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Abstract

Analysing eye movements recorded with mobile eye-tracking devices is
difficult since the eye-tracking signals are severely affected by simultaneous
head and body movements. The automatic analysis methods developed for
static eye-tracking systems do not take this into account and are therefore
not suitable for application to data which also contains head and body
movements. As a result, data recorded using mobile eye trackers are often
analysed manually.

The goal of the present master’s thesis is to develop a method that can
robustly detect the three most common types of eye movements from an eye-
tracking signal recorded with mobile eye-tracking glasses. Furthermore, the
method should compensate for head movements, which are simultaneously
recorded using an inertial measurement unit.

A model for eye-in-space motion estimation is proposed which combines
eye-tracking signals and head-tracking signals. In addition, a new enhanced
event-detection algorithm for the classification of saccades, fixations, and
smooth-pursuit movements is developed. In order to test the method, a pilot
study is conducted. Moreover, the classification performance of the algorithm
is evaluated by comparing the detected events to manual annotations and to
the detected events of two existing algorithms.

The results show that by compensating for head movements, the proposed
algorithm is able to accurately perform ternary classification of eye movements
based on mobile eye-tracking data. With sensitivities and specificities of
over 95% for both a developmental and validation database, the proposed
algorithm exhibits a considerably better detection performance than the two
existing algorithms used for comparison.
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Chapter 1

Introduction

Eye tracking is a technique that enables to estimate where a person
is looking. It is a well-established research tool which can be used to
investigate different types of eye movements and their relationship to the
underlying processes in the brain. Measurements of eye movements are
important for basic research in visual attention, perception and cognition,
in psychology and linguistics, but also in applied fields such as product design.

The development of lighter, cheaper, and smaller electronics has miniaturised
eye-tracking equipment, transforming it from a large box only available in the
laboratory to a pair of glasses. This makes it possible to perform eye tracking
in everyday environments such as driving a car or shopping in a supermarket,
as well as virtual reality environments. Although mobile eye-tracking glasses
allow for greater freedom and more potential applications, they also present
a variety of challenges, mainly related to the fact that nothing is static
anymore. Subjects are able to freely move their head and body and interact
in a natural way with a changing environment. All of these factors cause
the eye-tracking signal to not only include eye movements but also head
movements, which in turns influences the classification of different types
of eye movements in the eye-tracking signal. In order to draw the correct
conclusion about the underlying processes in the brain, therefore, it is
important to compensate for head motion. Since the tools for analysing
eye-movement signals are mainly developed for data recorded with static eye
trackers, a new set of algorithms and methods is needed, specifically geared
towards mobile eye-tracking data.
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Chapter 1 Introduction

To date, there is no commercial event-detection algorithm that is able to
perform ternary classification of eye movements when head movement is
present. Researchers are forced to perform tedious manual encoding to
enable analysis of the recorded signals.

The objective of the present thesis is to develop a method that can robustly
detect the three most common types of eye movements from an eye-tracking
signal recorded using eye-tracking glasses, while compensating for head
movements which are simultaneously recorded using an inertial measurement
unit (IMU).

In order to achieve this goal, the project is divided into two main parts:
Gaze Estimation and Event Detection. The general approach is visualised in
Figure 1.1 and briefly described thereafter.

Eye Tracking Head Tracking

Gaze Estimation

Event Detection

head tracking
signal

eye tracking
signal

classified 
eye movements

Figure 1.1: Visualisation of the general approach of the thesis.

During Gaze Estimation, the head-tracking signal and eye-tracking signal are
combined in order to generate a new signal that is as free of head movement
as possible. The goal of the subsequent Event Detection is to develop and
implement a new enhanced event-detection algorithm for the detection of
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Chapter 1

the three most common types of eye movements: saccades, fixations and
smooth pursuits.

The thesis is outlined as follows: A description of the eye-tracking field
including the relevant standards and technologies applicable to this thesis are
summarised in Chapter 2. The gaze-estimation method, including aspects of
its implementation, and the proposed event-detection algorithm are presented
in Chapter 3. The results are detailed in Chapter 4 and, finally, the results
as well as suggestions for future work are discussed and summarised in
Chapters 5 and 6, respectively.
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Chapter 2

Background

This chapter contains an introduction to the field of eye tracking. Sec-
tions 2.1 and 2.2 provide descriptions of the anatomy and physiology of
the eye. Section 2.3 contains an overview of the principles of eye- and
head-tracking systems. Finally, Section 2.4 outlines the current status of
event-detection algorithms.

2.1 Anatomy of the Eye

The eye is the basic organ of sight and is often referred to as one of the
most complex parts in the human body. As part of the visual system, it
contributes to the processing of visual information. The eyeball is a spherical
structure located in a protective framework of bones and connective tissue.
It is composed of three layers (the fibrous tunic, the vascular tunic and the
retina) and divided into two cavities (the anterior cavity and the vitreous
chamber) [1]. This structure is shown in Figure 2.1. The outermost layer,
the fibrous tunic, consists of the sclera and the cornea. The sclera is the
white part of the eye and gives the eyeball its shape and structural stability.
Furthermore, it protects the inner, more sensitive parts of the eye. The
cornea is a thin, transparent protective structure at the front of the eye. It
covers the iris, pupil, and anterior chamber and permits light rays to enter
the eye. The second or middle layer, the vascular tunic, is composed of the
choroid, the ciliary body and the iris. The choroid is located at the back of
the eyeball and consists of a network of blood vessels that nourish the retina.
At the front of the eyeball, the choroid is specialised into the ciliary body
and the iris. The ciliary body contains the muscles that determine the shape
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Figure 2.1: Structure of the human eye, from [2].

of the lens, whereas the iris is the coloured part of the eye. The iris regulates
the amount of light that enters the eye by adjusting the size of the pupil,
the black hole in the centre of the iris. The lens is located behind the iris
and the pupil. It focuses light on the retina, which is the innermost layer [3].
The retina is a light-sensitive membrane, which is responsible for converting
visual signals into nerve impulses and subsequently transmitting them via
the optic nerve to the brain. It contains about 200 million photoreceptive
cells which are functionally classified into two different types, rods and cones.
As rods are sensitive to dim and achromatic light, they are important for
night vision. Conversely, cones respond to bright and chromatic light and are
thus responsible for daylight and colour vision. The fovea is located at the
centre of the retina. The fovea has the highest concentration of cones, which
means that images focused there are seen with the highest visual acuity
or resolution. Towards the periphery of the retina, the concentration of
cones decreases whereas the concentration of rods increases [4]. The retinal
periphery can detect new objects of interest. In order to be able to clearly
see a new object, the eyes need to be redirected towards it so that the image
of the new object is focused on the fovea [5].
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2.2 Eye Movements Chapter 2

2.2 Eye Movements

During visual perception, the eyes are constantly moving. The purpose of eye
movements is to focus an object of interest on the centre of the fovea and/or
keep it there in order to see a clear image of the object. Three antagonistic
pairs of muscles are responsible for controlling the movements of the eye: the
superior and inferior rectus, the medial and lateral rectus, and the superior
and inferior oblique. They are depicted in Figure 2.2. These muscles allow
the eye to move vertically, horizontally and torsionally within its orbit and
are thus responsible for the three-dimensional orientation of the eye inside
the head [5].

Figure 2.2: Extraocular muscles of the right eye responsible for
horizontal, vertical, and torsional eye movements, from [5].

On the basis of their function, eye movements can be divided into two main
categories - those that stabilise the gaze and those that shift the gaze. In [6],
these two categories are further divided into seven main functional classes.
The classes and respective main functions are summarised in Table 2.1.
While vestibular, visual fixation, and optokinetic systems belong to the first
category, in that they hold images steady on the retina, saccades, nystagmus
quick phase, and smooth-pursuit movements belong to the second category,
in that they redirect the line of sight to a new object of interest. Vergence
movements have gaze-holding as well as gaze-shifting properties.

Out of these seven functional classes, the three most common types of eye
movements are: fixations, saccades and smooth pursuits. Examples are shown
in Figures 2.3 and 2.4. These three types of eye movements are sufficient to
gain insight into the localisation of visual attention [7]. In addition, another
type of eye movement will be important in this thesis, namely the vestibulo-
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Chapter 2 Background

Table 2.1: Functional classes of human eye movements, from [6].

Class of Eye Movement Main Function

Vestibular Holds images of the seen world steady on
the retina during brief head rotations or
translations

Visual Fixation Holds the image of a stationary object on
the fovea by minimising ocular drifts

Optokinetic Holds images of the seen world steady on
the retina during sustained head rotation

Smooth Pursuit Holds the image of a small moving target
on the fovea; or holds the image of a small
near target on the retina during linear self-
motion; with optokinetic responses, aids
gaze stabilisation during sustained head ro-
tation

Nystagmus Quick Phase Reset the eyes during prolonged rotation
and direct gaze towards the oncoming visual
scene

Saccades Bring images of objects of interest onto the
fovea

Vergence Moves the eyes in opposite directions so
that images of a single object are placed
or held simultaneously on the fovea of each
eye

ocular reflex (VOR) which belongs to the class of vestibular eye movements.
Its purpose is to stabilise the gaze during head movements. In addition,
other types of eye movements such as postsaccadic oscillations (PSO) are
also reported and discussed in the literature. PSO are oscillatory movements
that may occur at the end of a saccade [8]. They will not be investigated
in this thesis, however, because they usually occur at such a high frequency
that they would not be visible in the low-speed data which will be recorded.

2.2.1 Fixations

Fixations are the short time periods when the eye remains more or less still
(cf. Figure 2.3). For example, this is the case during reading when the eye

8
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Figure 2.3: Example of the eye movements fixations and saccades.
(a) Position over time, (b) velocity over time, (c) position in the spatial
domain.

temporarily stops at successive locations across the page. The object of
interest is then kept relatively stable upon the fovea while visual information
is gathered. In order to have a clear vision of higher spatial frequencies,
the image should move less than about 5 ◦/s and should lie within 0.5 ◦

of the centre of the fovea [6]. In addition, fixations are characterised by
the occurrence of the three involuntary micro-movements: tremor, drift
and microsaccades [9]. A tremor is a small and fast wave-like movement
of the eyes with a frequency of around 90Hz and an amplitude of less
than 0.01 ◦. Its exact function is unclear. Drift happens when the image
of interest slips on the retina, in that it moves away from the centre of
the fovea. Microsaccades are small and fast, jerky eye movements with
velocities of around 15 - 50 ◦/s and amplitudes typically less than one third of
a degree. Their mean duration is about 25ms. The purpose of microsaccades
is to return the eyes to the object of interest and thus compensate for the
displacements in eye position produced by drifts. The mean duration of an
entire fixation is about 200 - 300ms, depending on the nature of the task [10].
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2.2.2 Saccades

Saccades are rapid eye movements which shift the eye from one fixation point
to another and thus allow the fovea to fixate different objects of interest
within the visual field (cf. Figure 2.3). This type of eye movement can be
observed while reading, for instance, when the eyes quickly move to the
beginning of the next line once the end of a line is reached [5]. The main
characteristics of saccades are: velocity and duration, shape and trajectory,
and latency [6]. The relationship between the size, speed and duration of
a saccade, often referred to as the main-sequence relationship, is relatively
consistent; the larger the saccade is, the higher its peak velocity and the
longer its duration. Typically, the velocity lies between 30 and 500 ◦/s and
the duration between 30 and 80ms [11]. Due to these high velocities, the
viewer is blind during most of the saccade, which means that almost no visual
information is gathered. Saccades have the shape of a temporal waveform
and exhibit a slightly curved trajectory in space, which implies that the eye
generally does not take the shortest way (straight line) between the starting
and end point [12]. The latency or reaction time of a saccadic eye movement
is about 100 - 300ms [5]. This is the time interval between when a stimulus is
first present and when the eye effectively starts to move, which is determined
by the time it takes for the brain to program and initiate the saccade.

2.2.3 Smooth Pursuits

Smooth pursuits occur whenever the eye follows a moving object in the visual
environment in order to keep it on the fovea (cf. Figure 2.4). This type of
eye movement can typically be observed while watching a flying bird or a
moving car. The main difference between smooth pursuits and saccades is
that smooth-pursuit movements cannot be controlled voluntarily [13]. While
saccades can be initiated across a stationary environment, smooth pursuits
require an object to follow. Moreover, in an environment consisting only of
moving objects, pursuits cannot be completely suppressed. Smooth-pursuit
movements can be divided into two phases: an initial acceleration phase and
a subsequent correction phase [6]. During the initial acceleration phase, the
eye needs to compensate for the latency and catch up with the moving target.
The latency is around 100 - 200ms, which corresponds to the time interval
between when an object first moves and when the pursuit eye movement is
subsequently initiated[11]. In the subsequent correction phase, the smooth-
pursuit system acts as a negative-feedback control system [6]. This means
that it tries to match the velocity of the smooth-pursuit movement with the
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Figure 2.4: Example of smooth-pursuit movements. (a) Position
over time, (b) velocity over time, (c) position in the spatial domain.

velocity of the moving target by calculating the retinal error velocity, which
is the difference between the velocity of the eye and that of the target. If this
error becomes too large, an eye movement that will catch up with the target,
known as a catch-up saccade, is generated (cf. Figure 2.4). The amount of
catch-up saccades needed depends on the speed and predictability of the
moving target. The velocity of smooth pursuits is typically between 10 and
30 ◦/s [11] but can reach values up to 100 ◦/s [14].

2.2.4 Vestibulo-ocular Reflex (VOR)

The function of the vestibulo-ocular reflex (VOR) is to stabilise the gaze
during head movements such that the viewed object remains on the fovea
of the retina. In response, compensatory eye movements are generated in
the opposite direction to head movements [6]. An example of this type of
eye movement would be when you fixate a point in front of you and start
turning your head to the left while fixated on the point. In order to be able
to continue to fixate the point, the eyes need to rotate to the right. Head
motion consists of three rotational and three translational components. The
rotational components are: horizontal, vertical and torsional. Thus, the
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VOR also responds with horizontal, vertical and torsional eye movements.
The three translational head movement components are lateral (side-to-side),
vertical (up-down), and longitudinal (front-back). The VOR responds to these
movements by producing horizontal, vertical and vergence eye movements.
Head velocities are generally below 100 ◦/s but the VOR is able to stabilise
head velocities of up to 350 ◦/s [15]. Depending on the viewing distance of
the object of interest, the gain of VOR must be adjusted (cf. Section 3.3).
The latency of the VOR is in the range of 7 to 15ms [16], which is extremely
short. This corresponds to the time interval between when the head begins to
rotate or translate, to when the compensatory eye movement is initiated. No
other sensory mechanism generates compensatory eye movements so quickly.
Visually-mediated eye movements, for instance, have latencies of at least
70ms [17].

2.3 Eye- and Head-Tracking Systems

2.3.1 Eye-Tracking Techniques

Eye trackers are measurement devices used to record eye movements. They
allow estimation of where a person is looking, providing an insight into where
visual attention is localised. There are a number of different eye-tracking
methodologies presented in the literature [18, 19, 7, 11, 20, 21]. The simplest
and oldest monitoring technique is the direct observation of a person’s eye.
Obviously, this technique is very subjective and only allows the identification
of large eye movements. Thus, it was logical for researchers to seek more
sophisticated and particularly, more objective, eye-movement measurement
techniques. Starting from the late 1800s, a range of different devices and
techniques were developed, the most common of which are discussed in the
following paragraphs.

ElectroOculoGraphy (EOG)

EOG is an eye-tracking technique based on the electric potential differences
of the skin around the eye. In order to measure eye movements, electrode
pairs are placed around the eye. As the eye rotates, the orientation of
the corneoretinal electrostatic dipole changes with it. This change will be
visible in the measured EOG signal. The EOG was the most widely applied
eye-movement measurement technique during the mid-1970s and is still used.
An advantage, besides the low cost, is that eye movements can be recorded

12
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even if the eyes are closed, for example, during sleep. Accuracy and precision,
however, are rather low [19].

Scleral Contact Lens

This eye-tracking technique makes use of a large contact lens, which can be
worn directly on the eye. On top of the lens, a mechanical or optical device is
attached. The principle method, known as the scleral search coil technique,
uses small metal wire coils. Rotations of the eyes can then be recorded with
the aid of a surrounding electromagnetic field. When the eyes move, the
potential difference in the coil varies and can be measured. Although rather
uncomfortable, this eye-movement measurement technique is one of the most
precise and accurate options [7].

VideoOculoGraphy (VOG)

VOG systems represent a wide variety of video-based eye trackers and are
currently the most widely-applied systems for the recording of eye movements.
They obtain image data from one or more cameras. Afterwards, the image
data is additionally processed in order to estimate where the user of the
system is looking. During the first step, the eye is detected and localised
within the image. The position of the eye is generally measured using the
pupil or iris centre. During the second step, the location of the eye is tracked
over subsequent image frames to estimate the path of the gaze. As in [20] and
[21], the present study adopts the terms "eye detection" and "gaze tracking"
to differentiate between these two steps.

Pupil and Corneal-Reflection VOG

Video-based pupil and corneal-reflection eye tracking has been the dominant
method since the early 1990s [11]. The method employs one or more cameras
and a single or multiple infrared light sources, which are placed in front of
the viewer. Typically, these light sources are close to the stimulus screen
and directed towards the eye. The purpose of the infrared light sources is to
create reflections on the eye, or more precisely, on the boundary between the
lens and the cornea. A total of four reflections, known as Purkinje images,
may occur on the external and the internal surface of the cornea as well as
on the external and the internal surface of the lens. An illustration is shown
in Figure 2.5. The first Purkinje image is called the corneal reflection. This
reflection together with the pupil is tracked by the camera system.

13
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Figure 2.5: (a) The four Purkinje images which occur when light
is reflected on the eye. (b) Example of an eye image captured by a
video-based eye-tracking system. The detected geometric centres of
the pupil and the corneal reflection are marked with a white and a
black cross, respectively.

The goal of the eye-detection step is to robustly detect the pupil and the
corneal reflection. Eye detection is typically done using either feature-
based or model-based approaches or combinations thereof [11, 20, 21]. The
feature-based approach involves exploring the characteristics of the eye and
extracting distinctive local features. Commonly-used features include the
pupil, the limbus, and corneal reflections. Detection criteria often include
gradient calculations, in order to find edges or contours, or thresholding, a
process which groups pixels according to their intensity distribution. The
model-based approach uses a model of the eye, which is matched to the
eye image using a similarity measure. Both methods have their advantages
and limitations. The feature-based approaches are time efficient and rather
robust as long as the image data is of good quality. The major disadvantage
of these approaches is that they perform poorly if the images are disturbed,
causing parts of the features under investigation to be covered. This can
be due to a drooping eyelid or downward-pointing eye lashes. Model-based
approaches, by contrast, provide more accurate and robust estimates in such
situations. They suffer, however, from a high computational complexity. To
overcome the respective shortcomings of both approaches and exploit their
benefits, hybrid methods which combine both techniques within a single
system can be adopted [20].
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After a successful detection phase, the geometric centres of the pupil and
corneal reflection are determined (cf. Figure 2.5). They are used in the
subsequent gaze-tracking step. During eye movements and small head move-
ments, the relative distance between the pupil and corneal reflection changes
systematically. Whereas the pupil rotates together with the eye, the corneal
reflection remains relatively stable at its initial position. This means that the
corneal reflection can be used as a reference point in the image. Moreover,
the vector between the centre of the pupil and the centre of the corneal
reflection can be used to determine different gaze positions. In order to
establish a relationship between the vector and a position on the stimulus
screen, an initial calibration is required. The calibration typically involves
presenting between 5 and 13 points on the stimulus space, each of which
needs to be fixated by the user.

2.3.2 Types of VOG Systems

Depending on the application, different types of eye tracker are preferable.
In [11], VOG eye-tracking systems are classified into three main types: tower-
mounted, remote and head-mounted eye trackers. Besides variations in their
setup, i.e., the way in which cameras and illuminations are combined, they
chiefly differ with regard to the type of data they produce. Representative
examples of the different types are shown in Figure 2.6.

(a) (b) (c)

Figure 2.6: Representative examples of the different types of VOG
eye-tracking systems: a tower-mounted system (a), a remote system
mounted below a screen (b), and eye-tracking glasses (c).
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Tower-Mounted Systems

As shown in Figure 2.6, a tower-mounted system comprises a lower part,
where the head can be placed and an upper part, where camera(s) and
illumination(s) are located. The lower part typically consists of a forehead
and chin rest that are used to restrain head movements. This type of system
allows high-quality data recording with typical sampling frequencies of around
1000 - 2000Hz. The stimuli are generally presented on a monitor.

Remote Systems

In the case of remote eye trackers, the camera(s) and illumination(s) are
located in front of the viewer next to the monitor where the stimuli are
presented. As a result, this system provides more flexibility, but because small
head movements are possible, this comes at the cost of lower quality data.
The sampling frequencies of remote systems are usually around 60 - 500Hz,
which is lower than that of tower-mounted systems.

Head-Mounted Systems

While tower-mounted and remote eye trackers are static systems used for
experiments inside a laboratory, head-mounted eye trackers provide much
more flexibility and mobility, enabling the recording of real-life activities
outside the laboratory. Both eye camera(s) and illumination(s) are located
on the head of the user and may be mounted on either a helmet, cap or pair
of glasses. In addition, a scene camera is attached to the eye tracker. Its
purpose is to record the stimuli. Again, the benefits of more mobility comes
at the cost of lower sampling frequencies, which in this case are typically
around 30 - 60Hz. Due to the low sampling rate, some types of rapid eye
movements such as postsaccadic oscillations will not be visible in the resulting
eye-tracking data.

2.3.3 Head-Tracking Techniques

Head trackers or head-tracking systems are used to record head movements
in order to calculate the position of the head in space. The applications of
head-tracking systems include teleconferencing, virtual reality, and assistive
technologies, whereby a wheelchair, keyboard or mouse can be controlled
using head movements [21]. However, head trackers are often used in com-
bination with head-mounted eye trackers in order to simplify data analysis.
In the literature, several approaches for estimating the pose of the head are
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proposed which can be used in combination with eye-movement detection.
Head trackers can be grouped based on their tracking principle into magnetic,
optical, vision-based, acoustic, and inertial head-tracking systems.

Magnetic Head-Tracking Systems

Magnetic tracking systems consist of a source, the transmitter, and a motion-
tracking sensor, the receiver. The purpose of the source is to generate
a near-field, low-frequency electromagnetic dipole field. The field vectors
which are emitted are subsequently detected by the sensor, which is typically
embedded or attached to the object which is being tracked. The signals
which are sensed enable the receiver’s position and orientation relative to
the transmitter to be determined. In [22], a magnetic head-tracking system
is used in combination with a head-mounted eye tracker. The eye tracker
measures the eye-in-head motion, whereas the head tracker, mounted on the
eye tracker, measures the head-in-space motion. The setup is used to evaluate
the vestibulo-ocular reflex (VOR), for which it is crucial to measure both
eye and head movements. The major disadvantages of magnetic tracking
systems are that distortions can be caused by metal objects and that the
accuracy and resolution rapidly decrease with distance [23].

Optical Head-Tracking Systems

Similarly to magnetic tracking systems, optical tracking systems also consist
of a source and a motion-tracking sensor, but apply laser-range measurement
techniques instead of using an electromagnetic field. The source continuously
scans the work space with laser beams, which are sensed by the sensor
that is again attached to the object which is being tracked. The signals
which are sensed are further processed into position and orientation data. A
system which automatically analysis a driver’s visual perception of traffic
hazards based on eye-movement detection is presented in [24]. Since the
experiment was conducted in a driving simulator in which the base moved,
it was important to measure head movements as well as eye movements.
The head movements were recorded using an optical LaserBird head tracker.
Optical systems are highly accurate but suffer from line of sight problems if
the path between the source and the sensor is obstructed [23].
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Vision-Based Head-Tracking Systems

Due to increasing computing performance, numerous vision-based tracking
approaches have been developed. The main idea behind vision-based
approaches is to estimate the orientation and position of the head using
images taken by a camera. This can either be done in an "inside-out" style
or an "outside-in" style [25]. Inside-out-style approaches use a head-mounted
scene camera. The orientation and position of the head are then estimated
by processing the images from the resulting video. Outside-in-style
approaches, by contrast, use a bird’s-eye-view camera, which takes images
of the head from a fixed viewpoint. Again, the orientation and position of
the head are then estimated by processing the images from the resulting video.

Image processing of the video is often carried out using feature points.
The orientation and position of the head are estimated by tracking the
movement of a set of points. These points correspond to the key features
and are traced across adjacent views in subsequent video frames. This
can be achieved, for example, by using two-view geometry to relate image
points in two separate views of a scene captured from the same camera
from different viewpoints [21]. Feature points can either be markers or
natural features. Markers can be placed at known positions around the
target scene environment (inside-out-style) or can be attached to the head
or the head-mounted eye tracker (outside-in-style). The main disadvantage
of using markers is that this method can only be applied within a restricted
physical space. Therefore, natural features such as edges, lines, or corners
are most often tracked.

Two applications of vision-based systems used in combination with eye-
movement detection are presented in [26] and [27]. In [26], an omnidirectional
vision sensor mounted on top of a regular eye tracker is used to capture a
circular image of the environment. Head rotations (but not translations)
are estimated based on analysis of the image sequence by either tracking
key-feature points, estimating the optical flow, or by using spherical-harmonic
decomposition of the images, the latter of which yielded the best results. In
[27], the motion inherent in a scene video of a head-mounted eye tracker is
analysed. Using global optical-flow calculations, the relative head motion is
estimated and compensated for. Since changes in texture are tracked, the
algorithm has problems when the scene video contains textures which are
either too similar to each other, or too faint to be detected. In general the
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disadvantage of vision-based systems is that extremely fast head or body
movements can cause motion blur and distortion in the scene video such that
the algorithms are no longer able to perform accurately.

Acoustic Head-Tracking Systems

A head-orientation estimation method based on acoustic signals is presented
in [28], whereby the direction of the head is estimated by localising the
source of the user’s voice. There are no reports of this method being used in
conjunction with eye-movement detection, however.

Inertial Head-Tracking Systems

Another possible way to obtain information on head movements is to make
use of an accelerometer, a gyroscope or a combination of the two, known as
an inertial measurement unit (IMU). A huge advantage of inertial systems
is that they are not restricted in range and can be used to record in natu-
ral environments, in contrast to magnetic, optical, and many vision-based
systems. In [27, 29], one or multiple accelerometers were used to measure
head movements while simultaneously time performing eye tracking. The
recordings, however, suffered from problems related to drift compensation as
well as difficulties in synchronising head- and eye-tracking data.

2.4 Existing Event-Detection Algorithms

The goal of an event-detection algorithm is to detect and classify eye
movements in eye-tracking data, so that the positional signal is segmented
into different types of eye movements. The classification task may vary
depending on the type of eye-tracking system, the sampling frequency, the
number and types of eye movements which need to be detected, and whether
the algorithm is supposed to work in real-time or as an offline procedure.

Most algorithms are designed to distinguish between the two most common
types of eye movements, fixations and saccades. Based on the features used
for the classification, event-detection algorithms are typically grouped into
velocity-based algorithms and dispersion-based algorithms [30, 31]. The
first group of algorithms works by analysing the velocity component of the
movement signal, taking advantage of the fact that fixation samples have
low velocities, whereas saccade samples have high velocities. There are three
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commonly used velocity-based algorithms reported in the literature: Velocity
Threshold Identification (I-VT), Hidden Markov Model Identification
(I-HMM), and Kalman Filter Identification (I-KF). The I-VT algorithm
is the simplest type of velocity-based algorithm and functions by sorting
samples based on their point-to-point velocities. Samples with velocities
higher than a given threshold are classified as saccades, whereas samples with
velocities lower than the threshold are classified as fixations. The I-HMM
algorithm is a more sophisticated version of the I-VT. It uses a two-state
HMM (fixation and saccade) whereby the states are characterised by the
velocity distributions of saccade and fixation samples, respectively. Although
the probabilistic representation inherent in the I-HMM algorithm performs
more robustly, this comes at the cost of a more complex parameter space.
In the case of the I-KF algorithm, the eye is modelled as a system with
two states (position and velocity). In order to classify each eye-positional
sample as a part of a fixation or a saccade, a Chi-square test is applied on
the difference between the measured and predicted eye velocity.

While velocity-based algorithms typically require data recorded at frequencies
higher than 200Hz, dispersion-based algorithms are typically used for signals
with sampling frequencies below 200Hz [11]. Dispersion-based algorithms
analyse the positional properties of the signal, taking advantage of the
fact that fixation samples are generally less spread than saccade samples.
The two most common algorithms are Dispersion Threshold Identification
(I-DT) and Minimum Spanning Tree Identification (I-MST). The I-DT
algorithm calculates the spatial dispersion of points within a temporal
window and compares it to a threshold. If the dispersion of the window
is higher than the threshold, the points within the window are classified
as fixations. Otherwise, the first sample of the window is classified as a
saccade and the window is moved by one sample. Multiple versions of
the I-DT algorithm exist, which differ according to how the dispersion is
calculated. An overview of different dispersion measures can be found in
[32, 33]. The I-MST algorithm builds an MST whereby a tree connects a set
of points such that the total Euclidean distance of the tree’s line segments is
minimised among all spanning trees. Eye positions are then classified into
fixations and saccades based on point-to-point distance thresholds.

The disadvantages of these basic algorithms are that most of them rely on
static thresholds and are very sensitive to parameter settings. This may
result in poor performance if the data is noisy. As a result, a number of more
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sophisticated algorithms have been developed, ranging from velocity-based
algorithms which take the noise level of the position signal into account [34],
to approaches adopting adaptive, data-driven thresholds [35], algorithms
which use information about both eyes to classify eye movements [36], and
approaches that use acceleration signals instead of, or in addition to, the
velocity signals [37].

Among these algorithms, only a few enable ternary classification in order to
discriminate between saccades, fixations, and smooth-pursuit movements.
The major problem is that the signal characteristics of smooth-pursuit
movements overlap with the signal characteristics of saccades and fixations,
which makes classification much more complicated [38]. In [39], three basic
algorithms to detect fixations, saccades, and smooth-pursuit movements are
compared and evaluated: Velocity and Velocity Threshold Identification
(I-VVT), Velocity and Movement Pattern Identification (I-VMP), and
Velocity and Dispersion Threshold Identification (I-VDT). All three
algorithms are modified versions of the I-VT algorithm; Firstly, they identify
the saccades by applying a velocity threshold and secondly, they separate
fixations from smooth-pursuit movements using either a second velocity
threshold, a movement-pattern analysis, or a dispersion threshold. The most
successful method combined velocity and dispersion thresholds, whereas the
I-VVT algorithm showed the poorest results. In [40], an algorithm which
detects saccades, fixations, and smooth pursuits using a velocity threshold in
combination with Principal Component Analysis is employed to investigate
eye movements in humans and monkeys. The detection performance was
not evaluated, however. Another method is proposed in [8, 41]. After the
approximate saccadic intervals are detected based on the acceleration signal,
the exact onsets and offsets of the saccades are determined by applying
three specialised criteria based on directional information in the positional
signal. Subsequently, the algorithm detects smooth-pursuit movements
by calculating the characteristics of the signal at different stages, which
represent the different spatial scales of the data. The algorithm detects
movements considerably better than the I-VDT algorithm.

While the algorithms described above [39, 40, 8, 41] are developed for eye-
tracking signals with higher sampling frequencies, a few other algorithms exist
which are developed for low-speed mobile eye-tracking systems. In [26], the
I-HMM algorithm is extended to a four-state HMM in order to also capture
smooth-pursuit movements and VORs. In addition to the eye velocities, the
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head-movement velocities are also integrated as a second observation variable.
Preliminary results show that the algorithm is able to classify VORs and
saccades. Smooth-pursuit movements, however, were sometimes incorrectly
detected. Another approach, which uses a set of shape features that capture
the shape characteristics of smooth-pursuit movements, is proposed in [42].
A machine-learning approach is adopted whereby different shape features
are combined and used to detect smooth-pursuit movements in the presence
of other types of eye movements. Although the machine-learning approach
performs well in detecting movements, the disadvantage is that it requires a
sufficient amount of training data. Finally, in [24], a driver’s visual perception
of traffic hazard is analysed using an adaptive online algorithm to detect
fixations, saccades and smooth pursuits. The classification is carried out
by employing an online Bayesian mixture model [43] in combination with
Principal Component Analysis. Although the method shows promise, it is
still at a preliminary stage.
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Methods

The objective of the present thesis is to develop a method that can robustly
detect the three most common types of eye movements from an eye-tracking
signal recorded using eye-tracking glasses, while compensating for head
movements which are simultaneously recorded using an IMU. In order to
achieve this goal, the project is divided into two main parts, described below.

• Gaze Estimation. In the first part, the head-tracking signal is combined
with the eye-tracking signal in order to generate a new signal that
is as free of head movements as possible. This new signal is used
in the subsequent event-detection part. Section 3.1 begins with a
description of the apparatus used in the thesis. A classification of
different combinations of eye, head and body movements into different
complexity levels is presented in Section 3.2. In Section 3.3, a method
for combining the head- and eye-tracking signals is derived. Section 3.4
concerns signal analysis, investigating different properties of the two
types of signals. The real-world implementation of the method and
related problems are discussed in Section 3.5. Finally, a pilot study
and a proposed evaluation procedure are described in Section 3.6.

• Event Detection. The goal of this second part is to develop and
implement a new and enhanced event-detection algorithm to detect
saccades, fixations, and smooth-pursuit movements in the setting which
was previously described. The proposed algorithm is presented in
Section 3.7 and evaluated in Section 3.8. The evaluation is performed
by comparing the results to those of two alternative algorithms.
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A - Gaze Estimation
In the following section, it is important to distinguish between eye-in-head
position and eye-in-space position, also called gaze. The eye-in-head position
corresponds to the position of the eye relative to the head. Eye-in-head
positions are what the eye-tracking glasses provide, a sequence of coordinates
based on a head-centric coordinate system. Eye-in-space position, by contrast,
corresponds to the position of the eye relative to the coordinate system of
the outside world. In the present case, the aim is to produce signals which
only contain eye-in-space coordinates so that a detection algorithm can be
successfully applied to them. Eye-in-space motion can basically be derived
by combining the head-in-space motion with the eye-in-head motion. This
process is called gaze estimation and will be further investigated in Section 3.3.
An illustration is shown in Figure 3.1.

Eye Tracking Head Tracking

Gaze Estimation

head-in-space
positions

eye-in-head
positions

eye-in-space
positions

Figure 3.1: Illustration of the gaze-estimation process, which com-
bines eye-in-head and head-in-space motion in order to derive eye-in-
space motion.

3.1 Apparatus
The purpose of this section is to shortly introduce the equipment which is
used in the thesis to track eye and head movements. Eye movements are
measured with mobile eye-tracking glasses, while head motion is recorded
using an inertial measurement unit (IMU).
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3.1.1 Eye-Tracking Glasses

The eye-tracking signals are recorded using the eye-tracking glasses 2.0 from
SensoMotoric Instruments (SMI). It is a non-invasive video-based glasses-
type eye tracker with a scene camera and two eye cameras. A picture of the
glasses with the corresponding camera locations is shown in Figure 3.2.

(a)

(b)

Figure 3.2: SMI eye-tracking glasses. Letters indicate the locations
of a) the scene camera and b) the eye cameras, from [44].

The temporal resolution of the eye tracker can be adjusted between 30Hz
and 60Hz. Few mobile eye trackers are able to record eye movements at such
high sampling rates. A sampling frequency of 60Hz, however, is still very low
compared to other types of eye trackers. As a result, the eye-tracking data
will not include rapid eye-movement types such as postsaccadic oscillation.
Eye positions are determined based on pupil and corneal reflection tracking
(cf. Section 2.3) and a total of six corneal reflections are tracked. Furthermore,
the eye-tracking glasses record binocularly, which means that data from both
eyes is used. The main technical specifications are summarised in Table 3.1.

Eye-Tracking Data

The mobile eye-tracking system outputs a data stream containing x- and
y-axis positions in the coordinate system of the scene camera video frame,
which has a resolution of 1280× 960 pixels. This means that horizontal (x)
and vertical (y) eye-in-head positions are mapped onto a 1280× 960-pixel
plane.

25



Chapter 3 Methods

Table 3.1: Main technical specifications of the SMI Eye-Tracking
Glasses 2.0, from [44].

Dimensions of glasses Size: 173× 58× 156mm

Weight: 86 g

Calibration 0, 1, and 3 - point calibration modes

Eye-tracking principle Binocular eye tracking

Pupil /CR, dark pupil tracking

Temporal resolution 60Hz and 30Hz binocular

Gaze-position accuracy 0.5 ◦ over all distances, parallax compensation

Tracking distance 40 cm - ∞
Gaze-tracking range 80 ◦ horizontal, 60 ◦ vertical

HD scene camera Resolution: 1280× 960 px @24 fps

Field of view: 60 ◦ horizontal, 46 ◦ vertical

3.1.2 Inertial Measurement Unit (IMU)

The head-tracking signals are recorded using the Inertial Measurement Unit
(IMU) from x-io Technologies. The IMU consists of a triaxial gyroscope,
a triaxial accelerometer, and triaxial magnetometer and has a sampling
frequency up to 512Hz. Moreover, the IMU board includes an AHRS
algorithm, which is described in [45]. The AHRS algorithm is a fusion
algorithm that combines the signals of all three on-board sensors to compute
a measurement of orientation relative to the Earth, which is free from drift.
The IMU is very small and lightweight, measuring 57× 38× 21mm and
weighing just 49 g including its plastic housing and battery. An illustration
of the IMU is shown in Figure 3.3, and the main technical specifications are
summarised in Table 3.2.

Head-Tracking Data

The IMU outputs a data stream containing head-in-space orientations stated
as ZYX Euler angles. The Euler angles φ, θ, and ψ correspond to rotations
around the x-, y-, and z-axes of the moving head-centric coordinate system,
respectively.
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Figure 3.3: Inertial Measurement Unit (IMU) from x-io Technologies,
from [46].

Table 3.2: Main technical specifications of the IMU from x-io Tech-
nologie, from [46].

Sensor dimensions Size: 57× 38× 21mm

Weight: 49 g

On-board sensors Triple axis 16-bit gyroscope

Triple axis 12-bit accelerometer

Triple axis 12-bit magnetometer

On-board algorithms IMU and AHRS algorithms provide
real-time measurement of orientation
relative to the Earth

Temporal resolution Selectable data rates up to 512Hz
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3.2 Complexity Levels

Head-in-space motion consists of three rotational and three translational
components, which can result from either moving the head or moving the
entire body. Depending on how many of these six components are active, the
complexity of the gaze-estimation task varies significantly. In this section,
different complexity levels will be introduced. They are summarised in
Table 3.3 and explained subsequently.

Table 3.3: Complexity levels of head motion in combination with
eye motion.

Level Eyes
Head (Rotation) Head

Horizontal Vertical Torsional (Translation)

1 X

2 X X

3 X X X

4 X X X X

5 X X X X X

Level 1-3 In the case of complexity level 1, none of the six components
of head motion are active, meaning that the head is still and only the eye
move. This is similar to cases in which a (head-mounted or remote) static
eye tracker is used. In the case of complexity level 2, head rotations are
performed but only horizontally and vertically (a nod or shake of the head,
for example) but the eyes remain still and try to fixate a single spot. In the
case of complexity level 3, horizontal and vertical head rotations are also
performed but this time in combination with eye movements.

Complexity levels 2 and 3 can be further divided according to the magnitude
of the head rotations which are preformed. Head rotations of less than around
±45 ◦ allow viewing targets to fall comfortably within a two-dimensional
plane. Rotations of up to about ±90 ◦ can be performed by moving the head
only, whereas rotations of greater than ±90 ◦ require the entire body to be
moved.
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Level 4-5 In the case of complexity level 4, the translational components
of head motion are active in addition to the head and eye movements of
level 3. Subjects are now allowed to freely move within the environment.
Complexity level 5 allows the maximum degree of mobility, whereby all com-
ponents of head motion and eye movements can be performed simultaneously.

Starting with complexity level 1, the different levels will be investigated
sequentially. The focus of this master’s thesis, however, is on complexity levels
1 to 3, which involve horizontal and vertical head rotations in combination
with eye movements. Furthermore, it is assumed that subjects are watching
distant targets, whereby viewing distances are greater than one meter.

3.3 Model
The goal of this section is to investigate the relationship between eye-in-head
motion, head-in-space motion, and eye-in-space motion in order to find a
model to combine head- and eye-tracking signals (cf. Figure 3.1). To this
end, the vestibulo-ocular reflex (VOR) plays an important role. As described
in Section 2.2.4, the function of the VOR is to stabilise the gaze during
head movements by generating compensatory eye movements in the opposite
direction. Depending on the proximity of the targets being viewed, the gain
of these compensatory movements by the eyes varies [6] and thus, so does
the relationship between eye position, head orientation, and gaze.

Near-Target Geometry

For a subject viewing near targets, i.e., viewing distances less than one meter
[47], the geometric solution has been discussed in [48] and is as follows

αER = tan−1
(

(D + R) sin(γ − αH)− I/2
(D + R) cos(γ − αH)− R

)
,

αEL = tan−1
(

(D + R) sin(γ − αH) + I/2
(D + R) cos(γ − αH)− R

)
,

(3.1)

where αH , αER , and αEL are the rotation angles of the head, the right eye,
and the left eye, respectively, R is the radius of the head, I is the interocular
distance, γ is the target eccentricity, and D is the target distance. This
signifies that the eyes must compensate for the head rotations with a gain
greater than one. Moreover, since the eyes are separated from each other,
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they must rotate by different amounts. This relationship is summarised in
Figure 3.4.

(D + R) sin(−αH)

(D
+

R
)

co
s(

−
α

H
)

R
R

D

I/2

αER
αEL

αH

Figure 3.4: The geometric relationship between the rotation angles
of the eyes (αER , αEL) and the head-rotation angle (αH) for a finite
radius of rotation (R), target distance (D), and interocular distance
(I), from [48].

Distant-Target Geometry

For a subject viewing distant targets, the geometric solution can be simplified.
The separation between the eyes (I) as well as the radius of head rotation (R),
which was used to account for the eyes not being at the centre of rotation
of the head, can be neglected [6]. This results in compensatory VOR eye
movements equal and opposite to the head movements. It further implies
that the eye-in-space rotation angle αG can be approximated as the sum of
the eye-in-head rotation angle αE and the head-in-space rotation angle αH .

αG = αE + αH (3.2)
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3.3.1 Common Coordinate System

In order to be able to apply the relationship of Equation (3.2) to the signals
from the eye-tracking glasses and the IMU, the signals first need to be
converted to a common coordinate system. For this purpose, it seems
advantageous to choose one of the existing systems as the common coordinate
system, either the coordinate system of the eye-tracking glasses or that of the
IMU. As discussed in Section 3.1, the eye-in-head positions are calculated
relative to the scene camera video frame of the eye-tracking glasses so that
horizontal and vertical eye positions are mapped to the x- and y-coordinates
of a 1280× 960-pixel plane. The estimated head-in-space orientation, by
contrast, is described in angles in the three-dimensional Euclidean space.
The choice of a common coordinate system is affected by multiple factors.
On one hand, it is influenced by the differing complexity levels involved
(cf. Subsection 3.2). While a two-dimensional reference system would meet all
the requirements at the lower complexity levels, the entire three-dimensional
space would need to be taken into account at higher complexity levels. On the
other hand, the selection of a common coordinate system is also affected by
the limitations of our ability to represent stimuli. To calculate the eventual
performance measurements, it is much easier to control the experiment by
presenting different stimuli in two dimensions rather than in three dimensions.
Furthermore, in order to compare the signals which have been adjusted for
head movement after gaze estimation with the initial eye-tracking signals,
it is advantageous to have both in the same coordinate system. Bearing in
mind these considerations, the two-dimensional coordinate system of the
eye-tracking glasses has been chosen as the common coordinate system, and
is outlined below. This means that all coordinates will be mapped to the
x- and y-coordinates of a 1280 x 960-pixel plane and Equation (3.2) can be
reformulated as xG

yG

 =

xE
yE

+

xH
yH

, (3.3)

where x and y are the x- and y-coordinates in pixels and the subscripts G, E,
and H denote eye-in-space (gaze), eye-in-head, and head-in-space positions,
respectively.

Mapping to Pixel Plane

As the eye positions are already calculated in pixels relative to the scene
camera video frame of the eye-tracking glasses, no further mapping needs to
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be performed. This means that xE and yE of Equation (3.3) correspond to
the x- and y-coordinates obtained from the eye-tracking glasses. The head-in-
space orientations recorded by the IMU are reported in angles, however, and
thus need to be mapped to the common two-dimensional reference system.
To do so, firstly, the heading vector of an arbitrary head position ~vH is
calculated. For the sake of convenience, the initial heading vector ~vH(0)
is defined as the vector which points in the direction perpendicular to the
centre of the common coordinate system and which coincides with the y-axis
of the head-centric coordinate system, i.e., ~vH(0) = (0, 1, 0). This scenario is
depicted in Figure 3.5.

ψ

φ
θ

x

y

z

~vH(0)

Figure 3.5: The head-centric coordinate system with corresponding
head-rotation angles and initial heading vector ~vH(0) pointing in
the direction perpendicular to the centre of the common coordinate
system.

Any heading vector ~vH can then be computed as

~vH = R ~vH(0), (3.4)

where the matrix R is a composition of elemental rotations around the
principal axes of the head-centric coordinate system

R = Rz(ψ) Ry(θ) Rx(φ), (3.5)
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with

Rx(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

,

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

,

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

.

(3.6)

The three angles φ, θ, and ψ of Equation (3.5) are the ZYX Euler angles
reported by the IMU, which correspond to rotations around the x-, y-, and
z-axes of the moving head-centric coordinate system, respectively.

In a second step, the heading vector will be mapped to x- and y-pixel-
coordinates of the common coordinate system as illustrated in Figure 3.6.
To this end, the angles α and β between the initial heading vector and
the projections of the heading vector to the initial xy-plane and yz-plane,
respectively, are calculated. By considering only a cross section for the x-
and y-direction separately, as depicted in Figure 3.7, one can observe that
there is a simple relationship between a change in angle (α, β) and a change
in pixel (xH , yH), as both the resolution as well as the field of view of the
scene camera of the eye-tracking glasses are known. For the cross section in
the x-direction it is

tan(α) = xH
d
, (3.7)

and

tan(αmax/2) = xmax/2
d

, (3.8)

which leads to

xH = xmax/2
tan(αmax/2) tan(α), (3.9)
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where xmax denotes the resolution in pixels in the x-direction of the scene
video of the eye-tracking glasses and αmax denotes the corresponding hori-
zontal angle of view.

xH

yH

β

α

~vH̃(0)

~vH̃

Figure 3.6: The mapping of the heading vector ~vH to the common
coordinate system, whereby α and β denote the angles between the
initial heading vector ~vH(0) and the projections of the heading vector
to the initial xy- and yz-planes, respectively. xH and yH are the
corresponding coordinates in the common pixel coordinate system.

Equations (3.7) and (3.8) are applied to a cross section in the y-direction
where ymax denotes the resolution in pixels in the y-direction of the scene
video and βmax denotes the corresponding vertical angle of view. This leads
to the final result

xH
yH

 =

 xmax/2
tan(αmax/2) tan(α)
ymax/2

tan(βmax/2) tan(β)

. (3.10)
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Neglecting torsional head motion and assuming head-rotation angles of
around ±30 ◦ - valid assumptions for complexity levels 1 to 3 - the projection
angles α and β can be approximated by the horizontal and vertical head-
rotation angles ψ and φ, respectively, which are reported by the IMU.
Equation (3.10) may then be approximated as

x̃H
ỹH

 =

 xmax/2
tan(αmax/2) tan(ψ)
ymax/2

tan(βmax/2) tan(φ)

. (3.11)

xH
xmax

αmax

α

d

~vH̃(0) ~vH̃

Figure 3.7: The mapping of the heading vector ~vH to the common
coordinate system for a cross section in the x-direction, whereby
xmax and αmax denote the horizontal resolution in pixels and the
corresponding angle of view of the scene camera of the eye-tracking
glasses, respectively. α is the angle between the initial heading vector
~vH(0) and the projection of the heading vector to the initial xy-
plane, xH is the corresponding x-axis coordinate in the common pixel
coordinate system, and d is the distance to the coordinate system.
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3.4 Signal Analysis

The purpose of the signal analysis section is firstly to illustrate the content
of the signals recorded by the different pieces of equipment, i.e., the eye-
tracking glasses and the IMU (cf. Section 3.1). Secondly, the section shows
how the different types of eye and head movements appear in the eye- and
head-tracking signals. This analysis of the eye- and head-tracking signals
allows us to gain knowledge about the two types of signals separately. This
knowledge will be applied in subsequent sections where the combination of
the two signals will be investigated. Therefore, various eye movements, head
movements, and combinations thereof are recorded with the eye-tracking
glasses and the IMU. The results are presented and discussed in Section 4.1.

3.4.1 Eye-Tracking Glasses

The three most common types of eye movements, saccades, fixations, and
smooth pursuits, are described in the background chapter in Section 2.2
and examples are shown in Figures 2.3 and 2.4. These examples are
recorded with a static system, which is either tower-mounted or remote. In
order to investigate how the three types of eye movements appear in the
signals generated by the eye-tracking glasses, different eye movements in
combination with head movements are recorded.

Figure 3.8 shows four different movement patterns I - IV. In a first
step, the subject performs these four patterns at complexity level 1
(cf. Section 3.2). This means that only eye movements are performed
and the head remains still. The subject fixates their gaze at each of
the crosses successively, starting with the centre cross, indicated in red,
and following the path indicated by the arrows and the corresponding
numbers next to them. This should result in an eye-movement sequence
composed of fixations and saccades. Thus, when the subject a fixates
the crosses, it should result in a fixational eye movement,. When the
subject transitions between the crosses, it should result in saccadic eye
movements. Pattern I, depicted in Figure 3.8a, and Pattern II, depicted
in Figure 3.8b, consist of horizontal and vertical movements only. Pattern
III, depicted in Figure 3.8c, alternates between horizontal and vertical
movements. Finally, pattern IV, depicted in Figure 3.8d, consists of a
combination of horizontal and vertical movements, i.e., diagonal movements.
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Figure 3.8: Eye- and head-movement patterns I - IV.

The movement patterns I - IV illustrated in Figure 3.8 aim to stimulate
saccadic and fixational eye-movements sequences only. Figure 3.9 shows
three additional movement patterns V - VII, which aim to stimulate saccadic,
fixational, and smooth-pursuit movements sequences. Again, during the
first step, these three patterns are performed by the eyes while the head
remains still. The subject’s gaze follows a moving target which moves along
in the direction of the different arrows. At the beginning and between
these movements, the eye fixates the cross in the centre, indicated in red.
Patterns I and II, depicted in Figures 3.9a and 3.9b, respectively, consist of
only horizontal and vertical smooth-pursuit movements, whereas pattern III,
depicted in Figure 3.9c, consists of a combination of horizontal and vertical
movements, i.e., diagonal smooth-pursuit movements.
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Figure 3.9: Eye-movement patterns V - VII.

During the second step, the four patterns I - IV in Figure 3.8 are performed
at complexity level 2. In other words, the subject only performs head
rotations while fixating the cross in the centre, indicated in red. These head
movements are performed for the four patterns in the same way as the eye
movements in step one, in that the nose points successively in the direction
of each of the crosses, starting with the centre cross, indicated in red, and
following the path indicated by the arrows and the corresponding numbers
next to them.

Finally, in the third step, the subject performs the four patterns I - IV in
Figure 3.8 at complexity level 3, meaning that a combination of eye and head
movements is performed. Both the gaze and the head are pointed in the
direction of each of the crosses successively. At the beginning, the subject
points in the direction of the centre cross, indicated in red. Subsequently,
the first transition in performed, whereby firstly the eyes and then the head
move in the direction of the arrow and the number one, so that the head
movement follows the eye movement. Afterwards, the second transition is
performed in the same manner, whereby firstly the eyes and subsequently
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the head move. This continues sequentially until all the crosses have been
fixated.

3.4.2 Inertial Measurement Unit (IMU)

In the previous section, the appearance of the three most common types of
eye movements were examined in cases where the eye-tracking signals derive
from both eye movements and head movements. In this section, however,
the head-tracking signals generated by the IMU will be investigated. Only
head movements are recorded, therefore, as eye movements do not influence
the head-tracking signals recorded by the IMU. The subject performs the
head movements corresponding to the patterns I - IV in Figure 3.8. The
nose points successively in the direction of each of the crosses, starting with
the centre cross, indicated in red, and following the path indicated by the
arrows and the corresponding numbers next to them.

3.5 Model Implementation
This section provides an overview of the different steps which are necessary
in order to successfully use the method derived in Section 3.3 to combine
the head- and eye-tracking signals. Section 3.5.1 discusses how to calibrate
the signals whereas Section 3.5.2 introduces a method to synchronise them.
Finally, in Section 3.5.3, an adjustment of the model is presented.

3.5.1 Calibration

While in the previous section, Section 3.4, various signals were recorded with
the eye-tracking glasses and the IMU separately, the goal of this section is
to perform the recordings simultaneously. To this end, the two recording
systems need to be calibrated and synchronised. In the calibration step, the
two measurement units are combined. It is advantageous to combine them
in such a way that the recording conditions are as similar as possible for the
different test persons. After testing different configurations, it was decided
to place the IMU at the centre of the test person’s forehead, mounted above
the glasses as depicted in Figure 3.10.

The calibration itself takes place when the test person stands at an initial
position where the recordings are made, e.g., in front of a wall where the
stimuli are presented. An initial spot, typically at eye level, is fixated with the

39



Chapter 3 Methods

(a)

(b)

Figure 3.10: The setup of the apparatus, where the IMU (a) is
mounted above the eye-tracking glasses (b).

eyes. This spot will be the centre of the common coordinate system described
in Section 3.3.1. At the beginning of every recording, the subject fixates
the spot for a while without moving the head. Postprocessing of the IMU
and the eye-tracking data from this initial sequence enables compensation
for possible offsets from the desired initial positions. The desired initial
position lies at an x-axis position of 640 px and y-axis position of 480 px,
which corresponds to the centre point of the common coordinate system, and
the rotation angles φ and ψ of 0 ◦.

3.5.2 Synchronisation

After calibration, the recordings of the eye-tracking glasses and the IMU also
need to be synchronised in order to successfully apply the model derived
in Section 3.3. The data provided by the eye-tracking glasses and the IMU
both contain time stamps for each sample. While the time stamp of the
IMU can be set, the time stamp of the eye-tracking glasses is calculated by
the recording software provided by the manufacturer and cannot be set. In
this case, the time is reported in microseconds from when software is started.
This fact complicates the synchronisation task significantly. Synchronisation
software and frameworks do exist, such as the ioHub Event Monitoring
Framework [49]. Among other things, this framework provides a common
time base to automatically synchronise device events from multiple physical
and virtual devices, including eye-tracking devices, by using a common
eye-tracking interface. This eye-tracking interface, however, currently only
supports the static eye-tracking systems of SMI. Problems in synchronising
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the IMU data with the eye-tracking data were already reported in [27, 29].
In [29], three accelerometers were bumped simultaneously against a fixed
object before the recordings started in order to generate extreme acceleration
values which could be used for synchronisation. While this method may
work if the devices are similar to each other, it is difficult to apply when
combining different devices such as the IMU and the eye-tracking glasses.
Typical extreme values from eye-tracking data such as blinks do not produce
extreme values in the IMU data and vice versa. Investigating the patterns
which are present in both signals, however, leads to the idea of applying the
VOR for synchronisation. As discussed in Section 2.2.4, the latency of the
VOR is extremely short, in the range of 7 and 15 ms. Performing a repetitive
head-movement pattern such as nodding, while fixating a single spot with
the eyes, generates IMU and eye-tracking data sequences which are very
similar in shape. These data sequences can be used for synchronisation by
maximising the cross-correlations between them.

Cubic-Spline Data Interpolation

To calculate the cross-correlation and subsequently apply Equation (3.3) on
a sample-to-sample basis, i.e., combine the head- and eye-tracking signals,
the two signals need to have identical sampling rates. As the eye-tracking
signal has a lower sampling rate, therefore, it is resampled. With the aid
of these different steps, the two signals are very well synchronised in the
beginning but not in the end. A closer inspection of the two signals reveals
that the eye-tracking signal is not uniformly sampled, in contrast to the IMU
signal, as illustrated in Figure 3.11. Therefore, an additional cubic spline
interpolation step is introduced to produce uniformly distributed samples.

The results of combining the head and eye-tracking signals after successful
calibration and synchronisation are presented in Section 4.2.1.

3.5.3 Compensatory Factors

During the derivation of Equations (3.3) and (3.11) in Section 3.3, multiple
assumptions and approximations were made. In particular, the assumption
is made in Equation (3.11) that the field of view of the scene camera of
the eye-tracking glasses is 60 ◦ in horizontal direction and 46 ◦ in vertical
direction. Although these specifications were provided by the manufacturer,
they proved to be a poorer than expected estimation of reality. In order to
compensate for the different approximations, assumptions, and deviations,
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Figure 3.11: The time differences between subsequent samples,
showing the uniform and non-uniform sampling rates of the IMU and
the eye-tracking data, respectively.

Equation (3.11) is adjusted by introducing two new parameters. One factor
compensates for the horizontal direction A, while the other compensates for
the vertical direction B.x̂H

ŷH

 =

A xmax/2
tan(αmax/2) tan(ψ)

B ymax/2
tan(βmax/2) tan(φ)

 (3.12)

The compensatory factors A and B are designed to optimise the combination
of the eye- and head-tracking signals in Equation (3.3). More precisely,
they are tuned to minimise the standard deviation of the data from three
different recordings where the participant is fixating a stationary target while
performing the head-movement patterns I - IV, illustrated in Figure 3.8. The
standard deviation is calculated as

σx =

√√√√ 1
N

N∑
n=1

(xG(n)− x̄G)2, (3.13)

σy =

√√√√ 1
N

N∑
n=1

(yG(n)− ȳG)2, (3.14)

for the horizontal and vertical directions separately, where xG and yG are
the x- and y-coordinates of the resulting eye-in-space data, x̄G and ȳG are
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their respective means, and N is the length of the signal.

The results of tuning the parameters and combining the head- and eye-
tracking signals after introducing the new parameters are presented in Sec-
tion 4.2.2.

3.6 Evaluation

The goal of this section is to describe how the performance of the final model
for combining the head- and eye-tracking signals and for determining the
eye-in-space motion, derived in the previous sections, is evaluated. For this
purpose, a pilot study is performed. The experiment setup and the database
is described in Section 3.6.1, and the performance evaluation procedure is
described in Section 3.6.2. The corresponding results are presented and
discussed in Sections 4.3 and 5.1, respectively.

3.6.1 Experiment Setup and Database

Participant

In this pilot study, the eye and head movements of a 25-year-old, female
participant with blue eyes are recorded. The participant is wearing neither
glasses nor contact lenses.

Apparatus

Eye and head movements are recorded using the tracking equipment described
in Section 3.1, which encompasses eye-tracking glasses and an IMU with
sampling frequencies of 60Hz and 512Hz, respectively. The IMU is mounted
above the glasses as described in Section 3.5.1 and depicted in Figure 3.10.

Stimuli

The study is conducted with controlled stimuli as it is important to
know which eye movements where actually performed in order to eval-
uate the performance of the model. Nine different stimuli videos are
designed to make the participant perform different eye movements. The
stimuli videos 1 - 5 contain the movement patterns I - IV, illustrated
in Figure 3.8, whereas stimuli videos 6 and 7 contain the movement
patterns V - VII, illustrated in Figure 3.9 (cf. Section 3.4). The stimuli
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videos 8 and 9 contain three additional movement patterns, VIII - X,
shown in Figure 3.12. Similar to the movement patterns V - VII, these
additional movement patterns aim to stimulate sequences composed of
saccades, fixations, and smooth-pursuit movements. The only difference
is that sinusoidally-shaped smooth-pursuit movements are performed in-
stead of straight ones, but still in horizontal, vertical and diagonal directions.

1

2

2

1

2

1

(a) Pattern VIII (b) Pattern IX

(c) Pattern X

Figure 3.12: Eye-movement patterns VIII - X.

The different stimuli videos represent nine different scenarios, corresponding
to different complexity levels. They are summarised in Table 3.4. All of
the stimuli videos consist of sequences of stationary, jumping, and moving
targets which provoke the fixational, saccadic and smooth-pursuit eye move-
ments, respectively. The targets are presented as coloured dots on a white
background and are approximately 1 ◦ in diameter. The centre is marked
with a black cross to facilitate higher targeting accuracy. Depending on the
movement pattern and scenario, the dots are coloured differently. Whereas
green are followed with the eyes, blue dots are followed with the head.

The saccades are presented with amplitudes ranging from 8 ◦ to 25 ◦ of visual
angle, whereas the smooth-pursuit movements are presented with amplitudes
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Table 3.4: Different scenarios of eye- and head-movement patterns
of different complexity levels (CL) presented in the nine stimuli
videos (SV).

SV CL Scenario

1 1 Movement patterns I - IV are performed with the
eyes, while the head remains still.

2 2 Movement patterns I - IV are performed with the
head while fixating a single spot with the eyes.

3 3 Movement patterns I - IV are performed with a com-
bination of eye and head movements, whereby each
transition is first performed with the eyes and then
with the head.

4 3 Movement patterns I - IV are performed with a com-
bination of eye and head movements, whereby each
transition is first performed with the head and then
with the eyes.

5 3 Movement patterns I - IV are performed with a com-
bination of eye and head movements, whereby each
transition is performed with the eyes and the head
simultaneously.

6 1 Movement patterns V - VII are performed with the
eyes, while the head remains still.

7 3 Movement patterns V - VII are performed with a
combination of eye and head movements, whereby
each smooth-pursuit movement is performed with the
eyes and the head simultaneously.

8 1 Movement patterns VIII - X are performed with the
eyes, while the head remains still.

9 3 Movement patterns VIII - X are performed with a
combination of eye and head movements, whereby
each smooth-pursuit movement is performed with the
eyes and the head simultaneously.
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ranging from 16 ◦ to 42 ◦ of visual angle. The stimuli velocities of the smooth-
pursuit movements are between 2.5 ◦/s and 9 ◦/s and are constant at each
interval. A detailed overview of the stimulus behaviour for the horizontal,
vertical, and diagonal directions, separately, can be found in Table 3.5. The
total durations of the stimuli videos are between 52 s and 118 s.

Table 3.5: Overview of the individual stimulus behaviour for the
horizontal, vertical and diagonal directions.

Stimulus Behaviour Horizontal Vertical Diagonal

Amplitude Range of Saccades 10 - 20 ◦ 8 - 16 ◦ 9 - 25 ◦

Amplitude Range of SP 20 - 36 ◦ 16 - 30 ◦ 25 - 42 ◦

Velocity Range of Straight SP 6.5 - 9 ◦/s 5 - 7.5 ◦/s 6 - 8.5 ◦/s

Velocity Range of Sinusoidal SP 3.5 - 5 ◦/s 2.5 - 4 ◦/s 3 - 4.5 ◦/s

In order to calibrate and synchronise the eye-tracking glasses and the IMU,
each stimulus video starts with a short sequence, whereby the centre of the
screen is indicated, which is also the centre of the common coordinate system.
This is followed by a short sequence in which the synchronisation pattern is
shown (cf. Sections 3.5.1 and 3.5.2).

Stimuli Presentation

The nine different stimuli videos are presented using a video projector on
a large white wall with dimensions of 1.4m× 1.9m. The dimensions are
chosen as large as possible in order to force the participant not only to move
the eyes, but also the head, for some of the stimuli videos. The participant
is placed in front of the screen at a distance of 2.5m and aligns the eyes with
the centre of the screen.

Tracking Procedure

The study begins with a 3-point calibration procedure to internally calibrate
the eye-tacking glasses. To verify the internal calibration, the participant is
asked to fixate some target locations distributed across the screen on a 5× 5
grid. This calibration procedure is repeated after the presentation of each
stimulus video during the experiment. The stimuli videos are explained to
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the participant prior to the experiment, and some initial rounds of experi-
mentation are conducted to ensure that the participant learns the stimuli
and gets used to their speed. Two identical rounds of experimentation are
performed and used for data analysis.

3.6.2 Performance Evaluation Procedure

In order to evaluate the performance of the method, information on the
actual eye-in-space movements is required. One way to obtain the true
eye movements is to use the stimuli signals as the true eye movements
and compare the calculated eye-in-space motion to the presented, known,
positions. However, one has to be aware that this method evaluates not
only the performance of the method, but also the user’s ability to follow the
stimulus. As the geometry of the experiment setup is known, i.e., the screen
dimensions, the distance to the screen and the stimuli positions, the stimuli
coordinates can easily be mapped to the common coordinate system. The
synchronisation sequence at the beginning of each stimulus video, which was
used to synchronise the eye- and head-tracking signals, can also be used to
synchronise the stimulus signal with the gaze-estimation signal. One has to
be aware, however, that the synchronisation between stimuli and estimated
signals might not be as good as between the head- and eye-tracking signals,
as the latencies of visually-mediated eye movements are at least 70ms,
compared to VOR latencies of 7 - 15ms (cf. Section 2.2.4).

Besides the actual eye-in-space movements, a performance measure is needed.
The method is evaluated in terms of precision and accuracy. While precision
is the ability of the method to reliably produce an estimation of the eye-in-
space motion, accuracy is the average difference between the estimated gaze
position and the true gaze position [11]. An illustration of the difference
between precision and accuracy is shown in Figure 3.13. High precision is
important for calculations of fixation, saccade, and smooth-pursuit measures,
whereas high accuracy is crucial in area-of-interest analysis or gaze-contingent
studies, where exact gaze positions need to be known.

Precision

Precision (P ) is calculated from data samples recorded while the participant
is fixating on a stationary target with the eyes. There are two common ways
to calculate precision which involve either calculating the standard deviation
of the data samples or calculating the root mean square of the inter-sample
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(a) High precision,
low accuracy

(b) Low precision,
high accuracy

Figure 3.13: The difference between precision and accuracy, whereby
the cross indicates the true gaze position and the dots indicate the
estimated gaze positions, from [11].

distances [11]. In this thesis the standard deviation is used, which can be
calculated as

Px =

√√√√ 1
N

N∑
i=1

(xG(n)− x̄G)2, (3.15)

Py =

√√√√ 1
N

N∑
i=1

(yG(n)− ȳG)2, (3.16)

for the horizontal and vertical directions separately, where xG and
yG correspond to the x- and y-coordinates of the estimated eye-in-space
data, x̄G and ȳG are their respective means, and N is the length of the signal.

In order to evaluate the effect of compensating for head movements in the
eye-tracking data, the precision of four different cases is calculated.

A) Fixating a stationary target while keeping the head
still and making no compensation for head movements.

B) Fixating a stationary target while moving the head
and making no compensation for head movements.

C) Fixating a stationary target while keeping the head
still and compensating for head movements.

D) Fixating a stationary target while moving the head
and compensating for head movements.
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Accuracy

Accuracy (A) is the average distance between the estimated gaze position
and the true gaze position and is calculated as

Ax = 1
N

N∑
i=1

(xT (n)− xG(n)), (3.17)

Ay = 1
N

N∑
i=1

(yT (n)− yG(n)), (3.18)

for the horizontal and vertical directions separately, where xT and yT are
the x- and y-coordinates of the true eye-in-space data from the stimuli, xG
and yG are the x- and y-coordinates of the estimated eye-in-space data, and
N is the length of the signal.

It is not meaningful to calculate the accuracy for saccades, as they generally
show a slightly curved trajectory, whereas the corresponding stimuli consist
of a straight line between the starting and end point. Therefore, the accu-
racy is only calculated for fixation and smooth-pursuit locations and only
the intersaccadic intervals are taken into account. A saccadic interval Sj
consists of the saccadic latency, which corresponds to the amount of time it
takes for the brain to program and initiate the saccade after the stimulus
has been presented, and the saccade duration, which is dependent on the
amplitude of the saccade. In this thesis, an average duration of 200ms is
used to compensate both for the delay and the saccade duration. Thus,
Equations (3.17) and (3.18) can be reformulated as

Ãx = 1
N

∑
i∈I

(xT (n)− xG(n)), (3.19)

Ãy = 1
N

∑
i∈I

(yT (n)− yG(n)), (3.20)

with
I = {i ∈ Z | 1 ≤ i ≤ N, i /∈ S}, (3.21)

where xT and yT are the x- and y-coordinates of the true eye-in-space data,
xG and yG are the x- and y-coordinates of the estimated eye-in-space data,
N is the length of the signal, and S is the set of all saccadic intervals Sj .
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In addition to accounting for intersaccadic intervals when calculating accu-
racy, a time shift between the stimulus signal and the estimated signal is
also introduced to the calculation. This shift is introduced to account for
possible delays between the estimated and true signals, which may occur
when the stimuli signals are not perfectly synchronised with the estimated
signals. Delays may also occur at smooth-pursuit locations, however, because
a small difference often exists between the eye and target positions. The
time shift is optimised such that the calculation of the accuracy of Equa-
tions (3.19) and (3.20) is minimised. This is achieved by choosing a sample
shift value in the range of ±50, which corresponds at a frequency of 512Hz
to a time shift of approximately ±100ms. This approach for calculating the
accuracy can be formulated as

Âx = min
m∈[−50,50]

1
N

∑
i∈I

(xT (n)− xG(n−m)), (3.22)

Ây = min
m∈[−50,50]

1
N

∑
i∈I

(yT (n)− yG(n−m)), (3.23)

where xT and yT are the x- and y-coordinates of the true eye-in-space data,
xG and yG are the x- and y-coordinates of the estimated eye-in-space data,
N is the length of the signal, and I is defined as in Equation (3.21).
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B - Event Detection
The goal of the event-detection part is to develop and implement a new
enhanced event-detection algorithm to detect saccades, fixations, and smooth-
pursuit movements from signals containing only eye-in-space motion, i.e.,
signals which are obtained by combining the eye- and head-tracking signals
described in the preceding gaze-estimation part of this chapter. An illus-
tration of this process is shown in Figure 3.14. The performance is then
evaluated by comparing the detected events to manual annotations as well
as to the detected events of two alternative algorithms.

Event Detection

eye-in-space
positions

classified 
eye movements

Figure 3.14: An illustration of the event-detection process, whereby
the positional eye-in-space signal is segmented into different types of
eye movements.

3.7 Proposed Algorithm
Similarly to most event-detection algorithms for ternary classification (cf. Sec-
tion 2.4), the proposed algorithm comprises three different stages. The first
stage is a preprocessing stage, whereby disturbances originating from the
recording process are suppressed. In the second stage, the saccades are
detected and separated from other types of eye movements. Finally, in the
third stage, the remaining samples are classified into fixation and smooth-
pursuit movements. A schematic overview of the different stages of the
event-detection algorithm is given in Figure 3.15.
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Preprocessing Saccade
Detection

Fixation and SP
Classification

Figure 3.15: The overall structure of the algorithm.

3.7.1 Preprocessing

Before any event detection can be performed, the eye-tracking signals need
to be preprocessed in order to remove all parts of the signal that do not
correspond to real eye movements such as disturbances originating from the
recording process. Disturbances may occur when the pupil and/or the corneal
reflection(s) are absent or not correctly detected. Two types of disturbances
were observed in the recorded signals: outliers and blinks (cf. Section 4.1).
Outliers are samples of the signal with a value outside the gaze-tracking
range of 1280 px in horizontal and 960 px in vertical direction. Therefore,
all samples corresponding to positions outside a margin of 200 px added to
the tracking range are marked as disturbances and excluded from the event
detection. During blinks, the x- and y-coordinates of the signal are set to
zero by the eye tracker. Thus, all samples with coordinates (0,0) are marked
as disturbances and excluded from the event detection. In the beginning
and at the end of a blink, the eyelid is not completely closed or open, which
may cause saccade-like movements at the start and end of a blink. Hence,
additionally to blink-samples, a few samples before and after each blink are
marked as disturbances and excluded from the event detection, as the blink
rate is not of special interest in this thesis.

3.7.2 Saccade Detection

After the preprocessing stage, the first type of eye movement, the saccades,
is detected. The simplest way to detect saccades is to use a single velocity
or acceleration threshold [39, 40]. Due to the low sampling frequency of
the eye-tracking glasses of 60Hz, the recorded saccades consist on average
of only two to four samples (cf. Section 4.1). Therefore, it is difficult to
apply an acceleration threshold to detect the saccades. By calculating the
point-to-point velocities of the gaze-estimation signals and applying a velocity
threshold instead, the algorithm is able to detect most of the saccades. It
has problems identifying the onset and offset of a saccade correctly, however.
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In order to solve this problem, the saccade-detection stage is divided into
two parts as proposed in [8] (cf. Section 2.4). During the first part, the
approximate saccadic intervals are identified, whereas during the second part,
the exact onsets and offsets of the saccades are ascertained.

Identification of Approximate Saccadic Intervals

The approximate saccadic intervals are detected using a simple velocity
threshold TV . Assuming a constant sampling frequency, the velocities simply
correspond to the distances between the samples. Therefore, the point-to-
point velocity for each sample can be ascertained by calculating the distance
between the current sample and the previous sample as

v(n) =
√(

xG(n)− xG(n− 1)
)2 +

(
yG(n)− yG(n− 1)

)2
, (3.24)

where xG and yG are the x- and y-coordinates of the gaze-estimation sig-
nal. Samples with velocities greater than the threshold are classified as
saccades, and consecutive saccadic samples are grouped together to gauge
the approximate saccadic intervals.

Saccadic Onset and Offset Detection

In [8], the exact onsets and offsets of the saccades are identified for each
approximate saccadic interval using three criteria. These criteria are based
on directional information in the positional signal, which indicates the
deviation from the main direction, inconsistencies between sample-to-sample
directions, and the distance between directional changes. Again, it is not
possible to apply these criteria to the low-speed signal, as the saccades
consist of too few samples.

An inherent physical property of saccades is that their velocity profile shows
a triangular shape as depicted in Figure 3.16. The saccade reaches peak
velocity sometime in the first half of its total duration, depending on its size.
Both before and after this point, the saccade’s velocity decreases more or
less linearly. In order to take advantage of this fact, two additional velocity
thresholds, TVON

and TVOF F
, are introduced at a lower level, one of which

detects the onsets of the saccades and the other of which detects the offsets.
This means that for each approximate saccadic interval, adjacent samples are
added to the interval as long as their velocities are above the threshold. The
search for the exact onsets and offsets is performed in the forward direction
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Figure 3.16: Representative velocity profile of a saccade.

to detect offsets using threshold TVOF F
and in the backward direction to

detect onsets using threshold TVON
. To detect onsets, the first sample with

a velocity below the threshold is added to the interval, as it also contributes
to the high velocity value of the next sample. This is the case since the
point-to-point velocities are calculated as the distance between the current
sample and the previous one (cf. Equation (3.24)). By introducing the step
for saccadic onset and offset detection, the main threshold TV to identify
the approximate saccadic intervals can be made more strict (higher), as only
samples around the peak velocities need to be detected (cf. Section 4.4). Even
though this method is less sophisticated in nature, it will be demonstrated
in Section 4.4 that it performs extremely well.

3.7.3 Fixation and SP Classification

After the saccade detection, the remaining samples of the intersaccadic in-
tervals need to be classified into fixations and smooth-pursuit movements.
Therefore, eight different measures are calculated for different sets of con-
secutive samples of length N. The measures are based on previous work on
eye-movement analysis [42, 41, 24, 40, 39] and on the specific characteristics
of fixations and smooth-pursuit movements.

Signal Measures

Mean Velocity. The first measure is the mean velocity which is calculated as

MV = 1
N

N∑
n=1

v(n), (3.25)
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where v(n) are the point-to-point velocities of the samples calculated
according to Equation (3.24). The mean velocity is generally lower for
samples which are fixational eye movements than for samples which are
smooth-pursuit movements. The same applies for the next four measures:
slope, integral, energy, and dispersion.

Slope. The second measure is the slope of the signal which is calculated as

S = Sx + Sy, (3.26)

where Sx and Sy are the slopes of first-order polynomials fitted to each of
the x- and y-coordinates over time, respectively.

Integral. The third measure is the integral of the signal, i.e., the area under
the graph of the signal. This area approximates to a trapezoid and is
calculated for the horizontal and vertical directions separately as

Ix = N
|x(N)− x(1) |

2 , and Iy = N
| y(N)− y(1) |

2 . (3.27)

Ix and Iy are combined to the single measure

I = Ix + Iy. (3.28)

Energy. The fourth measure is the energy of the signal which is calculated
for the horizontal and vertical directions separately as

Ex =
N∑
n=1

x(n)2, and Ey =
N∑
n=1

y(n)2. (3.29)

Ex and Ey are combined to the single measure

E = Ex + Ey. (3.30)

Dispersion. The fifth measure is the dispersion of the signal which is calcu-
lated as

D =
√(

max(x)−min(x)
)2 +

(
max(y)−min(y)

)2
. (3.31)
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Directional Variation. The sixth measure describes the directional variation
of the signal, which is determined by applying Principle Component Analysis.
The first principle component is the direction in which the samples exhibit
greatest variation, whereas the second principle component is the direction in
which the samples exhibit least variation. As the corresponding eigenvalues
quantify the amount of variation observed in the respective directions, they
are used to calculate the sixth measure.

DV = λ2
λ1

(3.32)

A value of DV which is close to one means that the samples are
equally spread in both directions, such is the case for fixations. Con-
versely, a lower value implies that the samples are more spatially spread in
one direction than the other, which is the case for smooth-pursuit movements.

Consistency in Direction. The seventh measure evaluates whether the samples
have a consistent direction or not. Therefore, the Euclidean distance dED
between the positions of the first and last sample of the interval is calculated.
This is compared to the length of the projections of the samples onto the
direction of the first principle component dPC1 . An illustration of both
distances is shown in Figure 3.17.

CD = dED
dPC1

(3.33)

A value of CD which is lower than one indicates that the range of the
samples in the interval is much larger than the actual distance between the
first and last sample, which is typical for fixations.

Positional Displacement. The eight measure describes the positional dis-
placement. Thus, the relationship between the Euclidean distance dED and
the trajectory length dTL between the positions of the first and last sample
of the interval is evaluated as

PD = dED
dTL

. (3.34)

A value of PD equal to one corresponds to a straight line. Thus, higher
values of PD are characteristic of smooth-pursuit movements.
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Figure 3.17: An illustration of the distances used to calculate the
seventh and eight measures. dPC1 and dPC2 are the lengths of the
projections of the samples onto the directions of the principle com-
ponents. dED and dTL are the Euclidean distance and the trajectory
length between the positions of the first and last sample of the interval,
respectively.

Classification Based on Sliding Windows

In order to extract each signal measure and subsequently classify the samples
of the intersaccadic intervals into fixations and smooth-pursuit movements,
two different sliding-window approaches are applied. They are explained
below:

Basic Sliding Window (BSW ). This approach is similar to the sliding-window
approach used in the basic algorithms I-DT and I-VDT (cf. Section 2.4). It
can be performed in the forward and in the backward direction. For the
forward direction (BSWF ), a temporal window w of length lw is defined,
which initially spans the first lw consecutive samples of the intersaccadic
interval. The signal measure is calculated for the samples within the window
and is compared to a threshold. If the value of the signal measure is below
(or above) the threshold, depending on the type of measure, the window is
expanded by one sample (to the right) and the value of the signal measure
is recalculated for the new set of samples. This step is repeated until the
value of the signal measure is above (or below) the threshold, respectively.
All samples within the window are then classified as fixations and a new
window is initialised with the first lw consecutive samples which remain. If
the value of the signal measure is above (or below) the threshold instead,
the window is moved one sample (to the right) and the first sample of the
previous window is marked as a smooth-pursuit movement.
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For the backward direction (BSWB), the temporal window w of length lw
initially spans the last (instead of the first) lw consecutive samples of the
intersaccadic interval and the window is expanded and moved to the left
(instead of to the right). Otherwise, the procedure is the same.

Weighted Average of Sliding Windows (WASW). In this approach, a temporal
window w of length lw is defined, which, beginning at the start of the interval,
moves over the intersaccadic interval one sample at a time until the end of
the interval is reached. This results in a total of Nw = N− lw+1 windows wi,
where N is the number of samples in the intersaccadic interval, and lw is the
length of the temporal window. Each sample may, thus, belong to more than
one window, and at most to Ns = lw different windows, which corresponds
to the size of the window. For each set of samples Si = {s1, s2, . . . , slw}
within a window wi, the signal measure Mi is calculated as described in the
previous subsection. The value of the signal measure for a specific sample n
is then calculated as the weighted average value of the measures Mi of all
windows to which the sample belongs to, as

M(n) =
∑
i∈I aiMi∑
i∈I ai

, for 1 ≤ n ≤ N (3.35)

where I is the set of windows to which sample n belongs to, ai are the
corresponding weighting factors, and N is the number of samples in the
intersaccadic interval. An illustration is shown in Figure 3.18.

N Samples of Intersaccadic Interval

Window Size lw

Measure Mi

Window wi

n

a1

alw

a2

Weighting
Factors

Signal
Measures

Figure 3.18: Illustration of the WASW approach.
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Equation (3.35) can also be expressed in the form of a discrete convolution
of two vectors as

M(n) = (M ∗ a)(n)
(1 ∗ a)(n) , for 1 ≤ n ≤ N (3.36)

where M = [M1,M2, . . . ,MNw ] is a vector containing the signal measures
calculated for the different windows wi, 1 is an all-ones vector of size
Nw, and a = [a1, a2, . . . , alw ] is a vector which contains the weighting factors.

Four different versions of weighting vectors are applied in the WASW

approach: a constant weighting vector a (WASW1), a triangular weighting
vector b (WASW2), an exponential (Hann-Poisson) vector c (WASW3), and
an inverse-exponential vector d (WASW4). These are

an = 1, (3.37)

bn = 2
lw

(
lw
2 −

∣∣∣∣(n− 1)− lw − 1
2

∣∣∣∣ ), (3.38)

cn = 1
2

(
1− cos

(
2πn
N + 1

))
exp

(−5 |N + 1− 2n|
N − 1

)
, (3.39)

dn = [cn/2+1, cn/2+2, . . . , clw , c1, c2, . . . , cn/2], (3.40)

for 1 ≤ n ≤ lw, where lw is the size of the window, and N is the number
of samples in the intersaccadic interval. An illustration of the different
weighting vectors for a window size lw = 15 samples is shown in Figure 3.19.

The use of a constant weighting vector a in the calculation of Equation (3.36)
means that all the measures of the different windows to which sample n
belongs to have the same influence on the average M(n). The use of a
triangular b, exponential c or inverse-exponential weighting vector d instead,
means that the measures of the different windows to which sample n belongs
to have a differing influence on the average M(n), depending on whether the
sample n is located in the centre or on the margin of the sliding window.

After successfully calculating the weighted-average value of the signal measure
for each sample M(n), the samples are classified into fixations and smooth-
pursuit movements by comparing the average value M(n) to a threshold TM ,
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Figure 3.19: Illustration of the four different weighting vectors of
Equations (3.37) - (3.40) for a window size lw = 15 samples: (a)
constant, (b) triangular, (c), exponential, and (d) inverse-exponential
weighting vector.

which is set for each signal measure. The samples are classified as fixations
if the value is below (or above) the threshold, depending on the type of
measure. Otherwise, they are classified as smooth-pursuit movements.

Combination of Signal Measures

The performance evaluation of the classification into fixations and smooth-
pursuit movements for the eight different measures and six different sliding-
window approaches is presented in Sections 4.5.1 and 4.5.2. The goal of this
section is to investigate whether the classification performance can be further
improved by classifying the samples based on a combination of different
signal measures and thresholds. Therefore, the WASW approach is slightly
adapted. Instead of only calculating an average value M(n) for every sample
for one signal measure, an average value for each signal measure is calculated,
i.e., MMV (n), M I(n), . . ., MPD(n). The results of combining two signal
measures to carry out the classification are presented in Section 4.5.3.
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3.8 Evaluation

The goal of this section is to evaluate the performance of the proposed
event-detection algorithm. Therefore, the data of the pilot study after gaze
estimation is used, namely the signals containing the estimated eye-in-space
motion. The database is briefly summarised in Section 3.8.1. An evaluation
procedure and corresponding measures are introduced in Section 3.8.2 and a
description of two algorithms used for comparison is given in Section 3.8.3.
The results are presented and discussed in Section 4.6.

3.8.1 Database

A detailed description of the experiment and the database can be found in
Section 3.6.1. Nine different stimuli videos are presented, and two identical
rounds of experimentation are performed and used for data analysis. The
recorded data from one round is used to develop the algorithm, so that the
different thresholds can be tuned. The data from the second round is used
to make the final evaluation of the algorithm.

3.8.2 Evaluation Procedure

In order to evaluate the performance of the event-detection algorithm,
information about the eye movements which are actually performed is
required. Three common ways are reported in the literature to obtain this
information. The first method is to use the stimuli signals as the true eye
movements [31, 39, 50, 42]. This method, however, evaluates not only the
detection performance of the algorithm, but also the user’s ability to reliably
follow the stimuli signals. Another method is to simulate the eye movements
by generating position signals [51, 27]. The drawback of simulations is
that it is difficult to generate eye-movement signals that are comparable to
real signals. The last method, which is applied in the present thesis, is to
manually annotate the eye-tracking data [11, 15, 8, 24]. For this purpose a
Matlab GUI is used, which shows the horizontal and vertical eye positions
over time and in the spatial domain, and the corresponding velocity over
time. Although it is very time consuming, manual annotation enables the
classification of every sample, which is important in order to facilitate
comparison between different algorithms. One has to be aware, however,
that this method might suffer from human subjectivity and inconsistency.
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In addition to the true eye movements, a performance measure is also needed.
In [31, 39], an evaluation procedure based on scores is proposed for saccades,
fixations, and smooth-pursuit movements. Again, this procedure is highly
dependent on the user’s ability to reliably follow the stimulus. Therefore,
the performance of the algorithm is evaluated in terms of sensitivity and
specificity, which are the performance measures most commonly used when
discriminating between two or more groups [52].

Sensitivity and Specificity

Sensitivity and specificity are calculated for each type of eye movement i
separately, with i ∈ {S = Saccade, F = Fixation, P = Smooth Pursuit}.

They are defined as

SENSi = TPi
TPi + FNi

, (3.41)

SPECi = TNi
TNi + FPi

, (3.42)

where TPi are the true positives, i.e., the number of correctly classified
samples for eye-movement type i, FNi are the false negatives, i.e., the
number of samples that should have been classified as eye-movement type
i, but have incorrectly been classified as another type of eye movement,
TNi are the true negatives, i.e., the number of samples that the algorithm
correctly classified as another type of eye movement than i, and FPi are
the false positives, i.e., the number of samples that the algorithm falsely
classified as eye-movement type i.

The sensitivity, also referred to as the true-positive rate, describes the
algorithm’s ability to correctly classify a certain type of eye movement. The
specificity, also referred to as true-negative rate, describes the algorithm’s
ability to find only the samples of eye-movement type i, i.e., to correctly
exclude the other types of eye movements. For both measures, a value close
to one is desired.

In order to determine TPi, FNi, TNi, and FPi for each type of eye move-
ment i, the confusion matrix is calculated. This is a matrix which visualises
the performance of the event-detection algorithm. The rows represent the
true (manually annotated) classes, whereas the columns represent the es-
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timated classes. This means that each element Nij of row i and column j
represents a number of samples which belong to the (true) class i and are
detected by the algorithm as class j, with i and j ∈ {S = Saccade, F =
Fixation, P = Smooth Pursuit}. Thus, the diagonal elements of the confusion
matrix show the number of correctly classified samples for each class, and
the off-diagonal elements show the errors. An example of a confusion matrix
for the tree classes of eye movements is shown in Figure 3.20.

Estimated

S F P

Tr
ue

S NSS NSF NSP

F NFS NFF NFP

P NPS NPF NPP

Figure 3.20: Confusion Matrix for the three types of eye movements:
saccades (S), fixations (F), and smooth pursuits (P).

Using the confusion matrix, the sensitivity and specificity of saccades, for
instance, are then explicitly calculated as

SENSS = NSS
NSS + (NSF +NSP ) , (3.43)

SPECS = NFF +NFP +NPF +NPP
(NFF +NFP +NPF +NPP ) + (NFS +NPS) . (3.44)

ROC Curve

In order to study the behaviour of the event-detection algorithm for different
parameter settings, the sensitivity and specificity can be combined into a
receiver-operating characteristic (ROC). This can be achieved by plotting
the sensitivity against the false-positive rate, which is the complementary
of the specificity (1 - specificity). The ROC curve helps in choosing optimal
parameter values, such that an acceptable trade-off between the two coun-
terbalancing measures is achieved. This can be done by maximising the
balanced accuracy which is defined as

BACCi = SPECi + SENSi
2 . (3.45)
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3.8.3 Algorithm Comparison

In order to further evaluate the detection performance of the proposed algo-
rithm, the detected events are compared to those detected by two alternative
algorithms, the I-VDT algorithm described in [39] and the event detector
built-in to the eye-tracking glasses.

I-VDT Algorithm

The I-VDT algorithm is chosen because it is one of the few algorithms which
is able to perform ternary classification, meaning that it can discriminate
between saccades, fixations, and smooth-pursuit movements (cf. Section 2.4).
In addition, it was the algorithm which performed the best in a previous
study, where three basic ternary classification algorithms were compared
and evaluated [39].

Algorithm 1: I-VDT

Data: array of eye-position points, velocity threshold TV ,
dispersion threshold TD, temporal window size TW

Result: array of fixations, saccades, and smooth pursuits
Calculate point-to-point velocities for each point;
Mark all points above TV as saccades;
Initialise temporal window over first points in the remaining
eye-movement trace;
while temporal window does not reach the end of array do

Calculate dispersion of points in window;
if dispersion < TD then

while dispersion < TD do
Add one more unclassified point to window;
Calculate dispersion of points in window;

end
Mark the points inside the window as fixations;
Clear window;

else
Remove first point from window;
Mark first point as a smooth pursuit;

end
end
Return saccades, fixations, and smooth pursuits;
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Built-in Event Detector of Eye-Tracking Glasses

The gaze-analysis software distributed with the eye-tracking glasses has
a built-in event detector, which uses a velocity-based algorithm to detect
saccades and fixations. Saccades are explicitly detected, whereas all other
eye movements are collectively labelled as fixations. Therefore, the algorithm
is not able to discriminate between fixations and smooth-pursuit movements.
There are no user-adjustable parameters for the algorithm since it relies on a
combination of fixed parameters. These parameters are set according to the
sampling rate and the physiological limits of eye movements, and the adaptive
thresholds used to discriminate between saccades and other types of fast eye
movements. The algorithm is applied directly to the recorded data from the
eye-tracking glasses, without preliminary head-movement compensation.
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Results

In this chapter, the results of the two main parts, Gaze Estimation and
Event Detection, are presented. The chapter is outlined in the same way as
Chapter 3. A discussion of the results can be found in Chapter 5.

A - Gaze Estimation

The Gaze Estimation part begins with an investigation of the properties
of the eye- and head-tracking signals in Section 4.1. The combination of
the two signals, using both the initial and the adjusted model derived in
Sections 3.3 and 3.5.3, is presented and discussed in Section 4.2. Finally, in
Section 4.3, the combination model is evaluated in terms of precision and
accuracy.

4.1 Signal Analysis

4.1.1 Eye-Tracking Glasses

Figures 4.1 - 4.3 show the eye-tracking signals which were produced when
the eye-movement patterns I - VII, illustrated in Figures 3.8 and 3.9, were
performed without head movement. Figures 4.1 and 4.2 show the horizontal
and vertical eye positions over time reported by the eye-tracking glasses as
well as the spatial velocity over time, whereas Figure 4.3 shows the x- and
y-positions in the spatial domain for the different movement patterns I - VII,
respectively.
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Figure 4.1: Horizontal (a) and vertical (b) eye positions over time re-
ported by the eye-tracking glasses while performing the eye-movement
patterns I - IV, illustrated in Figure 3.8, head movement. Correspond-
ing spatial velocity over time (c).
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Figure 4.2: Horizontal (a) and vertical (b) eye positions over time re-
ported by the eye-tracking glasses while performing the eye-movement
patterns V - VII, illustrated in Figure 3.9, without head movement.
Corresponding spatial velocity over time (c).
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Figure 4.3: Horizontal and vertical eye positions in the spatial
domain reported by the eye-tracking glasses while performing the eye-
movement patterns I - VII, illustrated in Figures 3.8 and 3.9, without
head movement.
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As expected, when the eye-movement patterns I - IV are performed, it
results in an eye-movement sequence comprised of fixations and saccades.
This is evidenced by the clustering of samples at positions where crosses
are located in the movement patterns and by the scarcity of samples
at transitions between the crosses (arrows) in the movement patterns
(cf. Figures 4.1 and 4.3a-d). By contrast, when the eye-movement patterns
V - VII are performed, it results in a eye-movement sequence comprised of
fixations, saccades, and smooth pursuits. This is evidenced by the clustering
of samples at the position where the centre cross is located in the movement
patterns and the scarcity of samples at transitions between the cross and
the starting and end points of the moving target. Furthermore, a kind of
elongated clustering of samples is in evidence at locations of the moving
targets in the movement patterns (cf. Figures 4.2 and 4.3e-g).

Due to the low sampling frequency of 60Hz, saccades consist on average of
only two to four samples, which makes it difficult to apply sophisticated
detection criteria in an eventual event-detection algorithm. The fact that
there are few samples, however, also means that the movements were fast,
which is indicative of saccades. This can also be observed in the velocity
profile of the signals in Figures 4.1 and 4.2. Saccades reach velocities of
around 80 ◦/s and can easily be distinguished from the other two types
of movements. The velocity ranges of fixations and smooth pursuits, by
contrast, overlap in the recordings (cf. Figures 4.1 and 4.2), which makes
it more difficult for an eye-movement detection algorithm to distinguish
between these movements.

In addition to the three types of eye movements, it can be observed
that parts of the signals do not correspond to real eye movements, e.g.,
at times 5 s, 34 s, 70 s, and 93 s in Figure 4.1. These disturbances may
occur if the pupil and/or the corneal reflection(s) are absent or cannot
correctly be detected. The signal is either zero, which is the case during
blinks, or reaches a value outside the gaze-tracking range of 1280 px
in the horizontal and 960 px in the vertical direction. Another type of
disturbance referred to as one- or two-sample spikes may occur if the
estimated position of the corneal reflection alternates between two possible
locations. This type of disturbance, however, is not present in the signals
recorded by the eye-tracking glasses. It is important to be aware of pos-
sible disturbances and to remove them before performing any event detection.
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Figures 4.4 and 4.5 depict the eye-tracking signals at complexity levels 2
and 3, whereby the movement patterns I - IV, illustrated in Figure 3.8, were
performed. Figure 4.4 illustrates complexity level 2, which involves head
movement while fixating a single spot with the eyes, whereas Figure 4.5
illustrates complexity level 3, which involves a combination of eye and
head movements. The figures show the horizontal and vertical eye positions
reported by the eye-tracking glasses over time as well as in the spatial domain
for the different movement patterns I - IV, respectively. Although, the eyes
were fixating a single spot in the case of complexity level 2, eye movements
were recorded by the eye-tracking glasses (cf. Figure 4.4). These movements
are the eye-in-head movements which were generated to compensate for
the head-in-space movements in order to stabilise the gaze. It is easy to
recognise that they look very similar to smooth-pursuit eye movements
(cf. Figures 4.2 and 4.3e-g). This means that in contrast to complexity level
1, it is not possible to draw any conclusion on the eye-in-space movement.
In the case of complexity level 3, whereby the eyes as well as the head
are moving, it is even harder to extract information about the eye-in-space
motion from the recorded eye-tracking data. As a result, it is barely possible
to perform any event detection without conducting a preliminary head-
movement compensation step.

4.1.2 Inertial Measurement Unit (IMU)

Figure 4.6 depicts the head-tracking signals generated by the IMU when the
head-movement patterns I - IV, illustrated in Figure 3.8, were performed.
The figure shows three plots corresponding to the three head rotation angles
φ, θ, and ψ over time, respectively. There is almost no visible variation
in the rotation angle θ, meaning that no torsional head rotation is present.
Furthermore, by comparing the signals of the rotation angles ψ and φ to
the x- and y-positions of the eye-tracking signals, illustrated in Figure 4.4,
whereby the same head-movement patterns were performed while fixating a
single spot with the eyes, it can be observed that the shapes of the signals are
extremely similar. In other words, it stands to reason that the horizontal eye
movements resulting from the VOR can be compensated using the rotation
angle ψ, whereas the vertical eye movements can be compensated using the
rotation angle φ. These two observations, thus, support the assumptions
made at the end of Section 3.3 as well as the subsequent approximation in
Equation (3.11).
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Figure 4.4: Eye positions over time (a)-(b) and in the spatial do-
main (c)-(f) reported by the eye-tracking glasses while performing the
movement patterns I - IV with the head, illustrated in Figure 3.8, and
fixating a single spot with the eyes.
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Figure 4.5: Eye positions over time (a)-(b) and in the spatial do-
main (c)-(f) reported by the eye-tracking glasses while performing
the movement patterns I - IV, illustrated in Figure 3.8, involving a
combination of eye and head movements.
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Figure 4.6: Head rotation angles φ (a), θ (b) and ψ (c) over time
reported by the IMU the the head-movement patterns I - IV, illustrated
in Figure 3.8, are preformed.
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4.2 Model Implementation

4.2.1 Combination of Eye- and Head-Tracking Signals

Various synchronisation patterns, mainly sinusoidal patterns of different
frequencies, were tested in both the horizontal and vertical directions. The
best results were achieved using a sinusoidal pattern in the horizontal direction
with a frequency of approximately 2Hz. Figure 4.7 shows the results when
such a pattern is performed by the head, while fixating at a single spot with
the eyes. The pattern is visible both in the data of the eye-tracking glasses
and the IMU. It can be clearly observed that the two signals are almost
identical in shape and that they can be synchronised almost perfectly by
maximising the cross-correlation between them.
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Figure 4.7: Synchronisation of the eye-tracking data and the IMU
data using a sinusoidal VOR synchronisation pattern.

After calibration and synchronisation have successfully taken place, the eye-
and head-tracking signals are combined by applying Equations (3.3) and (3.11)
in order to calculate the eye-in-space motion. Figure 4.8 depicts the results
of combining the eye-tracking signals, illustrated in Figure 4.4, with the
head-tracking signals, illustrated in Figure 4.6. These eye- and head-tracking
signals were recorded while the movement patterns I - IV, illustrated in
Figure 3.8, were performed with the head while fixating a single spot with
the eyes. Figure 4.8 shows the horizontal and vertical positions of the
resulting eye-in-space motion over time as well as in the spatial domain for
the movement patterns I - IV, respectively. Through observation of the
different plots, is can be assumed that the test person was fixating a spot
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Figure 4.8: Eye-in-space positions over time (a)-(b) and in the spatial
domain (c)-(f) derived with the initial model while performing the
movement patterns I - IV with the head, illustrated in Figure 3.8, and
fixating a single spot with the eyes.
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with the eyes, approximately at the centre of the common coordinate system,
i.e., at position (xG, yG) = (640, 480). However, there is still quite a high
degree of dispersion of roughly ±100 px in the horizontal and ±50 px in the
vertical direction. The origin of this dispersion is not obvious. It is certainly
influenced by the accuracy and precision of the two tracking systems and it
is also highly dependent on the ability of individual participants to fixate a
stationary target reliably. Primarily, however, it reflects the quality of the
applied model for combining the head- and eye-tracking signals.

4.2.2 Compensatory Factors

Section 3.5.3 discussed the compensatory factors A and B, which are formu-
lated in Equation (3.12). These factors are tuned to minimise the standard
deviation of the different signals recorded while performing the movement
patterns I - IV with the head, illustrated in Figure 3.8, and fixating a single
spot with the eyes. The result of one recording, whereby different values
are applied for A and B, are depicted in Figure 4.9. The figure shows the
horizontal and vertical positions of the resulting eye-in-space motion over
time for the movement patterns I - IV. If values are chosen for the com-
pensatory factors A and B so that they are both equal to one, this is the
same as applying the initial model, without compensatory factors. Choosing
values for A and B which are not equal to one, results in a clearly visible
improvement in performance. It can be observed that the optimum values
for the compensatory factors A and B must lie somewhere between 1.1 and
1.2. This is evident because when values for A and B between 1.1. and 1.2
are chosen, the degree of dispersion of the eye-in-space motion is much lower
than when larger or smaller values are selected. Compensatory factors of
A = 1.15 and B = 1.19 were found to produce the best results.

Figure 4.10 illustrates the results of applying the adjusted model, i.e., Equa-
tions (3.3) and (3.12) with A = 1.15 and B = 1.19, to the combination of
the eye- and head-tracking signals while performing the movement patterns
I - IV with the head, illustrated in Figure 3.8, and fixating a single spot
with the eyes. The figure shows the horizontal and vertical positions of the
resulting eye-in-space motion over time as well as in the spatial domain for
the movement patterns I - IV, respectively. By comparing the results of the
initial model, depicted in Figure 4.8, with the results of the adjusted model,
illustrated in Figure 4.10, a clearly improved performance can be observed.
The dispersion resulting form the initial model of roughly ±100 px in the
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Figure 4.9: Horizontal (a) and vertical (b) eye-in-space positions
determined with the adjusted model for different values of the com-
pensatory factors A and B while performing the movement patterns
I - IV with the head, illustrated in Figure 3.8, and fixating a single
spot with the eyes.

horizontal and ±50 px in the vertical direction is reduced to approximately
±30 px in both directions. The presumption that the test person was fixating
a spot with the eyes at approximately the centre of the common coordinate
system is now even more valid. It would not have been possible to make such
a presumption, however, by only investigating the signals of the eye-tracking
glasses (cf. Figure 4.4).

Figure 4.11 shows the result of applying the adjusted model to the combi-
nation of the eye- and head-tracking signals, when the movement patterns
I - IV, illustrated in Figure 3.8, are performed, which involve both eye and
head movements. The figure shows the horizontal and vertical positions of
the resulting eye-in-space motion over time as well as in the spatial domain
for the different movement patterns I - IV, respectively. It is easy to observe
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Figure 4.10: Eye-in-space positions over time (a)-(b) and in the spa-
tial domain (c)-(f) derived with the adjusted model, while performing
the movement patterns I - IV with the head, illustrated in Figure 3.8,
and fixating a single spot with the eyes.
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Figure 4.11: Eye-in-space positions over time (a)-(b) and in the spa-
tial domain (c)-(f) derived with the adjusted model, while performing
the movement patterns I - IV, illustrated in Figure 3.8, involving a
combination of eye and head movements.
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that the plots showing the position in the spatial domain (Figure 4.11c-f),
closely match the performed eye-movement patterns I - IV, illustrated in
Figure 3.8. This means that while it was not possible to draw any conclusion
on the eye-in-space motion by only investigating the recorded eye-tracking
data for the same type of eye and head movements (cf. Figure 4.4), it is
possible if the head movement is also taken into account. In particular, it is
possible to distinguish between the different types of eye movements.

4.3 Evaluation

4.3.1 Precision

The calculated precision of the four different cases described in Section 3.6.2
is presented in Tables 4.1 and 4.2. Table 4.1 shows the result without com-
pensation for head movements, whereas in Table 4.2, the result incorporating
head-movement compensation is shown. To calculate the precision for cases
A) and C), i.e., fixating a stationary target while keeping the head still,
3 different recorded sequences, each 116 s in length, were evaluated. To
calculate the precision for cases B) and D), i.e., fixating a stationary target
while moving the head, 18 different recording sequences, each 4 s in length,
were evaluated.

Table 4.1: Horizontal and vertical precision calculated without com-
pensating for head movements for recordings where a stationary target
is fixated with the eyes, with and without head movement, respectively,
i.e., cases A) and B) described in Section 3.6.2.

Precision Horizontal (x) Vertical (y)

Head still 0.45 ◦ 0.44 ◦

Head moving 12.89 ◦ 7.99 ◦

When the participant is asked to not move the head, the precision is reduced
from around 0.5 ◦ without head-movement compensation to around 0.2 ◦ with
head-movement compensation. When the participant is asked to intentionally
move the head, the precision is reduced from 12.89 ◦ to 0.61 ◦ in the horizontal
direction and from 7.99 ◦ to 0.85 ◦ in the vertical direction. These results
clearly show that by compensating for head movements the precision can
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Table 4.2: Horizontal and vertical precision calculated with head-
movement compensation for recordings where a stationary target is
fixated with the eyes, with and without head movement, respectively,
i.e., cases C) and D) described in Section 3.6.2.

Precision Horizontal (x) Vertical (y)

Head still 0.16 ◦ 0.20 ◦

Head moving 0.61 ◦ 0.85 ◦

be significantly improved, even for data sequences where the test person is
asked to keep the head as still as possible.

4.3.2 Accuracy

The accuracy of the gaze estimation calculated in two different ways as
described in Section 3.6.2 is presented in Tables 4.3 - 4.5. Table 4.3 shows
the accuracy of the data recorded when all nine different stimuli videos are
presented. Table 4.4 shows the accuracy when only the fixational movements
(stimuli videos 1 - 5) are shown. Finally, Table 4.5 shows the result when
mostly smooth-pursuit movements (stimuli videos 6 - 9) are shown. Two
different recording sequences were evaluated for the presentation of each
stimulus video.

Table 4.3: Horizontal and vertical accuracy calculated in two different
ways as described in Section 3.6.2 from data recorded while presenting
stimuli videos 1 - 9.

Accuracy Horizontal (x) Vertical (y)

Ã 1.49 ◦ 1.64 ◦

Â 0.99 ◦ 1.24 ◦

Over all recordings, accuracy values of 1.49 ◦ in the horizontal and 1.64 ◦

in the vertical direction are achieved if only the intersaccadic intervals are
taken into account. The corresponding accuracy values are 0.99 ◦ and 1.24 ◦

for the horizontal and vertical directions, respectively, when an additional
time shift between the stimulus signal and the estimated signal is introduced
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Table 4.4: Horizontal and vertical accuracy calculated in two different
ways as described in Section 3.6.2 from data recorded while presenting
stimuli videos 1 - 5.

Accuracy Horizontal (x) Vertical (y)

Ã 1.25 ◦ 1.66 ◦

Â 1.19 ◦ 1.64 ◦

Table 4.5: Horizontal and vertical accuracy calculated in two different
ways as described in Section 3.6.2 from data recorded while presenting
stimuli videos 6 - 9.

Accuracy Horizontal (x) Vertical (y)

Ã 1.79 ◦ 1.61 ◦

Â 0.74 ◦ 0.75 ◦

into the calculation (cf. Section 3.6.2). By comparing Tables 4.4 and 4.5, it
can be observed that the introduction of the additional time shift into the
accuracy calculation barely influences the results of the fixational movements
(stimuli videos 1 - 5). For the smooth-pursuit movements (stimuli videos
6 - 9), however, the introduction of the additional time shift improves the
accuracy values by almost 1 ◦.

Figures 4.12 - 4.14 depict representative results of the stimuli videos 3, 7, and
9, whereby the movement patterns I - X were performed with a combination
of eye and head movements. The figures show the horizontal and vertical eye
positions and head-rotation angles over time reported by the eye-tracking
glasses and the IMU, respectively. Moreover, to facilitate comparison with
the estimated gaze positions, the horizontal and vertical positions of the
stimuli are also shown. They were used to calculate the accuracy of the gaze
estimation. The quality of the gaze estimation was similar for all recordings,
independent of the type of stimulus video. Horizontal gaze estimation,
however, was generally slightly better than vertical gaze estimation.
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Figure 4.12: Results for stimulus video 3. (a)-(b) horizontal and
vertical eye-in-head positions and head-in-space orientations, respec-
tively. (c)-(d) stimuli and gaze positions in horizontal and vertical
directions, respectively.
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Figure 4.13: Results for stimulus video 7. (a)-(b) horizontal and
vertical eye-in-head positions and head-in-space orientations, respec-
tively. (c)-(d) stimuli and gaze positions in horizontal and vertical
directions, respectively.
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Figure 4.14: Results for stimulus video 9. (a)-(b) horizontal and
vertical eye-in-head positions and head-in-space orientations, respec-
tively. (c)-(d) stimuli and gaze positions in horizontal and vertical
directions, respectively.
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B - Event Detection
This second part of the results chapter presents the outcomes of the Event
Detection part of Chapter 3. The evaluation of the different stages of the
event-detection algorithm, i.e., the saccade detection and the classification
of fixations and smooth pursuits, is presented in Sections 4.4 and 4.5, re-
spectively, and in Section 4.6, the detection performance of the algorithm
is evaluated and compared to the two alternative algorithms described in
Section 3.8.3.

4.4 Saccade Detection
The parameter settings for the saccade-detection stage for both the proposed
algorithm and the I-VDT algorithm are presented in Table 4.6. The proposed
algorithm uses a two-step saccade-detection procedure with three different
velocity thresholds, one for the detection of the approximate saccadic intervals
and two for the saccadic onset and offset detection. In contrast, the I-VDT
algorithm only uses one threshold. The thresholds were found by maximising
the balanced accuracy of the saccade detection BACCS . They were adjusted
using the developmental part of the database only.

Table 4.6: The parameter settings for the saccade-detection stage of
the proposed algorithm and the I-VDT algorithm.

Algorithm Parameter Value

Proposed Algorithm
TV 45 ◦

TVON
25 ◦

TVOF F
30 ◦

I-VDT Algorithm TV 15 ◦

The resulting sensitivities and specificities for the saccade-detection stage
of both algorithms are presented in Table 4.7. The proposed algorithm
clearly outperforms the I-VDT algorithm in terms of both sensitivity and
specificity with values of 99.41% and 99.33% compared to 86.92% and
94.55%, respectively. The lower level of sensitivity for the I-VDT algorithm
indicates that too few samples are detected as saccades in comparison with
the manual annotations. In contrast to the proposed algorithm, which adopts
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a two-step saccade-detection process, the algorithm was not primarily able
to detect the onsets and offsets of the saccade correctly.

Table 4.7: The sensitivity, specificity and balanced accuracy of the
saccade-detection stage for the proposed algorithm and the I-VDT
algorithm.

Algorithm SENSS SPECS BACCS

Proposed Algorithm 99.41 99.30 99.35

I-VDT Algorithm 86.92 94.55 90.74

4.5 Fixation and SP Classification

4.5.1 Signal Measures

In order to classify the remaining samples into fixations and smooth-pursuit
movements, the eight different signal measures described in Section 3.7.3, i.e.,
mean velocity, slope, integral, energy, dispersion, directional variation, consis-
tency in direction, and positional displacement, were applied individually and
their relative classification performance was compared. For the comparison
of the classification performance of the different measures, the balanced
accuracies for fixations and smooth-pursuit movements were calculated. The
performances of the different signal measures were compared for the different
sliding-windows approaches and corresponding versions, i.e., BSWF , BSWB ,
WASW1, WASW2, WASW3, and WASW4, using different window sizes.
The different thresholds TM were again optimised by maximising the bal-
anced accuracies for fixations BACCF and smooth pursuits BACCP , using
the developmental part of the database only. Representative results of the
comparison using the WASW approach with a constant weighting vector
and with a window size lw of 200ms in length, which corresponds to 12
samples, are listed in Table 4.8 and illustrated in Figure 4.15.

Fixation and smooth pursuit are classified very well in the case of seven
out of the eight signal measures, with balanced accuracies between 90%
and 94%. When the mean velocity was used as signal measure, however, it
resulted in lower balanced accuracies of 85.06% and 84.13% for fixations
and smooth pursuits, respectively. This means that it is very difficult to
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Table 4.8: Comparison of the balanced accuracies for fixation and
smooth-pursuit classification for the eight different signal measures
described in Section 3.7.3 applied in a WASW approach with a
constant weighting vector and a window size lw of 200ms in length.

Signal Measures BACCF [%] BACCP [%]

PD Positional Displacement 93.94 93.21

I Integral 93.15 92.41

CD Consistency in Direction 92.91 92.16

S Slope 92.73 92.11

D Dispersion 92.18 91.38

E Energy 91.97 91.20

DV Directional Variation 91.77 90.82

MV Mean Velocity 85.06 84.13
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Figure 4.15: Visualisation comparing the balanced accuracies for
fixation and smooth-pursuit classification for the eight different signal
measures described in Section 3.7.3 applied in a WASW approach
with a constant weighting vector and a window size lw of 200ms in
lenght.
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separate fixations and smooth-pursuit movements using a velocity threshold,
as was already mentioned in [39]. Among the other seven signal measures,
the positional displacement generally showed the best results when different
sliding-windows approaches and different window sizes were applied, followed
by the integral measure. The performance using one of the other measures
was quite similar.

4.5.2 Sliding-Window Approaches

In the previous section, the classification performances when applying the
eight different signal measures were compared. The goal of this section is to
compare the performances when applying the two different sliding-window
approaches and corresponding versions, i.e., BSWF , BSWB, WASW1,
WASW2, WASW3, and WASW4, to extract the signal measures and sub-
sequently classify fixations and smooth-pursuit movements. To compare the
classification performance of the different approaches and versions, the bal-
anced accuracies for fixations and smooth-pursuit movements were calculated
for different window sizes, different signal measures and different threshold
values TM . Representative results of the comparison using the positional
displacement as the signal measure are depicted in Figures 4.16 and 4.17.
Figure 4.16 shows the balanced accuracies for the fixation detection, whereas
Figure 4.17 illustrates the balanced accuracies for the smooth-pursuit classifi-
cation. The positional displacement was chosen as example because it is the
measure which showed the best performance among all the signal measures
(cf. Section 4.5.1).

The performance of the two different sliding-window approaches, BSW
and WASW , in classifying fixations and smooth pursuits was similar.
Performances with balanced accuracy values between 90% and 98% were
achieved depending on which approach and signal measure were applied.
For six out of the eight measures, i.e., mean velocity, integral, energy,
dispersion, and positional displacement, the BSW approach showed slightly
better results, whereas for the remaining two measures, i.e., directional
variation and consistency in direction, the WASW approach performed a
little better. The former approach showed equally good results, regardless of
whether it was performed in the forward (BSWF ) or backward (BSWB)
direction. The four versions of the latter approach, which involved using
either a constant (WASW1), triangular (WASW2), exponential (WASW3),
or inverse-exponential (WASW4) weighting vector, differed slightly in their
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Figure 4.16: A comparison of the fixation classification performance
of the different sliding-window approaches and versions described in
Section 3.7.3, for different window sizes and threshold values using
the positional displacement as the signal measure. (a) BSWF , (b)
BSWB , (c) WASW1, (d) WASW2, (e) WASW3, (f) WASW4.
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Figure 4.17: A comparison of the smooth-pursuit classification
performance of the different sliding-window approaches and versions
described in Section 3.7.3, for different window sizes and threshold
values using the positional displacement as the signal measure. (a)
BSWF , (b) BSWB, (c) WASW1, (d) WASW2, (e) WASW3, (f)
WASW4.
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performance. Applying an inverse-exponential or constant weighting vector
showed slightly better results compared to using a triangular or exponential
weighting vector. This means that it is advantageous to take a lot of
information from distant neighbouring samples into account.

Besides the different sliding-window approaches and the respective versions
thereof, the window size also has a big influence on the classification per-
formance. Generally, it can be observed that the larger the window, the
better the performance. This phenomenon was already reported in [42].
In some cases, however, a saturation effect can be observed, whereby the
balanced accuracy cannot be improved any further by increasing the window
size. One reason for the tendency of larger windows to result in better
performances might be that the database only contains recordings where
the intersaccadic intervals consist of one single type of eye movement, either
fixations or smooth pursuits. In order to find the optimal window size, the
algorithm is additionally applied to downsampled high-speed data. The data
was recorded by a tower-mounted eye-tracking system and contains more
than one type of eye movement within the intersaccadic intervals. Although
it should be borne in mind that the signal properties of downsampled high-
speed data are different from the characteristics of data recorded with a
low-speed tracking system, this test might help to find a reasonable window
size. The classification performance of the algorithm when it is applied to
this alternative database also improves when the window size is increased.
A saturation point is already reached when the window size rises to about
250ms, however, depending on which signal measure is applied. In the
example shown in Figures 4.16 and 4.17, in which the positional displacement
is used as the signal measure, the BSW approach performed in the backward
direction, depicted in subplot (b), exhibits the best performance for such a
small window size of 250ms.

4.5.3 Combination of Signal Measures

The goal of this section is to investigate whether the classification performance
can be further improved by classifying the samples based on a combination
of different signal measures and thresholds. For this purpose, the two
signal measures which showed the best results for different sliding-window
approaches and different window sizes are combined, namely the positional
displacement and the integral. In order to combine these signal measures,
the WASW1 approach is applied, and a window size of 200ms is used. For

94



4.6 Evaluation Chapter 4

both signal measures, the average values MPD(n) and M I(n) are calculated
for each sample as described in Section 3.7.3 and plotted against each other.

The results for the samples of the recordings using stimuli videos 1 - 9
are given in Figures 4.18 and 4.19. The samples are coloured blue if they
were manually annotated as part of a fixation, or red if they were manually
annotated as part of a smooth-pursuit movement. The respective thresholds
TPD and TI are indicated as black lines when each signal measure is used
separately for the classification. The two figures show that it is difficult to
improve the classification by introducing new thresholds or other criteria
to distinguish between fixational and smooth-pursuit samples. This is in
evidence in the sample clusters, which are overlapping. In addition, other
combinations of signal measures were tried for the classification, but the
results were similar.

4.6 Evaluation

In this section, the proposed algorithm is evaluated in terms of sensitivity
and specificity and compared to both the I-VDT algorithm and the event
detector which is built-in to the eye-tracking glasses. The proposed algorithm
applies the BSWB approach and uses the positional displacement as the
signal measure (cf. Section 3.7.3) to classify fixations and smooth pursuits.
The approach and the signal measure are chosen because they showed the
best results in the previous comparisons (cf. Section 4.5). The window size is
set to 250ms as determined in Section 4.5.2. The parameter settings for the
different detection stages for both the proposed algorithm and the I-VDT
algorithm are shown in Table 4.9. The parameters were optimised using
the developmental part of the database. To facilitate a fair comparison,
the parameters of the I-VDT algorithm were optimised in the same way.
As previously mentioned in Section 3.8.3, there are no user-adjustable pa-
rameters for the built-in event-detection algorithm of the eye-tracking glasses.

The sensitivities, specificities and balanced accuracies of the detections
of saccades, fixations, and smooth-pursuit movements for the three
different algorithms are given in Tables 4.10 and 4.11, and they are
illustrated in Figures 4.20 and 4.21. Table 4.10 and Figure 4.20 con-
tain the results pertaining to the developmental part of the database,
whereas Table 4.11 and Figure 4.21 show the results pertaining to the
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Figure 4.18: The sample average values of two signal measures
(positional displacement MPD(n) and integral M I(n)) plotted against
each other for stimuli videos 1 - 5 (a)-(e). The samples are coloured
according to the manual annotations as fixations (blue) or smooth-
pursuit movements (red), and the respective thresholds TPD and TI
are indicated as black lines when each signal measure is used separately
for the classification.
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Figure 4.19: The sample average values of two signal measures
(positional displacement MPD(n) and integral M I(n)) plotted against
each other for stimuli videos 6 - 9 (a)-(d). The samples are coloured
according to the manual annotations as fixations (blue) or smooth-
pursuit movements (red), and the respective thresholds TPD and TI
are indicated as black lines when each signal measure is used separately
for the classification.
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Table 4.9: The parameter settings for proposed algorithm and the
I-VDT algorithm.

Algorithm Parameter Value

Proposed Algorithm

TV 45 ◦

TVON
25 ◦

TVOF F
30 ◦

lw 250ms

TPD 0.305

I-VDT Algorithm
TV 15 ◦

lw 250ms

TD 0.675◦

validation part of the database. The results of the developmental and
validation part of the database are very similar, which implies that the
different parameters were not overfitted to the data of the developmental part.

The performance of the proposed algorithm and the I-VDT algorithm in
detecting saccades for was already discussed in Section 4.4. It was established
that the proposed algorithm clearly outperforms the I-VDT algorithm. The
algorithm which is built-in to the eye-tracking glasses performs slightly better
than the I-VDT algorithm in terms of balanced accuracy, even though it has
a lower specificity compared to the I-VDT algorithm. The performance is
still poorer than that of the proposed algorithm, however, which exhibits
values of over 99% for both the developmental and validation part.

The sensitivities and specificities of the proposed algorithm are a bit lower
when classifying fixations and smooth pursuits than when detecting saccades,
but the values are very high nevertheless, ranging between 95% and 97%.
The performance of the I-VDT algorithm is again poorer with values
between 77% and 93%. The built-in algorithm clearly performs poorest,
as it is not able to discriminate between fixations and smooth-pursuit
movements (cf. Section 3.8.3). All events which are not detected as saccades
are classified as fixations. Therefore, the sensitivity of the fixation detection
is quite high, and the specificity is extremely low, meaning that far too

98



4.6 Evaluation Chapter 4

Table 4.10: Sensitivities, specificities and balanced accuracies for
the proposed algorithm, the I-VDT algorithm, and the built-in event
detector of the eye-tracking glasses, calculated for the developmental
part of the database.

Measure Proposed [%] I-VDT [%] Built-in [%]

SENSS 99.41 86.92 92.23

SPECS 99.30 94.55 91.40

BACCS 99.35 90.74 91.82

SENSF 96.30 89.21 93.13

SPECF 97.13 90.52 25.08

BACCF 96.72 89.87 59.11

SENSP 95.31 78.92 0

SPECP 96.92 93.06 100

BACCP 96.12 85.99 50
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Figure 4.20: A visualisation of the balanced accuracy values for
the proposed algorithm, the I-VDT algorithm, and the built-in event
detector of the eye-tracking glasses, calculated for the developmental
part of the database.
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Table 4.11: Sensitivities, specificities and balanced accuracies for
the proposed algorithm, the I-VDT algorithm, and the built-in event
detector of the eye-tracking glasses, calculated for the validation part
of the database.

Measure Proposed [%] I-VDT [%] Built-in [%]

SENSS 99.41 85.07 91.81

SPECS 99.52 94.54 90.83

BACCS 99.46 89.81 91.32

SENSF 96.49 89.85 92.76

SPECF 96.40 88.98 26.32

BACCF 96.44 89.42 59.54

SENSP 94.97 76.72 0

SPECP 96.77 93.51 100

BACCP 95.97 85.11 50
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Figure 4.21: A visualisation of the balanced accuracy values for
the proposed algorithm, the I-VDT algorithm, and the built-in event
detector of the eye-tracking glasses, calculated for the validation part
of the database.
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many samples are detected as fixations compared to the manual annotations.
The sensitivity and specificity of the smooth-pursuit detection are 0% and
100%, respectively, as no samples are labelled as smooth pursuits by the
built-in detector.

Three examples illustrating the detection performance of the proposed
algorithm for saccades, fixations, and smooth-pursuit movements based
on the recordings using the stimuli videos 3, 7, and 9 are depicted in
Figures 4.22 - 4.24, respectively. The figures show the labelled eye-in-space
position for the horizontal and vertical directions over time as well as in the
spatial domain.

In the case of stimulus video 3, the movement patterns I - IV are performed
with a combination of eye and head movements. As described in Section 3.4,
these movement patterns aim to stimulate sequences of saccadic and fixa-
tional eye movements only. Accordingly, saccades and fixations were almost
exclusively detected by the proposed algorithm in Figure 4.22. However, a
few samples were still classified as smooth-pursuit movements. These samples
are mainly located at the beginning or the end of a saccade. One reason for
this classification could be that the eye was possibly still drifting a bit and
not entirely still. Some samples were also marked as smooth pursuits at parts
of the signal where the accuracy of the head-movement compensation was low.

For the stimuli videos 7 and 9, the movement patterns V - VII and VIII - X
are performed, respectively, with a combination of eye and head movements.
These movement patterns aim to stimulate sequences of saccadic, fixational,
and smooth-pursuit eye movements. In Figures 4.23 - 4.24, all three eye
movements were detected by the proposed algorithm, even the catch-up
saccades within the smooth-pursuit movements (cf. Section 2.2.3). Each
intersaccadic interval should contain only one type of eye movement, either
fixations or smooth pursuits. In this case again, it can be observed that at
the beginning and the end of a saccade it is hard to discriminate between
fixations and smooth pursuits.
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Figure 4.22: Event detection of proposed algorithm for stimulus
video 3. Labelled eye-in-space positions over time (a)-(b) and in the
spatial domain (c)-(f). 102
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Figure 4.23: Event detection of proposed algorithm for stimulus
video 7. Labelled eye-in-space positions over time (a)-(b) and in the
spatial domain (c)-(e). 103
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Figure 4.24: Event detection of proposed algorithm for stimulus
video 9. Labelled eye-in-space positions over time (a)-(b) and in the
spatial domain (c)-(e). 104



Chapter 5

Discussion

In this chapter, the results presented in Chapter 4 are discussed. An overview
of the challenges and limitations of the gaze-estimation model and the
proposed event-detection algorithm is given, and some suggestions for further
improvements and extensions are presented and discussed.

5.1 Gaze Estimation

The method presented in this thesis estimates the eye-in-space motion by
combining eye-tracking signals, recorded with eye-tracking glasses, and
head-tracking signals, recorded using an IMU. The results of the performance
evaluation of the model presented in Section 4.3 show that by compensating
for head movements, the precision can be significantly improved and a
considerably high degree of overall accuracy is achieved.

In [11], different remote and tower-mounted eye trackers are investigated and
precision values from 0.01 ◦ up to 1 ◦ are reported. The signals obtained by
combining the eye- and head-tracking signals, which result in precision values
of around 0.2 ◦ to 0.8 ◦, are comparable to signals recorded using a remote or
tower-mounted eye-tracking system, therefore. This in turn implies that the
application of head-movement compensation makes it easier to develop an
algorithm capable of distinguishing between different types of eye movements.

Overall, the proposed gaze-estimation method achieved accuracy values
between 1 ◦ and 1.2 ◦, which is relatively high for signals recorded using
eye-tacking glasses. In the literature, measured accuracy values between
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0.3 ◦ and 5 ◦ are reported, depending on the type of eye-tracking systems and
the recording environment employed [11, 20, 15]. While tower-mounted eye
trackers provide greater accuracy compared to remote and head-mounted
systems, experiments in laboratory settings glean more accurate results than
when recordings are made in naturalistic, real-life situations. However, it
has to be borne in mind that accuracy is influenced by a number of different
factors:

• Participant Factors. As previously mentioned in Section 3.6.2, compar-
ing the estimated eye-in-space motion to the stimuli signals evaluates
not only the performance of the method, but also the user’s ability
to follow the stimulus, both temporally and spatially. The temporal
factor means that eye movement might be performed too fast, or too
slow, too early, or too late. The spatial factor involves the ability of
the participant to fixate exact positions on the stimulus screen. As
the presented dots have a diameter of approximately 1 ◦, fixating the
fringe of the dots instead of the centre might decrease the accuracy by
0.5 ◦, for instance.

• Equipment Factors. Besides the factors which are unique to each
participant, the properties of the equipment also influence the accuracy
of results. The more precise and accurate the measurements of the two
tracking systems are, the more accurate the gaze estimation will be.

• Calibration and Synchronisation. In addition, accuracy highly depen-
dent on the quality of the calibration and synchronisation procedure.
During the calibration of the eye-tracking glasses with the IMU, a
stationary target has to be fixated with the eyes while the head is kept
as still as possible. During the synchronisation procedure, a stationary
target has to be fixed with the eyes while a synchronisation pattern is
performed with the head. The better the participant can follow the in-
structions, the better the two systems are calibrated and synchronised,
and the better accuracy values are achieved.

• Stimuli Conversion. Finally, the quality of the mapping of the stimuli
coordinates to the common coordinate systems also has an influence
on the accuracy of the gaze estimation. During mapping, the geometry
of the experiment setup is used, i.e., the screen dimensions, distance to
the screen, and field of view of the camera. The following three factors
may each impair the accuracy by 0.2 - 0.3 ◦: inexact measurements
of the screen dimension of 1 cm, inexact specifications of the field of
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view of the camera angles specifications of 1 ◦, and changes of the
distance to the screen by 10 cm, which may for instance happen when
the participant is standing slightly askew.

A simple but effective way to improve the calibration and synchronisation of
the eye-tracking glasses and the IMU would be to combine the two systems
within a single system by integrating the IMU into the mobile eye-tracking
device. In comparison with other head-movement estimation techniques,
an IMU is small and light which would make integration with the glasses
relatively easy.

Currently, the model for gaze estimation is able to accurately compensate
for head movements in the eye-tracking data in a controlled environment,
meaning that the data is gleaned from recordings of sequences of controlled
saccadic, fixational and smooth-pursuit movements. Further analysis of the
gaze estimation is needed in order to investigate how the method can be
extended to more complex situations where the subject is allowed to freely
move within the environment. This means that in addition to the horizontal
and vertical head rotations, transitional and torsional head movements need
to be compensated for, which implies that the IMU needs to track the head
position as well as head orientation.

5.2 Event Detection

The proposed algorithm is able to robustly detect saccades, fixations and
smooth-pursuit movements from signals containing eye-in-space motion only,
which are obtained by combining the eye- and head-tracking signals. The
results of the comparison of the algorithm presented in Section 4.6 show
that the detection performance of the proposed algorithm is considerably
better than either of of the two alternative algorithms, namely the I-VDT
algorithm and the event detector built-in to the eye-tracking glasses.

The lower level of sensitivity of the saccade-detection stage exhibited by
the I-VDT algorithm indicates that there are too few samples detected as
saccades compared to the manual annotations. The I-VDT algorithm was
not able to detect the onsets and offsets of the saccades correctly, in contrast
to the proposed algorithm, which uses a two-step saccade-detection process
which explicitly detects saccadic onsets and offsets. On the basis of testing
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a variety of different signal measures and sliding-window approaches, the
proposed algorithm uses the positional displacement as the signal measure
and applies the WASWB approach to classify the samples into fixations
and smooth-pursuit movements. This combination discriminates between
fixations and smooth pursuits better than to the I-VDT algorithm which
uses the dispersion of the signal applied in a basic sliding-window approach.

In contrast to the proposed algorithm and the I-VDT algorithm, the event
detector built-in to the eye-tracking glasses is applied directly to the data
recorded by the eye-tracking glasses without preliminary head-movement
compensation. The saccade-detection performance of the built-in event
detector is slightly better than that of the I-VDT algorithm, but is poorer
than that of the proposed algorithm nevertheless. Thus, the velocity-based
built-in algorithm adopts adaptive thresholds and is able to reliably
detect saccades from raw eye-tracking data. It is not able to discriminate
between fixations and smooth-pursuit movement, however, in contrast to
the proposed algorithm, which operates on signals containing eye-in-space
motion only. This emphasises the need for and importance of head-movement
compensation when analysing eye-tracking data recorded with a mobile
eye-tracking device.

Further investigation of the detection performance of the proposed algorithm
showed that a few samples were detected by the algorithm as smooth
pursuits in intervals where only fixational eye movements are assumed to
have been performed. A possible reason for the misclassification could be
that in the case of moving-dot stimuli, the eye is still at the beginning of the
movement, although the dot is moving on the screen. Some samples were
also marked as smooth pursuits at parts of the signal where the accuracy
of the head-movement compensation was low. Conversely, detections of
smooth-pursuit movements in intervals where only fixational movements
are assumed to have been performed may have been caused by drifts
during fixations and remainders from saccadic movements in the case of the
jumping-dot stimuli.

In order to assess the limits of the algorithm, further testing is needed. For
this purpose, however, a larger database is required. Future work would
involve a larger test study with a greater number of participants and a
larger variation of stimuli characteristics. The stimuli signals should provide
data to verify properties such as the slowest saccade, the fastest smooth
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pursuit, or smallest eye movement detectable by the algorithm. Moreover,
the stimuli signals should be extended such that the intersaccadic intervals
consist of different types of eye movements.

The performance of the proposed algorithm was quantitatively evaluated
on a sample-to-sample basis in terms of sensitivity and specificity by
comparing the detected events to manual annotations. Manual annotations
may suffer from human subjectivity and inconsistency, however, because
different experts may have different annotation behaviour. Therefore, with a
larger database, a combination of different evaluation strategies would be
beneficial. This may include the calculation of event properties such as the
mean duration, the peak velocity or the total number of different types of
eye movements. Other possible strategies include Cohen’s kappa analysis,
which evaluates the overall agreement between manual annotations and the
detections of an algorithm, or calculating scores as proposed in [31, 39].

The results of Section 4.5.3 show that it is barely possible to improve the
classification performance of fixations and smooth pursuits by combining
different signal measures and thresholds. This is evidenced by the overlapping
clusters of fixational and smooth-pursuit movement samples. With a larger
database, however, all signal measures may be combined as proposed in
[50, 42] without risking problems such as overfitting. To classify events,
different classification and clustering algorithms may be tested in combination
with prior feature-selection algorithms in order to select the most relevant
signal measures.
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Conclusion

In this master’s thesis, a two-step procedure to automatically classify the
three most common types of eye movements from mobile eye-tracking data
is proposed. The eye-in-space motion is estimated by combining the eye-
tracking signals with the head-tracking signals recorded using an IMU, and
a new enhanced event-detection algorithm is applied to detect saccades,
fixations, and smooth-pursuit movements.
The results of a pilot study show that by compensating for head movements,
the precision of the mobile eye-tracking data can be significantly improved,
and a relatively high overall degree of accuracy can be achieved. Furthermore,
the proposed event-detection algorithm is able to accurately perform ternary
classification of eye movements based on mobile eye-tracking data. With
sensitivities and specificities over 95%, it clearly outperforms two alternative
algorithms used for comparison.
The present work demonstrates that, in a controlled environment, head
movements can accurately be compensated for in eye-tracking data by using
an IMU, and that robust event detection can be achieved. Future work
involves further analysis of the gaze-estimation model in order to extend it
to handle more complex situations. Moreover, a larger test study with more
participants and a larger database of stimuli will help to assess the limits of
the presented method.
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Appendix A

Paper to PETMEI 2014

Conference paper contribution to 4th International Workshop on Prevasive
Eye Tracking and Mobile Eye-Based Interaction (PETMEI) at September
13th, 2014, in Seattle, USA [53].
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Abstract
Analysis of eye movements recorded with a mobile
eye-tracker is difficult since the eye-tracking data are
severely affected by simultaneous head and body
movements. Automatic analysis methods developed for
remote-, and tower-mounted eye-trackers do not take this
into account and are therefore not suitable to use for data
where also head- and body movements are present. As a
result, data recorded with a mobile eye-tracker are often
analyzed manually. In this work, we investigate how
simultaneous recordings of eye- and head movements can
be employed to isolate the motion of the eye in the
eye-tracking data. We recorded eye-in-head movements
with a mobile eye-tracker and head movements with an
Inertial Measurement Unit (IMU). Preliminary results
show that by compensating the eye-tracking data with the
estimated head orientation, the standard deviation of the
data during vestibular-ocular reflex (VOR) eye
movements, was reduced from 8.0◦ to 0.9◦ in the vertical
direction and from 12.9◦ to 0.6◦ in the horizontal
direction. This suggests that a head compensation
algorithm based on IMU data can be used to isolate the
movements of the eye and therefore simplify the analysis
of data recorded using a mobile eye-tracker.



Author Keywords
Signal Processing, Eye-tracking, Head Movement
Measurement, Inertial Measurement Unit

ACM Classification Keywords
G.4 [Mathematical software]: Algorithm design and
analysis.

General Terms
Measurement

Introduction
The interest and popularity of mobile eye-tracking have
increased significantly in recent years. Mobile eye-trackers
make it possible to record eye movements outside the
laboratory in a natural environment. When the degrees of
freedom to move the head and the body are increasing,
the complexity of the data analysis increases
dramatically [3]. In many mobile eye-trackers, the
recorded data are mapped into the coordinate system of
the simultaneously recorded scene video. Since the
coordinate system of the scene video is not fixed when the
head and body move, analysis of the recorded data is
difficult to perform. Algorithms developed for the analysis
of data recorded from remote-, and tower-mounted
eye-trackers do not take head movements into account
and are therefore not suitable to use when head-, and
body movements are present [4]. In this paper, we present
preliminary work on the feasibility to measure head
movements with an IMU, and subtract it from the
eye-tracking signals to isolate eye movements.

Related work
In the literature, there are several methods presented for
recording head movements together with eye movements,
e.g., with a magnetic field [2], optically with a laserBird

system [8], with an omnidirectional vision sensor [7],
image processing of the scene video [5], and an
accelerometer [1]. Both of the methods in [2] and [8] are
only applicable when the recording is performed in the
laboratory or in a limited area. The other three methods
can be used in recordings with natural environments.
Previously, recordings using an accelerometer have
suffered from problems with drift and difficulties to
synchronize the accelerometer data with the eye-tracking
data [5]. The main goal with compensation of the head
movements is to be able to perform automatic analysis of
the signals recorded with a mobile eye-tracker.

Method
When an eye-tracker is used in a natural situation where
the head can be moved, the signal that the eye-tracker is
recording, s(n), is a combination of eye movements and
head movements and can be expressed as the sum of
these movements. The expression for the movement in
the horizontal direction, x, is

sx(n) = ex(n) + hx(n) + ηx(n) (1)

where ex(n) is the movements of the eye, hx(n) the
movements of the head, and ηx(n) is a noise component.
An analogue expression for the recorded signal can be
written for the vertical direction, sy(n). In order to
compensate for the effect of hx(n) and hy(n), head
movements are measured with the sensors in the IMU.
The IMU board includes an AHRS-algorithm described
in [6]. The AHRS-algorithm is a fusion algorithm that
combines the three signals from each of the gyro, the
accelerometer, and the magnetometer into a three
dimensional signal containing the orientations of each of
the Euler angles. The Euler angles describe the pitch, φ,
roll, θ, and yaw, ψ, which correspond to rotations around
the x′, y′, and z′-axes, respectively [6].
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Figure 1: A description of the coordinate system for the IMU,
where the y′-direction points in the direction of the nose.
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Figure 2: The apparatus setup used in this work. a) The IMU,
and b) the eye-tracking glasses.

The description of the coordinate system for the IMU is
shown in Figure 1, where the y′-direction points in the
direction of the nose. In this study we are only using the
estimated orientations of the head movements around the
x′ and z′-axes, e.g., nodding corresponds to a rotational
movements around the x′-axis and shaking the head
corresponds to a rotational movement around the z′-axis.

The estimated orientation is described in angles, while the
eye-tracking data extracted from the eye-tracker are
expressed in pixels of the scene video. In order to
compensate for the head movements in the eye-tracking
data, the signals need to be converted to the same
coordinate system. We decided to map the angles of the
head movements to the coordinate system of the
eye-tracking data. The projections of the angles, φ, and
ψ, are described by

ĥx = A
xmax

2 tan(αmax

2 )
tan(φ) (2)

ĥy = B
ymax

2 tan(βmax

2 )
tan(ψ) (3)

where xmax and ymax are the resolution of the scene
video in pixels in the x and y directions, respectively. The
corresponding maximum angles of the camera in the x
and y directions are αmax and βmax, respectively. A and
B are compensatory factors that are chosen to optimize
the subtraction of the head movements, (A = 1.15 and B
= 1.19). By subtracting the estimated head movements,

ĥx and ĥy, from Equation 1, the resulting signals, ŝx(n)
and ŝy(n), can be expressed by

ŝx(n) = sx(n) − ĥx(n) = êx(n) + ηx(n) (4)

ŝy(n) = sy(n) − ĥy(n) = êy(n) + ηy(n) (5)

which consist of the estimated eye movement signal and a
noise component.



Experiment and apparatus
In this pilot study, the eye-tracking signals were recorded
using the eye-tracking glasses from SensoMotoric
Instruments (SMI), with a sampling frequency of 60 Hz.
On the forehead of the test person, an Inertial
Measurement Unit (IMU) from x-io Technologies was
placed, see Figure 2. The IMU consisted of a three-axial
gyro, a three-axial accelerometer, and a three-axial
magnetometer, and had a sampling frequency of 512 Hz.

The stimulus consisted of black dots on a white
background, presented with a video projector on a large
white wall with dimensions (1.4 x 1.9 m). The test person
was placed in front of the screen at a distance of 2.5 m,
with the eyes aligned with the center of the screen. In
order to be able to synchronize the eye-tracking signals
with the signals recorded with the IMU, the experiment
started with a short synchronization period, where the test
person was asked to fixate on a dot and move the head
horizontally. The second part of the experiment consisted
of only movements of the eyes. A dot was shown in each
of the four corners of the wall, and the task was to move
only the eyes to the next corner and fixate on the dot
while having the head as still as possible. The next task
was to move only the head. The eyes were fixating on a
dot in the center of the wall while the head was moved
horizontally, vertically, and a mix of both. The last part of
the experiment consisted of combined movements of the
eyes and the head.
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Figure 3: Example of recorded eye-tracking signal when
fixating a stationary target and moving the head, (a) in the
x-direction and (b) in the y-direction.

Results
An example of the recorded eye-tracking signal, when the
eyes are fixating a stationary target and the head is
moving first in the horizontal and then in the vertical
direction, is shown in Figure 3. The estimated orientation
of the head is shown in Figure 4 and the resulting eye
signal after subtraction of the estimated head movements
is shown in Figure 5.
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Figure 4: Example of estimated head orientation when fixating
a stationary target and moving the head, in (a) φ, (b) ψ, and
(c) θ.
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Figure 5: Example of the resulting eye signal when the
compensation of the head movements is preformed. Black line
corresponds to the x-direction and grey line to the y-direction.

In order to evaluate the effect when compensating for
head movements in the eye-tracking data, the standard
deviation of the data during fixating on a stable target
was calculated for four different cases.

1. Fixating on a stationary target with the head still
and no compensation of head movements.

2. Fixating on a stationary target with head moving
and no compensation of head movements.

3. Fixating on a stationary target with the head still
and compensation of head movements.

4. Fixating on a stationary target with head moving
and compensation of head movements.

The standard deviation of the data for the four cases was
calculated as

σ =

√√√√ 1

N

N∑

n=1

(ŝx(n) − ¯̂sx)2 (6)

for the horizontal and the vertical direction separately,
where ŝx(n) is the resulting eye signal, ¯̂sx is its mean and
N is the length of the signal.



Not compensated Compensated
σ (◦) x y x y

Head still 0.46 0.42 0.21 0.26
Head moving 12.89 7.99 0.61 0.85

Table 1: Standard deviation of the data for a stationary target
with and without head movements, for compensated and not
compensated data, in both the horizontal and vertical
directions.

The results for the four cases are shown in Table 1. Even
when the test person is asked to not move the head, the
compensation reduces the standard deviation of the data
from around 0.5◦ without compensation to around 0.2◦

when using head movement compensation. When the
head is intentionally moving, compensation of the head
movement reduces the standard deviation from 12.89◦ to
0.61◦ in the horizontal direction and from 7.99◦ to 0.85◦

in the vertical direction.

Discussion
In this work, the orientation of the head has been
estimated using an IMU and has been subtracted from the
recorded eye-tracking signal. The results show that by
compensating for the head movements, the standard
deviation of the eye-tracking data is significantly reduced,
also for data when the test person is asked to keep the
head as still as possible. The reduction of the standard
deviation makes the signal recorded with a mobile
eye-tracker more similar to the eye-tracking signals
recorded with a remote-, or tower-mounted eye-tracker,
which in turn makes it easier to develop algorithms that
are able to separate between the eye movements saccades,
fixations, smooth pursuits, and VOR.

Previous work where an accelerometer has been used to

measure the movements of the head, has suffered from
drift in the accelerometer. By estimating the head
orientation with the AHRS-algorithm, which combines the
signals from the gyro, the accelerometer, and the
magnetometer, this drift can be compensated for [9].

The present work demonstrates that, in a controlled
environment, head movements can accurately be
compensated for in eye-tracking data by estimating the
orientation of the head using an IMU. Future work will
show whether the method can be extended to more
complex situations, where both the head, the body, and
the environment may be moving. Such work requires the
use of the third estimated head orientation as well.

Future work will involve performing a larger study where a
greater number of participants is included and where the
proposed method is compared to previously presented
ones.

In relation to other head movement estimation
techniques, an IMU is light and relatively easy to integrate
into a mobile eye-tracking device.

Acknowledgements
This work was supported by the Strategic Research
Project eSSENCE, founded by the Swedish Research
Council.

References
[1] Ahlström, C., Victor, T., Wege, C., and Steinmetz, E.

Processing of eye/head-tracking data in large-scale
naturalistic driving data sets. IEEE Transactions on
intelligent transportation system 13, 2 (2012),
553–564.

[2] Allison, R. S., Eizenman, M., and Cheung, B. S. K.
Combined head and eye tracking system for dynamic



testing of the vestibular system. IEEE Transactions on
Biomedical Engineering 41, 11 (1996), 1073–1082.

[3] Essig, K., Sand, N., Schack, T., Künsemöller, J.,
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