a Hermite expansion of its density,

around a Normal density function. The analytic part of the expansion of pY up

to order K is given by:

p̂
(K)
Y (y,∆ | y0; θ) = ∆−

1
2φ

(
y − y0

∆−
1
2

)
exp

(∫ y

y0

µY (ω; θ)dω

) K∑
k=0

ck(y | y0; θ)
∆k

k!
,

(3.23)
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where φ(z) = 1√
2π
e
−z2
2 denotes the N(0, 1) density function, c0(y | y0; θ) = 1,

and for all j ≥ 1,

cj(y | y0; θ) = j(y − y0)−j
∫ y

y0

(ω − y0)j−1×

×

[
λY (ω)cj−1(ω | y0; θ) +

∂2

∂ω2 cj−1(ω | y0; θ)

2

]
dω, (3.24)

where λY (y; θ) = −
(
µ2
Y (y;θ)+ ∂

∂yµY (y;θ)

2

)
.

The leading term in expansion is the Gaussian, followed by a correction term

that depend on the speci�cation of the function λ(y; θ) and its successive deriva-

tives. This correction term play two roles: they account for the non-normality of

pY and they correct for the discretization bias implicit in starting the expansion

with a gaussian term with no mean adjustment and variance ∆.

In general, the function pY is not analytic in time. Therefore (3.23) must be

interpreted strictly as the analytic part, or Taylor series. In particular, for given

(y, y0, θ) it will generally have a �nite convergence radius in ∆. The sequence of

explicit function p̂
(K)
Y is designed to approximate pY . As discussed above, one

can then approximate pX by using the Jacobian formula for the inverted change

of variable:

p̂
(K)
X = σ(x; θ)−1p̂

(K)
Y (γ(x; θ),∆ | γ(x0; θ); θ). (3.25)

Now we can obtain the approximation of the log-likelihood function:

L̂(K)(θ) =

N∑
i=1

log(p̂
(K)
X (Xi∆, δ | X(i−1)∆; θ)).

Increasing the index K the accuracy of this method could be improved.

3.3 Comparison of Monte Carlo vs Closed Form

In this section we try to use and compare the approximation described in Section

3.1.1 and 3.2 . We consider the Ornstein - Uhlenbeck model proposed by Vasicek

(1977) for the short - term interest rate:

dXt = k(α−Xt)dt+ σdWt. (3.26)
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X is distributed on DX = (−∞,+∞) and has the Gaussian transition density:

PX(∆, xt | xt−1; θ) =

(
πγ2

k

)− 1
2

exp

[
−(xt − α− (xt−1 − α)e−k∆)2

γ2

]
, (3.27)

where θ = (α, k, σ) , ∆ = ti+1 − ti, and γ2 = σ2(1 − e−2k∆). As Aït-Sahalia

(1999), we make the maximum likelihood estimation for the parameters of the

model using the Fed found data, monthly from January 1963 to December 1998

(N = 432) with a Matlab following code.

Figure 3.4: Fed Found data, monthly from January 1963 to December 1998

We apply the Brandt - Santa Clara method presented in Section 3.1.1 to the

Vasicek model. As described in section 3.1.3 for each time interval [ti, ti+1], we

construct S trajectories iteratingM−1 times,with the Euler-Maruyama scheme.

We consider a uniform time discretization, so ∆ is constant for all t ∈ [0, T ], in

particular ∆ = 35
N . Then we use the Hermite expansion with K = 1, 2 as shown

in Section 3.2. From (3.23) we obtain:

p̂
(1)
Y (y, δ | y0; θ) = p̂

(0)
Y (y, δ | y0; θ)(1 + c1(y | y0; θ)∆)

p̂
(2)
Y (y, δ | y0; θ) = p̂

(0)
Y (y, δ | y0; θ)(1 + c1(y | y0; θ)∆ + c2(y |; θ)∆2

2
)
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where

p̂
(0)
Y (y, δ | y0; θ) =

1√
2∆π

exp

[
(y − y0)2

2∆
− y2k

2
+
y2

0k

2
+
yαk

σ
− y0αk

σ

]
.

The term in expansion are evaluated by applying the formula (3.24).

c0(y | y0, θ) = 1

c1(y | y0, θ) = − k

6σ2
(3α2k − 3(y + y0)αkσ + (−3 + y2k + yy0k + y2

0k)σ2);

c2(y | y0, θ) =
k2

36σ4
(9α4k2 − 18yα3k2σ + 3α2k(−6 + 5y2k)σ2−

−6yαk(−3 + y2k)σ3 + (3− 6y2k + y4k2)σ4+

+2kσ(−3α+ yσ)(3α2k − 3yαkσ + (−3 + y2k)σ2)y0+

+3kσ2(5α2k − 4yαkσ + (−2 + y2k)σ2)y2
0+

+2k2σ3(−3α+ yσ)y3
0 + k2σ4y4

0).

In this case Yt = γ(Xt; θ) = σ−1Xt, µY (y, θ) = kασ−1 − ky, and λY (y; θ) =

k
2 −

k2(α−σy)2

2σ2 .

Finally we use also the Euler approximation, (3.18) to estimate the param-

eter. Then we compere the results with the parameters estimate by the True

density,see Table 3.2.

Numerical results in Table 3.2 shows that the �rst method, propose by

Brandt and Santa-Clara (2002), does not work. One reason could be that most

of the samples are draw from regions where the integrand has little mass. Fur-

thermore the model propose a �rst order approximation, which holds when

ti+1 − ti tends to zero.

Then, to test our models, we measure the convergence as the root mean square

error (RMSE) explained in (3.20), see Section 3.1.3. We evaluate the MAE

an RMSE on data series of N = 432 simulated by Euler-Maruyama scheme,

using α = 0.0717, k = 0.258, σ = 0.02213 the starting point x0 = 0.1 in a time

interval from 1963 to 1998.see Figure 3.5

Aït-Sahalia's Hermite polynomial expansion is clearly the best method in

terms of the speed and accuracy. Small values of K already produce extremely
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Parameter estimate Log-Likelihood

α̂ = 0.07170 (0.0002)

True Density k̂ = 0.226 (0.015) 1.5706 ×103

σ̂ = 0.0226 (6.627 ×10−7)

α̂ = 0.07196 (0.0002)

Expansion K = 1 k̂ = 0.2637 (0.136) 1.5706× 103

σ̂ = 0.0226 (5.9 ×10−7)

α̂ = 0.07170 (0.0002)

Expansion K = 2 k̂ = 0.2676 (0.015) 1.5705× 103

σ̂ = 0.0226 (6.3 ×10−7)

α̂ = 0.0659 (0.00005)

B and SC k̂ = 0.6975 (0.166) 3.86107× 103

σ̂ = 0.0324 (7.63 ×10−7)

α̂ = 0.07169 (0.0002)

Euler k̂ = 0.2652 (0.014) 1.5706× 103

σ̂ = 0.0224 (5.56 ×10−7)

Table 3.2: Parameters estimate (observed asymptotic standard errors,I(θ) .) obtained by dif-

ferent approximation of the log-likelihood, using the Feunds data, monthly from January 1963

through December 1998. B and SC indicates the method propose by Brandt and Santa-Clara

(2002), we use S = 256 and M = 8. The maximization start from the vector [0.08, 0.3, 0.05]
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(a) MAE of the log-likelihood

function

(b) RMSE of the log-likelihood

function

Figure 3.5: MAE and RMSE are calculated on data series of N = 432 simulated by Euler

Maruyama scheme, using α = 0.0717, k = 0.258, σ = 0.02213, and x0 = 0.1, in a time interval

from 1963 to 1998.

precise approximations to the true density, and the approximation is even more

precise if ∆ is smaller. Of course, the exact density being Gaussian, in this

case the expansion, whose leading term is Gaussian, has fairly little work to

do to approximate the true density. In this case, the expansion involves no

correction for non-normality, which is normally achieved through the change of

variable X to Y ; it reduces here to a linear transformation and therefore does

not change the nature of the leading term in the expansion. Comparing the

performance of the expansion to that of the Euler approximation in this model

(where both have the correct Gaussian form for the density) reveals that the

expansion is capable of correcting the discretization bias involved in a discrete

approximation, whereas the Euler approximation is limited to a �rst-order bias

correction. In this case, the Euler approximation can be re�ned by increasing the

precision of the conditional mean and variance approximations. The worst way

to approximate the density seems to be the simulation approach described �rst

(Brandt-Santa Clara). An obvious extension of this study would be to apply

the approximation techniques to model where we do not know the transition

density, since we would use the approximations in the �rst place in this case.

All the methods are so general that this is fairly easy to do. The Figure 3.6

and 3.7 show how the approximations are close to the true density. We use
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a sample of 12 simulate data in a unit time interval, which are obtain using

Euler-Maruyama scheme.

(a) True density and

Brandt - Santa Clara approximation

(b) True density and Hermite

expansion K = 1

Figure 3.6: Comparison between True density and the di�erent approximations. We use

the Euler Maruyama scheme for the simulation of 12 data, then we calculate the value of the

di�erent approximation transition density in each point. We use α = 0.0717, k = 0.258 and

σ = 0.02213 The starting point is x0 = 0.1. We use M=10 and S=50.

(a) True density

and Euler approximation

(b) True density and

Hermite expansion K = 2

Figure 3.7: Comparison between true density and the di�erent approximations. We use

the Euler Maruyama scheme for the simulation of 12 data, then we calculate the value of the

di�erent approximation transition density in each point. We use α = 0.0717, k = 0.258 and

σ = 0.02213 The starting point is x0 = 0.1.
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3.4 Conclusions

Despite the theoretical advantages of maximum likelihood estimations, the ap-

proximation it is hard to do, indeed often transition densities are not known.

The numerical experiments showed that the simulated likelihood estimation lead

to better results using the following importance sampling strategies: Brownian

bridge and modifed Brownian bridge, both proposed by Durham and Gallant

(2002), in particular the second performed best. For illustration we applied the

CIR model to simulated data We used simulated data and apply to the CIR

model. The results were compared to the estimations obtained using the true

trnsitiond density.

A numerical comparison between the simulated, Vasicek model was performed

using the Fed found data. Likelihood estimation proposed by Brandt and Santa-

Clara (2002) and the Hermite expansion is made. The results were compared

with the estimations obtained using the true transition density. They showed

that also an Hermite expansion with K = 1 gave estimations more accurately.

Better estimations are obtained with K = 2. The Hermite expansion seemed to

be the best method in term of accuracy and speed.
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Chapter 4

Stochastic Di�erential Mixed

- E�ects Models

In this chapter we present a class of models called Stochastic Di�erential Mixed

E�ect Models (SDMEM). In the context of biology, experimental studies often

consist in repeated measurements of a biological criteria (drug concentration,

viral concentration, etc) obtained from a population of subjects. Mixed e�ect

models have the capacity to discriminate between the inter subjects variability

by introduction of random parameters which vary among the individuals. This

models are useful in pharmacokinetic/pharmacodynamic (PK/PD) models. PK

is the study of time course of a drug and its metabolites following their intro-

duction into the body. These study aim to provide an understanding of the

pharmacokinetic using the estimation of population parameters, which is im-

proved by introduction of mixed e�ect in the models.

Continuous biological process could be described by a system of ordinary

di�erential equations (ODE), which do not consider the noise component of-

ten presents into biological system. A natural extension is given by systems

of stochastic di�erential equations (SDE), where system noise is modeled by

including a di�usion term of some suitable form in the driving equations. An
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extension of SDE models are the SDMEM where the inter-individual variability

is modeled with the random e�ect, and the intra-individual variability with an

additive noise term. This approach which combine SDE and mixed e�ects is the

results of recent research. As we have shown in the previous chapter, estimating

parameters in SDE models is not simple to compute, except for a few cases. A

natural approach would be likelihood inference, but the transition densities of

the process are rarely known, and thus it is usually not possible to write the

likelihood function explicitly.

The theory for mixed models is widely developed for deterministic models both

linear and non linear (Lindstrom and Bates (1990), Breslow and Clayton (1993),

Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), McCulloch and

Searle (2001), Diggle et al. (2002), Kuhn and Laville (2005), Guedj et al. (2007),

Wang (2007)). In this context Ditlevsen and Gaetano (2005) proposed an esti-

mation method adapted to linear mixed model de�ned by linear SDE, but their

example is restricted to the case where the transition density has explicit expres-

sion. In Overgaard et al. (2007) and Tornøe et al. (2005) an SDE is introduced in

non-linear mixed models, using an extended Kalman �lter of the di�usion pro-

cess, with linearization based estimation algorithm. The convergence of their

algorithm is not proved. Donnet and Samson (2008) developed an estimation

method based on a stochastic EM algorithm for �tting one-dimensional SDEs

with mixed e�ects. In Donnet et al. (2010) a Bayesian approach is applied to a

one-dimensional model for growth curve data.

In this chapter a computationally e�cient method for estimating SDMEMs with

random parameters following any su�ciently well-behaved continuous distribu-

tion is considered. See Picchini et al. (2010). First the conditional transition

density of the di�usion process given the random e�ects is approximated in

closed form by a Hermite expansion for time - inhomogeneous di�usion (Egorov

et al. (2003)) , and then the conditional likelihood obtained is numerically in-

tegrated with respect to the random e�ects using Gaussian quadrature. The

method turned out to be statistically accurate and computationally fast. How-

ever, in practice it was limited to one random e�ect only (Picchini et al. (2008)
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for an application in neuroscience) since Gaussian quadrature is computation-

ally ine�cient when the number of random e�ects grows. Then we apply the

method described using a pharmacokinetics model.

4.1 Formulation of Stochastic Di�erential Mixed

- E�ect Models

We consider a d-dimensional SDE model for some continuous process (Xt),

involving M di�erent experimental units randomly chosen from a theoretical

population:

dXi
t = µ(Xi

t , t, θ, b
i)dt+ σ(Xi

t , t, θ, b
i)dW i

t (4.1)

Xi
0 = xi0, i = 1, ...,M

where Xi
t is the value at time t ≥ ti0 of the ith unit, with Xi

0 = Xi
ti0
; θ ∈ Θ ⊆ Rp

is a p-dimensional �xed e�ect parameter (the same for the entire population),

and bi ≡ bi(Ψ) ∈ B ⊂ Rq is a q-dimensional random e�ects parameter with

components (bi1, ..., b
i
q); each components may follow a di�erent distribution. Let

pB(bi | Ψ) denote the joint distribution for bi, parametrized by an r-dimensional

parameter Ψ ∈ Υ ⊂ Rr. The W i
t 's are d−dimensional standard Brownian mo-

tions. Components of W i
t and of bi are assumed mutually independent. The

initial condition Xi
0 is assumed equal to a vector of constants xi0 ∈ Rd. The

drift and the di�usion coe�cient function µ(·, t, ·, ·) : E × Θ × B → Rd and

σ(·, t, ·, ·) : E × Θ × B → S are assumed known up to the parameters, and are

assumed su�ciently regular to ensure a unique weak solution, where E ∈ Rd

denotes the state space of Xi
t and S denote the set of d × d positive de�ne

matrices. The system of stochastic di�erential equations (4.1) describe the M

di�erent evolutions of the process X, we assume that the dynamics of X follow

the same functional forms, and the di�erences are due to the Brownian motion

and the introduction of a vector parameter randomly varying among units.

We assume that the distribution of Xi
t given (bi, θ) and Xi

s = xs, s < t, has a
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strictly positive density w.r.t. the Lebesgue measure on E, which is denoted by

x→ pX(x, t− s | Xs, b
i, θ) > 0, x ∈ E.

We assume moreover that unit i is observed at the same set of ni + 1 discrete

time points {ti0, ti1, ..., tini}, for each coordinate of the process Xi
t . Let xi be

the (ni + 1) × d matrix of responses for unit i, with the jth row given by

xi(tij) = (x
(1)i
j , ..., x

(d)i
j ), N =

∑M
i=1(ni + 1). We write ∆i

j = tij − tij−1 for the

time distance between xij−1 and x
i
j . Notice that this observation scheme implies

that the matrix of data must not contain missing values.

The aim is to estimate (θ,Ψ) using simultaneously all the data in x. The

speci�c value of the bi's are not of interest, but only the identi�cation of the

vector parameter Ψ characterizing their distribution.

4.2 Maximum Likelihood Estimation

The marginal density of xi is obtained by integrating the conditional density of

the data given the non-observable random e�ect bi with respect to the marginal

density of the random e�ects, using thatW i
t and b

j are independent. This yelds

the likelihood function:

L(θ,Ψ) =

M∏
i=1

p(xi | θ,Ψ) =

M∏
i=1

∫
B

pX(xi | bi, θ)pB(bi | Ψ)dbi (4.2)

where p(·), pX(·) and pB(·) are density functions. pX(xi | ·) is the product of

the transition densities for a given realization of the random e�ects and for a

given θ :

pX(xi | bi, θ) =

ni∏
j=1

pX(xij ,∆
i
j | xij−1, b

i, θ). (4.3)

The distribution of the random e�ects is often assumed to be (multi)normal,

but pB(·) could be any density function subject to mild regularity conditions.

Solving the integral in (4.2) yields the marginal likelihood of the parameters,

independent of the random e�ects bi; by maximizing (4.2) with respect to θ

and Ψ the corresponding maximum likelihood estimators (MLE) θ̂ and Ψ̂ are

obtained. Notice that it is possible to consider random e�ects having discrete
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distributions: in that case the integral becomes a sum and can be easily com-

puted when the transition density pX is known. In simple cases the integral

(4.2) can be solved, and explicit estimating equations for the MLE can be found.

However, in general it is not possible to explicitly solve the integral, i.e. when:

• pX(xij , · | xij−1, ·) is known but the integral cannot be solved analytically,

the integral has to be numerically evaluated;

• pX(xij , · | xij−1, ·) is unknown, we can approximate pX(xij , · | xij−1, ·), then

the integral is numerically solved.

In the second situation we propose to approximate the transition density in

closed-form, using Hermite expansion suggest by Egorov et al. (2003).

4.2.1 Closed form transition density

In this section we try to approximate the transition density pX in (4.2). Accord-

ing to Picchini et al. (2010), we consider an extension of the maximum estimation

method of Aït-Sahalia (1999) described in the section 3.2. A closed-form ap-

proximation of likelihood function for discretely sampled time-inhomogeneous

di�usions is then derived, following Egorov et al. (2003). While Aït-Sahalia

(1999) considers only time-homogeneous di�usions, there are reasons to believe

that the underlying data generating process for many biological and economic

variables might change over time, the reason could be the changes in business cy-

cles, monetary policy, and general macroeconomic conditions. One possible ap-

proach to capture the time-dependent behavior of asset prices given in the above

examples is to model the drift and di�usion terms. In fact, time-inhomogeneous

models of option pricing and term structure of interest rates have been devel-

oped in the �nance literature. For example, to capture the �smiles� observed in

the implied volatility from option prices, Rubinstein (1994), Derman and Kani

(1994), and Dupire (1994) model stock return volatility as a deterministic func-

tion of stock price and time, and develop di�erent techniques for pricing options

on such assets. Black et al. (1990) and Black and Karasinski (1991) also develop
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time-inhomogeneous term structure models.

Following Aït-Sahalia (1999) we built the approximation of the transition den-

sity pX using the Hermite polynomials. Two transformations of the original

process are needed before such an approximation can be obtained. The purpose

of this transformation, as explained in Aït-Sahalia (1999), is to make transition

density of the transformed process is close to a normal distribution, so that the

standard Hermite expansion can be applied. The di�erence from Aït-Sahalia

(1999) results is that we have to explicitly take into account the time-varying

feature of the drift and di�usion coe�cients of the process. Egorov et al. (2003)

show that under certain regularity conditions, the method produces parameter

estimates that converge to the true parameter values. We consider the model

described by (4.1).

We need some assumptions.

Assumption 1 Functions µ(·) and σ(·) are in�nitely di�erentiable in t ∈ [0,∞)

andXi
t , and three times continuously di�erentiable in θ and bi for allXi

t ∈ Eand

(θ; bi) ∈ Θ×B.

Assumption 2 Let c be a positive constant such that σ(Xi
t , t, θ, b

i) > c > 0 for

all Xi
t ∈ E and (θ; bi) ∈ Θ×B.

Weaker conditions on the di�usion coe�cient close to the boundary of the state

space can be considered, e.g. at 0 for positive di�usions so that also the Cox-

Ingersoll- Ross model is covered; see Aït-Sahalia (2002b) for further details.

Two transformations of the original process Xi
t are needed before such an ap-

proximation can be obtained. The purpose of these two transformations, as

explained in Aït-Sahalia (2002b), is to make the transition density of the trans-

formed process close to a normal distribution, so that the standard Hermite

expansion can be applied to such distributions.

For a generic SDE the �rst transformation of Xt standardizes the variance of

the density so that it has unit variance. Using map:

Yt ≡ γ(Xt) =

∫ Xt du

σ(u, t, θ)
,

where the lower bound of integration is arbitrary point interior of E, by Itô's

lemma the result of the transformation Yt is the solution of the SDE with unit
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di�usion term and drift term given by:

µY (y, t, θ) =

[
∂γ

∂x
µ(x, t, θ) +

∂γ

∂t
+

1

2

∂2γ

∂x2
σ2(x, t, θ)

]
= (4.4)

=
µ(γ−1(y, t, θ), t, θ)

σ(γ−1(y, t, θ), t, θ)
+
∂γ

∂t
(γ−1(y, t, θ), t, θ)−

−1

2

∂σ

∂x
(γ−1(y, t, θ), t, θ).

The second transformation is a linear map that transforms Yt into another

process Zt. It is de�ned by

Zt ≡ ϕ(Yt) =
Yt − ys√

h
,

where h is the �xed sampling interval, let t = s+h. Let pY (y, t | ys, s, θ) be the

transition density of Yt given Ys = ys, and pZ(z, t | ys, s, θ) be the transition

density of Zt given Ys = ys. The transition densities of pX , pY and pZ are

related in the following ways:

pZ(z, t | ys, s, θ) =
√
hpY (

√
hz + ys | ys, s, θ),

pY (y, t | ys, s, θ) =
1√
h
pZ

(
y − ys√

h
| ys, s, θ

)
;

and

pY (y, t | ys, s, θ) = σ(γ−1(y, t, θ), t, θ)pX(γ−1(y, t, θ), t | γ−1(ys, s, θ), s, θ),

pX(x, t | xs, s, θ) =
1

σ(x, t, θ)
pY (γ(x, t, θ), t | γ(xs, s, θ), s, θ).

Thus, if the transition density pZ or its approximation is known, then the

approximation for pX is obtained naturally. Next, we will show how to obtain

such approximations. The Hermite expansion of transition density pZ is:

pZ(z, t | ys, s, θ) = φ(z)

∞∑
k=0

βk(t, ys, s, θ)Hk(z), (4.5)

where the coe�cient βk equal

βk(t, ys, s) =
1

k!

∫ +∞

−∞
Hk(z)pZ(z, t | ys, s)dz, (4.6)

and the Hermite polynomials Hk are easily computed using

H(w) = φ(w)−1 dk

dwk
φ(w), (4.7)
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where φ denote the standard normal density. Let p
(K)
Z denote the partial sum

of integer order K of the Hermite expansion (4.5) of pZ ,

p
(K)
Z ≡ φ(z)

K∑
k=0

βk(t, ys, s)Hk(z). (4.8)

The corresponding approximations of pY and pX are

p
(K)
Y (y, t | ys, s, θ) ≡

1√
h
p

(K)
Z

(
y − ys√

h
| ys, s, θ

)
,

p
(K)
X (x, t | xs, s, θ) ≡

1

σ(x, t, θ)
p

(K)
Y (γ(x, t, θ), t | γ(xs, s, θ), s, θ).

Using this approximation, we can write the transition density of Xi
t in the

following way

pKX(xij ,∆
i
j | xij−1, b

i, θ) =

1

σ(xij , tj , θ, b
i)
√

∆i
j

φ

γ(xij , tj , θ)− ys√
∆i
j

×
×

K∑
k=0

βk(tj , ys, s, θ, b
i)Hk

γ(xij , tj , θ)− ys√
∆i
j

 .

Despite the fact that approximation (4.8) has nice theoretical properties, (Egorov

et al. (2003)), its use will be quite limited if the approximation cannot be eval-

uated easily in practice. To carry out the approximation, we need a method to

evaluate the coe�cients βk . Fortunately, βk can be evaluated in a closed form

with arbitrary precision.

Denote Es [·] = E [· | Ys = ys, s, θ]. De�nition of βk given in (4.6) and the prop-

erties of Hermite polynomials imply that

βk(s+ h, ys, s, θ) =
1

k!

∫ ∞
−∞

Hk(z)pZ(z, s+ h | ys, s, θ)dz =
1

k!
Es [Hk(z)] .

Where the expectation can be evaluated using a variant of Taylor expansion

given below.

De�nition 4.1. Let Ut be a time - inhomogeneous di�usion in R. The in�nites-
imal generator L of Ut is de�ned by

(L ◦ χ)(u, t) = lim
τ↘0

E [χ(Ut+τ , t+ τ) | Ut = u]− χ(u, t)

τ
, u ∈ R.
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The set of the functions χ : R × [0,∞) → R such that the limit exists at all

(u, t) ∈ R × [0,∞) is denoted by D(L) and called the domain of in�nitesimal

generator L.

Denote D(Li) the domain of operator Li = L ◦ L ◦ ... ◦ L (i times).

Preposition 4.2.1. (A Variant of Taylor Expansion) Let Aθ,ỹ,h be the in�nites-

imal generator of the process Zt for any �xed (θ, ỹ, h) ∈ Θ × DY (0,∞). Let

f(z) ∈ C∞0 (R). then for any i = 1, 2, ..., f ∈ D(Aiθ,ỹ,h) and for all (z, t) ∈
DZ × [0,∞) ,

(Aiθ,ỹ,h ◦ f)(z, t) =
∂(Ai−1

θ,ỹ,h ◦ f)

∂z
µZ +

σ2
Z

2

∂2(Ai−1
θ,ỹ,h ◦ f)

∂z2
+
∂(Ai−1

θ,ỹ,h ◦ f)

∂t
, (4.9)

where µZ(z, t;h, ys, θ) ≡ µY (
√
hz+ỹ,t;θ)√
h

and σ2
Z ≡ 1

h .

Note that Hk /∈ C∞0 (R). Let {Hk,j(z) ≡ 1
2e
j(coshj + coshz)−1Hk(z), z ∈

R}∞k,j=0. Since Hk,j ∈ C∞0 (R), Preposition 4.2.1 applies to Hk,j . Moreover, as

j → ∞, Hk,j(z) → Hk(z) uniformly on any compact subset of R. The same is

true for any derivative of Hk,j . Then taking large j, we get the approximation

βk(s+h, ys, s, θ) ≈
1

k!
Es [Hk,j(Zs+h)] ≈ 1

k!

I∑
i=0

(Aiθ,ys,h ◦Hk,j)(0, s;h, ys, θ)
hi

i!
≈

≈ 1

k!

I∑
i=0

(Aiθ,ys,h ◦Hk)(0, s;h, ys, θ)
hi

i!
, (4.10)

The coe�cients βk for a PK model are given in the Section 4.3.1.

4.2.2 A Random E�ect Following a continuous distribu-

tion

In the last section we have discussed about the approximation of the transition

density pX in (4.2). In this section we try to compute the integral (4.2), using

a numerical integration. Following Picchini et al. (2010) we consider the gen-

eral case of a random e�ect bi having density pB (not necessarily Gaussian),

with certain conditions on existence of moments. In Golub and Welsch (1969) a

Gaussian quadrature integration method for any non-negative measure is sug-

gested: in particular, Fernandes and Atchley (2006) report explicit formulae for

the cases of Normal, Gamma, log-Normal, Student's t, inverse Gamma, Beta
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and Fisher's F distributions, covering a large class of problems commonly en-

countered in e.g. biomathematics/biostatistics. Consider the following integral∫
B

h(u)ω(u)du

where h(·) ∈ C2R(B) for some chosen positive integer R and ω(·) is a density

function with support B ful�lling

E(U2R) <∞ (4.11)

for U ∼ ω(u). Then ∫
B

h(u)ω(u)du '
R∑
r=1

h(zr)ωr

using R evaluation points zr (nodes) and weights ωr, with approximation error

ER given by

ER =
1

(2R)!

d2R

du2R
h(u) |u=c

∫
B

ω(y)[π(y)]2dy

for some c ∈ B, where π(y) =
∏R
r=1(y − zr). The last integral is �nite under

(4.11) and ER → 0 when R→∞ if B is bounded. The zr's are the eigenvalues

of a tridiagonal matrix J , de�ne by:

J =


α0

√
β1 0

√
β1

. . .
. . .

. . .
. . .

√
βR−1

0
√
βR−1 αR−1

 .

where the αr's and βr's are speci�c to the distribution ω(·), and ωr = q2
r,1,

where qr,1 is the �rst component of normalized eigenvector qr of J . In Fernandes

and Atchley (2006) the αr's and βr's are explicitly given for some important

distributions ω(·). If ω(·) ≡ N(µ, σ2), than αr = µ and βr = r · σ2 for all

r = 1, ..., R − 1. The approximation is exact whenever h is a polynomial of

degree 2R− 1 or less. It follows how we can apply this numerical method for a

one- dimensional integral to solve the integration problem in (4.2).

We consider a one-dimensional (q = 1) random e�ect bi, de�ne ω(bi) = pB(bi |

Ψ) and

hiK(bi) =

ni∏
j=1

p
(K)
X (xij ,∆

i
j | xij−1, b

i, θ).
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Assuming that

hiK(bi) ∈ C2R(B) and E(bi
2R

) <∞

the likelihood in (4.2) is approximated by

L̂K,R(θ,Ψ) =

M∏
i=1

R∑
r=1

hiK(zr)ωr, (4.12)

and (θ̂K,R, Ψ̂K,R) = argminθ,Ψ(− ln L̂K,L) is an approximated MLE of (θ,Ψ).

For some applications choosing using K = 2 and R = 40 seemd su�ciently

accurate.

4.3 Theophillin Pharmacokinetic Example

In this section we use the estimation method developed in the previous section

to a pharmacokinetic example proposed by Donnet and Samson (2008).

Pharmacokinetics (PK) studies the time course of drug substances in the organ-

ism. This can be described through dynamic systems, the human body being

assimilated to a set of compartments within which the drug evolves with time.

In general, these systems are considered in their deterministic version. However

Krishna (2004) claims that the �uctuations around the theoretical pharmacoki-

netic dynamic model may be appropriately modeled by using SDEs rather than

ODEs. Overgaard et al. (2005) suggest the introduction of SDEs to consider

serial correlated residual errors due for example to erroneous dosing, sampling

history or structural model misspeci�cation. In the PK context, non-linear

mixed-e�ects models are classically considered with a Gaussian distribution for

the individual parameters: bi ∼ N(µ, η2) for i = 1, ...,M . In this case, the pa-

rameter Ψ to estimate is Ψ = (µ, η2). In the following, the hypothesis tij = tj for

all i, is not assumed and the observation times tij may di�er between subjects.

We consider a classic one compartment PK model. The body acts as if it is a

series of compartments. In many cases, the drug distributes from the blood into

the tissues quickly, and a pseudo-equilibrium of drug movement between blood

and tissues is established rapidly. When this occurs, a one-compartment model

can be used to describe the serum concentrations of the drug. In particular we
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consider a PK model with �rst order absorption and �rst order elimination, it

is described by the following dynamic equation:{
dXt
dt = (Dose·Ka·Ke)

Cl e−Kat −KeXt;

X0 = 0.
(4.13)

X represents the drug concentration in blood, Dose is the know drug oral dose

received by subject, Ke is the elimination rate constant, Ka is the absorption

rate constant and Cl is the clearance of the drug. See Figure 4.1. Drug Clear-

ance is de�ne as the volume of plasma in the vascular compartment cleared

of drug per unit time by the processes of metabolism end excretion. Clear-

ance for drug is constant if the drug is eliminated by �rst-order kinetics. Drug

can be cleared by renal excretion or by metabolism or both. Mathematically,

clearance is the product of the �rst-order elimination rate constant, and the

apparent volume of distribution (Vd), Cl = Ke×Vd. The volume of distribution

has no direct physiological meaning; it is not a real volume. It is de�ned as

that volume of plasma in which the total amount of drug in the body would

be require to be dissolved in order to re�ect the drug concentration attained

in plasma. Populations PK studies consider the pharmacokinetics of a number

Figure 4.1: Concentration of drug versus time obtained as the solution of the ODE (4.13),

using Ke = 0.08, Ka = 1.49, Cl = 0.04 and Dose = 5mg.

of individuals. The data from such studies typically consist of dose histories,
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drug concentrations with associated sampling times, and often covariate mea-

surements such as the age and weight of each subject. PK models are generally

nonlinear functions of a set of PK parameters. Consequently we expect each

individual to have their own set of PK parameters. Therefore we can extend the

ODE (4.13) using a SDE which can consider the noise, and introduce a mixed

e�ects to model random di�erences among individuals. A stochastic di�erential

system can be deduced:

dXt(b
i) =

(
Dose ·Ke ·Ka

Cl
e−Kat −KeXt(b

i)

)
dt+ σdW i

t (4.14)

whereW i
t is a Brownian motion ∀i = 1, ...,M ; σ is the volatility coe�cient of the

SDE. This SDE is linear and the law of the di�usion X is analytically known.

However, this di�usion is nonlinear with respect to the individual parameter.

Consequently, the likelihood of the corresponding non-linear mixed model has

no analytical form.

4.3.1 The Parameter Estimation Methodology

In this section we use the PK model described in the Section 4.3 to mimic the

Theophyllin drug pharmacokinetic to test the algorithm developed in Section

4.2 .

We consider a one-dimensional random parameter bi. Following Pinheiro and

Bates (1995), we make our estimations using �rst Cli and then Ki
a (lnKi

a =

lnKa + bi) as the random parameter (lnCli = lnCl + bi). Pinheiro and Bates

(1995) observe that analysis of Theophylline data, using (4.13) indicated that

only Cl and Ka needed random e�ects to account for the variability among

patients. In each case bi follows a Gaussian distribution N(0, η2). Since eρ+b
i ∼

LN(ρ, η2) according to the nature of the parameters which are positive. We

have θ = (Ka,Ke, ρ, σ) and Ψ = η2, where ρ = lnCl �rst and then ρ = lnKa.

We consider two cases:

1. Cli is the random parameter and lnCl = ρ. The SDE (4.14) become:

dXi
t =

(
Dose ·Ke ·Ka

eρ+bi
e−Kat −KeX

i
t

)
dt+ σdW i

t .
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Then

µY =
Dose ·Ka ·Ke

eρ+biσ
e−Kat −KeY

i
t .

2. Ki
a is random parameter, and lnKa = ρ. The SDE (4.14) become:

dXi
t =

(
Dose ·Ke · eρ+b

i

Cl
e−e

ρ+bi t −KeX
i
t

)
dt+ σdW i

t .

Then

µY =
Dose · eρ+bi ·Ke

Clσ
e−e

ρ+bi t −KeY
i
t .

As ordinarily observed in this context, the concentration pro�les have a simi-

lar shape for all subjects; however, peak concentration achieved, rise, and de-

cay vary substantially. See Figure 4.2. These di�erences are believed to be

attributable to inter-subject variation in the underlying pharmacokinetic pro-

cesses, understanding of which is critical for developing dosing guidelines. To

compute the estimation of θ and Ψ, we maximize the approximation of the log-

likelihood.

In the two cases we have supposed that bi is a one-dimensional random param-

eter normally distributed with mean zero and variance equal to η2. Our aim is

solve the follow integral:

L(θ,Ψ) =

M∏
i=1

∫ +∞

−∞

ni∏
j=1

pX(xij ,∆
i
j | xij−1, b

i, θ)× 1√
2πη2

e
−bi

2

2η2 dbi (4.15)

If we de�ne ui = bi√
2η

(4.15) becomes

L(θ,Ψ) =

M∏
i=1

∫ +∞

−∞

ni∏
j=1

pX(xij ,∆
i
j | xij−1, u

i
√

2η, θ)
e−u

i2

√
π
dui =

=

M∏
i=1

∫ +∞

−∞
hi(ui)e−u

i2

dui, (4.16)

where

hi(ui) =

ni∏
j=1

pX(xij ,∆
i
j | xij−1, u

i
√

2η, θ)
√
π

.

Integral into (4.16) can be solved using Gaussian Hermite quadrature (see

Fröberg (1985)), which is Gaussian quadrature formula approximating (4.16)

as: ∫ +∞

−∞
hiK(ui)e−u

i2

dui '
R∑
r=1

hiK(zr)ωr
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(a) Trajectories referred to the �rst case (Cli random vari-

able), using Ke = 0.08, Ka = 1.49, ρ = −3.22,

σ = 0.447, η2 = 0.01 and Dose = 5mg.

(b) Trajectories referred to the second case (Ki
a random vari-

able), using Ke = 0.08, Cl = 0.04, ρ = 0.4, σ = 0.447,

η2 = 0.01 and Dose = 5mg.

Figure 4.2: simulated individual concentrations of the drug for 12 subjects. We used the

Euler-Maruyama scheme for the simulation. The red line represents the solution of the ODE

(4.13) using the same parameters.

55



where R is a positive integer, the "nodes" zr and the "weights" ωr are de�ned

by

zr = rth zero of HR(u),

ωr =
2R−1R!

√
π

R2 [HR−1(zr)]
2 ,

with an approximation error

ER =
R!
√
π

2R(2R)!

d2R

du2R
h(u) |u=c

for some c ∈ R. HR(·) is the Hermite polynomial of degree R.

Then for the approximation of pX we follow Aït-Sahalia (2002b) and Jensen

and Poulsen (2000) in taking approximation β
[m]
k for βk as follow: for any

non-negative m, we take I = 2m and leave in (4.10) only terms up to hm;

β
[m]
k = 0 for all k > 2m. Since the Ai ◦ Hk can be compute iteratively using

(4.9), approximation β
[m]
k can be obtained in mechanical fashion. In particular,

choosing m = 3 and omitting the null derivatives, for our model we obtain

β
[3]
1 = −h 1

2 ζ − 1

4
h

3
2 (2ζ0,1 + 2ζζ1,0)− 1

24
h

5
2 (4ζ0,2 + 4ζ0,1ζ1,0 + 4ζζ2

1,0),

β
[3]
2 =

1

2
h

1
2h(ζ2 + ζ1,0) +

1

12
h2(6ζζ0,1 + 6ζ2ζ1,0 + ζ2

1,0) +
1

96
h3(12ζ2

0,1+

+16ζζ0,2 + 40ζζ0,1ζ1,0 + 28ζ2ζ2
1,0 + 16ζ3

1,0),

β
[3]
3 = −1

6
h

3
2 (ζ3 + 3ζζ0,1)− 1

48
h

5
2 (12ζ2ζ0,1 + 12ζ3ζ1,0 + 12ζ0,1ζ1,0 + 28ζζ2

1,0),

β
[3]
4 =

1

24
h2(ζ4 + 6ζ2ζ1,0 + 3ζ2

1,0) +
1

240
h3(20ζ3ζ0,1 + 20ζ4ζ1,0+

+60ζζ0,1ζ1,0 + 100ζ2ζ2
1,0 + 40ζ3

1,0),

β
[3]
5 = − 1

120
h

5
2 (ζ5 + 10ζ3ζ1,0 + 15ζζ2

1,0),

β
[3]
6 =

1

720
h3(ζ6 + 15ζ4ζ1,0 + 15ζ1,0 + 45ζ2ζ2

1,0),

β
[3]
0 = 1; β

[3]
k = 0 k > 6;

where ζ ≡ µY (ys, s) and ζi,j ≡ ∂i+jµY (y,s)
∂yi∂sj |y=ys for all i and j. Since for our

model the only non null derivatives are:

• ζ1,0 = −Ke;
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• ζ0,1 = −Dose·Ke·K
2
a

Clσ e−Kat;

• ζ0,2 =
Dose·Ke·K3

a

Clσ e−Kat.

The Hermite polynomials are computed using their de�nition (4.7). In

particular the �rst seven Hermite polynomials are H0(z) = 1, H1(z) = −z,

H2(z) = z2−1, H3(z) = −z3+3z, H4(z) = z4−6z+3, H5(z) = −z5+10z3−15z,

H6(z) = z6 + 15z4 + 45z2 − 15.

4.3.2 A real application

We use data from a study by Dr. Robert Upton of the kinetics of the anti-

asthmatic drug theophylline. Data can be obtained from the R "datasets"

package by invoking the "Theoph" dataset. Twelve subjects were given oral

doses of theophylline then serum concentrations were measured at 11 time points

over the next 25 hours, see Figure 4.3.

Figure 4.3: Individual concentrations for the pharmacokinetics of theophylline for 12 sub-

jects.

The drug oral dose (Dose) received by the subjects is between 3 and 6 mg.

We consider a Gaussian - Hermite integration approach with R = 110 (Pinheiro

and Bates (1995) suggest R > 100) . In each case the likelihood was approximate

57



using (4.12), using K = 6 according to the coe�cients given above. We use

the estimate parameters of Pinheiro and Bates (1995), as staring values of the

maximization, they use a ODE model for their estimations, for this reason the

starting value of σ is taken from Donnet and Samson (2008). Estimation results

are shown in the tables 4.1 and 4.2. To understand the results we compare the

simulations obtained using the estimate parameters with the data. In the each

cases, the concentration pro�les have a similar shape. See Figure 4.4. Then

we use the parametric bootstrap with 100 iteration, to obtain 95% con�dence

intervals of the parameter estimate.

In each cases we observe a growth of σ, it was predictable, indeed our model

does not consider the measurement error.

We propose an hypothesis test for the variance η2. The Hypothesis H0 : η =

0 is tested against H1 : η > 0. We denote θ̂ the estimate of all the parameters

and θ̂0 the estimate of all the parameters under the restriction that η = 0. The

likelihood ratio statistic Λ is

Λ =
L(θ̂0, η = 0)

L(θ̂)
,

where L is given by (4.12). The large sample distribution of −2 log Λ under

the null hypothesis and some some mild regularity conditions tend to a χ2
1

distribution. If we consider the critical value α = 0.05 we have

P (Λ ≤ c | H0) = α

so the critical region is de�ned by

C = {X | Λ ≤ c} ≈ {X | log Λ ≤ −d
2
},

where d = 3.841 is given by χ2
1,1−α.

We obtain:

• log Λ = −1450 using Cl as random parameters;

• log Λ = −871.7481 using Ka as random parameters;

In each case the hypothesis H0 is rejected, since is a good assumption consider

Cl or Ka as random parameters.
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Estimate values

Ke 0.0597 ([0.0582, 0.3])

Ka 1.5987 ([0.7, 1.6697])

σ 0.5387 ( [0.3752, 0.799])

η2 0.8908 ( [0.8376, 0.899])

µ -3.822 ([−3.99,−2.8855])

Table 4.1: Parameters estimate (95% con�dence intervals) obtain maximizing the log-

likelihood of equation (4.12).We consider the SDMEM whose random e�ect is the parameter

Cl. The starting values for the maximization provided by Pinheiro and Bates (1995) and

Donnet and Samson (2008). We start from the parameter vector [0.08; 1.8; 0.45; 0.03;-3.22].

Estimate values

Ke 0.098 ([0.084, 0.1033])

Cl 0.0299 ([0.0299, 0.0302])

σ 0.699 ([0.6982, 0.7])

η2 0.6226 ([0.6037, 0.8419])

µ 0.2715 ([0.1351, 0.4179])

Table 4.2: Parameters estimate (95% con�dence intervals) obtain maximizing the log-

likelihood of equation (4.12). We consider the SDMEM whose random e�ect is the parameter

Ka. The starting values for the maximization provided by Pinheiro and Bates (1995) and

Donnet and Samson (2008). We start from the parameter vector [0.08; 0.04; 0.45; 0.4;0.5]
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(a) Trajectories referred to the SDMEM whose random e�ect is

the parameter Cl.

(b) Trajectories referred to the SDMEM whose random e�ect is

the parameter Ka.

Figure 4.4: Individual concentration of the drug for di�erent subjects.In each �gures the

blu lines represent the solution of the simulation of the SDMEM using the Eulero-Maruyama

scheme and the estimate parameters; the red lines show the real, the black dashed line repre-

sents the simulation using estimate parameters of Pinheiro and Bates (1995) and Donnet and

Samson (2008) (4.14) without a random e�ect.
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4.3.3 Simulation Study

In this section we try to estimate the parameter using simulated data. Reducing

the time points distance end inceasing the number of subjects, we expect that

the estimation using simulated data will perform better. We try to improve our

results considering thirty-six subjects were given oral doses, Dose = 5mg, of

theophylline then serum concentrations were measured at 50 equidistant time

points over the next 25 hours. Under the setup speci�ed above (M=36 and

n=50 for each subject) simulated data are generated using the estimates ob-

tained by Pinheiro and Bates (1995) and Donnet and Samson (2008) for σ

([0.08; 1.6; 0.45; 0.03;−3.22] and | [0.08; 0.04; 0.45; 0.4; 0.5]), and the estimation

is computed using these data. To understand the results we compare the simu-

lations obtained using our estimate parameters with others obtained using the

estimated parameters of Pinheiro and Bates (1995) and Donnet and Samson

(2008) for σ, see Figure 4.5. Then we use the parametric bootstrap with 100

iteration, to obtain 95% con�dence intervals of the parameter estimate.

The results are shown in Table 4.3. Figure 4.5 show that the trajectories

obtained using estimated parameters �t the data simulated, since the growt of

the number of the subjects and the growt of the time point could lend to a

better results.

Cl random parameters Ka random parameters

K̂e = 0.07 ([0.03608, 0.4809])) K̂e = 0.1327 ([0.777, 0.1096])

K̂a = 1.6333 ([1.448, 1.8038]) Ĉl = 0.0299 ([0.0289, 0.0312])

σ̂ = 0.4517 ([0.36080.4809]) σ̂ = 0.699 ([0.6104, 0.7])

η̂2 = 0.4732 ([0.42, 0.99]) η̂2 = 0.7437 ([0.7128, 0.99])

µ̂ = −3.1295 ([−3.99,−1.0156]) µ̂ = 0.3729 ([0.1055, 0.5928])

Table 4.3: Parameters (95% con�dence intervals) obtained simulated data used for M = 36

subjects. We start the maximization from the parameter vectors [0.08; 1.6; 0.45; 0.03 ;-3.22]

for the model with Cl as random parameter, and we start from parameter vector [0.08; 0.04;

0.45; 0.4;0.5] for the model with Ka as random parameter, the same parameters vectors are

used to generated the simulated data.
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(a) Trajectories referred to the SDMEM whose random e�ect is

the parameter Cl.

(b) Trajectories referred to the SDMEM whose random e�ect is

the parameter Ka.

Figure 4.5: Individual concentration of the drug for di�erent subjects. In each �gures the

blu lines represent the solution of the simulation of the SDMEM using the Eulero-Maruyama

scheme and the estimate parameters; the red lines show the simulated data.

4.4 Conclusions

The chapter had shown the usefulness of stochastic di�erential mixed-e�ects

model. We proposed an approximated maximum likelihood estimation method
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for the parameters of mixed-e�ects models de�ned by stochastic di�erential

equations. We constructed a sequence of approximations of the transition den-

sities using the Hermite expansion for time inhomogeneous di�usion process.

We described the Gaussian quadrature scheme to compute the integral. We

focused on a PK model and we applied the approximation technique described

to the estimation of parameters using real data and simulated data. According

to Pinheiro and Bates (1995) we assumed before the clearance and then the

absorption rate as random parameter, our choice was supported by an hypoth-

esis test. Satisfactory result were obtained in both cases using R = 110 and

K = 6. We observed an improved of the estimations using simulated data, in

fact the simulation have been done increasing the number of subjects and the

time points, so reducing the time - distance between the data. In conclusion,

we propose a parameter estimation method for SDE including random e�ects

which al least seem to be able to estimate good parameters for the PK model

considered.
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Conclusions

The work proposed an introduction of some basic de�nitions about stochastic

calculus. In particular we underlined the importance of the stochastic di�eren-

tial equations which are able to model time evolution of dynamic phenomena

in many �elds. We focused on the problem of parameters estimations which

characterize each di�usion process. Among the estimations techniques linked to

the maximization of the likelihood function we studied the simulated maximum

likelihood proposed by Brandt and Santa-Clara (2002), its extensions proposed

by Durham and Gallant (2002) and a closed form approximation using the

Hermite expansion by Aït-Sahalia (1999). The results showed that the simu-

lated maximum likelihood proposed by Brandt and Santa-Clara (2002) gave bad

results compared to the simulated maximum likelihood using the two particu-

lar samplers proposed by Durham and Gallant (2002). An Hermite expansion

stopped to the orderK = 2 was su�cient to have better estimations then Brandt

Santa-Clara method. Furthermore Hermite expansion was the fasted method,

we decided to use it (K = 6) for the approximation densities in the stochastic

di�erential mixed - e�ect model proposed in the second chapter.

Stochastic di�erential mixed - e�ect models, characterize by introduction of

a random parameters in a di�usion process, are able to model the variations

within-group and between-group. Our estimation study was made using a PK

model. The results were satisfactory, the trajectories obtained using the esti-

mated parameters �t in a good way the real data, despite our model do not

consider the measurement error. The results were improved simulating the

data, increasing the number of subjects and decreasing the distance between
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time points. Concluding the Hermite approximations had a good performance

at list in the stochastic di�erential mixed - e�ect model that we considered.
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Appendix A

Matlab programs

Follow the main Matlab codes used for the parameters estimations.

f unc t i on [ stima_alpha , stima_k , stima_sigma , Start ing_values ,LOGL, var_I_fis
]=Brandt_Santa_Clara ( alpha_0 , k_0 , sigma_0 , l ,X)

%Estimation us ing BRANDT−SANTA CLARA METHOD
%Parameters value
% True_sigma = 0 .02213 ;

5 % True_alpha = 0 . 0717 ;
% True_k = 0 . 2 58 ;
Start ing_values = [ alpha_0 ; k_0 ; sigma_0 ] ;
i f l==1

x0=0.08;
10 M = 120;

i n t e rpye s = 1 ;
n=12;
%the data used f o r the e s t imat ion are s imulated
rng (100) ;

15 [ de l ta , X_interp , t_interp ]=eulero_maruyama ( sigma_0 , alpha_0 , k_0 , x0 ,M
,0 ,1/12 , n , i n t e rpye s ) ;

end
i f l==0

%X=Fed Found data monthly from January 1963 to Decembrer 1998
20 X_interp=X/100 ;

n=432;
t_interp=l i n s pa c e (1963 ,1998 ,n) ;
d e l t a=t_interp (2)−t_interp (1) ;

25 p lo t ( t_interp , X_interp )
end
%S=number o f t r a j e c t o r i e s
S=2500;
true_logL=ME_loglike_int (True_alpha , True_k , True_sigma )

30 [ stima_MLE1 , fva l , e x i t f l a g , output , lambda , grad , he s s i an ]= fmincon (@(x )
ME_loglike_int (x (1 ) , x (2 ) , x (3 ) ) , Start ing_values
, [ ] , [ ] , [ ] , [ ] , [ 0 . 0 1 , 0 . 0 5 , 0 . 0 0 5 ] , [ 0 . 3 , 0 . 8 , 0 . 1 ] , [ ] , opt imset ( '
MaxFunEvals ' ,10000 , ' MaxIter ' ,1 e4 , ' display ' , ' iter ' , ' Algorithm ' , '
active - set ' , ' Hessian ' , ' bfgs ' ) ) ;

stima_alpha=stima_MLE1(1) ;
stima_k=stima_MLE1(2) ;
stima_sigma=stima_MLE1(3) ;

35 f unc t i on [LOGLIKE]=ME_loglike_int ( alpha , k , sigma )
i f ( alpha<=1e−7 | | sigma<0 | | k<0)

LOGLIKE=9999999999;
re turn ;

end
40 M=10; % Number o f a u x i l i a r y po in t s

i n t e rpye s = 0 ;
z=ze ro s (n−1,S) ;
rng (100)
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s tep=ze ro s (n−1 ,1) ;
45 f o r j =1:n−1

f o r s=1:S

[ r ,Y, d]=eulero_maruyama ( sigma , alpha , k , X_interp ( j ) ,M,
t_interp ( j ) , t_interp ( j +1) ,M, i n t e rpye s ) ;

50 z ( j , s )=Y( end−1) ;
s tep ( j )=r ;

end
end
f o r i =1:n−1

55 q_Ms( i )=sum( normpdf ( X_interp ( i +1) , z ( i , : ) +(k∗( alpha−z ( i , : ) ) )∗
s tep ( i ) , ( sigma^2)∗ s tep ( i ) ) ) ;

end

LOGLIKE=log (S)−(sum( log (q_Ms) ) ) ;

60 end

var_I_fis =1./( diag ( he s s i an ) ) ;
LOGL=ME_loglike_int ( stima_alpha , stima_k , stima_sigma ) ;
end

func t i on [ stima_MLE , Start ing_values ,LOGLIKE, var_I_fis ]=hermite_1 ( alpha_0
, k_0 , sigma_0 , l ,X)

%ESTIMATION USING THE HERMITE EXPANSION K=1
Start ing_values = [ alpha_0 ; k_0 ; sigma_0 ] ;

5 i f l==1%we use the data s imulated
x0=0.10;
M = 4320;
i n t e rpye s = 1 ;
n=432;%number o f data

10 rng (100) ;
[ de l ta , X_interp , t_interp ]=eulero_maruyama ( sigma_0 , alpha_0 , k_0 , x0 ,M

,1963 ,1998 ,n , i n t e rpye s ) ;

end
i f l==0

15 %X=Fed Found data monthly from January 1963 to Decembrer 1998
X_interp=X/100 ;
n=432;
t=l i n s pa c e (1963 ,1998 ,n) ;
d e l t a=t (2)−t (1 ) ;

20 p lo t ( t , X_interp )
end
[ stima_MLE1 , fva l , e x i t f l a g , output , lambda , grad , he s s i an ]= fmincon (@(x )

ME_loglike_int (x (1 ) , x (2 ) , x (3 ) ) , Start ing_values
, [ ] , [ ] , [ ] , [ ] , [ 0 . 0 0 1 , 0 . 0 5 , 0 . 0 0 5 ] , [ 0 . 3 , 0 . 9 , 0 . 1 ] , [ ] , opt imset ( '
MaxFunEvals ' ,10000 , ' MaxIter ' ,1 e4 , ' display ' , ' iter ' , ' Algorithm ' , '
active - set ' , ' Hessian ' , ' bfgs ' ) ) ;

f unc t i on [LOGLIKE]=ME_loglike_int ( alpha , k , sigma )
i f ( alpha<=1e−4 | | sigma<=1e−5 | | k<=1e−5)

25 LOGLIKE=9999999999;
re turn ;

end
a=0;B=0;
Y=X_interp/sigma ;

30 f o r i =2:n

B=B+(−((Y( i )−Y( i −1) ) ^2/(2∗ de l t a ) )−(Y( i )^2∗k ) /2+(Y( i −1)^2∗k )
/2+(Y( i )∗alpha∗k ) /sigma−(Y( i −1)∗alpha∗k ) / sigma ) ;

argomento=1−((1/(6∗ sigma^2) )∗k∗(3∗ alpha^2∗k−3∗(Y( i )+Y( i −1) )∗
alpha∗k∗ sigma+(−3+Y( i )^2∗k+Y( i )∗Y( i −1)∗k+Y( i −1)^2∗k )∗
sigma^2) )∗ de l t a ;

a=a+log ( argomento ) ;
35 end

LOGLIKE=(n/2∗ l og ( sigma^2)+(n/2)∗ l og ( de l t a ∗2∗ pi )−a−B) ;
end

stima_MLE(1)=stima_MLE1(1) ;
40 stima_MLE(2)=stima_MLE1(2) ;

stima_MLE(3)=stima_MLE1(3) ;
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LOGLIKE=(ME_loglike_int (stima_MLE(1) ,stima_MLE(2) ,stima_MLE(3) ) ) ;
true_logL=ME_loglike_int (True_alpha , True_k , True_sigma ) ;
var_I_fis =1./( diag ( he s s i an ) ) ;

45 end

func t i on [ stima_MLE , Start ing_values ,LOGLIKE, var_I_fis ]=hermite_2 ( alpha_0
, k_0 , sigma_0 , l ,X)

%ESTIMATION USING THE HERMITE EXPANSION K=2
Start ing_values = [ alpha_0 ; k_0 ; sigma_0 ] ;

5 i f l==1%we use the data s imulated
x0=0.10;
M = 4320;
i n t e rpye s = 1 ;
n=432;%number o f data

10 rng (100) ;
[ de l ta , X_interp , t_interp ]=eulero_maruyama ( sigma_0 , alpha_0 , k_0 , x0 ,M

,1963 ,1998 ,n , i n t e rpye s ) ;

end
i f l==0

15 %X=Fed Found data monthly from January 1963 to Decembrer 1998
X_interp=X/100 ;

n=432;
t=l i n s pa c e (1963 ,1998 ,n) ;

20 de l t a=t (2)−t (1 ) ;
p l o t ( t , X_interp , '*- ' )

end
[ stima_MLE1 , fva l , e x i t f l a g , output , lambda , grad , he s s i an ]= fmincon (@(x )

ME_loglike_int (x (1 ) , x (2 ) , x (3 ) ) , Start ing_values
, [ ] , [ ] , [ ] , [ ] , [ 0 . 0 1 , 0 . 0 5 , 0 . 0 0 5 ] , [ 0 . 3 , 0 . 8 , 0 . 1 ] , [ ] , opt imset ( '
MaxFunEvals ' ,10000 , ' MaxIter ' ,1 e4 , ' display ' , ' iter ' , ' Algorithm ' , '
active - set ' , ' Hessian ' , ' bfgs ' ) ) ;

f unc t i on [LOGLIKE]=ME_loglike_int ( alpha , k , sigma )
25 i f ( alpha<=1e−4 | | sigma<=1e−5 | | k<=1e−5)

LOGLIKE=9999999999;
re turn ;

end
a=0;B=0;

30 Y=X_interp/sigma ;
f o r i =2:n

B=B+(−((Y( i )−Y( i −1) ) ^2/(2∗ de l t a ) )−(Y( i )^2∗k ) /2+(Y( i −1)^2∗k )
/2+(Y( i )∗alpha∗k ) /sigma−(Y( i −1)∗alpha∗k ) / sigma ) ;

c1=1−((1/(6∗ sigma^2) )∗k∗(3∗ alpha^2∗k−3∗(Y( i )+Y( i −1) )∗alpha∗k
∗ sigma+(−3+Y( i )^2∗k+Y( i )∗Y( i −1)∗k+Y( i −1)^2∗k )∗ sigma
^2) )∗ de l t a ;

35 c2=((1/(36∗ sigma^4) )∗k^2∗(9∗ alpha^4∗k^2−18∗Y( i )∗alpha^3∗k^2∗
sigma+3∗alpha^2∗k∗(−6+5∗Y( i )^2∗k )∗ sigma^2−6∗Y( i )∗
alpha∗k∗(−3+Y( i )^2∗k )∗ sigma ^3+. . .

(3−6∗Y( i )^2∗k+Y( i )^4∗k^2)∗ sigma^4 +2∗k∗ sigma∗(−3∗alpha+Y
( i )∗ sigma ) ∗(3∗ alpha^2∗k−3∗Y( i )∗alpha∗k∗ sigma+(−3+
Y( i )^2∗k )∗ sigma^2)∗Y( i −1) + . . .

3∗k∗ sigma^2∗(5∗ alpha^2∗k−4∗Y( i )∗alpha∗k∗ sigma+(−2+Y( i )
^2∗k )∗ sigma^2)∗Y( i −1)^2+2∗k^2∗ sigma^3∗(−3∗alpha+Y
( i )∗ sigma )∗Y( i −1)^3 +k^2∗ sigma^4∗Y( i −1)^4) ) ∗(
de l t a ^2/2) ;

a=a+log ( c1+c2 ) ;
end

40 LOGLIKE=(n/2∗ l og ( sigma^2)+(n/2)∗ l og ( de l t a ∗2∗ pi )−a−B) ;
end

stima_MLE(1)=stima_MLE1(1) ;
stima_MLE(2)=stima_MLE1(2) ;

45 stima_MLE(3)=stima_MLE1(3) ;

LOGLIKE=ME_loglike_int (stima_MLE(1) ,stima_MLE(2) ,stima_MLE(3) ) ;
true_logL=ME_loglike_int (True_alpha , True_k , True_sigma ) ;
var_I_fis =1./( diag ( he s s i an ) ) ;

50 end
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f unc t i on [ stima_alpha , stima_k , stima_sigma , Start ing_values ,LOGL]=
Durham_Gallant_mod( alpha_0 , k_0 , sigma_0 )

%Parameters value taken from Lindstom
% True_sigma = 0 . 1 5 ;
% True_alpha = 0 . 0 6 ;

5 % True_k = 0 . 5 ;

MM = 43200;
n=2000;%number o f the data
T=(0.2)∗n ; v

10 Start ing_values = [ alpha_0 ; k_0 ; sigma_0 ] ;
%We use data s imulated us ing Eulero Maruyama scheme
x0=0.08;
rng (1985)

15 i n t e rpye s =1;
[ de l ta , X_interp , t_interp ]=eulero_maruyama_CIR( sigma_0 , alpha_0 , k_0 , x0 ,MM

,0 ,T, n , i n t e rpye s ) ;

stima_MLE= fminsearchbnd (@(x ) ME_loglike_int (x (1 ) , x (2 ) , x (3 ) ) ,
Start ing_values , [ 0 . 0 2 , 0 . 0 5 , 0 . 0 0 5 ] , [ 1 0 , 3 , 3 ] , opt imset ( '
MaxFunEvals ' ,1000 , ' MaxIter ' ,1 e4 , ' Display ' , ' iter ' ) ) ;%

20 stima_alpha=stima_MLE(1) ;
stima_k=stima_MLE(2) ;
stima_sigma=stima_MLE(3) ;

func t i on [LOGLIKE]=ME_loglike_int ( alpha , k , sigma )
25 i f ( alpha<=1e−7 | | sigma<=0 | | k<=0)

LOGLIKE=9999999999;
re turn ;

end

30 S=50;%number o f t r a j e c t o r i e s
M=16;%number o f a u x i l i a r y po in t s

u=ze ro s (S ,M) ;
rng (100)

35

q_Ms=ze ro s (1 , n−1) ;
f o r j =1:n−1

%we use the modi f i e Brownian Bridge
40 X0=repmat ( X_interp ( j ) ,1 , S) ;

XT=repmat ( X_interp ( j +1) ,1 , S) ;
i n t e rpye s = 0 ;

[ step , u , d]=brownian_bridge_modCIR ( sigma ,X0 ,XT,M, t_interp ( j ) ,
t_interp ( j +1) ) ;

45

fi_num=ones (S , 1 ) ;
f i_den=ones (S , 1 ) ;

50

f o r m=1:M−2

fi_num=fi_num .∗ normpdf (u ( : ,m+1) ,u ( : ,m)+k∗( alpha−u ( : ,m) )∗
step , sigma∗ sq r t (u ( : ,m)∗ s tep ) ) ;

55 f i_den=fi_den .∗ normpdf (u ( : ,m+1) ,u ( : ,m)+((XT'−u ( : ,m) ) . / (
t_interp ( j +1)−d(m) ) )∗ step , s q r t ( ( (M−m−1)/(M−m) ) )∗
sigma∗ s q r t (u ( : ,m)∗ s tep ) ) ;

end
fi_num=fi_num .∗ normpdf (u ( : ,M) ,u ( : ,M−1)+k∗( alpha−u ( : ,M) )∗ step

, sigma∗ s q r t (u ( : ,M−1)∗ s tep ) ) ;

60 q_Ms( j )=(1/S)∗sum( fi_num ./ fi_den ) ;
end
LOGLIKE=−(sum( log (q_Ms) ) ) ;

i f ( fi_num<=1e−323)
65 LOGLIKE=1e+200;

75



re turn ;
end
i f fi_den<=1e−300

LOGLIKE=1e+250;
70 re turn ;

end
end

75 LOGL=ME_loglike_int ( stima_alpha , stima_k , stima_sigma ) ;

end

func t i on [ stima_alpha , stima_k , stima_sigma , Start ing_values ,LOGL]=
Durham_Gallant ( alpha_0 , k_0 , sigma_0 )

%ESTIMATION USING DURHAM AND GALLANT METHOD
%Parameters value taken from Lindstom
% True_sigma = 0 . 1 5 ;

5 % True_alpha = 0 . 0 6 ;
% True_k = 0 . 5 ;

MM = 4320;
n=1000;%number o f the data

10 T=(1/12)∗n ; %Delta=1/12 , T=f i n a l time
Start ing_values = [ alpha_0 ; k_0 ; sigma_0 ] ;
x0=0.08;
%Simulat ion data us ing Eulero Maruyama scheme
in t e rpye s =1;

15 [ de l ta , X_interp , t_interp ]=eulero_maruyama_CIR( sigma_0 , alpha_0 , k_0 , x0 ,MM
,0 ,T, n , i n t e rpye s ) ;

stima_MLE= fminsearchbnd (@(x ) ME_loglike_int (x (1 ) , x (2 ) , x (3 ) ) , [ alpha_0 ;
k_0 ; sigma_0 ] , [ 0 . 0 2 , 0 . 0 5 , 0 . 0 0 5 ] , [ 3 , 10 , 2 ] , opt imset ( ' MaxFunEvals '
,1000 , ' MaxIter ' ,1 e4 , ' Display ' , ' iter ' ) ) ;

stima_alpha=stima_MLE(1) ;
stima_k=stima_MLE(2) ;

20 stima_sigma=stima_MLE(3) ;

func t i on [LOGLIKE]=ME_loglike_int ( alpha , k , sigma )
i f ( alpha<=1e−7 | | sigma<=0 | | k<=0)

LOGLIKE=9999999999;
25 re turn ;

end

S=50;%number o f t r a j e c t o r i e s
M=16;%number o f a u x i l i a r y po in t s

30 u=ze ro s (S ,M) ;
rng (100)

q_Ms=ze ro s (1 , n−1) ;
f o r j =1:n−1

35

%We use the Brownian Bridge
X0=repmat ( X_interp ( j ) ,1 , S) ;
XT=repmat ( X_interp ( j +1) ,1 , S) ;
i n t e rpye s = 0 ;

40

[ r , u , d]=brownian_bridge_CIR ( sigma ,X0 ,XT,M, t_interp ( j ) ,
t_interp ( j +1) ) ;

s tep=r ;
fi_num=ones (S , 1 ) ;
f i_den=ones (S , 1 ) ;

45

f o r m=1:M−2

fi_num=fi_num .∗ normpdf (u ( : ,m+1) ,u ( : ,m)+k∗( alpha−u ( : ,m) )∗
step , sigma∗ sq r t (u ( : ,m)∗ s tep ) ) ;

50

f i_den=fi_den .∗ normpdf (u ( : ,m+1) ,u ( : ,m)+((XT'−u ( : ,m) ) . / (
t_interp ( j +1)−d(m) ) )∗ step , sigma∗ s q r t (u ( : ,m)∗ s tep )
) ;

end
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fi_num=fi_num .∗ normpdf (u ( : ,M) ,u ( : ,M−1)+k∗( alpha−u ( : ,M−1) )∗
step , sigma∗ s q r t (u ( : ,M−1)∗ s tep ) ) ;

55 q_Ms( j )=(1/S)∗sum( fi_num ./ fi_den ) ;

end
LOGLIKE=−(sum( log (q_Ms) ) ) ;

60 i f ( fi_num<=1e−323)
LOGLIKE=1e+200;
re turn ;

end
i f fi_den<=1e−300

65 LOGLIKE=1e+250;
re turn ;

end
end

LOGL=ME_loglike_int ( stima_alpha , stima_k , stima_sigma ) ;
70

end

func t i on [ stima_Ke , stima_Ka , stima_sigma , stima_eta , stima_mu ,
s ta r t ing_va lue s ]=hermite_random_effect_CL (Ke_0 ,Ka_0, sigma_0 ,
eta_0 ,mu_0, l , theo , Time , dose )

%WE CONSIDER THE MODEL USING Cl AS RANDOM PARAMETER
sta r t ing_va lue s = [Ke_0 ,Ka_0, sigma_0 , eta_0 ,mu_0 ] ;
x0=0;

5 i f l==0
M=12; %number o f s ub j e c t s
[ d ,X, time ]=eulero_maruyama_random_CL( sigma_0 ,Ke_0 ,Ka_0, dose ,mu_0,

eta_0 , x0 ,M) ;
n=length ( time ) ;
t=ze ro s (M, n) ;

10 dose=ze ro s (M, 1 ) ;
f o r p=1:M

t (p , : )=time ;
dose (p)=5;
de l t a (p , : )=d ;

15 end
end
i f l==1 %we use data from a study by Dr . R. Upton

X=theo ;
t=Time ;

20 M=12;%number o f s ub j e c t s
n=11;
f o r p=1:M

de l t a (p , : )=d i f f ( t (p , : ) ) ;
end

25 end

stima_MLE= fminsearchbnd (@(x ) ME_loglike_int (x (1 ) , x (2 ) , x (3 ) , x (4 ) , x (5 ) ) ,
s ta r t ing_va lue s
, [ 0 . 0 001 , 0 . 0 1 , 0 . 0 1 , 0 . 0 01 , −4 . 5 ] , [ 0 . 3 , 2 , 0 . 7 99 , 1 , −1 ] , opt imset ( '
MaxFunEvals ' ,10000 , ' MaxIter ' ,1 e4 , ' display ' , ' iter ' ) ) ;

f unc t i on [LOGLIKE]=ME_loglike_int (Ke ,Ka, sigma , eta ,mu)
30 i f ( sigma<=1e−8 | | eta<=1e−8 | | Ke <=1e−8 | | Ka<=1e−8)

LOGLIKE=9999999999;
re turn ;

end
Y=X./ sigma ;

35 R=110;
[ z ,w]=GaussHermite (R) ;
LogL=ze ro s (1 ,M) ;
f o r i =1:M

L=0;
40 f o r r=1:R

px=ze ro s (1 , n−1) ;
f o r j =2:n

ps i10=−Ke ;
den=(exp ( z ( r )∗ s q r t (2∗ eta )+mu)∗ sigma ) ;

45 ps i01=(dose ( i )∗Ka∗Ke) /den∗(−Ka)∗exp(−Ka∗ t ( i , j−1) ) ;
ps i02=Ka^2∗( dose ( i )∗Ka∗Ke) /den∗exp(−Ka∗ t ( i , j−1) ) ;
p s i=(dose ( i )∗Ka∗Ke) /den∗exp(−Ka∗ t ( i , j−1) )−Ke∗Y( i , j

−1) ;
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beta0=1;
beta1=−de l t a ( i , j−1)^(1/2)∗psi −1/4∗ de l t a ( i , j−1)^(3/2)

∗(2∗ ps i01+2∗ps i ∗ ps i10 )−1/24∗( de l t a ( i , j−1)
^(5/2) ) ∗(4∗ ps i02+4∗ps i01 ∗ ps i10+4∗ps i ∗ ps i10 ^2)
;

50 beta2=1/2∗ de l t a ( i , j−1)∗( p s i^2+ps i10 )+1/12∗ de l t a ( i , j
−1)^2∗(6∗ ps i ∗ ps i01+6∗ps i ^2∗ ps i10+4∗ps i10 ^2)
+1/96∗ de l t a ( i , j−1)^3∗(12∗ ps i01^2+16∗ ps i ∗ ps i02
+40∗ps i ∗ ps i01 ∗ ps i10+28∗ps i ^2∗ ps i10^2+16∗ps i10
^3) ;

beta3=−1/6∗de l t a ( i , j−1)^(3/2) ∗( p s i ^3+3∗ps i ∗ ps i10 )
−1/48∗ de l t a ( i , j−1)^(5/2) ∗(12∗ ps i ^2∗ ps i01+12∗
ps i ^3∗ ps i10+12∗ps i01 ∗ ps i10+28∗ps i ∗ ps i10 ^2) ;

beta4=1/24∗ de l t a ( i , j−1)^2∗( p s i ^4+6∗ps i ^2∗ ps i10+3∗
ps i10 ^2)+1/240∗ de l t a ( i , j−1)^3∗(20∗ ps i ^3∗ ps i01
+20∗ps i ^4∗ ps i10+60∗ps i ∗ ps i01 ∗ ps i10+100∗ ps i ^2∗
ps i10^2+40∗ps i10 ^3) ;

beta5=−1/120∗de l t a ( i , j−1)^(5/2) ∗( p s i ^5+10∗ ps i ^3∗
ps i10+15∗ps i ∗ ps i10 ^2) ;

beta6=1/720∗ de l t a ( i , j−1)^3∗( p s i ^6+15∗ ps i ^4∗ ps i10+15∗
ps i10^3+45∗ ps i ^2∗ ps i10 ^2) ;

55 zeta=(Y( i , j )−Y( i , j−1) ) /( sq r t ( de l t a ( i , j−1) ) ) ;

px ( j−1)=1/( sigma∗ s q r t ( de l t a ( i , j−1)∗pi ) )∗normpdf ( zeta
, 0 , 1 ) ∗ ( ( beta0 ∗1)+beta1∗(− zeta )+beta2 ∗( zeta
^2−1)+beta3∗(− zeta^3+3∗ zeta )+beta4 ∗( zeta^4−6∗
zeta ^2+3)+beta5∗(− zeta^5+10∗ zeta^3−15∗ zeta )+
beta6 ∗( zeta^6−15∗ zeta^4+45∗ zeta ^2−15) ) ;

i f px ( j−1)<=10^(−100)
px ( j−1)=10^(−16) ;

60 end
end

L=prod (px )∗w( r )+L ;
65 end

LogL( i )=log (L) ;
end
LOGLIKE=−sum(LogL) ;

end
70

stima_Ke=stima_MLE(1) ;
stima_Ka=stima_MLE(2) ;
stima_sigma=stima_MLE(3) ;
stima_eta=stima_MLE(4) ;

75 stima_mu=stima_MLE(5) ;

end

func t i on [ stima_Ke , stima_CL , stima_sigma , stima_eta , stima_mu , True_pars ]=
hermite_random_effect_Ka (Ke_0 ,CL_0, sigma_0 , eta_0 ,mu_0, l , theo , Time
, dose )

%WE CONSIDER THE MODEL USING Ka AS RANDOM PARAMETER
sta r t ing_va lue s = [Ke_0 ,Ka_0, sigma_0 , eta_0 ,mu_0 ] ;
x0=0;

5 i f l==1
X=theo ;
t=Time ;
M=12;%number o f s ub j e c t s
n=11;

10 f o r p=1:M
de l t a (p , : )=d i f f ( t (p , : ) ) ;

end
end
i f l==0

15 M=36;%number o f s ub j e c t s
dose=5;
[ d ,X, time ]=eulero_maruyama_random_Ka( sigma_0 ,Ke_0 ,CL_0, dose ,mu_0,

eta_0 , x0 ,M) ;
n=length ( time ) ;
t=ze ro s (M, n) ;

20 dose=ze ro s (M, 1 ) ;
f o r p=1:M

t (p , : )=time ;

78



dose (p)=5;
de l t a (p , : )=d ;

25 end
end

stima_MLE= fminsearchbnd (@(x ) ME_loglike_int (x (1 ) , x (2 ) , x (3 ) , x (4 ) , x (5 ) ) ,
s tar t ing_va lues

, [ 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 5 , 0 . 0 0 0 0 1 , 0 . 0 0 1 ] , [ 0 . 9 , 1 , 0 . 9 , 1 , 1 ] , opt imset ( '
MaxFunEvals ' ,10000 , ' MaxIter ' ,1 e4 , ' display ' , ' iter ' ) ) ;

30 f unc t i on [LOGLIKE]=ME_loglike_int (Ke ,CL, sigma , eta ,mu)
i f ( sigma<=1e−8 | | eta<=1e−8 | | Ke<=1e−8 | | CL<=1e−8| | mu<=1e−8)

LOGLIKE=9999999999;
re turn ;

end
35 Y=X./ sigma ;

LogL=ze ro s (1 ,M) ;
R=110;
[ z ,w] = GaussHermite (R) ;

40 f o r i =1:M
L=0;
f o r r=1:R

px=ze ro s (1 , n−1) ;
f o r j =2:n

45 ps i10=−Ke ;
ps i01=dose ( i )∗exp ( z ( r )∗ s q r t (2∗ eta )+mu)∗Ke/(CL∗ sigma )

∗(−exp ( z ( r )∗ s q r t (2∗ eta )+mu) )∗exp(−exp ( z ( r )∗
s q r t (2∗ eta )+mu)∗ t ( i , j−1) ) ;

ps i02=exp ( z ( r )∗ s q r t (2∗ eta )+mu) ^2∗( dose ( i )∗exp ( z ( r )∗
s q r t (2∗ eta )+mu)∗Ke/(CL∗ sigma ) )∗exp(−exp ( z ( r )∗
s q r t (2∗ eta )+mu)∗ t ( i , j−1) ) ;

p s i=(dose ( i )∗exp ( z ( r )∗ sq r t (2∗ eta )+mu)∗Ke) /(CL∗ sigma )
∗exp(−exp ( z ( r )∗ s q r t (2∗ eta )+mu)∗ t ( i , j−1) )−Ke∗Y
( i , j−1) ;

beta0=1;
50 beta1=−de l t a ( i , j−1)^(1/2)∗psi −1/4∗ de l t a ( i , j−1)^(3/2)

∗(2∗ ps i01+2∗ps i ∗ ps i10 )−1/24∗( de l t a ( i , j−1)
^(5/2) ) ∗(4∗ ps i02+4∗ps i01 ∗ ps i10+4∗ps i ∗ ps i10 ^2)
;

beta2=1/2∗ de l t a ( i , j−1)∗( p s i^2+ps i10 )+1/12∗ de l t a ( i , j
−1)^2∗(6∗ ps i ∗ ps i01+6∗ps i ^2∗ ps i10+4∗ps i10 ^2)
+1/96∗ de l t a ( i , j−1)^3∗(12∗ ps i01^2+16∗ ps i ∗ ps i02
+40∗ps i ∗ ps i01 ∗ ps i10+28∗ps i ^2∗ ps i10^2+16∗ps i10
^3) ;

beta3=−1/6∗de l t a ( i , j−1)^(3/2) ∗( p s i ^3+3∗ps i ∗ ps i10 )
−1/48∗ de l t a ( i , j−1)^(5/2) ∗(12∗ ps i ^2∗ ps i01+12∗
ps i ^3∗ ps i10+12∗ps i01 ∗ ps i10+28∗ps i ∗ ps i10 ^2) ;

beta4=1/24∗ de l t a ( i , j−1)^2∗( p s i ^4+6∗ps i ^2∗ ps i10+3∗
ps i10 ^2)+1/240∗ de l t a ( i , j−1)^3∗(20∗ ps i ^3∗ ps i01
+20∗ps i ^4∗ ps i10+60∗ps i ∗ ps i01 ∗ ps i10+100∗ ps i ^2∗
ps i10^2+40∗ps i10 ^3) ;

beta5=−1/120∗de l t a ( i , j−1)^(5/2) ∗( p s i ^5+10∗ ps i ^3∗
ps i10+15∗ps i ∗ ps i10 ^2) ;

55 beta6=1/720∗ de l t a ( i , j−1)^3∗( p s i ^6+15∗ ps i ^4∗ ps i10+15∗
ps i10^3+45∗ ps i ^2∗ ps i10 ^2) ;

ze ta=(Y( i , j )−Y( i , j−1) ) / sq r t ( de l t a ( i , j−1) ) ;
px ( j−1)=1/( sigma∗ s q r t ( de l t a ( i , j−1)∗pi ) )∗normpdf ( zeta

, 0 , 1 ) ∗ ( ( beta0 ∗1)+beta1∗(− zeta )+beta2 ∗( zeta
^2−1)+beta3∗(− zeta^3+3∗ zeta )+beta4 ∗( zeta^4−6∗
zeta ^2+3)+beta5∗(− zeta^5+10∗ zeta^3−15∗ zeta )+
beta6 ∗( zeta^6−15∗ zeta^4+45∗ zeta ^2−15) ) ;

i f px ( j−1)<=10^(−100)
px ( j−1)=10^(−16) ;

60 end
end
L=prod (px )∗w( r )+L ;

end
LogL( i )=log (L) ;

65 end
LOGLIKE=−sum(LogL) ;

end
stima_Ke=stima_MLE(1) ;
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70 stima_CL=stima_MLE(2) ;
stima_sigma=stima_MLE(3) ;
stima_eta=stima_MLE(4) ;
stima_mu=stima_MLE(5) ;
end
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